
Code Art Brutalism
low-level systems and simple programs
Simon Yuill, April 2004

Copyright 2004, Simon Yuill

This text is distributed under the terms of the GNU Free Documentation License, a copy of which is available from
http://www.gnu.org/copyleft/fdl.html.

A version of this essay was originally published in read_me: Software Art and Cultures, edited by Olga Goriunova
and Alexei Shulgin, Digital Aesthetics Research Centre: Aarhus, 2004.

Introduction

fig.1.) le Corbusier, Unite d'Habitation, Marseille, 1952

Brutalism, more properly known as "New Brutalism" in its heyday, is arguably one of the most
unpopular and least understood architectural styles of the 20th Century. It is mostly
associated with rough-cast concrete buildings where its name is linked with the "beton brut"
casting technique used by le Corbusier in the Unite d'Habitation, Marseille (1952) [fig. 1]. The
term was adopted by young British architects of the 1950's, seeking a name to distinguish
themselves from the prevalent style of their elders, one which harked back to traditional, pre-
Modernist building styles [1]. Alison and Peter Smithson were its key proponents who
described Brutalism as an ethic rather than an aesthetic. An attitude to how buildings and
their materials should be used, it sought to re-think architectural practice through abandoning
stylistic and metaphorical constructs. Brutalist designs often consciously exposed the basic,
raw materials of industrial building, "demythologising concrete and recognising it for what it
is." [2] Similarly, its proponents attempted to develop attitudes to urban planning that
accepted the complexity and confusion of existing social situations rather than impose
idealised models onto them [3].

The exposure of a raw materiality is prevalent in much current code art, such as JODI's
untitled game and JET SET WILLY Variations [4], and Gameboy sound hacks [5] [fig. 2].
These works often bring the, normally hidden, basic materials from which digital works are
made (code and data structures) into the foreground. Such works are often linked with, or
perceived as, a form of nostalgia for "old skool" coding, but they are often as much an
archaeology of the present, de-metaphorising interface-based software and reasserting the
inherent aesthetics of pixels and code outwith any mimetic representational role. Yet these
projects still accept a certain degree of interface as given, whether it is a Gameboy chassis or
the familiar keyboard and monitor setup of the domestic PC. There is, however, a whole field
of programming that deals much more fundamentally with the manipulation and execution of
code by machine: assembly coding and the world of simple programs.

fig. 2a) JODI, JET SET WILLY Variations, 2003,
interface

fig. 2a) JODI, JET SET WILLY Variations, 2003,
assembly code

Assembly and simple programs

Assembly languages are a set of human-readable programming languages which relate
closely to the mechanics of processor chips. Commands in assembly often refer directly to
the physical actions of the processor, moving values in and out of memory locations, or
turning the pins that connect processors to their host circuits on and off. Individual assembly
commands can be related directly to the binary machine instructions, or opcodes, that the
processor responds to, and many chip manufacturers provide tables that map specific binary
values to assembly commands [fig. 3]. Because of this close proximity to the mechanics of the
hardware, assembly languages are described as low-level languages in contrast to high-level
languages, such as C or Java. These are more distant from the hardware and use commands
that generally relate more to the human understanding of what a program does. Whilst low-
level actions, such as bit operations, can be expressed in them, many high-level languages
effectively clothe the machine operations in a set of metaphors which enable us to construct
programs in accord with our own conceptual structures. Even basic functions such as
subtraction and division are metaphorical expressions for particular machine actions which
relate those actions to the entirely human concept of mathematics. The common conception
of computers as essentially mathematical devices is, in this sense, inaccurate. It would be
more precise to state that they are machines capable of manipulating binary patterns which
simulate aspects of human mathematics. It is in those areas of coding that deal directly with
this pattern-making process that we encounter a kind of Brutalism.

fig. 3a) PIC16F8X command specifications (extract) fig. 3b) assembly commands as binary patterns

This pattern-making process is often best expressed through "simple programs". Simple
programs are those which perform a small set of basic operations on a set of constituent
components producing some kind of output which may or may not have any functional value.
A simple program applied to a lightbulb, for example, might take the form:

turn light on
wait 5 seconds
turn light off
wait 5 seconds
repeat

Indeed the most interesting simple programs are often those which have no obvious purpose
yet which nevertheless exhibit particular distinctive behaviours. The physicist Stephen
Wolfram has dedicated a large part of his life to the study of such programs, attempting to
explain and catalogue their behaviours like a 19th Century plant collector [6]. One significant
species of simple program that he has examined is that of cellular automata. A cellular
automaton consists of a set of cells in a grid or line which may have two or more states.
These are frequently represented as a series of squares which are coloured to indicate their
current state. A typical program for a cellular automaton simply determines what state a cell
should turn to given its current state and those of its neighbouring cells. Wolfram has
catalogued a total of 256 such programs for just one particular type of cellular automata. He
illustrates the rules of these programs in a simple graphical form with their output displayed
on a grid in which the cells start in their initial states on the top line and show their changes
over time as they move down the grid [fig.4].

fig. 4a) diagram for linear cellular automata program
(copyright Stephen Wolfram, LLC, 2002)

fig. 4b) output from program
(copyright Stephen Wolfram, LLC, 2002)

Cellular automata first developed as a past-time of the mathematician Stanislaw Ulam who, in
the late 1940's, created games in which 2-D and 3-D structures were generated through
simple rule systems [7]. John von Neumann adopted and formalised Ulam's games as a
means of exploring the possibility of a self-reproducing machine. His work demonstrated that
many mathematical and computational systems, such as Turing machines, could be simulated
on them [8]. There are strong similarities between the operations performed in cellular
automata and the basic instruction sets of assembly languages [9]. Wolfram has largely built
on this work, simplifying von Neumann's automata and demonstrating that very complex
behaviours can be generated from simple programs. Interestingly, many of the significant
developments in cellular automata have emerged from purposeless play, such as Ulam's
games and John Conway's life [10]. As Wolfram has stated, understanding of simple
programs, such as the cellular automata, often develops out of a kind of "abstract aesthetic"
interest in their innate properties and behaviours rather than functionally driven analyses [11].

HAKMEM

Distributed as an internal report in 1972 at the MIT AI lab, HAKMEM (short for "hack memo")
is a classic compilation of early computer hacks, mostly designed for the then current PDP-10
system [12]. Its contributers include various luminaries of 1960's and early '70's computing
such as Marvin Minsky, Bill Gosper and Richard Stallman. It includes mostly mathematical
algorithms but also some plans for hardware devices, such as illegal radio packet
transmitters, and a section called "Programming Hacks" which covers various tricks to
produce visual and audio effects.

The PDP-10 (Programmed Data Processor model 10) was one of a series of mainframe
machines produced by the Digital Equipment Corporation (DEC) in the 1960's and '70's and
was popular with many of the computing research labs in the States at that time. The first
distributed computer game, Spacewar!, was created for a PDP as were the first successful
timesharing systems [13]. The PDP series were programmed in their own assembly language
and many of the entries in HAKMEM are based on specific features of the PDP instruction set
and binary system. Item 174, for example, points out that "21963283741 is the only number
such that if you represent it on the PDP-10 as both an integer and a floating-point number, the
bit patterns of the two representations are identical." In Item 154, Bill Gosper wryly explains
how the particular form of binary representation used on a given hardware system can alter
the results of certain types of calculations.

Many of the examples in HAKMEM are forms of "simple program", although often looser and
more intuitive than Wolfram's cellular automata programs. One such example is Gosper's
"display hack", Item 145, "proving that short programs are neither trivial nor exhausted." It
uses just four lines of code, the second line of which can be substituted with various
alternatives. The output produces "pretty pictures" on the display screen and can also be
wired to a stereo amplifier to produce audible forms. Item 146 presents the Munching
Squares algorithm, originally discovered by Jackson Wright in 1962. It consists of five lines of
code which can produce a variety of different visual forms which relate closely to those of
cellular automata [14] [fig. 5].

fig. 5) output from a Munching Squares program

Gosper was one of the pioneers of cellular automata research in the 1970's and implemented
a version of Conway's life in the text editor program TECO [15]. TECO was a form of
programmable text editor that ran on PDP's and has since been replaced by applications such
as Emacs [16]. TECO made no distinction between content and program code, any text
entered into it could be treated as a command. TECO's own command set was extremely
concise, consisting largely of single character commands that often related to keyboard
shortcuts. The following program takes a set of names, and lists them alphabetically
according to lastname:

[1 J^P$L$$ J <.-Z; .,(S,$ -D .)FX1 @F^B $K :L I $ G1 L>$$

The ^P, for example, is the command for "sort" [17]. In many ways the syntax of regular
expressions is a descendent of TECO, and such expressions can be seen as a form of
"simple program" that operates on text rather than binary cell structures. Many codewurkers,
such as Alan Sondheim and mez, as well as free-form ascii artists, use such devices to
produce their work - a kind of raw "textual automata" [18].

PIC progs

Modern computer systems have grown so much in processing capability that the dexterity and
genius that lay behind many of the HAKMEM examples is hard to appreciate. In many ways
the descendents of this particular programming ethos are to be found not in mainstream
software but in the work of microchip coders. Microchips provide basic processor systems on
a single chip (such as are found in mobile phones and electronic toys) and many current
processors are of similar capabilities as the early large-scale computer systems. The
availability of cheap microchips like the PIC have made chip programming popular with
hobbyists. A variety of high-level programming languages are available for microchip
development, but the vast majority of programmers still use the native assembly languages of
the actual chips. In many ways, a lot of these projects are even more reduced in material
resources than those of the PDP developers, relying on breadboard circuits, LED lights and
simple piezo-amplifiers. In terms of hardware and software these are the most stripped down,
interface-bare realisations and therefore the most 'brutal' in terms of their raw simplicity.

slowcount.asm is a demo program that is distributed on the Yappa website. Yappa is a
simple programming interface for PIC microchips developed by Mark Colclough [19]. In the
world of microchip programming, the standard equivalent of "HelloWorld" is a simple program
that controls an LED flashing on and off repeatedly. slowcount.asm is an extension of this
designed for the PIC16f84 chip. The program runs a loop that treats the input/output pins of
the chip as a binary counter, turning each pin on and off in representation of the current count.
The chip is placed in a circuit in which the 8 of the pins can be connected to LED lights and a
small audio speaker. The LEDs flash at different rates relating to the binary value they
represent. Those representing the most significant bits being slowest, whilst the least
significant bits, which change at a faster rate, produce an audible hum when connected to the
speaker [fig. 6]. It has strong parallels with some of the sound and video hacks for the PDP-
10. HAKMEM Item 168, for example, provides a program that sets up an endless loop of
incremental bit operations, and suggests connecting speakers to the output pins and listening
to "the square waves from the low bits of [pin] 0".

Wolfram's work with cellular automata is largely based around automata which expand
infinitely as they progress but he has also looked into fixed-width automata which use the
same number of cells throughout. slowcount.asm can be understood as a form of fixed-width
automata and the code could be easily changed to express other fixed-width automata
programs [20]. Fundamentally it is a raw expression of assembly code behaviour, and, like
the Munching Squares algorithm, demonstrates the congruity of binary processor mechanics
and cellular automata - both being forms of "simple program" and neither being developed for
any purposeful mathematical exercise.

fig. 6a) slowcount.asm circuit fig. 6b) binary patterns from slowcount.asm output, show
start and end of sequence, a black square indicates an
LED is on, white indicates that it is off

ap

Rather than designing one-off buildings, many Brutalist architects were interested in creating
habitats, adaptable social complexes that were capable of supporting small communities.
Examples include the Ivor Smith and Jack Lynn's Park Hill estate in Sheffield, Kunio
Mayekawa's Harumi apartment block, Tokyo, and Moshe Safdie's Habitat, Toronto [21]. ap
have taken a similar approach in their creation of an entirely new form of operating system,
one which could be described more in terms of a habitat for code. Echoing the the
Smithsons, ap argue that existing operating systems are restricted by "antiquated tool
metaphors, and the limiting notions/divisions of system, user and programmer," and that
instead data generation should be liberated from such imposed models [22].

Like the Brutalist habitats, ap projects emphasize modularity and topology as the principle
design factors. The Smithsons cited the traditional Japanese house as a model, capable of
changing the internal structure and function of its rooms over the course of a day [23]. The
notion of modular design had developed through 20th Century architecture from its adaption
of industrial process and in the 1950's and '60's was a key interest spreading from Brutalists
to the Pop architecture of Archigram [24]. In Cedric Price's Fun Palace design the only
permanent features were a skeletal grid and set of cranes which could place wall and floor
components into an endless variety of structures, an approach which was applied to larger
urban systems in many Archigram proposals [25]. The basic UNIX architecture is constructed
on a modular principle that can facilitate temporary connections between different
components to suit users' needs. The overall function of these is expressed in the topology of
the pipelines and process forks that connect them. The ap OS takes this further, constructed
as an environment of multi-purpose units whose individual behaviour is often determined by
their connections to other units - depending on what types of input each provides. As the
units have the capability to autonomously reconnect themselves to others, the behaviour of
the system may constantly fluctuate in accord with its topological mutation. These units often
operate as simple programs processing data for their own sake, as an expression of their
inner structure rather than according to a purposeful end. In contrast to UNIX, which is a
modular architecture of software applications, ap propose modular software that seeks, and
perhaps denies, its own applicability.

In ap0202 each unit runs as a small scale virtual machine that provides a basic series of
bitshifting operations. As with TECO, the system makes no distinction between content data
and program code. All input is treated as patterns of binary data which are processed
according to simple programs analogous to those of cellular automata and forms of genetic
splicing and mutation. Incoming patterns that match the instruction set for a given unit
effectively reprogram it, thereby causing new behaviours to emerge within the system in an
autopoeitic fashion. There are parallels with the Smithson's notion of cluster compositions: "a
closenit, complicated, often-moving aggregation." [26]

One of the greatest problems of many of the Brutalist habitats was that they aspired, yet
failed, to be complete self-contained environments that met their inhabitants' needs - insular,
artificial paradises which often became urban hells [27]. The ap OS is, by contrast, open and
"promiscuous" with its external environment [28]. Specialised units can take input from
various sources, such as video cameras, sound and other sensors, all of which are potentially
capable of reprogramming the units that receive their data. In the "self display devices" of
ap0201, the system has been transfered from virtual machines running on desktop computers
to microchips. A set of solar-powered versions of the device are currently installed at a
location in the Mojave desert, California. One of the main aims of this project is to determine
what new forms of program are generated in response to the extreme conditions of that
environment [fig. 7].

Brutalism was not only a challenge to the conservative "garden city" suburbanism of post-war
Britain. For practitioners, such as the Smithsons, whilst it followed on from Modernism,
Brutalism also reacted against what they considered to be the over stylised "Machine
Aesthetic" of Modernist design. This metaphorised buildings as ships and engines, subjecting
materials, such as concrete, to highly refined finishing and rendering processes that
suppressed their innate qualities in favour of sleek stylistic statements. There is a similar
attitude underlying ap's raw data processing, their stated desire to avoid metaphorisation of
this, and its contrast to the highly stylised "information design" of John Maeda and his
students. In their move away from conventional computer media and the rehashing of existing
interfaces, they also move beyond the dysfunctionalist rhetoric of much recent software art.
They do not so much upset our expectations of what software should do as reveal that those
expectations are still highly constrained.

fig. 7) ap0201, Mojave desert, 2004

Conclusion

Brutalist architecture was possibly more successful in its principles than its realisation.
Despite the desire to abandon aesthetics, a distinctive aesthetic nevertheless emerges from
Brutalist designs. At its worst this is merely a stylistic gesture, but at its best it relates the
deployment of its materials back to something of Brutalism's ethical ambitions, emphasising
both the materiality and contingency of constructed form. There is also something inherently
'difficult' about such works, they almost defy you to like them. Their ungainly rawness
suggests an incompleteness rather than finality of design, and this is perhaps why a similar
aesthetic/ethic is at play in so much classic hacker code and low-level programming. The
examples discussed here are mostly neither complicated nor especially 'elegant' pieces of
code and their aesthetic value, in many cases, arises directly from their lack of aesthetic
intent.

A Brutalist approach to software demythologises code and recognises it for what it is. High-
level programming approaches can be very successful in achieving certain ends, but the very
imposition of higher-level constructs and metaphors also limits awareness of how code
operates in and for itself and what may be achieved through that. Arguably it is the changes
in low-level systems that have provoked the biggest paradigm shifts, such as the development
of binary computation and Turing machines, and such as Wolfram is suggesting will be the
case in fully understanding simple programs. What emerges from the Mojave desert may be
a new form of software culture, or it may just be meaningless data, but what is most important
is the underlying attitude which has enabled it.

Endnotes

1. Reyner Banham, The New Brutalism: Ethic or Aesthetic?, Architectural Press: London, 1966, p.10

2. Banham, ibid., p.17

3. Banham, ibid., pp.71 - 72

4. http://www.untitled-game.org, http://jetsetwilly.jodi.org

5. such as Nanoloop, http://www.nanoloop.de, and Little Sound DJ, http://www.littlesounddj.com

6. Stephen Wolfram, A New Kind of Science, Wolfram Media: Champaign, 2002

7. http://www.brunel.ac.uk/depts/AI/alife/al-ca.htm

8. John von Neumann, "Theory and Organization of Complicated Automata," in A.W. Burks (editor), Theory of Self-
Reproducing Automata, University of Illinois Press: Urbana 1949, pp.29-8&, see also Wolfram, op. cit.

9. a range of different parallels are examined in Wolfram, op. cit.

10. Martin Gardner, "The fantastic combinations of John Conway's new solitaire game 'life'," in Scientific American
223, October 1970, pp.120-123

11. Wolfram, ibid., p.109

12. http://home.pipeline.com/~hbaker1/hakmem/hakmem.html

13. http://www.brouhaha.com/~eric/retrocomputing/pdp-10

14. its relationship to cellular automata is discussed in Eric W. Weisstein, "Munching Squares" from MathWorld--A
Wolfram Web Resource, http://mathworld.wolfram.com/MunchingSquares.html

15. Eric Raymond, "life", The Jargon File, http://www.catb.org/~esr/jargon/html/L/life.html

16. Eric Raymond, "TECO", The Jargon File, http://www.catb.org/~esr/jargon/html/T/TECO.html

17. this is equivalent to the 'control - p' combination on the keyboard. The program itself is a bit more complex than
described, see Raymond, ibid.

18. a repository of such work is maintained by Florian Cramer through his unstable digest postings to the nettime
mailing list, http://amsterdam.nettime.org

19. http://www.cm.ph.bham.ac.uk/software/yappa/

20. see Wolfram, op cit., pp. 255 - 260, for an analysis of fixed width automata

21. for Park Hill see Banham, op cit., pp.41 - 43, for Harumi, Banham, op cit., p.131, and for Habitat, Moshe Safdie,
Beyond Habitat, MIT Press: Massachusetts, 1970

22. http://www.1010.co.uk

23. Banham, op. cit., p.45

24. Banham, op. cit., p. 18, Peter Cook, et al., A Guide to Archigram 1961 - 1974, Academy Editions: London, 1994

25. Banham, op. cit., p.43, and, Cedric Price, Works II, Architectural Association: London, 1984, pp.56 - 61

26. the Smithsons, quoted in Banham, op. cit., p.73

27. Park Hill was a disaster, Safdie's Habitat, however, has been highly successful, this may be in large part to the
fact that the inhabitants are heavily involved in running and maintaining the building as a community

28. ap's own term for it, as in systems which are both open to all forms of incoming data and actively seeking other
available data elsewhere on the network

