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On Software, 
or the Persistence of 
Visual Knowledge
WENDY HUI KYONG CHUN

When enough seemingly insignificant data is analyzed against billions
of data elements, the invisible becomes visible.

—Seisint1

Jean Baudrillard in The Ecstasy of Communication argues “we no longer
partake of the drama of alienation, but are in the ecstasy of commu-
nication. And this ecstasy is obscene” because “in the raw and inex-
orable light of information” everything is “immediately transparent,
visible, exposed.”2 Although extreme, Baudrillard’s conflation of
information (and thus computation) with transparency resonates
widely in popular and scholarly circles, from fears over and propa-
ganda behind national databases to examinations of “surveillance
society.” This conflation is remarkably at odds with the actual oper-
ations of computation: for computers to become transparency machines,
the fact that they compute—that they generate text and images rather
than merely represent or reproduce what exists elsewhere—must be
forgotten. Even when attached to glass tubes, computers do not simply
allow one to see what is on the other side but rather use glass to send
and receive light pulses necessary to re-create the referent (if one
exists). The current prominence of transparency in product design
and political and scholarly discourse is a compensatory gesture. As
our machines increasingly read and write without us, as our machines
become more and more unreadable, so that seeing no longer guar-
antees knowing (if it ever did), we the so-called users are offered
more to see, more to read. The computer—that most nonvisual and
nontransparent device—has paradoxically fostered “visual culture”
and “transparency.”

Software—or, to be precise, the curious separation of software from
hardware—drives this compensatory gesture. Software perpetuates
certain notions of seeing as knowing, of reading and readability that
were supposed to have faded with the waning of indexicality. It does
so by mimicking both ideology and ideology critique, by conflating
executable with execution, program with process, order with action.3

Software, through programming languages that stem from a gendered
system of command and control, disciplines its programmers and
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users, creating an invisible system of visibility. The knowledge software
offers is as obfuscatory as it is revealing. Thus, if as Lev Manovich
recommends in Language of New Media, new media studies needs
to engage software, it must not merely adopt the language of software
but must critically examine the limitations of “transcoding” and soft-
ware’s new status as common sense.4

Materializing the Immaterial
Software is, or should be, a notoriously difficult concept. The current
commonsense computer science definition of software is a “set of
instructions that direct a computer to do a specific task.” As a set of
instructions, its material status is unstable; indeed, the more you dis-
sect software, the more it falls away. Historian Paul Ceruzzi likens it
to an onion, “with many distinct layers of software over a hardware
core.”5 This onionlike structure, however, is itself a programming
effect: one codes by using another software program; software and
hardware (like genes and DNA) cannot be physically separated.
Computer scientist Manfred Broy describes software as “almost
intangible, generally invisible, complex, vast and difficult to com-
prehend.” Because software is “complex, error-prone, and difficult
to visualize,” Broy argues, many of its “pioneers” have sought to
make “software easier to visualize and understand, to represent the
phenomena encountered in software development in models that
make the often implicit and intangible software engineering tasks
explicit.”6 Friedrich Kittler has more forcefully argued, “there is no
software” since everything reduces to voltage differences as signifiers.7

In the 1940s software did not exist: there literally was no software.8

“Programming” comprised the human task of making connections,
setting switches, and inputting values (“direct programming”), as
well as the human and machine task of coordinating the various
parts of the computer. In 1946 the master programmer for the ENIAC
(the first general-purpose electronic digital computer to be designed,
built, and successfully used) controlled the sequence of actions needed
to solve a problem numerically.9 The ENIAC was initially rewired for
each problem so that, essentially, a new ENIAC was created each
time it was used. Its conversion to a stored-program computer in 1947
(in part due to a suggestion by John von Neumann) meant that pro-
grams could be coded by setting switches, which corresponded to
sixty stored instructions, rather than by plugging cables. This change,
seen as a way to open up programming to simple scientists, dramat-
ically decreased the time necessary for programming while increasing
the time necessary for computation. Today these changeable settings
would be called software because, with symbolic programming lan-
guages, these physical settings (which for instance enabled a value
X to be moved from memory location Y into the accumulator) became
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translated into a string of numbers read into the computer’s memory.
Today the clerical “operators” who planned the wiring for and wired 
the ENIAC (Kathleen McNulty, Frances Bilas, Betty Jean Jennings,
Elizabeth Snyder, Ruth Lichterman, and Marlyn Wescoff) are reclaimed
as some of the earliest programmers.

Symbolic programming languages and therefore software, as Paul
Ceruzzi and Wolfgang Hagen have argued, were not foreseen. The
emergence of symbolic-language programming depended on the real-
ization that the computer could store numerical instructions as easily
as it could data and that the computer itself could be used to trans-
late between symbolic and numeric notations. The programmers of
the EDSAC, an early (1949) computer in Cambridge, England, were
the first to use the computer to translate between more humanly
readable assembly code (for instance, “A100” for “add the contents
of location 100 to the add register”) and what has since been called
machine language (rather than a logical code). Storage was key to the
emergence of programming languages, but, as the case of John von
Neumann reveals, storage was not enough: von Neumann, whose
name has become the descriptor for all modern stored-program com-
puters also devised a notation similar to the EDSAC’s with Herman
Goldstine but assumed that clerks would do the translation.10 Further
assembly language is not a higher-level programming language; a
computer is not automatically a media machine. According to Hagen,
“for decades, the arche-structure of the von Neumann machine did
not reveal that this machine would be more than a new calculator,
more than a mighty tool for mental labor, namely a new communica-
tions medium.” The move from calculator to communications medium,
Hagen argues, itself stemmed from a “communications imperative” that

grew out of the cold war, out of the economy, out of the organi-
zation of labor, perhaps out of the primitive numeric seduction
the machines exerted, out of the numbers game, out of a game
with digits, placeholders, fort/da mechanisms, and the whole
quasi-linguistic quid pro quo of the interior structure of all
these sources.11

Automatic Programming
Automatic programming, what we call programming today, arose from a
desire to reuse code and to recruit the computer into its own operation—
that is, to transform singular instructions into a language a computer
could write. As Mildred Koss, an early UNIVAC programmer, explains:

Writing machine code involved several tedious steps—breaking
down a process into discrete instructions, assigning specific
memory locations to all the commands, and managing the I/O
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buffers. After following these steps to implement mathematical
routines, a sub-routine library, and sorting programs, our task
was to look at the larger programming process. We needed to
understand how we might reuse tested code and have the machine
help in programming. As we programmed, we examined the
process and tried to think of ways to abstract these steps to
incorporate them into higher-level language. This led to the
development of interpreters, assemblers, compilers, and gen-
erators—programs designed to operate on or produce other pro-
grams, that is, automatic programming.12

Automatic programming is an abstraction that allows the production
of computer-enabled human-readable code—key to the commodifi-
cation and materialization of software and to the emergence of
higher-level programming languages. This automation of program-
ming—in particular, programming languages—makes programming
problem- rather than numerically oriented. Higher-level program-
ming languages, unlike assembly language, explode one’s instruc-
tions and enable one to forget the machine. They enable one to run a
program on more than one machine—a property now assumed to be
a “natural” property of software. Direct programming” led to a unique
configuration of cables; early machine language could be iterable but
only on the same machine—assuming, of course, no engineering
faults or failures. In order to emerge as a language or a text, software
and the “languages” on which it relies had to become iterable. With
programming languages, the product of programming would no longer
be a running machine but rather this thing called software—something
theoretically (if not practically) iterable, repeatable, reusable, no matter
who wrote it or what machine it was destined for. Programming lan-
guages inscribe the absence of both the programmer and the machine
in its so-called writing.13 Programming languages enabled the sepa-
ration of instruction from machine, of imperative from action.

According to received wisdom, these first attempts to automate
programming were inefficient and resisted by “real” programmers.
John Backus, developer of FORTRAN, claims that early machine 
language programmers were engaged in a “black art”; they had a
“chauvinistic pride in their frontiersmanship and a corresponding
conservatism, so many programmers of the freewheeling 1950s began
to regard themselves as members of a priesthood guarding skills and
mysteries far too complex for ordinary mortals.”14 Koss similarly argues,
“without these higher-level languages and processes . . . , which democ-
ratized problem solving with the computer, I believe programming
would have remained in the hands of a relatively small number of
technically oriented software writers using machine code, who would
have been essentially the high priests of computing.”15
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The resistance to automatic programming also seems to have
stemmed from corporate and academic customers, for whom program-
mers were orders of magnitude cheaper per hour than computers.
Jean Sammett, an early female programmer, relates in her influential
Programming Languages: History and Fundamentals,

customers raised many objections, foremost among them was
that the compiler probably could not turn out object code as
good as their best programmers. A significant selling campaign
to push the advantages of such systems was underway at that
time, with the spearhead being carried for the numerical scientific
languages (i.e., FORTRAN) by IBM and for “English-language-
like” business data processing languages by Remington Rand
(and Dr. Grace Hopper in particular).16

This selling campaign not only pushed higher-level languages (by
devaluing humanly produced programs), it also pushed new hardware:
to run these programs, one needed more powerful machines. The
government’s insistence on standardization, most evident in the
development and dissemination of COBOL, also greatly influenced
the acceptance of higher-level languages, which again were theoret-
ically, if not always practically, machine independent or iterable. 
The hardware-upgrade cycle was normalized in the name of saving
programming time.

The “selling campaign” led to what many have heralded as the
democratization of programming. In Sammet’s view, this was a 
partial revolution,

in the way in which computer installations were run because it
became not only possible, but quite practical to have engineers,
scientists, and other people actually programming their own
problems without the intermediary of a professional program-
mer. Thus the conflict of the open versus closed shop became a
very heated one, often centering around the use of FORTRAN
as the key illustration for both sides. This should not be inter-
preted as saying that all people with scientific numerical prob-
lems to solve immediately sat down to learn FORTRAN; this is
clearly not true but such a significant number of them did that
it has had a major impact on the entire computer industry. One
of the subsidiary side effects of FORTRAN was the introduction
of FORTRAN Monitor System [IB60]. This made the computer
installation much more efficient by requiring less operator
intervention for the running of the vast number of FORTRAN
(as well as machine language) programs.17

This “opening” of computing, which gives the term open in “open
source” a different resonance, would mean the potential spread of
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computing to those with scientific numerical problems to solve 
and the displacement of human operators by operating systems. 
But scientists have always been involved with computing, even
though computing has not always been considered to be a worthy
scientific pursuit and, as mentioned previously, the introduction 
of dials rather than wires was supposed to empower simple scien-
tists. The history of computing is littered with moments of “com-
puter liberation.”18

This narrative of the “opening” of computing through higher-level
languages assumes that programmers naturally enjoyed tedious and
repetitive numerical tasks and developing singular solutions for their
clients. The “mastery” of computing can easily be understood as “suf-
fering.” Harry Reed, an early ENIAC programmer, argues:

The whole idea of computing with the ENIAC was a sort of
hair-shirt kind of thing. Programming for the computer, what-
ever it was supposed to be, was a redemptive experience—one
was supposed to suffer to do it. And it wasn’t until the 1970s
that we finally were able to convince people that they were not
going to have programmers continually writing little programs
for them. I actually had to take my Division and sit everybody
down who hadn’t take a course in FORTRAN, because, by God,
they were going to write their own programs now. We weren’t
going to get computer specialists to write simple little programs
that they should have been writing.19

The narrative of the democratization of programming reveals the tension
at the heart of programming and control systems: are they control
systems or servomechanisms (Norbert Wiener’s initial name for them)?
Is programming a clerical activity or an act of mastery? Given that the
machine takes care of “programming proper”—the sequence of events
during execution—is programming programming at all? What is
compacted in the linguistic move from “operator” to “programmer”?
The notion of a “priesthood” of programmers erases this tension,
making programming always already the object of jealous guardianship,
and erasing programming’s clerical underpinnings. Programming in
the 1950s does seem to have been fun and fairly gender balanced, 
in part because it was so new and in part because it was not as lucrative
as hardware design or sales: the profession was gender neutral in
hiring if not pay because it was not yet a profession.20 The “ENIAC
girls” were first hired as subprofessionals, and some had to acquire
more qualifications in order to retain their positions. As many female
programmers quit to have children or get married, men took their
increasingly lucrative jobs. Programming’s clerical and arguably 
feminine underpinnings—both in terms of personnel and com-
mand structure—was buried as programming sought to become an 
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engineering and academic field in its
own right. Such erasure is key to the
professionalization of programming—
a compensatory mastery built on hiding
the machine. Democratization did not
displace professional programmers but
rather buttressed their position as pro-
fessionals by paradoxically decreasing
their real power over their machines
and by generalizing the engineering
concept of information.

Yes, Sir
The assumption that programmers nat-

urally enjoy tedious tasks points to programming and computing’s
gendered and human history. During World War II almost all com-
puters were young women with some background in mathematics.
Not only were women available for work then, they were also consid-
ered to be better, more conscientious computers, presumably because
they were better at repetitious, clerical tasks. Programmers were former
computers because they were best suited to prepare their successors:
they thought like computers.

One could say that programming became programming and soft-
ware became software when commands shifted from commanding a
“girl” to commanding a machine. The image above reveals the dream
of “programming proper”—a man sitting at a desk giving commands
to a female “operator.” Software languages are based on a series of
imperatives that stem from World War II command and control struc-
ture. The automation of command and control, which Paul Edwards
has identified as a perversion of military traditions of “personal lead-
ership, decentralized battlefield command, and experience-based
authority,”21 arguably started with World War II mechanical compu-
tation. This is most starkly exemplified by the relationship between
the Wrens, volunteer members of the Women’s Royal Naval Service,
and their commanding officers at Bletchley Park. The Wrens, also
called slaves by Turing (a term now embedded within computer sys-
tems), were clerks responsible for the mechanical operation of the
cryptanalysis machines (the Bombe and then the Colossus), although
at least one of the clerks, Joan Clarke, became an analyst. Revealingly,
I. J. Good, a male analyst, describes the Colossus as enabling a man-
machine synergy duplicated by modern machines only in the late
1970s: “the analyst would sit at the typewriter output and call out
instructions to a Wren to make changes in the programs. Some of the
other uses were eventually reduced to decision trees and were handed
over to the machine operators (Wrens).”22 This man-machine synergy,

ENIAC programmers, 
late 1940s. U.S. Military Photo,
Redstone Arsenal Archives,
Huntsville, Alabama.
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or interactive real-time (rather than batch) process-
ing, treated Wrens and machines indistinguishably,
while simultaneously relying on the Wrens’ ability
to respond to the mathematician’s orders.

The story of the initial meeting between Grace
Murray Hopper (one of the first and most important
programmers) and Howard Aiken also buttresses
this narrative. Hopper, a Ph.D. in mathematics from
Yale and a former mathematics professor at Vassar,
was assigned by the U.S. Navy to program the Mark I,
an electromechanical digital computer that made a
sound like a roomful of knitting needles. According
to Hopper, Aiken showed her

a large object with three stripes . . . waved his hand
and said: “That’s a computing machine.” I said,
“Yes, Sir.” What else could I say? He said he would
like to have me compute the coefficients of the arc
tangent series, for Thursday. Again, what could I
say? “Yes, Sir.” I didn’t know what on earth was
happening, but that was my meeting with Howard
Hathaway Aiken.23

Computation depends on “yes, sir” in response to
short declarative sentences and imperatives that
are in essence commands. Contrary to Neal Stephenson, in the begin-
ning was the command rather than the command line. The command
line is a mere operating system (OS) simulation. Commands have
enabled the slippage between programming and action that makes
software such a compelling yet logically “trivial” communications
system. I.J. Good’s and Hopper’s recollections also reveal the rou-
tinization at the core of programming: the analyst at Bletchley Park
was soon replaced by decision trees. Hopper the programmer became
an advocate of automatic programming. Thus routinization or
automation lies at the core of a profession that likes to believe it has
successfully automated every profession but its own.24

But to view women and mechanical computation as interchange-
able is to revise history. According to Sadie Plant, programming is
essentially feminine—not simply because women, from Ada Lovelace
to Hopper, were the first programmers, but because of the historical
and theoretical ties between programming and what Freud called the
quintessentially feminine invention of weaving, between female 
sexuality as mimicry and the mimicry grounding Turing’s vision of
computers as universal machines. (In addition, both software and
feminine sexuality reveal the power that something which cannot be
seen can have.)25 Women, Plant argues,
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have not merely had a minor part
to play in the emergence of digi-
tal machines. . . . Theirs is not a
subsidiary role which needs to be
rescued for posterity, a small sup-
plement whose inclusion would
set the existing records straight

. . . . Hardware, software, wetware—before their beginnings and
beyond their ends, women have been the simulators, assemblers,
and programmers of the digital machines.26

The photograph on page 33 is not representative—the female pro-
grammers of the ENIAC worked together in pairs, and no machine
could have accomplished what Hopper did—at least not then. (And
again, Hopper would be key to enabling computers to do so: the clo-
sure of the distance between Hopper and computers would be key to
automatic command and control). The difficulty faced by program-
mers was simple: computers weren’t computers. The transition from
commanding a girl to commanding an automaton was difficult
because automatons deciphered rather than interpreted or pre-
sumed, and they did not learn from experience. As Martin
Campbell-Kelly and William Aspray put it, “the fundamental diffi-
culty of writing software was that, until computers arrived, human
beings had never before had to prepare detailed instructions for an
automaton—a machine that obeyed unerringly the commands given
to it, and for which every possible outcome had to be anticipated by
the programmer.”27 Campbell-Kelly and Aspray’s assessment overes-
timates the reliability of the machines, especially the early ones. As
the early ENIAC programmers relate, part of debugging was figuring
out which errors stemmed from programming and which from faulty
vacuum tubes, accidental rewiring, or faults in machine architec-
ture—a task made easier by neon bulbs attached to various counters.

Unlike machines, women programmers did not simply follow
instructions. Hopper was described as “a woman of strong personal-
ity, a powerful persuader and leader. She showed some of her Navy
training in her commanding speech.”28 Also, programming, as Koss
explains, was not just implementing instructions but “designing a
strategy and preparing instructions to make the computer do what you
wanted it to do to solve a problem.”29 Women programmers played an
important role in converting the ENIAC into a stored-program computer
and in determining the trade-off between storing values and instruc-
tions. Betty Snyder Holberton, described by Hopper as the best pro-
grammer she had known, not only debugged the ballistics-trajectory
program in a dream (the first program to be run on the ENIAC, albeit
too late to be of use for WWII), she also developed an influential sort

Opposite, top: Captain Grace
M. Hopper, 1976. U.S. Navy
Photo (number NH 96945),
Naval Historical Center,
Washington, D.C.

Opposite, bottom: First
Computer “Bug,” 1945. 
U.S. Navy Photo (number NH
96566-KN), Naval Historical
Center, Washington, D.C.

Above: Two women wiring the
right side of the ENIAC with 
a new program, late 1940s. 
U.S. Army Photo, Army
Research Laboratory Technical
Library, Aberdeen Proving
Ground, Aberdeen, Maryland.
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algorithm for the UNIVAC.30

The extent of the repression of these women
in standard histories of computing can be 
measured by Paul Edwards’s implicit, a priori
gendering of the computer “work force” in an
otherwise insightful analysis of masculinity
and programming. He writes:

computer scientists enjoy a mystique of hard mastery compa-
rable to the cult of physicists in the postwar years. Computers
provide them with unblinking precision, calculative power,
and the ability to synthesize massive amounts of data. . . .

There is nothing inherently masculine about computer tech-
nology. Otherwise women could not have had such quick suc-
cess in joining the computer work force. Gender values largely
float free of the machines themselves and are expressed and
enforced by power relationships between men and women.
Computers do not simply embody masculinity; they are cultur-
ally constructed as masculine mental objects.31

A far cry from the claim of J. Chuan Chu (one of the original ENIAC
hardware engineers) that software is the daughter of Frankenstein
(hardware being its son), Edwards’s assessment erases the over-
whelming presence of women in early computing—their work as human
computers, programmers, and monitors—while it reduces computer
technology to software. As the combination of a human clerk and a
human computer, the modern computer encapsulates the power rela-
tions between men and women in the 1940s. It sought to displace
women: their nimble fingers, their numerical abilities, their discre-
tion, their “disquieting gazes”—a displacement Vannevar Bush viewed
as desirable.32 The transition from human to mechanical computers
automated differential power relationships.

Recognizing these women as programmers—as not merely following
but also putting together instructions—is important but not enough, for
it keeps in place the narrative of programming as “masterful.” What is
the significance of following and implementing instructions? Perhaps
the “automation” of control and command is less a perversion of mil-
itary tradition and more an instantiation of it, one in which respon-
sibility has been handed over to those (now machines) implementing
commands. The relationship between masters and slaves is always
ambiguous. This handing over of power has been hidden by pro-
gramming languages that obscure the machine and highlight 
programming (rather than execution) as the source of action. The
closing of the distinction between programming and execution, 
evidenced in the ambiguity of the object of the verb “to program,”
was facilitated by the disciplining and professionalization of pro-

The First Four, 1950s. U.S. Army
Photo (number 163-12-62).
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grammers through “structured programming.”

Hiding the Machine
During the much discussed “software crisis” of the late 1960s, which
stemmed from such spectacular debacles as IBM’s OS/360, many
(especially European programmers, such as Friedrich [Fritz] Bauer
and Peter Naur) viewed “software engineering,” or structured 
programming, as a way to move programming from a craft to a stan-
dardized industrial practice, and as a way to create disciplined 
programmers who dealt with abstractions rather than numerical
processes.33 As Michael Mahoney has argued, structured program-
ming emerged as a “means both of quality control and of disciplining
programmers, methods of cost accounting and estimation, methods
of verification and validation, techniques of quality assurance.”34

“Structured programming” (also generally known as “good pro-
gramming”) hides, and thus secures, the machine. Not surprisingly,
having little to no contact with the actual machine enhances one’s
ability to think abstractly rather than numerically. Edsger Dijkstra,
whose famous condemnation of “go to” statements has encapsulated
to many the fundamental tenets of structure programming, believes
that he was able to “pioneer” structured programming precisely
because he began his programming career by coding for machines
that did not yet exist.35 In “Go To Statement Considered Harmful,”
Dijkstra argues, “the quality of programmers is a decreasing function
of the density of go to statements in the programs they produce.” This
is because go to statements go against the fundamental tenet of good
programming—the necessity to “shorten the conceptual gap between
static program and dynamic process, to make the correspondence
between the program (spread out in text space) and the process
(spread out in time) as trivial as possible.” More specifically, if a pro-
gram is halted, go tos make it difficult to find a place in the program-
ming that corresponds to the halted process—it makes it “terribly
hard to find a meaningful set of coordinates in which to describe the
process progress.”36 That is, go tos make difficult the conflation of
instruction with command, which grounds “programming.”37

Structured programming languages “save” programmers from
themselves by providing good security, where security means secure
from the programmer.38 In the name of security, structured program-
ming, which emphasizes programming as a question of flow, is itself
giving way to data abstraction, which views programming as a ques-
tion of interrelated objects and hides far more than the machine. Data
abstraction depends on information hiding, on the nonreflection of
changeable facts in software. As John V. Guttag, a “pioneer” in data
abstraction explains, data abstraction is all about forgetting.39 Rather
than “polluting” a program by enabling invisible lines of contact
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between supposedly independent modules, data abstraction presents
a clean or “beautiful” interface by confining specificities, and by
reducing the knowledge and power of the programmer. Knowledge,
Guttag insists, is dangerous: “‘Drink deep, or taste not the Pierian
Spring,’ is not necessarily good advice. Knowing too much is no bet-
ter, and often worse, than knowing too little. People cannot assimi-
late very much information. Any programming method or approach
that assumes that people will understand a lot is highly risky.”40

Thus abstraction both empowers the programmer and insists on
his/her ignorance. Because abstraction exists “in the mind of the 
programmer,” abstraction gives programmers new creative abilities.
Computer scientist David Eck argues, “every programming language
defines a virtual machine, for which it is the machine language.
Designers of programming languages are creating computing machines
as surely as the engineer who works in silicon and copper, but with-
out the limitations imposed by materials and manufacturing tech-
nology.”41 However, this abstraction—this drawing away from the
specificities of the machine—gives over, in its separation of machine
into software and hardware, the act of programming to the machine
itself. Koss scoffed at the early notion of computers as brains because
“they couldn’t think in the way a human thinks, but had to be given
a set of step-by-step machine instructions to be executed before they
could provide answers to a specific problem”—at that time software
was not considered to be an independent object.42 The current status
of software as a commodity, despite the fact that its instructions are
immaterial and nonrivalrous indicates the triumph of the software
industry, an industry that first struggled not only financially but also 
conceptually to define its product. The rise of software depends both
on historical moves, such as IBM’s unbundling of its services from
its products, and on abstractions enabled by higher-level languages.
Guttag’s insistence on the unreliability and incapability of human
beings to understand underscores the costs of such an abstraction.
Abstraction is the computer’s game, as is programming in the strictest
sense of the word.

Importantly, programmers are users: they create programs using
editors, which are themselves software programs. The distinction
between programmers and users is gradually eroding, not only because
users are becoming programmers (in a real sense programmers no
longer program a computer; they code), but also because, with high-
level languages, programmers are becoming more like simple users.
The difference between users and programmers is an effect of software.

Causal Pleasure
The gradual demotion of programmers has been offset by the power
and pleasure of programming. As Edwards argues, “programming can
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produce strong sensations of power and control” because the com-
puter produces an internally consistent if externally incomplete
microworld,

a simulated world, entirely within the machine itself, that does
not depend on instrumental effectiveness. That is, where most
tools produce effects on a wider world of which they are only
a part, the computer contains its own worlds in miniature. . . .
In the microworld, as in children’s make-believe, the power of
the programmer is absolute.43

This pleasure is itself an effect of programming languages, which
offer the lure of visibility, readability, cause and effect. Consider this
ubiquitous “hello world” program written in C++ (“hello world” is
usually the first program a person will write):

// this program spits out “hello world”
#include <iostream.h>
int main ()
{

cout << “Hello World!”;
return 0;

}

The first line is a comment line, explaining to the human reader that
this program spits out “hello world.” The next line directs the com-
piler’s pre-processor to include iostream.h, a standard file to deal
with input and output. The third line, “int main ()”, begins the main
function of the program; “cout<<“Hello World!”;” prints “Hello
World” to the screen (“cout” is defined in iostream.h); “return 0” ter-
minates the main function and causes the program to return a 0 if it
has run correctly. Although not immediately comprehensible to
someone not versed in C++, this program nonetheless seems to make
some sense. It comprises a series of imperatives and declaratives that
the computer presumably understands and obeys. When it runs, it
follows one’s commands and displays “Hello World.” Importantly,
this message, which affirms the programmer’s agency, also calls it into
question: who or what, after all, is saying “hello world?” To enjoy this
absolute power, the programmer must follow the rules of a program-
ming language. Regardless, seeing his or her code produce visible
and largely predictable results creates pleasure.44 One’s code causes
an action to happen: cause and effect is clear, even if the end result
is never entirely predictable. This absolute power enabled through
the agency of a program reveals the contradictory status of agency,
namely the fact that agency refers both to one’s ability to act and the
ability of someone else to act on one’s behalf.

In the microworld of computer simulation, however, it is not only
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the programmer whose power is enhanced or absolute, for interac-
tive simulations—key to the concept of computers as transparent—
enhance the power of the user (again, these terms are not absolute
but rather depend on the software one is using and on the productive
power of one’s actions). Interactivity, intimately linked, as Edwards
has argued, to artificial intelligence, stemmed initially from an admis-
sion of human fallibility, and of the limitations of procedural pro-
gramming languages.45 By the 1960s, the naïveté behind von Neumann’s
assertion that “anything that can be exhaustively and unambiguously
described, anything that can be completely and unambiguously put
into words, is ipso facto realizable by a suitable finite neural network”
was becoming increasingly apparent.46 Since exhaustive and unam-
biguous description was difficult, if not impossible, working “inter-
actively” with a computer to solve problems was key. Interactivity later
became conflated with user freedom, and control with GUI (graphical
user) and WYSIWYG (What You See Is What You Get) interfaces, which
were seen as supplements to language-based commands. Unlike
command-line interfaces, GUIs enabled “direct manipulation,” in
which mastery was intimately linked to simulated visibility. According
to Ben Schneiderman:

Certain interactive systems generate glowing enthusiasm among
users—in marked contrast with the more common reaction of
grudging acceptance or outright hostility. The enthusiastic users’
reports are filled with positive feelings regarding:

• mastery of the system
• competence in the performance of their task
• ease in learning the system originally and in assimilating 

advanced features
• confidence in their capacity to retain mastery over time
• enjoyment in using the system
• eagerness to show it off to novices, and
• desire to explore more powerful aspects of the system

These feelings are not, of course, universal, but the amalgam
does convey an image of the truly pleased user. . . . The central
ideas seemed to be visibility of the object of interest; rapid,
reversible, incremental actions, and, replacement of complex
command language syntax by direct manipulation of the object
of interest—hence the term “direct manipulation.”47

As Brenda Laurel has argued in her comparison of computer interfaces
and theater, direct manipulation (which is anything but direct) must
be complemented by direct engagement in order to be successful.
Direct engagement, Laurel argues



Chun | On Software, or the Persistence of Visual Knowledge 41

shifts the focus from the representation of manipulable objects
to the ideal of enabling people to engage directly in the activity
of choice, whether it be manipulating symbolic tools in the per-
formance of some instrumental tasks or wandering around the
imaginary world of a computer game. Direct engagement empha-
sizes emotional as well as cognitive values. It conceives of
human-computer activity as a designed experience.48

Laurel’s emphasis on action underscores the crucial difference
between the representation of tools and the tools themselves: she
argues that people realize when they double click on a folder that it is
not really a folder, and making a folder more “life-like” is not helpful.
What is helpful, Laurel contends, is clear causality: events must hap-
pen in such a way that the user can accept them as probable and thus
narrow probability into certainty. Causality, she claims, ensures uni-
versality, ensures that the users will willingly suspend their disbe-
lief. For users as for paranoid schizophrenics (my observation, not
Laurel’s), everything has meaning: there can be no coincidences, only
causal pleasure.

Causal pleasure is not simply a representation of user actions in a
causally plausible manner; it is also a “user amplification.” Manovich
explains “user amplification” in terms of Super Mario:

when you tell Mario to step to the left by moving a joystick, this
initiates a small delightful narrative: Mario comes across a hill;
he starts climbing the hill; the hill turns out to be too steep;
Mario slides back onto the ground; Mario gets up, all shaking.
None of these actions required anything from us; all we had to
do is just to move the joystick once. The computer program ampli-
fies our single action, expanding it into a narrative sequence.49

This user amplification mimics the “instruction explosion” driving
higher-level programming languages (one line of high-level code cor-
responds to more than one line of machine code); user amplification
is not only the product of gaming software and software art but is
central to the power of programming.

This dual amplification arguably drives the romanticization of
programming and, more recently, the emergence of software art, or
Generation Flash. According to Manovich, Generation Flash is a new
group of artists (“new romantics”) who create original code rather
than participate in the endless cycle of postmodern citation. As pro-
grammers Generation Flash artists produce

the new modernism of data visualizations, vector nets, pixel-thin
grids and arrows: Bauhaus design in the service of information
design. Instead [of] the Baroque assault of commercial media, Flash
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generation serves us the modernist aesthetics and rationality of
software. Information design is used as a tool to make sense of
reality while programming becomes a tool of empowerment.50

To make sense of reality, these artists and designers employ user
amplification, for their modernist aesthetics and software-based
rationality amplify and simplify cause and effect. In line with software
more generally, they unveil—they make things visible. This unveiling
depends on a certain “smartness” on the part of the user. Describing
Futurefarmer’s project theyrule.net, which offers users a way to map
the relationships between board members of the most powerful cor-
porations, Manovich states:

Instead of presenting a packaged political message, it gives us
data and the tools to analyze it. It knows that we are intelligent
enough to draw the right conclusion. This is the new rhetoric of
interactivity: we get convinced not by listening/watching a pre-
pared message but by actively working with the data: reorganizing
it, uncovering the connections, becoming aware of correlations.51

According to Manovich, this new rhetoric of interactivity is further
explored in UTOPIA:

The cosmogony of this world reflects our new understanding of
our own planet—post Cold War, Internet, ecology, Gaia, and
globalisation. Notice the thin barely visible lines that connect
the actors and the blocks. (This is the same device used in
theyrule.net.) In the universe of UTOPIA, everything is inter-
connected, and each action of an individual actor affects the
system as a whole. Intellectually, we know that this is how our
Earth functions ecologically and economically—but UTOPIA
represents this on a scale we can grasp perceptually.52

UTOPIA enables what Fredric Jameson has called a “cognitive map”:
“a situational representation on the part of the individual subject to
that vaster and properly unrepresentable totality which is the ensem-
ble of society’s structures as a whole.”53 If cognitive mapping is both
difficult and necessary now because of invisible networks of capital,
these artists produce a cognitive map by exploiting the invisibility
of information. The functioning of software art, as Manovich argues,
parallels Marxist ideology critique. The veil of ideology is torn asun-
der by grasping the relations between the action of individual actors
and the system as a whole. Software enables this critique by repre-
senting it at a scale—in a microworld—that we can make sense of.
This unveiling depends on our own actions, on us manipulating objects
in order to see, on us thinking like object-oriented programmers.
Rather than lack cognitive maps, we produce them all the time
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through a medium that simulates ideology critique and, in its nonex-
istence, ideology as well. It is truly remarkable that software—
designed to obfuscate the machine and create a virtual one and based
on buried commands—has led to the overwhelming notion of com-
putation as transparent. This notion of transparency has less to do with
actual technological operations than with the “microworld” estab-
lished by computation.

Software as Ideology
As I’ve argued elsewhere, software is a functional analog to ideology.54

In a formal sense computers understood as comprising software and
hardware are ideology machines. They fulfill almost every formal
definition of ideology we have, from ideology as false consciousness
(as portrayed in The Matrix) to Louis Althusser’s definition of ideol-
ogy as “a ‘representation’ of the imaginary relation of individuals to
their real conditions of existence.”55 Software, or perhaps more pre-
cisely operating systems, offer us an imaginary relationship to our
hardware: they do not represent transistors but rather desktops and
recycling bins. Software produces “users.” Without OS there would
be no access to hardware; without OS no actions, no practices, and
thus no user. Each OS, through its advertisements, interpellates a “user”:
calls it and offers it a name or image with which to identify. So Mac
users “think different” and identify with Martin Luther King and
Albert Einstein; Linux users are open-source power geeks, drawn to
the image of a fat, sated penguin; and Windows users are main-
stream, functionalist types perhaps comforted, as Eben Moglen argues,
by their regularly crashing computers. Importantly, the “choices”
operating systems offer limit the visible and the invisible, the imag-
inable and the unimaginable. You are not, however, aware of soft-
ware’s constant constriction and interpellation (also known as its
“user-friendliness”), unless you find yourself frustrated with its defaults
(which are remarkably referred to as your preferences) or you use
multiple operating systems or competing software packages.

Software also produces users through benign interactions, from
reassuring sounds that signify that a file has been saved to folder names
such as “my documents,” which stress personal computer owner-
ship. Computer programs shamelessly use shifters, pronouns like
“my” and “you,” that address you, and everyone else, as a subject.
Software makes you read, offers you more relationships and ever
more visuals. Software provokes readings that go beyond reading let-
ters toward the nonliterary and archaic practices of guessing, inter-
preting, counting, and repeating. Software is based on a fetishistic
logic.56 Users know very well that their folders and desktops are not
really folders and desktops, but they treat them as if they were—by
referring to them as folders and as desktops. This logic is, according
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to Slavoj Zizek, crucial to ideology. Zizek (through Peter Sloterdjik)
argues that ideology persists in one’s actions rather than in one’s
beliefs. The illusion of ideology exists not at the level of knowledge
but rather at the level of doing: this illusion, maintained through the
imaginary “meaning of the law” (causality), screens the fact that
authority is without truth—that one obeys the law to the extent that
it is incomprehensible. Is this not computation? Through the illusion
of meaning and causality do we not cover over the fact that we do not
and cannot fully understand nor control computation? That com-
puters increasingly design each other and that our use is—to an
extent—a supplication, a blind faith? The new rhetoric of “interac-
tivity” obfuscates more than it reveals.

Operating systems also create users more literally, for users are an OS
construction. User logins emerged with time-sharing operating systems,
like UNIX, which encourages users to believe that the machines they
are working on are their own machines (before this, computers mainly
used batch processing; before that, one really did run the computer,
so there was no need for operating systems—one had human operators).
As many historians have argued, the time-sharing operating systems
developed in the 1970s spawned the “personal computer.”57

Software and ideology fit each other perfectly because both try to
map the material effects of the immaterial and to posit the immaterial
through visible cues. Through this process the immaterial emerges
as a commodity, as something in its own right. Thus Broy’s descrip-
tion of pioneers as seeking to make software easier to visualize
strangely parallels software itself, for what is software if not the very
effort of making something explicit, of making something intangible
visible, while at the same time rendering the visible (such as the
machine) invisible? Although the parallel between software and 
ideology is compelling, it is important that we not rest here, for
reducing ideology to software empties ideology of its critique of
power—something absolutely essential to any theory of ideology.58

The fact that software, with its onionlike structure, acts both as ideol-
ogy and ideology critique—as a concealing and a means of revealing
also breaks the analogy between software and ideology. The power
of software lies with this dual action and the visible it renders invis-
ible, an effect of programming languages becoming a linguistic task.

Seeing through Transparency
When you draw a rabbit out of a hat, it’s because you put it there in
the first place.

—Jacques Lacan59

This act of revealing drives databases and other structures key to
“transparency” or what Baudrillard called the “obscenity” of commu-
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nication. Although digital imaging certainly plays a role in the notion
of computer networks as transparent, it is not the only, nor the key,
thing. Consider, for instance, “The Matrix,” a multistate program that
sifts through databases of public and private information ostensibly
to find criminals or terrorists. This program works by integrating

information from disparate sources, like vehicle registrations,
driver’s license data, criminal history and real estate records
and analyzing it for patterns of activity that could help law
enforcement investigations. Promotional materials for the com-
pany argued, “When enough seemingly insignificant data is
analyzed against billions of data elements, the invisible
becomes visible.”60

Although supporters claim that “the Matrix” simply brings together
information already available to law enforcement,

opponents of the program say the ability of computer networks
to combine and sift mountains of data greatly amplifies police
surveillance power, putting innocent people at greater risk of
being entangled in data dragnets. The problem is compounded,
they say, in a world where many aspects of daily life leave
online traces.61

By March 15, 2004, over two-thirds of the states withdrew their sup-
port for “The Matrix,” citing budgetary and privacy concerns. “The
Matrix” was considered to be a violation of privacy because it made
the invisible visible (again, the act of software itself), not because the
computer reproduced indexical images. It amplified police power by
enabling them to make easy connections. The Total Information Agency,
a U.S. government plan to bring together its various electronic data-
bases, was similarly decried and basically killed by the U.S. Congress
in 2003.

On a more personal level, computing as enabling connections
through rendering the invisible visible drives personal computing
interfaces. By typing in Word, letters appear on my screen, repre-
senting what is stored invisibly on my computer. My typing and
clicking seem to have corresponding actions on the screen. By open-
ing a file, I make it visible. On all levels, then, software seems about
making the invisible visible—about translating between computer-
readable code and human-readable language. Manovich seizes on
this translation and makes “transcoding”—the translation of files
from one format to another, which he extrapolates to the relationship
between cultural and computer layers—his fifth and last principle of
new media in The Language of New Media. Manovich argues that in
order to understand new media we need to engage both layers, for
although the surface layer may seem like every other media, the hidden
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layer, computation, is where the true difference between new and old
media—programmability—lies. He thus argues that we must move from
media studies to software studies, and the principle of transcoding
is one way to start to think about software studies.62

The problem with Manovich’s notion of transcoding is that it
focuses on static data and treats computation as a mere translation.
Programmability does not only mean that images are manipulable in
new ways but also that one’s computer constantly acts in ways
beyond one’s control. To see software as merely “transcoding” erases
the computation necessary for computers to run. The computer’s
duplicitous reading does not merely translate or transcode code into
text/image/sound or vice versa; its reading—which conflates reading
and writing (for a computer, to read is to write elsewhere)—also par-
takes in other invisible readings. For example, when Microsoft’s
Media Player plays a CD, it sends the Microsoft Corporation infor-
mation about that CD. When it plays a Real Media file, such as a CNN
video clip, it sends CNN its “unique identifier.” You can choose to
work off-line when playing a CD and request that your media player
not transmit its “unique identifier” when online, but these choices
require two changes to the default settings. By installing the Media
Player, you also agreed to allow Microsoft to “provide security related
updates to the OS Components that will be automatically down-
loaded onto your computer. These security related updates may dis-
able your ability to copy and/or play Secure Content and use other
software on your computer.”63 Basically, Microsoft can change com-
ponents of your operating system without notice or your explicit 
consent. Thus to create a more “secure” computer, where secure
means secure from the user, Microsoft can disable pirated files and
applications and/or report their presence to its main database.64 Of
course Microsoft’s advertisements do not emphasize the Media Player’s
tracking mechanisms but rather sell it as empowering and user
friendly. Now you can listen to both your CD and Internet-based
radio stations with one click of a mouse: it is just like your boom box,
but better. Now you can automatically receive software updates and
optimize your connection to remote sites.

To be clear: this article is not a call to a return to an age when one
could see what one does. Those days are long gone. As Kittler argues,
at a fundamental level we no longer write—through our use of word
processors we have given computers that task.65 Neither is it an
indictment of software or programming (I too am swayed by and
enamored of the causal pleasure of software). It is, however, an argu-
ment against commonsense notions of software precisely because 
of their status as common sense (and in this sense they fulfill the
Gramscian notion of ideology as hegemonic common sense); because
of the histories and gazes they erase; and because of the future they
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point toward. Software has become a commonsense shorthand for
culture and hardware a shorthand for nature. (In the current debate
over stem cell research, stem cells have been called “hardware.”
Historically software also facilitated the separation of pattern from
matter, necessary for the separation of genes from DNA.66) In our so-
called postideological society, software sustains and depoliticizes
notions of ideology and ideology critique. People may deny ideology,
but they don’t deny software—and they attribute to software, metaphor-
ically, greater powers than have been attributed to ideology. Our
interactions with software have disciplined us, created certain expec-
tations about cause and effect, offered us pleasure and power that we
believe should be transferable elsewhere. The notion of software has
crept into our critical vocabulary in mostly uninterrogated ways.67

By interrogating software and the visual knowledge it perpetuates, we
can move beyond the so-called crisis in indexicality toward under-
standing the new ways in which visual knowledge is being trans-
formed and perpetuated, not simply displaced or rendered obsolete.
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