CHAPTER 1

Acoustical Communication

Acoustical communication is possible thanks to the fact that we have an organ
that is sensitive to pressure fluctuations in the medium (air) in which we live. A
similar or analogous organ is to be found also in more primitive beings and here
the function of this organ is clear: it warns the organism of danger and makes it
aware of the presence of food etc. This is the primary function of our hearing
organ. The sound signals here are irregular and often pulse-like (the breaking of a
twig, the falling of a stone, the noise of water etc.). This fact is very important
for a proper insight into the functioning of the ear. For perception experiments,
for example, we should not restrict ourselves to regular stimuli such as sinusoidal
vibrations. This holds especially for directional hearing because this ability is
directly connected with the waming function of the hearing organ. Also the
strong tendency people have to identify unknown sounds (for example electroni-
cally generated sounds) can be related to this function.

The 'pressure sensitivity' is in fact a sensitivity to pressure changes where the
pressure fluctuation must be greater than a particular threshold level to excite the
nerves. This threshold level is not constant but depends among other things on
the 'speed’ of the vibration (still better: its 'frequency’, but this term is introduced
later in the next chapter). When the pressure fluctuations are too slow, they no
longer integrate into a sound impression. I will deal with this aspect further on in
this chapter. At the upper boundary there is much variation. The limiting factor
here is the mass of the vibrating parts of the hearing organ. With fast vibrations
most of the sound energy is converted into heat in the middle ear and does not
reach the sensory cells in the inner ear. A high upper threshold is therefore to be
found in small animals (with sound vibrations in water and thus with sea crea-
tures the situation is different). The upper threshold is also dependent on age, sex
and other factors. Between these two limits there is still a wide range of audible
sounds that are also available for the second function of the hearing organ, the
communicative function, which is the consequence of the ability of the higher
animals to produce sound vibrations themselves. This led to certain applications
such as the 'radar' system of bats, but much more important was the possibility of
communication between members of a species in connection with reproduction,
collection of food, mutual defence etc. Here a curious phenomenon occurs: with
our muscles we indeed can produce air pressure variations, for example, by
waving our hands, but as these fluctuations are rather slow, the produced sound
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waves have wavelengths that are relatively long (between tens and hundreds of
meters) compared to the dimensions of the source of the vibrations, the human
body. This is important because to radiate a signal efficiently the source dimen-
sions should be of the same order of magnitude as the wavelength. A violin for
example radiates wavelengths between 0.22 and 1.7 m, a double bass between 1
and 8 m. With our muscles we can only produce sounds effectively via clapping
the hands, drumming, hitting, stamping etc., i.e. by interrupting a movement and
not by the movement itself. The repertory of such sounds however is far too
limited to function as the basis for a high-level communication system. Thus the
human body is a very inefficient source of the sound vibrations that are required
for acoustical communication.

The solution to this problem has been the development of a special organ in
many animals and in man to make acoustical communication possible. In man
this is the voice. With this organ air vibrations with the necessary speed
characteristics (easily perceivable, efficiently transmittable) can be produced.
Simplified the principle of voice production is as follows: with the muscles of the
thorax and diaphragm the air in the lungs is compressed. This air can only escape
via the trachea by pressing apart the vocal chords that normally shut off the
trachea. After a very short time the vocal chords are closed again by the aerody-
namic effect of the escaping air. This process is repeated so quickly that 60 to
300 times a second a small portion of air escapes. These periodic air pushes
produce a sound vibration with the speed properties required for a sound to be
audible. These vibrations come thus into existence with the help of muscle en-
ergy but not as 'muscle vibrations'. Information is coded into this signal via
(slow) changes in the parameters of this fast vibration, because

- a slow vibration is not audible

- a slow change in a fast vibration is audible.

Here a comparison can be made with the technical process of modulation used
in radio and television transmissions. Only many years after the invention of this
technique the resemblance to the process of speech (and music) production was
recognized. In speech and music we see 'natural' examples of modulation that, in
radio technique, is applied for the same purpose, namely that of improving the
signal transmission. After amplification an electrical signal can be broadcast as
an electromagnetic fluctuation with the help of an antenna. Due to the enormous
speed of the electromagnetic waves, the wavelength would be so large that for an
efficient radiation the antenna would have to be of an absolutely impossible size,
and, what is more, signals coming from different transmitters would be difficult
to distinguish from each other. Therefore, modulation is applied: in the transmit-
ter a fast, stationary vibration, the so-called 'carrier wave' is generated. When a
signal is to be broadcast, the maximal deviation of this vibration is made to
correspond with this signal. Here we speak of 'amplitude modulation' (AM). (In
radio technique other forms of modulation are employed as well). This process
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can be seen in the figure below (fig.1.1):
amplitude modulated signal

signal after amplitude

demodulation
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/-\/ /\/
modulator recewer

(demodulator )

carrier

Figure 1.1 Amplitude modulation in radio transmission.

Due to the much higher speed of the vibration the antenna size can be kept to a
reasonable level and by tuning the receiver (in which, by means of a process that
is called 'demodulation’, the original signal can be derived from the modulated
one) to the carrier wave the signal can be distinguished from other signals with
different carrier waves. Furthermore due to modulation, signals are less 'vulnera-
ble' which means that they are not so easily distorted by interferences. This holds
as well for speech as for musical signals. Along with making the transmission
efficient, modulation makes the signal more robust; it remains detectable also
under difficult circumstances. The modulation is much more complicated than
with its technical equivalent because various parameters of the vibration are
modulated simultaneously. In speech the system looks as follows (fig.1.2):

muscle control
modulation) ﬁ > @
demodulation
vocal chords

(carrier)
Figure 1.2 Modulation in speech communication.

The carrier wave vibration is produced by means of the vocal chords and simulta-
neously there and higher in the vocal tract the carrier wave is modulated via
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(changing) the number of vibrations, the excursion and the 'form' of the vibra-
tion, the articulation etc.

In music the same thing happens but the role of the various parameters is
different. It is therefore possible to give the following scheme for the production
of musical signals:

carrier wave production

musical sound
global (pitch etc. according to the score)

modulation
internal (instrument, attack etc.)
microstructure
external (performer, vibrato etc.)

The analogy with a radio broadcast holds as well for the receiver. From the
above it is clear that the perceptual process is a form of ‘demodulation’ in which
the signal information is extracted from the modulated carrier wave. Having
fulfilled its task, the supporting vibration is no longer required. That the carrier
wave is not essential can be shown by means of the technique of Linear Predic-
tive Coding (LPC) which will be discussed in detail in chapter seven. With LPC
speech can be transmitted very efficiently by transmitting only the modulation
parameters and not the carrier wave. Demodulation, i.e., separating carrier wave
and modulating signal, is only possible when the frequency of the latter is below
that of the former signal. In speech and musical signals this condition is fulfilled:
the maximal 'muscle frequency' is ca. 20 Hz, which is also the lowest audible
tone and thus the minimal carrier frequency.

Choosing the acoustic signal (in its electrical form) as an object for investiga-
tion thus means that we are dealing with modulated signals. We should always
take this aspect into account when studying the process of signal transmission or
the more general problem of acoustical communication. We shall be dealing with
signals, the information carriers, and with systems that transmit and/or process
these signals. Signals and systems are tightly coupled. Although we can construct
an abstract mathematical model of the signal, the signal function (to be discussed
in chapter 2) the real signal is always linked via its physical carrier to the system
of which that physical carrier is a part (a space, an amplifier and so on).

Taking into account the modulation aspect, we can draw the conclusion that the
communication chain looks as follows (fig.1.3):
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information - 1modulator) : ~idemodulator! - perception

4

Figure 1.3 The communication chain.

The signals and systems that will be our main subject are located between the
output of the modulator and the input of the demodulator. It is of interest to
check whether a more comprehensive approach is possible and to include aspects
of the modulation and demodulation process as well. We will discuss this ques-
tion in the final chapters.

For further reading, see Mayr (1980), Plomp(1984), Corliss (1990) and Pierce
(1983).



CHAPTER 2

Functions

2.1 Registrations and signal functions

One possibility resulting from the conversion of the acoustical signal into an
electrical one is that of making a registration of it. Examples of registration
equipment are the pen recorder and the oscilloscope. Furthermore a computer
equipped with converters (see chapter 4) and graphical output is often used for
this purpose. The registrations shown here were made in this manner.

The pen recorder consists of an amplifier which increases the power of the
electrical fluctuations and an electromechanical converter which converts an
electrical voltage into a proportional deviation of a pen. Coupling the recorder
with a microphone has the effect that the pen follows the air pressure fluctua-
tions. If simultaneously we run a strip of paper at a constant speed under the pen,
the result is a ‘registration’ of the pressure fluctuations with time (see fig.2.1.1).

e penrecorder
: \\ microphone B

\\

source) )—— —
L pen -

sound waves

Figure 2.1.1 Registration of a signal with a penrecorder.

On the next page some registrations of this type are shown: in fig.2.1.2 the regis-
tration of a speech sound, in fig.2.1.3 that of a clarinet tone and in fig.2.1.4 that
of a violin sound.
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Figure 2.1.3 Registration of a clarinet tone.
[
8
=
Q
>
[0}]
=]
2.2
|
D.07 Q.08 (==

Figure 2.1.4 Registration of a violin tone.
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An oscilloscope (see diagram
in fig.2.1.5) differs in two
ways from a recorder:

1 - Instead of a pen an elec-
tron beam in a vacuum tube
(as in a TV tube) is used. The
screen lights up in the places
where it is hit by the elec-
trons. The amplified signal is
connected to electrodes that
move the beam in a vertical
direction up and down.

2 - Instead of simultaneously
moving the screen at a
constant speed in a horizontal
direction (as the paper in the
pen recorder) the beam is, at a
constant speed, moved from left to right by means of a second set of electrodes.

Through the combination of these two movements the registration appears on
the screen as a light track. A limitation of the oscilloscope in comparison with
the recorder is, of course, the length of the screen. While the paper strip can, in
principle, be many metres long, the screen of the oscilloscope can only be some
20 centimetres at the most. This problem is solved by returning the beam when it
reaches the end of the screen very quickly back to the beginning again.
Obviously this limits its possible applications. Advantages of the oscilloscope are
the high speed with which the electron beam can be moved across the screen and
the fact that there is no consumption of materials such as ink and paper as in the
case of the pen recorder. However, its registration is not permanent.

The registration makes clear that with every time point / a certain deviation y
of the vibration corresponds. Mathematically the signal exists of a series of
succeeding (y,¢)-pairs. In mathematics such a relation is called a function and in
this case a signal function. Because the deviation value is connected with the
time point 7 we call 7 the independent variable and y the dependent variable. This
hierarchy also appears in the usual mathematical notation for a function, which is
not (y,f) but y = £ (¢). It is characteristic for a function that with every value of the
independent variable ¢ there is only one value of the corresponding dependent
variable y. There can, however, be more than one dependent variable. This is for
example the case with a signal function that describes a moving image. Here we
have to do with a plane in which the light intensity is dependent on place (two
coordinates) and on time while we must specify the intensity for at least three
wavelengths (colours).

The possible ¢- and y-values are given by respectively the start and the end
time-point of the registration and by the maximal and minimal air pressure

electron gun

Figure 2.1.5 Principle of an oscilloscope.
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values. Within these boundaries all possible values can occur as is the case with
points on a line. We say the 7- and y-values are real numbers. Because we will be
dealing with various sorts of numbers a short summary of the different number
types we will encounter, is presented first.

- natural numbers (1,2, 3,4, 5,..).

These are the oldest type of numbers, necessary for counting. It is possible to add
and subtract but certain subtractions are not possible, for example 3 - 5 =?. To
make this subtraction possible the concept of numbers is enlarged with

- integer numbers (...,-2,-1,0,1,2,3, ..).

With these it is possible to add, subtract, multiply but not always to divide, for
example 3/5 =7 Such divisions of integer numbers are indeed possible after the
introduction of

- rational numbers

These are numbers that can be written as p/q (q#0), where p and q are integers.
To this category also belong the finite decimal fractions, such as 4.57, because
4.57 = 457/100.

The awareness that there are pumbers which can be approximated quite
closely by rational numbers but are not themselves rational (cannot be written as
the quotient of two integers) as with the number that gives the relation between
the circumference and the diameter of a circle and is indicated with ‘n’ (‘pi’) led
to the introduction of
- real numbers
which are usually introduced with the help of points on a line, the number line.
After the real numbers came the introduction of the complex numbers. They are
very useful and very common in signal theory. Still, they will not be made use of
in this book in order not to set the mathematical requirements too high.

Now we will return to the signal functions. The fact that a signal function
consists of pairs of real numbers, the (y,f)-pairs, means that no matter how short
the signal function is, the amount of (y,f)-pairs is infinite (just as any line
contains an infinite number of points). This is no problem as long as the
equipment we use does not work with numbers but with physical quantities that
are proportional to the signal function (electrical voltage, mechanical deviation,
strength of magnetic field etc.). The numbers which express the values of these
quantities are also real and continuous numbers. We speak here of an analog
representation, of an analog signal, and allude in this way to this parallel. The
designation ‘time-continuous’ is used as well, which indicates only that the time
values are expressed in real numbers.

When one tries to introduce such a signal function into a computer, that does
work with (integer) numbers, one is confronted with the problem that the
computer can only work with a finite number supply. Before discussing the
means of resolving this problem we can ask ourselves what would be the reason
for the application of computers. Although this book as a whole is an answer to
this question we can briefly name the following three reasons:
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L.

Analog signal transmission is very efficient, which means that the available
transmission capacity is almost completely used. This may sound positive but
that is not entirely the case. For example, a transmission system’s non-utilized
capacity can be used to send more information than is strictly necessary and
with the excess information anything lost or damaged during transportation
can be reconstructed. This is analogous to the situation in which a person who
wants to be as sure as possible that an important message will reach its
destination, sends three identical letters instead of one. We call such a system
with extra capacity redundant and computer systems happen to be very
redundant. In information theoretical terms they are not economical but
‘robust’ because the degeneration of information is prevented. This aspect is
of importance for the technique of sound registration and reproduction and
there the change from analog to digital (= computer) techniques is in full
swing.

. A second advantage that is important for the scientific investigation of sound

signals is that in a computer signals can be subjected to many refined analysis
methods for which there are no analog alternatives. Several of these
techniques will be discussed later in this book.

. Conversely signals can be produced via calculations in the computer and this

synthesis possibility is the third important aspect of digital sound technique
that offers ever more practical applications (synthetic speech, computer
music).

The solution to how to introduce an analog signal into a computer is rather like
that which allows the making of films. Here a time-continuous process is
simulated with a finite series of single frames taken at a short distance in time of
each other.

As for sound signal functions the foilowing procedure occurs:

a.

To solve the problem of the infinite supply of number pairs a selection process
is required. From the infinite series of f-values (time points) which are
included in the infinite series of (y,f)-pairs a finite selection of bounded ¢-
values is made. This selection process is called ‘sampling’. The time points of
this finite, countable set are indicated with #,. The integer number £ is the
index, the ‘number’ of the time point. Usually the time points are at a fixed
distance At of each other and then ¢, = k-At. The index ¢ takes over the role of
the independent variable.

. The selected y-values may be numbers with very long to infinitely long series

of decimals. Such numbers cannot be handled by a computer. This asks for
another intervention: each y-value corresponding to a certain # (called a
‘sample”’) is rounded off to a finite decimal number 9 with for example no
more than five positions after the decimal point. The value y = n can thus not
occur anymore (it has an infinite series of decimals) but it is thus rounded off
to = 3.14159. In which way this selection and rounding off can be done with
a minimal loss of information will be discussed later.
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The set of deviation values y has become finite and countable as well by this

operation. Actually we have stepped over from real numbers to integers (for

instead with $ = 3.14159 we can as well work with $ = 314159). The infinite
series of (y,f)-pairs is in this way replaced by a finite and countable series of

(#,1,)-pairs.

The theory that has been developed parallel to that for analog signals and that
normally is indicated with DSP (Digital Signal Processing, see Oppenheim et al.
1975), however, works with discrete time values and real function values, thus
with (y,,)-pairs because this allows a simple connection with the existing theory.
The rounding-off effects are considered separately. The difference between both
signal functions is apparent from the terms fime-continuous and time-discrete
which are more accurate than the popular expressions analog and digital. The
same terms are used for systems working with these signals.

The relation between these two sorts of functions will be made clearer if we
find a technique to specify (signal) functions. For this the following two
possibilities exist:

1. The first method is to give the total list of number pairs. In principle with
time-discrete functions this is feasible, but with time-continuous functions it is
impossible to specify the complete list and so we should do with a pseudo list
in the form of a graphic representation of the relation between y and t. The
graphical registrations shown above can be considered as such ‘pseudo lists’.

2. The second method is the use of a function rule, a ‘receipt’, formula or
prescription that states how from a given value of the independent variable (in
our case ‘r’) the corresponding y-value can be calculated.

Two examples:

(time -continuous) y(¢) = %13 +3t2-6

(time-discrete) y, = %k:‘ +3k%-6

In practice it has become usual to identify the function with the function rule,

Thus we speak thus for example of "the function y(f) = y#?> -1 "

Knowing the function rule is very attractive because all the numerical relations
are taken together in a very concise way, and the rule itself can be subjected to
further mathematical operations.

For an arbitrary signal function the function rule is, of course, not known.
However we shall learn a technique that will allow us to derive a function rule
for a given arbitrary signal function that is specified as a list. The opposite,
namely that of deriving a list or graph from the function rule, is usually very
simple. In fig.2.1.6 and fig.2.1.7 two graphs are given which correspond to the
above examples.
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A time-continuous function. A time-discrete function.

The behaviour of systems can also be described by means of functions. Such a
function is then a mathematical model of that system. If the mathematical
description of the parts of the system is known it is often possible to derive that
of the whole system from this. The results calculated by means of the
theoretically derived function rule are then compared with the experimental
results and thus the correctness of the theoretical model can be checked.

Let us again have a look at the above registrations and see if, without further
measuring apparatus, we can say something about what is perceived with these
sound signals. We are then confronted with the problem discussed in Chapter 1,
namely that we are dealing with a modulated signal, and can only say something
about its perception if we know something about the demodulation process that
takes place. We thus leave the area of signal functions and enter that of the
perception. In the first place we can learn something from the registration about
the global time structure (start, end, duration, segmentation) of the signal. This is

1148 ms

deviation

2.6 2.8 1.0 1.2 1.4 1.8 1.8 2.a 2.2 2.a
Tt (s

Figure 2.1.8 Slow registration of a speech signal.
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most easily done with ‘slow’ registrations (low paper speed) as that given in
fig.2.1.8. where we can see without any problem that the duration of the marked
signal fragment is 1148 ms.

As we study registrations of signal functions it becomes apparent that there are
regular and irregular signal functions. With the regular ones we see a particular
repeating vibration pattern. This appears to happen especially with musical
sounds and with vowels in speech sounds. We know the explanation for this: we
are dealing with a modulated carrier wave. Helmholtz already knew this
distinction. He spoke of periodic vibrations which form the set of ‘tones’ and of
non-periodic vibrations which form the set of ‘noises’. The mathematical defini-
tion of a periodic function is as follows: a function y(¢) is periodic if there exists a
value T so that y(t + T) = y(¢) for all values of ¢. The smallest 7" for which this
holds is the period. Obviously true periodic signal functions do not exist because
they would last indefinitely long. Furthermore they would not be modulated and
thus would contain no information. Helmholtz’ subdivision should not be applied
strictly; speech and musical sounds are at the most quasi-periodic and often (and
even sometimes chiefly) contain non-periodic components.

Representations of such quasi-periodic signals are to be seen in the above
diagrams 2.1.2, 2.1.3 and 2.1.4. In fig.2.1.9 an electronically produced vibration
can be seen which very well approximates the ideal of a pure periodic vibration
while fig.2.1.10 shows a non-periodic signal. With (quasi-)periodic vibrations the
duration of the period can be measured. In fig.2.1.9. it is for example 5 ms.

deviation

Y
[\

Q.00 Q.01 2.02 T (s

Figure 2.1.9 Registration of an electronic sound.

It has been known for a long time that there exists a direct relationship between
the duration of a period and the observed pitch:

period duration (ms) pitch
3.822 ¢ (middle ¢ of a piano)
3.608 c#
3.405 d

etc.
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The determination of the period duration of a quasi-periodic signal can be quite
problematic. I will come back to this in Chapter 7.

deviation
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Figure 2.1.10 Registration of a non-periodic signal.

Another relation between registration and perception concerns the loudness. How
loud a signal is, depends upon the extent of the vibration deviations. This relati-
onship is actually much more complicated than that between the period and the
pitch. In the first place we must know what the energy of a signal function is
(this is handled in the following section), but this is only the first step. To treat
this subject in detail is actually outside the scope of this book. The same holds
for the relation between the shape of the vibration and the timbre. We shall see
further on how it is possible to analyse the shape of the vibration, but we shall
not delve into the perception of the timbre.

To discuss signal functions or systems in more detail we must become
acquainted with some mathematical tools. Consequently we must first pay some
attention to a few important mathematical functions. The following short course
in mathematics can only be superficial and incomplete. Many textbooks are
available for those who want more information; see for example Batschelet
(1975), Ross, Lax et al.(1976), Smimov (1964) and Szabo (1974).

2.2 Exponential and logarithmic functions
A. The definition of the exponential function

In mathematics the exponential notation is introduced as an abbreviation for the
operation of multiplying a number of times a particular number by itself:

2% = 20202°2:2:2....... (n times)

Thus:
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allowing non-integer and negative values as
Figure 2.2.1 exponents. This is indeed possible. To show
FExponential function. this we proceed from the two most important
calculating rules for exponents:
gegn=gnm eg.2n2=2-2)2-2-2)=2° 2.1
@)m=g"" eg (2 =2-2)2-2)2-2)=2¢ 2.2)

The reduction of an exponent by 1 is the same as dividing once with the base
number g. This leads to an interpretation for y = g*. Starting with 10* = 1000 we
get 102=1000/10 = 100 10" = 100/10 = 110° = 10/10 = 1->10"' = 1/10=0.1.

In the same intuitive manner we can arrive at the interpretation of y = g* for

1 L 4L
non-integer values of x: 16* = 2%* =2 * =2 .

Thus 16™ = 2, or in words: 16* is the number that, when multiplied four times by
itself, gives the value 16. We usually write for this: */16 (the ‘root to the fourth
power of 16°). With this g* is defined for all rational numbers:

£ 4
and this definition is easily extended to hold for all real numbers. The calculation
of such exponential expressions can be done with the help of an electronic calcu-
lator or computer.
B. Applications of exponential functions
1. The energy of a signal function

By definition the energy of a signal function is equal to the square of the function
values. This means that the energy is always a positive quantity, the fluctuations
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of which follow those of the signal function. Often though the average energy
over a particular time interval is more interesting. How do we calculate the
average value? If the number of function values is finite (thatis if we are dealing
with a time-discrete function) it can be found in the usual way: mean = sum/total
number. Thus if we indicate the mean energy between time points ¢, and 5, with
the letter £ with a bar on top of it we have:

N
= ,,Zl ya (2.3)
N

The energy level of a signal is usually characterized by the square root of the
mean energy and this quantity is named the Root Mean Square or RMS value of
the signal function. Thus, yg, is defined by:

Yemus = ﬁ = ‘/;—_2 (24)

From the RMS-value the mean energy can easily be derived by squaring yg,x.
The advantage of taking the square root is that the RMS value has the same
physical unit (Volt, Pascal, . . .) as the signal function itself. The three operations
(root/mean/square) are easily recognizable in the definition. While for the calcu-
lation of the average energy (or RMS value) of a time-discrete function formula
(2.3) can be used, for the same calculation with a time-continuous function we
need an ‘integral’. Therefore, this calculation must be postponed till section
2.5A.

2. The notation of numbers
When writing very large and very small numbers it is advantageous to make use
of exponential notation with, as a basis, g = 10. For example:

67540000 = 6.754 - 10000000 = 6.754 - 107

0.000000198 = 1.98/10000000 = 1.98/10’ = 1.98 - 107
The advantages of this notation are:

the numbers are shorter

a smaller risk to make mistakes

uniform format (advantage with computer input and output)
A disadvantage is that the visual recognition of the magnitude of the quantity
disappears.

For the designation of physical quantities often only exponents of 10 are used
which are themselves multiples of 3, because these multiples have been given
names:

10" = ‘tera’ 10° =‘giga’ 10° =‘mega’ 10° = ‘kilo’

102 = “pico’ 10° =‘nano’ 10 = ‘micro’ 107 = ‘milli’
€.g. 600240 m = 6.0024 - 10° m = 600.24 - 10’ m = 600.24 km
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3. Exponential decay

In certain musical instruments and in the production of vowels as well, we ob-
serve that the excursions of the vibration after the start become gradually smaller.
This is easily seen in a registration when working with a low paper speed as in
fig.2.2.2. If this decay is the result of an energy loss leading to a reduction of the
deviation in each successive period of the vibration with a constant factor b (with
b < 1), it can be written with the help of an exponential function, for the series:

y(t=0) = 4
y(t=T) = b4
y(=2T) = b-(b-4) = b4
etc.

is described by the function y(t) = A4 - b*7 (¢=0, 7, 2T, 37,..). If we admit “all’ -
values (>0) this function describes the smooth curve that connects the maxima
of the vibration, often called the ‘envelope’ of the vibration.

On theoretical grounds it is advantageous with such exponential expressions to
use always the same base number and to include the differences in the exponent.
As a uniform basis the (real) number ‘e’ (= 2.7182818..) has been chosen (see
section 2.3.E) and the factor "” is replaced by . The required value of p can be
calculated with the help of the logarithm. This subject is treated in the next
section and there we shall see how this can be done. With this new factor the
function rule for £,(#), the exponential envelope of signal function y is

E() =Ae

The decay speed for this exponential function depends upon p (and thus on b and
7). In fig.2.2.3 a few exponential curves with various p-values are shown.

[«

]

°

>

3

2.2

T T 1
4 4 S 6
2.2 2.5 12 1.5 2.0 2.5 t (s)
t (s)
Figure 2.2.2 Figure 2.2.3

Registration of a harp tone. Exponential functions.
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4. Well-tempered tuning

Many musical instruments have fixed pitches. If one works with such
instruments it is necessary to introduce a pitch ‘grid’. In western music the well-
tempered tuning system, in which the twelve semitone intervals in the octave
have all the same frequency proportion, has been applied for a long time.

The concept ‘frequency’ (number of vibrations per second) and the relation it
has to the duration of the period (and thus the pitch) has not yet been dealt with.
Accepting for the time being that an interval is characterized by the proportion of
the frequencies of the two vibrations, it follows that, if we divide the octave
(proportion 2 : 1) into 12 equal intervals, the frequency factor ‘#’ of this interval
must be such that #'2 = 2. To confirm this we write a chromatic scale and indicate
the frequencies of the successive tones with f;, f;, ...fi,. It now holds that:

;:-—rorfl=r‘fo
5o ot gy = 2
— =r or f,=rf =r@f) =ri,
i
ézr or j; :r'fzzr'(rzfo) :r3f°
A

etc.

Continuing in this way, we get f;,= r'* - f;. But we also know that f}, is the octave
of f;, in other words: f;, = 2 - f,. The combination of these two results yields:

P2 =2 p =27 = N2 = 1.059463..

A disadvantage of this tuning method is that the important intervals of the fifth
and third are not pure. The fifth should have the frequency relation 3:2, but we
find:

7 =(1.0594631)" = 1.4983071,
and regarding the third we find instead of 1.25 (proportion 5:4): # =1.2599211.
C. The logarithm
Above we saw what the expression g* means. Now we ask the question whether
it is possible with two numbers g and a to find an exponent x so that g = a. Such
an exponent is always to be found if g and a are positive, but instead of g’ = a the

following notation for this unknown exponent x has become usual:
x = tlog a (‘the g-logarithm of a’)
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This expression is thus totally equivalent to g* = a
The definition of the logarithm can also be presented in the following two ways:

g 8% =g and flogg® = b (check this)

Two important rules for dealing with logarithms are

(a) floga- b = tlog a+tlog b 2.5)
Proof:

Given

Bloga'hb =z~ g* =a-b
2loga =x - g* =a
flogh =y~ g? =b

z

g’ =ab =g7g’=g"
z =x+y ~ floga'b = floga + %logh

This is thus in fact just another version of rule (2.1)
Example: Ylog 100000 = 5 = *log 100 - 10000 = "log 100 + log 1000 =2 + 3

®) tlog a* = x “tlog a (2.6)
For integer values of x this rule comes down to a repeated application of the
previous rule. However it holds also for non-integer values of x and is in its turn
the counterpart of rule (2.2). For the proof we go on from the ‘alternative defini-
tion’ for the logarithm:

a = g‘loga thus a* = <g ‘loga)x —~ gx"loga

Now we take from this the g-logarithm:

x floga _

floga” = %logg x: floga

While g may take any value, in practice g = 10 (‘Brigg’s logarithm’) is used for
calculations and g = e (‘natural logarithm’, also written as ‘In’ instead of ‘log) for
theoretical applications. Most calculators can calculate both.

D. An important application of the logarithm: the decibel

Not long ago logarithms (and tools based on them such as slide rules) were very
important for carrying out calculations. This is no longer the case thanks to
modemn calculators and computers. For theoretical derivations, however, the
logarithm is still very important. For example the p-factor of an exponentially
decaying envelope can now be calculated, because from """ = e -7 follows:

1
—Inb = —p .
T D
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In general the logarithm is a convenient tool in calculations with proportions
instead of differences as with the intensity of sensory perception. If for example a
loudspeaker produces a particular signal with a power (energy per second) W,
and a second loudspeaker does the same with twice the power, thus W, = 21,
then naturally the second signal sounds louder than the first. If we now were to
add a third loudspeaker that emitted the same signal and we regulate the power in
such a way that the difference in loudness between loudspeaker 3 and 2 is equal
to that between loudspeaker 2 and 1, it turns out that the amount of power we
must give to the third loudspeaker must be #; = 4/, in other words equal pro-
portions of power are perceived as equal differences in loudness. So we must
constantly calculate proportions. Imagine for example that W,/W, =2.56 and
Wi/W, = 4.69 then

w, W, W,
—2 = 2. _2-469-256 = 12.0064
W, W, W,

Because it is easier to work with differences than with proportions it has been
decided not to work with the proportions themselves but with their (10-)loga-
rithm. This is because in this way multiplications can be reduced to additions,
and divisions to subtractions (with rules (2.5) and (2.6)):
w, W,
log —2 = 0.40844  log — = 0.67177
Wl WZ
W, w, W, W, w,
log—> =log— —2 = log— + log —2 = 1.07941
w, w, W, w, w,

From this it is possible to calculate W,/W, if necessary. Log W, /W is called the
number of Bel level difference (1) between W, and W,.

In practice, to acquire neater numbers we, multiply the numbers thus found by
10 and then speak of decibels (dB) (just as we say 15 decimeters instead of 1.5
metres):

W
10-log ~n72 = the number of decibel level difference
1

If W,=2W, then the level difference is AL =3 dB
’ Wz = 10W1 5 AL = 10 dB
. W, = 100/, ” AL = 20dB

We have seen that the energy of a signal function is defined as the square of the
deviation. If we apply this to the power (energy per second) and put this in the
definition of the decibel we find for the number of decibels:
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2

W 2 y Y

1olog —2 = 10log2% = 10log| 22| = 2010g - (2.7)
Wl y‘Z yl yl

Again the mean energy of the signals is used in these expressions, and in the
second version of (2.7) thus the RMS value.

A well-known and straightforward application of the decibel is the specifica-
tion of the quality of a transmission or recording system via the signal-to-noise
ratio (SNR), the level difference in dB between the signal and the noise that in
every system is inevitably added to the signal. The history of sound recording
can be tracked by the continuous improvement of the SNR from a few dB in the
Edison phonograph to more than 90 dB in the compact disc.

Apart from comparing the mean energies (or RMS values) per second of two
vibrations the dB is also used as an absolute measure for comparison with a
reference vibration. In acoustics the (arbitrarily chosen) reference vibration has
an average pressure fluctuation p, that enables it to be just perceived. The value
of p, is internationally defined as 2 - 10° N/m? (the unit of pressure being the
Newton (N) per square meter).

P,
2:10 %

= the number of dB SPL

20lo0g

Some SPL values (SPL = Sound Pressure Level):

50 dB conversation

80 dB train

110 dB plane

120 dB threshold of pain (energy 10" times that at threshold!)

In electro-acoustics the reference level is often the normal modulation level of a
tape recorderwhich means that we usually work with negative dB-values. In
telecommunications the reference is one milliWatt and the levels are expressed in
dBm, the ‘m’ referring to this reference.

Most dB-meters are voltmeters equipped with a pressure-sensitive microphone
and an amplifier. The voltage fluctuations are measured but the scale is calibrated
in dBs. An extra complication in the relationship existing between loudness and
energy is the fact that the sensitivity of the ear is pitch-dependent. Therefore,
dB-meters are equipped with filters to simulate this behaviour. There are three
standard filter curves, designated by A, B and C (for various sound levels), but in
practice we usually work with the A-curve. The measurement values are then
expressed in dBA and called the Sound Level.
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D>

Figure 2.2.4 Principle of a sound level meter.

Working with dBs has advantage with multiplicative operations, but disadvan-
tages with additive operations as is evident from the following example: if one
has a loudspeaker with a level of 60 dB SPL and if then a second loudspeaker
with the same level is switched on, the energy is doubled and the level increased
by 3 dB: ‘60 dB + 60 dB = 63 dB’. If the two levels are different the level of the
sum signal can be calculated with the following rule (2.8) which indicates the
relationship between the dB-level c resulting from adding signal a with level
a4 and an independent (‘incoherent’) signal b with level b (c5 = az + bg):

(2.8)

bap g
€, = Ay + 10logl1+10 10

dB

2.3 Differentiating functions
A. The differential quotient

The modern scientific approach incorporates the theoretic analysis of physical
systems and the experimental verification of this analysis. This method was
developed during the Renaissance period, simultaneously with the enormous
revival of mathematics. Galileo, for example, discovered experimentally that the
length of the trajectory of a falling object increases by the square of the elapsed
time, but he was not yet able to prove this relation theoretically. This only be-
came possible in an elegant manner after the discovery of differential and inte-
gral calculus by Newton (and independently by Leibniz) and the famous law of
forces, also formulated by Newton:
force = mass - acceleration (in short: f=m - a)

This law implies that a falling object, which thus is under the influence of a
constant gravity force, falls with a constant acceleration and the question arises
how to determine the displacement with this information. That there exists a
relation between acceleration and displacement is clear and the description of this
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relation, which is also very important for the theoretic analysis of vibrations,
requires the mathematical concept of the ‘derivative’ of a function. This will be
our interest at this point.

The derivative of a function relates to the steepness of its graphic
representation. In every point of a (‘normal’) function this steepness can be found
- by the eye (crudely)

- by ruler and protractor (slightly more accurate)
- if the function rule is known, by calculus (very accurate)
An example of the third approach:
the function y(f) = £ is drawn in
fig.2.3.1. Imagine that we want to
calculate the steepness of this
curve in point A (+=2). To do so
we first determine the steepness
, . of the line (the so-called ‘chord’)
X X that connects A to the point B
: ; (+=3) situated further on. The
! 2 3 ¢ steepness of this chord can be
given by the angle o, but also by
the ratio of the lengths of line
sections BC and AC, in other
words BC/AC. In the next section we will see that there is a simple relation be-
tween a and BC/AC and how the value of « can be calculated from BC/AC (e.g.
if AC/BC=1, a=45°). From now on I will refer to BC/AC as ‘the’ steepness. For
the chord AB we find

y (t)=t2
12 4

12

Figure 2.3.1 Steepness of a function.

From this is derived o = 78.69°. Written in somewhat more complicated terms:

pness = y3)-y2) _ y2+1) -y(Q)
3-2 2+1-2

stee

By indicating the distance AC (=1) by Az, this becomes:

+AN -y(2) _ y(2+An -y(2)
2+At-2 At

2
steepness = »(

The steepness in point A itself (which is obviously smaller) is found by shifting
the position of B along the curve towards A, in other terms, by reducing At in the
t-coordinate 2 + At. So for a series of t-values we find:
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At steepness  o(°)
1.0 5.00 78.69
0.5 4.50 77.47
0.2 4.20 76.61
0.1 4.10 76.29

0.0001  4.0001 75.96

We are also able to calculate the steepness in A:

yQ2+Af) = 2+A0)* = 4+4Ac+Ar?
y(2) =4
y2+AD -y(2) = 4At+Ar?
steepness = M =4+ At
At

If At approaches O the steepness approaches 4 and o approaches 75.9637..°.
We may determine the steepness in different points by repeating the above reaso-
ning with ‘¢’ as coordinate of A. Then:

ye+An -y _ (+Any’-¢?

steepness of chord =

At At
_ P2 r2rAr+ A -1 _ 2tAe+ A7
Ar At
= 2t + At

We find the steepness at point ¢ by substituting 0 for Az: 22. Now we can calcu-
late the steepness for every value of 7, e.g.

t y(t) steepness o)’
2.0 4.0 4.0 75.96
1.0 1.0 2.0 63.43
0.5 0.25 1.0 45.00

0.02 0.0004  0.04 2.29
10.0 100.0 20.0 87.14
100.0 10000.0 200.0 89.71
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So for every ¢ there is a function value )(r) as well as a value for the steepness
and an angle «; stated otherwise, the value of steepness and a are functions of ¢
as well. Symbolically the steepness function belonging to the function y(f) is
indicated by y'(?). It is shortly called the derivative of y. (The angle function «(¢)
is no longer important.) Determining the derivative is called the differentiation of
the function y. In the following formula the relation between y and )' is the

differential quotient: () = Al:‘TO y +AAt) —y(®
t

Abbreviating the difference y(r + Ar) - y(f) to Ay (CB in fig.2.3.1) we get

(2.9)

, lim Ay

YO = a0 3,
and this is in its turn abbreviated to Y@ = ?
t

B. Displacement, speed and acceleration

Let us consider a practical application of this principle. Assume an object moving
rectilinearly. The displacement at time ¢ is represented by s(¢), displacement as a
function of time. The mean velocity between two points in time is the distance
covered in that time divided by the time:

distance  S(t,) —s(1) ) s(t, +Ar) - s(1))

mean velocity = — =
time t, -t Ar

Eg. f, = 800 h, At = % h,
s(+=8:00) = 0 (starting point),

2 4 s (t)=t2 s(+=8:30) = 40 km. The mean
velocity is 40/% = 80 km/h. Tak-
8 1 C«tr=2¢  ing the curve in fig.2.3.2 to give
5 4 a graphical representation of the
relation between s and 1, the
4 steepness of the drawn chord is
5 (=2 equal to this mean velocity.
If ‘velocity’ corresponds to
T — T T ‘steepness’, we can talk about
L 2 3t ‘the’ velocity for a certain value
Figure 2.3.2 of ¢, v(f), and this velocity func-
Displacement, speed and acceleration. tion equals the steepness function

of s: v(f) = s'(¢). The velocity is
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the derivative of the displacement. In the same way we may define the concept of
acceleration. The mean acceleration a between ¢, and 4, is equal to the change of
velocity per time unit:
V(@) v@) v A) -v()

-t At

The acceleration at a certain moment ¢ is equal to the steepness of the velocity
function. Summarizing:

v = s = B0 anda = v - d;ft) (2.10)
ds
T d2s (1) d2s @2.11)
This is combinedto  a(f) = —— = ——== (short: =) '
dr dt? de?

In fig.2.3.2 not only the displacement function s(¢) = £ is displayed but also the
velocity function v(¥) = 2¢ and the acceleration function a(f) = 2. Because the
graph of w(f) is an oblique straight line (thus having a constant steepness), the
derivative is a constant. It can be proven in the same manner as in the previous
example that the value of the constant is 2, but in practice it is easier to make use
of calculation rules for differentiation. These rules directly give the derivative for
particular functions or types of functions, so that the calculation of it via rule
(2.9) can be avoided. Here follow a few of the most important rules.

C. Rules for differentiation (1)

- If y)=1%theny () = x-t*! (2.12)
Proof. py = im (t+Ap* -t _
YO A0 TA
o lim T rxeetVAr+ L) -6t dim oxerf A+ L
- A0 At Ar-0 At

The points represent products of powers of 7 with powers of Ar; we divide by Ar
and then make A¢ infinite small so that y'(¢) = x - '
Example: y(O = > y(@) = 3°

- Ify(8) = C - g(?), theny’ () = C -g’(9) (2.13)
Proof:

v . lim Cgt+An-C-g(t) _ .. lim g@+An -g(@)
Y'® = Ao Ar € Ar-0 At

Example: v =3t > y() =3-2t = 6t

= Cg'®
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- If (1) = g() + k), then y’(t) = g’(1) + K () (2.14)
Proof:
o lim g(e+An) +h(t+Ar) -g@) -h(®
y'( = At-0 At
lim g(+An -g(r) , lim h@+AD -h@) _ T
T A0 A, A0 A, g0k
Example: y) =3 +2t > y@)= 6t+2

D. Differentiation without differential quotient

Additional rules will be discussed later. First I would like to pay attention to the
question how a function can be differentiated without knowing its function rule,
as, for example, in the case of an arbitrary signal function. Let us first consider
the case of a time-continuous electric signal V{(f), a fluctuating electrical voltage.
We can make use of a differentiating network, which is a simple system consist-
ing of a resistor and a capacitor (fig.2.3.5). To understand the working of this
network it is necessary to know the physical characteristics of these components.

1. Differentiating network.

RESISTOR.

If a conducting connection is made between two

points between which an electrical voltage Ve
(unit: volt) exists, then an electrical current i

(unit: ampere) will flow which is proportional to ) i
V. The proportion constant is designated by R and
is called the resistance of the connection. In for- c
mula: V=i - R, the famous law of Ohm. If with a
voltage of 1 volt a current of 1 ampere flows then x y
it is said that the resistance is 1Q (‘1 ohm’). It is
also possible to give conductors a particular re-

sistance value. Then such a conductor is itself
called a ‘resistor’. One speaks, for example, of a  figyre 2.3.3

resistor of 220 ohm. Differentiating network.

CAPACITOR.
This consists of two flat conductors at a very short distance from each other.
Something of this form is to be recognized in the capacitor symbol (see
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fig.2.3.5). Positive and negative charges in these conductors are held together by
electrostatic forces and so a capacitor behaves as a charge reservoir. It is possible
to charge a capacitor by bringing the two poles in contact with a voltage source,
for example a battery. The quantity of charge Q is proportional to the voltage
applied. The proportion constant is given by C and is called the capacity of that
particular capacitor. The unit is the farad (symbol: F; named after Faraday), and
the capacity is 1 F if, with a voltage of 1 volt, there is a charge of 1 Coulomb. In
formula: Q = C - V. When a conductive connection is made between the poles
of a capacitor, the charge flows away. The strength of this electrical current is
equal to the speed of the change of the charge per unit of time:

dQ _ o dv

i:____
dt dt

(2.15)

Now for the differentiating network: if at the input a voltage V() is connected, a
current i(f) begins to flow. For this holds:

dv, c dv,-v)

i=C =
dt de
_ v, dv
Furthermore V,=i- R; together: ¥ = RC - RC —Z—’
t t

dv
With the condition  RC d—’ « ¥, (RC small enough)
t

dv
this becomes V. = RC —=
7 dr
Thus the output voltage is the derivative of the input voltage. Fig.2.3.4 shows the
effect on a few signal functions of a differentiating network. As the above condi-

tions are not always met, deviations from the theory occur.

2. Differentiating numerically.

Time-discrete functions cannot be differentiated because At cannot be made
infinitely small. But because At can become very small the terms ‘differentiation’
and ‘derivative’ are used in reference to these function with the, in fact, arbitrary
value Az = 1. This leads to the simple expression for the derivative:

(k) = yk+1) - k)
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Figure 2.3.4 Differentiating signal functions.
E. Rules for differentiation (2)

Let us return to the calculating rules for the differentiation of time-continuous
functions. We have already encountered the number e (= 2.718...). This number
was ‘discovered’ by the German mathematician Euler (hence the ‘e’) who
showed that the exponential function }(f) = ¢' has the characteristic property to
remain unchanged by differentiation. This function is its own derivative; the
steepness function is equal to the function itself as can be checked by inspecting
fig.2.3.5a. This gives us a new rule:

- ) = e, theny’(t) = ¢’ (2.16)
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e’ In t
t
t
@) (b>
1/t
ety
t t
Figure 2.3.5

(a) Exponential function with derivative (b) logarithmic function with derivative.

It was furthermore shown that the function ¢’ can be written as an infinite series:

2 ¢
f)=e'=1+1t+ —+ —— + . i
y@ =e + YRRy (2.17)

The symbol n!, pronounced ‘n factorial’, is an abbreviation for
n-(n-1)-@n-2)-n-3)-....-3-2-1
With (2.17) we can check (2.16) by differentiating the series term by term:

2 3 2 3 4
(¢ =0+1+2+£—+ﬂ—+‘...=1+t+t—+i—+t—+....=e‘
y'®)
21 31 41 21 31 4

Now without proof the rule that says that the derivative of the function
(1) = “log t (= In ) is equal to y'(f) = 1/t. This can be checked in fig.2.3.5b via the
steepness relations between the graphs.

1
-~ Ify(@ =Int, then y'(¢) = - (2.18)

A few other important calculation rules:
- Ify(1) = x(©) - z(t) theny’(t) = x’(O) - z2(t) + x(1)- z’() (2.19)
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Proof:

von _ lm x@rADz(E+AD —x () z(H) ~x(Dz(t + Ar) +x(D)z(t + Af)
Y (t) - At-0 At

lim | [x(t+Af) -x(£)]z(t + Ar) , [z~ An -z(H)x (D) )
Ar-o0 At At

Clim x(t+Af) -x(9) Clim z(r+Af) -z(1)
20" pr-0 At tE@D A At

1}

x'(0)z(®) + x(t)-z'(¥)

Example: y() = 3t%lnt - y'(¢) = 6¢'lnt + 3621~ grmne + 3¢
t

1 , _ x'(1)
i =~ th n = -2
y(®) 0 en y'(0) 0 (2.20)
Proof: 1 1
@ - lim x(do X _ lim 1 x() -x(t+Ap
Y Ar-0 At A=0Ar  x(e+A1)-x(t)
_ 1 lim x(@rA)-x() _ x'(0)
x2(1) Ar-0 At x2(0)
1
Example: y@ = L~y'(t) = -t
In¢ (In 1)?
- 1y = 29, then yrp - XOZO " X0 2.21)
z(2) z2(f)

The proof of this rule follows directly from rules (2.19) and (2.20).

| l-t - In¢ !
Example: y(@) = L y'(@ = ! S = :nt
t t

t

The following rule, also called the ‘chain rule’, concerns the differentiation of
functions that have been combined as for example the function

y() = yt2-1
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which can be considered as a combination of the function x(f) = Vz(f) and the
function z(7) = £ - 1. The rule shows:

- Iy =x(z@), theny’ (1) = x’(1) - 2’(¥) (2.22)
The full proof will not be given here, only an indication of how it goes:

Y@ = lim B2 - i 2E142) 7x()  Ax
At Ax At

- lim x(z+Az) ~x(z)  z(t+A¥)

ﬁz(t) = ' . L
Az At A

t

Ve -1

Finally one more rule: sometimes in calculations use is made of the following
approximations:

Example:  p() = 1> -1 ¥ y'() = 2¢*-1) "2 =

y' = &%ﬂlﬂ—) or y(t +Af) = y(t) +y'())- At (2.23)

2.4 Equations
A. Algebraic equations

Now we may approach the problem of the motion of a falling object as follows:
an object having mass m is under influence of a constant force G, the gravitation
force. Using Newton’s law of forces we find:

G=m-a=m-s''(f

and we may wonder whether s(7) can be derived from this. An expression like
this, in which unknown values or functions appear, is called an equation. An
equation implies a task: Find the unknown, find the solution. The most general
form of a ‘common’ (or algebraic) equation in which one or more variable values

occur is: yy =0
E.g.: 3t-5=0 solution: t=5/3
32-2t-5=0 solutions: r=15/3 and r=-1

In the second example we use the formula for the general solution of the qua-

. . L -b+b2 -
dratic equation a? + bt + ¢ = O whichis 7,, = __b____:____:t_a_c
> a
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By solving the equation y(f) = 0 we determine the zero crossings of the function,
i.e. those values of # where the graph crosses the zero axis. With a given function
¥(?) we may also solve the equation y'(f) = 0, and if we do, we determine the -
values for which the steepness of the function equals zero, in other words we de-
termine those points where the graph is horizontal: the maxima and minima.

Example:  The equation YH=P+2f-3t=0
has three solutions: t=-3,t=0andf=1.
The equation VvV =32+ 4-3=0
has the two solutions: t,=0.535 and t, = -1.869.

As shown in fig.2.4.1 the function reaches a minimum and then a maximum for
these two values. The values of these can be found by substituting the f-values in
y(#). From this we find -0.879 and 6.065. This possibility of finding the extremes
of a function will be used in the following sections.

20
y (t)

3 2
y ()=t +2t -3t

Figure 2.4.1 Maxima and minima.

B. Difference and differential equations

A second category of equations is formed by the differential and difference
equations, where an unknown function is to be found. When the function is
(time-)continuous we speak of a differential equation, with (time-)discrete func-
tions of a difference equation. The example at the beginning of this section
represents a differential equation:

G =m-s"(t) or s"(t) =

3|Q

Using the calculation rules for differentiating it is easy to see that the velocity

w(?) follows from this: vie) = s'(t) = gt +C,
m
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because the differentiation of this expression yields the forgoing version.
In the same way we find for s(?) itself:
G

S(t) = E

2
t +Clt+C2

The constants C, and G, can only be determined if more information about the
system is available, e.g. that the falling motion started from a standstill (w(0)=0)
and that the distance moved will be measured from the start position (s(0) = 0),
the so-called initial conditions. The first term tells us that v(t = 0) = C, and as
W=0)=0: C, = 0. Equally: s(t=0) = C,.

Because it is known that s(+=0) = 0 it follows that C, is also equal to 0 (note:
other initial conditions give other values for C, and C,!). Thus the final result is

G 2
s(t) = —t
O} om

and in this way the quadratic rule of Galileo has been derived theoretically.

The solution to a differential equation thus leads to a function. We shall use
this method later to derive signal functions from, for example, a simplified
mathematical model of a system such as a vibrating string. I shall, however,
spend no time to explain how solutions to differential equations are found;
instead I will simply give the solution as it is always possible to check it via
substitution. As has already been mentioned in the previous section, time-discrete
functions cannot be differentiated because the time-distance between function
values cannot be smaller than the sampling interval At. Yet there does exist a
technique that is comparable to that of differential equations. Let us proceed from
the ‘normal’ differential equation y'(f) = b.

lim y(t+Af) -y(®)

A0 At =b

If we write out )' this becomes:
This equation has as solution: yo=b-t+C
which is checked by differentiating this expression: y@ =5

If the function y is time-discrete, which means that we must substitute the dis-
crete variable £, for the continuous variable ¢, then Az can no more become infi-
nitely small. Because At is constant, we can, to simplify matters, assume Az = 1.

The above equation then becomes W) - Yt = b
or shorter Yis1 - Y= b

Such an equation in which a relation between time-discrete time-values occurs is
called a difference equation. Here the task is also to find the solution and again
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the correctness of the solution can be checked by means of substitution. Here the

solution is: y,=bk+C
check: Yp.  =bk+1) +C =bk +b +C
Y, =b'k +C
Yerr ~ Yk =b

Here is a practical example of working with difference equations:

v R
o 2R i 2R 2R 2R 2R

Figure 2.4.2 R-2R ladder network.

To the resistance network shown here (a so-called R-2R ladder network) applied
among other thing in DA-converters) a voltage of ¥, volt is connected. The
question is which voltage will be found on each node. As no charge can be stored
at a junction of connections, it holds that the algebraic sum of the currents is
equal to O (first Kirchhoff law). For the given currents i,, i, en i,,, this means

in = in' + inﬂ
If we apply to all three Ohm’s law then this becomes
Vu_Vn+l - Vu+l + Vu+l B Vn*Z
R 2R R
Multiply left and right by R:
_ 1
Vu B Vn+l - ;Vn+l + Vn*l - Vn+2
or V=2V * V=0

This is a difference equation, in which the discrete function V, is unknown. I
assert the solution is:
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2" (o ¥, = %Vo, Vv, = %VO etc.)

Vv =Y

L] 0

To check this via substitution we need

1

— A (nrl)y _ A n,.p-1 _ .-
V.. =V,s2 0=y =2t
= 2y Ay .2 _ 1 AR
Vg = Vo2 @2 =72 722 = 2p2
Substitution: ve2an -3y lyge oy
0 2 20 s 0

The R-2R ladder network can thus be used to generate a series of voltages that
decreases by a factor 2.

2.5 The integration of functions
A. Integral and mean value

The solution to a differential equation is a matter of finding a function of which
the derivative is known. We call the first function the antiderivative of the sec-
ond. Thus if y'(1) is the derivative of y(1) we may also say that y(t) is the anti-
derivative of y'(1). As said before I shall not deal with the problem how to find an
antiderivative, but content myself with mentioning that it is possible to set up
rules that are in part a ‘mirror image’ of the rules for differentiation; for example:

the antiderivative of the function r*is ——¢*"! + C

x+1

The antiderivative of the functions # is thus equal to Ya* + C. The constant C dis-
appears when differentiated. For a very important application of antiderivatives
we go on from rule (2.23):

y@ + A - y@ = y'(t)Ar

Another way to write the same rule, starting from the function 3(¢) and its anti-
derivative, Y(?), is Y@ + Ap) - Y(©) = y(r) At

Imagine that y and Y are known (for example like the y shown in fig.2.5.1) and
we apply this rule to the point t = a:

Y(@ + A1) - Y(a) = y(a)'At = the area of strip 1

If we apply this rule a number of times we arrive at
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Y(a +Af) - Y(a) = y(a)-Ar = grea 1
Y(a + 241 - Y(a +Ar) = y(a + Aty At = area 2
Y(a +3A1) - Y(a +2At) =y(a+24n-At = area3

Y(a+ nAt). - Yka + tn - i)At = y(a.+ (n.— I)At)'At= arean

+

Y(b) - Y(a) = y(a)'At + y(a+An-Ar + ... = sum of areas =

=y y(a,)At = total area below the curve
Z (2.24)

(NB.a+nAt =b,a, =a+(p -1)-Ap

y(t)

N R
Sppedgs 58
ottt o _|‘r"
e

Figure 2.5.1 Area of a function.

The difference between the sum and the area under the curve will decrease if we
reduce the width of the strips (A7~0) and increase their number until finally we
have an infinite number of infinite narrow strips. It is usual here to replace the
symbol } by the ‘integral’ symbol [. More accurate, we make the following

n b
substitution: p y(ap)At - f y()de Thus: the area under the curve
p-=1

b
between a and b is equal to f y(@®dt = Y(b) -Y(a)
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b
Instead of Y(b)-Y(a) we also write: ¥ (r)|

Example (see fig.2.4.4): the 12
area under the curve (the t2
function y = £?) between the at
boundaries 1 and 3 is noted
symbolically in this way: 871

3 al

f 12 dt

1 24
This area is thus equal to:

1 2 3 t

3_ 143 _
3 3 ! 8.67 Figure 2.5.2 Area.

3
t? =
1

W |-
W |-

With this method we can calculate the area under a continuous curve, if its func-
tion rule is known. This makes it possible, among other things, to determine the
average value of a function over a particular interval. Imagine that we should
calculate the average value between a and b of the function shown in fig.2.5.3.

If it concerns a time-discrete func-
tion then that is not a problem,
because the calculation proceeds
in the familiar way: all function
values are added and then divided

4
k

by their number N:
>
; . o (2.25)
=] b —k y = —
N

Figure 2.5.3 Mean value.

To find the expression for the av-
erage value of a time-continuous function we reduce the time distance between
the samples continuously, and thus increase the number of samples. In the ex-
pression for y this means that the numerator and denominator both increase.
Their quotient is then undefined. Let us therefore first multiply the numerator and
denominator by At:

N N

Ar- Y y, Yy, At

; = k=1 - k=1
AN N-At
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The denominator is equal to N-Az = b - a and if we decrease the value of At

and increase that of N the denominator does not change. The numerator becomes
an integral and we arrive at:

b
fy(t)dt
. 1

_ ) .
e U GRE(O)

(2.26)

So, for example, the average energy of a signal function )(f) over a time duration
of T seconds is equal to:

_ T
y? = %fyz(t)dt 2.27)

According to rule (2.4) we have for the RMS value of y(1):

T
Yems = \/E = leyz(t)d’ (2.28)
[}

B. Rules, integrating network, integrating numerically

The upper limit of an integral is sometimes less than the lower limit. This does
not have to present a problem:

b a

[y®de =Y®)-Y@ = ~[¥@ -Y®)] = - [y@dt (2.29)

a b
If the function to be integrated is equal to the sum of two other functions,
W(®) = x(t) + z(¢), it holds for the integral:

b
[1x@) +2(91dr = X(b) + 2(b) -X(a) ~Z(a) =

, s (2.30)
= X(b) -X(a) + Z(b) - Z(a) = f x()dt + f z(f)dt

The third rule is:
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b ¢
[y de+ [y(0dr = () -Y(a)+¥(c) - Yb)
“ b . (2.31)
= Y(c)-¥(a) = f y(dt
R As with differentiation it is sometimes

r——(:)— possible to integrate a function without
C knowing the function rule. Time-contin-
v uous functions can be input in an inte-
l grating network, in electrical form,
Figure 2.5.4 Integrating network.

— <

time-discrete functions can be integrated
numerically. Fig.2.5.4 shows an inte-
grating network, the counterpart of

fig.2.3.3.
dv
We find for V. and V}; V,=V,*iR =V +C d”R
t
: . dv 1 1
If RC is large enough, this becomes: —2L = —V orV, = — f V_drt
dt RC * * RC *

The ‘numerical integration’ of discrete functions is very simple, because the
integration boils down to a summation (Az = 1); the calculation is in fact the
addition of function values.

C. The RMS value of an asymmetrical signal

In problem 2.3 the task is to calculate the RMS value of some simple signals.
The solution is given in the appendix. Here I should like to discuss the problem
of the RMS value of a signal with a non-zero mean value, an asymmetrical
signal. We can split such a signal in two parts, a constant value y, and a symmet-
rical time function y(f): () = y. + y(0).

Let us square y(¢) and then determine the mean value:

YA = .y, 0F =y + 3.0 +y.(F

with 2y y (1) = 2y.y,() = 0 wefind y(1)? =y’ +y,(* .

In some cases the constant term is not relevant. If we are, for example, interested
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in the loudness of a sound signal y(f) the constant term represents the inaudible
part of the signal that can be neglected. In that case we use only y,(1)? and find for
the RMS value:

Ve = \2AOF = | y@ -y 2.32)

If, on the other hand, )(?) is a voltage connected to an electrical heater, the con-
stant term cannot be ignored as both the constant and the time-variant parts of
(1) contribute to the production of heat.

2.6 Sinusoidal vibrations and trigonometric functions
A. Sine function and sinusoidal movement

We shall now, after having studied ‘natural’ vibrations via registrations, focus
our attention on ‘artificial’ vibrations, that is to say a vibration that does occur in
nature but is especially important theoretically. One of the few cases where this
vibration can be perceived as such is in the movement of a bicycle pedal (or a
crank), and therefore this somewhat exotic example will be worked out further.
We observe the up and down movements of the bicycle pedal from behind (by
preference pedals with reflectors
that can be seen in the dark). It
involves thus a one-dimensional
movement like that of a pen in a
pen recorder. We can indicate the
displacement at a particular mo-
ment ¢ with y(f). Imagine now
that we know the displacement at
a certain moment (¢ = 0), and ask
ourselves whether the displace-
ment at a later time point (for
example ¢ = 1.09) can be derived
from this. This would be quite easy when a registration of the movement were
available. This is not the case but it is possible to derive this registration theore-
tically. For this we must of course know something about the movement of the
pedal, such as:

- the pedal speed, or better: the duration of one rotation. Imagine that we per-
ceive that for 10 rotations 6 seconds are necessary, then the duration of one
rotation is 6/10 = 0.6 sec.

- The start position of the pedal. Imagine that at the start of our experiment (the
arbitrary time point ¢ = 0) the angle « amounts to 80°.

- The pedal length 4; let us assume A has a value of 20 cm.

Figure 2.6.1 Bicycle step experiment.
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We can now calculate the value of « at the moment chosen by us (1 = 1.09 s);
because for a rotation of 360° 0.6 seconds are required, and if the start position is
80°, then at the moment ¢ = 1.09 & will have the following value:

o(t=1.09) = 360°-1—0'—%9— + 80° = 734° = 14°

(We may subtract 360° or multiples of it from the total angle; this does not
change the position of the pedal.) It is easy to see from this calculation that the
general formula to calculate o for a moment ¢ is the following:

a(r) = 360°—— + 80°
0.6

We are, however, interested in the value

of y, in other words, we should deter-

mine what the relation between « and y

y is. For this we gather the relevant facts

in a triangle. The question how it is pos-

sible to calculate side y from one side

o [ and the angle « is one of the oldest ques-

tions in mathematics. It has been known

Figure 2.6.2 Definition sine. for a long time that in the figure at the

side the proportion y/A is independent of

the place where the vertical side is drawn. If we shift this side to the right then

both y and A increase, but the proportion /4 does not change. That proportion

depends solely upon angle «; with a particular value of « a particular value of

y/A is connected, and with a particular value of y/4 a corresponding value of « is
connected. This proportion has therefore been given a name:

/A is called the sine of a (abbreviated: sin o).

We can also speak of a sine function because with every value of « one value of
sin o corresponds. The sine value of a particular angle can nowadays be deter-
mined very simply with a calculator. Type in the angie value, press the key SIN
and the calculator gives the sine value, for example

o sine
20° 0.3420
30° 0.5000
40° 0.6428
14° 0.2419

The last number in the list puts us in the position to calculate the value of y, for
with o = 14° corresponds y/4 = 0.2419, and because 4 = 20 we find: y = 4.838.
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The relation y/20 = sin « and the above expression for « allow us to calculate y at
any moment ¢, thus to find y(#):

) = 20sina(f) = 20 sin(360°0—’6 + 80°)

For example:
t L10)) 3% 0]
0.00 80° 19.696
1.09 14° 4.838
233  38° 12.313

Because the vertical pedal movement is described by a sine function the move-
ment is called sinusoidal. We could now draw y as a function of ¢ and in this way
find the registration of the pedal movement, but for this the definition of the sine
must still be expanded, because with the definition based upon the above triangle
we will have a problem when o does not lie between 0° and 90°.

Imagine, for example, that we wish to calculate y(f) for = 1.28 s; we then find
for a(f): 128° and although a calculator gives as sine value ‘0.7880', the meaning
of this is not clear. The expanded definition of the sine function is arrived at as
follows: place the angle « in a circle (as shown in fig.2.6.3) that has a radius
equal to 1. One leg of the angle coincides
with the horizontal axis, the other intersects
the circle in P. From P we draw a horizontal
’ line. This intersects the vertical axis in P'. If
we now calculate sin « we find:

H

1 sin @

Y - op
1

the length of the projection
on the vertical axis

This definition can also be used for values of
o that are larger than 90°, and also for nega-
tive angles because they are expanded in op-
posing directions (as with the hands of a
clock). In the figure an angle of 130° and one of -75° are drawn. A calculator
gives the following sine values for these two angle: 0.7660 and -0.9659. We can
now calculate the displacement y for all /-values and bring them in a graph. The
result is shown in fig.2.6.4. Please note: the sinusoidal movement or vibration is
one-dimensional!

Figure 2.6.3 Definition sine.
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The registration which shows the
relationship between y- and t-val-
ues is two-dimensional, and has the
well-known sine shape here. (This
remark holds, moreover, for all the
vibration registrations discussed
above.) We can generalize the for-
mula for the pedal movement, so
, , , , , . that y can be calculated for other
2.2 ea 06 048 19 1.2 pedal lengths than 20 cm, other

t (s) . .
rotation times than 0.6 s and other
Figure 2.6.4 Bicycle step movement. start angles than 80°. Clearly, we

can directly substitute the other
values. If we refer to the rotation time as 7, the pedal length as 4 and the start
angle as ¢ the general formula becomes:

) = A'sin(360°-} + ¢) (2.33)

Generally we make use of more neutral terms for 7, 4 and ¢. We call

T: the period (or period duration)
A: the amplitude
b the initial phase angle (the total angle « is called the phase angle.)

Instead of working with the period duration 7" which we determine by dividing
the time in which a number of rotations take place by that number (thus
T = time/number) one can also work with the number of rotations per time unit.
This quantity, equal to number/time, and thus equal to 1/7, is called the fre-
quency f and expressed not in ‘per seconds’ but in the unit called ‘hertz’
(abbreviated: ‘Hz’) which means the same thing. When we substitute in our
formula 1/7 by f'we get:

y(t) = A-sin(360°ft + ) (2.349)

Until now we have expressed the size of angles in degrees. There is, however,
another important angle unit, the radian which is also used very often. Therefore,
first something about these two units.

An angle of one degree (1°) is defined as the 1/360-th part of a circle. This is
an old unit of which the definition is rather arbitrary, but for measuring angles as
in astronomy and navigation it is still very much in use. In this system a right
angle has 90 degrees. The measuring instrument for determining the size of an
angle in degrees is the protractor.
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Much more recent is the radian. The definition of this unit is based upon a certain

geometric characteristic that shows some similarity to that upon which the sine

definition is based. In fig.2.6.5 an angle « can be seen, and an arc with the point

of the angle as the centre. One can prove that the proportion of the arc length a to

the radius r, thus a/r, does not depend on the length of the radius, but only upon
the angle o (to which a/r is proportional).

This means that the proportion a/r can be

used as a measure for angle «. That angle

for which this proportion has the value 1 is

the unit angle, one radian. With an arbitrary

angle the size of it in radians can be found

a by drawing an arc, measuring its length and

the length of the radius, and dividing one

A by the other. It is easier to proceed from an

- angle that encompasses a complete circle.

The arc (in this case the circumference of

Figure 2.6.5 Definition radian. the circle) of such an angle is 2nr and the

radius is ». The number of radians thus

amounts to
2nr/r=2m = 6.2831853..

Because a complete circle encompasses 360° we have the conversion factor
between both angle units:

1 radian = 57.29578° (=57° 17' 44.8") and 1 degree =0.0174533 rad
Many calculators have these conversion factors built-in which is convenient
when it is necessary to convert from one unit to the other. This happens quite
often because in practical measurements the degree is used, while in theoretical
calculations the radian is preferred. (Calculators also offer the unit shown as
GRAD. This is a variant of the degree by which a right angle has 100 units
instead of 90. For our applications it is not important.) If we wish to use radians
in formula (2.34) for the sinusoidal vibration we have only to replace 360° by
27, and of course we must express the initial phase angle in radians as well:

WD) = Asin2n ft + ) (2.35)
2nfis often abbreviated to w (the circular or angular frequency):
W) = Asin(wt + ) (2.36)

B. Time-discrete sine functions

With time-discrete signal functions we are dealing with ‘samples’, signal func-
tion values that exist only at certain time points #,. Usually these time points lie
at constant intervals from each other and as they are normally determined by a
pulse generator, the ‘clock’, one uses also the sampling frequency f= 1/A¢ in-
stead of the sample time As. For the time points # it thus holds that #,= k-At = k/f,.
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We can create a time-discrete sine function starting from a time-continuous one
by substituting the discrete variable ¢, for the continuous :

) = yk) =y, = A-sin(360°fkArt + ¢)
- 4-sin(360°7% + ¢)
f, (2.37)

s

. 2Tf
=4 —k +
sin ( 0 $)

s

Here 27flf, is often abbreviated, for example to y: y, = Asin(y k + ).
E.g. A= 1, f=285 Hz, f, = 8200 Hz (y = 0.2184), ¢ = 80° = 1.3963 r. See the
list below and the graph in fig.2.6.6.

k Vi 1'.. .."..

y<k>| @ . .
0 0.985 . .« o
1 0999 * . . N
2 0.966 0.0 + ° * .. 3
3 0.887 . . . .
4 0.765 . . . .
5 0.608 P <0
6 0421 e , W,

1 20 30 40 =1%]

Figure 2.6.6 Time-discrete sinusoidal signal.

As we shall see with time-discrete signal functions the signal frequency should
always be lower than half the value of the clock frequency. This thus means:

f<%f, or 2 < thus y < T

5

This is an important difference from time-continuous sine functions; for w there
is no upper limit, in contrast with y. Another remarkable difference between a
time-continuous and a time-discrete sinusoidal function with the same 7-value is
that the former is periodic and the latter is only then periodic when an integer
number of sample intervals At fits into one sine period 7" which means that f; is a
multiple of £, Only then the list of samples of the next period is equal to that of
the previous one. That is for example the case when 7" = 10A7; now 10 sample
periods At fit into 7. If t = 9.5 At then 27 = 19. Now the sample lists are identical
with a period 27, or the fundamental frequency '/ In general the following can
be said about this:
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Assume: T = PAt (p and q integer) , then: ¢*T = p-Ar or af, =pf
q

In other words, the fundamental period is g7, the fundamental frequency is f/q.

The conclusion is that the fundamental frequency is equal to the GCD (Greatest
Common Divisor) of fand f,.

C. The importance of sinusoidal vibrations

Sinusoidal vibrations take a central place in signal theory for the following three

reasons:

1. There are systems that vibrate (almost) sinusoidal. Such a system is called a
harmonic oscillator. The following chapter is devoted to this. A tuning fork
that is not struck too hard is an example of a ‘natural’ harmonic oscillator.

2. It is possible to lay a link between non-sinusoidal vibrations and sinusoidal
vibrations. This important reduction of arbitrary vibrations to sinusoidal vibra-
tions is called Fourier analysis and is dealt with in chapter 4.

3. With an important group of systems that are called /inear systems, sinusoidal
vibrations are given a sort of preference treatment in the sense that the sinusoi-
dal shape in these systems is not affected. In chapter 5 attention is paid to this
‘sine in/sine out’-principle.

D. Trigonometric functions

Because sinusoidal signal functions are so important in the theory of vibrations, it
is necessary to be familiar with the mathematical characteristics of the sine
functions. The following summary gives the most important rules for our appli-
cations (see also Szabo et al. 1974).

1. Definitions

In fig.2.6.7 you see again the triangle with the
original definition of the sine:

5 sin @ = % (2.38)

If this proportion is known then all other pos-
sible proportions between the sides of the tri-
angle are set. In principle we can limit our-
selves thus to the sine. Still, it is sometimes
easy to give a name to some of the other pro-
portions as well. This has been done among
others with the two proportions

Figure 2.6.7
Rectangular triangle.
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% the cosine of &: cos & (2.39)

2 the tangent of a: tana (2.40)
(4

For broader definitions of cos and tan

use is made, just as for the sine, of a cir-

cle with radius 1. Have a look at the fig-

ure to the right and compare the defini- sin o
tions with the previous one.

i tTan

2. Special cases

For certain values of o the values for
sine, cos and tan can be derived from the
geometric characteristics. Check for

you'rself;: B o Figure 2.6.8
sin0° =0 sin 30° = 0.5 Definition sine, cosine and tangent.
tan 45° = tan Yam = 1
cos 0° = cos 60° =0.5

3. Relations

With the help of the circle definition and by use of certain symmetries it is possi-
ble to derive conversion formulae between sin, cos and tan:

a. sin-¢ = -sina; cos-0 = cos & (2.42)
b. sina = -cos(at90°) = cos(a-90°)
¢. cosa = sin(@+90°) = - sin(a-90°)
d. sino = -sin(a+180°); cos a = - cos(a+180°)
sin?a + cos’a = 1 (2.43)
This follows from Pythagoras’s theorem (see fig.2.6.7):
aZ C2 a2 + 02 bZ
—_—t — = = = . =1
b? b? b? b?

a
b
for — = 2 (2.44)
£ c
b
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. in (@ ~90° o 1
From this: tan (¢ - 90°) = sin(@-90) _ . —C?s = -
cos (& ~90°) sin o tan o

4. Summary of the calculation rules (without proof):

sin(o + P) = sina-cosP + cosc-sinf

sin(e - B) = sina-cosPp - cosa-sinf (2.45)
cos(o + ) = cosa-cosPp - sina-sinf :
cos(e - P) = cosc-cosP + sina-sinP

Ao o

for the special case that [} = « it follows:

a. sin20 = 2 su; OC'cos. 062 (2.46)
b. cos 20 = cos“®l — sin‘«
In combination with rule (2.43) this leads to:
a. sinf = L(1 - cos2a)
f (2.47)
b. cos’o = ~(1 + cos2a)

By adding or subtracting various versions of (2.45) we get:
sin(o + B) + sin(e-P) = 2sina cos P (2.48)
sin(e. + B) - sin(e - ) = 2 cos @ sin
cos(ee + B) + cos(a-PB) = 2cosa cosfp
cos(a + ) - cos(ex -P) = -2sine sin P
Byreplacmg a+p byp,anda-Pbyg, ora="Y(p+q)and p=Y(p - q), we
get an alternative version of the above four rules:
a. sinp + sing = 2sin Y2(p + ¢) cos Ya(p - ¢) (2.49)
b. sinp - sing = 2cos Y(p + q) sin X2(p - q)
c. cosp + cosqg = 2cos Vap +¢q)cos Va(p - q)
d. cosp - cosg = -2sin Ya(p + ¢) sin Ya(p - g)
By means of these rules the existence of sum and difference frequencies in

amplitude modulation and nonlinear distortion can be explained. See for example
section 5.1.C.

e o ow

5. Approximation formulae
If « is very small, as in figure 2.6.9., and we write the expressions for

- the number of radians of «  : a(inrad.) = a/r
- the sine of & Dsine =yir
- the tangent of « Stano = y/F

then we see that a = y, and r = 7', in other words it holds for a small « that:
a(inrad.) = sin o = tan a (2.50)
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Figure 2.6.9 The sine and tangent of a small angle.

6. Numerical values.
In a calculator or computer the values for sine and cosine are of course not deter-
mined by means of the length of lines. They use the following expressions:

3 5 7 9
siny =x -2+ X +%X _ ' (x in radians) (2.51)
31 st M 9!
2 4 6 8
cosx =1-2_ +X X X (x in radians) (2.52)

Although these series are infinitely long, the terms converge so quickly that after
a few terms there is no significant contribution anymore. For example
0.6° 06 0.6
+ - +
120 5040

It

sin 34.38° = sin 0.6 = 0.6 ~

0.6 -0.036 +6.48-107* -5.55-10° + ..~ 0.56464

7. The derivative of sin en cos

What is the derivative of sin x and cos x? This is easy to find with the help of the
above series expansions as with the exponential function ¢*. By differentiating
the terms one by one we find:

3x? sx*  7x® 9x ®
+ -2 s 2 -

31 51 7! 91

(sinx)' =1 -
(2.53)

X X
=] - — 4+ = - = 4+ — -, ... =cosx

The derivative of sin x is thus cos x, and in the same way one can show

(cosx)’ = -sinx (2.54)
8. Inverse trigonometric functions
Sometimes the sine (resp. cosine or tangent) of an angle is known, but not the
angle itself. An example that looks back to our bicycle-pedal problem: Imagine
that instead of the start angle o we know the initial displacement y(¢ = 0), for
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example y(f = 0) = S cm. By substituting ¢ = 0 in the general expression we get:
y(=0) = Asin(0 +P) =5, and with 4 = 20:
. 5
sin = — = 0.25
¢ 20

Again a calculator helps us here. With the so-called ‘inverse sine function’,
usually referred to as sin” we can directly calculate that the ¢ we were looking
for now has the value 14.5°. An older notation for inverse sine is ‘arc sin’. With
this we can write: ¢ = sin ! 0.25 = 14.5°. In words: ¢ is the angle of which
the sine equals 0.25.

Working with inverse cosine and inverse tangent proceeds in the same way. In
computer languages a non-exponential style of writing is preferred and here one
finds a remainder of the ‘arc’-notation. The function tan’ or arctan is mostly a
standard function. A simple trick to introduce the value of 7 into a computer
program is based on the fact that tan"' 1 = 45° = Y andthusm = 4tan"' 1.

E. Sinusoidal signals

Often (for example when working with isolated signals) the initial phase angle is
unimportant. Then ¢ may be given the value 0° (and thus be omitted as in the
following derivation of the RMS value). Then it does not matter whether one
writes sin 27tf7 or cos 2nff. According to rule (2.42) this is just a phase difference
of 90°. In those cases where a number of simultaneous sinusoidal signals occur
the initial phase may be very important as we will see. A reminder: the value of
the initial phase angle can be found by determining the phase angle at 1 = 0; see
rule (2.33).

1. The RMS value of a sinusoidal signal
What is the RMS value of a sinusoidal signal? According to rule (2.28):

‘ T
1
Yeus = ?{y2(t)dt

Because we are dealing with a periodic signal it is sufficient to determine the
value of one period, which means that we take for y(¢) the following function:

. t
y({) = Asin2n—
( T
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From this: yi(t) = A%in? anl = 1y (1 - cos 4711)
T 2 T
T T T r i r
fyz(t)dt =1y fdt - fcos4nidt =Lz - 142 2 gnant
2 T 2, 2z 4m T
0 0 0 —
T
= lgep 142l Gan sinoy= laT
2 2 4T 2

T

and so: Verss lT-iA T = % (= 0.714) (2.55)
2

2. Summation of sinusoidal vibrations
Let us consider an object (e.g. the membrane of a microphone) brought into
vibration by two simultaneous sinusoidal vibrations. Let us furthermore assume
that the object reacts to each of the two vibrations independent of the other one.
As we shall see in chapter 5 this is
a characteristic property of /inear
systems. The resulting movement
is the sum of the deviations
_____________ A caused by each of the two driving
IR vibrations. Fig.2.6.10 shows that
AL - F the resulting deviation can be
i found by first adding the two rota-
© A2 - ting arrows (‘vectors’) with the
. well-known parallelogram con-
struction, and then projecting the
sum vector on the vertical axis.
This diagram is a useful tool to
find out what happens when sinu-
Figure 2.6.10 soidal vibrations are combined.
Summing sinusoidal vibrations. We shall do so, both for vibra-
tions with different and with equal
frequencies. The discussion is restricted to combinations of two vibrations:
A sinn fit + ) + A, sin2r ot + )
The addition of more than two vibrations can be performed by first adding two
vibrations, then adding the third to this sum and so on.
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- equal frequencies, f, = f;

Here both arrows rotate with the same (constant) speed and the same holds for
the sum vector. Thus the conclusion is that the sum vibration is sinusoidal as
well, with the same frequency:

A, sinQ2n f1 + &) + A, sin2n ft + &) = Asinn ft + )  (2.56)
We have yet to determine amplitude 4 and initial phase angle ¢ of the sum
vibration. It has advantages (also regarding future applications) first to consider
the case that the phase difference between the original vibrations is 90°, i.e. the
sum of a sine and a cosine vibration:

A cos2n ft + A;sin2n f1= Asin(2n f1 + ¢) .57

As A;cos2n ft + Ay sin2n ft = A, sin(2n ft + Yam) + A4, sin 27 f1

the initial phase angle of the first vibration is +90° and that of the second vibra-
tions is 0°. With the vector diagram of fig.2.6.11 we can determine A and ¢:

A = ‘[Alz +A22 (Pythagoras' theorem) (2.58)
A, Y|

tanp = — or ¢ =tan ! L 2.59

¢ 2, ¢ 2, (2.59)

Figure 2.6.11 Addition of a sine and a cosine vibration.

Vice versa 4, and 4, can be derived from 4 and ¢ with the following two formu-
lae, in fact the definition formulae of the sine and the cosine:

A, = Asin¢ (2.60)
A, = Acos (2.61)

Sometimes it is preferred to write the sum vibration as a cosine function:
Ajcos2n ft + A,sin2n fi= AcosQnft + @) (2.62)

This has no consequences for amplitude 4 (which can be found with rule (2.58))
but does have consequences for the initial phase angle. We can switch from the
sine function in (2.57) to the cosine function in (2.62) in the following way,
using 2.42c:
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A-sin(2nft + ) = A-sin(2nfr + P +§n) with @ = ¢ - %n
= A-cos(2nft + ®)

The value of ® now follows from rule 2.42b:

A A
tan ® = tan($p-90°) = - LI -—Z2 thus ® = tan'--2 (2.63)
tan ¢ A, A,

Now we can work out the case of the arbitrary phase angles of the original vibra-
tions:
Asin2n f1 + b)) + AsinQ2n f1+ ) =
=A,(sin 27 f't cos &, + cos 27 f1 sin §,)+A,(sin 277 ft cos §, + cos 27 £ ¢ sin ;)
= (A4,sind, + A;sin d,)cos 271 + (A,cos §, + A,cos d,)sin 27 f 1
= AsinQ2n ft + )

A = ‘[(Alsin ¢, +4,5in §,)’ + (4,cos b, +A,cos $,)’

= JA 12 +A22 +24 A (sin ¢, ‘sin §, + cos §, cos §,) (2.64)

= 4] +4] +24,4,c0s(d, - $,)

The values of A and ¢ follow from rules (2.58) and (2.59):
A;sin G, + A4 sin d,
A ,cos G, +A,cos d,

and tan § =

Amplitude and initial phase angle thus depend upon the amplitudes and initial
phase angles of the two original vibrations. Both the vector diagram and the
formulae allow the study of special cases like
1. A=Ay, -, =180° > 4=0

The vibrations cancel each other (destructive interference).
2.4,=4,,$,-0,=0°>4=24,and ¢ = ¢, = ..

The two vibrations amplify each other (constructive interference).

- different frequencies, f, #f,

In general very little can be said about the sum vibration in these circumstances,
but there are some interesting special cases.
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A first special situation occurs when the frequencies are multiples of a certain
common fundamental frequency f,. The sum vibration, although not sinusoidal, is
then periodic with period 7' = 1/f,. I will not discuss this subject now as it is dealt
with in detail in chapter 4 (the Fourier transform).

Another special situation is the case that the frequencies are very close to each
other. Let us proceed from the following addition:

5t - cos 2nfl 2f2 t (2.66)

sin 2chlt + sin 21'tf2t = 2sin27

Of course this equivalence holds for all values of £, and f;, but when listening to a
pair of sinusoidal vibrations this addition takes place only if the difference be-
tween the two frequencies is small, because otherwise the vibrations are sepa-
rated by the filter action of the inner ear. If the frequencies do indeed lie close to
each other we see that the above expression can be interpreted as the product of a
‘fast’ sine vibration (with a frequency that is the average of f, and £,) and a ‘slow’
cosine vibration, which acts as a time-dependent amplitude factor, thus as an
envelope that has (f; - f,) times per second a maximum. (see fig.2.6.12). The cor-
responding loudness variation is
cos 21z (f, —Dt called beating; the beat frequency
M 0 s -1
The ear is especially sensitive to
such a signal because it belongs in
the category of modulated signals

that (can) contain low-frequency

v information. Of the two interpre-

\ / tations (the sum of stationary sine

\ ~ vibrations or an amplitude-

sin 275 (f, +§)t modulated sine vibration) the ear
Figure 2.6.12 Beals. ‘chooses’ the second without

hesitation. If the frequency differ-
ence increases, the beat frequency increases as well, until the ear is no longer
able to follow the ever faster amplitude variation. Then the sound gets a rough or
dissonant quality. If the difference in frequency gets larger, all interaction be-
tween the two vibrations disappears because they are separated completely by the
filter action of the inner ear. The difference tone that is occasionally perceptible
is not a continuation of the beating phenomenon, but must be explained by a
totally different phenomenon, the non-linear distortion that occurs in the ear.
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2.7 Problems

21

22

23

2.4

2.5

2.6

2.7

Determine which vibrations shown in the registrations in §2.1 are periodic
(or quasi-periodic) and find the period duration, frequency and corres-
ponding pitch of these vibrations.

Find the function rule for each of the periodic signal functions shown
below.

1
@> SQUARE WAVE
T
-1
1
(b) / TRIANGULAR
- * WAVE
Q—-———;,
7 ' I |
(c) SAWTOOTH WAVE
T | | .
1
RECTIFIED
@) SINEWAVE
T

Determine the R.M.S.values of the signal functions of problem 2.2.

Determine with the help of a calculator the value of the following expo-
nential and logarithmic expressions:
(a) 7.91%1 (b) 145.237% (c)-3%° (d) "log 24.966 (e) “log 24.966

Calculate the proportion of the frequencies for the following well-tem-
pered intervals (in brackets the proportion according to natural tuning).
(a) fourth (4/3) (b) sixth (5/3) (c) seventh (15/8)

The interval width is also measured in cents, a well-tempered semitone
interval corresponding to 100 cents. How many cents are contained in one

octave and which frequency factor corresponds to one cent?

What is the level change in dB when two identical vibrations without
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phase shift are added?

2.8 Calculate the steepness in dB/sec of the exponential envelope 4 - ¢°*.

2.9 What is the signal level resulting from the addition of two non-coherent
signals with levels of 70 and 80 dB SPL respectively?

2.10 As a rule of thumb it can be said that the smallest level change that can be
detected under normal circumstances is 1 dB. Assume a noise signal with
a level of 60 dB to which a second independent noise signal is added.
What should be the level of the second signal required for a detectable
level change?

2.11 Calculate the value of the product R - C with R =4.7 kQ and C = 0.1 pF.
What is the unit of this product?

2.12 Calculate the extreme values of the function

1
flx) = (x>0)
b 2
X a 2 ] — - cx)
X

2.13  Sketch the graph of tan o.

2.14 Sketch the graph of the function f(x) = (sin x)/x. The function value for
x = 0 can be determined with the series of sin x or with rule (2.50). Where
are the zero-crossings of the function? And where are the maxima and
minima?

2.15 Calculate the average value over period T of the following products:

a) sin 2mnft - sin 2nmfi (f=1/T, n # m)
b) cos 2ninft - cos 2nmft ( ,, )
¢) sin 2nnft - cos 2nmft ( ,, )

2.16 Determine the amplitude C and the initial phase angle ¢ of the following

sum of sinusoidal vibrations:
1.2cos 211440t + 0.7sin 21440t
2.17 Give the function rule of a time-discrete sinusoidal signal with a frequency

of 185 Hz, an amplitude of 2.4 and an initial phase angle of 32° (sample
frequency 12 kHz). Is this signal periodic? If so, what is the period?
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2.18

2.19

2.20

221

222

2.23

224

Convert the following angle values to radians:
a)41° b)75°12' ¢) 194° d)-212°

Convert the following angle values to degrees:
a)1.7r b)-42r c)Snr

Calculate the frequency of a sinusoidal signal with a period of
a)14ms b)86us ¢)1.12s d)2 days

What is the frequency of the signal-function sin 1020¢?

Calculate the following two integrals

} cosxdx and ]b-coszx dx

a

Which frequency components occur in the signal
() = (1+cos 100¢) - sin 80077

Integration can be shown to be the opposite of differentiation by showing
that

d]y(t) dt

a

. = y(x)

Prove this.



CHAPTER 3

The Harmonic Oscillator

3.1 Undamped vibrations - the time-continuous case
A. The vibrating string, equation and solution

We shall now study a few versions of the simple system called ‘the harmonic
oscillator’. First we will analyse the behaviour of a vibrating string via a simpli-
fied model, in which we place a metal ball in the middle of the string. See
fig.3.1.1. Thanks to this ball we can ignore the mass of the string itself, which
simplifies the calculation considerably. On the
ball in both directions a force S is exercised by
means of the tension of the string. We now as-
sume now that during the vibration the displace-
S ment and therefore the changes in the length of
the string are so small that we may consider S as
a constant. We indicate the displacement of the

S ball with y(f). If the string at the place of the ball
is pulled to the side the two forces S no longer lie
in each others direction and a restoring force F
occurs, which is shown in the diagram via the
parallelogram construction and can be calculated
as follows: /= 28" = 2§sina = 2Sa
If we combine this with y/%/. =tan ¢ = o
. _ _4yS _ A4S .
Figure 3.1.1 Vibrating string. weget: £ = ;T - Ty = hy®

The factor 45/ is abbreviated to . In this expression both the magnitude and the
direction of force /' are represented, the latter with the minus sign that shows that
the force and the displacement are in opposite directions. We combine this result
with Newton’s law:

Foby d% b
Fooma-md2 i L+ Zym=0 3.1)
dt2 dt2 m
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This is a differential equation of the second order, which can be considered as the
mathematical model of the system (see also Morse 1948). For the determination
of the solution we start with a ‘trial’ function. This is a function that still contains
several unknown coefficients, which we attempt to adjust in such a way that the
function provides us with a solution for the equation.

We use the following trial function: WE) = A,cos wet

and calculate the first and second derivatives of y(¢):
2
Q = w4, sin W, 7, Q

2
= ~wyd, cos ¢t
dt dr?

After substitution: -w; 4, cos W, ¢ + iAlcos w,t = 0
m

This is true if w2 = b/m, thus if w, = v b/m.
Thus w, is determined; 4, is a constant, the value of which is not yet known.
In the same way we can show that the function y(f) = A,sin oy is also a solu-
tion, with the same value of w,, thus w, = vVb/m.
It is known from the theory of differential equations that the general solution is
the sum of the two solutions that have been found:

Y1) = Acos Wt + Asin wet = A cos(wet + )

with
lb 1 b 1 48
w, = ,|— or = — == — | —
° m fo 2T\ m 2\ Lm

4
A4 =44+ 4;, b= —tan"A—2

1

(32)

Here the sum of the cosine and the sine vibration has been replaced by a single
cosine vibration according to rule (2.62). The conclusion is that the string vi-
brates sinusoidally with amplitude A and initial phase angle ¢ that both depend
upon the two original constants (amplitudes) 4, and 4,. The name of this system,
harmonic oscillator, is derived from this sinusoidal movement. The frequency
depends upon b (the ‘stiffness constant’) and m, the mass of the ball. When for
example m = 0.001 kg, L=1 m, S=40 N (so 6=45/L=160 N/m) then (3.2) gives us:
fo=63.7 Hz.

The two constants 4, and 4, can in principle have any value. Only when more
information about the system is available, the values of these constants can be
determined. Imagine for example that we know that at the start of the experiment
(1=0) the initial displacement is y, and the initial speed is v, , then it follows that:
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y(e=0) =y, and y(t=0) =4,,s04, =7,
v() = % = ~A,W;sin Wt + 4,0, cosw ¢ and so
v
v(t=0) = 4,0, and v(t =0) = v, thus 4, = L
('00
Vo .
together: y(@) =y,coswt + —sin Wt
,
0
We can now substitute the initial conditions y, and v, in the solution:
24
A4 = , ¢ = —tan ' 2
We¥o
A few special cases:
If the initial speed v, is equal to 0 the movement is described by
A =
b - ;'0} y(®) = y,cos 0t (fig3.1.2)
and if the initial displacement y, is equal to 0, by
v
4 = > v v
W, y(t) = —cos (0, - %Tt) = 2 sin w,t  (fig.3.1.3)
¢ = -90° = - in ©o ©o
y () y (t)
Yo| (4%
/ .

Figure 3.1.2 Vibration 1. Figure 3.1.3 Vibration 2.

N\
VARVA N/



64 Chapter 3

Let us compare the displacement, speed and acceleration:

y(t) = Acos(w,t+ )]

y
v(t) = -, A sin (W1 + P) m#

Figure 3.1.4 Displacement, speed and
acceleration.

I

The speed has a phase difference of 90° with the displacement, and is thus maxi-
mal when the displacement is 0, that is when the string passes through the rest
position. The acceleration (and thus the restoring force) is maximal if the dis-
placement is maximal.

B. Other harmonic oscillators
1. Systems with a constant vibration period.

There are more systems in which the ‘force proportional to displacement’ rela-
tion and mass or inertial forces occur so that the outcome is a sinusoidal vibration
(‘mass-spring systems’).

a. The balance in a mechanical watch: the wheel that sways to and fro, and that
is pushed back to its rest position by a spring that causes a restoring force,
proportional to the rotation angle (instead of the displacement). Here we must
use the moment of inertia M instead of mass m. We indicate the amount of
rotation with angle Q and find:

F = -b-Q R
F:MdZQ dQ+lQ:0
dt 2 dt 2 M &
b. The pendulum of a clock. A simple calculation -
leads here to a differential equation of the known »m
type: ° F,
ol
i G

Figure 3.1.5 Pendulum.
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. F
siIn 0@ = E = o Fem g
- 2

G =mg F=-"8, m Yy
y 1 de?
= =sin0 = O
)

. B . . . d?y g
with g = gravity acceleration; equation: — 7y =0
dt

the pendulum moves sinusoidally with frequency f, = ZL\J’%
n

¢. The lattice of molecules in a quartz crystal.

In all these three cases purposeful use is made of the fact that the frequency with
which a harmonic oscillator vibrates depends upon the system characteristics
such as mass, elasticity, etc. and not upon for example the initial conditions.
Therefore the vibration period is constant and can be used as a time basis, as a
unit for the measurement of time. It is of course possible that the system charac-
teristics depend upon external factors such as the temperature. This holds for
example for the length of a pendulum.

2. The Helmholtz resonator.

This system, used by Helmholtz as an
L acoustic filter, played an important role
in his investigations. It consists of a
glass sphere with one or two tube-like
V; H openings. The original drawing is
shown in chapter 4, fig.4.3.32. Let us
study the system as depicted in
fig.3.1.6. The volume of the sphere is ¥,
the length of the tube is L and its cross-
section 4. We can imagine that we can
move the air in the tube to the left,
which leads to an increase of the pres-
sure in the sphere by which a force arises which pushes back the air in the tube.
Vice versa, moving the air in the tube outwards leads to a lower pressure in the
sphere by which the air is sucked backwards. Secondary effects like changes of

the air pressure in the tube are neglected.

Figure 3.1.6 Helmholtz resonator.
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We have both necessary ingredients for a harmonic oscillator: mass m (of the air
in the tube) and elastic force caused by the air cushion in the sphere. If we should
know the stiffness constant ‘b’ (equal to the elastic force if the displacement is
one unit of length) we could substitute b and m in our formula. Unfortunately the
calculation of 4 is not easy. Moreover we still have to show that the resulting
force is proportional to the displacement. The complications are a result of the
fact that with volume changes of gases not only the pressure changes, but also
temperature effects occur. From the theory of thermodynamics we know that
with rapid changes dP and dV of pressure P and volume V respectively, no heat
exchange occurs with the environment. Such a process is called adiabatic and the
following relationship between the relevant parameters can be proven to exist:

(c,= specific heat with constant pressure, ¢, = specific heat with constant volume,
the value of y is 1.40 in air).

During the vibration the layer that is indicated with a
\ i dashed line moves back and forth over a very small

distance. This causes a change of volume:

I P
; dV =y-H thusdP = -y—H-
- | Y - y
/(_) The force that then occurs follows from:
Y force = pressure-area = dP-H
Figure 3.1.7
& _ yPH? YPH?

Helmholtz resonator. =

y = ~by b=

= )

The force is thus indeed proportional to the displacement. If we combine this
relation with Newton’s force law, we get

d%
force = mass-acceleration = m—=— = -b-y

di?

Here m is the mass of the air in the neck of the bottle for which we may write

mass = volume-specific mass = L-H-p,

We arrive again at the well-known differential equation, which of course has the
same solution. This means that the air in the neck of the bottle vibrates sinusoi-
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. 1 | b 1 | YPH
dally with frequency f,: = - |2 = )2t
Y ueney i o 2n\J m 2m| p VL

From acoustics it is known that for the speed of sound v, the following relation

YP

can be derived: v =
£
Po

. . . v H
With this, the expression for the frequency becomes  f, = 2—3 7 (3.3)
n

The frequency depends upon v, and the dimensions of the sphere.
3. The LC-circuit

The combination of a capacitor C and a coil L behaves like an electrical har-
monic oscillator. To understand this we must know the physical behaviour of
these components. We met the capacitor in section 2.3 with the important rela-
tions:

Q=C -V (Q: charge, V: voltage, C : capacity)

a9 _ o 4v

d (formula (2.15)): i =
and (formula (2.15)) i 7 '

Now concerning the coil.

When one winds a conducting wire, a coil results. A current flowing through a
wire generates a magnetic field around that wire. Winding the wire combines the
magnetic fields of all windings. The first application of a coil is thus that of an
electromagnet (e.g. as it is used as recording and erase head of a tape recorder).
Furthermore a coil displays the important feature called ‘induction’: if the coil is
in a changing magnetic field, an electrical voltage is generated in the coil, the
induction voltage, which increases as the magnetic field changes more quickly.
There are many practical applications of this phenomenon: the dynamo, current
generators, the playback head of a recorder. Finally the coil also displays the
phenomenon of self induction, which is a combination of both phenomena
mentioned above. Here the induction voltage is the result of changes of the
magnetic field excited by the coil itself. If one connects an electrical voltage to
the coil then a current flows through the coil, creating a magnetic field of in-
creasing strength with which an induction voltage is generated which partially
cancels the external voltage. Formulated in short: by means of the phenomenon
of self induction a coil ‘resists’ changes in the strength of the current. The induc-
tion voltage V is proportional to the speed with which the current i changes
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(di/dty: v =L ? . The factor of proportionality L is called the (coefficient of)
t

self induction. The unit is the henry. If we connect a coil with a condenser then
we get a ‘LC-circuit’ (fig.3.1.8):

Vi
L

! !
v, v,
| C] |
Figure 3.1.8 LC circuit.
A combination of the current/voltage relations
di dv
V.=V, +V =L +V andi=-C—2
¥ ’ dt ’ dr

2
. _ Y
gives: V., =LC e + Vy
If the input voltage V, is equal to O (apart from a very short pulse that is required
to cause the vibration) the result will be:

For the LC-circuit the differential equation of the harmonic oscillator holds again
and thus the solution is again identical: a sinusoidally fluctuating voltage with a
frequency of:

1 1
S (3.4)
Z 2n\ LC

We see here that the role of the displacement °y’ is taken over by the voltage V,
(or the charge Q of the capacitor, because O = C-V, ). We will return to this
analogy between mechanical and electrical quantities in section 3.3.
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3.2 The undamped vibration - the time-discrete case

In nature macroscopic systems that are described by time-discrete equations
and/or functions are quite scarce. This holds a fortiori for time-discrete sine
functions that thus require an ‘artificial’ system (operation, diagram, computer
program). If we generate a time-discrete sinusoidal signal (a series of sine values
with time distances 1/f,, in which f; is the sampling frequency or clock frequency)
by means of a computer, then we have constructed a time-discrete harmonic
oscillator. The function rule of this sinusoidal signal is y(r) = sin Ok with 0 = 2%,
(see section 2.6.B). There are various possibilities for this.

A. A simple programmed sinewave oscillator

Most computer languages have the function ‘SIN” for calculating sine values.
The following FORTRAN-like computer program produces these values based
on a clock frequency of 20 kHz and a signal frequency of 440 Hz:

F=440.0
FS =20000.0
THETA = 6.2831853 * F / FS
K=0
3 Y = SIN(THETA * K)
CALL WAITCL
OUTPUTY
K=K+1
GOTO3

Explanation:
The instruction CALL WAITCL is a waiting instruction for the next clock pulse,
so that the function values are produced synchronously. With the instruction
OUTPUT one can think of just about any form of computer output, such as
plotting, display on a screen, conversion in electrical voltage via DA conversion
(see chapter 4) etc.

This ‘real time’ calculation of sine values is relatively time-consuming and
could cause timing problems. There is another simple approach that prevents
such problems:

B. The ‘look-up table’ generator

Here the sine values are calculated beforehand, placed in a table and then fetched
one after the other from this table synchronous with the clock:
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DIMENSION Y(10000)
F=440.0

FS =20000.0

THETA =6.2831853 * F / FS
DO3K=1, 10000

3 Y(K) = SIN(THETA *K)
DO 5K =1, 10000
CALL WAITCL

5 OUTPUT Y(K)

This is a simple, fast and much used system, but it is not very flexible, in the
sense that for another frequency the table must either be filled anew or the clock
frequency must be adapted, or, according to some sort of scheme, samples must
be passed over. This fact and the necessary memory space are two disadvantages
of the system which, by the way, is not a typical sine generator because the table
can be filled in any arbitrary set of values. These disadvantages do not adhere to
a third system that is actually a time-discrete sine generator.

C. A digital sinewave oscillator with feedback

A block diagram for this generator is shown in fig.3.2.1.

™M1

M3

g@%
(e —{m2
(- —

Figure 3.2.1
A digital sinewave oscillator.

M1, M2 and M3 are memory cells. With each clock pulse the contents of M2
shift to M3 and those of M1 to M2. Beforehand the contents of M2 and M3 are
made equal to 0 and those of M1 to 1. After the shift, as shown in the diagram,
the contents of M1 become that of M2 multiplied by some factor ¢ plus that of
M3 multiplied by -1. In M3 we thus find the ‘previous’ contents of M2 and in
M2 those of M1. The scheme can be realized with the computer program shown
on the next page, for example.
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ko x(k) Mi=pk) M2=p(k-1)  M3=y(k-2)
Ml=1 0 1 1.00 0.00 0.00
M2=0 1 0 1.90 1.00 0.00
M3 =0 2 0 2.61 1.90 1.00
C=19 30 3.06 2.61 1.90
5 M3=M2 4 0 3.20 3.06 2.61
M2 =M1 5 0 3.02 3.20 3.06
MI=C*M2-M3 6 0 2.55 3.02 3.20
CALLWAITCL 7 0 1.82 2.55 3.02
Y =M1 8 0 0.90 1.82 2.55
OUTPUT Y 9 0 -0.11 0.90 1.82
GOTO5 10 0 -1.11 -0.11 0.90
1m0 -2.00 -1.11 -0.11

It is easy to calculate the subsequent values of M1, M2 and M3. The first 12 are
given above. If we graph these values as is done in fig.3.2.2, it appears that we
do have a time-discrete sinusoidal signal, but this must of course still be proven.
This we shall do by calculating the output signal y(k). Before doing this we draw
the circuit of fig.3.2.1 in a slightly different way, with the intention of revealing
the delay mechanism (see fig.3.2.3). In connection with later applications we
moreover give the system an input to enter the number ‘1°. Thus we can thus also
say that the input signal x(k) (or x;) looks as follows:

1,0,0,0,0,0,0,0, ...... (see table above)

It is easy to check that in this way the initial value of M1 is indeed 'l', and that
after this single impulse the input signal plays no role anymore.

Figure 3.2.2 Figure 3.2.3 Alternative circuit for
Output signal digital sinewave oscillator. digital sinewave oscillator.
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We proceed from M1 =c*M2-M3or y,=c-yi.; - Vi_:2
This is a second-order difference equation. For the determination of the solution
we start again with a trial function: Vi =By cosyk
Substitution in the equation gives the following result:
Bycosyk=c-Bycosy (k-1) - B,cosy (k-2)
or cosYk + cosy(k-2)=c-cosy(k-1)
Making use of rule (2.49¢) we may write for this:

2c052—yk—2_iy—'cos —ZEY- =c-cosy(k - 1)

or 2cosy(k-1)-cosy=c-cosy(k-1)
This is true when 2cos Yy =¢, orcosy =% ¢, or y=cos " %c (3.5)
If y satisfies this condition, then the trial function is indeed a solution. Evidently
the absolute value of ¢ may not be greater than 2: |c| < 2

Thus y, = B;cos Yk with y = cos™ %c is a solution of the difference equation . In
the same manner it can be shown that y, = B,sin yk with the same Y is a solution
as well. Just as in the time-continuous case the general solution is the sum of
these two:

vi=Bycosyk + B,sinyk (y=cos'%c) (3.6)
and this expression can be worked into

B
¥, = Beos(yk + ) with B = ‘/Blz + B} and ¢ = —tan’! ZTZ

1

From extra information about the system (the initial conditions), B, and B, can be
derived:

L y(k=0)

y(k=0) = B,

x(0) = x,

2. y(k=1) = x;°c = 2x, cos Y
x,cosY + B,sin Yy = 2x cosY

y(k=1) = x,cosY + B,siny

thus B, = x, Losy
sin Y
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From this B and ¢ can be derived (see problem 3.7) and thus the amplitude/phase
version of the general solution:
%o

Yo = ———sin(yk +Y) (Y = cos ' Zc) 3.7

sin Y

The factor sin y in the denominator may be replaced as follows

siny = {1 ~ cos?y = ~/1 - %c’

ko

With this it is shown that this system produces a time-discrete
0 1.00 sinusoidal signal. If we calculate the values of y; using this
1 190 formula with x, = 1, ¢ = 1.90 or y = 0.318 we find the same
2 261 values as before, as appears in the table on the left.
3 3.06 If we compare the expression for y, with the general formula
4 320 for a time-discrete sinusoidal signal:

Bsin (Yk + §) &= _x° sin (Yk + )
sin Y

we see that for this sinusoidal signal

the amplitude is equal to Xo/sin y
the initial phase is equal to Y
the frequency is equal to (f,/2m)cos 'Y c

There are now two possibilities:

1. cis given. We can then calculate f/ f,. For example ¢=1.90 - f/f, = 0.0505
From this it is possible to calculate the number of samples per period (f;/ f,
here: 19.786). If f; is given as well, then the frequency f follows; for example

/f,= 18000 Hz ~ f=£,/19.786 = 909.74 Hz.
2. fandf; are given. Then ¢ can be calculated; for example
f=144 Hz, f, = 40 kHz ~ ¢ = 2-cos 2nf/ f,= 1.9994883.

This c-factor must thus be used in our block diagram or computer program to
generate a signal frequency of 144 Hz with a clock frequency of 40 kHz.
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3.3 Damped vibrations - the time-continuous case
A. Equation and solution

The mathematical model that we have derived for the vibrating string (and other
harmonic oscillators) is not realistic, because we perceive experimentally that the
systems described do not produce infinitely long vibrations, but that the vibra-
tions gradually die out. This is clearly a result of energy loss and we must there-
fore incorporate this aspect in our model. This can be done by assuming that an
energy dissipating frictional force occurs. There are several types of frictional
forces: a constant frictional force occurring with sliding movements (Coulomb-
type friction), a viscous frictional force important at moderate speeds, and a
hydraulic frictional force, occurring at high speeds that is proportional to the
square of the speed. With the string vibration only the viscous force is important.
For this force we may write: -R'v as it is proportional but opposite to the speed.
The total force is now the sum of the elastic force (-b-y) and this frictional force.
Because the forces work along the same line we can simply add them. The con-
stant of proportionality R is called the resistance.

Total force: -b-y - Rﬂ
dt
elastic . .
force diesplacement This force cause a proportional
acceleration:
. 2
frictional speed force = m d y
force dt?
This leads to the following differen-
tial equation:
Figure 3.3.1 Forces on the string. 2
g 8 L s A S
de? dt
2
or: E_Z + 5‘_‘!. + iy = o (38)

dt? m dt m
For the solution of this equation we proceed from the trial function

— - pt
y(@®) = e P4 cosw,t

The first and second derivatives of y are:

d - . .
2 - -pA,e Pcosw,r - w,e P'4, sin w, 1
dt
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and

d’y

dr?
Pt - pt

+ 4,0,pe Plsinw,f -4 w,e Pcosw, ¢

- 2 pt pt;
pAe Peosw,t tpA w,e Plsinw, it +

After the substitution of these expressions in the equation we arrive at:

Al(pz—-’-nR—p +%-w§)e""cos(n)dt - Al(gwd~2p(od)e Plsinw,r = 0

Because cos w,f and sin w,  are not (always) 0, the expressions in brackets must
be equal to 0. We take first the second expression:

R R
—';-(.Od _2(A)dp =0 - p :; (39)
and then the first one:
R? R?

4m? 2m?

+

3|
i
g
N
1l
e
oy
Q
=]
(=
=
n
g
a
1
ERE
|

With

we find: f, =

thus: (3.10)

We can further show that € 7' 4, sin w,? is a solution as well, and thus we know
the general solution:

y(f) = e P(A cosw,t + A,sinw,r) or y(f) = A-e P'cos(w,t + §)
T 4

2 2 1772

A = A + A, (b = —-tan —

\/ 1 2 A

A, and 4, follow from the initial conditions.
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Interpretation: The figure on the
right shows the familiar shape of ! —pt on

the exponential function e ”* (in . t Ae = COS(wt+ @
which ‘p’ determines the ‘speed’
of the damping). This function

must be multiplied by the sinusoi- Acos (Lt +®)
dal vibration 4 cos(w, t + ). A
The final result is the exponen- t

tially damped sinusoidal vibra-

tion. This vibration

- is not sinusoidal

- is not periodic

- has a lower frequency than the
undamped vibration

- is identical to the undamped vibration if R=0 (no frictional loss).

The first three effects are only important if we are dealing with a strong damping.

In fig.3.3.3 four damped vibrations are shown with an increasing damping factor

p. In the third graph the lengthening of the period (lowering of the frequency) is

somewhat visible. The fourth represents a special case that will be dealt with

further on.

VA AAA

NI AWANANNANANANANFANYA
TV UV UV V UV VUV V VUV

AW ANWANWARWANANFANVANFA
\/\/\/\/\/\/\/\/\

ANVANVANVANYA\ A
\/\/\/\/\/\/\/\/\/\

Figure 3.3.3 Damped sinusoidal vibrations with different dampmg Jfactors.

Figure 3.3.2 Damped sinusoidal vibration.

B. The damping factor

All the (time-continuous) harmonic oscillators we have discussed here produce
damped vibrations. If one should wish to avoid any decay of the vibration then
the energy loss must be compensated for. This is handled in section 3.5. The
value of the coefficient p determines the damping rate. Another way of specify-
ing this is by using the decay time #, This is not the time in which the vibration
dies away, because that takes (at least theoretically) an infinitely long time.
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Instead one gives the time in which the amplitude decreases to a certain percent-
age of the initial value. The choice of this percentage is arbitrary. A value used in
practice is 36.8%. At first sight this is a strange choice, but it is a result of the
fact that for this amplitude decay a time ¢, of 1/p seconds is required, because in
this time the amplitude decay is:

1
- P —
e Tli=¢ P =g 1 =0368..

The time #, (also called the ‘decay modulus’) can thus be calculated from the
system constants R and m:

1
‘"5 R

The other way around /, can be derived experimentally by measuring the damp-
ing rate of the registration of the signal, from which p follows. The ‘vibration’ at
the bottom of the previous diagram is a special case, which happens when

P -1 (thus p? = 41’ or R _ b
4Tt2f02 4am? m

Here the frequency f; = 0 and we speak of ‘critical’ or ‘aperiodic’ damping: the
system returns to its rest position without passing it, because now (1) = A-e*’,
The movement is exponential. This holds as well when we make the damping
still larger, but then the movement is slower. Critical damping is thus the optimal
damping for systems (e.g. the needle of a voltmeter or other measuring device)
which could, but should not vibrate. With a critically damped system the needle
takes the desired position in the shortest possible time.

C. Electrical and mechanical systems

With the LC-circuit we can account for the energy loss by inserting a resistance R

in the circuit (which then becomes a LCR-circuit, see fig.3.3.4).

According to Ohm’s law we

have: Ve=i-R
1. _ . di

and for the coil: ¥, =L =

-— —_— —
VH VL

MW—I

! )
R v
\l/x - C " thus

Figure 3.3.4 LCR-circuit.
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di

VI:VR+VL+Vy:i-R +LE+Vy
dv dv d*v
With i = C—2% : V,=RC—2 + LC—2 +V
dt dt dt? Y

dv dv
y+5__y+l

and if V, = 0 (see section 3.1):
dr? L d:t Lc ”

2
With Q = C-V this becomes: 49 ,Rdg , _I_Q =0
dt? L dt LC

The equations are identical to those for the string. We see again here the parallel
between mechanical and electrical quantities. Let us put the analogous quantities
next to each other:

mechanical electrical

displacement (y)  charge (Q)

mass (m) self induction (1.)
compliance (1/b) capacity (C)
friction (R) resistance (R)
force (F) voltage (V)
speed (v) current (7)

Thus there is an analogy between mechanical and electrical resistance, between
mass (which resists to being moved) and self induction (which resists changes in
the current), and between capacity and compliance (b is in fact a measure for the
stiffness). The possibility of translating mechanical systems into electrical ones is
very useful, because, thanks to the simplification that arises from this and the
possibility of describing electrical systems mathematically, the mathematical
analysis of mechanical systems is simplified. For the same reason electrical
(simulation) models used to be built, but nowadays computer simulations serve
the same purpose.

Some examples of situations in which the electrical versions of mechanical
systems are used: the study of the vibration of the basilar membrane in the inner
ear, the analysis of the acoustic behaviour of the vocal tract and also in electro-
acoustics. Fig.3.3.5 shows the electrical model of a loudspeaker, in which the
various mechanical quantities are replaced by electrical ones.
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mass af the core
elasticity of
_fmm_—_l_cone suspension

mechanical
resistance of
cone suspensian

force on
voice coil

mass of air

resistonce of air

Figure 3.3.5 Electrical model of the mechanical
part of a loudspeaker.

With the production of speech the air in the cavities of the vocal tract is brought
in vibration by pulse-like air puffs that come from the vocal cords. In the regis-
tration below of a speech signal it is clearly seen how each pulse excites a vibra-
tion that has some similarity with a damped sinusoidal vibration.

Figure 3.3.6 Registration of a vowel.
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3.4 Damped vibrations - the time-discrete case

By setting up a small modification in the
circuit for an undamped vibration it is

< o ° ¥, possible to turn it into a damped one. For
this purpose the two multiplication fac-
N tors must be altered as shown in the fig-
N Y1  ure aside.
The difference equation is now
V=Yg - PPy, (r<1)
@ -2 Asolutionis y, =B, rkcosyk
which means for y,_,:
= k-1 -
Figure 3.4.1 Circuit for a time-dis- Vi By r*teos y(k-1)
crete damped sinusoidal vibration. = B r'rfcosyk-1)
and for y, _,:

Ye.a =B r¥2cos y(k-2) = B, r?rkcos y(k-2)

Substitution in the equation gives

B, rfcosyk = cr-Byr'rtcosy(k-1)- r?B,r?r¥cosy(k-2)
or: rkcosyk = c-rtcosy(k-1)- rtcosy(k-2)
After division by r*:  cosy k = c-cos y(k- 1)~ cos y(k-2)
This is the same relation as with the undamped vibration, for which it was proven
in section 3.2 that this is true if y = cos™' % ¢ (rule (3.6)).
Again it holds here as well that B,r* sin y# is a solution. The complete solution is
therefore:  y, = r*¥(B, cos y k + B, sin yk)
and this can be worked out in the same way as before to

BZ

y, = r*B-cos(yk + ¢) with B = /B’ + B, ¢ = —tan ‘-B—
1

X
And finally as in section 3.2 to V, = r¥—2 sin(Yk + Y)

sin Y

On the next page a computer program for this circuit is listed. Furthermore a
table is shown that contains the first samples y, of the damped vibration, the first
samples (y,) of the undamped vibration and the factor #* by which the y;, '-values
must be multiplied in order to get the values of the samples of the damped vibra-
tion (column 2). The program gives these y-values directly which are easy to
check. For r the value 0.99 and for ¢ the value 1.90 is used.



The Harmonic Oscillator 81

Ml =1 k Vi 1% Ve
M2=0
M3 =0 0 1.00 1.000  1.00
C=19 1 1.88 0990  1.90
R =0.99 2 2.56 0980 261
CR=C*R 3 2.97 0970  3.06
R2=R*R 4 3.07 0961  3.20
5 M3=M2 5 2.87 0951  3.02
M2 = M1 6 2.40 0941 255
MI=CR*M2-R2*M3 7 1.70 0932 182
CALL WAITCL 8 0.83 0923  0.90
Y =Ml 9 -0.10 0914  -0.11
OUTPUT Y
GOTO5

Comparison between the time-continuous and time-discrete case leads to:

y(®) = e Pdcos(w,r + ) (p = 2£) and y, = r¥4cos(vk + )
m

It is possible to equate both functions for the time points ¢ = &/f,. This will be the
case if

. w, 27f,
1. Acos(w,t, + ) =Acos(Yk + ¢) thusif vy = 7— = 7 (3.11)
just as in the time-continuous case.

= AR
2. e P=pt Ifwereplace 1, by klf: e " =rk or r-e ” (3.12)
and also Inr = —? thus p = -f-Inr (3.13)

s

Notice that in contrast with the time-continuous system in the time-discrete
system with decreasing » no change in the frequency occurs.
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3.5 Forced vibrations - the time-continuous case
A. The equation and the solution

Forced vibrations are those that are performed by a system under the influence of
a time-varying external force. The difference from free vibrations is that they are
caused by a very short, pulse-like force to accomplish the initial displacement,
for example. There are various possibilities for exerting this force. A feedback
process can be used whereby the driving force
is administered so that the energy loss is
compensated for and the vibration alters from
a damped into an undamped one. While this is
in itself very interesting (consider the
mechanism for maintaining the action of a
watch, clock, L(-circuit etc.) we shall delve
— ’ into what is (for us) more interesting namely

the case that the driven system exerts no
influence over the driving force and is thus a
true ‘slave’ system. To orient ourselves we can
proceed from the familiar string with the ball
L where the ball is magnetic and is located close
to an electromagnet to which we connect an
alternating current. (We then get a system that
shows some similarity with a loudspeaker.)
We choose a sinusoidally alternating current in such a way that the external force
I, that works upon the ball, varies sinusoidally with time, with an amplitude /-

Figure 3.5.1 Forced vibration.

and a frequency w that we are free to choose, thus: F, =TI cos wt

. dy
Now the total force is: Fcoswr — by - R .

t
.. d 2y L.
and as before this is equal to m — S0 that the complete equation is as fol-
dt
2
lows: mﬂ +R—dl + by = FcosWt
dit? dt

This is a so-called ‘inhomogeneous’ differential equation. It is known from the
theory of differential equations that the solution is equal to the sum of the solu-
tion of the homogeneous equation (the same equation with a zero to the right of
the equal sign) plus one solution of the inhomogeneous equation. The homoge-
neous equation is in fact that of the free vibrating system with damping, and we
know already the solution to this (see section 3.3). We must therefore find one
solution for the inhomogeneous equation and for this we start with the following
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trial function: y() = Ccos(wt - 0)

We thus assume that the slave vibration is also sinusoidal, with the same fre-
quency as the driving force, and with a still unknown amplitude C and initial
phase angle 6. To check this solution we have to substitute in the equation (/)
and its first and second derivative:

ay . -Cwsin(wt - 0) ,

y = = -Cw’cos (wt - 0)
t dt

This gives:

-mC®* cos (wt - 0) - RCwsin(wt - 0) + bC cos (Wt - 0) = Fcos wr

or (-m®’ + b)cos(wt - 0) - Rwsin(wt - 0) = %coswt

On the left side there is again a sum of a cosine and a corresponding sine vibra-
tion that can be reduced in the familiar way to

Bcos(wt - 0 + )

with B = \/R2w2 + (b - mw?)?, ¢ =tan! Rw
b - mw

But
B-cos(wt - 0 + §) = B-coswt-cos (P - 0) - B sin we-sin(¢p - 0)
= F s wr
C
or {B-cos(dp - 0) - g}coswt - B-sin(¢ - O)sinwr =0

This is only possible if both 3 - cos(¢p - 0) - /(" and B - sin(¢p - 0) are equal to
zero. From the second condition we derive ¢ -0 =0 thus ¢ = 0. From this:

tanO = tan = Rw = R

2
b -mw i—mw

w
R (3.14)

thus O = tan ,
= - mw
)
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With ¢ = 0 the first condition leads to
F
VR0 + (b - mw?)

B——F—=0thusC=
C

|

This can also be worked out further, because b - mw? = w(b/w - mw) and thus

) F F

JRZ“’Z (X - moy? ‘*’J"z X m
w

(3.15)

(O]

With this the solution for the inhomogeneous equation is completely determined,
because now we know the amplitude C and also the initial phase angle 0. The
general solution is found by adding to this solution the general solution to the
homogeneous equation:

(@) = Ade P'cos (w2 + d) + Ccos(wr - 0)
The vibration consists of the sum of a damped sinusoidal, free vibration and the
‘slave’ vibration (see fig.3.5.2). Initially the vibration is rather irregular, but after

some time the free vibration has died away and we do no longer notice anything
of the ‘transient’. What then is left is a pure sinusoidal slave vibration.

Ae Ptcos t+ P

f\,\, y (t)
T
Ccosut-6)
T
t

Figure 3.5.2 Forced vibration with transient.
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B. The amplitude of the forced vibration

We shall first have a look at how the amplitude C of the forced vibration depends
upon the drive frequency w. If in the expression for C we consider the part under
the root we see that both terms here are quadratic and thus positive, and that their
sum will have a minimum if b/w - mw = 0. Because this expression occurs in the
denominator, C will be relatively large, in other words, we expect a maximum of

C(w) when
b o mw =0 or (a)’Z—lithusf:L L
w m 2m \m

that is when the frequency of the driving force is equal to that of the undamped
free vibration. Especially if we calculate several values for C(w) and graph them,
we see very clearly that if the frequency of the driving force comes near that of
the undamped vibration, the system reacts strongly. This phenomenon that we
also know from daily practice is called resonance. In fig.3.5.3 C(w) is plotted for
several values of R. We call these curves resonance curves. We can also say that
such a system is a filter because it has a selective behaviour with regard to the
drive frequency: only frequencies in a narrow range around w, are transmitted.
The graphs of O(w) shown in fig.3.5.3b will be discussed later.

(a)
(b

amplitude C

—+ {
120 200
frequency (Hz) frequency (Hz)

Figure 3.5.3a Figure 3.5.3b
Amplitude response of forced vibrations.  Phase response of forced vibrations.

Until now we have neglected the role of the factor w that occurs in the denomina-
tor. If we bring this factor into account we see that the place of the resonance
peak also depends upon R, something that is also to be seen in fig.3.5.3: with
larger R-values (lower resonance peak) the peak shifts towards the left.

The exact location of the maximum can be determined by differentiating C(w) to
 and then solving the equation that results from setting this derivative equal to
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zero. Using the result from problem 2.12 we find that the maximum is located at

. R?
frequency wy, with ®,, = @ |1 - Yo,
For small values of R holds: Wy = Wy
and for larger values of R: Wy < W,

If R? > 2bm there is no longer a maximum (see fig.3.5.3).
C. Analysis of the filter behaviour
1. The Q-factor

We now concentrate upon the denominator of the expression for C, and in partic-
ular upon that part with the root that we abbreviate to -

W = R2+(i-mw)2:\JR2+(mw—£)2
w w

\

] Ru[M’i-LﬁﬁﬁT
=

2 2
w w,
w=- |R*+| 2bm - 2fom| = |[R?+| 2 - 2| pm
(A)o w (A)o w

We now introduce the ‘tuning variable’ 8:

=0 ifw=w

W 0

w _ B<o ifw<w,
W, @ B>0 if o> w,

B =

and find for W:

w = yR? + Bbm - \JRz(l + ——sz”’] :RJI . Bom

R? R?
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Once again we introduce an abbreviation:

W m
bm _ 02 or Q = bm _ %% (3.16)
R2 R2 R

With this, W becomes: W = RyQ*p* + 1

Q is called the quality factor of the system. It is a dimension-less number that
represents important features of the system in a characteristic way, in both the
time domain and in the frequency domain.

2. Time-domain interpretation of Q

Let us calculate the amplitude of the free (damped) vibration after the
performance of ‘Q’ periods. The amplitude is then decreased by a factor ¢ #7’, in
which T"'is the duration of Q periods. We find for this duration:

1 bm m
T' = T = — = — 2 _—
Q Qf0 o2 WJ_;

If we multiply this by -p (= -R/2m) to calculate the complete exponent of the
amplitude factor we get:

-—pT':—L _b_ﬂ-ZT[ ﬁ:—n
2m \| R? b

The amplitude factor is thus e™ = 0.0432. This means that after Q periods the
amplitude is decreased to ca. 4% of the start value. This is another way of giving
the damping speed rather than the use of the decay modulus #, = 1/p. There the
amplitude factor amounted to e "' and here to e ™ ; this time duration is thus 7t
times as long. If we have at our disposal a registration of a damped vibration we
can make an estimate of the value of Q by counting the number of periods in
which the amplitude of the vibration is reduced to about zero.

3. Frequency domain interpretation of O

We will now determine the width of the resonance peak. Because we can not
speak of ‘the’ width we will define it first as the difference between the two
frequencies where the signal is attenuated by 3 dB (we call this the bandwidth B
of the filter). An amplitude attenuation of 3 dB corresponds to a factor 1/vV2
(because 20'log 1/V2 = -3). If we return to the expression for C(w) and substi-
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F

WRYQP* + 1

tute in this the derived expression for W, we get: C(w) =

F
oooR

and at the resonance frequency (B =0): C(w) =

The 3 dB-points w, and w, (see also fig.3.5.4) are characterized by:

1
C®,) = C(w,) = — C(w,)
V2

If the difference between w,, w, and w ; is not too large (which is the case with a
reasonably sharp resonance peak) it holds:

C(w,) = F - F
A

W RYQ?B, + 1 wRYQB; + 1
and this must be equal to 1 C(wy) = F

i ooR V3

Thus: Q2B; +1 =2, Q*B; =1 or 0B, =1 (Q.B, > 0)

C
(A)A W
oy If we now replace B, by —~ - —
™ w,
- (wA)] and then multiply left and right by w,w,
e we get
® ®
oo wAwOQ(—A - —°] = W, o,
L.JB LA)O wA ) w() wA
Figure 3.5.4 Bandwidth. , )
or O(w, - W) = W,

In the same way we derive that 0?B;>=1 thus OBz =-1 (0 >0, Bz <0)or

(‘)B (DO
QBB = Q - - - = -1
w, W,

Multiplying left and right by wzw, now leads to: Q (o); - W) = W0,

If we subtract both expressions we get:
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Q0] W) = W (W, +0y) or Q(W, + 0y, )W, ~0,) = W (®, tw)

,
Q = 0 = 2 :{3 or B:ﬁ (3.17)
W, -0y f, S B /)
If we replace f; by (3.2) and Q by (3.16) we get: B=£2 (3.18)
T

The relationship between time and frequency domain parameters becomes even
clearer if we multiply duration 7"’ of the damped vibration by bandwidth B:

S
T"B = =-— =1 3.19
0 (3.19)

%o
In chapter 4 we will return to this fundamental relationship.
D. Global characterization of the resonance curve

In the resonance curve three ranges can be distinguished: left of the peak, near
the peak and right of the peak. We shall see that in the first frequency range the
behaviour of the system is mainly determined by & (stiffness-controlled system),
in the second by R (resistance-controlled system) and in the third by m (mass-
controlled system). To show this, we proceed from
cwy - T - F _ F
(A) 4 \/Rzmz + (@'m - by \l

R20? + m¥(w? - i)z
m
1. Stiffness-controlled system.
This is the case if w<w, With w, = vb/m and w? < w, or @? < b/m we find that
the expression in brackets is practically equal to (b/m)*

2
C = L andif(x)2<<b—2:C:

R
2
\JRsz +m2 b

Sl

2. Resistance-controlled system.

If w = w, it holds: C = =
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3. Mass-controlled system.
We now assume w > @, , thus w?> b/m by which the expression under the root
can be worked out to:

\/szz + miwt = \/wz(Rz + mzwz)

F

mw?

If ® » R/m or m*w? » R? it holds: C =

With practical systems we can try to give b, R and m values that are optimal
dependent on what we want to achieve with that system. For example the resona-
tor used in a vibraphone must have quite a sharp resonance peak, whereas we
expect the frequency curve of a loudspeaker to be flat.

E. The phase behaviour

As it appears from fig.3.5.3 the input and output signals at frequencies below the
resonance frequency (in a stiffness-controlled system) are approximately in
phase; at the resonance frequency (in a resistance-controlled system) the phase
shift is 90°. For high frequencies (in a mass-controlled system) the phase differ-
ence becomes 180°. This is also true when the system is heavily damped. It is
therefore often easier to recognize resonances in the phase response than in the
amplitude response.

F. Energy dissipation

When a driving force brings a system into vibration, also energy will be
transferred. It may be expected that this energy will be maximal at the resonance
frequency, because the vibration at that point is maximal. This is indeed the case:

Energy (work) £ = force - displacement=F- y.

If the force is not constant and depends upon the deviation then with a displace-
ment from point a to point b the amount of work is:

b

E = [ F(y)dy

If y is a function of time, we can rewrite this expression using the variable ¢
instead of the variable y:
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y'(@) = Z—y thus dy = y'(r)dt
t

If we substitute this in the expression for £ we get:

E = fF(t)‘y'(t)dt

a

With a forced vibration the deviation y is equal to:
y(®) = Ccos(wt - 0), thus y'(t) = -~®C sin(wt - 0)

Together with the time function of the driving force F' cos wf this becomes (if we
calculate the energy over one period 7):

T T

E chos wH-wC sin (0t - B)ldr = ~coFCfcos wtsin (wr - 0)dr
0 0

r
—ooFCf cos wt(sin Wt cos O - cos we-sin O)dr

0
r

—wFCf(cos G%Sin 2wt - isin 0(1 + cos2wr))dt
0

T T
—wFC'%cos Gfsin2wtdt + ooFC~-:-sin Of(l + cos 2Wf) dt
0 0

I

The first integral is equal to

T T
*—]-—cos2(n)t| = —Lcosﬂ| =0
2w 0 2w T
The second integral is equal to
T 1 T
t| + —sin2wr| =T
0 2w 0

Thus we find for F:

E:mFC'%sine'T:Z—;C-FC'isine'T=ﬂ:FCsine (3.20)
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In resonance O = 90°, thus sin O = 1. With other frequencies sin O is less than 1.
The energy of the vibrating system is thus indeed maximal at resonance (if the
system is not too strongly damped). This energy is taken from the driving force.
This is the fact on which the application of the Helmholtz resonator as a sound-
absorbing system is based. If the air in this resonator is brought into resonance by
a sound coming from outside then it is at the cost of the energy of that sound. In
the same way as earlier in fig.3.5.3, fig.3.5.5 shows the relationship between
energy dissipation and frequency for a particular value of R, using formula
(3.20).

E<f)

fa frequency

Figure 3.5.5
Energy dissipation as function of frequency.
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3.6 Forced vibrations in a time-discrete system
A. Iquation and Solution

To the input of the time-discrete system that we studied in section 3.4 (see

fig.3.4.1) we now connect a time-discrete sinusoidal signal: x, = G cos sk

The complete difference equation now becomes:

Y, —ecry, +r2yk , = G cossk

Once again we have to find one solution for this inhomogeneous equation, and
add it to the already known general solution of the homogeneous equation. To
determine this special solution we proceed from the trial function:

y, = Dcos(sk + 0) .

As before we assume a sinusoidal output signal with the same frequency as that
of the input signal. The general solution of the difference equation is now:

y, = Br¥cos(Yk + d) + D-cos(sk + 0)

But we still have to determine the amplitude D and the initial phase angle o and
therefore we substitute the trial function in the equation. After some calculations
we find the following expression for 1):

B G
D = (3.21)
\/(r2 -1)*sin’y + {(r? +1)cosy - 2rcoss!?

If we graph D as a function of the frequency s then we get a curve that is very
similar to the resonance curve of fig.3.5.3. In fig.3.6.1 this has been done for a
few values of r. The peak results from the expression for D that is maximal at
frequency s,, with (#2 + 1)cos Y = 2r cos s,, or

2+ ri+1

cosy =

r
coss, =
2r 4r

c = Yc =cosyifr=1

It is now possible to choose ¢ and r so that a particular resonance frequency and a
particular bandwidth are achieved, because
c =2cosy =2 cos27nj: (3.22)

s
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7B
A 3.23
Combining (3.12) and (3.18) we find: r=e¢ (3.23)
. A Y
From this also Q can be calculated: Q===- (3.24)
B 2Inr

a)

g r=0.98

3

hag

a

€

)

r=0,.80 )

B.2 Q.4 0.6 0.8 1.0
frequency s

Figure 3.6.1 Resonance curves of a time-discrete harmonic oscillator.

B. A digital filter

This time-discrete system is thus a digital filter. One of the applications of this
type of filter is the use as a formant filter for synthetic speech production. Let us
work out a numerical example. Imagine we want a filter curve with a resonance
frequency of 840 Hz and a bandwidth of 200 Hz (the Q-factor of this system is
thus Q = 840/200 = 4.2). The sampling frequency f, is 20000 Hz. For the factor ¢
this yields:

¢ = 2cos 22840 _ 93076328 |
_ 7200
and for the factor r: r=e 20 - 0096907243

The computer program for this filter could be the following:
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M1=0
M2=0
M3=0
C =1.93076328
R =0.96907243
CR=C*R
R2=R*R

5 INPUTX
M3 =M2
M2 =M1l
Mi=CR*M2-R2*M3+X
CALL WAITCL
Y =Ml
OUTPUT Y
GO TOS

The only difference with the program in section 3.4 is that we have to add the
input samples x, to the two feedback values CR*M2 and -R2*M3. The big ad-
vantage of this type of filter is its flexibility, the possibility of changing the filter
curve by changing the factor ¢ and/or . With synthetic speech production the
adjustment takes place every 20 to 40 ms. With analog filters this is not possible.
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3.7 Problems

3.1

e os

32

A Helmbholtz resonator receives as input signal a periodic signal consist-
ing of short impulses. The filtered output signal is shown below. Using
this registration give an estimation of

the frequency of the input signal,

the resonance frequency of the system,

the quality factor,

the bandwidth of the filter system.

Give the complete diagram, including the values of the coefficients, of a
digital system with the same resonance properties as the time-continuous
system of problem 3.1. The system has a clock frequency of 20 kHz.

Determine the value of the coefficients 4, and 4, that occur in the gen-
eral solution to the differential equation (3.8) for the harmonic oscillator
with damping (see section 3.3.A), if the initial displacement y(+=0) is
equal to y, and the initial speed v(+=0) to v, (hint: use the same method as
used for the undamped vibration).

Calculate the values of 4 and ¢, the constants of the amplitude/phase
version of this solution with initial displacement y, and initial speed 0.

For the spectral analysis of a tone recorded on an analogue tape a LCR-
filter can be used, for example. Sketch this filter and calculate the value
of C required to tune the filter to 800 Hz when self-induction L has the
value 400 mH and the resistance is 1 Q.

Derive from the equivalence between mechanical and electrical quanti-
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3.5

37

3.8

39

ties an expression for the Q-factor of this filter, and calculate the value of
0.

For a digital analysis we need a digital band filter. Sketch the diagram of
such a filter and calculate the coefficients required to tune it to the same
frequency (800 Hz) and to give it the same Q-factor. Clock frequency:
25000 Hz.

Resonating systems usually have a constant Q-factor, but with formants
in speech we are dealing with filters with a constant bandwidth. Suppose
this bandwidth is 150 Hz:

Calculate the Q-factor at resonance frequencies 750 Hz and 1800 Hz.
Calculate the decay modulus.

When do we speak of aperiodic damping of a harmonic oscillator?
What is the Q-factor of an aperiodically damped system?
Could a time-discrete harmonic oscillator be aperiodically damped?

Derive formula (3.7) by calculating amplitude B and initial phase angle
¢ of the time-discrete sine function from the expressions for B, and B, in
section 3.2.C.

Consider the mouth cavity as a Helmholtz resonator with the following
properties: volume: 125 cm’®, length of output tube 2.5 cm and cross
section of output opening 2 cm? Calculate the resonance frequency
(speed of sound: 340 m/s).

Derive in the same way as in problem 3.4.b the equivalent versions of
the formulae (3.14) and (3.15) for the LCR-circuit.



CHAPTER 4

Signal Functions in the Time
and Frequency Domains

We have already seen that we are dealing with two types of signal functions:
signal functions that consist of an (infinite) collection of pairs of real numbers
(the analog, time-continuous signal functions) and signal functions that consist of
a (finite) collection of integer numbers (digital, time-discrete signal functions),
while often in theoretical analyses something between these is used in which the
time values are discrete (and thus integer) and the function values are real.

In the first part of this chapter the differences between these representations will
be discussed and the practical consequences of switching from one to the other.
For this purpose it is sometimes convenient to consider signals as consisting of a
series of infinitely short pulses (adjacent in time-continuous functions, isolated in
time-discrete functions). We shall learn more about pulses as elementary signals
in chapter 5.

There is still another method to reduce signals to a combination of elementary
signals and that is the spectral analysis, where an arbitrary vibration is split into
sinusoidal components. This is the subject of the second and most extensive part
of this fourth chapter. In the third part several applications of this method are
dealt with and in the fourth it is shown that sinusoidal vibrations are not the only
elementary vibrations with which such an analysis can be performed.

4.1 The computer; binary number representation and programming

The rise of digital sound technique is the result of the development of computer
techniques. If we wish to go into the practical aspects of digital signal represen-
tation we must first consider a few fundamental aspects of this technique (see
also Hintze, 1966). A computer, as the name says, was in the first place devel-
oped for the task of doing calculations. Calculating apparatus has already existed
for quite a long time and all the devices, from the most primitive abacus to the
most advanced computer, have one thing in common: the numbers with which
the calculation should be performed have to be represented somehow ‘in’ the
device, in such a way that they are recognizable and accessible to mathematical
operations like addition. In mechanical calculators this occurs for example by
means of cogwheels with ten cogs. Such a cogwheel can therefore take ten differ-
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ent positions that can be interpreted as the numbers from 0 to 9.

One of the first applications of this principle was the calculator built by Pascal
in 1642 (see fig.4.1.1). Here eight cogwheels were used. The apparatus could
only add (with each full rotation of the wheel the one next to it turned one posi-
tion further) and subtract.

°£ﬂunn11nan°

e
m-"‘“'\a-m m---
AR YRS A LR YN Co%
-~

Figure 4.1.1 Pascal’s calculator.

Mechanical calculators have many uses as accounting calculators, cash desks,
etc. For extensive scientific calculations they were not so suitable, because the
calculation speed was limited by the frictional resistance and the mass of the
moving parts. A purely electronic calculator would not have these limitations and
could thus work much faster. When designing such a calculator, first the problem
of number representation must be solved. In principle that is not too difficult: it is
possible to take Pascal’s example and work with ‘wires’, on which an electrical
voltage is set to represent a number, e.g. 0 volt ="0', 1 volt ="1', etc. To represent
the number 729 there would have to be three wires with voltages of 7, 2 and 9
volts respectively. Another possibility is to make use of only one wire and to
differentiate between more voltage levels. The value 729 would then be repre-
sented for example with a voltage of 7.29 volt. This solution however is not
feasible in practice because it is technically nearly impossible to design circuits
that higher up in the calculator could distinguish and recognize correctly such
minute voltage differences that could occur in the system. Only if a low accuracy
(ca. 1%) is sufficient it is possible to build a so-called ‘analog’ computer in this
way. Additions and multiplications of electrical voltages as occur in a mixing
desk or a modulator are examples of this application.

As a calculator the analog computer has been replaced by the digital one. This
is based on the above described ‘multi-wire’ system that despite a limited capac-
ity and resolution (depending upon the number of wires) is yet more suitable for
accurate calculations because the unmistakable recognition of values by means of
the increased tolerance is much easier. The number 'S' would be represented by a
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voltage of 5 volts, which means in practice a voltage between 4.5 and 5.5 volts.
If this tolerance is so important for the technical realization we can ask ourselves
if the system described above, of 10 voltages (or voltage intervals) for the 10
digits (from O to 9) is the optimal solution.

This is not so. In the end the fact that we calculate in a decimal system proba-
bly follows from the almost accidental fact that we have 10 fingers at our dis-
posal. Other number systems are possible and in the course of history have in
fact been in use, for example the Babylonian number system with 60 digits
(which we still meet in the subdivision of the degree, the hour and the minute),
while the words ‘dozen’ and ‘gross’ (12 dozen) show a grouping of 12 in place
of 10. If it were possible to work in a number system with less than 10 numerical
symbols we would need to differentiate between fewer voltage levels and the
technical realization would be easier. Let us have a look at how we can switch
over from a decimal system to a ‘lower’ system, for example the octal system,
and what the consequences of this transition are.

First a remark on the notation of numbers. Since antiquity there have been
various systems for representing large numbers by means of a combination of
elementary symbols. The system that is now universally applied is the positional
system, in which the interpretation of a number symbol in a series depends upon
the place in the series. In the decimal system we interpret the number 546 as

5100 + 410 +6 or 5:10% + 4-10' + 6:10°

0 0 This system is very practical for calculations (unlike with, for
1 1 example, the system of Roman numerals). With the positional
2 2 system we can systematically construct all numbers with a
3 3 few rules, starting at the lowest number. First we use all pos-
4 4 sible symbols (in the decimal system the digits from O to 9).
5 5 After the '9' the supply is exhausted and we start again, using
6 6 the series 0,1, ... but with the number 1 added to the left (see
7 7 left column in the table to the left).

8 10 Now the octal system. Here we have only eight number sym
9 11 bols at our disposal. Let us for the sake of convenience work
10 12 with the symbols 0, 1, ..., 7. If now, from 0 on, we write all
11 13 the numbers (see right column in the table), the basic supply
12 14 is exhausted when we arrive at the number 7. We apply the
13 15 same method and write directly after that the number '10'
14 16 (which should not be pronounced as ‘ten’!) which represents
15 17 the same number as the symbol '8' in the decimal system. It
16 20 means that the number most to the right gives the units (as in
17 21 the decimal system), the next one the octals, the next one the

64-als etc. The (octal) series 746, must thus be read: |
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746,=7-82 +4-8' + 6 (=486,)

(The subscript gives the number system used.)
In general: the series A,a0.1...2)2; 308,25,
must be interpreted as a,b™ +a,,b™' + .. a,b’+ab' +ab’ +a,b’ +a,b?+ ..
Here ‘b’ is the basis of the number system (10 in the decimal, 8 in the octal
system), the a,, each represent one of the b available symbols. Via a few calcula-
tions it is possible to switch over from the decimal system (which remains the
starting point for us) to any other system, and vice versa. If b < 10 we use a part
of the set of the normal number symbols, for b > 10 we must add symbols to the
supply. For this the letters A (= 10), B (= 11), C (= 12), etc. are used.

As an example we see in the table to the right the
different versions of the decimal number 1779 start- 16 6F3
ing with b = 16 (the hexadecimal system) up to and 15 7D9
including b = 2 (the binary system). To move from 14 911
non-decimal numbers to decimal numbers the above 13 A6B

power series must be made use of, for example 121043
6F3,,=6"16*+15-16' + 3 (= 1779,) }(1) }-3;;2
To switch from decimal tot non-decimal the simplest 9 2386
procedure is to divide the number to be converted 8 3363
repeatedly by the new basis. The remainders that are 7 5121
found by every division form together the number we 6 12123
are looking for. E.g. 1779,,=. . ... 9" 5 24104
4 123303
3 2102220
2 11011110011
1779
9 6
197
9 8 !
21 2386,
9 — 3 ——H
2

Not only is the choice of the basis of a number system arbitrary, but also the
elementary mathematical operations are not bound to a particular system al-
though the rules must be adapted to the system in question. The addition 6 + 5
gives in the decimal system the sum of 11, and in the octal system the sum 13, (=
1-8 + 3 = 11,,). Here are a few operations in the decimal and in the octal system:
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756, 494, 264, 180,,
124, 84, 51, 41,,

+ + X X
1102, 578, 264, 180,
16040, 7200,
16324, 7380,,

Switching from a ‘higher’ to a ‘lower’ system (as from decimal to octal) has
three consequences:

1. Fewer digit symbols are required.

2. The numbers will be longer.

3. The calculation rules must be adapted.

The reason to look into the possibilities of other number systems was the fact that
with the electrical representation of numbers the basis of the number system in
use determines the number of digit symbols that must be represented. We have
already seen that from a technical viewpoint it is attractive to work with a system
that is as ‘low’ as possible because in this way the number of voltage levels to be
distinguished is kept as small as possible. The lowest possible system is the
binary system and therefore the choice has fallen on this system. This does not
exclude that there will ever be another system in use. There could be technical
reasons to choose a three- or four-valued system but at the moment only the two-
valued binary system is used. The consequences of this choice are:

L. Only two digit symbols are required. Normally the '0' and '1' are used
here. They are called ‘binary digits’ or simply “bits’. For electrical repre-
sentation two voltages are needed, e.g. 0 volt and 1 volt, but any other
pair is valid and in practice the type of circuit determines the choice.
Recognizing the voltage level is thus in fact a ‘threshold decision’.

2. The numbers are on the average a factor 3.322 longer (see the above
example: 1779, ~ 11011110011,) which means that for the representa-
tion of the same number a larger number of wires is needed.

3. The rules for binary calculations must be applied. This is merely an
advantage because these rules are exceptionally simple. With the ele-
mentary addition of numbers existing of one digit there are only four
possibilities:

0+0=0 1+0=1 0+1=1 1+1=10

The binary equivalent of the above addition/multiplication example gives:
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111101110 10110100
1010100 101001
+ X
1001000010 10110100
10110100
10110100
1110011010100

As can be seen in this example binary multiplication is also quite simple, because
the multiplication is done by the value 0 (result: 0) or by the value 1 (result: same
value). Multiplication boils down to adding shifted versions of the multiplicand.

There is one problem concerned with the binary system: for
a human being the numbers are difficuit to read and to in-
terpret. To see what a series of zeros and ones has to tell us

0 0O 0 . . .. .
001 1 a time-consuming calculation is necessary. As a solution to
010 5 this prob]em' the octal (or the hexadecimal) system can e}ct
011 3 as a sort of intermediary system. On the one hand th'e dif-
100 4 ference between the octal and the decimal system is not
101 5 that large. The octal system is not difficult to learn to work
110 6 with; furthermore there are calculators for conversion into
111 - and for working within the octal system. On the other hand
the following argument shows that there is a simple con-
] nection between the octal and the ‘F)inary system: it can be
421 seen from the table to the left that if one groups the bits of

a binary number into threes then each group can take the
values 0, 1, 2, . . . 7. This value must be multiplied by
(from right to left) 1, 8, 64, . . . and so in this simple man-
ner the conversion from binary to octal is achieved.
1l1 001 01|21 00/001]2 11, = 145417,
1 4 5 4 1 7

The opposite is just as simple:
12374, =2001]/010J011]111|100,

In a similar way the hexadecimal (16-valued) system can be used as an interme-
diary between the binary and the decimal system. The binary number must now
be grouped into fours. Because nowadays the number of bits used in most com-
puters is a multiple of eight, this system is very efficient and only slightly more
difficult in practice.

For an electrical calculating machine it is not only necessary to have an elec-
trical representation but it is also necessary that operations can be performed with
the ‘electrical’ numbers. We have already seen that calculating with binary
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numbers is very simple. Because of this the construction of circuits for such
calculations is not difficult either. With a few components it is possible to design
a circuit for elementary binary additions. This circuit has two inputs, one output
for the sum and one for the ‘c’-bit (from ‘carry’).

inl in2 uit ¢ IN 1o

0 0 00 —oouT
0 1 1 0 IN 20—

1 0 10

11 01 s

C
Figure 4.1.2 Half adder.

Based on this circuit a real ‘adder’ can be made with two series of input wires

and one series of output wires, with a bit pattern equal to the sum of the two

input bit patterns (fig.4.1.3). With a similar, but more complicated circuit, de-

signed to shift and add bit patterns, multiplication of two binary numbers can be
realized.

Also the second condition, the possi-

bility of carrying out calculations, is

fulfilled in this way. In principle this is

IN 1 IN 2 enough to realize an electrical calcula-

fPegeeeeeeee  POIPPeqfyees tor. Although this possibility has been

ADDER known for some time, the actual devel-
TTTTTIITILIT] opment was not begun until after the
OUT = IN 1 + IN 2 second world war, a development that

has led to a variety of products, from

simple calculators for elementary
Figure 4.1.3 Complete binary adder. operations to large and incredibly fast

programmable calculation machines,
the computers.

A computer not only processes binary numbers but can also store them in its
memory. A memory consists of a collection of memory elements. Each element
is a series of ‘cells’, simple circuits with the characteristic that they can receive
and hold a 0/1-voltage connected to them, so that after the original voltage is
taken away, the binary information remains. Such memory elements appear
isolated in the processing unit of the computer and are called registers; the actual
memory contains a large number of these elements named here words. The
purpose of the memory however is not only (and even not in the first place) the
storing of numbers during calculations. The crucial moment in the development
of the computer came when it was realized that the manipulations necessary for
the subsequent steps of a calculation (the transfer of numbers from the memory
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to the arithmetic registers, and the transfer of the results of the calculation back
to the memory etc.) are basically electrical. Therefore it is possible to code these
tasks themselves as electrically represented numbers, which can then be stored in
the memory as well. The numbers are interpreted by the computer as instructions
and the collection of instructions is called the program. If one pushes the button
on a calculator with the designation SIN then a program is started which based
on the previously entered number calculates:

¥ x3 X!
X - =+ = -

3! 5! v

The number x is thus multiplied a number of times by itself and by a constant
factor, and after that the terms are added. The operations are beforehand coded
and stored in the memory so that they can be executed very rapidly one after
another. With ordinary calculators it is possible to use only such inbuilt programs
(for SIN, COS, TAN, LOG, etc.). With a computer it is possible for its users to
write their own programs and store these in the computer for execution. This is
not the place to delve deeper into the working of computers, therefore a few final
remarks.

Clearly, when designing a computer, it is necessary to choose the number of
‘wires’, the amount of bits to be used. As mentioned earlier the amount of bits
that is normally used (the word length) is nowadays a multiple of 8 bits. With a
16-bit computer the largest number that can be represented is a series of 16
‘ones’:

111 111 111 111 111
To see just how large this number is one can convert it into an octal number
(177777,). Here it is easier first to add a 1 to this:

1111111111111 111
1
+

10 000 000 000 000 000 = 1-2'¢ = 65536

The original number was 1 smaller and thus equals to 65535.

Obviously a computer should be capable to represent both smaller and larger
numbers. This is, for example, done by using 64 bits with four concatenated
numbers of 16 bits. With extremely large and small numbers an exponential
representation is used. The exponent is stored separately. To represent negative
numbers it is necessary to sacrifice one of the bits in order to indicate the sign. In
an 8-bit system +22 is written as 00 010 110 and the number -22 could thus
correspondingly be represented by 10 010 110. The bit most to the left (= Most
Significant Bit, MSB) serves as sign bit. The negative number itself however is
usually represented in another manner following the method known as two’s
complement. One then reverses not only the sign bit but all other bits as well.
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With -22 we then get:
11 101 001 (one’s complement)
and then one adds to this number 1:
11 101 010
An advantage of this method of representing negative numbers is that subtraction
can be performed via addition of the negative value:

+22 00010110
=22 11 101 010
+ — B
0 (1)00 000 000

We could also use this method in the decimal system. Here the number -22
would in its complementary form (and a word length of 6 places) be written as
999978; the addition of +22 and -22 would look as follows:

000022
999978
+

(1)000000
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4.2 Time-discrete signal functions
A. Linear Pulse Code Modulation
1. Analog to digital conversion.

Our original purpose was to make use of the ‘electrical’ numbers and their princi-
ples for the representation of signal functions. The advantage of this is, as we
have seen, the increased invulnerability of the signal because of a greater redun-
dancy, and the possibility of operating on a signal via numerical calculation
processes. The price we have to pay for this is that we must work with complex
technical systems (computers), which, however, thanks to technical development
have become easily available. In the second place it is necessary that we change
the signal function from an infinite collection of real number pairs into a finite
collection of pairs of integers. We will now deal with the practical and theoretical
aspects and their consequences.

In principle we can go on to digitize a signal as follows: we make a pen
registration of the function, mark points along the time axis that, for example, lie
25 ps from each other and read the corresponding displacement along the vertical
axis for each of the time points. We import the number table that results into a
computer via the keyboard. This method is inexact, sloppy and time consuming
and is only to be used with a very small number of samples if no other method is
available. The same technical development that has lead to the computer has also
produced apparatus that can perform this sampling process quickly and accu-
rately. The apparatus that does this is called an analog-to-digital converter
(ADC, see fig.4.2.1). It has, as shown in the figure, one input to which the (ana-
log) signal voltage is attached. There is one output that consists of a number of
parallel wires with which a binary electrical number can be represented. There is
a clock input to which a short electrical impulse is connected which serves as a
start signal for the converter.

In a very short time the input voltage is
measured and a binary number appears
at the output representing the result of

LTI

IN o— ADC ouT that measurement. This numerical value
does not have to be equal to the voltage
value. It is enough that it is proportional

I to it as will be shown with an example

CLOCK further on.
Fig4.2.1 First this: the conversion process is com-
Analog-to-Digital converter. pleted in a matter of a few microseconds.

During this time the input voltage must
not change. To prevent this from happening a sort of buffer called Sample and
Hold is used which is usually a component of the AD-circuit. (In chapter 6 I will
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go deeper into these circuits.)

And another point: the word ‘clock’ indicates a repeating process. Connected
to the clock input is a pulse generator with exact and constant time intervals
between the pulses by which also the time between the samples is exactly set. In
place of the time interval At it is also possible to specify the sample frequency £,
its reciprocal value. If the time interval is 25 ps, then f is equal to 40 kHz.

As an example let us have a look at an ADC that accepts voltage inputs between
0 and 10 volts and gives 12-bit numbers (a ‘12-bit ADC’). This is an existing

\Y

10.000000 ——7—

9.997559 ———

9.995117 ——

9.992076 —1—

9.990234 —1—

9.987793 —1t——

9.985352 ——tf——

9.982910 —t—

(V)

17.08984 —t

14 .64844 —_—T

12.20703 — T

9.76563 s

7.32422 —

4.88281 s e

2.44141 ——

0.00000 —_—

V=2 volt, N =

V=6 volt, N =

4095

4094

4093

4092

4091

4090

4089

0006

0005

0004

0003

0002

0001

0000

type of converter but there are other ones
with different word lengths and other voltage
ranges (for example from -5 to +5 volts). The
two voltage limits mean that with 0 volt at
the input the smallest number (a series of 12
zeros) is given, and with 10 volts the largest
number, a series of 12 ones, occurs:

11111 11T 11, = 7777, = 4095,

The range between 0 and 10 volts is divided
into 4096 equal parts and to each of these
parts one of the numbers between 0 and 4095
is assigned. The size of these voltage inter-
vals is indicated with ¢, the quantization in-
terval.

The value of ¢ is in our case:

- 10y sama my

4096

With a certain voltage ' and a word length B
we have:

v
q = — @1

With a specific voltage V the number value
N = [V/q] corresponds. The brackets indicate
that any decimals after the decimal point are
omitted. For example:

819.2 = 819,, = 1463, = 001100110011,

2457.6 = 2457,,= 4361, = 100011110001,
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Reversely, with the number value N a voltage V' with V' = N-q corresponds.

Examples: N = 1000y, Vy =2.4414063 volt
N =2840,,, Vy = 6.9335938 volt

If we start with a voltage of 0 volt, and gradually increase it nothing happens at
first. N stays at O until } crosses the value 2.4414 mV. At this moment N changes
into 1 and stays so until ¥ goes beyond 2q = 4.88281 mV and so on. In the table
the limits of the quantization intervals together with the corresponding numerical
values are shown for the lower and upper part of the 0 - 10 volt range.

2. Quantization noise.

If we supply the AD converter with a time-varying voltage it is as if the voltage
that is present at the moment of the clock pulse is rounded-off to the lower limit
of the corresponding interval. In fig.4.2.2 this process is shown. Important here is
that the amount of rounding-off fluctuates at random between 0 and 2.4414 mV.

pd

N T
TTT\r’T/Tllllln
T T
IR

clock pulses — t

Lot tral,

truncation error

Figure 4.2.2 Quantization.

In other words: the effect of the rounding-off can be described as the adding of a
random voltage between 0 and -2.4414 mV. Such an uncorrelated signal is of
course not periodic and must be considered a noise signal. It is indeed so that due
to the rounding-off of the signal a small quantity of noise (quantization noise) is
added to the signal that, under certain circumstances, can become audible. The
sound level of this noise signal is in general very low, provided that the the word
length is not too small.
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The noise level can be specified via the signal-to-noise ratio (see section 2.2.D):

SNR = 20log Yruss

4.2)

Trus

It is impossible to calculate ryys in the ordinary way with (2.28) because we do

not have a function rule of 1(#). Still something is known about #(#): the function

values lie between 0 and g and all values between these two limits are equally
probable.

This is shown in the graph of fig.4.2.3:

the probability P(r) of a certain noise

signal value is constant for 0 < r < g and

P 0 elsewhere. Furthermore the value of

-1,/ the constant can be determined by the

consideration that the area of this graph

represents the sum of all probabilities

* and this sum should be 1. As the hori-

2 a zontal side of the rectangle has length ¢,

the vertical side must have length 1/g. A

graph like this one is called a probability
Figure 4.2.3 Probability density. density function. See section 4.4.D.

We now know which values A7) can
have but we do not know in which order they appear. For the calculation of the
RMS value the order is however not relevant. We can calculate ryy with formula
(2.32) using the fact that this signal is asymmetrical with a mean value of Y4q.

_ 2 _ 1 2
Porss r X
. q 9 q 2
rl = frZP(r)dr = frzldr -1 ri = 9
0 o 7 93 o 3
2 2
Fargs = 53— - qT = __‘/‘1_ (4.3)
12

Let us furthermore assume that the signal fits exactly within the voltage range of
the converter. This means for our example that the signal should be symmetrical
around 5 volt (thus in fact an asymmetrical signal) with a peak value y, <+5 volt
and > -5 volt. From (4.1) we find
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,
28

2y y y
and thus r = r = 4

- r
BE s B2 2B

And so the SNR is

Yp

SNR = ZOIOgM = 20log 2% + 20logy/3 - 20log
Yo Yrus

283

(4.4)

y
6B + 477 - 20log —2— dB
Yrus

Each increase of the word length with one bit improves the resolution with a
factor 2 = 6 dB. Rule (4.4) is often simplified to the well-known rule of thumb:
SNR = 6B but in this version the role of the proportion between peak value y,
and RMS value ygys is neglected. With a sinusoidal signal this proportion is v2
(see (2.55)) and then the SNR is 6B8+1.76 dB. With natural signals there is no
such fixed proportion. To avoid overmodulation in speech (a very ‘peaky’ signal)
for example, it is necessary to reserve for y, a range of ca. 4ypys , leading to the
considerably lower SNR value of 6B - 7.28 dB. The final choice of B is deter-
mined by its application. For high quality digital music recording 16 bits are
used, corresponding to a SNR of ca. 96 dB. For professional applications even
higher values (> 20 bits) are used. For the analysis of music and speech signals
12 bits are normally sufficient. This word length is also required for the digital
transmission of intelligible speech signals.

With very small signal amplitudes the result of the rounding-off has another
consequence: with a sinusoidal signal with an amplitude of ca. 4q the converted
signal consists of a regular alternation of two sample values, which also occurs
with a square wavelike input signal. The change of a sinusoidal signal into a
square-like signal indicates a radical distortion of the signal as we shall see. The
effect is heard as ‘granulation noise’.

The fact that we deal with finite numbers with a limited supply of possible
numbers leads to rounding-off which manifests itself as noise. We can also ask
what the consequence is of the fact that we also work with a finite number of
time points along the time axis. What could possibly go wrong can be seen in
fig.4.2.4. The ‘bend’ in the signal function will not be detected with a low sam-
ple frequency (the thick lines) but will be detected with a higher sample fre-
quency (thin lines). Thus there is a relation between the form of the signal func-
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tion and the sample frequency. For an exact formulation of this relation we need
a method by which we can analyse the wave shape. Such a method is spectral
analysis that will be discussed in the following section.
Therefore here only a provisional
formulation of this relation follows,
which will be discussed in more
| detail further on: the sample fre-
\#/ quency must be twice as high as the
] highest sine frequency that can
occur. In this form the statement
@ deals only with sinusoidal signals
but in the following section we will
clock pulses —= 1 see that arbitrary signals can be
reduced to sinusoidal ones.

Figure 4.2.4 Sampling.

3. Digital-to-Analog Conversion.

Finally there is the question how we can change a digital signal function into an
analog one. Because it is nearly always the intention that the analog signal is in
‘real time’ (which means the time relation must be the same as with a normal
analog signal) this implies we must work here with a circuit that is automatic and
such an apparatus indeed exists. It is called a digital-to-analog converter (DAC)
and is basically the mirrored version of the AD converter (see fig.4.2.5). The

IN

DAC t—oouT q\\;£:P— FILTER |—o “\\//,

CLOCK

IARARERARRRAI

Figure 4.2.5 Digital to Analog conversion.

digital signal is connected to the input. Then with the help of a (clock) pulse the
conversion process is started. The result is an electrical voltage that is proportio-
nal to the ‘electrical number’ which is sent to it, and this voltage appears at the
output.

In a strict sense this should be an (infinite) narrow impulse, synchronous with
the clock pulse, but in practice the voltage level is kept constant until the fol-
lowing clock pulse. The output signal then becomes a staircase signal. With the
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help of a low pass filter this is changed into a ‘smooth’ curve. I will return to
these items (the staircase and the filter) later in this chapter. With respect to the
relation between number value and voltage, the same applies to the AD-con-
verter.

The described method of converting an electrical voltage into a bit pattern is
designated with the abbreviation PCM, which stands for Pulse Code Modulation,
and because the voltage range is divided into 2° equal parts (B = word length)
one speaks of ‘Linear PCM’. This suggests the existence of other conversion
systems. These are the subject of the next section.

B. Other conversion systems (Blesser, 1978)

For an optimal sound reproduction 16-bit linear PCM is made use of. This does
indeed give excellent results but it is a rather ‘expensive’ process because of the
number of bits per second that has to be processed. With a sample frequency of
50 kHz this number is 2:50000-16 = 1600000 bits per second. The high quality is
not always needed; for the digital registration of speech, for example, lower
standards can be kept to. In such cases it would be possible to decrease the word
length to say 12 bits but there are specialized conversion systems with a smaller
number of bits that come very close to the 16 bit linear system in quality, on
condition however that there is a priori knowledge about the signal to be pro-
cessed, for example the fact that it is a speech signal. If information about the
signal source is used for an improved coding scheme we speak of source coding.
A system like PCM that does not ask for information about the signal is indicated
with the name waveform coding. There are also techniques that combine both
approaches. Source coding is most efficient, but imposes restrictions to the
application possibilities. What kind of a priori knowledge is needed? Useful
information is the fact that in speech and music signals the dynamic variations
are relatively slow, or that they sometimes exhibit regular waveform patterns. In
slightly more official terms: the ‘short time’ RMS value fluctuates considerably
and the signals display a certain degree of correlation.

In the first case some form of signal compression/expansion can be used, in
the second case predictive coding may be applied. It is also possible to take into
account certain properties of the hearing organ. Signal components that are
‘masked’ by other components can for example be omitted. This technique will
be discussed in the final chapter of the book.

1. Compression/expansion.

With linear PCM the noise level is fixed. It is determined by g as the RMS value
is g/V12. We should make g so small that even with a weak signal the SNR is
large enough. With strong signals g is then unnecessarily small. We can actually
work more efficient by not giving g a fixed value but to let it depend on the
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amplitude of the signal. The same effect can be achieved by using compres-
sion/expansion (‘companding’). Here weak parts of the signal are extra amplified
before conversion. This reduces the proportion between peak and RMS value
Vy/Vrus- According to (4.4) this gain may be used to reduce B. The simplest way
would be to apply an analog companding system, like those used in analog
cassette players for noise reduction. Here a continuously variable gain factor
(controlled by the signal level) with a certain delay time accomplishes an in-
crease of the level of weak signal fragments only when a certain duration is
exceeded.

Another possibility is to use an amplifier with a small number of discrete gain
factors. Which factor is selected depends again upon the signal level, and the
selected factor is coded as a binary number coupled to the sample value. A
specific sample value is thus represented by two numbers: the number produced
by the AD-converter, and the number that stands for the gain factor. This resem-
bles the exponential coding of numbers involving a value (‘mantissa’) and an
exponent and is called ‘floating point’ representation. This conversion method is
correspondingly named ‘floating point conversion’. With a 10-bit mantissa and a
3-bit exponent to distinguish between 8 gain factors (for example 0 dB, 6 dB, 12
dB etc.) a SNR of 102 dB can be achieved. With linear PCM 17 bits are required
for this.

The consequence of a varying gain (equivalent with a variable ¢ value) is that
the noise level is no longer constant but depends upon the signal level. Normally
this is inaudible due to the masking effect of the sound signals. With some sig-
nals that have large amplitude fluctuations but a small masking effect (for exam-
ple strong low tones) this so-called modulation noise can be audible and annoy-
ing.

An attractive alternative is the purely digital version of this principle, block
coding. A signal is sampled with for example a 16-bit ADC. Then a group of
subsequent samples is examined. If the bits most to the left (‘most significant
bits’ or MSB) bits of all samples are equal to zero, all bit patterns are shifted one
position to the left, and this is repeated until at least one MSB is unequal to zero.
Then the word length is reduced by omitting, for example, the first six bits on the
right (the least significant bits). The remaining ten bits words are transmitted
together with the size of the left shift.

Still another method is to use an amplifier that amplifies less when the signal
amplitude increases (‘instantaneous companding’). Thus, no switching between
fixed gain factors but a continuously variable gain without any delay time. This
causes a serious nonlinear distortion of the signal that is cancelled by applying
exactly the opposite distortion at the end of the chain. The shape of the transfer
function should of course be exactly defined. In Europe this relation is fixed in
the so-called ‘A-law’ and in America in the ‘p-law’. See fig.6.4.5 and 6.4.6.
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2. Predictive coding.

If the signal function has a more or less regular structure it is possible to predict
its course to a certain extent. The principle of predictive coding is shown in
fig.4.2.6, left: the signal s is sent through a circuit which, based on the current
and/or past signal values, can predict the next value. The new predicted signal
value p is compared with the actual new value by subtracting the latter from the
former.

Figure 4.2.6 Predictive Coding.

The difference between the two is called the ‘error’ e (e = s - p). For transmission
we use the e-signal instead of the original one, which we can reconstruct on the
side of the receiver by means of the predictor. This generates p. To this we add e
and get s again: s = e + p. All of this, though, only makes sense if the error signal
¢ has a smaller dynamic range and can thus be represented with fewer bits than
required for the original signal s. With speech signals a particular version of
predictive coding, LPC or Linear Predictive Coding has proven to be very effi-
cient. See section 7.3.

Differential coding.

The simplest prediction is that the ‘new’ signal value is equal to the previous
one. Then block ‘pr’ disappears from the diagram and e is equal to the difference
between two consecutive signal values. In normal speech and music signals the
low frequencies contain more energy than the higher ones. In those cases this
way of coding is indeed more efficient than linear PCM.

Delta modulation.

The dynamic range of error signal e can be further reduced by increasing the
sampling frequency because then the difference between consecutive samples
will decrease. Using very high sampling frequencies allows one bit coding (+1:
the signal value increases, -1: the signal value decreases) and this form of
differential coding is called delta modulation. The attractive aspect of delta
modulation is that the technical realization is very simple (fig.4.2.7).
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Figure 4.2.7 Delta modulation.

The modulator consists of just two components, a comparator and an adder (in-
dicated with Z). Fig.4.2.8 shows that V}; is a staircase-like approximation of ¥, .
The decoding circuit consists of a second adder that generates 7, , which is thus
identical to Vj as it is derived from the same bitstream.

Figure 4.2.8 Input and output signal with delta modulation.

The two problems that appear with delta modulation: steep flanks cannot be
followed and the substitution of a constant voltage by a square wave (with granu-
lation noise as a result) can be partially solved by making the step size variable
(larger with steep flanks and smaller with slow fluctuations). This is called
adaptive delta modulation.
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4.3 The Fourier Transform
A. The relation between arbitrary and sinusoidal functions.

At the beginning of the 19th century the French mathematician Fourier discov-
ered the possibility of describing an arbitrary function as a sum of sine functions.
(See also Hsu, 1970) The principle of this is depicted in fig.4.3.1:

given

function
T~ ] ¢ =1, $=-32.7"
M~ T~___ 1 C,=0.7, (D2 =—49.9

(N N\ N\ G2 ¢y =-21.T

N ™ ] G, =8B, P, =55.6
N NN\ G =0.8, ®5:_44°2°

\/\/\A/ sum function

— st

Figure 4.3.1 Fourier analysis.

The topmost curve is the given function that has an arbitrary shape; below this
function five sine functions are shown, consisting of 1, 2, 3, 4 and S complete
periods respectively. A similar systematic statement cannot be made about the
five amplitudes and initial phase angles; these are independent of each other. The
sum function that is the result of adding the 5 sine functions is shown below and
looks very much like the given function.

The theory of Fourier says that the dissimilarity between the given function
and the sum function can be reduced by bringing more sine functions into play.
Let us write down the function rules of the five sine functions, using the fact that
the total duration of the given function is equal to 7. As usual the frequency f
corresponds with 7" via f= 1/T.
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A sine function with period duration 7, amplitude C, and initial phase angle ¢, is
described by:

C, cos (21‘:% +¢) = Ccos2mft + §))

This is the function rule of the first of the five sine functions. For the second it is:

Czcos(2n%T + &, = C,cos 22/t + b,)

2

In the same way we find for the following three functions:
Ciycos(2m3f't + &)
Ceos2ndf't + ¢,)

Cicos(2nSft + §s)

5
Thus the sum function is: y'(¢) = Z C,cos(27nft + $,)

n-1

Such a series is called a Fourier series. If we for the moment forget the differ-
ence between the function y(f) and the sum function y'(¢) then we can say that in
this way we have found a function rule for the given, arbitrary function. Using an
appropriate number of sine functions we ourselves can determine how ‘good’ the
approximation will be. Therefore we write the sum function simply as y(¢) with-
out the prime.

In fig.4.3.2 on the left again a summation of the same type is to be seen, again
with five sine functions, and the sum function shown at the top. According to
rule (2.56) the sum of a cosine and a sine function each with its own amplitude
can be written as one sine function with an amplitude and initial phase angle that
depend on the original amplitudes.

Vice versa, a sine function with a certain amplitude (C) and initial phase angle
(¢) can naturally also be split into a cosine and a sine function with amplitudes
respectively equal to a and b, with a= C cos ¢ and b = - C sin .
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Figure 4.3.2 The two equivalent Fourier series.

This is exactly what happened with each of the 5 functions in the above figure.
Corresponding to each of these functions on the left-hand side, a sine and a
cosine function are drawn on the right-hand side, which, when added, yield the
given function:

C, cos2mnft + ¢)) = a cos2Tnft + b sin2Tnft
a, =C,.cosd, b =-Csind,

b
C, =+a’ + b} tand, = -
a

If we apply this to every term of the Fourier series we find the alternative ver-
sion:

5
y@®) =Y (a,cos2Tnft + b sin27nf1)
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B. The constant term

The summation of sine functions always leads to a sum function that is symmetri-
cal regarding the zero line (where, in other words, the average value is zero).
This seems to limit the applicability of the Fourier series to symmetrical func-
tions but there exists also a Fourier representation for asymmetrical functions
because any asymmetrical function can be written as the sum of a symmetrical
function S and a constant term D (see example in fig.4.3.3).

A S D

Figure 4.3.3 The constant term.

For an arbitrary symmetrical function a Fourier series exists. For an arbitrary
asymmetrical function we need only to add a constant (which, for practical
reasons to be discussed later, we shall designate as Y2a,) to find the general form
of the Fourier series. By setting the upper limit of the summation to infinity and
thus adding an infinite number of sine functions, an exact agreement can be
achieved between the given function y(¢) and the sum function:

y@ = %ao + Zw: (a,cos2Tnft + b sin27nft) 4.5)
n=1
or
y(@) = %ao + i: C,cos 2Tnft + ¢,) (4.6)
n=1

C. Determination of the Fourier coefficients

For practical applications of the Fourier series of an arbitrary function it is not
enough just to know that we can split a function into sine functions, it is also
necessary to know how to determine the amplitude and initial phase angles of the
participating sine functions.
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It is not possible to directly determine the amplitude and phase coefficients. It is
possible though to determine the a,- and b,-coefficients and to derive from these
the amplitudes and initial phase angles. This is actually why we need the (a,,
b,)-version of the Fourier series.
Let us begin by determining the constant term a,. This is in fact easy to find. As
we know that '%a, is the difference between the average value of the function and
0 we only have to calculate the average value. According to rule (2.56) the
average value of the time-continuous function y(f) over the interval 0 - T is equal
to:

1 T

average value = 7 fy (nde = %ao
0

For a time-discrete function y(k) (with N samples in this time interval) this is:

N1
average value = 1 Z yk) = lao
N o 2

For a, we thus have the following two expressions for the time-discrete and the
time-continous case respectively:

2 NEI 2 T
a = — y(k) a, = = [ y(@dt
0 Nio 0 T{

The calculation of the other coefficients is somewhat more complicated but still
comparable with that of a,. The principle is as follows: for the determination of
a, (resp.b,) the function is multiplied by cos 2nnfi (resp. sin 2nnfi), after which
the average value of this product is determined.

I shall explain the whole procedure with an example. First I will introduce some
abbreviations. Let us replace

the given function y(7) by Y

the sinusoidal components C,cos2nnft + ¢,) by H,
the cosine term a,cos 2maft of each component by A,
the sine term b,sin 27nft of each component by B,
the function cos 2n2ft by which we multiply by K,

Let us suppose that there are 5 components and that we want to calculate the
coefficient a,. To achieve this, we have to multiply ¥ by K,:



Signal Functions in the Time and Frequency Domains 123

Y'K2 = (Hl + H2 +H, + H4 + 115)'1{'2
=HK,+HK,+HK, +HK, +HK,
=(4,*B)K, +(4,*B)K, + (4, +B,)K, + (4, +B)K, + (A, +B))K,

=AK,+BK,+4K, +B,K,+4K, +BK,+4AK,+BK, +4K, +BK,

This procedure is shown graphically in fig.4.3.4. Topleft, the function Y is shown
and below Y the 5 cosine and sine terms A, to B;. The function K, can be seen in
the middle, topright is the product YK, and below all products 4,X,, . . ., B;K,.
According to the above derivation the topmost product function is thus equal to
the sum of the 10 product functions shown below.

The next step is that of determining the average value of the product Y-K,. As the
average value of a sum is equal to the sum of the average values of all terms we
find:

Y'K, =4K, + BK, + 4K, + BK, +
+AK, +BK, +AK, +BK, + AK, + BK,

This result can be drastically simplified because it can be shown that the average
value of products of sinusoidal functions of this kind is zero. This is proven in
section 2.7, problem 2.15; it is demonstrated in fig.4.3.4: all product functions
but one shown to the right are symmetrical around the zero line. The only excep-
tion is the average value of the product 4,K,:

AK, =

T
a
,K, a,cos 2T 2ft'cos 2M2frdt = %fcos22ﬂ2ftdt
0

N |-
S —— N

On page 53 we have seen that this integral is equal to 27, and thus

In the above sum of average values all terms are zero except the third, so:

_ N 1 - N
Y'K2 =4, K, —;a or a, —2YK2

In the same way it is possible to calculate b, by means of the average value of the

product of the function ¥ with the function S, = sin 2n2fi: b, = 2Y"S,
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As a, can be calculated from the average value of Y so it is possible to calculate
a, and b, from the average value of °K| and 1S, :

We can work this out because we know how to calculate the average value of
these product. If time-continuous: by means of integrating the product and divid-
ing by 7, if time-discrete: by means of adding the samples of the product func-
tion and dividing by the number of samples. In this last case K, is equal to:

K_=cos2mnft, = cos2n%kAt

If we assume again that there are N samples in the time interval from 0 up to and

including 7' it holds that T/At= N and K, becomes: K = cos2T %k

and in the same way S, =sin2m %k

Now we can formulate the general expressions for a, and b,. The complete list of
the rules to calculate the Fourier coefficients is shown below:

time ~discrete time -continuous
2y 2 4.7)
a = — k a = — Hdt .
0 kz% y (k) . T{y()
28 n 2 !
a = — kycos2m—k a == Heos2Tinftde 4.8
=y YBees2n Uk a, T{y() f (4.8)
2 'S n 2
b == k)sin2n—k b == y(f)sin2Tnftdt (4.9)
\ N;O (k) K b=y f

The time-discrete calculation is called the DFT (Discrete Fourier Transform).
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Figure 4.3.4 Determination of Fourier coefficients.

Now follows an example of the calculation of Fourier coefficients with these
formulae. Imagine that we wish to derive from a fragment of a time-discrete
signal function specified as a list of 14 samples the amplitude and initial phase
angle of the third component, thus N = 14 and n = 3. In the second column a list
of samples is shown. Try to find out how the products, sums and average values
are calculated.
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k y(k) cos 271713—4k y(k)-cos 271:—13:k sin 2Tr%k y (k) sin 2n—1§;k
0 1.42 1.000 1.420 0.000 0.000
1 2.63 0.223 0.585 0.975 2.564
2 4.19 -0.901 -3.775 0.434 1.818
3 3.54 -0.623 -2.207 -0.782 -2.768
4 1.05 0.623 0.655 -0.782 -0.821
5 -0.72 0.901 -0.649 0.434 -0.312
6 -3.86 -0.223 0.859 0.975 -3.763
7 -5.09 -1.000 5.090 0.000 0.000
8 -2.66 -0.223 0.592 -0.975 2.593
9 -0.38 0.901 -0.342 -0.434 0.165
10 0.17 0.623 0.106 0.782 0.133
11 0.71 -0.623 -0.443 0.782 0.555
12 095 -0.901 -0.856 -0.434 -0.412
13 1.23 0.223 0.274 -0.975 -1.199
+— + +
3.18 1.309 -1.447
With formula (4.7): a, - % ‘3.18 = 0.454
With formulae (4.8) and (4.9):
2 2

a, = —-1309 = 0.187, b, = - -1.447 = -0.207
14 14

3

From this the amplitude and initial phase angle can be calculated:

C, = y/0.1872 + 0.207* = 0.279 ¢, = tm“% = 0.836r = 47.9°

As an example of the calculation of the Fourier coefficients for a time-continuous
function we take the signal function that is shown in fig.4.3.5, a (co-)sine func-
tion with a non integer number of cycles (in this case 4 period). The period
duration of this cosine function is 7/4'%, thus the frequency is 9/2T and the func-
tion rule is:

9 t
y({) = cos2T—1t = cos 9T —
@ 2T T
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y(ty)=cos S t/T

WAWAWAWA
\AVAYVAYA

Figure 4.3.5 A truncated sine function.

cients.

—-T—sin 9T
9T

T
ao=£fc:os91‘l:—t~dt:z L
To T T T

T
| =
0

When the number of periods would
have been integer (e.g. 5) the signal
function would have been identical
with the fifth Fourier component,
thus Cs=1,d;=0and G, =¢, =0
for n # 5. Now, however, our task
is to construct this truncated sine
wave with sine functions that all
have an integer number of periods.
Let us calculate the Fourier coeffi-

i(sin91‘t -0) =0
9n

T
a, = 2fcos?ft—t~'cosZTl:itdt =
To T T
2 y T T
=2 [{Lcos(9+2n)=1+ 2cos(9-2n)—=t}dt =
T{ ;cos (9 +2m)—t + Jcos (9 ~2m)

T T
=l—-—sin(9+2n)£t|+l—-T-———~sin(9—2n)£t|=
T (9 +2m)T T o T (9-2mT T o
-1 {sn@+am)n -0l - —L  {sin(9-2m)m -0} =0

(9 +2m)T (9 -2n)m
2 t
b, = —fcos97t—'sin2n—n—tdt =
To T T
2 y U i
== [{Lsin(9 +2n)—¢t - Lsin(9 -2n) =1t} dt =
T{ ;s (9 v2m)—t = Ssin (9 ~2m)

T T
= ~l——L—cos(9 +2n)£t| +l—T—cos(9—2n)£t| =
T (9 +2m)T T o T (9-2m7 T o
=————-——{cos(9+2n)n—1}+————1—{cos(9—2n)n-1}:

(9 +2nm)m (9 -2m)m
_ 2 _ 2 - _ 8n
(9+2n)n (9 -2m)T (81 -4n?)m

From a, = 0 follows C, = |b,| and ¢, = -90°.
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Let us calculate the first 10 C, values:

n 1 2 3 4 5 6

C, 0.0331 0.0784 0.1698 05992  0.6701  0.2425
n 7 8 9 10

C, 0.1550 0.1164 0.0943  0.0798

D. The importance of the Fourier Transform

Now that the principles of the Fourier series are known, we shall have a look at
the practical applications of it. Let us begin with a short glance at its importance.
First a remark about the terminology:

- The splitting of an arbitrary function into sinusoidal components is called
Fourier analysis, or more general the Fourier transform.

- The reverse, the addition of sinusoidal components into the ‘complex’ func-
tion is called Fourier synthesis or the inverse Fourier transform.

The word ‘complex’ is used here to designate any non-sinusoidal function that

thus consists of more than one component.

1. By means of the Fourier transform we can find a function rule for an arbitrary
given function which generally contains a finite set of coefficients, making the
given function more manageable.

2. Because arbitrary signal functions can be reduced in this way to sinusoidal
vibrations it is often sufficient to know what a particular system ‘does’ with
these elementary signals. This ‘sine behaviour’ determines the way in which
other signal functions are processed. I will come back to this in chapter 5.

3. Fourier analysis is a physical reality in the sense that we can split an arbitrary
signal with the help of sharp filters (like harmonic oscillators with large Q-
factors) into sinusoidal components. We encounter a natural Fourier analyser
in the ear. The inner ear contains a filter system that splits a sound signal into
sinusoidal components (‘overtones’).

4. Fourier synthesis is one of the methods for generating synthetical sounds.

E. Practical applications

Fourier analysis theory does not say how large the ‘analysis window’ 7 must be.
Although we are free in principle to choose any 7, not every choice makes sense.
If for example we arbitrarily segment a signal (see fig.4.3.6), it is possible to
apply Fourier analysis to each of these segments but the analysis results are in
fact meaningless.
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Figure 4.3.6 Arbitrarily chosen analysis windows.

As we shall see the choice of T depends on what we know about the given func-

tion (and in particular about its periodicity):

- If the signal is truly periodic 7 should be made equal to the duration of the
period (‘pitch synchronous analysis”’).

- If the signal is not periodic T should be (very or infinite) long.

- The important group of quasi-periodic signals forms a bridge between these
two other cases. Both possibilities for T are useful. Which of these is the best
choice for T cannot be decided a priori but the second is more often used
because the period duration does not have to be known.

- Fourier analysis is also possible with physical methods (thus without calcula-
tions). Here also the (possible) period duration does not need to be known. We
shall study this case, working with spectrum analysers, separately.

We can now set up the following scheme:

T = period duration

calculation method \ \
T = 'long

Fourier analysis
measuring method

The question how to choose the window duration, also plays a role with the
measuring method. Usually several time constants can be chosen on the analyser.

F. Fourier analysis of periodic signals
1. Amplitude and phase spectrum.

If a signal function is purely periodic (with period duration 7) then it is sufficient
to analyse one single period. As for the wave shape the next one is identical with
the previous one and so the analysis result will be the same as well. As moreover
each of the participating sine functions starts and ends at the same point of the
cycle (with the same phase angle) these sine functions can be continued endlessly
in both directions. Periodic repetition not only holds for the function itself but
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also for the sinusoidal components (see fig.4.3.7).

periodical signal function

g o

firgt harmonic

VAN 2N

second harmonic

VA VANVAVANV ANV ANV AN

Figure 4.3.7 Fourier analysis of a periodical function.

The sinusoidal components have frequencies that are multiples of the fundamen-
tal frequency f, = 1/T and are called the harmonics of the vibration. The Fourier
series is now valid for the entire time axis; ¢t may now take any positive or nega-
tive value (-» < < ) in the formulas (4.5) and (4.6). The description of the
given function thus consists of a list of amplitudes and of initial phase angles,
respectively, the amplitude spectrum and the phase spectrum of the vibration.

A graphical representation of these data, with the frequency as independent
variable along the horizontal axis, is illustrative. Because the amplitude and
phase values are only found at the frequencies of the harmonics the graphs are
bar diagrams or /ine spectra. For the vibration of fig.4.3.1. these spectra look as
follows (fig.4.3.8):

1 2 3 a
| . l

frequency

ep)

”
S 5€+

frequency

-50° <

Figure 4.3.8 Amplitude and phase spectrum of the vibration of fig.4.3.1.
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2. The power spectrum.

Often the squares of the amplitude coefficients C, are plotted instead of these
coefficients themselves. This leads to what is called the power spectrum. The
reason for this is that the amount of energy in a signal function can not only be
derived from the time function by means of the formula (2.3) but also from the
amplitude spectrum based on the Theorem of Parseval:

T o
- 1
E =y?-= —T—fyz(t)dt =1y ¢ (4.10)
0

1
2 n-1

For the proof of this theorem we replace )(?) in this expression by the corre-
sponding Fourier series:

y@® = i (a,cos2Tnft + b sin2Tnft) = i(A. +B)
n=1

n=1

in which we use the same short notation as in section 4.3.C.

E={) @, +B)?

=, +B +A,+B, +A, +B + . .)

=A} +24B +24 4, +24B,+.... +B} +2B B, +2B A, +.....

We saw there and in problem 2.15 that all the terms of this series are zero with
the exception of the quadratic ones, and as

2 _ 2 _1 2, 2 _ ;2.3 _ 1,2
A, = a,cos ZTtnft—;an, B, = b sin 2nnft—;bn

we find as the final result:

E =

N |
N |

Y@=ty c?
n=1 n=1

The mean energy of a signal is thus determined by the squared amplitude coeffi-
cients. The phase angles are unimportant. Because the power spectrum is related
to the energy content, the vertical axis is normally calibrated in dB’s.
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3. Determination of the amplitude and phase spectrum of periodic signals.

We will now calculate the Fourier coefficients of some periodical signal func-
tions for which we know the function rule. Then the calculation can be
performed in the same way as with the example in section 4.3.C, the truncated
sine function shown in fig.4.3.5.

- a square wave signal (fig.4.3.9).

y ()
! The function rule is very simple indeed

: here: y(f) = +1 for the t-values between 0
! T and %7, and y(¢) = -1 for the t-values
3 —.+ Dbetween 2T and 7. The calculation is
1

demonstrated in problem 4.10 and the
corresponding solution in the Appendix.
The result of the calculation reads as

Figure 4.3.9 Square wave. follows:

1 [E—

a =0, a =0, b =L(2 - 2cosTn)
n

This means:

b,=0 if nis an even number and 4 = 4/nn if n is an odd number. Only the odd
terms with b,, b,, etc. remain from the Fourier series. We can write this series as
follows:

=

4 .
= _— + 4.
y(@® 2 T < 1) sin21t(2n + 1)ft 4.11)

cC Because the a,-coefficients are equal to
\ zero, C, is equal to |b,| and all phases are
equal to -90°. The spectrum of a square

wave signal thus contains only odd har-

monics (this explains the rather nasal

3 timbre of this signal) of which the ampli-
I 7{ EI- tudes are inversely proportional to their

tromercy number (see fig.4.3.10).

In the same way one can calculate the

Figure 4.3.10 Specmml of a
Amplitude spectrum square wave.
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- triangular wave signal (fig.4.3.11):
y (t) C

1 (g

-T/2 T/2

/N

frequency

Figure 4.3.11 Time function and amplitude spectrum of a triangular vibration

Function rule: y(r) = % +1 if —%T<tso, y@) = —%t- +1if 0<e<iT
2
. - 8
Fourier series:  y(r) = Z —————cos2n(2n + 1)/t (4.12)

»o0 T2(2n + 1)

This signal also consists only of odd harmonics, of which the amplitudes are now
inversely proportional to the square of the rank number.

- sawtoothwave signal (fig.4.3.12):

y(t) (o
+1

-T/2 T/2

T 2
3
‘59739
-1 Illlll

frequency

Figure 4.3.12 Time function and amplitude spectrum of a sawtooth vibration

Function rule: y() = —2;

Y

Fourier series: y() = Z -ntt % sin 2 T nft (4.13)
n-1 n

This spectrum contains ‘all” harmonics. As with the square wave signal, the am-

plitudes are inversely proportional to the rank number. The timbre is rather

pleasing and full. The sawtooth vibration was much used in the production of

electronic sounds, also because the production of it is so simple. With the help of

filters one can derive other timbres from this signal. This technique is called
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subtractive synthesis.

The 1/n-amplitude factor of the square wave and sawtooth signal implies a 6
dB/octave slope of the spectrum (factor ¥; for double frequency), the factor 1/n? a
-12 dB/octave slope.

In general it holds that the spectral slope is 6 dB/octave when a signal function
has jump discontinuities, and -12 dB/octave when it has bends.

- pulse signal (fig.4.3.13)

y(t) C

3
* 37 - a_ 1
T2 3z S B IR TP
' —w/2 w/2 Tt ]

frequency

Figure 4.3.13 Time function and amplitude spec-trum of a pulse signal
The function rule is now:

y(@) = A4 if —%W <t< %W, y(¢) = 0 for other t-values

The impulse signal is characterized by the fact that the pulsewidth W is constant
and does not change when T is altered. The calculation of a,, a, and b, gives (see
problem 4.18):

_24W
a, = ——
T
a = %snl ﬂ:nz ) b =0
n T[n n
or C,=la,d, ¢, =0
Thus the Fourier series is:
y(@) = 4w, E ﬁsinnnz'cOSZnnﬁ (4.14)
T n=1 Ttn T

Like the squarewave signal, the pulse signal has jump discontinuities, but the
spectrum is more complex because the expression for a, not only contains the
expected factor 1/n but also the factor sin nal¥/7. Due to this factor the a,-value
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can be negative. According to rule (2.42) the minus sign represents a phase shift
of 180° and may thus be neglected in a discussion about the amplitude spectrum.
A further analysis of the amplitude spectrum is simplified by rewriting the ex-
pression for the amplitude coefficient in a slightly more complicated way:

y w sinﬂcnZ
c =M gnmn ) - 24AW T

mn T T ﬂ:nz

This amplitude coefficient thus contains the factor sin x/x with x = nnW/T. The
graphic representation of this function looks somewhat like a damped sine wave
(see fig.4.3.14), but that impression is wrong. The envelope follows the rule 1/x
instead of e *. Plotting the C,-values leads to a line spectrum, of which the func-
tion sin x/x forms the envelope (see fig.4.3.13, the dashed line).

sin_x
X9

JAN N

Vi -

Figure 4.3.14 The function sin x/x.

Another way to construct the amplitude spectrum is to draw the (continuous)
spectral envelope first and then fit the spectral lines at the appropriate frequen-
cies.

The function rule for the spectral envelope E(f)is: E (f) = _2:47[ sin W

nfw
The C,-coefficients can be calculated from this by substituting multiples of 1/T

for the frequency f: C, = |E‘( % ) |
The function rule for E(f') is the product of an (unimportant) scale factor 24 W/T
and a factor only containing /. This means that with a constant pulsewidth W the
spectral envelope is fixed except for the scale factor. This is especially clear
when we check the position of the zeropoints of £(f). These are located at those
frequencies f, where nf,¥ is a multiple of 180° or © radians:
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W = kn thusfz=% k=1,2,3,..)

A change in 7 leads to a shift of all the spectral lines below the spectral envelope.
It could then happen that a harmonic coincides exactly with a f, making it disap-
pear. This is the case when

k E’f = a rational number

n
— = — or
T W

CRE

The number of the suppressed harmonic is then: »n = kL

/4
Examples:
Lw=T -kl ks
5 w
2 W:ET-'1=2-n:k—T—:S,IO,IS,... k=2,4,6, ..
5 w 2 w

In both cases all harmonics with numbers that are multiples of 5 are suppressed.

3. Wz%*n=2k:2,4,6,‘..(k=l,2,3,.,.)

All even harmonics are suppressed (see square wave spectrum).

We know that speech sounds (vowels) too have the property that the spectral
envelope is independent of the repetition frequency. It is indicated by the term
formant structure; formants are maxima in the spectral envelope. Each vowel has
its characteristic pattern of maxima.

We have seen that lengthening the period of the pulse signal of fig.4.3.13 by
moving the +%7 border to the right and the -%27 border to the left has no conse-
quences for the spectral envelope; the harmonics shift under this curve to the left.
When we are primarily interested in the spectral envelope it is allowed to leng-
then the signal by adding zero segments. It can be shown that this is true for any
signal: lengthening the signal by adding zero segments changes the position of
the spectral components but does not affect the envelope. Later this fact will be
used several times. A first example is the VOSIM-signal to be discussed now.
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- VOSIM signal (Tempelaars, 1977)

Yy e e
/

>

W t
Figure 4.3.15 The VOSIM signal function.

The VOSIM-sound synthesis system (VOice SIMulation) is based on the time
function shown above. A period of this signal contains a number of periods of a
sine?-function with a staircase-shaped envelope. The proportion between two
consecutive levels of the envelope is constant (‘b’), making the envelope very
similar to an exponentially decaying one. If we indicate the number of sin’-pulses
with N, and the duration of each pulse with ¥, we get the following function rule
for the envelope e(1):

N-1
e(® =u@® -bY Vu@t -NW) + (b-1) Y b" Lu(rt - nW)
n=1

Here u(?) is the so-called ‘step function’:
u(®) = 1ift>0 andu(®)=0ift<0

The envelope e(f) must be multiplied by the sin*-pulses. If we square a sine
function we get a ‘raised cosine’ function, because (see rule 2.47):

sin®o = ¥4(1 - cos 2a) = -Y2c0s 20 + Y2

In this new version we have a sinusoidal function with half the amplitude, double
the frequency, an offset of 2, mirrored and its phase shifted over om. If we
designate the new frequency with F it holds that /= 1/ and the function rule
for the sin>-pulses is:

p( = %(1 - cos 2TFt)
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The complete function rule y(¢) is now the product of e(¢) and p(?). In the same
way as with the pulse signal the proportion between the pulsewidth W and the
period duration 7 plays here too, an important role. Let us abbreviate this propor-
tion to y. With this function rule the spectrum can be calculated. For the ampli-
tude coefficients C, we find the following result:

sin TnYy

c = Jl - 2bYcos2nNy + B

1 - 2bcos2mny + b*

nn(n3y?* - 1)

This expression gives the amplitude for each harmonic with the number n. The
interpretation of this result is easier if we replace n by the continuous variable x.
Just as in the previous case we then find the spectral envelope (see figure below).
The actual line spectrum can be drawn as a bar diagram below this contour. This
is the preferred method, because here too the important features of the spectral
envelope, the minima and maxima, and in particular the pronounced maximum at
frequency F, are independent of the repetition frequency. Thus, this spectrum has
also a formant structure with one dominating maximum.

Cf)

|
T

- £

Figure 4.3.16 Amplitude spectrum of the VOSIM signal.

Other characteristics: the spectrum displays minima of which the depth is de-
pendent on ‘b’. If b = 1 (which means that all sin>-pulses have the same ampli-
tude) the minima extend up to the zero line. So eventually harmonics with fre-
quencies corresponding to these zero points are totally suppressed. What is more,
the spectrum is less wide than the pulse spectrum. It extends from 0 to roughly
2F Hz. Higher frequency components are weak and can be ignored.
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G. Fourier analysis independent of (possible) periodicity

This method is used if the signal is non-periodic, or when nothing is known
about the periodicity of the signal.

1. Fourier analysis of time-continuous, non-periodic signals.

How to proceed in order to apply Fourier analysis to non-periodical signals
follows from the considerations about the impulse spectrum in the previous
section. If we increase the period duration of the pulse signal ever more, the
distance between the harmonics (which is equal to 1/7) will decrease and the
frequency of the first harmonic (which is also equal to 1/7) will approach 0. The
spectral envelope however does not change. In the limit situation when T be-
comes infinite, a continuum of frequencies below this envelope results. Individ-
ual components can no longer be distinguished. With our ears we cannot hear
any difference either between a periodical impulse with a period duration of e.g.
1 hour and a non-periodical impulse. Mathematically the non-periodical impulse
can be considered as a periodical impulse with an infinite long period duration.
In the formulae for the Fourier series the sum is therefore to be replaced by an
integral.

Y

y(p) = f(a(f)cosZtht + b(f)sin2nft)df (4.15)

0

The discrete Fourier coefficients a, and 4 are replaced by the continuous fre-
quency functions a(f) and b(f). The same holds for the amplitude/phase version:

y() = [C()cos @mft + S(f)df (4.16)
0

The graphic representation of the amplitude and the phase spectrum shows also
continuous curves that must be interpreted as spectral envelopes, instead of bar
diagrams. We shall shortly see examples of this. The relation between C(f) and
&(f) on the one side, and a(f) and b(f) on the other is as before:

Cf) = Vai(f) + bAS) . tand(f) - Zi—g @.17)

while a(f) and b(f) can be calculated with:
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a(f) =2 fy(t)cosZthtdt, b(f) =2 fy(t)sin (4.18)

Examples:

a) the spectrum of a single pulse (fig.4.3.17)

a(f) =2 fy(t)cosZthtdt
y(t?
A lW
=24 f cos2Tftdt
iy
. 1 . '_l
-w/2 w2 T 4 Slnznf ;W B sin 2th 2W
Figure 4.3.17 nf nf
A single impulse.
e s
nf

It can be shown in the same way that b(f) = 0, and thus C(f) = |a(f)|. If we use
the same trick with C(f") as at the time with C, we can write for C(f'):
sin TfW

a C(f) = AW

As expected, the continuous am-
plitude spectrum of the single
impulse (fig.4.3.18) is equal to
the envelope of the line spectrum
of the periodically repeated im-
pulse.

JAN
\/\/

Figure 4.3.18 Spectrum of a single impulse.
b. the spectrum of an exponentially damped sinusoidal signal.

We encountered this vibration in section 3.3. Then it was noticed that this signal
is not periodic. A continuous spectrum is thus the consequence. Fig.4.3.19 shows
two damped sinusoidal signals. The first (fig.4.3.19a) is described by the func-
tion rule y(f) = e ?’sin 2nf't and begins at 7 = 0 thus with the value 0. The sec-
ond signal has the function rule y(r) = e #* cos 27t/ and begins with a jump from
Oto 1.
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Figure 4.3.19 Exponentially damped sine Figure 4.3.20 Amplitude spectrum of
and cosine vibrations. damped sinusoidal signals.

The continuous spectrum of both signals is shown in fig.4.3.20. Both spectra
have a sharp peak that coincides with the frequency of the (undamped) vibration
and that determines the pitch impression when listening to these signals. The fact
that the cosine spectrum has a little bias to the higher frequencies is audible as a
clearly pronounced click at the beginning of the sound. The other signal starts
with not so sharp a click.

Statements about the relation between
the continuous spectrum and the audible
impression of the corresponding vibra-
tion are also possible with respect to
noise signals where due to the non-
periodicity we are dealing with contin-
uous spectra as well (see section 4.4). In
general it is advisable here to proceed i P
from the signal energy. With a periodic  pjgyre 4.3.24
signal we take for that reason the power  poyer density spectrum.
spectrum. With a continuous spectrum
we can plot C*(f). Here we speak of the power density spectrum, as we can no
longer consider the energy of a particular frequency component, but only the
amount of energy between two frequencies, which can be derived from this
spectrum by determining, as shown in fig.4.3.21, the area under the curve be-
tween f; and f,.

2
Cf>

c. The spectrum of a finite sinusoidal signal.

Fig.4.3.22 shows a finite sinusoidal signal consisting of a non-integer number of
periods. We already studied a signal like this. See fig.4.3.5. When we calculate
the spectrum of this signal for t = -» to = +~ we get a continuous spectrum
shown in fig.4.3.23 with the smooth curve.
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y (t) C(f)
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W

Figure 4.3.22 Figure 4.3.23 Amplitude spectrum of
Finite sinusoidal signal. the finite sinusoidal signal.

This spectrum exhibits a central peak that would become narrower and sharper
with an increasing value of W, and would change into a single spectral line when
W is infinite large. The top of this peak thus corresponds in amplitude and fre-
quency with the sine vibration.

We could also calculate the spectrum for r = -12W to 1 =+%W. We then find
discrete frequency components, just as in the already mentioned example. They
are indicated in fig.4.3.23 with dashed lines. Here we see, as with the pulse
spectrum, that the continuous spectrum of the infinite long signal functions as
spectral envelope of the discrete spectrum of the finite signal. Let us look again
at the pulse spectrum. Because b(f) is equal to 0 we have next to each other:

o«

() = fa(f)cosZthtdf and a(f) = fy(t)cos27rftdt

-

The symmetry between the two expressions is obvious. This holds as well for the
general expression for the time function and the spectrum function when use is
made of complex functions (which in this book are not dealt with). We call the
time function y(¢) and the spectrum function a(f') a Fourier transform pair, and
we can symbolically indicate the integral operations used above with the operator
F and F"!, thus:

a(f) = F 0| and p(1) = F'{a(f)|

This is the most general formulation of the Fourier transform. The Fourier series
turns out to be a special case: it is the Fourier transform of a periodic function.

It is surprising that an infinite number of infinitely long sine vibrations must
be added to each other to arrive at something as simple as a single pulse. Obvi-
ously the ‘infinite sum’ (integral) gives the value 0 except during the duration of
the pulse. This is indeed the case. Let us go back to the integral formula (4.16)
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and proceed from a particular time point ¢,;

@) = [C(Ncos@nft, + b(f))df
0

If we investigate what happens when we vary the frequency f over the integration
range we see that C(f') in general changes only slowly with f, while at the same
time cos(27ft, + d(f)) fluctuates quickly between +1 and -1.

The product of C(f) with the cosine function fluctuates approximately symmetri-
cally between positive and negative values, and the average value and thus also
the integral will indeed be 0 (fig.4.3.24).

Cf) X cos(2nft°+<1>) = C(f)cos(?nfto+®)

- o

" I

Figure 4.3.24 The principle of stationary phase.

This is not the case for the t-values, where the time function is not equal to 0;
thus with the pulse if -2 <t < ¥%W. A possible explanation for this is that ¢(f)
depends upon f in such a way that the effect of 27ff is compensated for. The
whole expression 27tft + ¢(f) is then almost constant and the rapid fluctuations
fail to occur. This is called the principle of stationary phase (Goldman, 1948). It
implies that the derivative of this function to f'is equal to 0, and this gives us a
method to calculate for which ¢,-values this is the case:

:1‘-’;,(2rrftp+¢<f>> =0 - 2w % o - Ldd (4.19)

In this way we can derive from ¢(f)where the ‘centre of gravity’ of the signal
function occurs.
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2. Fourier analysis of time-discrete signals with ‘hidden’ periodicities.

It is again not possible to use the period duration as analysis window 7. On the
other hand neither is it possible to use a computer calculation to make 7 infinitely
large. In such cases the usual technique is to make 7 (relatively) large, so that it
may be assumed that the chosen signal fragment will contain a (large) number of
periods of the unknown signal. Here is an example to clarify this:

1 s

<

y(t)

9.2 2.2 0.4 B.5 B.8 1.2 1.2
t (s)

Figure 4.3.25 A mixture of three sine vibrations.

Imagine that the signal is a mixture (addition) of three sinusoidal vibrations of
112 Hz, 148 Hz and 173 Hz. These are not harmonically related in the usual
meaning of the word. Let us choose a fragment of 1 second for the Fourier analy-
sis (fig.4.3.25). This means that we assume that there is a fundamental frequency
of 1 Hz. If we calculate the amplitude spectrum with the help of the DFT and, for
example, go up to the 200-th harmonic, we find the result shown in fig.4.3.26.
The three sinusoidal vibrations are encountered as resp. the 112th, 148th and
173th harmonic in this fundamental. In

this manner frequencies of sinusoidal

components can be traced, and this tech- C

nique can even be used if the frequency

of such a component is not exactly a

multiple of 1/7" Hz (in this case thus 1

Hz).
Imagine that we add to the three sine 2 we w2
vibrations a fourth with a frequency of foH

102.3 Hz. Then no longer does an inte- Figure 4.3.26 The amplitude spec-
ger number of periods fit within the trum of the signal of fig.4.3.25.
duration of 1 second. This causes a dis-

continuity between the start and end of the signal comparable with the situation
of the signal of fig.4.3.5. In that example we have seen that when calculating the
spectrum of a truncated sine wave, we find a large number of spectral compo-
nents. The two with the largest amplitudes are those on both sides of the trun-
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cated sine wave. See the C,-values of that example.
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Figure 4.3.27 Leakage.

Here we have a comparable situation; instead of a single spectral line we find a
large number of components. In our case that spectrum is shown in fig.4.3.27.
This phenomenon is called ‘leakage’. It makes the interpretation of the spectrum
more difficult. The first problem is how the amplitude and frequency of the actu-
al sinusoidal component can be estimated. For this approximation formulae exist
based on the observation made above on fig.4.3.23: the location of the ‘true’
frequency component corresponds with the peak of the spectral envelope. If we
could reconstruct that peak from the discrete frequency components we would
have an estimate of the frequency and the amplitude. In fig.4.3.27 the location of
the peak is indicated with a dashed line. There are several estimation algorithms
of which one developed by Burgess (1975) will be discussed. It uses the propor-
tion of the amplitudes of the two main components, C, and C,,, . If these have
about the same value then the actual frequency value lies directly half way be-
tween them. The general formula for determining the place ¢ of this component
is:

C (4.20)

In the example p = 102, C, = Cy0,= 879 and C,,, = C,o; =377, thus

g - —1  -030016

1 +233
If we know ¢, we can determine the frequency: (p +q)1Hz=102.3 Hz.

+
f:l’ q

The general formula is: 7

4.21)
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cT
The amplitude is estimated with: 4 = £ 1 if g <05 (4.22)
sin TTgq
c . mn( -
or A4 = M if g > 0.5 (4.23)
sin g
In the example we find: 4 = w = 1024.2
sin T*0.3

Another example:

Let us assume a signal fragment consisting of N = 512 samples with a clock
frequency f, = 8000 Hz. The duration of the fragment is thus 7'= 512-(1/8000) =
0.064 s, and the fundamental frequency is 1/7°= 15.625 Hz. Imagine that we find
for the two principal peaks: (';, =418, (7;, = 632, then ¢, fand 4 become:

1

= L = 0.602
1 418
1 +
632
f=(71 +0.602)-15.625 = 1118.8 Hz

4 - 632m(1-0602) L.
sin 10-0.602

In the second place we can ask ourselves if something can be done about the
‘leakage’. The source of this was as we have seen, the discontinuity between the
start and the end of the signal. One way to proceed is to provide the signal frag-
ment with an envelope that is zero at both the beginning and the end.

1 s

<

If we give the signal )(/): mmmm

the envelope ¢(/):

then after multiplication
we arrive at:

Figure 4.3.27 Hanning window.
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This signal naturally differs from the original one and this gives a positive and

also a negative effect to the spectrum:

- the advantage is that the amplitude coefficients between the spectral peaks are
practically equal to 0.

- the disadvantage is that the peaks have become broader.

Both effects are visible in fig.4.3.29.

y<t? (o) Cc )
10 200

.

- 1.0

f (Hz)>
y(t c <d)
1.9
20
.2
-2 I
1
Fa & 3 R %4 L] 200 420 c20 920 VR
Tt (ma) f Hz)

Figure 4.3.29 The effect of windowing.

For the envelope one uses the name ‘window’. There are many possible forms
and each window forms another compromise between effective suppression of
the unwanted components and broadening of the peak. A window that is often
used (also in the above figure) is the sin?- or ‘raised cosine’- function:

e) = 11 -~ cos 2—;5)

This is called the Hanning window. Because the form of the peak is altered
through application of the window, the formulas for estimating f and 4 must be

adapted:

2 - S
q - ST (4.24)
1 it |
N
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_Pt4
= 4.25
== (4.25)
Cc ng(l-q?
4 =_1LQ if ¢ <05 (4.26)
sin g

C . ng(l-¢9@2 -
4= 5n™MUTDCTD G s 4.27)
sinTgq

The characteristics of other windows (Hamming, Kaiser, Gauss,...) can be found
in textbooks on digital signal processing. The method described here for detect-
ing ‘hidden’ periodicities has become an important method for Fourier analysis
because only a minimum of information concerning the signal is required. Non-
harmonic components and deviations in quasi-periodic signals can be detected in
this way, which is impossible with pitch-synchronous analysis. By means of
analysing overlapping signal fragments changes in the spectra can be followed
closely. Fig.4.3.30 is an example of such a spectrum.

c

2 S0a 1200 1500 2000 2500 3202

—> freq
Figure 4.3.30 Time-variant spectrum of a vowel.

The above example shows that with this method it is necessary to calculate hun-
dreds of harmonics. Even with the use of a computer this can become a time-
consuming process.

Luckily there is a possibility of performing the necessary calculations within
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an acceptable time period with the help of the Fast Fourier Transform (FFT)
which is dealt with in the next section.

First a few tips for the choice of the appropriate values of N, 7, etc. It is neces-
sary to know at the start that with N samples the maximum number of harmonics
that can be calculated is %2N. This is a consequence of the sampling theorem that
we shall discuss in detail in the following section and that says that the highest
allowed signal frequency is equal to half the sample frequency. With N samples
and a clock frequency f, the duration of the signal fragment is:

n1l-X
£ L

/

The corresponding fundamental frequency £, is equal to: f, = —]\57

All spectral components have frequencies that are multiples of this value. Con-
versely the number of a harmonic can be found by dividing its frequency by the
fundamental frequency. The highest possible frequency is %% f,. The number of
this component is therefore:

|
SRR

S
Z [

If we have a look at the previous example (N =512, f, =8 kHz, 7= 0.064 s,
/. = 15.625 Hz), then due to this rule we can calculate 256 harmonics, and indeed
the frequency of the 256th harmonic is:

256 - 15.625 = 4000 Hz (= %f)

We get thus a frequency ‘grid’ that will look as follows:

1 2 3 4 S 6 254 255 256
| | | | N
[ I [ [ | |

1] w N
& 0 a & 8
@ ¢ & 8 3 8 @ & 8
m N b 0 - " | W

wn N

o 7 S a B a 8
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It appears from this:

1. f, determines the upper limit of the frequency range to be analyzed. Procedure:
determine from the given signal which frequencies the analysis should encom-
pass. Remove eventual higher frequencies by means of a lowpass filter and set
/. at minimum the double value of the filter cutoff frequency.

2. N determines the frequency resolution and with this the accuracy of the analy-
sis. One is often not free in the choice of N. For FFT-analysis N must for
example be a power of 2. Then N = 512 or 1024 is usually a good choice. For
accurate results N must be large. With a given f; also 7 (= N - 1/f) is small and
this means that if the signal is not stationary it can change so essentially within
the time duration 7 that the analysis can not be used effectively.

We are here confronted with the fundamental fact that time and frequency resolu-

tions cannot simultaneously be very high. Improving the time resolution makes

the frequency resolution worse and vice versa. When we characterize the time
resolution with duration 7, and the frequency resolution Af with the frequency
spacing of the grid, for which it holds that Af'= 1/T it follows that

Af-T>1

We have already encountered this relationship in section 3.5.C, rule (3.19) and
will discuss it again in section 4.3.1.

Considering that the time scale of the fluctuations in speech signals and musi-
cal signals is about some tens of milliseconds, we see that with a £, between 8 and
30 kHz N = 512 is usually an appropriate choice. With 8 kHz we find 7 = 64 ms,
with 30 kHz 7= 17 ms.

H. The Fast Fourier Transform (Cooley et al. 1965)

This is not a ‘different’ Fourier transform, only a faster version of the normal
DFT We have seen that the determination of the Fourier coefficients takes place
via multiplication of the signal function by sin 2nsf? or cos 2nnft, and by subse-
quently determining the average value of these products. In fig.4.3.4 this proce-
dure is demonstrated. We have also seen that with time-discrete functions this
average value is determined by adding the product of signal samples and samples
from the sine- or cosine-function and dividing the sum by the number of samples
(see rules (4.8) and (4.9)). Below this procedure is shown once again, in this case
for a time-discrete function x(k) with 8 samples. These samples are multiplied by
the samples from sin 2rnk/8 (= S,) and from cos 2nnk/8 (= C,) with n=0, 1,..,7
(fig.4.3.31).
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Figure 4.3.31 The DFT.

At first view it seems that an error has been made. Eight harmonics are shown
and we have just seen that with 8 samples only four harmonics can be calculated.
Indeed, inspection of fig.4.3.31 shows that the calculation of S; to S; and of C; to
C; is useless, because
S5=-85, 86 =-55,8,=-5,, 85 =0, Cs =C;, Ce = C,, C,=C,, Cy = average value.

The theory of the Fourier transform however also allows the transformation of
complex functions, consisting of a real and an imaginary part and then this sym-
metry no longer exists. Although this case is not important for us (signal func-
tions are always real) is it better to consider the most general case and use all the
coefficients indicated.

We see that for every coefficient 8 multiplications are required. The calcula-
tion of all 16 components thus asks for 128 multiplications, or in general with N
samples 2N? multiplications. The fact that most multiplications are by 0 or 1 (and
a few with the factor 0.707, which in fig.4.3.32 is indicated with the letter k) is
misleading as it is caused by the small number of samples. With a larger value of
N this happens less often. It is therefore not possible to base an eventual reduc-
tion of the number of calculations on this fact. The numerical example in section
4.3.C shows that a reduction of the number of multiplications can be achieved by
a more efficient organization of the operations. For the calculation of a, for
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example in the fourth column four multiplications by the factor (+ or -) 0.623
occur, but

-0.623-3.54 + 0.623-1.05 + 0.623-0.17 -0.623-0.71 =
0.623(-3.54 + 1.05 + 0.15 - 0.71)=0.623 - -3.03 =-1.89

By first adding (or subtracting) and then multiplying the number of multiplica-
tions has been reduced from 4 to 1.

When the number of samples is a power of 2, there is a simple and very effi-
cient algorithm that allows a maximal reduction of the number of multiplications.
This algorithm is called the Fast Fourier Transform. It is based upon the possi-
bility of reducing a N-point transform (with 2N? multiplications) to two “2N-point
transform, with 2-4N? multiplications each. When N is a power of 2, this can be
repeated until finally only a (trivial) 2-point transform is left. The calculation
scheme is shown in fig.4.3.32. At each transition the characteristic ‘butterflies’
occur, oblique and crossing arrows that indicate addition of subtraction of num-
ber in the following way:

7 2 i 2 It can easily be checked that in this way
the same results are found, by following
the calculation of a specific component,
for example a, in both schemes.

-1
o+b 2-b

In the scheme of fig.4.3.31 we find:

a, =x(0) - x(1) +x(2) - x(3) + x(4) - x(5) + x(6) - x(7)
In fig.4.3.32 we start eight times at the bottom with a, and follow the eight possi-
ble trajectories upwards to each of the eight x-samples. Allowing for the indi-
cated multiplication factors, we now find:

a, = x(0) + x(2) + x(4) + x(6) - x(1) - x(3) - x(5) - x(7)

which is the same result. It can be checked that this is also the case with all other
coefficients. See for example problem 4.16.
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Figure 4.3.32 The FFT.
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The scheme shows that now 2:8-3 multiplications are required, and in the general

case (N samples) the number of multiplications M using the FFT algorithm is:

as can be seen in the following table:

N

8

16
32
64
128
256
512
1024
2048

DFT

2N?

128

512
2048
8192
32768
131072
524288
2097152
8388608

M = 2N %log N

The reduction of the number of multiplications is small when N = 8. With larger
values of N this difference and thus the attractiveness of the FFT method grows

FFT

2N-2log N

48
128
320
768

1792
4096
9216
20480
45056

proportion

2.67
4.00
6.40

10.67
18.29
32.00
56.89

102.40

186.18

(4.28)
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With N = 1024 the reduction factor is ca. 100. This not only means a correspond-
ing reduction in the computing time, the result is also more accurate than with
the DFT because with fewer calculations there are also fewer rounding-off errors.
A characteristic aspect of the FFT is that all Fourier coefficients are found simul-
taneously. In the case that one is only interested in one or a few harmonics it can
be advantageous to use the DFT. Usually however it is better to use the FFT.

1. Fourier analysis with the help of measuring apparatus

It has already been observed that Fourier analy-
sis is a physical reality because it is possible to
isolate spectral components from each other by
means of a filter. For a long time this was the
only method available with which to determine
the spectrum of an arbitrary vibration. The reg-
istration techniques were insufficient to produce
an accurate description of the time function re- [ijgure 4.3.33
quired for calculating the spectrum. Helmholtz Helmholtz resonator.
was the first to use the filter method. He took several
resonators named after him, which he tuned to the spectral components of the
sound he wanted to analyse, and then by placing his ear at the (second) opening
of the resonator he attempted to detect the presence and to estimate the strength
of the relevant component (see fig.4.3.33).

When it became possible to convert acoustic signals into electrical ones and to
filter and measure them, it was possible to build exact and relatively simple
spectrum analysers. The principle is shown in fig.4.3.34:

C FILTER

IN o— —o QUT

freq

freq freq

Figure 4.3.34 Spectral analysis.
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The filter is for example a harmonic oscillator with a high Q-factor. The choice
of O must be considered well. Increasing the sharpness of the filter improves the
frequency resolution but reduces the time resolution because with a sharper filter
the transient is longer. Measurement of the amplitude of the forced vibration can
only be performed when this transient has sufficiently decayed. If we set the
duration of the transient to 7' (see section 3.5.C.2) and use this value for the time
resolution Az, then the relationship between time resolution Af and frequency
resolution Af'is given by the ‘uncertainty” relation (3.19): 4¢-4f > 1

With strongly modulated signals like those in speech and music, sharp filter-
ing is not allowed otherwise the temporal structure that contains the modulation
information would be affected. In this respect the filter bandwidth of our auditory
system (the so-called ‘critical’ bandwidth) is a good compromise between fre-
quency resolution, required to separate signals and signal components, and time
resolution, required to detect the modulation.

Before the introduction of digital analysis methods, spectrum analysis was
performed with analog analysers. Not many of these have survived the competi-
tion with their digital successors. To get only a swift and global impression of the
spectral composition of a signal the (analog) real time analyser, is still a useful
device. This analyser consists of several fixed band filters with adjacent
passbands. See fig.4.3.35.

FILTER | —{ DETECTOR

FILTER }—.I DETECTOR |__L_
I W

1 nisPLAY

-
I_LF ILTER |—] DETECTOR |__,—

Figure 4.3.35 Real-time spectrum analyzer.

All the outputs of all the filter sections are (practically) simultaneously scanned
and the results of the measurements are displayed (LED-display, oscilloscope,
see for example fig.4.3.36).

The spectrograph has been especially developed for the analysis of speech
sounds (in speech research the necessity of paying attention to the time-depend-
ence of the vibration parameters and thus to the modulation aspects was under-
stood much earlier than in music research) by which the time dependence of
frequency (via the frequency axis) as well as of amplitude (via the blacking of
the image) are reproduced. See fig.4.3.37.

The filters used for spectral analysis usually introduce large phase shifts (see
the phase response of the harmonic oscillator, fig.3.5.3b), which means that it is
difficult to measure the amplitude and the phase angle simultaneously. This is
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possible, though, with special measuring devices. For the same reason one can
assume that the phase information given by the Fourier analysis in the inner ear
is not very useful, which actually means that we are ‘phase deaf’. This is indeed
one of Helmholtz’s hypotheses, certainly in relation to the perception of timbre.
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Figure 4.3.36 Figure 4.3.37
Briiel & Kjeer Real Time  Spectrograms of two trombone tones.
Spectrumanalyser.

Some quotations from Helmholtz’s book:
"Wir konnen demnach das wichtige Gesetz aufstellen, dass die
Unterschiede der musikalischen Klangfarbe nur abhingen vor der An-
wesenheit und Stirke der Partialtone, nicht von ihren Phasenunterschie-
den."
("We can therefore formulate the important law that the differences in
musical timbre depend only upon the presence and strength of the
partials, not upon their phase differences.")
This hypothesis was generally accepted, with the convenient consequence that
one need not be bothered with the annoying problem of measuring the phase.
Therefore often only the amplitude spectrum is used, which is even termed ‘the’
spectrum. Based on this hypothesis signal functions with equal amplitude spectra
and different phase spectra will have the same timbre and thus sound identical,
although the wave shape will be different. We have learned in the mean time that
this is not entirely true. If changes in the phase spectrum lead to a change of the
signal’s envelope, then the difference is audible. This problem also crops up in
Fourier synthesis as a method for generating complex sounds. In chapter 7 this
method will be dealt with, but it is already clear here that one must pay attention
to the relevance of the phase angles of the component sine vibrations. Although
not everything concerning phase perception is known, the realization that one
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must be careful in this respect is growing. In a space with many reflections one
can indeed assume that the phase spectrum for the stationary part of the ear
signal is determined by chance, because it is determined by the sum of all contri-
butions of all reflections. As the reverberation component of the received signal
is reduced, this shall be less the case, and when listening with headphones it does
not happen. At such a moment the effect of filters must be critically looked into
because the effect of an equalizer for example (see section 5.4) upon the phase
spectrum can be disastrous. As we shall see these problems can sometimes be
avoided with digital filters because their phase behaviour is much better con-
trolled.

4.4 Time and frequency domain aspects of some signal-theoretical subjects
A. The sampling theorem

The formulae (4.7), (4.8) and (4.9) of section 4.3.C allow the calculation of
spectral coefficients for both time-continuous and time-discrete signal functions.
In practice a time-discrete signal function is derived from a time-continuous one
via sampling, and the DFT serves as an approximation of the time-continuous
formulas. For that reason we used the @' and &' notation.

We shall now ask ourselves what the difference between both spectra actually is.
To that end the following argumentation:

Y (O Cf)

(a) c)

ad P

y Cf)

Figure 4.4.1 Spectra of a time-continuous and the derived time-discrete signal.
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In figure 4.4.1 the (continuous) spectrum shown at (c) corresponds to the signal
function shown at (a). Next we derive from the time-continuous signal function
(a) a time-discrete signal function (b). In the same way as with the analog signal
we can analyse (b) by considering it as a series of infinitely narrow pulses. If we
calculate the spectrum of this then it appears that (as is to be expected with
infinitely narrow pulses) it stretches infinitely over the whole frequency axis and
consists of periodically repeated (and mirrored) versions (‘aliases’) of the spec-
trum of the time-continuous signal. See fig.4.4.1d. The repetitions occur around
the points of symmetry f,, 2f,, 3f... The spectrum is thus periodic with £, as period.
(Pay attention to the correspondence between periodic signal vs. line spectrum
and ‘line’ signal vs. periodic spectrum.) Considering the figure it appears further
that we can reconstruct the original spectrum from the ‘time-discrete’ one by
removing all aliases with a filter. This can be done only if there is no overlap
between the original spectrum and the first mirrored version, stretching from
from f; downward. As can be seen overlapping would take place if the original
spectrum would extend beyond '4f.. This situation is shown in fig.4.4.2.

Cf)

Figure 4.4.2 The alias effect in the frequency domain.

The consequence of overlapping is that frequency components of the original
spectrum become mixed with mirrored components. Afterwards it can no more
be seen what was the origin of a particular component and thus it is not possible
to retrieve the original signal. This is thus the foundation of the sampling theo-
rem:

In principle the original time-continuous signal can be reconstructed
from the time-discrete signal if the sampling frequency is more than
twice the highest signal frequency.

A good example of the consequences of a sampling frequency that is too low is
the well-known stroboscope effect in films, for example, in rotating wheels. In
fig.4.4.3 can be seen what happens if a sinusoidal signal is sampled with a fre-
quency that is too low. The samples that are found correspond to a sinusoidal
vibration with a low frequency (= the mirrored component).
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Figure 4.4.3 The alias effect in the time domain.

B. Digital-to-analog conversion

How does the reconstruction work? In principle rather simply: with an ideal
lowpass filter with a cutoff frequency f; that is equal to 2/, (this frequency is also
called the ‘Nyquist-frequency’ fy) all copies of the original spectrum are
removed. With this, the spectrum is again identical with the original and this of
course holds as well for the signal function. The effect of the filter can also be
described in the time domain: the impulse response (see chapter 5) of the ideal
lowpass filter has the well-known shape of the (sin x)/x function. Every infinitely
narrow pulse of the time-discrete signal is spread out over the time axis and gets
as a time function:

sin n(@-nT)

. r ( -1
n(t-nT) £

T

nT = time coordinate n-th impulse)

If all the (sin x)/x curves of all pulses are added, the original time function is
found back (this is the so-called ‘Whittaker reconstruction’, see fig.4.4.4).

y{(t) y(t)

Figure 4.4.4 Sampling and reconstructing the signal.
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In practice unfortunately it is not so simple. Exact reconstruction is not possible
because a) every finite signal has an infinite bandwidth (there is thus no ‘highest’
frequency), and b) an ideal lowpass filter (with an infinitely steep flank) does not
exist. Such a filter would be non-causal. See section 5.1. The second point has as
a practical consequence that a larger margin is kept between the clock frequency
and what may be considered as the highest signal frequency, the cutoff frequency
£, of the filter, e.g. f,=2.2"f..

Most DA-converters are supplied with a filter because a practical DA-con-
verter can be considered as a combination of a ‘true’ converter (which produces
very short voltage peaks, pulses, which are proportional to the input number) and
a so-called zero-order hold filter that holds the voltage value until the following
clock pulse, by which the well-known staircase output signal originates. This
circuit has the following impulse response from which the amplitude characteris-
tic can be derived using techniques that will be discussed in chapter 5. It is called
a ‘zero order hold filter’.

IN ouT

T
Figure 4.4.5 Zero order hold filter.

This filter characteristic is a very bad approximation of the ideal lowpass charac-
teristic (dashed line). Moreover in the frequency band to be transmitted an un-
wanted attenuation takes place. Therefore on the one hand extra filtering e.g.
with the help of an analog lowpass filter is required, and on the other hand the
loss in the transmission band is sometimes corrected (‘aperture correction’).

C. Changing the sampling frequency (Rabiner, 1982).

In certain circumstances it can be desirable to alter the sampling frequency of a
given digital signal. This is for example the case when devices working with
different clock frequencies are connected, or for the realization of the digital
equivalent of a variable tape speed with the corresponding changes in pitch and
duration. This effect can be attained by changing the number of samples per unit
of time, while still keeping the original clock frequency.

A well-known procedure for changing f, consists of 2 steps: first £ is raised by
an integer factor M and then lowered by another integer factor L. The total
change is:



Signal Functions in the Time and Frequency Domains 161

A/ (4.29)

~|%

Increasing £, (‘interpolation’) occurs by inserting M-1 zero samples (samples with
the value 0) between two samples of the given signal. The spectrum is not altered
by this because when calculating the a- and b-coefficients with the formulae (4.8)
and (4.9) the contribution of the additional samples is zero. This is the case
because

if y(b) = 0, then y(k)'coszn.'llvk = Y(k)'sinZn%k =0

Still the number of samples per time unit has become M times as large. That
means that also the Nyquist-frequency that gives the ‘usable’ part of the spec-
trum has become M times as large. As it appears in fig.4.4.6a the spectrum now
contains unwanted frequency bands (the original aliases) which must be removed
with a filter (fig.4.4.6b).

ad spectrum after interpolation

Cf)

f f £

(b) after filtering

N

£ £ £
N s

Fig.4.4.6 (a) Effect of interpolation on the spectrum.
(b) Removal of the unwanted frequency bands.

The reduction of the sampling frequency (‘decimation’) is if possible still sim-
pler. It boils down to removing L-1 samples from each group of L samples.
Before this can take place the signal must be filtered so that no frequency compo-
nents occur above the new, lower Nyquist frequency (fy /L). In fig.4.4.7 both
operations are shown schematically.
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€
INTERPOLATOR M LOWPASS FILTER
o— lo— —o
(ngarts M-1 zero-samples) fc = fN
(b)
LOWPASS FILTER DECIMATOR L
b .= § /L T| (removes L-1 sompies)
Figure 4.4.7 Interpolation and decimation.
D. Noise

All signal functions of which the course of values is either totally or to a large
degree determined by chance, form together the set of noise signals. These sig-
nals are naturally not periodic and have thus a continuous spectrum. The power
density spectrum is often flat, by which the characteristic hiss sound is audible
which often marks noise signals. An exact specification of the signal function is
only possible by means of a precise description of the course of values. For
obvious reasons this is not attractive and normally the description is restricted to
a statistical one in either the time or the frequency domain.

1. Time domain description.

For this the so-called amplitude density distribution is used. This statistical signal
description (of which the applications are not restricted to noise signals) refers to
the question as to the probability of the occurrence of a particular signal function
value. If we are dealing with real-valued signal functions then the number of
possible values is infinitely large and the probability of a particular value infi-
nitely small. Then the question should be reformulated and should refer to the
probability that a signal function value will lie between two given values. One
can estimate this probability by measuring for which percentage of the total
duration of the signal the signal value lies between the two given limits, With a
‘natural’ signal this percentage will rise if the limits are chosen close to the zero
line. When in this case the signal function is determined by a large number of
random factors (e.g. collisions between elementary particles) one can prove that
the amplitude density function is a so-called Gauss or ‘normal’ distribution. This
curve can be seen in fig.4.4.8. For amplitude density distribution one also uses
the term ‘probability density function’ (pdf). In the case that the pdf is a Gauss
curve one speaks of ‘random noise’.
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To indicate the amplitude of such a signal use is made of the standard deviation
of the normal distribution. This corresponds to the RMS value that we are al-
ready familiar with. Random noise is just one possibility. In fig.4.4.8 another
signal function is shown which alternates at arbitrary moments between two set
levels. To this belongs an amplitude density distribution with two (equally large,
namely corresponding to 50%) peaks at the two possible amplitude values. This
is also shown in fig.4.4.9. We speak here of ‘binary’ noise.

Py

a. speech

b. noise (random)

C. noise (binary) P (y )
d. sine wave

c
b
a d
t ,-J'\P‘ N'\“
@ y
Figure 4.4.8 Fig4.4.9
Probability density function. Probability density functions of some signals.

A third possible distribution occurs in noise signals which result from random
values generated by a computer that are sent to a DA-converter. For this a com-
puter program is needed. There are programs that produce numbers that have a
normal distribution but with most programs the random numbers are equally
distributed between two boundaries. This corresponds with a flat pdf as we saw
already when we dealt with quantization noise (section 4.2.A.2, fig4.2.3).
Amplitude density distributions can also be determined for other signal functions
than noise signals, to arrive at a statistical description of that particular function.
In fig.4.4.9 such distributions are shown for several signals (under which we find
random noise and binary noise). As it already appears from out these examples,
the distributions say nothing about the sound characteristics of the signals. Sig-
nals that have totally different distributions are sometimes not distinguishable by
ear. In this respect the frequency domain specification, to be discussed now, is
more relevant than the time domain specification.
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2. Frequency domain description.

In the frequency domain a noise signal is described by a continuous amplitude
spectrum or a continuous power spectrum (the so-called power density spectrum
or pds). Based on this spectrum one distinguishes several different types of noise.
We shall concentrate on the pds and will place two graphic representations
beside each other: one in which the energy is measured with a filter with a con-
stant bandwidth (e.g. 100 Hz) and one in which a filter with a constant frequency
interval (e.g. a third octave) is used.

a. white noise.

Here the continuous spectrum consists of a horizontal line (fig.4.4.10a) with the
first filter, and a rising line of 3 dB per octave (fig.4.4.10b) with the second.

(@) (b
dB/Hz dB/int
3 dB/oct

log f log f
Figure 4.4.10 White noise.

The qualification ‘white’ has its origins in a comparison with light where a
mixture of all frequency components (colours) gives white light. The rising of the
spectrum in the second case is explained as follows: with white noise there is a
constant energy density which means that the quantity of energy ‘per Hz’ is
constant.

If we compare the amount of energy in the octave 100 - 200 Hz with that in
the octave 200 - 400 Hz than the second octave contains twice as much energy,
and this holds for each consecutive octave. Because pitch perception is linked to
the logarithm of the frequency relationship it holds that the same interval (the
octave) has double the amount of energy. In our perception of white noise the
high frequency energy thus dominates, which gives the noise a sharp hissing
sound.

The factor 2 in the energy relationship per octave corresponds to 3 dB, and the
rising characteristic has thus a steepness of 3 dB/octave. The constant-interval
filter thus simulates the working of the hearing organ. Natural noise signals have
often a ‘white’ spectrum and that holds e.g. also for the noise produced with
uniformly distributed random numbers (see section 6.3.B.5).
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b. pink noise.

For our ears a much more balanced noise signal occurs if we send white noise
through a lowpass filter with a falling 3 dB/octave characteristic. The spectra of
fig.4.4.11 are the result. Such noise is called ‘pink’ noise (to keep the analogy
with light) because the low frequencies (=red light) are now more strongly repre-
sented. Instead of speaking of a decay with 3 dB/octave we can also say that the
energy is proportional to 1/f . These two statements are equivalent, because
doubling fleads to a factor 0.5 = - 3 dB in energy.

@) >
a8/Hz dB/int
k
log f log f

Figure 4.4.11 Pink noise.

Pink noise also occurs in nature. With such very different phenomena such as the
activity of sunspots, fluctuations of the electrical current in semiconductors,
nerve membrane potentials, the water level of the river Nile and also with certain
acoustic parameters in music occur statistical fluctuations that have a characteris-
tic of approximately 1/f.

Another statistical phenomenon that is well-known in physics is the so-called
Brownian movement of microscopically small particles in liquid, that has a
p.d.s. that is proportional to 1/ (decays with 6 dB/octave). For obvious reasons,
this noise is called ‘brown’ noise. Pink and brown noise are examples of noise
that do not have a flat density spectrum. Another example of this is arrived at if
we send white noise through a band filter. In this way we get band noise where
the energy is concentrated in a small part of the frequency range. We can also use
a number of adjustable filters (an ‘equalizer’) and adjust the spectrum to our
wishes (‘shaped noise’).

With the determination of the spectrum of a given noise signal we have the
choice of two possibilities: calculation via the DFT (or FFT) or measurement
with an analyser. In both cases it holds that the spectrum of a short signal frag-
ment shows large statistical fluctuations. To get more insight into the global
shape of the spectrum we must average it out. With the DFT we do this literally
by determining the average of a (large) number of spectra. With the analog
method the built-in (and sometimes adjustable) response time (the so-called ‘time
constant’) of the system takes care of the averaging. After averaging detail infor-
mation is lost. It is then not possible anymore with the DFT to transform back to
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the original time function. Below in fig.4.4.12 registrations of white, pink and
brown noise can be seen.

white noise

pink nNoise

brown noise

Figure 4.4.12 White, pink and brown noise.

4.5 Orthogonal functions and signal transforms
A. Vectors and functions

Via Fourier transformation an arbitrary function is reduced to a combination of
elementary functions. It appears that this process shows similarities with the
description of a vector by means of its coordinates. First we shall have a look at
the properties of vectors and then delve into the similarities existing between the
two representations.

A vector is a quantity with a particular ‘value’ and a direction. Such quantities
often occur in physical descriptions (forces, speeds etc.). They are represented
symbolically by means of arrows. The length of the arrow represents the value of
the vector and its orientation the direction of the vector. Because two vectors
generally have different directions the rules for addition are different from those
for the addition of numbers. Addition of vectors takes place by means of the
well-known parallelogram construction that we used already in chapter 3 when
calculating the opposing force in a vibrating string (section 3.1). In fig. 4.5.1 the
sum and the difference of two vectors (also vectors themselves!) are shown.
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Reversely a given vector may always
be split into two (or more) components.
We can for example reduce a vector in
three-dimensional space to three basic
vectors, the projections of the vector
upon the three axes. (To make clear in
a formula or calculation that we are
dealing with vectors in this book a
small arrow is printed above the sym-
bol in question.)

Let us have a look at how a vector &
can be described with the help of its
coordinates in three-dimensional space.
In fig.4.5.2 a vector a can be seen and
also the projections of & upon the three
axes. The three coordinates a,, a, and
a; can also be considered as weighting
factors by which the 'unit vectors' #;, #,
and #; must be multiplied before being
added together to form the vector &

-b

3
j 5. sition of a 7 = e o= o
Figure '4 5 2' Decomposition of @ =a i va, i, ra, i, ¥y a i,
vector in unit veclors. n1

This principle can also be applied without any problem in spaces of more dimen-
sions, and even in those of infinite dimensions. We cannot imagine such spaces
but the mathematical definition is quite possible. Such spaces are useful in the
analysis of problems with many variables. A vector in a N-dimensional space can
be described as:

N
d@=Y ai (4.30)
n=1

A system of N mutual perpendicular axes is called orthogonal. The length of a
single vector (which is designated with the vector symbol between absolute-value
stripes: |a]), and also the angle between two vectors can be derived from the
coordinates. Regarding the length, we know the relation in two dimensions as the
theorem of Pythagoras:
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This can be generalized for N dimensions
- by:

! |@)> =) a’ (4.31)

Concerning the angle between vectors in a
2, two-dimensional case (see fig.4.5.4) we
work with the ‘generalized’ theorem of
Pythagoras, also called the ‘cosine rule’:

Figure 4.5.3 Pythagoras theorem.
€ = |a|* + |8]” - 2]a|"|8] cos &

(If ¢ = 90° this becomes the ‘normal’ theorem of Pythagoras.) If we designate
the coordinates of 4 and ¥ with (a,, @) and (b,, b,) we can derive the following
expression for |&]2

2

|&1%= (a, -5, + (@,-b,)* =a} -2a,b, +b +a] -2a,b, +b,

fl

al2 + a22 + b12 + b; - 2(ab, + a.b)

la|® + |I;|2 - 2(ab, + ap)

= Comparison of the two expressions for
: | ¢]2 shows that

0l

|a@| |b|cosd =ab, +ab,

oL , = This can also be generalized for spaces of

D! ! N dimensions:

a N

@l-|blcosd = Y a,b (4.32)

n-1

Figure 4.5.4 The cosine rule.

(With ¢ = 0 and thus &= & we have again the rule for the length of a vector.) We
abbreviate (4.32) to @' - b and call this the ‘dot product’ of the two vectors @ and
b. The dot product itself is a scalar.

If two vectors are perpendicular, their dot product equals 0, because the cosine
of 90° is equal to 0. This gives the possibility of testing the orthogonality of
vectors. In fig.4.5.2 the vector # has the coordinates 1, 0 and 0, and vector i, the
coordinates 0, 1 and 0. The dot productis: 1:0+0-1+0-0=0
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A system of orthogonal vectors, each with a length 1 (such as the three unit
vectors u,, 1, and @ of fig.4.5.2), is called orthonormal. Two vectors, & and b are
orthonormal if:

N 0if @ * b (then cos ¢ = cos90°
> apb, - (4.33)
1 1ifd = b

The dot product also makes it possible to determine the coefficients a,. The
coefficient @, can be calculated via the dot product of vector 4 with the unit
vector

- —

au, =a @ -u)+auu)+. .. +tau u)+.. . =a,

The concepts of orthogonality and orthonormality can be applied also to
functions. A set of functions ¢,(t) is called orthonormal in the interval (1,,1,) if for
each pair of functions ¢(r) and ¢¢) in this interval the following relation holds:

f 0ifi*j
f b -dmde =y (4.34)
: 1ifi =j

If one realizes that an integral is in fact an ‘infinite sum’, then apparently this
definition has much in common with that of the orthonormality of vectors. In the
same way as an arbitrary point in a space can be considered as a vector, a
weighted addition of several elementary orthonormal vectors (the unit vectors),
5o an arbitrary function can be described as the ‘weighted’ sum of a number of
elementary orthonormal functions ¢,. We thus have next to each other:

N ©
a = E a4, and y() = Yy e, b 1, <tsy
n=1 rn=0

As the coefficient a; can be determined via the dot product of @ and %, , so the
coefficient ¢, can be determined via:

f@wmw=[®m{2c;@m}m:§:g [e0 b mdrp =,
n 0 n-0

b

or o = [ ) y@ar (4.35)

H
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This holds for every set of orthonormal functions, such as Legendre polynomials,
Laguerre functions, and the sets upon which the transforms are based which bear
the names of their ‘discoverers’: Fourier and Walsh. (See also Ahmed et al.
1975.) The Fourier transform has been dealt with in detail. In problem 2.15 we
saw that functions of the type sin 2mnft and cos 27nnft are orthogonal. We shall
spend a short time on the study of the Walsh transform.

B. The Walsh transform

It was shown in 1923 by J. Walsh that the system of functions of which the first
eight are shown below, is an orthonormal system.

wal(@.t) zi —
-1

wal(1,t) _c;i ]l =L Spit1,1)

wal(2,t)? : 1 | =E.  Cal¢1,T?
=1

wal(3,T? ai‘ ] =t SaIc2,t)
-1 I————l

wal(d,t? 4 ] | [= Cal(2,t)
-1 ;——l

1

Wwal(S.t) zl =L Sa1¢3,T)
-1 R—
-9

| | ] L1
wau?.t):l» 1T

Figure 4.5.5 The first eight Walsh functions.

=t Cait3,t)

1= saica R3]

—1

The definition of the functions is based on the interval (0,1). The functions are
given with Wal(n,7), in which ¢ may take values from the interval (0,1), and
whereby n gives the rank order and also the number of zero-crossings of the
particular functions. There is some similarity with the concept of ‘(half) fre-
quency’ of the Fourier transform. In Walsh transforms the term ‘sequency’ is
made use of. There is no simple function rule for the Walsh functions, and there-
fore we can not directly check their orthogonality or orthonormality. With the
help of the graphs above we can see that the product of two arbitrary Walsh
functions has again the typical square wave shape and that the area above the
zero line is equal to that under that line so that the total area (=the integral) is
Zero.
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The product of a particular Walsh function with itself gives the constant value 1,
so the area is 1 again. There exists a recursive definition for Walsh functions by
which higher-order functions are expressed in lower-order functions. Figure 4.4.5
shows that Walsh functions with an even rank number are symmetric around
1=Y2, and that those with an odd rank number are mirror-symmetric. We call such
functions ‘even’ and ‘odd’ respectively. The Fourier functions have the same
characteristic because cos 2nnfi is symmetric around %7 and thus ‘even’, and sin
2nnfi is mirror-symmetric around 27 and thus ‘odd’. For this reason Walsh
functions are divided into two groups according to their rank number, namely the
even ‘Cal’-functions and the odd ‘Sal’-functions, where the C and S are bor-
rowed from the Fourier functions. As with every orthonormal system the arbi-
trary function )(f) can be written within the interval (0,1) as

y@ = 5:_: d Wal(n,t)

n=0

In correspondence with what was stated about orthonormal functions above it
holds for the coefficients d, that:

1

d, = fy(t)' Wal(n,t)dt
0

We can also work with the Cal- and Sal-functions:

)

y(@®) = a,Wal(0,1) + Y la CAL(n,1) + b SAL(n,1))

n=1
with a,=d,a,=d,,and b,=d,,,.,.

An attractive characteristic of Walsh functions is that the calculation of the
coefficients d, is very simple: the interval (0,1) is subdivided into a number of
segments of equal length (this number is a power of 2); in each segment the
function is either multiplied by +1 (thus left unchanged) if Wal(n,f) for those #-
values is equal to +1, or multiplied by -1 (mirrored) if Wal(n,?) is equal to -1.
Then integration follows, which means that all integrals over all segments are
added together. Thanks to its binary structure the Walsh transform is especially
easy to implement with the help of a computer. Just as for the Fourier transform
there is an efficient and fast algorithm, called the F(ast) W(alsh) T(ransform).

If one calculates the Walsh transform of a sine function the following values
are found for the first 16 coefficients:
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d, = 0.0 d, = 0.0 ds = 0.0 dy, = 0.00
d = 0635 d, =-0275 d, =-0.051  d;,=-0.127
d, = 0.0 ds = 0.0 dy= 0.0 d,= 0.0
dy = 0.0 d, = 0.0 d, = 0.0 dys= 0.0

I A 0 I N B
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Figure 4.5.6 Walsh synthesis of a sine function.

Figure 4.5.6 shows the four Walsh functions Wal(1,7), Wal(5,7), Wal(9,7) and
Wal(13,7), each multiplied by the corresponding d-coefficient taken from the
table above. At the top the sum of the four Walsh functions can be seen, a
staircase-like (‘piecewise constant’) approximation of the original sine function.
It holds here as well that the approximation is more accurate when more func-
tions are used in the addition.

Generating Walsh functions electrically is simple. In chapter 7 the construc-
tion of a Walsh synthesizer will be discussed. We shall see then that only a few
elementary digital circuits are required. For that reason Walsh synthesis is used
as a form of sound synthesis. For example the easiest way to construct a sine
wave oscillator is to generate the four Walsh functions at the side and add them.
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4.6 Problems

4.1

4.2

43

4.4

4.5

4.6

4.7

4.8

49

4.10

Give the octal, hexadecimal and binary equivalent of the following deci-
mal numbers. Use a 16 bit, two’s complement notation.
a.2748 b.-300 c.592 d. -592

Calculate sum and product of the following pairs of numbers:
a. 1100110, and 1011,,

b. 612, and 764,

c. 1A7,¢ and 29,.

Given a 16-bit AD-converter with a voltage range of 0 - 10 volt. Which
numbers (in octal notation) will be produced by the converter when the
input voltage is equal to:

a. 05V b. 437V c.8890V

Using the same convert as in problem 4.3, calculate the input voltage
when the converter value is equal to
a. 17, b. 1417, c. 2717,

The proportion between the peak value and the RMS value of a signal is
3. Calculate the Signal-to-Noise ratio after conversion by a 12 bit AD-
converter.

What is the slew rate (= maximal speed with which the voltage can in-
crease) of the output voltage of a deltamodulator when the stepsize is 5
mV and the clock frequency is 450 kHz?

The deltamodulator of problem 4.6 receives a sinusoidal input signal
with an amplitude of 5 volt. Calculate the maximal frequency of this sine
wave that can be tracked by this modulator.

One period of a periodical signal is sampled. The 16 samples are given
below. Calculate amplitude and phase of the fourth harmonic.

1.72 2.14 -1.68 -0.32 2.59 1.46 -2.81 -432 -1.76 0.56 1.53 -2.87
-4.48 3.25 2.45 147

Using Parseval’s theorem calculate the RMS value of one period of a
triangular signal fluctuating between -1 V and +1 V. Compare this result
with that of problem 2.3.

Calculate the spectrum of the squarewave signal of fig.4.3.9.
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4.11 Given a time-discrete signal fragment of 512 samples. No window has
been applied, and the sampling frequency was 20 kHz.

a. The spectrum has a peak with the following maximal amplitude
coefficients: C;s = 720 and G, = 480. Give an estimate of the frequency
and amplitude of the signal component that caused this peak.

b. Where and how do we find a frequency component of 750 Hz with an
amplitude of 550 in this spectrum?

4.12  Calculate the Fourier coefficients of the following signal function (a
‘rectified’ sine wave).
\ /
\ / \ /
\ /’/ \ /
\
\/ \/
T
4.13  The period duration of a pulse signal is 8 ms, the pulse width is 1 ms.

a.  What is the frequency of the first harmonic?

b.  Which frequency components are missing in the spectrum?

c.  What is the level difference in dB between the first and the fourth har-
monic?

4.14  Calculate the continuous spectrum of the single pulse signal; shown
below. Calculate the location of the ‘point of gravity’ of this signal using
rule (4.19).
o,
A
t, t
4.15  An AD-converter with a clock frequency of 40 kHz receives a sawtooth

signal with a frequency of 7 kHz. Calculate eventual mirror frequencies
which are caused by the first five harmonics due to aliasing.
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4.16

4.17

4.18

Given a DA-converter with a zero-order hold filter. Calculate the aper-
ture correction in dB which should be applied at the maximal signal
frequency to compensate the attenuation in the pass band. Answer the
same question for the case that fourfold oversampling has been applied.

Check with the same method as used in section 4.3.H for coefficient a,,
that it makes no difference whether a,, b, and b, are calculated according
to fig.4.3.31 or to fig.4.3.32.

Fig.4.3.13 shows one period of a periodical pulse signal. Calculate the
Fourier coefficients a,, a, and b, .



CHAPTER 5

System Theory

A signal processing system is a functional unit with one or more inputs to which
we can supply signals, and one or more outputs where we can take off signals.
An example of such a system is the harmonic oscillator that we got to know in
chapter 3. In this chapter we will deal in the first place with the general proper-
ties of systems and we will treat the system as a ‘black box’ because we are only
interested in the relation between the output and the input signals. Later in this
chapter and particularly in the next chapter the ‘inside’ will be dealt with.

The black box approach has the advantage that very different systems
(acoustical, electro-acoustical, electronic, analog and digital systems, and also
systems like the speech and auditory organs) can be treated in the same way, and
it does not matter whether we are dealing with acoustical, electrical or other
signals. The following discussion is based on the diagam below with input signal
x(¢) and output signal y(1).

IN ouT

xt)e ' SYSTEM ' .« y

5.1 Classification of systems

For the classification of systems several criteria can be used. As there are time-
continuous and time-discrete signal functions, so there are time-continuous and
time-discrete systems. This distinction often (but not always) corresponds with
the classification analog/digital.

Based on certain properties of the relation between the output signal y and the
input signal x systems are distinguished in /inear and non-linear systems and
besides that in time-invariant and time-variant systems and causal and non-
causal systems. We will in the first place delve into some possible classifica-
tions.



178 Chapter 5

A. Analog and digital systems

With analog systems the signal function has a physical ‘carrier’ (electrical volt-
age, air pressure, magnetic field etc.) that fluctuates as a time-continuous func-
tion. Upon this principle the construction of the system is based: an analog sys-
tem accepts and produces such signals. On the other hand digital systems execute
calculations with binary coded and electrically represented numbers derived from
the signal function via sampling. They do so on the basis of a series of instruc-
tions, a program. In the following I will not always deal separately with both
possible systems. In those cases where the analog and the digital version behave
in the same way it is sufficient to deal with one of them.

B. Classification based on the input/output relation
1. Linearity

The most important classification of systems is based on the distinction

linear/non-linear (see also Gabel et al. 1973 and Poularikas et al. 1985). We call

a system linear if both the homogeneity principle as well as the superposition

principle are valid.

a) The homogeneity principle implies that multiplication of the input signal by a
certain, constant factor leads to multiplication of the output signal with the
same factor. If we symbolize the relation between the input signal x(7) and the
output signal y(7) as follows:

x(0) > p(1)

then the homogeneity principle is valid if
ax(t) => a(r) 3.1
b) Set the input signal x(7) equal to the sum of two signals or:
x(1) = () + x(0)

If then the output signal consists of the sum of the two output signals y,(7) and
() which belong to each of the input signals, we say that the superposition
principle is valid.
Symbolically:
if x,() > y,(1) and x(1) 3 y,(1)
(5.2)
then x,(1) + xy(1) = (1) + yo(1)
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Both principles may be combined:

ax,(1) + bx(1) > ay, (1) + by(0) (5.3)

The superposition principle implies that no mutual influence or interaction of
signals takes place. Compare e.g. an amplifier (linear) with a squaring circuit
(non-linear):

amplifier

input/output relation: y(1) = Ax(r)

With input signals x,(f) and x,(f) we get y,(f) = Ax,(f) and y,(f) = Ax,(1)
With input signal x(¢) = ax,(t) + bx,(1)

we get W) = A{ax,(1) + b}= adx,(f) + bAx,(1) = ay,(1) + by, (1)

squaring circuit
input/output relation:  y(¢) = x*(1)

With the same input signal as in the previous case we now get the following
output signal: M) = () w0} =x2 (1) + x5(1) + 2x,(0x(1)

=AY X0 + 2x,(0x,(1)

2. Time-invariance

We call a system time-invariant if the input/output relation does not change with
a shift in time. The behaviour of the system depends in that case not on the point
in time upon which it is used.
Symbolically:

if x(1) = (1) then x(¢-7) > w(i- 1) (5.4)

3. The sine in/sine out-principle

It is not always easy to decide whether a given system is linear and time-invari-
ant or not. The most simple situation is that the system equation, the mathemati-
cal relation between the input and the output signal, is known. If the system is
linear, the same holds for the (differential or difference) equation, and if the
system is time-invariant, the equation has constant coefficients. The equations of
the harmonic oscillator that we discussed in chapter 3 have these properties and
so the harmonic oscillator is a linear, time-invariant system.

It will become harder if the system is a real black box. Sometimes one may
have recourse to testing it via the ‘sine in/sine out principle’. This term refers to
the fact that, if to a linear, time-invariant system (a so-called LTI system) a
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sinusoidal signal is connected, the output signal will be sinusoidal as well, with
the same frequency but possibly another amplitude and/or initial phase angle.
Symbolically: x()=A;sinQuft+ ) Dy =A4,sinRufr+¢,) (5.5)

Proof:
Suppose that with the input signal x(¢) = sin w (setting 4, = 1 and ¢, = 0 simpli-
fies the calculation) corresponds the output signal (1) = f.(¢), so

sinwt D> f, (1
then we have to prove that f(f) = A-sin(wt + )
First we calculate what )(¢) is, if the input signal is a cosine function. From the
time-invariance the following relation follows that is valid for all 7-values:
sinw(+7T) > f,(t+171)
Choose 7' = n/2w:

T
2w

sin@(t + ——) = sin (@ + L7) = coswt ~ f,(f + ——)
2w 2
s
So: coswt = fi(t + —)
2w
We can also work out the fact of the time-invariance as follows:
x(t+7T) = sin(t+7) = sin ! cos W + cos w! sin w!

With the superposition and homogeneity principle we can deduce that

y(A+T) = £t +T) = f,(f) cos T +f0(t+2—’:0—)sinwr

This holds for all values of ¢. Thus it is allowed to assume that 7 = 0:

»(T) = f(T) = £,(0) cos T +J:,(2-’f;) sin T

Both f,(0) and £ (n/2w) are constant. Let us replace them by respectively 'p' and
'a’, and let us interchange the two terms. Then we get

y(T) = f(T) = asin®T + bcos wT

Because this holds for all values of 7, we may write ¢ instead of T

W) = fo() = asinwt + b cos wit
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This can be elaborated in the known manner (rule(2.56)) to

y(®) = f,() = Asin(wr+) with 4 = ya® + b2 and tan¢ = %

showing that the output signal is indeed the desired sine function.

Electrical systems can with help of the sine in/sine out principle be tested for
linearity/time-invariance by connecting the input and output signal to respec-
tively the X and Y input of an oscilloscope. The screen image should for all
frequencies be either a straight line (then ¢, = ¢, ) or an ellipse (if there is a
phase difference).

4. Causality

For a causal system it holds that the output signal which appears at a certain
moment only depends upon the input signal supplied to the system before that
time. This has as a consequence among other things that if x(f) = 0 for <0 (=0
marks the beginning of the x-signal), () = 0 for 1<0. This seems a trivial prop-
erty, but this is not so. While working with non-real time systems (where the
signal function is stored in some memory) it is possible to establish a non-causal
input/output relation.

C. Non-linear behaviour of practical linear systems

Perfect linear systems only exist in theory. Every practical system will show
deviations from the ideal linearity. We call this non-linear distortion. To indicate
how near a system approaches the ideal, the amount of non-linear distortion
should be indicated. That is not easy because non-linearity is not so much a
property as the absence of it. In practice one manages by measuring the devia-
tions of the sine in/sine out principle and/or the superposition principle. These
deviations are defined by the harmonic distortion and the intermodulation distor-
tion respectively.

1. Harmonic distortion

If the sine in/sine out principle is not completely valid, this mostly means that a
sinusoidal signal with a somewhat deviating but periodic wave shape appears at
the output. This means that to the signal harmonics are added and one specifies
the amount of harmonic distortion via the ratio (in %) between the RMS value of
the unwanted harmonics and that of the total signal.

The RMS value is the root of the average energy, and thanks to the theorem of
Parseval the energy can be determined by the amplitudes C, of the harmonics.
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Thus we find for the total harmonic distortion (THD):

Jeieciecls.
c

_fCirclecis (5.6)

~-100% = ~-100%

Jeirciecl .

THD

1

The simplification is justified by the fact that C,, C;,... <<C(,.

One can measure 7HD by measuring the RMS values of the signal with and
without (i.e. suppressed by a filter) the first harmonic. Sometimes the harmonic
distortion per frequency component is specified:

C
= " . oy ~ _ ", o,
d . - 5 100% c 100% (57)
JervCrvCi !

2. Intermodulation distortion.

If the superposition principle is not completely valid, interaction between the
signals occurs. A consequence of this interaction could be that with two sinusoi-
dal input signals the output signal contains new components with sum and differ-
ence frequencies. This can be seen as follows.

The most simple linear relation between input and output signal is given by the
equation y = ax. In the case of a non-linear relation, this equation is replaced by
the following power series: y=ax +axt+ ax*+t. ...

With the input signal x(f) = sin w,t + sin wy!

appears as output signal:

y(t) = a(sin w1 +sin ©,7) + a,(sin W + sin (o2t)2 + a,(sin @, ¢ + sin (n)zt)3 + .

The quadratic term can be worked out to:
a,(sin W, f + sin W,1)* = a,(sin’w, £ + 2 sin O, tsin W, + sin’*w,f) =

= az{—;- - %cos 20,1 - cos(W, + W) +cos(®, ~ W)t + % - %cos2w2t}
Thus new frequency components (w,+w, and 63 -u ) appear. In the same way it
can be shown that the cubic term results in the new frequency components
20)14‘0)2, 2&)1-0)2, 0.)1+2(l)2, wl‘z(l)z.
One can show in general that the k-power term leads to the frequencies

|mw, + hw,| with m + n = k (5.8)
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These distortion products are more annoying than those caused by harmonic
distortion because of the non-harmonic relation. The intermodulation distortion is
specified in the same manner as the harmonic distortion via the proportion be-
tween the RMS value of the unwanted components and that of the total signal.

Non-linearity is only an unwanted property if the system concerned is sup-
posed to be linear. For a number of applications non-linear systems are very
important. This applies to e.g. measuring techniques, the modulation of signals
and sound synthesis techniques.

Linear systems are used for the conversion, amplification and recording of
signals. The theoretical treatment of both subjects is very different, because for
the linear systems there is a elegant, generally applicable method.

For non-linear systems no uniform method exists, so that every system must
be treated separately. The possibility of analysing such systems numerically with
the aid of a computer has led to the fact that also from a theoretical point of view
attention has substantially increased, and that for the analysis of these systems a
theoretical foundation has been laid down. In chapters 6 and 7 several non-linear
systems and operations are discussed.

5.2 The description of linear systems

For the analysis of linear, time-invariant systems there are besides the solution of
the system equation (the method used in chapter 3) two more methods. The first
focuses on the time domain, by tracing what the system ‘does’ with a given
signal function. The second is a frequency domain method, based on the sine
in/sine out principle. With this it is checked what the influence of the system is
on the amplitude and phase of the spectral components. As we will see there is a
close relationship between both methods, which is not astonishing, because it is a
matter of different approaches to the same system.

A. Time domain description; impulse response and convolution

With a linear system it is possible for a given input signal x(¢) to predict what the
output signal y(f) will look like, if it is known how the system reacts to the input
signal that consists of only one impulse. This reaction, this output signal we call
the impulse response of the system. How this works can be shown most easily by
a time-discrete system. As we shall see, it is a question of direct application of
the superposition and homogeneity principles, and of time-invariance. The exam-
ple is a digital system that consists of a time delay (= two memory cells P and
Q), an adder and a multiplier as shown in fig.5.2.1.
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Figure 5.2.1 Impulse response of a time-discrete system.

Samples shift from P to Q. In Q we find numbers that were previously in P.
These numbers form the output signal. In P the input samples are placed, after
half of the value of the number in Q has been added. The difference equation for
this system is: y;, = x, + Y2y,

This is a linear equation with constant coefficients. So the system is linear and
time-invariant. The input signal consisting of one pulse is indicated by 8(k), The
corresponding output signal, the impulse response, by /(k). Below a simple
computer program has been listed which we may look upon as the software
version of this system, and which is of the same type as the programs we used in
chapter 3 for the time-discrete harmonic oscillator.

P=0 k IN=5(k) P=IN+4Q Q

Q= 0 =OUT=h(k)

IN= 0 1 1 0
5Q= 1 0 0.5 1

P=Q 05+IN 2 0 0.25 0.5

OUT = 30 0.125 0.25

CALL WAITCL 4 0 0.0625 0.125

IN=0 5 0 0.03125 0.0625

GOTO 5

If the start situation is that P and Q are equal to 0, we can trace what happens if
we once supply the number '1' as an input signal. The first 6 output samples are
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shown in the table. The impulse response thus takes the values 1, 0.5, 0.25, . . .
successively. Somewhat more accurately:

h(k) =0 if k<0 andh(k):-l—k itk >0
2

This impulse response is infinitely long. A system with an infinitely long impulse
response is indicated by the letters IIR (Infinite Impulse Response). If the im-
pulse response is finite, we use the term ‘FIR system’ (Finite Impulse Response).
Imagine the case that we further supply to this system an (arbitrarily chosen)
input signal which consists of 5 samples:

x(-2)=3,x(-1)= 1, x(0) =2, x(1) = 1.5 and x(2) = 1.

To check what now appears at the output we regard this input signal as the sum
of five input signals, each consisting of one single pulse. See fig.5.2.2.

The calculation of each of the five output signals which correspond to their
input signals is easy. The only difference between these signals and that with
which we have derived the impulse response is a shift in time and a change of
amplitude. Because of the time-invariance the first means that the output signal is
shifted in time correspondingly, while because of the homogeneity principle the
amplitude factor is passed on directly to the output signal. So we see that the first
pulse with amplitude 3 and index -2 leads to an output signal that begins with a
sample with value 3 and index -2 and subsequently consists of a series of pulses
decreasing by a factor 2.

The value of each sample of the complete output signal can be calculated by
adding the five corresponding output samples. Let us for example see how the
value of (1) can be calculated. In the figure we see that

(1) =10.375 +0.250 + 1.000 + 1.500 + 0.000 = 3.125
Every number in this series is a sample of the impulse response multiplied by the
value of the ‘isolated’ x-sample which is used as a scaling factor. For the first
number A(3) (=0.125) is multiplied by x(-2) (=3.0), for the second #(2) (=0.25) is
multiplied by x(-1) (=1.0) and so on. We may thus also write:
W1)=3.0-0125+10-025+20-05+15-1.0+1.0-0.0=3.125

or with the x- and s-samples:

(1) = x(-2) - h(3) + x(-1) - h(2) + x(0) - h(1) + x(1) - h(0) + x(2) - h(-1) =3.125
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Figure 5.2.2 Convolution.
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The index of the A-coefficient always follows from the ‘distance’ between the
input and the output sample. We find the #-index by calculating the difference
between the index of the output sample (here the '1' of y(1)) and that of the input
sample:

h-index = y-index - x-index.

This leads us to the following expression for y(1):

y(1)=x(-2)  h(1-(-2)) + x(-1) - h(1-(-1)) +
+ x(0) - h(1-0) + x(1) - h(1-1) + x(2) - h(1-2)

From this it follows what the general expression is for the output samples y(k) at
an arbitrary input signal x and an impulse response 4:

yk)y=..  +x(-5) h(k-(-5)) +x(-4) - h(k-(-4)) + x(-3) - h(k-(-3)) +
+x(-2) * h(k-(-2)) + x(-1) - h(k-(-1)) + x(0) - h(k-0) + x(1) - h(k-1) +
+x(2) - h(k-2) + x(3) - h(k-3) + . ..

Or in short:

o

yky = Y, x(n)-h(k-n) (5.9)

n=-w

This expression is named the convolution sum. One also says that the output
signal y is the convolution of the input signal x and the impulse response h and
often the following shorter notation is used:

y(k) = x(k) * h(k) (5.10)

The convolution principle can also be applied to time-continuous signals, for
such signals can also be looked upon as series of (infinitely densely superim-
posed) pulses. Instead of a sum we then get an integral:

o

y@ = [x(@) k@ -vdT = x() * h@) (5.11)

-0

The convolution principle here is, however, mainly of theoretical importance,
while it is also applied practically to time-discrete signals. As an example I will
describe the principle of the so-called ‘transversal’ digital filter (the exact mean-
ing of this term will be explained in section 5.4).
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Suppose that we want a system (filter), of

nee which the impulse response consists of four
14 samples:
hO) = 1.1, h(1)=0.6, h(2)=1.4, h3)=0.5
(see fig.5.2.3). If we now write out the
convolution sum
%] 1 2 3 N

y(e) = 3 x(n)-h(k-n)
Fig.5.2.3 "
Desired impulse response.
we need only take into account the terms in
which A(0), (1), A(2) and A(3) occur, as all other A-values are equal to 0. We
must thus determine the k-indices for which 4 -» is equal to 0, 1, 2 or 3:
k-n=0 = n=k-0=k

k-n=1 = n=k-1
k-n=2 = n=k-2
k-n=3 = n=k-3
Thus: y(n) = x(k) h(0) + x(k-1)h(1) + x(k-2)h(2) + x(k-3)-h(3)

This operation can be realized with the circuit of fig.5.2.4, which consists of a
series of (here: 4) memory cells or registers. Every time a new input sample
appears the numbers in the four registers shift one place to the right. The number
on the far right disappears. The contents of the four registers are, in the given
manner, multiplied by the A-coefficients. The products are added. In this way the
above sum is realized.

x O—)i x k) _I——)I xCk—1) Hx(k-?H x(k-3)—|

Figure 5.2.4 Transversal filter.

Y

Such a FIR filter is called a transversal filter. It is easy to design and always
stable. A ‘long’ impulse response however requires a proportionally large num-
ber of multiplications. If we send into this system a single 'l' we see that the
output signal indeed consists of the three consecutive impulses 4(0), h(1), h(2)
and h(3).
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B. Frequency domain description; the frequency response

This description is based on the sine in/sine out principle by considering that

- every signal can be looked upon as a summation of sine vibrations,

- for a sine vibration the phase angle and amplitude is possibly changed by a
linear, time-invariant system, but not the waveform and the frequency.

Symbolically (see (5.5)): A4, sin 2nft +¢,) > A4,sin 2nft + ¢,)

So if we know per frequency component how much the amplitude changes (e.g.
in the form of the ratio Af YA, (f) = H, (f), the so-called amplitude response,
usually calibrated in dB’s) and if we also know how much phase shift is intro-
duced (the difference ¢,(f) - $.(f) = Ad(f), of the phase response) then we are
able to calculate from the spectrum X{(f) of the input signal x(¥) the spectrum Y(f)
of the output signal y(?).

amplitude response phase response
H tF) APt
(rad)
2
B 2
"]
] ' ! ! " fH2> ’ ! ) " fHz)>
wa 200 300 a0a o 2V 32a 4@
IN ouT
2 m ? ms

+
TN T T T T T~ —
+
\/\/\/—’\/\/\/
+ +

Figure 5.2.5 Construction of the output signal using the frequency response.
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A
Because A4,(f) = A_zg_A (N = H, (N A,(f) we find the following relation for

1

the amplitude spectrum: Y(Hh = X(H - HD (5.12)

The amplitude and phase response of a system can be represented graphically
(see fig.5.2.5); together they form the frequency response H(f) of the system.

Fig.5.2.5 is the frequency domain version of fig.5.2.2. On the left, just below
the dashed line an arbitrary input signal is shown. Below the sinusoidal compo-
nents are depicted. Using the amplitude and phase response for each of these
components it is determined how they appear at the output. This is shown on the
right-hand side. Finally the complete output signal is constructed by adding these
output components.

C. Determination of impulse and frequency response of a system

Just as with the Fourier transform of signal functions we can also determine the

quantities concerned via calculation or by means of measurement.

- Calculation

If the system equation is known one can try to solve it with either a pulse or a

sine function with an arbitrary frequency as input signal. The solution in the first

case is the impulse response A(f), and in the second case the frequency response

H(f). We have applied both methods to the harmonic oscillator, where we have

determined A(?) (the damped sinusoidal vibration) and H(f) (the resonance curve).

With time-discrete systems # is often simply determined by checking what hap-

pens if we send an 'l' into the system. See for example the sections 3.2, 3.4 and

52.A.

- Measurement

a. It is obvious that the impulse response can be measured by recording the
output signal if a short pulse is supplied to the system as input signal.
Examples: Sending a short electrical pulse to a loudspeaker, or firing a pistol
in a concert hall.

b. The frequency response can be determined by supplying a sinusoidal signal to
a system and by measuring the change of the amplitude and the phase shift for
a large number of frequencies. Example: the adjustment of a tape recorder by
means of a test tape.

- Conversion (h »H and H = h)

It is not necessary to measure both # and H, because, as will be shown below,

one quantity can be derived from the other. The spectrum of a single pulse (see

fig. 4.3.17) has zero points. Their location on the frequency axis depends on the

pulse width W as we have seen. The narrower the pulse, the higher the zero point

frequencies. With an infinitely narrow pulse (#=0) the first zero point, which we

meet at frequency f= 1/W, lies infinitely far away, which means that the continu-
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ous spectrum of a single, infinitely narrow pulse is completely flat. It contains
‘all’ the frequencies with the same amplitude (fig.5.2.6). By supplying such a
pulse to the system it is as if we execute the above described measurement at one
blow. Suppose that at the output we then meet the in fig.5.2.7 reproduced signal,
to which corresponds the spectrum also reproduced in fig.5.2.7. This spectrum
reproduces what happened to all the originally equally strong frequency compo-
nents. In other words:

The spectrum of the impulse response is identical to the frequency re-

sponse of the system.

&t A(f)

t f

Figure 5.2.6 Time function and spectrum of a single, very narrow impulse.

Impulse response and frequency characteristic form a Fourier pair. This can be
shown by results found earlier. In the figures 3.3.2 and 3.5.3 the impulse re-
sponse and frequency characteristic of the harmonic oscillator are reproduced. In
section 4.3.G we have looked at the continuous spectrum of a damped sinusoidal
signal. Indeed this spectrum is identical to the resonance curve.

h{t) AF)

F

2 —_—

t f

Figure 5.2.7 Impulse response and spectrum.

In fig.5.2.8 the above is recapitulated. One sees a system with impulse response
h(r) and frequency characteristic H(f ), an input signal x(¢#) with spectrum X(f')
and the corresponding output signal y(f) with spectrum Y(f'). If * indicates the
convolution operation, F the forward and F' the inverse Fourier transform, we
can state the relations between the functions as follows:



192 Chapter 5

W) = x(@) * k) X() = Fix(0)} or x(t) = F'{X()}
Y =X() - HE) Y = O} or W) = FHY()} (5-13)
H(f) = Fih()} or K1) = F'{H()}
IN ouT
x (t) SYSTEM y (t)
o —o

i ooy o
f *

Figure 5.2.8 Relation between input signal, system properties and output signal.

To be able to analyse the system one should know one component of two of the
three Fourier pairs (x,.X), (y,Y) or (1 H). We are then able for example

- to extract the system properties from input and output signal,

- to calculate the output signal from the input signal and the system properties

(‘“filtering’),

- to calculate the input signal from the output signal and system properties

(‘inverse filtering’).

We can follow different trajectories; for example:

given x(¢) and H(f), calculate: h(r) = F''{H(f)} and y(f) = x(¢) * h(?)

or calculate: X(f) = F{x(£)}, then Y(f') = X(f )-H(f) and y(¢) = F'{¥(f)}.

These operations are really performed in practice. In this way via inverse filtering
one has been able to remove the effect of the sound funnel used in old acoustic
recordings and to improve the sound quality of historical recordings.

Sometimes it is possible to calculate from just one of the three components
(the output signal (), both A(#) and x(r). However then there must be extra
information about the signal, for example the fact that the signal is a speech
signal. Examples of such techniques are treated in chapter 7.
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5.3 Distortion-less linear systems

If we do not wish a linear system to influence the signal some way or other we
must make sure that the output signal function is identical to the input signal
function. Two deviations can be tolerated: an possible multiplication of the
function by a constant scale factor p, and an possible time delay ¢, of the total
signal. See fig.5.3.1.

y(t)=pkx(t-t o)
x (T y (1))

ey | *—‘J\W\Ah

e — yin

Figure 5.3.1 Distortionless transmission.
The impulse response of such a system is a by p multiplied and over ¢, shifted
impulse (fig.5.3.2), thus: h()=p-0(1-1,)

&) het) h(D=p*&Ct-1 )
(-3

Figure 5.3.2 Impulse response with distortionless transmission.

We are now able to determine the amplitude and phase response of the system
via the Fourier transform of the impulse response, but also using the argument
that since each signal gets the same amplitude factor p and the same delay ¢, this
also holds for a sinusoidal signal with an arbitrary frequency, amplitude 1 and
initial phase angle 0. According to the sine in/sine out principle it generally holds
that: A, sin Cnfr+ ) > A,sin 2nf1 + §,)

And here:  sin2n ft D psin2n f{t-1,) = psin2n ft - 20 ft,)

The amplitude response is now for all frequencies: H,(f) = Af YA, (f) = p (5.15)
The phase response Ad(f) = ¢,(f) - ¢ () is: Ad(f) =27 f1, (5.16)
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Shown graphically (fig.5.3.3):

HA(f) oAt

1 ' f

Figure 5.3.3 Amplitude and phase response with distortionless transmission.

The system is characterized by a straight horizontal amplitude and a linear phase
characteristic. The phase shift increases linearly with the frequency and the faster
the larger f,. Reversely £, can be derived from the steepness of the phase charac-
teristic by reading the phase shift Ad(in degrees or radians) at an arbitrary fre-
quency. The time delay ¢, can be calculated from: £, = Ad/2nf = AP/360°: 1.

That the phase shift should be proportional to f'can be seen by having a look at
the following example: for a time delay of 10 ms a frequency component of 100
Hz (period duration: 10 ms) must be shifted over one period = 2n radians or
360°. A component of 200 Hz (period duration: 5 ms) must be shifted over 2
periods = 4m radians = 720°.

Usually we want sound processing systems to be linear and distortion-less
over the range of ‘audible’ frequencies, thus from ca. 20 Hz till 20000 Hz. Due
to the assumed phase insensitivity of the ear, not much attention has been paid to
the phase characteristic. In the last few years this has changed somewhat because
we have learned that the ear is not ‘phase deaf” and that phase distortion can be
audible, in particular in non-stationary signals. For example there are now linear
phase loudspeakers on the market. Other systems that belong to the category of
linear/distortionless transmission systems:

amplifiers

transducers (loudspeakers and microphones)

time delays

recording systems (records, tape; analog and digital)

AD- and DA-converters
The degree in which a particular linear system deviates from the ideal distortion-
less system (one speaks here of linear distortion, wave shape distortion and also
of amplitude and/or phase distortion) can be specified exactly by means of the
amplitude and phase characteristic. One can show the complete characteristics;
often only the tolerances are specified ("amplitude characteristic straight within 2
dB between 20 and 20000 Hz").
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5.4 Filters

Under this term fall all systems that are linear (the superposition principle holds,
and if the system is time-invariant the sine in/sine out principle holds as well),
but that cause changes in the waveform. The impulse response is not a single
(delayed, enlarged or attenuated) impulse, or equivalently, the amplitude charac-
teristic is not horizontal and flat, and/or the phase characteristic is not linear.

The manner in which a filter is specified follows directly from the above: for a
time-domain specification one describes the impulse response, and for a fre-
quency domain specification one gives the amplitude and/or phase characteristic.

A. The frequency domain specification of filters

1. The amplitude response

The frequency domain specification is the most common one, at least certainly
for analog filters; and this is the reason we will now discuss this first. One can
show the complete characteristics but often it is enough to describe them with the
aid of cutoff frequencies and flank steepness. Cutoff frequencies are those fre-
quencies at which the amplitude characteristics changes from a horizontal into a
non-horizontal line. To put it more accurately: those frequencies at which the
signal is attenuated with 3 dB. The term ‘3 dB-points’ is used as well. The fur-
ther one goes from the cutoff frequency the stronger the attenuation. Often the
relationship between the attenuation (expressed in dB) and the frequency(-inter-
val) distance is linear which means that the flank steepness can be expressed in
(for example) dB/octave. Below some filter characteristics are shown with a
cutoff frequency of 1000 Hz and a steepness of 12 dB/octave. With a characteris-
tic as in fig.5.4.1a one speaks of a low pass filter and in fig.5.4.1b of a high pass
filter for obvious reasons.

(a) (b
=15} dB

%]

0]

= d8/cctove

12 dB/octove

-

f. log f fe lag f

Figure 5.4.1 Lowpass and highpass filter.
Besides this there is the important group of band filters that have two cutoff

frequencies and which let through or suppress the range in between (band pass
Jilter and band suppress filter or notch filter), and that usually have large
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flanksteepness, see fig.5.4.2a and fig.5.4.2b. Instead of the two cutoff frequen-
cies one also gives the centre or resonance frequency and bandwidth. We have
seen this with the harmonic oscillator.

(a) (b)
dB8 daB
%] @ -
8 8
| R e
T ll T I 4I L
lo f
fel 'n fc? log f fc:'l fn fc? 9

Figure 5.4.2 Bandpass and bandsuppress filter.

We further distinguish the following filter types:
- the filter bank, a series of independent and parallel band filters with adjacent
cutoff frequencies (see also fig.4.3.34).
Usually there is a constant proportion between the frequencies of the upper and
lower cutoff frequencies. If this proportion is a factor 2 we speak of an octave
filter, with a factor 1.5 of a half-octave (= fifth) filter, and with 1.2 of a third-
octave filter. If furthermore the attenuation per passband can be adjusted then we
speak of a spectrum shaper because of the possibility of setting a global fre-
quency characteristic, and also of an equalizer because of the possibility of
realizing certain frequency corrections.
- the comb filter, a filter with a periodic sequence of passbands (section 6.3,
fig.6.3.3).

2. The phase response (Preis 1982)

To specify the phase response one can choose from three possibilities:

a. The phase shift Ad(¥).
This is the value of AP(f) = &4, () - Pou () (5.17)
in degrees or radians as a function of the frequency. This method was used
before.

b. The ‘phase delay’ t;. This is the time delay of each sinusoidal component. It
can be derived from (5.17) as the phase shift with regard to the input signal,
thus ¢, - .., is equal to - Ad:

sin 27ft ~Ad(f)) = sin 27ft —2nf._._Aj)(;)) =
T

sin 2 TWf(t - —A—;’;%—)) = sin 2Tf(¢t - ™)
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Thus: T, = Abf)
! anf

(5.18)

- The ‘group delay’ t,. This measure is based on the principle of stationary
phase (see section 4.3.G, fig.4.3.24). There we saw that using the principle of
stationary phase the centre of gravity of a signal function can be derived from
the phase spectrum with ¢,= (-1/2m)-d/df. The time delay T,, of this centre of
gravity can then be calculated from

1 d(clpaur B ¢in) 1 d
T o=t ot = — T =

. 5.19
gr p,out p,in 11T df 7 ( )

It is important to see that t; and 7, do not need to be equal. Therefore two exam-
ples (derived from Blauert (1972)):

Example 1

For a linear, distortion-less system (with amplitude factor 1 and time delay ¢,) it
holds that as fig.5.4.3 shows, a pulse-like input signal only undergoes a time
delay. This means for

IN et
Ad(f) = 2mef i
-
T
. 271:10/’
T, = =1, -
ouT 2nf
p
: T
%o | 1 d2mnef) ="
. Yo T oo b
& 27 df °

Figure 5.4.3 Phase response, phase delay and group delay of a distortion-less
transmission system.

The phase delay is constant, thus all sine components are equally delayed and
this of course holds as well for their sum, the signal itself.
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Example 2

Let us have a look at a system where the output is the mirrored version of the
input signal. To mirror a signal we must mirror all the frequency components, or
in other words give them a phase shift of 180°, thus:

IN Ad

Ad(f) = 180° =1

=1

n 1 T

T, = — = —

t Toanf 2f

QuT
=
t o
_ 1 dn N
& 2w df

Figure 5.4.4 Phase response, phase delay and group delay with mirrored sig-
nals.

Thus with a constant phase shift a time delay corresponds that increases with
lower frequencies (at 1000 Hz = 180° = 0.5 ms; at 100 Hz - 180° = 5 ms; at 10
Hz -> 180° = 50 ms), but the ‘centre of gravity’ of the signal is not shifted.
Indeed: 7, =0.

B. The time domain specification of filters

Specification of typical time-domain filters is not standardized and a classifica-
tion system does not exist for such filters except for the distinction between FIR
and IIR filters. It is yet becoming more common to specify the impulse response,
especially with linear phase systems such as CD-players. That is because phase
linearity causes the impulse response to be symmetric. To show that here is the
following argument:

The impulse response of a system can be determined via the inverse Fourier
Transform of the frequency response (rule (5.13)). Suppose we have a system
that has an arbitrary amplitude response H,(f) and a linear phase response Ad(f)
(thus AP(f) = -2nft,). Using the formula for the Fourier integral (4.16) we may
write for h(¢):
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h(t) = fHA(f)cos(2nft—A¢(f))df = fHA(f)cos(ant—znfto)df
1] )

= fHA(f)cos 27t - t,)df

This function is symmetrical around 7, (and has its maximum at that time point).
To prove this we show that h(z, - £) = h(t, + 1):

h(t,-t) = fHA(f)cos(—ant)df, h(t, +1) = fHA(f)cos(+2nft)df

These two expressions are equal to each other because cos(-2nff) = cos(+2mf?).
Conclusion: a linear phase system has an impulse response that is symmetrical
around 7., the time delay of the system.

The reverse (a symmetrical impulse response implies phase linearity) can be
proven as well. If the coefficients of a transversal filter (fig.5.2.4) are chosen so
that the impulse response of the filter is symmetric, then the filter has a linear
phase response. This is an extra bonus making this type of digital filter even
more attractive. Linear phase filters introduce no phase shift between frequency
components; the only time effect is a delay of the total signal.

Finally sometimes the term minimum phase system is used in this context. A
short remark about this type of system: for causal systems it can be proven that
there is a relation between the amplitude response H,(f') and the phase response
Ad(f). This means that with such systems there is a theoretically predictable,
minimal phase shift. The relationship between H, and A is given by the Hilbert
Transform:

LA
Mbf) = = [ A

. UM

If the actual phase shift which occurs is equal to the theoretically predictable
minimal phase shift, we speak of a ‘minimum phase system’. Clearly this phase
shift can lead to phase distortion, to non-linearity of the phase response.
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5.5

Problems

A time-discrete, linear and time-invariant system, using a clock frequency of 20
kHz, has the impulse response shown below ( #(0) = A(2) = 0.5, A(1) = 1) Answer

the

51

52

53

54

5.5

5.6

5.7

5.8

5.9

questions 5.1 to 5.8.

h k)

Is this a FIR or a IIR system? How can it be constructed?
Is this a system with or without linear distortion?

Is this system phase linear or not?

Derive the convolution sum for this impulse response.

Calculate the output signal y(k) when the input signal x(k) is equal to:
x(k) = sin s°k

Using the result of problem 5.5 sketch the amplitude response of this sys-
tem. What kind of filter is it?

Calculate the flank steepness in dB/octave by deriving the amplitude factors
at 3500 Hz and 7000 Hz.

What is the time delay of the system? Calculate the phase shift at 1000 Hz
and sketch the phase response.

With strong overmodulation a sinusoidal signal changes into a square wave.
Calculate the total harmonic distortion (7HD).

5.10 Which device does not belong in this list:

microphone - pre-amplifier - fader - presence filter - line-amplifier.
Why not?
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5.11 At which frequency will be the group delay of a harmonic oscillator maxi-
mal?

5.12 Given a transversal filter with 21 cells, with all h-values equal to 1.21. The

clock frequency is 10 kHz.

a. Show that this filtering is equivalent to replacing each sample by the aver-
age value of that sample and the 20 preceding samples.

b. This ‘moving average’ is a filtered version of the original signal. Describe
this filter.

c. Is this a linear phase filter? If so, what is the time delay?

d. Show that due to this filtering the sampling frequency may be decreased tot
ca. 1000 Hz. What is the easiest way to achieve this?

5.13 Prove that the principle of homogeneity (5.1) follows from the superposi-
tion principle when the factor a is a rational number.



CHAPTER 6

Systems for Sound Signal Processing

Based on the theory dealt with in the last chapter we shall now deal with practi-
cal systems and operations. In this I have consciously limited myself to electric
and electronic systems, analog and digital. For the treatment of subjects from
electro-acoustics 1 refer to the vast supply of literature in this field. The subdivi-
sion of this chapter is based upon the classification of systems dealt with in
chapter 5. I shall thus first pay attention to linear systems (distortion-less systems
and filters) and then to non-linear systems. Before I begin to deal with the treat-
ment of concrete electrical systems [ would like first to summarize some elemen-
tary facts and formulae for such systems.

6.1 Elementary electrical quantities, concepts and circuits
A. Voltage, current, resistance and power

In an electrical system the physical carrier of the signal function is an electrical
voltage or current. The value of these quantities can be proportional to the signal
function (the analog representation), or one works with an independent series of
voltage (or current) carriers by which only two values are differentiated (the
binary codification of the digital signal representation).

An electrical voltage is the result of a different concentration of electrical
charge carriers. There are materials in which the mobility of the charge carriers is
large (conductors; most metals can conduct electricity). With such conductors
electrical voltages can be transported.

RN We shall mainly concentrate on the situation that

/ \ there is a voltage difference between two conduc-

\  tors, for example between two copper wires. If
between two such wires a more or less conductive
connection is made, the charge concentration differ-
ence will decrease, because the charge carriers will
- move through the connection. We speak in short of
N an electrical current. For the measurement of volt-

ages and currents appropriate units are required:
volt V and ampere A. With the help of such mea-
surements it can be observed that in the situation

Figure 6.1.1
Voltage and current.



204 Chapter 6

sketched above with a given voltage V" a current i will flow, so that i is propor-
tional to V. This relation (which has its exceptions) is called Ohm's law. If two
quantities are proportional they can be made equal to each other by multiplying
one by a proper factor of proportionality. This leads to the well-known formula
of Ohm's law:

V=R-i 6.1)

The factor of proportion R is called the (electrical) resistance. The resistant
connection through which a current of 1 A flows if the voltage difference
amounts to 1 V has per definition the unit of resistance, ohm (symbol: Q). Good
conductors have a low resistance, which means that with a given voltage a strong
current will flow. There are also materials that are poor conductors: isolators. A
connection of this material will have a high R-value. Resistance values can in
practice vary from less than 0.001 Q to 10" Q and more.

If because of a voltage an electrical current begins to flow, energy comes free
for example as heat or mechanical power. This energy is provided by the source
of the electrical voltage. The amount of energy depends upon the voltage V" and
the current i, and is expressed in the universal unit of energy, Watt:

E=V-i (6.2)
With the help of Ohm's law two other versions of this relation can be derived:
- withV =R-i: E =R (6.3)

- withi=V/R: E=1?/R (6.4)

Electrical voltages can be generated in various ways, but it always concerns
processes in which non-electrical energy is converted into electrical energy. This
can occur for example via chemical (battery), mechanical (dynamo) and electro-
magnetic (solar cells) processes. The result of such a process is a voltage differ-
ence between two conducting connections, for example the poles of a battery. In
the batteries shown in fig.6.1.2 there is a voltage of 1.5 volts between the points
A and B, and one of 4.5 volts between C and D, but when there is no connection
between the batteries there is no voltage difference between A or B on the one
hand and C or D on the other. This changes only if a conductive connection be-
tween the two batteries is made. Before we can investigate what happens in such
a case, we have to realize that an electrical current flowing through a conductor
can have two directions. To know the situation at the given voltage source one
marks the two poles with a plus and a minus sign. If we know from the example
that A and D form the positive poles, and B and C the negative, we can see what
will occur if we connect the two batteries.
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Figure 6.1.2 Electrical Voliages.

(@)

(b)
(©)
(d)

(b?

a>

Vac =0 (poles connected by means of a conductor)

Vpp = 6 volts (D positive with regard to B)

Vap =0, Vg =3 volts (B positive with regard to C)
Vie =0, Vb =3 volts (D positive with regard to A)
Vip =0, Ve = 6 volts (A positive with regard to C)

Voltage poles that are not in one way or another galvanically connected are
called ‘floating’. The connections shown in fig.6.1.2 can be made directly, but
they can also be indirectly formed using a central conductor (‘ground’). If the
voltage source produces a constant voltage we speak of a DC voltage (‘Direct
Current’). There are also voltage sources where the voltage between the poles is
not constant as with batteries, but fluctuates in time. This is for example the case
with the poles of a mains outlet.

\%

AWAWAWA

%

VAAVAAVA

Figure 6.1.3 Alternating voltage with and without DC-component.
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Here it can occur that the polarity of the poles (and thus also the direction of the
current) alters. If this is the case in such a way that the average value of the
voltage is 0 volts (as in fig.6.1.3, left side) then one speaks of a (true) AC voltage
(Alternating Current). If the average value is not 0 (as in fig.6.1.3, right side)
then we say that there is an AC voltage with a DC component, because as we
have seen in fig.4.3.3, a non-symmetric function can always be considered as the
sum of a symmetrical one and a constant term. In this connection it is also clear
why the constant term of the Fourier series is also called the ‘DC term’.

Every conductive connection has a certain resistance. There are, however, also
conductive components that are especially fabricated to have a particular resis-
tance value to be used as parts of a circuit. Such a component is called a resistor.
Apart from ‘ordinary’ resistors there are also elements where if they are placed
between the poles of an AC voltage source, Ohm's law holds but a phase differ-
ence occurs between the voltage and the current (examples of such elements are
the capacitor and the coil). If so we speak of ‘reactance’ instead of resistance,
while the word impedance as a general term contains both groups. Although this
fact is important in particular for analog circuit techniques, because it introduces
frequency dependency, | want to spend as little attention as possible to it in this
elementary introduction.

Time dependent voltages (and currents) can be considered as examples of
signal functions. Everything stated about these (such as the concept of RMS-
value, level comparison via the dB, etc.) is thus also applicable to these voltages.
In considering the dB it must be kept in mind that the electrical energy at various
places in a circuit is not only dependent upon /2 (or i%) but also upon R. We shall
encounter examples of this complication.

B. Series and parallel circuits of resistors

Ohm's law enables us to calculate what occurs if we connect more than one
resistor between the poles of a voltage source. With two resistors there are two
possibilities: series connection (fig.6.1.4, the rectangles indicate the resistors) and
parallel connection (fig.6.1.5).
a)  Series connection.
vy Va Which current will flow through this circuit?
Because the current that flows through R, also
flows through R, , the voltage V will divide
itself over the two resistors such that this is
the result:

V=V, +V,= iR + iR, = i(R*+R)

Figure 6.1.4 Series circuit The current is that which would flow through

one resistor with the value R,+R,. With a se-
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ries circuit the resistance values can thus be added. We can derive that for the
relation between V' and V, the following holds:

v, iR, R
22 o ¥, - v (6.5)
Vv i(R, *R,)

We speak of a voltage divider.

b) Parallel circuit. Over both resistors now

L occurs the same voltage V.
g B Through R, flows current i, = V/R,
Through R, flows current i, = V/R,
v The total current / is the sum of these two cur-
I I i rents:
| A N I
Rl R2 Rl R2

Figure 6.1.5 Parallel circuit.

If we wish to replace the two resistors by one
without changing the total current we must give the resistor the value R so that
1/R = (1/R, + 1/R,). The total resistance of the two parallel connected resistors is
thus

R = R (6.6)

C. Voltage source, input and output impedance

If a resistor is placed between the poles of a
voltage source, a current will flow and energy
will be withdrawn from the source. Because

2 the available amount of energy is limited, of
U R course, we must see what occurs if we with-
s = draw more energy from the source.

To this end we look at the circuit to the
left (fig.6.1.6). The rectangle with the arrow
indicates a variable resistor. The energy is

Figure 6.1.6 converted into heat. The amount is:
Voltage source with a variable ,
load resistance. £ - v,

R,
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log H

- L
Figure 6.1.7 Relation between load resistance and output voltage.

Assuming V, to be constant, according to this formula, we could make F infi-
nitely large by reducing R;. This is, of course, impossible. If we go on to reduce
Ry, V. will also start to diminish at a certain moment. The relationship between
R, and V] is shown in the diagram above. It appears that we can describe this
behaviour by acting as if the poles of the voltage source are connected via an
‘internal’ resistor with an ‘ideal’ voltage source (with an ever constant voltage).

In fig.6.1.8 this situation is sketched. The internal resistance R, is drawn as a
‘normal’ resistor, thus as a rectangle, but this resistor is not a true, physical
component. It is a conceptual resistance, a help with which to describe the behav-
iour of the circuit (and with that a property of voltage sources) as it depends on
the load resistance R;. R; and R, form a series circuit of two resistors and }, now
follows from the voltage-divider formula:

It is this relation that is shown in fig.6.1.7
with K, as variable. We see that if

-R>>R, =V, = V (voltage constant),

R <<=V, =0,

-R =R, DV, =%V,
We can characterize every voltage source by means of its internal resistance that
indicates what the effect is of connecting a load resistor.
An electrical system with one (voltage-) input
and one (voltage-) output can be represented
symbolically as a ‘four-pole’ (fig.6.1.9) with
IN ouT an input that accepts a voltage and an output
that produces one and is thus a voltage
source. If we connect a voltage to the input a
(possibly very small) current begins to flow.
This means that we can also describe the input
behaviour with a resistance, the input resis-
tance R;,. Fig. 6.1.10 shows the complete block diagram of an arbitrary system.

|
I
I
I
t
|
t

Figure 6.1.8 Internal resistance.

Figure 6.1.9 Four-pole.
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Fig.6.1.10 Input and output resistance.

We call the internal resistance of the output the output resistance, indicated by
R,... Once again: the components drawn do not have to be physically present but
they serve to describe the behaviour of the system regarding voltages and cur-
rents at input and output. If for example several inputs are simultaneously con-
nected to one output, then this output is loaded with a resistance the value of
which is equal to that of the parallel connection of all the input resistances. It can
be stated that in general it is easier to connect systems with one another when the
output resistance of the source is small compared to the input resistance of the
receiver.

Maximum energy transfer takes place only if the input resistance of the second
system is equal to the output resistance of the first. We then speak of the proper
matching. This can be proven by considering R, in fig.6.1.8 as a variable resistor
and by calculating how much energy is withdrawn from the source for different
values of R;. E is thus treated as a function of R, :

2
ER) = 2> = —"—
YOR R R

R,

v? 6.7)

This relation between F and R, is shown in fig.6.1.11. The point where the graph
reaches its maximum can be found by differentiating the function £(R,) to R, and
then solving the resulting equation £'(R;) = 0:

dE VR, + R)® - 2(R,+R))RV?

dR, (R, +RL)2

The whole expression is zero if the numerator is equal to zero:
(R, +R)*-2(R, + R)R, =R ?+ R+ 2R R, - 2R, - 2R, R, = R? - R,’=0

thus R, =R,
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E(RL)

AN

\

R | R
1 ©9 L

Figure 6.1.11 Relation between energy and load resistance.

With this value of R, the power transferred is maximal. This quantity is:

E = _ R v? -
e (R, + R, ) . AR, (6.8)

I have already mentioned that when the input and output terminals of a system
are totally (galvanically) isolated from each other, we speak of a ‘floating’ input
and output. It is then indeed possible (but not necessary) to connect an arbitrary
input terminal with an arbitrary output terminal and to relate in this way the
voltages to each other in the same way as in the example with the batteries
(fig.6.1.2). Usually there is an internal connection between an input terminal and
an output terminal (‘common’, ‘0, ‘earth’).

Connecting analog or digital systems can cause problems. The difference is
that analog systems are frequently built up from separate building blocks that
must be connected by the user, whereas digital systems are usually given as
complete systems where necessary connections are made via standardized inputs
and outputs with buffers.

Finally: in analog systems we distinguish passive and active systems. The
latter contain components (such as transistors) by which energy can be
introduced into the system. In this way the signal energy can be increased
(amplification). For this purpose the systems are provided with a power supply
that delivers the energy required. In passive systems the energy eventually
needed is withdrawn from the signal itself. Digital systems are practically
without exception active.
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6.2 Linear systems with distortion-less transmission

Distortion-less transmission means (as we have seen in section 5.3) that the wave
shape remains intact and that the only possible changes in the signal function that
the system may cause, are a multiplication with a constant scaling factor p and/or
a delay of the signal with a time Az. Such systems have a straight, horizontal
amplitude response and a linear phase response. There are two main groups in
this category of systems: the systems to control the scaling factor and/or time
delay (attenuators, amplifiers, delay units) and the systems to convert the signal
function from one representation into another while keeping the wave shape
intact as well as possible. To this latter group belong electro-acoustic transducers
(loudspeakers, microphones), recording equipment (to register a signal function
on tape or record) and also AD- and DA-converters. For the reason named in the
introduction only the converters will be dealt with in this section. From the first
group the analog amplifiers and attenuators give the most material for discus-
sion, because once the signal is digitized, the introduction of a scaling factor
boils down to a multiplication that is very easily realized with digital equipment.
Time delay units require some form of memory for which digital systems may be
used.

A. Passive, analog systems for changing the scale factor
1. The potentiometer

The most simple and most applied attenuator is the
potentiometer. This is based upon the series circuit

(1-a)Rr| Ry { of resistors dealt with in the previous section. We

saw that with this circuit voltage ‘division’ was
possible (see formula (6.5)). A potentiometer does
not work with two resistors, but with one resistor
aRl 2 strip provided with a moveable tap (fig.6.2.1). The
T normal symbol for a potentiometer is:

—e

Figure 6.2.1 Potentiome- !
ler.

By means of the tap the resistor strip is divided into two parts so that we in fact
still have two resistors R, and R,. The resistance values are however not fixed. R,
is variable between 0 and the total resistance of the strip R. Instead of R, we can
thus write ok, in which a < 1.

According to the voltage divider formula we now find for the output voltage V:
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V, can thus be set between 0 and V. Although simple in construction, a potenti-
ometer is a system with an input and an output and thus also with a R;, and a R,,,,
with a straight amplitude response and a negligible time delay.

It is easily shown that R, not only depends upon R but also upon the input
resistance of the apparatus following the potentiometer and that R,,, depends not
only upon R but also upon the output resistance of the apparatus preceding the
potentiometer (see problem 6.4).

2. The transformer.

Another passive system for changing the scaling factor is the transformer. This
consists of two coils of which the magnetic fields coincide. In this way a chang-
ing voltage connected to one of the two coils (the primary coil) is transferred to
the other, the secondary coil. Because the strength of the magnetic field and the
value of the induction voltage depends upon the number of windings in the coil,
it holds that the scaling factor, the proportion between the function values of the
output and the input signal is equal to the proportion between the number of
windings of the secondary coil (Ns) and that of the primary coil (N;):

p = 6.9

This scaling factor can thus be either more or less than 1.

In an ideal transformer no energy is
lost. If the signal voltage of some volt-
age source is transformed downwards,
the output resistance is also decreased
and to such an extent that the amount
of energy remains the same. See
fig.6.2.2. According to (6.8) the maxi-
mum power that can be delivered by
Figure 6.2.2 Transformer. the voltage source is V?/4R,,,,.

At the output of the transformer we
find a voltage V” = (N¢/N,)V, and an output resistance R’,,,, and thus a maximum
power V¥4R’ .. As these amounts of energy should be equal we find:
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N_‘ Vv?
y: vt N, R N (6.10)
4 Rout 4 R 'out 4 R 'out Rour N 2

Advantages of transformers:

- They bring galvanic separation and therefore floating inputs and outputs. In
this way various transmission and connection problems can be avoided.

- Impedances can be matched to each other.

- The scaling factor can be changed without loss of energy.

Disadvantages:

- Especially with low frequencies and strong currents transformers are large,
heavy and expensive.

- Losses and nonlinear distortion occur, for example, because of saturation.

- They are sensitive to interference.

- They can introduce unwanted phase shifts.

B. Active, analog systems for changing the scaling factor

1. The amplifier

These systems, named ‘amplifiers’, always contain active elements in the form of
transistors or integrated circuits (ICs), and a power supply. We shall not go in
depth into the electronic aspects, but regard the amplifier as a black box, a
system with an input (with an input resistance R;,) and an output with output
resistance R,,,. The relation between input voltage V; and output voltage V, is:

A + + s Vu = (} * Vi

v, 7 v, Here ( is the amplification factor, the gain. If
o the input and output are floating we cannot

B ——t —= O relate both voltages to each other. We can

only state that V/, is a certain factor larger (or
smaller) than V;, and that if 4 is positive in
relation to B (see fig.6.2.3), that then for
example C is positive in relation to D. We
may then indeed freely connect an input
terminal with an output terminal. If we choose B and C for this, then A is not
only positive in relation to B but also D is negative in relation to B. Making A
more positive leads to making D more negative. We then speak of an inverting
amplifier. If we connect B with D the voltages run coincidentally on A and C and
we have a non-inverting amplifier. With some types of amplifiers we have indeed
this choice; with others the connection concerned is internally already present

Figure 6.2.3
Inverting amplifier.
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(and serves usually as reference electrode for the whole circuit).

As a symbol for an amplifier a triangle is used pointing like an arrow in the
direction of the output. Reference electrodes are often not drawn; inverting and
non-inverting inputs are indicated as in fig.6.2.3 with + and -. The active compo-
nents applied in an amplifier show clearly nonlinear characteristics. It is thus
necessary to take measures to assure that the system as a whole behaves in a
proper linear way. A much applied technique is the so-called feedback. We can
study the principle without being obliged to go into the details of the circuit.
Fig.6.2.4 shows an example of a typi-
cal feedback circuit. An attenuated
version V; of the output signal (V, ) is
returned to the inverting input of the
amplifier:

e < —>|

If the gain factor is equal to A the

relation between V,, V, and the ‘true’

Figure 6.2.4 Feedback. input voltage V; can be derived as fol-
lows:

Vmu = AVi = A(Vin - Vf) = A(Vin —BVour = AViu - ABVou

t

Vo * APV

out

:A Vin

A
or: vV = V. =A4"V

out 1 + A [} i m
The ‘closed-loop’ gain A' (= A/(1 + AP)) which is the result of the feedback
connection to the inverting input of the amplifier, is smaller than the ‘open-loop’

gain A.

6.11)

C g 1 R, + R,

If AP >> 1 (which is often the case) then 4' = B A
2

This means that the gain is completely determined by the values of R, and R, ,
and is thus independent of A. The amplification factor is constant, the amplitude
response is a straight, horizontal line. At the end of this section an overview shall
be given of the other consequences of feedback. With feedback we have a form
of ‘error correction’: by subtracting V,from V, , V; is distorted in a way that is op-
posite to the distortion that is caused by the amplifier. These distortions cancel
each other through which the final total distortion can be very small. It is an
effective and simple method with which to improve the linearity of an amplifier,
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but as with every system where the output signal is returned to the input there is
always the risk of instability. It is actually more appropriate to speak of negative
feedback because the feedback signal is subtracted from the input signal.

Positive feedback by which (a part of) the output voltage is added to the input
voltage is also applied, for example in the construction of oscillators. The cumu-
lative effect of positive feedback leads to large voltage variations, to oscillations.
If the phase shift between output and input comes in the neighbourhood of 180°,
the output signal is the mirrored version of the input signal and subtraction has
then in fact become addition (- (-x) = + x). Negative feedback becomes positive
feedback, the circuit will oscillate. With feedback one must thus always take care
that the open loop gain at the frequencies where this phase shift occurs, is small.

Another method for improving the linearity without the risk of instability is
the feed-forward technique, see fig.6.2.5.

The signal amplified by A4, is equally
attenuated by a voltage divider. This

" y signal is connected with the original

A T_®  input signal at the + and - input of an

v amplifier, which thus amplifies the

difference between these two signals

I P (‘difference amplifier’). If the output

signal of A, is an exact enlarged copy

of the input signal the two input volt-

ages of 4 are equal and the difference
Figure 6.2.5 Feed forward correction.  petween them 0.

Then the output signal is also 0. If
there is really a difference it is detected in this way and afterwards once more
added to the signal. This circuit is more complex but indeed unconditionally
stable.

2. Amplifier specifications

In the following list specifications a) and b) are typical amplifier specifications.

Specifications c) up to €) hold in part for other linear systems, and specifications

f) until to k) for practically all electrical systems.

a. The amplification factor
This is indeed given as a factor if one is concerned primarily with the enlarge-
ment of the amplitude. If the increase of the signal energy is also important,
the amplification is also given in dBs. Let us take an example.
Imagine an amplifier with a R;, of 100000 Q that with an input voltage of 1
volt gives an output signal of 2 volts over a resistance of 3 Q. The proportion
of the voltages is then 2 which can be wrongly translated into 6 dB with the
formula 20log V,/V.
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22
3

The proportion of the energies is (using (6.4)): =102.5 dB

10°

Sometimes both the open loop gain and the closed loop gain are specified.
The difference (in dB) between these numbers is the amount of feedback.

b. Linear distortion
This distortion is specified by stating how much the amplitude response
deviates from the ideal straight horizontal line and/or the phase response from
a straight line through the origin. For this the frequency range for which the
specification holds is given, for example ‘straight within 0.5 dB between 20
and 20000 Hz’. There are amplifiers of which the gain factor remains constant
at low frequencies up to 0 Hz. We then speak of a DC amplifier.

¢. Non-linear distortion
Specification of the harmonic distortion and the intermodulation distortion in
% (see the formulae (5.6) and (5.7)).

d. Crossover distortion
In some amplifiers separate components are used for the positive and for the
negative parts of the signal function. This can lead to distortion of the wave
shape at crossings of the zero-line. This is especially disturbing with small
signal amplitudes.

e. Transient Intermodulation Distortion
The components at the input side of an amplifier can often follow fast signal
changes better than components at the output side which must deliver more
power. With this it can occur that with a sudden voltage jump at the input the
feedback voltage comes ‘too late’, so that within a short period of time the
amplifier works in open loop mode. This can lead to serious overload
distortion (see specification i. below) and saturation symptoms that do not
decrease until after a relatively long time. The trick to improve the
performance of a ‘bad’ amplifier by applying a huge amount of feedback does
work for the static aspects, but leads to this type of distortion, and thus to a
bad dynamic behaviour. To avoid this type of distortion it is in general
advisable to give the separate stages of an amplifier their own local feedback.

f. The input resistance R,,(Q)
The resistance that can be measured between the input jacks.

g. The output resistance R, ()
The internal ‘pseudo’-resistance that determines what the voltage source-
characteristic of the output will be.

h. The minimum load resistance R, (Q)
R, and R, determine together the output voltage and the energy. A maximum
energy transfer takes place if R, = R,,,, but the design of the circuit sometimes
limits the minimal R, that may be connected.
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With amplifiers designed to drive an electrodynamic loudspeaker the propor-
tion R,/R,, is called the damping factor. If such a loudspeaker performs a
‘free’ vibration that does not correspond with the electrical signal (for exam-
ple as a transient, see section 3.5) it functions as a dynamo and produces an
induction voltage. The loudspeaker is then voltage source that is loaded by the
internal resistance R,, of the amplifier. The larger the damping factor, the
stronger the induction current by which in a short time all the energy is with-
drawn from this voltage source and the movement is damped.

i. The maximum output voltage (V)
The voltages in an amplifier cannot be larger than ca. 80% of the supply
voltage (except with the use of a transformer). If the product of the input
voltage and the gain factor exceeds this value the output signal keeps at this
value. Then ‘clipping’ occurs: the peaks of the signal are cut off. This of
course is a serious form of nonlinear distortion. Sometimes the sensitivity of
the amplifier is given. This is the input voltage required to give the maximum
output voltage. It can be calculated by dividing the output voltage by the gain
factor.

j. The maximum power (¥).
The maximum output voltage V..., R; and R,,, determine together the power
that is delivered. If R, >> R,,, this power is equal to V2, /R,.

k. The signal-to-noise ratio, SNR (dB).
Statistical fluctuations in voltages and currents that are the result of the cor-
puscular nature of electrical charge lead to a weak noise signal at the output.
The ratio in dBs between the RMS-value of the maximum output signal and
that of this noise signal is called the signal fo noise ratio.

A few final remarks:

The effect of feedback on the properties of amplifiers can be summarized as

follows:

a. with feedback to the input circuit of the amplifier R,, is usually increased,;

b. with feedback from the output circuit of the amplifier R,,, is usually decreased;

c. the signal-to-noise ratio is improved:

d. linear, nonlinear and crossover distortion are reduced;

e. the transient intermodulation distortion increases.

It is practical to subdivide amplifiers based on the power delivered into pre-

amplifiers, line amplifiers and power amplifiers. For weak signals pre-amplifiers

(power < ca. 100 mW) are especially suitable, thanks to a good SNR, as buffer

and matching amplifiers and as basis for the construction of, for example, active

filters for tone control and frequency correction (see section 6.3.B). With a line

amplifier the power lies between 100 mW and 1 W. These amplifiers are used for

circuits with low impedances and for example for sending a signal over a large

number of parallel channels. Power amplifiers (1 - 2000 W) are mainly used for

driving loudspeakers.



218 Chapter 6

C. Operational amplifiers (Graeme et al. 1971)

These amplifiers, which owe their name to the purpose for which they were
developed, the (analog) execution of particular mathematical operations such as
additions with electrical voltages, form a separate group. This special application
leads to priorities different from those of amplifiers for sound signals.
An operational amplifier is a DC amplifier with

- a very large open loop gain,

- a very high input resistance and a very low output resistance,

- a differential input.

i F‘o
L
Vin i R1
N Vout

Figure 6.2.6 Operational amplifier.

The basic circuit is shown in fig.6.2.6. Via R, feedback is accomplished from the
output to the inverting input. The consequence is that the actual input voltage V,
is very small. This is necessary as can be shown with the following example:
imagine that the maximum variation of the output voltage 1s 10 volt, and that the
open loop gain is 100000, then to prevent overload V; must be smaller than
10/100000 = 10* Volts, . For calculations we can ignore such extremely small
voltages and thus assume that V; = 0 Volt (virtual earth).

If V, is positive, V, will be negative and a current i will flow from the input to
the virtual earth point and from there to the output because through the high
value of R,, there is no other possible route. We find therefore for i:

V['n Vaut R°
A s P 6.12)
R R R

The amplification factor is thus R,/R,; the minus sign indicates the inversion of
the signal. If R, = R, the circuit functions just as an inverter. The circuit can be
extended to an adder (fig.6.2.7). It now holds that i, +i, + i, = i thus also

V R R R
R :‘JV1+—°V+—°V (6.13)

out 2 3
RO Rl R2 R3

This circuit performs a ‘weighted’ addition. The number of inputs can be in-
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creased. If R, =R, =R, =R, we have ‘normal’ addition (+ inversion); by using a
DC voltage as an input voltage, the output signal gets a DC component (‘offset’).

Figure 6.2.7 Adder.

Thanks to the large gain factor the operational amplifier can also be used for
comparing two voltages. Fig.6.2.8 shows this comparator. If V; is larger or less
than V, (the difference being greater than ca. 10 Volts) the output voltage will
be equal to the maximum or the minimum value. There is a very small transition
range when V; = J; (see fig.6.2.9). This is by the way a very nonlinear behav-
iour!

Vv
\Y%
1 v
v, -V,
V2
Figure 6.2.8 Comparalor. Figure 6.2.9 Relation between the input

and output signal of a comparator.

D. Time delay unit

Such a system can be realized by storing signal samples in a digital memory and
by recalling them after a while, for example as in fig.6.2.10. The write address
starts at 0, and is increased by one every time a sample is stored. When the
highest address is reached, the memory is full, and the write-address pointer is
reset to 0. The process starts over again. The ‘old” samples are replaced by new
ones but before this happens they have already been fetched from memory with
the help of a read-address pointer. The read address is derived from the write
address by subtracting a (adjustable) number k from the latter. The time delay
thus amounts to &/f, seconds (f;: clock frequency).
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clock

READ ADDRESS =
WRITE ADDRESS - k

WRITE
ADDRESS

D/Akﬁ

Figure 6.2.10 Digital delay unit.

E. AD- and DA-converters

The primary function of these devices is discussed in section 4.2. We shall now
delve into the working principle and so begin with the

1. DA-converter
The task of this circuit is to convert a binary electrical number into an electrical
voltage proportional to this number. Let us take as an example the 4-bits number
1101. The value of this number is

1-2°+ 122+ 0-2' + 1-2° =13,
This formula suggests a possible construction that is shown in fig.6.2.11. If the
position of the switches depends upon the binary code (1 = closed, 0 = open) we
shall find with this number a voltage of 11 Volts at the output, and with the
number 1001 a voltage of 9 Volts etc.

MsB8 N
8 v 0—-.—.—
1
a4 Vv O———-.—.—
—® ADDER v
2 Vv °———::3=”‘D—“
1V O——1.-—.—-
LSEA—.Q
v

Figure 6.2.11 Principle of a DA-converter

The practical construction of the DA-converter is indeed based upon this idea.
See fig. 6.2.12. As an adder we use an operational amplifier. We then need only
one reference voltage V., because by increasing every consecutive input resis-
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tance by a factor 2 the contribution of every next input is decreased by that same
factor.

—(——}
Vr'e'F MSe R
=TI —
2R
1 H—

Figure 6.2.12 Binary weighted DA-converter

This converter is therefore called a ‘binary weighted” DA-converter. The
switches are not mechanical (too slow, too large) but electronic. An electronic
switch is a semi-conductive element (Field Effect Transistor or FET) of which
the electrical resistance can be made very large or very small with the help of a
voltage connected to the control input of the element. In this way practically the
same effect as with a ‘true’ mechanical switch can be achieved. The bit at the far
left (MSB for Most Significant Bit) serves the upper switch, the bit at the far
right (LSB for Least Significant Bit) the lowest switch.

The problem with this circuit is the large difference in the values of the resis-
tors needed (a factor 2™ for a B-bits converter). As the accuracy and stability of
resistors are usually proportional to the resistance value there is in absolute sense
a large difference in this respect between the large and the small resistors. There
is another DA-circuit where this problem can be avoided at the cost of double the
number of resistors. This converter uses the R-2R ladder network that we had a
look at in section 2.4 (see fig.2.4.2). Fig.6.2.13 shows the circuit diagram. We
have seen that at each consecutive junction in this network the voltage is smaller

[

Figure 6.2.13 DA-converter with R-2R ladder.
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by a factor 2. We thus achieve the desired effect with resistance values that only
differ a factor 2.

2. AD-converter
AD-conversion can also be realized in several ways. A well-known method is
‘successive approximation’ (see the circuit diagram in fig.6.2.14).

1

INo—mMm8M8M——
comparato

I

D/A CONVERTER

R @

o

'SUCCESSIVE
APPROX IMAT ION
REGISTER

——8 stort

Figure 6.2.14 Successive Approximation AD-converter.

The converter consists of three parts: a comparator (see fig.6.2.8), a DA-convert-
er (in this example a 10-volt type), and a digital circuit that is called the ‘suc-
cessive approximation register’ (s.a.r.) that works as follows: if a start command
is given to the converter, the MSB of this register is set to '1'. The DA-converter
gives 5 volts. This voltage is compared with the input voltage. If it is larger the
MSB is reset to '0". If not it stays at '1'. This process is repeated with the next
bits. With an input voitage of 6 volts and a 5-bit converter the consecutive stages
are those shown in the table:
S.A.R. D.A.C.

1 10000 5.0 V
2 11000 7.5 V
reset

10000 5.0 V
3 10100 6.25 V
reset
10000 5.0 V
4 10010 5.62 V
5 10011 5.91 V

The whole process takes time, of course; still here the combination of good
resolution and comparatively high speed is still possible. During the conversion
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process the input voltage should remain constant. For this a Sample and Hold
circuit is used (see fig.6.2.15). Every time the switch is closed for a moment as
much charge flows from or to the capacitor to make its voltage equal to that of
the preceding amplifier. The following buffer amplifier assures that the voltage
on the capacitor is practically constant for some time. All AD-converters are
preceded by such a Sample and Hold circuit.

IN

Figure 6.2.15 Sample and Hold circuit.

Other AD-converters are the ‘double ramp’ converter, where it is measured how
much time is needed for a linearly rising voltage to reach (starting from 0 volt)
the input voltage. The number of clock pulses is then directly the digital code for
the voltage level concemned. For more accuracy one lets the voltage first rise
rather quickly till a particular distance from the input voltage after which a
slower rise up to the level of the input voltage follows. This principle was ini-
tially used only with digital voltmeters. Here for example once per second a
conversion takes place and so speed in not critical. Nowadays one finds this
principle also applied to faster converters. The fastest AD-converter is the ‘flash’
converter that contains one comparator for every voltage level of the quantizer.
With a 5-bits converter simultaneously 32 comparisons take place. It is practi-
cally immediately determined which comparator-voltage corresponds most with
the input voltage, after which the binary code is derived from the rank number of
the comparator. The problem is that for 16-bits conversion about 65000 compara-
tors are required.
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6.3 Filters
A. The principle of filtering; analysis and design of filters

In chapter 3 we analysed a filter system, the harmonic oscillator, by solving the
system equation. This method completely imparts the properties of the system,
but can only be applied to simple systems. With more complicated filter systems
other techniques (transform methods, pole-zero diagrams etc.) must be used.
Therefore 1 restrict the discussion in this section to the analysis of the two simple
filters shown in fig.6.3.1 a and b. The coefficient q in these diagrams should have

a value < 1.
y x - O v
&
)

@) (b
Figure 6.3.1 Two simple filters.

x O

We have encountered filter (b) before, during the discussion of the convolution
sum in section 5.2. The systems equations are:

) =x@) - q-x(t-7) and W) = x()) + q-y1-1)

The equation on the left is its own solution and thus trivial. The solution of the

o

right-hand equationis: y(s) = Z q"x(t-n7)

n=0

Proof via substitution:

f: q "x(t - n7) =x(t)+q§_: g "x(t-1T-n7)
n=0

n=0

=x(@) + i q" txlt - (n+ 1)t}

n=0

= g%(-0-1) + zw: q"x(t—m:)=i: q"x(t - nv)
n=1 n=0

Now we can determine the impulse response and frequency response by using an
impulse signal (7) or a sinusoidal signal sin 27/t respectively for x(¥).
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Impulse response (see £ig.6.3.2 a and b):

h(t) =06(@® - qd(t-7) h(v) = i q"o(t-n7)
n=0

[€- D]
h(t)

(b>
h(td I
t t

Figure 6.3.2 Impulse responses of the two filters.

Frequency response
This requires slightly more work to determine. First filter (a):

W) = sin2nft - gsin2n fet- 1)
sin2n ft - gsin2n frcos2n ft+qgcos2n ftsin2n ft
(1-gcos2nfr)sin2n ft + q sin2n fT cos 2n ft
H(f)cos 2n f1 + Ad(f))
The amplitude response of this filter is thus:

il

H,(f) = (1 - g-cos 2TfT)* + (¢-sin 2 LfT)?
= \/1 -2q'cos2TfT +q°

6.14)

For filter (b) a direct calculation is also possible. We then have to apply the sine
in/sine out-principle and assume that with input signal x(z) we get as output
signal (1) = 4 sin(2nfi+$). We then derive the expressions for H, and Ad. An
easier procedure is to determine both responses via the Fourier transform of the
impulse response. Of course, both methods give the same results and we find for
the amplitude response:

1
H,(f) = (6.15)

1-2qcos2Tft +q°

The two amplitude responses are shown in fig.6.3.3. Both filters are comb filters.
This is no surprise as the addition of delayed sinusoidal signals leads to construc-
tive or destructive interference, depending upon the phase shift. In many respects
filter (b) is the counterpart of filter (a). See the following table:
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2 =1
HA(‘F) HA(f)
) Y % % f o W % % f

(@) b>
Figure 6.3.3 Amplitude responses of both filters.

filter (a) filter (b)
- non-recursive recursive
- impulse response finite (FIR-filter) impulse response infinite (IIR-filter)

- maxima in amplitude response when

cos 2mfT =-1 cos 2mfT =+1
thus at the frequencies f = (2n+1)/27 f=nwt(n=0,12,..)
- value of the maximum
Himu=1%¢ Hyme=1/(1-¢q)
thuswith g=1. H,,.=2 H { pnax = = (pole)
- minima in amplitude response when
cos 27ft = +1 cos 21ft = -1
thus at the frequencies f=n/t f=Q@n+ 12t
- value of the minimum
Hymn=1-9 Hypin=1(11+¢q)
thus when g = 1:
H,.in=0 (zero) Hypin="2

Both filters can be realized as an analog and as a digital circuit. When in the
digital version the time-delay t is equal to the clock-period 1/f,, then with filter
(a) the first maximum lies at f'=1/21 = Y4f,. Higher frequencies are not allowed in
a digital system and this means that filter (a) is in fact a high-pass filter. If fur-
thermore g = 1, the output signal consists of the subsequent differences between
the input samples. The system then performs numerical differentiation as de-
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scribed in section 2.3.D. When the time-delay equals a multiple of 1/f;, the filter
changes into a comb filter. In the same way it can be argued that the digital
version of filter (b) is a lowpass filter, and acts as a numerical integrator when
T = 1/f, and q = 1. The digital versions of the filters (a) and (b) are the building-
stones with which more complicated filters can be constructed. The digital filter
discussed in section 3.6 is for example the ‘double’ version of filter (b), while
filter (a) is the simplest version of the transversal filter we encountered in section
5.2. We shall also meet them in several filter and oscillator circuits in this sec-
tion, and as analysis and synthesis filters in LPC-systems (section 7.3).

Both filters can be combined in a series circuit. Due to linearity it does not
matter in which order this is done, but placing filter (b) before filter (a) has the
advantage that only one time delay is required; see fig.6.3.4.

) W B

Figure 6.3.4 Series circuit of filters.

When the two g-values are equal the effect of this combination of filters is nil, as
the effect of the first is cancelled by the second one. This can be concluded from
the impulse responses but even better from the amplitude responses (6.14) and
(6.15). The product of these two expressions is equal to 1. Fig.6.3.5 finally
depicts the general form of a linear digital filter with poles and zeros (see also
Bogner 1975). The design of a filter based on a particular specification (with
analog filters usually a particular amplitude characteristic, with digital filters
sometimes also a particular impulse response) is in general a difficult task, where
moreover large differences occur between the procedures for analog and those
for digital filters.

The following remarks refer to analog filters: whether it concerns a mechani-
cal, an acoustical (Helmholtz resonator) or an electrical filter it is typical of an
analog filter that it involves a system containing components which, by their
physical properties, influence the vibration. With a vibrating string these were
elasticity, mass and friction, with the Helmholtz resonator the volume and the
size of the opening of the sphere, and the pressure and density of the air, and
with the LC-circuit the self-induction, capacity and resistance. The physical
quantities can be mathematically described, but a typical complication is that this
description is never totally exact and that in practice deviations from the ‘ideal’
behaviour occur.
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Figure 6.3.5 Digital filter.

The design implies a theoretical analysis of the (idealized) mathematical equation
of the system, using a transform technique related to the Fourier transform: the
Laplace transform. It involves the use of complex numbers and that is why this
method is not dealt with here. For many applications standard designs for both
active and passive filters are used, which have optimal specifications as for flank
steepness, ripple in the pass band etc. like Butterworth or Tchebychef filters. For
active filters frequency dependent feedback is often used, leading to frequency
dependent amplification. We shall encounter examples of this.

With digital filters the problem of the deviations from the ideal behaviour of
the components does not occur. Other problems arise such as rounding-off errors
that are the consequence of the finite word length of the digital samples. Still,
digital filters generally offer large advantages. It is possible to design filters that
cannot be realized in an analog way. Especially for variable, controllable filters
the digital method is advantageous. To vary an analog filter one must usually
change the value of a particular component (for example a resistor or capacitor).
With digital filters this boils down to changing some factors in the algorithm
(algorithm = calculation process).

A very direct method for digital filtering is based upon the Fourier transform.
Via an F.F.T. a signal is converted into the corresponding spectrum. Then
changes in the amplitude and/or phase spectrum are made (certain frequency
components are for example removed, or all phase angles are set to 0, etc.) and
then inverse transformation to the time domain takes place. Symbolically:

FFT changes FFT!
W) » Y(f) -Y'(f) —-y'(0)
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A common method in digital filter design is using the impulse response, because
there is a technique to derive the filter algorithm from the impulse response. This
design procedure is based upon the mathematical technique of the ‘Z-transform’,
which is the time-discrete version of the already mentioned Laplace transform. If
the purpose of the filter is to realize a certain frequency response this can be
accomplished by first deriving from this the impulse response with the help of
the inverse Fourier transform, and then finding the filter algorithm via the Z-
transform. Symbolically:

FFT! z
H() Yh(t) algorithm

As we have already seen, filter algorithms consist of three operations: time delay,
addition and multiplication by a coefficient. All linear digital filters, even the
most complicated ones, can be realized by these operations. Of these the multi-
plication is the most time-consuming one. If the filter should have an infinite
long impulse response (IIR filter) one has to make use of feedback, as for exam-
ple in the recursive system of fig.6.3.1. These filters can be relatively compact
but because of the feedback there is always the risk of instability. For a FIR filter
the principle of the transversal filter of section 5.2 can be applied.

B. A few linear filter and oscillator circuits

The fact that filter and oscillator circuits are here named in one breath suggests
that there is in principle little difference between them. That is indeed the case.
An oscillator may be considered as a system with a particular specified impulse
response. We shall encounter examples of this approach.

1. Analog, passive filters.

In this section we return to the simple differentiating and integrating circuits of
chapter 2 (fig.2.3.3 in section 2.3.D and fig.2.5.4 in section 2.5.B). We will now
study their frequency domain behaviour i.e. their frequency responses. As in the
previous section we will find that differentiation corresponds to high pass filter-
ing and integration to low pass filtering. In fig.6.3.6 the differentiating network is
shown again for which in section 2.3.D the following equation was derived:

dv, dv, v, dv,
vV, = RC -RC—2 - Tt —V, = —=
y dt dt dt RC dt

We could now ask what the impulse response of the system is. Instead of this we
shall have a look at the step response: the reaction of the system to an input
signal that is O for 7 < 0 and has a constant value V, for 1 > 0, a step function (see
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fig.6.3.7, the impulse response can be derived from the step response, because
the derivative of the step function is an infinitely narrow impulse).

Vi 1
o |
g T
V . b=
Figure 6.3.6 Figure 6.3.7 Step function and step response
Differentiating circuit. of the differentiating circuit.

For this signal it holds that dV,/dt = 0. The equation thus becomes:

dv £
Ty 1y R Solution: ¥, = ¥V e *¢
dt RC ? Y
av v, - 1 vy L
Check via substitution: Y = -0, RC and Y =_", RC
dt RC RC "’ RC

The summation of both expressions yields 0.

To find out what the sine response is we take as an input signal: V, = sin w ¢

and as trial function: V, = B sin (wt - ¢). This is a logical choice because we are
dealing with a linear system for which thus the sine in/sine out-principle holds.
Our task is to determine B and ¢. Let us substitute 7, and V| in the equations:

B cos (wr - ) +R—Bc—sin (wt - ) = wcos wr

The left expression can be reduced to one cosine function:

D cos (Wt - + Y) = w cos wt

B
2
with D = (02B2+ andtmy:—}ﬁ:—;
R2%C? wB WRC
or: D cos Wt cos (Y - $) — D sin wt'sin (Y - P) = wcos wt

This is the case if Y = ¢ and D = w. If in the above expression we replace D for
w we find:
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2
w= |2+ -2 ~w2:(w2+———1 )B2- R*C?’w?=(R?’C*w? +1)B?
RC? R?C?
and thus:
2nfRC
HA(f) =B = _—f_—_
\/l+4ﬂf2R2C2 (6.16)
. 1
A =p=y=tan'-——
oy =¢ =7 27/RC
Graphically:
B wW=1/RC log w
1 %] —+
~9a°
w I=1/ﬁc log w d)
Figure 6.3.8 Figure 6.3.9
Amplitude response of differentiatin ' € 0.2 .
ci':"c[; ll tu P )/ diff g Phase response of differentiating cir-
' cuit.

For high frequencies B = 1 and we thus have a constant output level. With low
frequencies B is proportional to w and we have a 6 dB/octave flank-steepness.
The cutoff frequency lies at w,= 1/RC because then B = 1/v2 (see fig.6.3.8 and
fig.6.3.9). The differentiator is obviously a highpass filter.

In the same way we can analyze the integrating RC-network shown in fig.6.3.10.

Vs
R
|
|
C <
v Y Meaboo
x 14
Figure 6.3.10 Figure 6.3.11 Step function and step respon-
Integrating circuit. se of the integrating circuit.

See problem 6.8. It turns out to be a lowpass filter. The expression for the step

3

responseis: ¥V, =V (1 - e RSy (fig.6.3.11 bottom).
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The amplitude and phase response are described by:

1
2MfRC

Hy () =B =——————— and AQ(/)=d=Ln vt ?

V1 +47’f?RIC?

The responses are depicted in fig.6.3.12 and 6.3.13.
° P

1————~—\
39 /,_,

8 —t
w=1/RC log o w =1/RC log w

Figure 6.3.12 Amplitude response. Vigure 6.3.13 Phase response.

2. Analog, active filters.

Most active filters make use of frequency-dependent feedback. We saw that with
an increasing amount of feedback the overall amplification is reduced. If feed-
back takes place via a filter, the amplification will be large at those frequencies
suppressed by the filter and vice versa. The frequency response of the system is
therefore the mirrored version of that of the filter. By combining a RC-network
with an amplifier a system is realized that functions as an integrator or differenti-
ator with a much more accurate performance than the previous circuits, without
amplifiers. Fig.6.3.14 shows a differentiator. Because the current must be equal
in both branches it holds:

dv vV dv
i=ig=C I=-_2 or V. = -RC—=
dt dt R ’ dt
i R C
[ 1 .
C T T 1 II
(VI
X i vx i R II
v —{ 1}
14 Y
A 9

Figure 6.3.14 Differentiator. Figure 6.3.15 Integrator.
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In the same way it holds for the integrator of fig.6.3.15:

e o v Ly g
i= =12 =-C—2 or = -—[ V. dt (+ a constant
R dt dt y RC[ A )

3. Digital filters.

- An ‘all-pass’ network (Schroeder et al. 1961).

In 1961 Schroeder published a circuit that he considered as a building block for a
digital reverberation circuit (see fig.6.3.16). As impulse response the circuit has
a decreasing series of equidistant pulses

fig.6.3. i
. D f+\ . ( 1g'6 3.17), somewhat comparable with
N4 the impulse response of the comb filter
of fig.6.3.1, but here with a flat ampli-
° ° tude response (fig.6.3.18). Therefore,
1-g? the characteristic and audible coloration
° of the comb filter is lacking. We are
s thus dealing here with a system where
Figure 6.3.16 All-pass network. conditions are set to both the impulse
response and the amplitude response.
o~ nA o o -~ H A
n S R
% e = <
I [v] m vm
A
le— 7 —>
i f
Figure 6.3.17 Impulse response Fig.6.3.18 Amplitude response of the
of the all-pass network. all-pass network.

A complete reverberation circuit can be considered as a similar filter where the
impulse response must have such a density of pulses that an exact description of
it is impossible (and also unnecessary). Instead of that certain statistical criteria
can be applied. Schroeders idea was to build up a digital reverberation circuit
from at least five of the above building blocks in a series circuit.

- Linear oscillators (Tempelaars 1982).

We can also set ourselves the task of designing a system with a particular im-
pulse response and by that of keeping spectral considerations out of the discus-
sion in the first instance. Systems that have the task of generating a certain time
function are called oscillators. A sine wave oscillator produces a sinusoidal
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signal. If we should succeed in designing a ‘filter’ of which the impulse response
is this sinusoidal signal then we could have designed just such a sine wave oscil-
lator. We need only supply one single impulse to the system to excite the desired
output signal.

For a finite impulse response one could use a transversal filter. The solution is
simple: the discrete values of the signal function are used as hA-coefficients (thus
as multiplication factors) in the scheme of fig.5.2.3. The drawback of a limited
duration for the signal can furthermore be avoided by giving the start pulse again
at the end of the signal sequence. By this means a periodic signal arises that in
principle can be arbitrarily long. If the system is used only in this way (and not
also as a ‘true’ filter with an arbitrary input signal) then it is easier to realize by
placing the function values in a memory (analog or digital) and recalling them
one after the other. This generator principle (which was earlier mentioned in
section 3.2) is known under various names: stored-waveform generator, look-up
table generator, sequencer, variable function generator etc. For an infinite im-
pulse response we must make use of a system with feedback. We have already
become acquainted with two examples: the digital sine wave generator dealt with
in section 3.2 and the generation of a damped sinusoidal signal treated in section
3.4

Here below are yet three more of such circuits with the corresponding multi-
plication factors. The circuits are somewhat more complex and that also holds for
the signal functions generated: a sinusoidal signal with an envelope with a partic-
ular rise and decay time (fig.6.3.19), a VOSIM-signal (fig.6.3.20) and a signal
consisting of the product of two sine waves (fig.6.3.21).

- Sinewave with attack and decay; signal function: y(k) = k- r*sin ky

Required coefficients:
y (k) a, = -2rcosy
a, = 2r*(1+2cos%)

as; = -4r’cosy
4

a,=r
° b, = rsiny
b, =0
by = -r’siny
b,=0

[N

Figure 6.3.19 Sinewave with attack and decay.
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- VOSIM signal; signal function: y(k) = r "(% - %cos kY)

Required coefficients:
v (k)
a, = -1 + 2cosy)
a, = ri(l1 + 2cosvy)
a, = -r’
by = r(1 - cosy)
b, = ri(1 - cosy)
b, =0

Figure 6.3.20 VOSIM signal.

- modulated sinewave; signal function: y(k) = sin kY - cos k0

Required coefficients:

s a, = -4cosy cos O
a, = 2(cos 2y +cos20 + 1)
a, = -4cosy cos 0
a, = 1

o 1 b, = siny sin®

h,=0
by = -siny sin©
h,=0

Figure 6.3.21 Modulated sinewave.

4, Analog oscillators.

Evidently with the oscillators just dealt with, feedback is made use of. The signal
returned is not subtracted from the input signal, but added to it (positive feed-
back). This can very easily lead to instability because if the input signal becomes
larger as a result of feedback, a cumulative process has begun which can no
longer be controlled. By means of the accuracy of the calculations in digital
systems, things may be kept under control. With analog circuits this is more
problematic. For example, let us have a look at the following circuit (fig.6.3.22).
The network of two resistors and two capacitors is called a “Wien bridge’ and
acts as a band pass filter. This is not surprising as the circuit is a combination of
the highpass and lowpass filters of fig. 6.3.10 and 6.3.11. The amplitude and
phase response are shown in fig.6.3.23 and fig.6.3.24. The transmission of the
network is maximum at the frequency f, =1/2nRC.
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Figure 6.3.22 Wien bridge oscillator.

It amounts to a factor 1/3. The phase shift is then 0°. If the gain factor of the ap-
plied amplifier is precisely 3, the total amplitude factor is 1 and the circuit func-

tions as a sine wave generator with frequency f;.
H A f) H(D(f )o

[
1/3 4 r\

log f

£ \
o
-9e°]
1 log f

Figure 6.3.23 Figure 6.3.24
Amplitude response of Wien bridge. Phase response of Wien bridge.

The problem is, however, that an analog amplifier can never exactly be set to a
factor 3. One then resorts to a sort of automatic gain control to keep the ampli-
tude of the output signal constant. One method (indicated in fig.6.3.22 with the
dashed lines) is to send the output signal to the inverting input of the amplifier as
well. The gain factor is determined by the voltage divider. By using a tempera-
ture-sensitive type for the uppermost resistor it can be achieved that a larger
signal amplitude (thus more heat production) leads to a smaller amplification
factor.

Another example is the relaxation-oscillator, by which a sawtooth signal can
be generated. This consists of a linear part that generates a voltage increasing
proportionally with time, and a nonlinear part that interrupts this process at a
particular moment. This can be realized as an analog system in the following
way: a current source sends a constant current into a capacitor (fig.6.3.25).
Through this the charge of the capacitor increases linearly in time and therefore
also the voltage (Q = C-V). Via a comparator it is determined that the rising
voltage has become equal to a certain reference voltage V. The electronic switch
S is closed for a short duration, the capacitor discharges itself, the voltage drops
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to 0, the switch opens again and the process repeats itself. The circuit is also
sometimes used in a double version and functions then as a triangular wave
generator.

s

%]

Figure 6.3.25 Relaxation oscillator.

Digitally one uses a counter (a register of which the content is raised by 1 with
each clock pulse) and a (numerical) comparator that resets the register to 0 if a
certain reference value is reached.

5. Noise generators.

Analog noise generators are particularly easy to construct. Because every electri-
cal current displays statistical fluctuations it is enough to take an amplifier that
amplifies the unavoidable noise to such an extent that a sufficiently strong noise
signal appears at the output. It is better to place at the input an element in which
naturally large statistical fluctuations in electrical current occur. This noise signal
has a normal amplitude distribution (random noise) and has a white spectrum.
With a 3 dB/octave filter the white noise can be changed into pink noise.

Binary analog noise can be generated by connecting a comparator to this noise
generator. As we have seen, a comparator has only two output levels, for exam-
ple level 1 with a positive input signal and level 2 with a negative one.

Digital noise is an entirely different problem. As with every digital signal
function we are concerned here with a sequence of numbers, here numbers
determined by chance. We thus look in fact for a system with a ‘random’ impulse
response. Naturally for this we can use analog noise and an AD-converter. There
are however algorithms for generating such random numbers, for example the
following procedure: take a number between 0 and 1, add = to it, raise it to the
8th power, take from the resuit the part after the decimal point. This number is
the first one of the sequence to be generated. Repeat the whole calculation with
this number to find the next output value. Starting with 0.4 we find the following
series:

0.7786, 0.8883, 0.8843, 0.3077, 0.4699, 0.7680, 0.2090, etc.
We find thus numbers between 0 and 1, and all these numbers are equally proba-
ble; the probability density function is flat. If we perform this calculation with a
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computer then because of the finite supply of numbers it is unavoidable that at a
certain moment all numbers have been used and a number appears for the second
time. Because the calculation goes on in the same way the whole following
sequence is identical with the previous one, in other words, the series repeats
itself periodically. We can take care that this will not happen until all the differ-
ent numbers that can be represented with the given word length have been used
(maximum length sequence). With a word length of n bits there are thus 2°-1
numbers (the zero must not be used). We use the characterization ‘pseudo-
random’ to indicate the difference with true random numbers. The fact that the
sequence is reproducible (the same start number gives the same sequence) can
sometimes be useful.

A simple and fast, although from a statistical point of view not the most ele-
gant method for generating random numbers, is the following:
Place a binary pattern in a so-called shift regis-
ter. This is a register where all the bits can be
shifted one position to the right (or to the left).
Fill the place to the left which has come free
because of the shift, in with either a 0 or a 1,
depending on the content of two other places in
the register. Use the following rule: XOR

00 - 00,1 - 1;1,0 -~ 1;1,1 - 0
(a so-called XOR-gate).
With a 4-bits register (fig.6.3.26), with feedback  Figure 6.3.26
via a XOR-gate from bit 2 and bit 3 to bit 0, and  Pseudo-random number
with the number 1000 as a start number, we get  generator.
the following pseudo-random sequence of 15

REGISTER

numbers:
register output XOR decimal register output XOR decimal

1 1000 0 8 9 1010 1 10

2 0100 0 4 10 1101 1 13

3 0010 1 2 11 1110 1 14

4 1001 1 9 12 1111 0 15

5 1100 0 12 13 0111 0 7

6 0110 1 6 14 0011 0 3

7 1011 0 11 15 0001 1 1

8 0101 1 5 {1000)

The spectrum of such a noise signal is white (see section 4.4.D). Via (digital)
filtering it is possible to get other spectral distributions. There are also algorithms
that directly give another spectrum or another amplitude distribution, for example
algorithms that produce pink noise or brown noise, and spectral slopes in be-
tween. To formulate this more exactly: noise with as a spectral distribution
proportional to the function 1/f, with for example 0 < x < 2. Similarly it is possi-
ble to generate noise with a normal probability distribution instead of a flat one.
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6.4 Non-linear and time-variant systems

Linear, time-invariant systems play an important role in signal processing as they
are required for the transmission, recording, filtering and reproduction of signals.
The essential point here is that no new frequency components arise. The preced-
ing sections all dealt with these LTI-systems. This could cause the impression
that non-linear systems are less important. This is not the case. Many phenomena
in nature are so complex and even chaotic that the relatively simple description
technique of the linear systems is absolutely inadequate. In the meantime mathe-
matics has developed new tools to deal with these non-linear, dynamic and
chaotic systems: techniques to solve sets of non-linear differential and difference
equations, iterative systems describing chaotic behaviour, fractal geometry etc.
These parts of signal processing handling the simulation of existing systems like
musical instruments profit most of this development. The knowledge and skill
required to be able to use these new mathematical tools exceed the level chosen
for this book. Therefore in the next sections just two groups of non-linear sys-
tems are discussed that both are closely related to linear systems. For those
interested in non-linear and chaotic systems I refer to Schroeder (1989), Truax
(1990) and Chua (1993).

A. Systems with a nonlinear transfer function

With some systems the input/output relation can be measured by determining
which output voltage is produced with a particular constant voltage at the input.
The measurement result is then only relevant for the DC-behaviour of the system.
With a (DC-) amplifier the relation is represented by y = A-x and is graphically a
straight line (fig.6.4.1).
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Figure 6.4.1 Figure 6.4.2
Linear transfer function. Nonlinear transfer function.

This description holds as well for alternating voltages as long as the gain factor is
constant (otherwise the steepness of the line changes) and the phase shift is 0,
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otherwise the line changes into an ellipse or a circle. These limitations show the
relative value of this description method. If the input/output relation is non-
linear, but has a shape as shown in fig.6.4.2, then it is possible to describe the
relation between y and x near a particular x-value with the help of a power series:

3 4

y=a1x+a2x2+asx L.

+ a 4x
If we use the sum of two sinusoidal signals as input signal for this system, then
new frequency components are generated. We have encountered this phenome-
non already in chapter 5 (see formula (5.8)) in the discussion of the nonlinear
distortion of linear systems. There the rule was stated that the term of the series
in which the p-th power occurs causes components with frequencies:

|mf, + nf,| withm +n =p

This also plays a role in explaining the phenomenon of combination tones
(‘difference tones’) which should be considered as distortion products of the
hearing organ. Furthermore nonlinear transfer functions are applied in a method
for generating complex tones (see section 7.4.D). With digital signals a nonlinear
transfer function is simple to realize. This function is then discrete and can be
specified as a table or list. By using the discrete values of the input signal as
pointer for this (look-up) table every desired corresponding output value can be
produced. With analog signals a particular nonlinear transfer function can be

approximated with the help of a diode shaping

. network as shown in fig.6.4.3. A diode can be
T considered as a sort of valve, a voltage-con-
x e—— , * v trolled switch. If the voltage on the side of the

triangle is higher than on the other side then
the diode functions as a simple connection,
and in the other case as an interruption.

Symbolically:
- —
i S~

If in this diode-network the input voltage rises,
Figure 6.4.3 ever more diodes are conducting and ever
Diode shaping network. more parallel resistors in the lower part of the

network will be switched in. We have in fact a
voltage divider with an increasingly smaller value of the lower resistance.
In this way the output voltage is increasingly attenuated with regard to the input
voltage (see fig.6.4.3) and a ‘piecewise linear’ approximation of a particular
function is possible. This method is applied, for example, in voltage-controlled
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oscillators to change a triangular wave shape into a sinusoidal one and to provide
the oscillator with two signal outputs.

A diode shaping network is an example of an analog system with a nonlinear
transfer function, realized with the help of nonlinear components, here diodes.
More systems of this type exist, some of them equipped with operational amplifi-
ers to improve their performance. We shall look at some of these systems, where
possible in their simplest form without an amplifier, although the use of an
operational amplifier is in general to be preferred.

1. Limiter.

With two diodes and two batteries a
circuit can be constructed in which
the output voltage cannot exceed (in
positive or negative sense) the limits
determined by the batteries. It 1is
shown in fig.6.4.4. This leads to
‘clipping’ of the signal peaks. An ex-
treme example of such a limiter is the
comparator that we have already be-
come acquainted with. With the com-
parator the slope of the oblique part
of the transfer function is practically
vertical.

Figure 6.4.4 Limiter.

2. pu-law compression.

This signal-compression technique has been mentioned in section 4.2. It is ap-
plied in speech technology to reduce the proportion between the peak value and
the RMS-value of a speech signal. Fig.6.4.5 shows the signal compression,
fig.6.4.6 the expansion that restores the original signal.

. AT
= UUT 7T
== S=

Figure 6.4.5 u-law compression. Figure 6.4.6 p-law expansion.
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3. Half wave rectification.

With a single diode and a resistor a rectifier can be constructed, a circuit that
transmits only the positive (or by reversing the diode only the negative) frag-
ments of the signal. Fig.6.4.7 shows the circuit and the transfer function.

4. Full wave rectification.

With four diodes in the circuit of fig.6.4.8 full wave rectification is possible.
With this the negative signal fragments are mirrored into the positive range as
shown by the transfer function.

e

X
N

fix)
fix)

NI

Figure 6.4.7 Figure 6.4.8
Half-wave rectification. Full wave rectification.

5. Logarithmic and exponential conversion.
The relation between the voltage }” across a diode and the current i through it is

described by an exponential function: I = I e P (I, and V, are constants).

If a diode is placed before the inverting input of an operational amplifier then the
output voltage follows the input current (see formula (6.12)) and the input/output
relation is thus also exponential. We have constructed an exponential converter
(fig.6.4.9 and 6.4.10).

Figure 6.4.9

. . Iigure 6.4.10
Exponential converter. g

Iixponential transfer characteristic.
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By placing the diode in the feedback loop we get the opposite effect and obtain a
logarithmic converter (figs.6.4.11 and 6.4.12).

i
'
t

|
|
|
|

Figure 6.4.11 Figure 6.4.12
Logaritmic converter. Logaritmic transfer characterstic.

These circuits are used for instance for converting the low-frequency (modulating
or control) signals applied in electronic sound synthesis systems (‘synthesizers’)
to achieve, for example, exponentially increasing voltage steps for pitch control,
or logarithmic compression of voltage levels to dB-values.

B. Time-variant systems; amplitude and frequency modulation

An important category within the systems dealt with in this section is that of
linear systems where the performance in time varies. Such systems are in general
better suited for mathematical analysis than those discussed under A.

We can think of amplifiers with a non-constant, controllable gain factor, oscilla-
tors with a variable frequency and variable filters. In the first case one speaks of
amplitude modulation (AM), in the second of frequency modulation (FM) and in
the third case one could speak of spectrum modulation but this term is not used.

Our ear is very sensitive to such variations in the sound signal because as we
saw in chapter 1 with acoustical communication the information is conveyed via
comparable processes to the signal. AM is perceptible as variation of loudness,
FM as variation of pitch, and spectrum modulation as variation of timbre, at least
if the maximum modulation speed does not exceed the maximum speed by which
we can modulate the sound signal with our muscles. This limits the maximum
modulation frequency to about 20 Hz.

Modulation techniques thus play an important role in the synthesis of musical
sounds and that of speech sounds. Spectrum modulation is especially important
for speech synthesis (LPC). I will return to this in chapter 7. Technically much
higher modulation frequencies can be realized. Although such signals are not
recognized by our ears as information carriers in acoustical communication, they
can still have interesting qualities. This holds in particular for AM and FM. I
shall therefore first pay some attention to the theoretical and practical aspects of
amplitude and frequency modulation.
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1. Amplitude modulation.

If we modify an amplifier so, that the gain factor is no longer constant but can be
controlled with the help of a second signal function, the modulating or control
signal, in fig.6.4.13 indicated with x, , we
have then realized a system with which AM
" is possible. The most simple relation between
control signal and gain factor is proportion:
gain factor A(x,) = G -x,

The input/output relation then becomes:

Figure 6.4.13 y=Ax,=G-x,"x, (6.18)
Amplitude modulator. ; . . y . .
in which x, stands for the ‘normal’ input sig-

nal that now functions as a carrier wave. We
can thus consider this system a (linear) time-variant system because due to the
time dependency of x,, the coefficient 4 is time-dependent. It is also correct to
speak of a nonlinear circuit with two inputs because due to the multiplication of
x,, and x, the superposition principle is no longer in effect.

For this reason there are various names for this system: the names ‘voltage
controlled amplifier’ (VCA), ‘envelope modulator’ and ‘envelope shaper’ refer to
the first function, and ‘product modulator’ and ‘multiplier’ to the second. I shall
mostly use the term ‘multiplier’ as a general indication. Let us have a look at
what happens if both x, and x,, are sinusoidal:

x () = cos2mf ¢

y() = Geos2mf t-cos2mf ¢
x, () = cos2mf t

Is this signal periodic? We have discussed this question before, in relation with
the time-discrete sinusoidal function (see section 2.6.B). There we saw that this
signal is periodic when an integer number of periods of x, fits in one period of x,,.
In other cases there is a fundamental frequency equal to the GCD of £, and f,,.

Example 1.
Assume f; = 440 Hz, f, = 40 Hz (see fig.6.4.14). In one period of f,, fit exactly 11
periods of £; the signal is truly periodic, f, = 40 Hz.

Example 2.

Imagine f, =307 Hz, f, =19 Hz. The GCD of f, and f,, is 1 Hz. Again the signal
is periodic, but the period duration is now 1 second. Because with practical
systems every frequency value has a limited accuracy there is always a rational
quotient to be found. The signal is thus always periodic, but the period duration
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can be very long as in the following example. We do not perceive such a signal
as periodic.

Example 3.
Imagine f, = 307.22541 and f,, = 19.02067; f, is now 0.00001 Hz (period duration
ca. 28 hours!).

Figure 6.4.14 Amplitude modulation.

2. The spectrum of an AM-signal.

To directly calculate the spectral coefficients we must substitute the function
W) =G - cos 2nf t + cos 27f,t in the formulae (4.8) and (4.9). Even without the
complications with the periodicity the calculation of the integrals is no sinecure.
Fortunately there is a much simpler solution because with the help of rule (2.48)
we can write y(f) directly as a series of (co)-sine functions:

G-cos2mft-cos2mf t = %G cos2T(f, +f )t + %GcosZn(fc £t

The spectrum consists of only two components, of which the frequencies are
equal to the sum and the difference of the frequencies of the two input signals. If
f.. is greater than £ the difference frequency is negative. This is not a problem as
cos(-a) = cos a. If with another choice for the input signals we should have got
the term sin 27t(f,-f,,)¢ this would have been no problem either as sin(-e) = -sin a,
so that the component with the negative frequency, is equal to one with the same
but positive frequency with a phase shift of 180°.The result that we have found
here is in correspondence with the considerations concerning the periodicity,
because the sum and difference frequencies are always multiples of the greatest
common divisor of the two original frequencies:

S S = ke, f, - f, = (k-mf,
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In example 2 f, = 307 Hz and £, = 19 Hz generate new components with frequen-
cies 307 + 19 = 326 Hz and 307 - 19 = 288 Hz, both multiples of 1 Hz.

Both descriptions of the AM signal, a product function in the time domain and
sum and difference frequencies in the frequency domain are mathematically
equivalent. As for the perception it holds that with low modulating frequencies
the time domain description with the corresponding fluctuating loudness is the
most relevant, and for high frequencies the frequency domain description in
terms of sum and difference frequencies. In between lies a transition range (f,, =
20 to 40 Hz) in which the amplitude variations are too fast to perceive the loud-
ness variation, and at the same time the frequency components are so close to
each other that there is a strong interaction. This leads to a ‘rough’ sound.

3. Amplitude modulation with a non-suppressed carrier wave.

Let us take for x,, a signal that varies sinusoidally around a particular constant
value B:

x () =Acos2nf t + B =B + %cosZﬁfmt)

In fig.6.4.15 an example of such a signal function is shown. Observe the differ-
ence with fig.6.4.14.

Figure 6.4.15 Amplitude modulation with non-suppressed carrier.

The factor A/B is called the degree of modulation. 1t should be < 1 and is usually
expressed as a percentage. In this example the degree of modulation is 100%. In
the following m is used instead of 4/B. The output signal is now:

o = G-x,.'x,, = Geos2nft-B(l + mcos 2n f,1)
GB(cos 2n f .t + mcos 2T f t+ m cos 27 f,1)
GB{cos 2r ft + Yamcos 2n(f, +f, )t + Yom cos 27(f, - £,)t} (6.19)

Il

Il
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We see that in the spectrum besides the sum and difference frequencies also the
original carrier wave frequency f, appears. In fig.6.4.16 the spectrum of this
amplitude modulated signal can be seen. The sum and difference components
have equal amplitudes, equal to Y2m times the amplitude of the carrier wave and
thus at most equal to half its amplitude.

In the above it is assumed that x,, is

a sinusoidal function, eventually C . =1000 Hz

with a constant added to it. If that o

is not the case and x,, is an arbitrary fn =100 Hz

time function, then this function m=0 .8

can be split into sinusoidal compo- "_,h o)

nents as we know, and the above R N

must be applied to each of these

components. Imagine, for example, | I

that x,, is a speech signal with a O V) o, s
bandwidth of 50 to 8000 Hz. Then £

when it is amplitude modulated Figure 6.4.16

with a carrier wave v1brat19n of Spectrum of the signal of fig.6.4.15.

50000 Hz, sum frequencies in the

range from 50050 to 58000 Hz and

difference frequencies in the range from 42000 to 49950 Hz arise. These two
frequency bands are called sidebands.

4. Applications of amplitude modulation.

From the above it shall be clear that AM can be used:

- in acoustical communication to give a particular envelope to a signal and in
this way to determine the articulation and the loudness fluctuations.

- as sound synthesis method to derive from given input signals vibrations with
other frequencies. If the input signals are complex and thus consist of various
frequency components then this can lead to interesting results.

- as technical method to enable signal transmission (AM radio).

5. Amplitude demodulation.
Under this heading one understands the reconstruction of x,, from the modulated
signal. In ‘technical’ modulation where a pure sinusoidal carrier is used, this is
possible by multiplying the signal y(f) = G -cos 270 £t - cos 27 £t with the carrier
wave cos 2T f, I:
W) - cos 27f,t = G(cos 2T f £)*cos 2T f,t =

= G(Y%2 + Yicos 2T f t)cos 2T f 1 =

=UGcos2n [+ %G eos2n f 1 cos 2m f 1 =

=1G cos 2T [t + 4G cos 21 (2f, + )t + Y2G cos 21 (2f , - f )¢
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With the help of a lowpass filter the component with frequency f,, can be iso-
lated. One calls this method ‘synchronous detection’ because an extra signal
synchronous with the carrier is required.

For demodulation of analog AM-signals with a non-suppressed carrier wave
(and a degree of modulation < 100%) and also in the case of ‘naturally’ modu-
lated signals where the carrier wave can be very complex, a simple envelope
follower can be used, consisting of a diode, a capacitor and a resistor (fig.6.4.17).

_
I} - out
Figure 6.4.17 Figure 6.4.18
Envelope follower. Principle of envelope detection.

Via the diode the capacitor is charged until the voltage across it equals the peak
value of the input signal. If the voltage drops, the diode is blocked and the capac-
itor discharges (slowly) via the resistor. As can be seen in fig.6.4.18 the capacitor
voltage has a ripple that can be removed by means of a lowpass filter. The prog-
ress of the peak values of a digital signal is generally quite simply determined.

Fig.6.4.19 shows the relation between a particular input signal and the corre-
sponding output signal of an amplitude demodulator.

IN ouT

amplitude

demodulatar

Figure 6.4.19 Amplitude demodulation.

6. Frequency modulation.

As the term says here the frequency of a sinusoidal signal y(?) = sin 27t varies.
Let us assume this variation to be sinusoidal as well, around a value ., as shown
in fig.6.4.20. Here f; is the instantaneous frequency, 7,, the modulation period (=
1/modulation frequency f,) and Af the maximum frequency deviation. The func-
tion rule for f; is:

fi=f. + Af -cos2n ft (6.20)
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t
Figure 6.4.20 The instantaneous frequency.

It now seems easy to derive the function rule of the FM-signal, just by replacing
frequency f'in 3(f) by expression (6.20):
yi) = sinQRuf t+2nt-Af-cos2nf,1)
This result cannot be correct because the product #Af implies that the frequency
deviation grows proportional to time and thus becomes infinitely large. The
problem is that the concept ‘frequency’ here loses its meaning. With a stationary
sinusoidal signal the frequency is the number of
periods per second. In the vector model (the ro-
tating arrow in fig.6.4.21, introduced in chapter 2
as the ‘bicycle-step’ model) the frequency is the
number of rotations of the arrow per second.
a When we vary the frequency, the rotation speed
will vary, and the arrow will alternately move
faster and slower. With large fluctuations this
could lead to the vector coming to a standstill in
the slow phase or even reversing the direction of
the rotation. It can also happen that no complete
Figure 6.4.21 rotation takes place and with this the concept of
Angle modulation. ‘number of rotations per second’ (=frequency)
becomes meaningless. To solve this problem we
introduce therefore a new definition of the concept of frequency, via the relation
with the phase angle a(f). This new definition will turn out to be identical with
the old definition when the vibration is stationary, but it will enable us to derive
the correct expression for a(f) with a FM-signal, and then the function rule itself
follows immediately from )(f) = sin a(f). The relation between the frequency
and a can be found via the rotation speed.

For ‘frequency’ we have: frequency = number of rotations/sec
= number of 27 rad/sec
and for ‘rotation speed’: rotation speed =  number of radians/second

From this we can conclude: frequency = rotation speed/2n



250 Chapter 6

The rotation speed follows from the rotation angle by differentiating this angle

with regard to time, or rotation speed = d ‘;(‘ )
t
1 da(r)

6.21
2T dt ( )

Combining these two results yields: frequency =

For a stationary vibration with «(¢) = 2nff + ¢ this gives the expected result:
frequency = f.

Let us now replace ‘frequency’ by the expression (6.20) for f;:

do(t)

2nf, = 27(f, + Af-cos2mf, t) = 4
t

or a(t)=27ft +21rAf2 lf sin 27f, t + 0 =2Tf ¢ +Hsin2ﬂ:fct + 0y
m

m m

The proportion Afff,, is called the modulation index and will be abbreviated from
now on to m. The function rule for the FM-signal now is:

y() = Asina(r) = Asin(Q7f,t + msin27f ¢ (6.22)

The relation between the modulating signal, the carrier and the modulated signal
is shown in fig.6.4.22.

AVAVAAY

Y

Figure 6.4.22 Frequency Modulation.

7. The periodicity of the FM-signal.

Regarding the periodicity of the FM-signal the same applies as with the AM-
signal. There is a fundamental frequency that is equal to the GCD of the
frequencies f; and f,,.
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8. The spectrum of the FM-signal.
For the same reason as with the AM-signal we must attempt to determine the
spectral coefficients by working out y(f) with trigonometric means to a sum of
sinusoidal vibrations. For this we must make use of a special mathematical
function, the Bessel function.

In 1824 while working on a certain mathematical problem, the German astron-
omer Friedrich Bessel was confronted with the following differential equation:

2 2
._.__dy +l£1_}_’.+(]—p._)y:0
dr? z dt z?

The solution to this equation is a function of the complex variable z and the
parameter p. Bessel proved several properties of these function, which are usu-
ally given with the letter J and were later named after him. For us only the case
that z takes real values x is important. We shall thus work with the functions
J,(x), ‘Bessel functions of the first kind and of order p’. The reason Bessel func-
tions are important for our problem is that the following relations can be proven:

cos(msin b) = J, +2{J,(m)cos2b + J(m)cosdb + .. .}
sin(m sin b) = 2{J,(m)sinb + Jy(m)sin3b + J(m)sinSh ...} (6.23)

We shall see then while working out the function rule of the FM-signal we will
encounter expressions of this type. Rule (6.23), however, is only useful if it is
possible to determine the values of the Besselfunctions J. This is indeed feasible
with the following formula:

x2

[’—] 6.24
J(x) = ( ) y L4 (©.24

no nl(p+n)!

Sometimes it works faster to use the following recursion formula to calculate
higher order Bessel functions from lower order ones:

*l()-—"()»" l(x)

The time function of the FM-signal (rule 6.22) can be reduced to the form:
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sin (@ + m sin b) = sina - cos (m sinb) + cosa - sin (m sin b)

"

sin a[J,(m) + 2{J,(m) cos 2b +J,(m) cos 4b +.. }] +

+ cosa  2{J,(m)sin b +J (m)sin 3b +J (m)sin 5b + ...}

Bringing respectively sin x and cos x within brackets leads to products of the
type:

sin a - cos nb %sin (a +nb) + isin (@a-nb) (n even)

L}

cos a * sin nb %sin (a +nb) - %sin (@a-nb) (n odd)

If we replace a by 2 £t and b by 2n £, and if we further assume that the ampli-
tude factor A4 is equal to 1 and the initial phase angle to O (these two constants
play no further role of importance), we see that we find for y(f) the following
expression.

(@) = sin(2nf t +msin2nf 1) =
= Jy(m)sin27f ¢t +
+ J(m)sin 2T(f, +£,)t ~J (m)sin 2L (f, ~f, )¢t +
+ J(m)sin 2T(f, +2f,)t + T (m)sin 2T (f, -2 )¢ +

Jy(m) sin 270(f, +3f )t - J,(m)sin 2T (f, - 3f )t +

Or shorter:
y(@® = Jy(m)sin27f ¢ +

E (m) sin 270(f, +kf, )t + (- l)”smz‘rt(f kS, )e) (6.25)

The spectrum thus contains the frequency components f, + k- f, (with k=0,
1, 2, 3,...). The amplitude factor of each component is found by substituting the
modulation-index m in the corresponding Bessel function, e.g. with rule (6.24) or
by using the graphs of fig.6.4.23.
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Jg O 2
J, OG>
J, )
J5 6
J, 0

JS (x>

Jg (x)

J, &)

Figure 6.4.23 Bessel functions.

Example: f»=300Hz, f, = 3400 Hz, Af= 1500 Hz
The frequency components are 300 Hz apart. The modulation-index is equal to
1500/300 = 5. This gives the following amplitude values:

c
frequency  Bessel amplitude
component function
f J(5) -0.1776
f4f,, J,(5) -0.3276
1221, J(5) 0.0466
[33f,, J5(5) 0.3648
[+4f,, J(5) 0.3912 A | | |,
1256, JL(5) 0.2611 n ]
ﬁgﬁ jjg O ova0 Figure 6.4.24 Spectrum of a FM:signal

This spectrum is shown in fig.6.4.24 (the minus signs are neglected). It is clear
(and visible in fig.6.4.23) that the value of J, decreases rapidly with increasing
value of p. As a rule of thumb we can assume that for m > 4 the coefficient J,,(m)
gives the last ‘large’ amplitude value (in our example J5(5)).

This corresponds with the frequency components:

ftmf, :fc*;‘,—ffm =f.£Af

The ‘practical’ bandwidth of the FM signal is thus approximately 2Af Hz.
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9. Applications of frequency modulation.

- in acoustical communication FM is the method to convey information to the
signal via control of the pitch (intonation).

- FM offers interesting possibilities for the synthesis of sounds, consisting of
equidistant frequency components. See chapter 7.

- In the communication technique FM is a method for high-quality signal trans-
mission (FM radio) and for registration of low frequency and DC signals
(instrumentation recorder).

10. Frequency demodulation.
Here again one must differentiate between ‘natural’ and ‘technical’ modulation.
In the first case frequency demodulation means the determination of the funda-
mental frequency of the signal that is in general non-sinusoidal. This is an impor-
tant and sometimes difficult problem, especially with speech signals. I shall
retumn to this subject in chapter 7.
If the carrier wave is sinusoidal (or
can be made sinusoidal by removing
higher frequency components with
the help of a filter) one can with ana-
log systems make use of a so-called
vco. eout  PLL-circuit (PLL = Phase Locked
Loop) (fig.6.4.25). The frequency is
Figure 6.4.25 Frequency demodulation ~ compared with that of a voltage con-
with Phase Locked Loop. trolled oscillator. The frequency
comparator gives a (DC-)voltage
that is proportional to the value of
the frequency difference. With this voltage the oscillator frequency is adjusted
until it is equal to that of the input signal. The control voltage reflects the
frequency variations and is thus the demodulated signal.

In a digital FM-signal with sinusoidal carrier wave the positions of the zero-
crossings (either ascending or descending) are easy to determine. The distance in
between is the period duration; the reciprocal of this is the frequency value. In
fig.6.4.27 a frequency demodulator with input and output signal is shown.

FREQUENCY
COMPARATOR

IN ouT

frequency
demodulator

Figure 6.4.26 Frequency demodulation.
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6.5

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

Problems

The output voltage of a pre-amplifier without load resistance and with a
R, of 4 kQ is 1 volt. Now two inputs of other devices are connected (in
parallel). The two input resistances are 1 and 9 kQ respectively. Which
voltage is found on these inputs? How much energy does each of them
withdraw from the pre-amplifier?

Now a transformer is used for an optimal match between the pre-ampli-
fier of problem 6.1 and the load. What should be the proportion of the
number of windings N, /N,? Which voltage is now measured at the input
and how much power is taken?

A resistor of 1 k{2 is connected to the output of some apparatus. As a
result the output voltage decreases from 2 volts to 1.6 volts. What is the
output resistance of this apparatus?

The output of device A (with R,,, = R,) is connected, via a potentiometer,
to the input of device B (with R, = R;).

Consider the potentiometer as a part of device B. Which load ‘sees’
device A?

Consider the potentiometer as a part of apparatus A. Calculate the output
resistance.

Calculate the open-loop and closed-loop gain (in dB) of the amplifier of
fig.6.2.4. (The dB is here -incorrectly - used as a measure to compare
amplitudes!) Use 4 = 10000, R, = 10 kQ, R, = 40 kQ.

Assume that the amplifier (without feedback) has an output resistance of
1 kQ. Calculate the output resistance of the circuit with feedback.

A sound source is located at 1.75 m above a hard, reflecting floor. Let us
check the effect of the interaction between the direct sound and the re-
flected sound at a distance of 5 metres from the source at the same level.
Calculate the frequencies of the maxima and minima of the comb-filter
characteristic and the peak/valley proportion in dB. Assume an attenua-
tion factor due to absorption, of 0.9. Speed of sound: 340 m/s.

Derive formula (6.15) by giving the filter of fig.6.3.1b an input signal
x(?) = sin ¢ and assuming an output signal y(f) = 4 sin(w? + ¢)

Derive the formulae (6.17) in the same way as (6.16).

In electronic circuits the RC-network of fig.6.3.6 is often used to sepa-
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6.10

6.11

6.12

6.13

rate the DC-voltage, which is required for a proper functioning of the
transistors, from the AC-voltage of the signal. Calculate the value of C
required for a cutoff frequency of 20 Hz when R is 5 kQ. The input
resistance of the following circuit is much larger than 5 kQ.

Amplitude demodulation with the circuit of fig.6.4.17 causes a sawtooth-
like ripple. This can be removed with the RC-filter of fig.6.3.10. Give
reasonable values for C and R, when the carrier frequency is 5 kHz, and
the highest modulation frequency is 200 Hz.

Construct a list of 100 random numbers r (0<r<1). Use a calculator that
has this possibility, or by applying the m-algorithm of section 6.3.D.5.
Subdivide the 100 numbers in 20 groups of 5 numbers and calculate the
average of each of these groups. Calculate the global frequency distribu-
tion of these averages by counting how often the value is between 0.2
and 0.4, between 0.4 and 0.6, between 0.6 and 0.8 and so on. Sketch the
distribution curve. Does it look like a normal distribution?

Calculate the frequencies and amplitudes of the components of the AM-
signal

1) = cos 27f/(1 + m-cos 2f, 1)
when m=0.2, f, = 1000 Hz and f,, = 200 Hz.

Work out the function rule of the following FM-signal:
WD) =sin(27n f,t + m-cos 2n £, 1)

Calculate the frequencies and amplitudes of the three central components
of this FM-signal (higher and lower order components can be neglected)
when f, = 1000 Hz, f,, = 200 Hz and Af= 40 Hz.

Notice the correspondence between the spectra of the AM- and the FM-
signal. What is the most conspicuous difference?

Calculate the frequencies and amplitudes of the significant spectral com-
ponents of a FM-signal with £, = 940 Hz, £,, = 200 Hz and Af = 2000 Hz.
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Analysis and Synthesis Techniques

To analyse a signal function is to determine the values of quantities related to the
signal function in question, as for example the average energy of the signal. With
such analyses one is mainly concerned with the following two areas of applica-
tion:

1. The realization of optimal efficiency and quality in the (technical) process of
signal transmission, registration and reproduction.

2. The study of the process of acoustical communication and the systems that
play a role in this.

Examples of the first area of application are:

a. the determination of the peak value of a signal to prevent overload in a regis-
tration or reproduction process;

b. making the transmission of speech more efficient and thus less expensive by
not transmitting the complete signal but only the modulation parameters (Vo-
coder, LPC).

In relation to the study of speech and musical signals I now return to the subject

discussed in the introductory chapter, namely the fact that during acoustical

communication the acoustical signal is an intermediate phase, presenting two
points of contact:

- we can derive from it properties of the sound source,

- we can attempt to predict what the effect of the signal on the receiver will be.

In the last case the analysis becomes a simulation of the demodulation process

that takes place in the perception of acoustical signals.

Pitch, loudness and timbre are the principal attributes derived by the ear from
the modulated carrier wave. These attributes are connected with the physical
characteristics periodicity (frequency), amplitude and spectrum. If we wish to
study this process, we must be able to measure these physical quantities and
furthermore we must know the relation with perceptive qualities. For this last
subject I refer to the specialized literature in this field such as the book "Aspects
of Tone Sensation" by R. Plomp (1975). In this book it is explained how ampli-
tude and spectrum measurements can be performed so that the results are rele-
vant for the perception of loudness and timbre.

Measurement of amplitude of both analog signals (with a voltmeter) and
digital signals (using the sample values) is easily performed and does not need to
be dealt with here.
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The techniques for spectral analysis are treated in chapter 4. In the present chap-
ter therefore only the analysis of periodicity will be discussed and also in which
way detailed information concerning the sound source may be derived from the
signal.

In the second part of this chapter synthesis techniques will be discussed. Here
we can differentiate between technical and scientific applications, e.g. the synthe-
sis of speech signals as a part of a system for speech transmission (technical) and
synthesis of musical signals as a method to check the accuracy of a preceding
analysis (scientific). See Rabiner et al. (1985) and Witten (1982).

There is yet a third area of application, the artistic-creative use of synthesis
techniques in electronic and computer music and the use of synthesizers. In all
three cases the same question arises, how in the most efficient and effective way
a modulated vibration can be produced. See Bateman (1980), Dodge (1985) and
Roads et al.(1985). ‘

7.1 The analysis of periodicity, autocorrelation

We are facing two problems here: it must be decided if an arbitrarily given signal
is or is not periodic, and if so, the period duration must be determined. In the
case of an approximately periodic signal the situation is not too difficult. One can
look, for example, at the spectrum to determine the fundamental frequency of the
harmonic series of frequency components that occurs there. Problems arise when
the signal is quasi-periodic (which is always the case with signals from speech
and music), because then the question is how large the deviation from a purely
periodic signal can be (and how to measure this deviation) before the signal must
be considered non-periodic. Clearly the properties of the hearing organ play an
important role here. Actually this is a pattern recognition problem. Thanks to our
well-developed ability to recognize visual patterns we immediately recognize the
period in the registration of a harpsichord signal shown in fig.7.1.1. It is quite
difficult, however, to develop measuring equipment or computer programs that
can take over this task.

deviation

2.9

T T T T T

2.01 0.02 0.03
t (s)

Figure 7.1.1 Registration of a harpsichord tone.
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A periodic sound vibration is perceived as a tone with a certain pitch, corre-
sponding to the period 7. This is also the case when the spectrum is ‘incom-
plete’, i.e. when one or more harmonics are ‘missing’. It is especially important
to know that for this pitch impression the presence of the first harmonic is not
essential. A vibration without a first harmonic still evokes a pitch that corre-
sponds to this ‘missing fundamental’. The capability to hear this ‘low’ or
‘virtual® pitch is a remarkable property of our perception system. A condition is
that the composition of the spectrum is not too extreme. A vibration with fre-
quency components of 300, 400 and 500 Hz (thus the third, fourth and fifth
harmonics of 100 Hz) will be periodic with a period duration 7 of 10 ms and will
have a pitch corresponding to 100 Hz. See fig.7.1.2.

3080 Hz + 4@ Hz + 508 Hz

Figure 7.1.2 Periodic vibration with missing fundamental.

A vibration consisting of the 34-th and 35-th harmonics (3400 Hz and 3500 Hz),
although still exhibiting a period of 10 ms, no longer provokes this pitch impres-
sion. The frequency of 100 Hz in these examples may be interpreted as a sub-
harmonic of the actual frequency components. Just as the n-th harmonic of
frequency f, has the frequency #f,, the n-th subharmonic has as frequency f,/n and
100 Hz is thus the third subharmonic of 300 Hz, the fourth of 400 Hz etc. Certain
theories on pitch perception assume that such subharmonics play a role in this
mechanism,

There are time domain and frequency domain methods for determining the
periodicity of a signal function with a computer. The use of the autocorrelation
function, to be discussed later in this section, is an example of the former ap-
proach. There are several other methods, with less computational complexity but
often based on rather heuristic principles with which conclusions about the
periodicity or quasi-periodicity are derived from the shape and location of the
peaks of the signal function or from the pattern of zero-crossings. It seems there-
fore also attractive to consider a frequency domain method. The spectrum con-
sists of lines at certain frequencies and the repetition frequency is equal to the
frequency difference between two subsequent components. Several complica-
tions however occur in practice:
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- Some components may be missing.

- With quasi-periodic signals other components may occur that are not harmoni-
cally related to the fundamental.

- The spectrum consists of peaks instead of lines, so an algorithms for estimat-
ing the frequency of the relevant component is required. As we have seen in
section 4.3.G, the frequency resolution is N/f,.

An effective method to detect the fundamental frequency f; is spectral compres-
sion (Hermes, 1988). From the given spectrum new spectra with subharmonics
are derived via multiplication by 1/2, 1/3, 1/4, . . . respectively. Then all spectra
are added. It is very likely that in each of them f; occurs. If the fundamental is for
example 100 Hz, it will occur in the second spectrum, because 200/2 = 100, in
the third spectrum, because 300/3 = 100 etc. This component will therefore be
strongly represented in the sum spectrum. See fig.7.1.3. Due to the limited fre-
quency resolution the maximal compression factor is ca. 5. This can be improved
by using a logarithmic subdivision of the frequency axis.
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Figure 7.1.3 Periodicity detection via summation of subharmonics.

%

Let us now return to the time domain. Here there are two methods with a strong
theoretical basis that produce reasonably reliable results. They both are com-
putationally quite complex. The first is autocorrelation to be discussed now, and
the second is cepstrum analysis to be discussed in section 7.2.
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autocorrelation

This method is based on the determination of the autocorrelation function R.
What kind of function this is, can be made clear by explaining the calculation of
R for a time-discrete signal. The starting point is the finite, time-discrete signal
function y(k), shown in fig.7.1.4 (y(k)=0if k<1 and if k> N).

v (k) y (k)ey (k)

@ Wﬁ\v NW/\/\ M /MAAM

Figure 7.1.4 A signal function. y(k).  Figure 7.1.5
The product function y(k)- y(k).

First we multiply this function by itself. The product y(k)y(k) is shown in

fig.7.1.5. Next we add up all values of this product function. This gives one

particular sum value that we (for reasons yet to be clarified) designate as R(0).
N

y () ey (k+ 1) Thus:  R(0) = Y. y(k)-y(k)

ko1

Next we repeat the whole process

with one modification: we multiply

the signal by a version of itself shifted

/\/\/\ /\ 4 by one sample. This product function

oV \ A\ /\ /\ -y is shown in fig.7.1.6. The sum value
K

is determined again and designated
with R(1):

Figure 7.1.6

The product function y(k)- y(k+1). R(l) - i vk -y (k¢ 1)
k1

The value of R(1) will probably be slightly less than R(0) because the products
W(k) (k) are always positive while it may occur with the products y(k):y(k +1)
that two y-values have different signs that cause the product to be negative and
thus gives a negative contribution to the sum value. It will meanwhile be clear
that the index of R gives the number of samples to which the shift has occurred.
We go on in the same way and calculate R(2), R(3) etc. The general expression
for the autocorrelation function R is:
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N
R(m) =Y, y(k)-y(k+m)
k=1

We may set the summation limits at +e and -« because outside the given range
the function y has the value O:

R(m) = Y. y(k)y(k+m) (7.1)

k=~

If the function )(k) is irregular in structure, and thus noisy, then with values of m
> 0 the positive and negative contributions to the sum will lay close to each other
which will cause the sum value R to be in the neighbourhood of 0 (after the peak
at m = 0). If the function has a periodic structure, something totally different
happens. At first the value of R decreases with increasing m, but as the shift
becomes larger the moment draws near that the signal is multiplied by a version
of itself shifted over one period. Then the situation is exactly the same as with
m = 0. With increasing m the fluctuation of R around the zero-line changes into
an increase of R, and at m = T a maximum is reached. After the exact coinci-
dence the process repeats itself because with a shift of two periods there is again
a maximum. Fig.7.1.7 shows the autocorrelation function for a noise signal, and
fig.7.1.8 that for a periodic signal.

Rm) Rim) T

bt

Figure 7.1.7 Autocorrelation function Figure 7.1.8 Autocorrelation function
of a noise signal. of a (quasi-)periodic signal.

Conclusion: the autocorrelation function of a periodic signal is itself also periodic
with the same value of the period. The question is now whether the periodicity of
R is easier to detect than that of y. The answer to this question is negative if the
signal is truly periodic and affirmative if the signal function contains random
elements (this generally happens with quasi-periodic signals), because these are
averaged with the calculation of R and reduced in that way. However, these are
the signals we are interested in.
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It is possible to say more about the relation between the wave shape of y and that
of R via a frequency domain approach. Beforehand we must have a look at a few
derived definitions of R.

The original definition of R for resp. time-discrete and time-continuous func-
tions is:

R(m) = E y(k) - y(k+m) and R(%) = fy(t)'y(tﬂ:)dt (7.2)
k=-= -

For the analysis of quasi-periodic signals where the (quasi-)period can gradually
change one restricts oneself to a rather short signal fragment in the calculation of
R. The signal is given the desired finite duration by multiplying it by a (rectangu-
lar) window w(k):

w(k)=1fork=1,2, .., N and w(k) = O for other k-values.
This allows keeping the number of calculations to a reasonable amount. In this
way the short time autocorrelation function is formed:

Rm) =Y y® - wE yk+m) wk+m) (7.3)
k= -

For theoretical applications with time-continuous signals one must in principle
proceed from the general definition given above. With a non-finite signal this
leads to problems. In this case the average autocorrelation function should be
used:

ir
2

R = Jm [y yer v (7.4)

iy
]

With periodic signals this average is equal to the average over one period. Then
it holds:

1
ir
2
R(7) = le y(@ -y@ +1t)dt (T = period duration)

ir
2

We shall go on from this latter definition to derive the relation between y and R
via the frequency domain. This is done by replacing y by the corresponding
Fourier series:
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[ =

T

R(T) = {i C,cos(2mnft+&,)- i C,cos (2Tmf(t +T) + d)m)}dt
m 1

n-1
T

1
T

ol Sm— Y

The second Fourier series can be written as

Yy {C cos@nmft+d,)cos2nmft - C, sin(2nmft +,)sin2nmfr!

If both series are multiplied by each other and are integrated term for term,
integrals result of the type:
cos21rmfrfC”cos @nnft +$,)C, cos 2nmft + ) dt

and

sinZTtmefC"cos @nnft+$,)C, sin @nmft +§,)dt

In the same way as in section 4.3 it can be shown that all these integrals result in
0 except the cosine product with » = m. For this we find:

fc,fcos2(z naft + ¢ )dt = %ch
The expression for R finally becomes:

R(T) = %fj C}cos2mnft (7.5)

n=1

This is a Fourier series! Constructing a signal function with the help of the spec-
tral components is called Fourier synthesis or inverse Fourier transform. (symbol:
F', see section 4.3.G). This takes place here with the squared amplitude coeffi-
cients (the power spectrum coefficients) of the function y(k) as spectral coeffi-
cients. Therefore, we may also write for R:

R(®) = FYH Y1 =FN|Fly@]])? (7.6)

or

|Fly()1]* = F[R(7)] (7.7)
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There are thus two possibilities for the calculation of R: directly from the time
function according to the definitions given on the previous page, or via the in-
verse Fourier transform of the power spectrum. For the second possibility use can
be made of the FFT and this is usually the fastest method. It appears further from
this that the wave shape of R contains the same harmonic components as the
signal function with squared amplitude coefficients.

For the time domain calculation time can be saved by working with the pseudo
autocorrelation function R, . Here the signal function y is not multiplied by itself
but by a function p that is defined as follows:

+1 wheny > d
p(k) = 0 when -d <y <d

-1 when y < -d

in which d represents a particular limit-value that must be chosen in connection
with the average signal amplitude. The pseudo autocorrelation function is now:

R (m) = Y y(k) p(k +m)
k

In fact no real multiplications are performed because the terms of the series are
either equal to y(k) itself, or equal to O or equal to -y(k). This naturally saves
much time and for the detection of periodicity, the result is practically the same
as that of the normal method because R, shows peaks if the signal function is
(quasi-)periodic. Periodicity detection with the help of the (pseudo) auto-
correlation function boils down to the detection of peaks and the determination of
their position.

With a similar method it is possible to test two different signal functions for
correspondence in the wave shape. To that end one calculates the cross
correlation function C(t):

CE) = [ 1)yt +v)ds (7.8)

—~c0

which also shows peaks if y, and y, are similar (when for example one function is
a delayed or mirrored version of the other). The cross correlation function plays
an important role in the research on directional hearing and in stereophonic
recording technique.

With rule (7.7) we can show that the noise signal produced by a random number
generator has an almost white spectrum. The argument is the following:



266 Chapter 7

The autocorrelation function of a noise signal that comes from an ideal pseudo-
random number generator is a periodic pulse (fig.7.1.9):

R (m>

m

Figure 7.1.9 Autocorrelation function of a pseudo-random signal.

Explanation:

- pulse shape, because due to the lack of any systematic relation between con-
secutive samples, the R-value is already (ca.) 0 with a shift of one sample;

- periodic, because the number series is periodic (see section 6.3.B.5).

The Fourier transform of such a function has the well-known sin x/x shape with

zero points at multiples of the clock frequency. Over the frequency range 0 - %f,

the power spectrum of this noise signal is almost flat and so the spectrum is

white.

7.2 Cepstrum analysis

A. Deconvolution

This analysis method can be applied for determining the periodicity (via the
frequency domain) of a signal function and also for the analysis of properties of

the signal source. In the discussion of the general model of a linear system
(shown in fig.7.2.1, see also fig.5.2.8):

x(t) h(t) y (t)
X(f> H(f) Y (f)

Figure 7.2.1 Linear system.

in which an input signal x(r) (with spectrum X{f') is connected to a system with

an impulse response h(f) (or frequency characteristic H(f )) and in this way

produces an output signal y(¢) (with spectrum ¥(f')), we have seen that:

1. It does not matter with which function of each of the three function-pairs we
work, because we can always switch over from the time domain to the fre-
quency domain via the Fourier transform F and from the frequency domain to
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the time domain via the inverse Fourier transform F'. In practice the calcula-

tions are performed with the help of a FFT-program.
2. We must know at least two of the three function-pairs to be able to calculate

the third. This calculation takes place as follows

- in the time domain with y(f) = x(¢) * A(t) (convolution)

- in the frequency domain with Y(f') = X(f) x H(f).
Cepstrum analysis is a technique for deriving information about the input signal
and/or the system from the output signal only. This is only possible - and then
merely to a certain extent - if we have some global information about x or X and
hor H. That is for example the case with speech (and with certain musical instru-
ments) if we base ourselves on the linear source/filter model. Then x(¢) is the
excitation signal produced by the vocal chords, and H(f') is the frequency re-
sponse of the vocal tract conceived as a linear filter. This frequency response is
also called the ‘formant characteristic’. It is known that in this response several
resonance peaks (formants) occur. If we wish to derive x or X and s or H from y
or Y then we should work in the frequency domain, because obviously it is more
difficult to separate two function which are convoluted with each other (this
process is called ‘deconvolution’) than to separate two functions which are
multiplied by each other. The starting point is thus the speech signal (7) (see
fig.7.2.2), of which we calculate first the spectrum Y(f') (fig.7.2.3) with a FFT-

routine:
y () Y(F)
t f
Figure ~.2.2 The speech signal y(1). Figure 2.3 The spectrum Y(f).

We cannot separate X and H from each other by means of a filter as subtractive
operation filtering cannot be applied to a product. This problem can be solved by
switching over from Y to log Y (fig.7.2.4) because if Y(f) = X(f)-H(f) then it holds
that log Y(f) = log X(f) + log H(f)

Let us first look at what we know about X and H:
1. If we restrict ourselves to a vowel signal, we know that the signal is quasi-

periodic, and that the spectrum is a line spectrum. If we take the logarithm, the
graph is ‘compressed’ in a vertical direction, and the calibration of the vertical
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axis is changed, but the ‘shape’ of the function does not change substantially.
2. H is the formant characteristic of the vocal tract. The shape of this characteris-

tic also does not alter greatly either when swicthing over to the logarithm of

the function H. We know that the function log Y is the sum of a fast and peri-
odically fluctuating function (log X, the logarithm of the line spectrum of the
excitation signal) and a slow undulating function (log H, the logarithm of the
formant characteristic).
We can separate the ‘rapid’ and the ‘slow’ components by means of ‘filtering’
the spectrum, by treating the spectrum so to speak as a time function. This may
seem a strange step to take but a computer cannot differentiate between these two
sorts of functions. Every function is simply a collection of numbers. For the filter
to be used with log ¥ we apply the principle described in section 6.3.A:
- calculate by means of the FFT the spectrum of the function (log ¥) to be
filtered;
- remove from this spectrum the components to be filtered out;
- then reconstruct the function with the inverse FFT.
The reconstructed function will as a consequence of the filtering have a shape
that differs from the original shape.

If we calculate the spectrum of log ¥, we in fact calculate the spectrum of the
logarithm of the spectrum of y(f). We must pay attention here not to allow any
confusion to arise. To prevent this the authors of the first paper devoted to this
method (Bogert et al.1963) introduced a number of new terms: the spectrum-of-
the-(logarithmic)-spectrum is called the cepstrum, the variable along the horizon-
tal axis is designated by the word quefrency, possible peaks as rahmonics, while
the word filter is replaced by /ifter, magnitude by gamnitude and phase by saphe.
If we calculate the spectrum of log Y with a FFT, we get the cepstrum, see
fig.7.2.4.

quefrency

Figure 7.2.4 The cepstrum.

The slowly varying component of log Y (= log H) is to be found in the low-
quefrency part of the cepstrum and the rapid periodic fluctuations (log X) in the
high-quefrency part.
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Proceeding from the cepstrum various operations can be performed:

I.

From the position of the rahmonics the periodicity in the original spectrum can
be calculated, and from there again the repetition frequency in the original
time function. Applied in this way cepstrum analysis is one possibility for
periodicity detection.

. We can leave the cepstrum unmodified and return backwards along the same

path:

a. with FFT"! reconstruct log Y;

b. via exponentiation reconstruct ¥ (Note ¢ = ¥);

¢. with FFT! reconstruct y(f).

With step b we get the original spectrum, with step ¢ the original time func-
tion. Therefore after all nothing has happened, but we can in this way test the
correct operation of the computer programs.

. We follow the original plan and filter log ¥ by modifying the cepstrum. Obvi-

ously one must either remove the high-quefrency part (right of the dashed line
in fig.7.2.4) or the low-quefrency part, to the left of the dashed line. ‘Remove’
means ‘make equal to 0'. We speak of ‘short-pass liftering’ and ‘long-pass
liftering’ respectively.

short-pass lifiering

From the cepstrum of fig.7.2.4 a part is left over, as shown in fig.7.2.5. When we
follow the same reconstruction procedure as described in point 2, we reconstruct
first log ¥ with FFT . But log Y is now actually equal to log /, because log X is
removed by the filter process. See fig.7.2.6.

cr

Figure 7.2.5

log H(f

)rr

quefrency f

Figure 7.2.6 log H(f).

Cepstrum after short-pass liftering.

from log H we calculate H via exponentiation: e™" = H.

In this way we find the formant characteristic of the vocal tract.

from H we can with FFT" subsequently calculate the impulse response h(?) of
the vocal tract.
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long-pass liftering

The modified cepstrum now looks as follows (fig.7.2.7): The reconstruction

procedure leads consecutively to

- the reconstruction of log Y via FFT™. But log Y is now equal to log X, because
log H has been filtered away.

- From log X we calculate X(f) viae™*=X.
We find here the spectrum of the vocal chord signal.

- From X(f) we calculate with FFT"! the time function x(f) of the vocal chord
signal (fig.7.2.8).

) x(1)

L L | W N W W 1

quefrency T

Figure 7.2.7 Figure 7.2.8
Cepstrum after long-pass liftering. The reconstructed source signal.

The complete procedure looks schematically like this:

(FFT?)
FFT log FFT
y(t) —— Y(f) —— log Y ——— cepstrum

l

(FFT) modification of cepstrum
FFT-! expon FFT! |
y'(t) —— Y'(f) ——— log Y' «——— cepstrum'

If the excitation signal and the filter response are determined then based on these
the speech signal can be re-synthesized. In the diagram it is indicated that instead
of the second FFT the inverse transform can also be used with the result that on
the return path the first FFT™' should be replaced by a forward transform. This is
done because of the parallel with the autocorrelation functions. Cepstrum analy-
sis is also performed with the power spectrum. One speaks of the ‘power
cepstrum’ C,, and with this exchange of forward and inverse transforms it holds:

C,(v) = F 'log | Fiyn)!|?
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The correspondence with the autocorrelation function

R(¥) = F [Flyn)!|?

is obvious.

Although it may appear that we are dealing here with a drastic operation, it
can be shown that in this case it makes no difference whether we work with the
forward or with the inverse transform. The power spectrum is a pure amplitude
spectrum, because the phase angles are not relevant for the energy (see section
4.3.F). We may thus set all phase angles equal to 0 and this means that all b-
coefficients are O (this follows from tan ¢ = -b/a). Let us also assume y(¢) = 0 for
1<0.

The forward transform is then

a(f) = 2fy(t) cos 2T ftdt
0

and the inverse transform is

=

y(r) = fa(f)cosant df

0

If we wish to calculate the forward transform of a particular function we must
substitute the function in the first formula in the place of y(f) and for the inverse
transform in the second formula in the place where a(f') occurs. It will be clear
that (except for a constant factor) the result in both cases is the same.

B. Formant determination

Even after the periodic component via cepstrum analysis has been removed from
the spectrum and we have isolated the formant characteristic it is still not easy to
localize the formant peaks, because not every maximum in the spectrum is a
formant. If we restrict ourselves to the first three formant peaks, we can use the
fact that the formants must lie in the frequency range from 100 to 3500 Hz and
that their bandwidth must be less than 500 Hz.

All peaks that do not satisfy this can be neglected. If there are exactly three
peaks with these properties the situation is clear. If there are more or less than
this number then comparison with analysis results from preceding fragments may
yield results.
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C. The excitation signal in speech synthesis

If with the help of cepstrum analysis (or another method) the formant characteris-
tic has been determined, the result can be used to synthesize the speech signal, by
sending the vocal chord signal through this formant filter. The question is which
wave shape the excitation signal should have. It is elegant to use the x-signal
likewise determined via cepstrum analysis for this but it is not necessary (and
with other analysis methods not yielding x(?) it is not possible). It is known that
the vocal chord or glottis signal is rather constant in shape and that this shape is
roughly a triangle (see fig.7.2.9).

Figure 7.2.9 The glottis-excitation signal.

In a triangular signal the amplitudes of the spectral coefficients decrease by
12 dB/octave (see section 4.3.F). If this signal is sent through a formant filter
(with an average spectral slope of 0 dB/oct) and afterwards emitted through the
mouth that, as a consequence of its relatively small size (see section 1.1), has the
effect of a high-pass filter with a steepness of +6 dB/octave, then the final spec-
tral slope is:

-12 dB/oct + 0 dB/oct + 6 dB/oct = -6 dB/oct

We could thus proceed from a triangular wave shape in speech synthesis. It is
however actually simpler to work with a pulse-shaped signal, but then spectral
correction must take place.

With a narrow pulse an approximately flat spectrum corresponds. After the
formant filter the spectrum is on the average still flat and now to get the desired 6
dB/oct decrease in the spectrum a separate lowpass filter with this characteristic
must be used.

With LPC-synthesis dealt with in the following section a pulse-like excitation
signal is indeed used and so this extra correction must be applied.
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7.3 LPC analysis and synthesis
A. Coding the speech signal

The abbreviation LPC means Linear Predictive Coding. In chapter 4 we learnt
about the principle of predictive coding, being a method to code a signal
efficiently. The principle is once again shown in fig.7.3.1.a. The output signal
that is normally written as y, is indicated here with x, because it is identical with
the input signal. The increased efficiency follows from the fact that not the signal
itself is coded, but only the difference between the predicted and the true value.
When this difference signal e has a smaller dynamic range than the signal itself,
fewer bits are required for coding it.

coder decoder

a) predictive coding

b) differential coding

c) linear extrapolation

Figure 7.3.1 Predictive Coding.

The simplest practical version of this system is that of differential coding, already
discussed in section 4.2.B.2 and shown again in fig.7.3.1.b. Here the previous
signal value x,,, is used as prediction %, of the next signal value, thus %, = x,,,.

We have analysed this coding/decoding circuit in more detail in section 6.3.A.
There we found that the amplitude responses of both circuits compensate each
other exactly and we will encounter this property with other versions of the



274 Chapter 7

system, still to be discussed. The transmission process can be written symboli-
cally as follows: x = e=> x

Figure 7.3.2 Some different predictions.

In fig.7.3.2 some signal samples are plotted. The value predicted via differential
coding is indicated with a triangle.Obviously, more intelligent predictions are
possible. Linear extrapolation based on the last two samples for example yields
the value marked with a cross. As can be checked easily the following relation-
ship now exists:

The circuit for this calculation is shown in fig.7.3.1.c. The decoder here is identi-
cal with the resonator from chapter 3 and again the signal chain is: x 2 e > x.
By using even more samples for the prediction a still better result can be
achieved. With LPC use is made of a so-called ‘linear combination’ of the N last
samples and the expression for &, then becomes:

N

. . + + . = .
n 1 “n-1 2 xn'2 “““ aN xn*N E ak xn*k
k-1

A difference with the previous systems is also that the a-coefficients are not
constant. They are regularly updated to achieve an optimal prediction of the
signal. We call such a system an adaptive system.

The number of samples N can be chosen freely. In the following examples I
shall use the quite normal value N = 10. Clearly we can create such a linear
combination by extending the diagram of fig.7.3.1.c. That leads to the diagram of
fig.7.3.3.
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coder decoder
(analysis) (synthesis)
>0 x|
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Figure 7.3.3 Complete LPC system.

Left below the circuit diagram an input signal x is shown, a fragment from a
speech signal with its spectrum X. The signal chain here is: x =* e, (a,) = x.
The brackets indicate that the coefficients a, are transmitted only once per signal
fragment, while the e-samples are clock-synchronous.

To further understand how the system works it is necessary to know how to
find the optimal values of the a-coefficients. We know that they should be cho-
sen in such a way that the difference signal e is as small as possible. For e we
have:

N

en = xn B xn = xn B Z akxn"k
k=1

A useful criterion for e being minimal is the condition that the energy £ = Y e,?

is minimal. This implies that when N is large enough, the spectrum of the e-
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signal is almost white. Let us thus make £ minimal for N = 10 and for a signal
fragment consisting of M samples.

M 10 2
E=) e = i {xn - ) akxnk} (7.9)
ko1

n 1 n-1

Evidently E is a function of a, to a,,; symbolically: E(a;, a,, . . . . ay).

We can thus make E minimal using the a-coefficients. The optimal coeffi-
cients can be found by using the fact that when E is minimal, the derivatives of £
to each of the a-variables should be 0.

The symbolic notation for this is: g—E =0 G=12....10
a.

T

We use 0 instead of d to indicate that /£ is a function of more that one variable
and use the term partial differentiation.

5E M 10
Let us work this out: — = z 29x, - E ax, ,(x ., =0
50,— n-1 k-1
After division by 2 and bringing the first summation inside the brackets, this
M M 10 10 M
changes into: Z x x = Z Z ax ,x = Z akz X, X,
n-1 o1 k=1 k-1 -1

We are already familiar with sums of products of mutually displaced function
values: they are the values of the autocorrelation function R. Therefore the above
result may be written in a shorter form as:

10

R(i) = Y. a,R(k-i)

k=1

By writing this out for i = 1 to i = 10 we get:

R(1) = a,R(0) + a,R(1) + a,R(2) + ... + a, R(9)
R(2) = aR(1) + a,R(0) + a,R(1) + ... + a, R(8)
R(10) = aR(9) + a,R(8) + a,R(7) + ... + a, R(0)

These are 10 equations with 10 unknowns, the coefficients a;, to g, we were
looking for. Due to the symmetrical structure of this set of equations it can be
solved rapidly and efficiently by a computer, using the Durbin-Levinson algo-
rithm. Then we know the filter coefficients.
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Let us study an example. In fig.7.3.4 the input signal x from fig.7.3.3 is shown
again, with its autocorrelation function R.

x(t) RCT)

o

-5 |

10530 1.534 1538 1.542 1.546 1.550 (g, 2 s Py 14 ® T e
Figure 7.3.4 Input signal and Autocorrelation function.

Eventually from the autocorrelation function the period duration of the signal
may be determined, but here we are interested in the first 11 R-values, given in
the following list:

R(0) = 14.366 R(4) = 2336 R@8) = -1.842
R(1) = 9.697 R(5) = -0.627 R(O) = -4.647
R(2) = 3.193 R(6) = -2.624 R(10) = -5.200
R(3) = 2240 R(7) = -1.556

When we substitute these values in the equations and solve them, we find the
following a-values:

a(l) = 0998 a(5) = -1.178 a9 = -0.958
a2) = -0.332 a6) = 0.945 a(10)= 0.244
a(3) = -0.389 a(7) = -0.669
a4) = 0.962 a8) = 0.528

How accurate the prediction based on these coefficients is can be seen in the
figure below, which gives a part of the signal function (drawn line) and of the
predicted values (dashed line).

With this the transmission problem is solved. In the decoder the transmitted e-
signal is combined with the prediction leading to an exact reconstruction of the
input signal x. We know that the changes in a speech signal caused by modula-
tion are so slow that a signal fragment of some tens of milliseconds may be
considered (quasi-)stationary. The fragment shown in fig.7.3.5 for example has a
duration of 25 ms. Updating the a-coefficients should thus be done within this
time interval, which means that once per 25 ms new a-values should be transmit-
ted.
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t
Figure 7.3.5 Comparison of the true and the predicted values.

LPC has more possibilities than efficient signal transmission; it can be used for
the analysis of speech and for producing synthetic speech.

B. Speech analysis

Let us look at fig.7.3.3 again. When the spectrum E of the difference signal is
almost ‘white’, then the coder or analysis stage of the circuit must have smoothed
the spectrum X of the input signal. The amplitude response of this analysis filter
must thus have a dip for each peak in the spectrum. It is therefore the mirror
image of the formant spectrum. How could we determine the filter response? By
calculating the Fourier transform of the impulse response (the frequency response
of a linear system = the spectrum of its impulse response). How could we find
the impulse response? By using a single sample (for example a '1') as input signal
for the system and finding what output signal is produced. From fig.7.3.3 it
follows that then the following 11 numbers appear at the output:
l, -a,, -a,...., -ay

This sequence is thus the impulse response. See fig.7.3.6, on the left. We can
calculate the spectrum of this signal. By adding 0-samples we can increase the
number of samples until it is a power of 2, e.g. 512. Then we can use a FFT
program for the calculation of the spectrum. Adding zero-samples is allowed as
we have seen in section 4.3.G. With 512 samples a good resolution is achieved.
The spectrum that we find is thus also the frequency response of the filter. In
fig.7.3.6 we see from left to right: the impulse response, the amplitude response
H and its reciprocal version 1/H, which reflects the formant structure of the
signal. It is easy to recognise the formant peaks. Their position may be deter-
mined in the same way as with cepstrum analysis. These two characteristics are
also shown in fig.7.3.3.
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Figure 7.3.6 Impulse response and amplitude responses.

The procedure can be summarized as follows: x < a, 2 H (n=1,...N).
There is yet another possibility of locating the formant peaks. Let us look at the
synthesis part of the circuit. This filter is the counterpart of the analysis filter,
because from the flat £-spectrum it reconstructs the original X-spectrum. The H-
characteristic of the synthesizer is thus identical with the 1/H-characteristic of the
analyser and thus with the formant characteristic. The coder and the decoder have
the same a,-coefficients. There is a procedure to convert the synthesis filter with
its 10 feedback loops to a series circuit of 5 filter sections, each with 2 feedback
loops. The technique to do this cannot be treated here, because it requires the Z-
transform. It however boils down to writing a polynomial of order 10 as the
product of 5 second order-polynomials:

10 _ 9 _ 8 _ 7 _ 6 _ 5 _ 4 _ 3 _ 2 _ 1 _ -
z alz azz 1132 a4z asz asz a,z aaz a92 aw

(2 +p,z+ )z + P,z +q,)E2 * P,z + @)% +p,z + q )z * pgz + gy)

The first expression corresponds to the synthesizer part of fig.7.3.3; the second
expression to the diagram below (fig.7.3.7):

Figure 7.3.7 Equivalent series circuit of five second-order filters.

This conversion is also called factorisation. For its calculation a computer is
required. Several algorithms for this exist. Starting from the values of the a-
coefficients on the previous page and using the so-called Bairstow algorithms,
we find the following p- and g-coefficients for the five filter sections:
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k p q fo B 0

1 1683 0812 5813 3322 1.75
2 -0.603  -0.690 3091.1 5906 5.23
3 0.993  0.607 35992 7935 4.54
4 -0.085  0.888 2571.7 1884 13.65
5 0996  0.807 15650  340.8 4.59

The filter sections of fig.7.3.7, however, are the well-known second-order band
filters. Each section accounts for one formant peak and as we know the coeffi-
cients of each section we can calculate the resonance frequency f, and the band-
width B (and thus also the Q-factor) of each resonance peak. In this direct and
straightforward way the values of f;, B and Q in the table above were calculated.
Symbolically: x =2a, @?p.qi 2 fou. B, O (n=1,..,N;k=1,..,%N)

The formulae we need for this are the following ones:

p,=cr

P
thus r = ‘/qu| ,C k

q, = _r2 }qkl

With formula 3.23 we can now calculate f,:

1
v 4
5= 1 f,'cos'llc -1 f, *cos N
2T 2 27 |‘1k’
and with formula 3.24 we find B:
B 1 B 1
B=-=—fInr= -—/f,In(|q,])
s 27

A characteristic consequence of this technique is that always Y2 N values are
found. Whether all of them are significant remains to be seen. In our example
peaks no. 1, 4 and 5 are certainly significant. The f;-values correspond well with
the position of the peaks in fig.7.3.6.

Due to the factorisation this method is more time-consuming, but also more
attractive than the former one, as the formant data are produced directly and not
via some peak detection algorithm analysing the H-characteristic. If there is time
to calculate the p- and g-coefficients, they may be used during transmission
instead of the a-coefficients. As synthesizer the circuit of fig.7.3.7. should then
be used. This brings us to the next subject:
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C. Speech Synthesis

Although the method described under A. already considerably reduces the
amount of information to be transmitted, substantially larger reductions are stili
possible. When we realise that the e-signal has a white spectrum and that the
synthesizer of fig.7.3.3 acts as a formant filter, which is even more obvious after
the conversion to the diagram of fig.7.3.7, we see that we are using a synthesis
system according to the source-filter model, well-known from phonetics (see
fig.7.3.8):

freq

IMPULSE
v/uv

Q
b FILTER—— 0

Figure 7.3.8 The source-filter model.

NOISE

This model works with a source signal that is either periodical (with voiced
speech sounds) or a noise signal (with unvoiced sounds); the filter is the formant
filter. Instead of using the ‘true’ e-signal in our LPC-system, we could generate
an artificial source signal (a pulse for voiced sounds and noise for unvoiced
sounds) at the input of the synthesizer. Both signals have white spectra! Then
there is no need anymore to transmit the e-signal; it is sufficient to transmit the
v/uv-data, the gain factor and with voiced sounds, the repetition frequency. The
values can be transmitted simultaneously with the filter coefficients, thus once
per 10 to 25 ms. The amount of information to be transmitted is reduced drasti-
cally as we shall see in an example. The whole process thus runs as follows:

Analysis:

1. The signal is divided into frames of 10 to 25 ms;

2. The autocorrelation function R is calculated per frame;
3. From R are derived:

a. the v/uv-indication (presence of peaks in R, or from the proportion
R(OYR(1)),

b. with 'v'": the period duration (from the position of the peak or from an-
other pitch tracking method),

c. the filter coefficients a; (and from them eventually the p, g-coefficients,
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10
d.  the amplitude factor G | G2 = R(0) - Z a R(k) (without proof).

k=1

These values can be transmitted or be stored for later use.
Synthesis:

4. An excitation signal is generated with the proper amplitude and in the case of
a pulse signal, with the proper frequency;

5. This signal is sent through a formant filter controlled by the calculated
a,-coefficients;

6. The signal is sent through a -6 dB/octave filter (for the radiation correction,
see section 7.2.C), and made audible.

The example that follows and that represents an existing LPC-scheme, shows
how much data reduction can be achieved

- v/uv + pitch: 8 bits = 256 numbers.

By working in steps of 2 Hz, frequencies between 0 and 510 Hz can be coded.
The number O can be used as uv-indication;
- amplitude factor: 5 bits = 32 amplitude levels;

- filter coefficients. For

a, -a, : 5 bits (32 coefficients) = 20 bits,
as - ag . 4 bits (16 coefficients) = 16 bits,
a, : 3 bits (8 coefficients) = 3 bits,
Ay : 2 bits (4 coefficients) = 2 bits,

(The filter coefficients are themselves stored in a look-up table, so that the
parameter memory only needs to contain the table addresses.)

The total number of bits amounts to 8 + 5 + 20 + 16 + 3 + 2 = 54, If for the frame
duration a value of 22.5 ms is used, it means that for coding the speech signal
1000/22.5 - 54 = 2400 bits per second must be stored. This is an enormous (and
still not the maximum) data reduction in comparison with linear PCM coding of
the original speech signal, for which with 8 bits word length and with a clock
frequency of 8 kHz 8 - 8000 = 64000 bits per second must be stored. It is further-
more not necessary that the parameters are derived from a real speech signal;
they can also be chosen on another basis. This leads to true synthetic speech.

Besides the autocorrelation method described above for the calculation of the
predictor coefficients there is a second method that has been given the name
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covariance method. The calculation method here is different and has in certain
circumstances some advantages over the autocorrelation method.

There is also the possibility of making use of another filter model where the
vocal tract is considered to consist of a series of coupled tubes with varying
diameters (fig.7.3.9):

—]

—— i

Figure 7.3.9 The coupled-tubes model.

At each junction a part of the sound energy is reflected. The whole system is
described by a series of reflection and transmission coefficients. The digital (syn-
thesis) filter can be designed based on these coefficients. It is called a lattice
filter and looks as follows (fig.7.3.10):

IN
+ O— - —
N
Y
7*'-—0-__.

Figure 7.3.10 Lattice filter for LPC synthesis.

The advantage of such a filter is that the absolute value of all coefficients must
be < 1, so that eventual incorrect coefficients that can lead to instability can be
detected and corrected. With the autocorrelation and covariance methods stability
problems are less easy to prevent. From the reflection coefficients the
a,-coefficients can be calculated and from them the formant characteristic.
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7.4 Sound synthesis

As was stated in chapter 1, in speech and musical signals we are dealing with the
simultaneous modulation of frequency, amplitude and specttum. We saw how in
LPC-synthesis such modulations are realized. One of the reasons why it has
taken so long for electronic sound generation to find its place in musical practice
is in my view the fact that the importance of modulation aspects has been under-
estimated. With electronic musical instruments from before the second world war
there was hardly any form of microstructure modulation; with pitch this remained
limited to vibrato (with fixed amplitude and frequency), with loudness to a more
or less stereotype envelope consisting of an attack, sustain and an exponential
decay, and timbre modulation was not applied at all. The electronic sound re-
mained therefore far behind instrumental sounds in expressive possibilities.
Furthermore, the technical possibilities required of achieving refined modulations
did not yet exist either.

After the second world war a method was discovered how to give electronic
sounds the necessary complexity: the splicing and manipulation (in the broadest
sense) of tape on which sounds are recorded. This was the start of the develop-
ment of what in a restricted sense is called ‘electronic music’. The procedure for
making tape music consists of several subsequent phases and therefore does not
allow real time music production. The equipment of the studios developed for
this kind of electronic music soon turned out to be so flexible, especially after the
introduction of the technique of voltage control, that the line leading to real time
sound production could be taken up again with the construction of the synthe-
sizer. See Weiland et al. 1982.

The new techniques and insights formed moreover an excellent starting point
for the approximately simultaneously developed technique for digital sound
synthesis. I shall now deal with a few sound synthesis techniques and I shall in
particular devote attention to those techniques that are interesting from the view-
point of signal theory.

A. Formant synthesis via the wave shape

A special form of timbre modulation arises when signals are generated with
spectra with fixed formant peaks. On the one hand this means that with a varying
fundamental frequency the proportions between the harmonics also change, so
that in a certain sense we are dealing with a dynamic spectrum, and on the other
hand it is known from perception research that such a formant structure is per-
ceived as characteristic for a particular signal or particular class of signals. The
recognition of vowels is for example based upon this, but also musical sounds are
sometimes identified by means of a particular formant structure.

Formant peaks can be generated with the help of filters, as in LPC, but one
can also work with signal functions that in themselves already have this quality.
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As we saw in chapter 4 this is the case with a pulse signal, and even more pro-
nounced with the so-called VOSIM signal (see section 4.3.F) (Kaegi et al. 1978).
This signal function has several free variables; besides the period duration that
determines the pitch and the pulse width that in its turn determines the position of
the formant peak, one can vary the amplitude, the number and the damping of the
sin®-pulses, and also the duty cycle. This is the proportion between the time
duration of the pulse series and that of the 0-interval between the last pulse and
the beginning of the next period. Thanks to this O-interval it is furthermore possi-
ble to modulate the period duration in a simple way. By adjusting all these vari-
ables fast enough it is possible to realize the necessary variation (= modulation)
in time. By combining several VOSIM functions with identical period durations
but different pulse widths a signal arises with as many different formant peaks.
The VOSIM sound synthesis system is, as is the LPC-system, a direct
implementation of the modulation model of acoustical communication dealt with
in chapter 1, but avoiding the nasty problems that can be introduced by filters.

A comparable approach has been used by Rodet (Rodet et al. 1984) in the
CHANT project. The waveform is a sinewave of finite duration, with attack and
exponential decay, a so-called FOF (Fonction d’Onde Formantique) like the
signal function shown in chapter 6, fig.6.3.19. Several of these signal functions
are generated with different parameters and are then added.

B. The Karplus-Strong Algorithm

This algorithm (Karplus et al. 1983) is a synthesis technique for producing
plucked string and drum sounds. It is based on the principle of the look up table
or wavetable generator as described in section 3.2.B in which numbers that are
stored in a table are fetched one by one and transported to the output. Schemati-

i

pointer { .

S— S ()

Figure 7.4.1 A look-up or wave table generator.

Another and in this context more suitable way to describe this principle is to
consider the table a shift register with feedback from the last to the first cell. In
this way the numbers circulate and the pointer is fixed for example at the last cell
(fig.7.4.2):
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Figure 7.4.2 A look up table generator with shift register.

The look up table generator produces only periodic signals without any modula-
tion. Such signals are useless for musical purposes, but they can be applied in
synthesis systems such as FM or waveshaping. Another possibility of getting rid
of the stationary character of the signals is to continuously change the contents of
the table. This is how the Karplus-Strong algorithm works. The circuit of
fig.7.4.2 is modified as follows (fig.7.4.3):

S L ] e
gl

-

Figure 7.4.3 A look-up table generator with shift register and averager.

Not the numbers themselves are written back, but each number is replaced by the
mean value of two subsequent table values. This averaging process is a form of
smoothing and thus equivalent with filtering. It mainly affects the higher fre-
quency components, as large differences between subsequent sample values are
rapidly reduced. The final result is a decaying tone of which the higher frequency
components die out faster than the lower ones. This property is also characteristic
for the tone of a plucked string. The initial waveform is not very important. It
should only contain sufficient high frequency components. A simple and effec-
tive procedure therefore is to fill the table with random numbers.

C. Synthesis with the help of orthogonal functions

As was discussed in section 4.5, every arbitrary signal function can be composed
from elementary functions, if these functions form an orthogonal system. The
sinusoidal Fourier functions and the squarewave-like Walsh functions satisfy this
condition. For the synthesis of an arbitrary function we must thus have at our
disposal a (large) number of elementary functions ¢, ; we should give each of
these functions its own amplitude factor C,, and we must add all functions to-
gether. :
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1. Fourier synthesis.

We have here the choice between elementary functions of the type a,cos nwt and
b,sin nwt, or of the type C,cos(nwt + ¢ ,). In the last case we only need to gener-
ate only half as many elementary functions as in the first case, and therefore
preference is given to this method.

For an analog synthesizer we must generate several sinusoidal vibrations with
given phase and amplitude relations. The latter is not difficult, but the former is
indeed, and therefore one has come no further in the construction of analog
Fourier synthesizers than systems with only ca. 6 harmonics.

Digitally this problem is much easier to solve: from a look-up table with one
sine function one can derive sinusoidal vibrations with harmonically related
frequencies by fetching a sample from the table and then skipping 0, 1, 2, 3, ...
samples before fetching the next one.

The phase relation can be fixed by choosing for every harmonic a particular
(different) starting address in the table. In this way it is for example possible to
build a Fourier synthesizer with 31 independent harmonics. The sounds that can
be generated by such a synthesizer only become interesting when they are non-
stationary and modulated. This means that in principle all amplitudes and phase
angles must be continuously adjusted and this leads very quickly to a large
amount of control data. A substantial reduction of this is possible by approximat-
ing the control functions that determine the course of values of the parameters
with straight line segments. Then only the endpoints of these line segments need
be specified.

2. Waish synthesis.

It is much easier to generate Walsh functions, thanks to their binary structure.
Fig.7.4.4 shows the diagram of a circuit that can produce the first 15 Walsh
functions. It contains only two types of components: binary scalers (indicated
with :2) and XOR-gates (indicated with X). The input signal to a binary scaler or
flip-flop is a squarewave signal. The output signal is also a squarewave but with
half the frequency. This is because the scaler only reacts to a voltage jump from
low to high and not to a voltage jump in the opposite direction. A XOR-gate (see
also section 6.3.B.5, fig. 6.3.26) produces a low output voltage when the (binary)
input signals are equal (both high or both low), and a high output voltage level
when the input signals are not equal.

Check yourself whether by combining both functions according to the config-
uration shown below indeed the correct Walsh functions are produced. For the
amplitude control the same considerations hold as for the corresponding case of
the Fourier synthesis.
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Figure 7.4.4 Walsh synthesizer.

WAL (15D

D. Non-linear synthesis via modulation
1. Amplitude modulation.

There are various sound synthesis systems based upon nonlinear operations. The
advantage is that by the sine in/sine out-principle not being in effect, a complex
output signal with many harmonics can be produced with a simple input signal.
We shall go first into the matter of the application of amplitude and frequency
modulation, which we became acquainted with in chapter 6.

Amplitude modulation (AM) (Dashow, 1978) is described (in a simplified
way) by the following relation (rule 6.19):

cos 2Tf t(1 + mcos2Tf t) =

= cos2Tf,t + %m cos2T(f +f )t+ %m cos2T(f, —f )t

and frequency modulation (FM) by rule (6.24):

sin(27f ¢t +msin2nf, 1) =

= J(m)sin27f £ + fj Jm){sin2n(7, +, )¢ + (- Vfsin2m(f, -, )}
k-1
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In both cases we see on the right-hand side of the equal-sign a summation of
sinusoidal vibrations that is equivalent to the ‘closed’ expression on the left-hand
side. The right-handed expression can thus be conceived as the spectrum of the
signal function of the left-handed expression. This means that if we generate a
signal function according to the closed expression, we get the corresponding sine
series as spectrum.

The generation of these signal functions is comparatively simple. We can
directly implement the two formulae digitally for example with look-up tables,
and for analog generation we need in the first case a voltage-controlled amplifier
and in the second case a generator with an externally controlled frequency, for
example a voltage-controlled oscillator (VCO). When using two sinusoidal input
signals with frequencies f; and f,, we get back output signals with three or with
many sinusoidal components respectively. Both techniques can therefore be
applied for generating complex sounds. In auditory perception research this
technique has been used for years to produce stationary, complex sounds, but the
possibility to generate non-stationary sounds in this way is also attractive for
musical applications.

With AM we must usually repeat the operation several times (cascade circuit)
to achieve the necessary complexity, with FM this is not necessary. This latter
method has become very popular and is applied in synthesizers. Therefore I shall
limit myself to the FM method for producing time-variant spectra, first described
by Chowning (1973).

2. Frequency modulation.

Three aspects are important here: the frequency composition of the spectrum, the
energy distribution over the spectrum and the time-dependence.

a. The frequency components.

First this remark: in the above expression the value of £, - k£, can become nega-
tive. In the vector model of the sinusoidal vibration a negative frequency means
that the vector rotates in the opposite direction. This mirroring can be interpreted
as a phase shift of 180°, as we have seen before. We can thus neglect the minus
sign (and the phase effect) and treat the frequency of the concemed component as
a ‘normal’ positive frequency. If we choose carrier and modulating frequencies
so that their GCD is a frequency within the auditory range, thus

L, =kfy . f, =nfy,f, > ca 100 Hz , k and n integer

then a normal complex tone results with f; as fundamental frequency, for exam-
ple:
f.=900 Hz, f,,=400 Hz = f,=100 Hz
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Components of the FM signal:
Jtu Jo St m
900
500 1300
100 1700
(-)300 2100
(-)700 2500
etc.
More interesting sounds come about if we give f; (or f,) a small frequency devia-
tion f; in relation to the integer multiple of fi: f,=kfo+ /s, fu=n"f
For example: /. = 910 Hz, f,, = 300 Hz, f, = 300 Hz, f;= 10 Hz, (GCD: 10 Hz.)

Jefu Jo St
910

610 1210

310 1510

10 1810

(29 2110
etc.

As long as f; is not larger than ca. 30 Hz a non-harmonic complex sound will be
heard with a pitch corresponding here to a frequency slightly above 300 Hz.
Positive and negative frequencies no longer coincide exactly but become close
neighbours (for example the 310 and the -290 component). This causes beats
and/or roughness. Due to these interactions and the non-harmonic structure of the
spectrum these tones are much more lively and interesting. If the frequency
deviation f; increases then the impression of a ‘tone’ becomes weaker and the
sound changes gradually into a mixture of independent frequency components
that could even get noise-like characteristics.

b. The energy distribution.

As we saw in section 6.4 the amplitudes of the frequency components (and thus
the distribution of the energy over the spectrum) are determined by Bessel func-
tions, with the modulation index m (= Aff,) as parameter. With a given modula-
tion frequency the energy distribution thus depends only upon the frequency
deviation Af. The frequency components of the FM-signal with relatively large
amplitude coefficients lie in the range from f; - Af to f + Af. To get in the above
example an audible contribution of the negative frequencies it is necessary that
Af> f, (or m > 1). This means that the instantaneous frequency,/ may become
less than 0, see fig.6.4.20. The larger m, the broader the spectrum and the more
important the contribution of the negative frequencies. Technically this demand
can bring complications with it. It is not simple to design an analog voltage-
controlled oscillator with a control range that crosses the zero-line. Digitally this
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is no problem. There a negative frequency means that the look-up table is passed
through in the opposite direction.

c. The time-dependence.

By using for Af not a constant, but a time-dependent value we can let the spec-
trum of the generated sound vary in time, with which we introduce a property
that as we know is characteristic for many instrumental sounds. For musical
sounds this is perhaps the most important form of micro-modulation. In particu-
lar this aspect, the ability to produce easily these dynamic or time-variant spectra
is to one to which FM-technique owes its large popularity. Certain instrumental
timbres (bell sounds, brass sounds) can be very naturally simulated, and also
non-instrumental sounds with the same degree of complexity can be generated.

E. Discrete summation

There are yet other possibilities of generating sine complexes via an equivalent
(closed) function rule (Moorer, 1976), e.g. by making use of:

sinx - sin (N+1)x + sin Nx

N
sinx +sin2x +.. +sin Nx = E sin nx =
k-1 2 -2cosx

The correctness of this relation can be proven by showing that the expressions on
both sides of the equal-sign are equal to a third expression. We first prove:

sin %(N +1)xsin %Nx

sinx +sin2x + ... +sin Nx = .
sin —x
2

or
sin x * sin %x + sin 2x * sin %x +... +sin Nx - sin %x = sin %(N +1)x - sin -;—Nx
With the help of rule (2.47) the left-hand side can be worked out to:
(~Leos2 +Leostx) + (~Loos2x+ Loos2x) +...
2 2 2 2 2 2 2 2
1 Lyy + L 1 )
+( 2cos(N+2)x 2cos(N 2)x

All terms in this series appear twice, once with a plus and once with a minus
sign, and thus cancel each other, with the exception of the first and the last term.
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Conclusion:

. . . .1 1 1.1 1
(sinx +sin2x + ... + sinNx) sin 5% = je0sx —cos N+ ;)x

it

L{cos (N +L)x - cos Lx}
2 2 2

-L{-2sin LW +1)x sin L Nx}
2 2 2

Dividing left and right by sin Y2x gives the desired result. Now we prove that the
right expression is equal to the closed expression from which we proceeded, by
multiplying the numerator and denominator by 4sin Yax:

-1 1 1
sin > N + 1)x - sin ;Nx *4sin e

. 1
4sm;x

-2 sin %(N +1)x * (-2 sin %Nx - sin x)

2-2cosx

-2 sin %(N + 1)x {cos (W + l)ix -cos (N - l)-;—x

2-2cosx

-2 sin %(N +1)x - cos %(N +1)x +2sin i(N +1)x - cos %(N -x

2-2cosx

_ ~sin(N+1)x +sinNx +sinx
2 -2cosx

With this the proof is completed. Moorer (1976) describes a number of variants
of this relation that can be changed into a time-domain version by replacing
every x by 2nft.

F. Synthesis via nonlinear distortion (wave-shaping)

With the help of a system with a nonlinear transfer function (as e.g. shown in
fig.6.4.2) a sinusoidal input signal can be altered into a non-sinusoidal output
signal with the same frequency. This signal thus has the same pitch, but contains,
in contrast to the input signal, harmonics and has therefore another timbre. We
could ask ourselves if it is possible to give the transfer function such a shape that
a certain pre-specified amplitude spectrum can be achieved. This is indeed possi-
ble (Schaefer, 1970 and Le Brun, 1979).

We look first at a simpler problem. Is it possible to find a transfer function 7},
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so that the output signal is equal to the 4-th harmonic of the sinusoidal input
signal? 7 must thus have the following property:
T{cos2n f1) = cos2m k ft
For k=0 and k = 1 T, is easy to find:
k=0: Tycos2mfr) cos 2 0 f1 cos0 = 1
k=1: T/(cos2mfr) cos2n 1 ft cos 2m ft
If we for the sake of brevity cos 27 f'f replace by x, we can write for 7, and 7:
Tox) = 1
Iix) = x
For higher k-values we can derive a recursive relation as follows:

Il
il

I
i

cos 2 kft-cos 2n ft = Yacos 2m(k + 1)t + Yacos 2m(k - 1)f't
or: Ty(cos 2m 1) cos 2m ft = YoT, . (cos 2w f)t + VoI, (cos 2T f1)

and with x instead of cos 2nft: Tyx) - x = YT (x) + %T, (%)

We can now express 7, in Tyand 75,0 T}, (%) = 2xT(x) - Ty (x)
Because we already know 7, and 7}, we can now calculate the other T-functions.

These functions are called 7chebycheff-polynomials. We find the following
expressions for the first seven 7;-functions:

T,(x) =1

T,(x) =x

T,(x) =2x* -1

T,(x) = 4x° - 3x

T,(x) = 8x* - 8x7 + 1

T,(x) = 16x° - 20x* + 5x

T,(x) = 32x° - 48x* + 18x% - 1
T,(x) = 64x” - 112x° + 56x° ~ Tx

With a given input signal x = cos 27nff every Tchebycheff-polynomial generates
one harmonic. We can now generate a series of harmonics by using a combina-
tion of these polynomials. Imagine that we wish to generate a signal with a first,
fourth and fifth harmonic. We take then as transfer function f'(x):

f(x) = T\(%) + Ty(x) + Ty(x)
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With x = cos 27tft the output signal y(f) now becomes:
y(@®) = f(cos2Tft)
= T (cos2Tft) + T,(cos2mft) + T (cos2Tft)

cOs2Tft + cos2T4ft + cos2T5ft

The function rule for this transfer function is thus:

f(x) =x + 8x* - 8x2 +1 + 16x* - 20x* + 5x

1

16x> + 8x* - 20x> - 8x2 + 6x + 1

The general expression for a transfer function with which an arbitrarily long
Fourier series with amplitude coefficients C, can be generated is:

f@) = Za, + ; C, T, (x)

Dynamic spectra can also be generated in this way, because if the amplitude of
the input signal is made less than 1, also a smaller part of the transfer function is
used, with consequently a smaller amount of nonlinear distortion. The amplitudes
of the distortion products, the harmonics are thus smaller as well. With a very
small input signal the transfer function is approximately linear and no harmonics
are generated. The amplitude coefficient of the input signal thus controls the
strength of the spectral components.

G. Granular synthesis

The two elementary signals we use for describing linear systems, the impulse and
the sinewave, are antipoles as regards their time and frequency domain behav-
iour. The impulse is exactly defined in the time domain but has a spectrum that
stretches over the whole of the frequency axis (see fig. 5.2.6) whereas the sine
wave as time function goes from -« to +e, but with just a single spectral line it is
sharply defined in the frequency domain.

We could ask ourselves which signal function is the optimal compromise
between these two extremes; ‘optimal’ meaning here a combination of reason-
ably sharp definitions in both the time and the frequency domain. This turns out
to be a sinewave with a Gauss curve (see fig.4.4.8) as an envelope. The spectrum
of this signal has as spectral envelope a Gauss curve as well. For this reason this
signal function is often applied as test signal in psycho-acoustical experiments.
The signal function is shown in fig.7.4.5.
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Figure 7.4.5 A sound ‘grain’.

A few years after the second world war the British scientist Dennis Gabor formu-
lated the hypothesis that any acoustical signal can be constructed by adding (a
large number of) these elementary signal functions, although they do not form an
orthogonal set. Some years later this hypothesis was proven, but even without
bothering too much about the formal and theoretical aspects, it can be shown that
on these ‘grains’ (as these elementary functions are usually called) a very flexible
and interesting sound synthesis system can be based (Roads, 1978; Truax 1988).
We have here in fact a very straightforward and effective method to control the
‘micro structure modulation’ (see chapter 1).

The flexibility stems from the large number of variables: the shape of the
envelope (Gaussian, Hamming, triangular etc.), the waveform of the carrier
(sinusoidal, frequency-modulated sinewave, recorded sounds etc.) and the way in
which the grains are distributed along the time and frequency axis with variables
as density and spread.

With the previously described methods the arsenal of possibilities for the
generation of sounds is by no means exhausted. An interesting development in
sound synthesis is the computer simulation of vibrating physical structures like
musical instruments, for example by solving numerically the differential equa-
tions of that system. This ‘physical modelling’ technique is a very sophisticated
version of the elementary approach used in chapter 3 to analyse the primitive
model of a vibrating string.

I direct those who wish to go deeper into this to the relevant literature on these
subjects, in particular The Journal of The Audio Engineering Society (Ed. Audio
Engineering Society, New York), The Computer Music Journal (ed. M.L.T.
Boston) and the book “Representations of Musical Signals” (De Poli et al. 1991).
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7.5 Problems

7.1

a.  What is the average autocorrelation function of a sinusoidal signal?

b.  And that of a square wave?

72

a. Consider a simple LPC-system with only 2 coefficients. Analysis of the
input signal gives for the first three coefficients of the autocorrelation
function the following values: R(0) = 1, R(1) = 0.918, R(2) = 0.690.
Calculate the filter coefficients g, and a,.

b. What does the impulse response of the analysis stage look like?

¢. Calculate from a, and a,:

the resonance frequency f;,

the bandwidth B,

the quality factor Q.
The clock frequency is 10000 Hz. Calculate first the values of the coeffi-
cients ¢ and r of the harmonic oscillator.

7.3 Speech sounds are radiated more efficiently when the frequency is higher.
This effect can be described as a filter process. The signal is filtered by a
high-pass filter with a steepness of 6 dB/octave. In a LPC-system the cir-
cuit of fig.6.3.1 can be applied for this purpose, with g = 1. Calculate the
amplitude response of this filter, and check the flank steepness.

7.4 Verify that the third Tchebycheff polynomial generates the third harmonic.

7.5 The peak value of the crosscorrelation function of two signals is called the
degree of coherence of the two signals.

a. Presume that in a concert hall two microphones are placed at a short dis-
tance from each other. What will be the shape of the ‘short time” degree of
coherence?

b. It is possible to convert a monophonic signal into a ‘pseudo’-stereo signal

by deriving from the original signal two new signals with a low degree of
coherence. Find a way to do this.



CHAPTER 8

Acoustical Communication Revisited

It is clear that the techniques, discussed in the previous chapters are extremely
useful for the description of all kinds of acoustical, electrical and other systems
that can be found between the sound signal source and the hearing organ. We
could however ask ourselves whether they could also be used for the description
of the source and hearing organ themselves. A partial answer to that question
(that was also asked at the end of chapter one) has already been given: in section
7.3 we have seen that by considering the vocal organ a linear system a good and
effective method for efficiently coding natural speech and generating synthetic
speech could be developed: Linear Predictive Coding. In this final chapter we
will check to which extent a similar approach is possible to the hearing organ.

8.1 The hearing organ, a linear system?
A. Filtering and critical bandwidth

Determining the properties of a system is possible by comparing the output
signal with the input signal. By now it will be clear why it is a good idea to use a
sinusoidal input signal for that purpose. With the hearing organ however the
output signal is not available and a direct measurement is impossible. The only
alternative we have is an indirect measurement via hearing. Our only escape is to
accept as a working hypothesis the assumption that the presence of a sinusoidal
component can be confirmed via hearing and that perhaps its level (but certainly
not its phase angle!) may be estimated in that way. This is absolutely not a trivial
supposition, but it is our only option. It is especially important to note that often
implicitly the system is assumed to be linear, on the analogy of our artificial
technical transmission systems.

Perhaps the most remarkable property of hearing is our capability to distin-
guish the individual components in a mixture of simultaneously arriving signals.
A possible explanation is the existence of some filter system that separates the
individual components via band filtering.

There are several indications, both from psycho-acoustical and from (neuro)-
physiological and anatomical research that the inner ear indeed contains a filter



298 Chapter 8

mechanism. The first question that then immediately comes to one’s mind is,
what the bandwidth of this filter is. Once again, a straightforward answer to this
question can not be given due to the impossibility of measuring the filter output.
Filtering manifests itself through the presence or absence of certain forms of
interaction between a primary sine tone and one or more secondary sine tones.
Therefore it is assumed that the filter is characterized by that frequency distance
at which those interactions just disappear. This limit value is called the critical
bandwidth. Fig.8.1.1 shows how this bandwidth depends upon the frequency of
the primary tone.

5000 7

2000 1
1000

500

critical bandwidth (Hz)

200 +
100 |

50 +

20 ! . " — i ‘
100 200 500 1000 2000 5000 10000
frequency (Hz)

Figure 8.1.1 Critical bandwidth.

Its shape can be described concisely by saying that above 500 Hz the critical
bandwidth is proportional to frequency and that below 500 Hz it gradually
changes into a constant value of ca. 100 Hz. In the upper frequency range the
factor of proportionality is ca. 0.20 and there the critical bandwidth corresponds
to an interval between a major and a minor third. In many important aspects of
auditory perception the critical bandwidth plays a central role.

To simulate our hearing organ in this respect,a filter bank, a set of third octave
bandpass filters is often used (which means that for convenience’ sake the critical
bandwidth is interpreted as a ‘normal’ filter bandwidth). At lower frequencies
this simulation is of course not very realistic. There are filter banks that simulate
the critical bandwidth more accurately. The bandwidth of these filters is some-
times indicated with the name ‘bark’ (after the German physicist Barkhausen).
One imperfection of the filter bank simulation is that they do not do justice to the
‘gliding’, continuously tunable filters of the inner ear.

To distinguish between several simultaneous signals it would be useful to have
very sharp auditory filters. This would, however, destroy the temporal structure
(and thus the modulation) of the signals. This is demonstrated in the figures 8.1.2
to 8.1.4. In fig.8.1.2 a and b two signal functions are shown that are prototypes of
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the signals that play a role in acoustical communication. Each signal consists of a
sinusoidal carrier that is also sinusoidally amplitude modulated. When we listen
to both signals simultaneously our ears receive the sum signal depicted in
fig.8.1.2.c. It is hardly possible to visually recognize the two components.
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Figure 8.1.2 Two amplitude modulated signals and their sum.

When the inner ear filtering would be very sharp, this sum signal would be split
into six stationary sinusoidal components: the two carrier waves each with its
two sidebands. Any temporal variation has disappeared here (see fig.8.1.3).
When the filtering is done in such a way that the one modulation spectrum is
separated from the other whereas the sidebands are not isolated from the carrier
then the sum signal is split into the two original amplitude modulated sine waves
as shown in fig.8.1.4.
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Figure 8.1.3 Figure 8.1.4
Spectrum afier sharp filtering. Spectrum afier less sharp filtering.
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The filtering should thus not be too sharp. The optimal bandwidth is a compro-
mise between a reasonable resolving power to separate different signals from
each other and a sufficient width to keep the temporal structure intact. The band-
width of the auditory filters indeed satisfies these two conditions.

B. Masking

Still accepting the hypothesis that perceiving or hearing a tone may be inter-
preted as a measurement, it seems that one essential condition for linearity,
superposition, is not always satisfied. A sine tone that can be heard as such can
under certain conditions, become inaudible (although physically still present)
when at the same time a second sine tone is presented. Clearly, this is a form of
mutual interaction which is not allowed by the superposition principle.

To find out under what conditions this happens we could do the following
experiment. First the lowest level is determined at which the first tone (from now
on named ‘the masked tone’) can be heard while the second tone (‘the masker’)
is absent. Then the second tone (or better a narrow band of noise to avoid other
interactions like beats) is switched on and the measurement is repeated. The
minimally required level is higher now and the level difference in dB is plotted in
a graph with the frequency of the masked tone as independent variable. The
measurement is repeated for other frequencies of the masked tone, while we keep
the level and the frequency of the masker constant at 80 dB and 400 Hz respec-
tively. The result is shown in fig.8.1.5.
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Figure 8.1.5 The masking curve.

The asymmetry of the curve is striking. Below 100 Hz no longer any masking
occurs. On the side of the high frequencies this point is not reached until 5000
Hz. Masking is clearly an important phenomenon with regard to loudness percep-
tion because when frequency components are hardly audible or not audible at all,
they do not contribute to the perceived loudness either. Masking can also be used
with digital coding to realize a substantial data reduction. This topic is discussed
in section 8.3.
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C. Non-linear distortion

In one respect the hearing organ seems to behave like a conventional linear
system: it exhibits non-linear distortion. In the 18th century Tartini described the
phenomenon that, with two simultaneously sounding tones, sometimes a third,
extra tone is audible with a pitch that corresponds qua frequency with the differ-
ence in frequency between the two primary tones. It was therefore called the
‘difference tone’. In the next century Helmholtz found the correct explanation by
assuming a non-linear transfer function (see also section 5.1.C) somewhere in the
hearing organ. He could not explain why we hear only a difference tone and not a
sum tone as predicted by theory. We now know that explanation: an eventual
sum tone is masked by the primary tones.

A lot of research has been done to discover the properties of the ‘combination
tones’ as these distortion products are usually called. The power series model of
section 5.1.C allows the prediction of the frequencies and levels of the combina-
tion tones. The prediction proved to be correct for the normal difference tone but
not for the higher order combination tones that are caused by the third, fourth and
higher terms of the power series. We now also know that even when the combi-
nation tones are not audible as individual tones, they play an important role in all
kinds of psycho-acoustical phenomena. For more information on this subject I
refer to Plomp (1976), Moore (1991) and other relevant literature.

8.2 The transfer of modulation

In chapter 1 we have seen that with speech and music the acoustical signal is
provided with information via a modulation mechanism. For this information to
reach its destination it is therefore important that the modulation patterns are not
affected during transmission through the communication channel. This channel
usually consists of a series of (more or less) linear systems, for example the
space in which the sound is transmitted, a microphone, amplifier, recorder,
loudspeaker etc. Each subsystem that satisfies the two criteria for distortion-less
transmission (see section 5.4), a straight horizontal amplitude response and a
linear phase response, keeps the waveform intact and that of course also goes for
all amplitude and frequency fluctuations in the signal, in other words for the
modulation and the information it contains. There are however subsystems that
do not satisfy these two conditions, for example the electronic filters in amplifi-
ers and so on, and also the earshell that, due to all the resonances it causes, also
acts as a filter. These filters are however sufficiently smooth to avoid a drastic
disturbance of the spectrum of carrier and sidebands. The modulation is thus
hardly affected.

In one of the subsystems a serious distortion of the modulation can occur: the
(acoustical) space. The numerous reflections that occur in such a space cause a
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dense pattern of interference maxima and minima leading to whimsical amplitude
and phase responses with large deviations. With the technique described in
chapter 3, it is of course possible to use these responses (or equivalently, the
impulse response) to predict the resulting wave form of the output signal with its
modulation and then to assess the ‘damage’ done to the modulation. A more
general approach is to concentrate directly on the modulation. For example via
amplitude demodulation of the acoustical signal the modulating signal can be
obtained and then the spectrum of this slowly fluctuating signal function could be
found. By doing so both at the sound source and at the receiver (the listener) the
frequency response (for the modulation frequencies!) can be derived. Plomp
(1983) has done a measurement of this type with bandpass filtered speech sig-
nals. Modulation spectra for several centre frequencies are shown in fig.8.2.1.
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Figure 8.2.1 Modulation spectra. From Plomp (1983) by per-
mission of the author.

Along the vertical axis now the degree of modulation m (see section 6.4.B.3) is
plotted. They contain roughly frequencies between 0.3 Hz and 15 Hz (confirming
the explanation of the lower limit of the auditory range, given in chapter 1), and
have their maximum at 4 Hz. Peaks corresponding to linguistic units can be
recognized. In fig.8.2.2 the frequency response of a space for modulation fre-
quencies (here called the ‘temporal modulation transfer function’) is depicted. By
combining these measurements with data from experiments to determine the
intelligibility of the speech, a ‘speech transmission index’ is acquired, that is a
good indication of the ‘quality’ of that space with regard to speech intelligibility.
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Figure 8.2.2 Temporal modulation transfer functions for
some different values of the reverberation time. From
Plomp (1983) by permission of the author.

8.3 Perceptual coding

In section 4.2.B several possibilities were discussed of reducing the amount of
information during digital coding to a lower value than for example the 768
kbit/s required for linear PCM with a sample frequency of 48 kHz and a word
length of 16 bits. One possibility not mentioned there is to use compression
techniques based on the statistical properties of the bit patterns. This is a com-
mon technique for decreasing the size of computer files (programs and data). The
degree to which this is possible varies from almost nil with program files to
substantial degree with text and image files. The advantage of this method is that
it leads to an exact reconstruction of the original files. Nothing is lost and, in the
case of sound files, no noise is added to the signal. Sound files however turn out
to be so complex that only a very modest amount of compression is possible,
varying from 1 (= no reduction) to 2.

Very substantial data reduction is possible by making use of the masking
phenomenon. We will now delve into this so-called perceptual coding. As we
will see, here the audio signal is split into a number of frequency bands by a filter
bank. It is important to understand that with a narrow-band signal a proportional
lower sampling rate can be used. To explain this the following example: suppose
that we have a digital signal with frequencies between 7 kHz and 8 kHz, sampled
at 20 kHz. As we have seen in section 4.4.A we then have the following spec-
trum (fig.8.3.1.a):
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Figure 8.3.1 Subsampling.

When we now lower the clock frequency to 10 kHz, the expected aliasing occurs,
but, thanks to the restricted bandwidth of the signal, there is no overlap (see
fig.8.3.1.b). This means that it is still in principle possible to reconstruct the
original signal! Reducing the signal’s bandwidth permits a proportional lowering
of the clock rate. Using the method for changing the sampling rate, discussed in
section 4.4.C, we can now work with a narrow-band signal according to the
following procedure. First with a filter, we reduce the bandwidth of the signal by
a factor L. Then the sampling rate is lowered by the same factor by means of
omitting Z-1 samples from each group of L samples. To reconstruct the signal we
first increase the sampling rate to the original value by inserting -1 zero-sam-
ples between each pair of samples. Then using the same filter as before we admit
only that portion of the spectrum we want and suppress everything else. In this
way the necessary interpolation is achieved and the original signal is recon-
structed. The complete diagram (Stoll 1993) is shown in fig.8.3.2:
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Figure 8.3.2 Perceptual Coding System.
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The original signal (for example a 16-bit digital signal, sampled at 48 kHz, thus
corresponding with a bit stream of 768 kbits/s) is split with a filter bank into 32
equally wide bands. The sampling rate is lowered by the same factor using the
method just described. The bitstream per band is thus reduced to 24 kbits/s, but
as we have 32 channels, the total bit stream is still 32 x 24 = 768 kbits/s. At the
same time a 1024-point FFT is made to get an accurate representation of the
spectrum of the signal being processed. This information is combined with a
psycho-acoustical model of masking. When in a certain band the signal contains
a strong frequency component, the masking threshold in the neighbouring bands
can be calculated from the model. Then the word length of the samples from
these bands is reduced. This increases the level of the quantization noise, but that
noise remains inaudible as long as its level stays below the masking threshold. It
is with this step that the data reduction is achieved. Finally the signal is reformat-
ted to form one single stream of bits that contains the samples plus a number of
bits with information about the data structure, in total 192 kbits/s, a reduction
with a factor 4! In the decoder this stream of bits is subdivided again into the 32
original channels, the word length and sample frequency are reset to their origi-
nal values and the 32 output signals are added together to form again one single
audio signal. The circuit of the decoder is much simpler than that of the encoder,
because here no psycho-acoustical modelling is required anymore.

From the discussion in this chapter it will be clear that the possibilities of
applying the theory of linear systems to the hearing organ are very limited. This
organ should not be considered a simple linear transmission system, a kind of
‘living microphone’. Together with the brains it forms a complex information
procession system of a much higher order. We still have to learn a lot about this
system.
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Appendix
solutions to problems

Chapter 2

2.1 Fig.2.1.2 T changes from 3.9 ms to 4.4 ms, f = 238 Hz ('c")
Fig.2.1.3 T=4.56ms, f=219.12 Hz ('a’)
Fig.2.14 T=4.53 ms, f=220.8 Hz (‘a'
Fig.2.1.9 7T=5ms, f=200 Hz ('g")

2.2

a. y(t)=llf0$ts—;—T, y(l)=—lif%T<tsT

b. y(t):-%f-+llf——:—T<tSO, y(t)=-4—Tt+lif0£tsiT
c. y(t)=—2}£if*§TstsT

d »(o) = sin 2Tt

For all functions: y(1 + 7)) = W(f)

23 (@ 1 (b) IN3 (c)IN3 (d) IN2

2.4 (a)1.3386 (b)1.0520-10°® (c) not defined (d) 1.3973 (e) 3.2175
2.5 (a)1.3348 (~ 1.3333) (b) 1.6818 (~ 1.6667) (c) 1.8877 (-~ 1.8750)
2.6 1200 cent; 2"'* = 1.00057779

27 6dB

28 87dB

2.9 80.4dB

2.10 54.1dB

2.11 470 ps :K,C:g, tus RC - £ - € -,
i v i 0
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2.12 1 1

\/x2a2 (b -cx?)?  yJelx* - 2bex? + a’x? + b2

2.3 2 _
) = 1 4c°x> + 2(a 2bc)x - 0

: \/(02x4 - 2bex? + a™x? + b2

Sx)

f'(x) = 0 when the numerator of this expression equals 0, thus:

2¢%? + (a? - 2bc)x = 0 ; divide left and right by x:

2 2
zczxzzzz,cazﬂx_lﬂ’_CL:Jk_a_

2¢? c 2¢?
213 ) . .
/i : i ren x
z i s
o /
214 sin_ x
1
N\
lim_sinx:limlx_f_s_+x_5_7x_7+x_9_...):1im]_X_2+3
x>0 x x-0x 31 51 ! 91 x-0 3! ¢

zero crossing at x = k-7t; maxima (after numerical solution of tan x = x) at
x = 4493409
7.725252
10.904122
14.066194
17.220755
20.371303

etc.
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2.15
T
a 1 SIN2Tft sin27fmt =
. Tf
0
T
= l[ -l—coszn(n—m)ft - lcosZTr(n +m)ft }dt =
T/ 2 2
0
. b T Sin27t(n m)t|_ T sinzn(”+m)t| _
2T {27t (n —m) T o 2T(n+m) T 0
b. lT cos2Tft cos2Tfmt =

"]l'— © =

T
f{%cosZn(n +m)ft + %cos2ﬂ(n vm)ft}dt =

T _ T
_L{ T .n2n(n+m)t B T .n2n(n m)t|}:c

si si
2T |2T0(n + m) T o 27T(n-m) T 0

T T
c. %fsinlnft‘cosrnfmt :%f{—;-sinZTt(n +m)ft +%sin2ﬂ:(n -m)ft }c
) 0

1 T 2n(m+m) T T 2n(n-m)
= — - —cos t| - * -cos t| (=
2T |27t(n +m) T o 2T(n-m) T )

2.16 C =139, tan ¢ = -0.58, ¢ = -30.26°

2.17 y, =2.4'5in(0.097k + 0.559)

2.18 (a) 0.716 (b) 240.6423 (c)3.386 (d)-3.7

2.19 (a) 97.403° (b) 240.6423° (c) 900°

2.20 (a) 71.43 Hz (b) 11627.9 Hz (c) 0.893 Hz (d) 5.787-10° Hz
221 f=162.34 Hz

2.22 (a) sin b - sin a (b) Y%(b-a) + Ya(sin 2b - sin 2a)

2.23 127.32 Hz, 143.239 Hz, 111.408 Hz
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2.24
x+Ax x x+Ax
f y(o)dt - f y(P)dt f y(t)dt
lim a _ lim =«
Ax-0 Ax Ax-0 Ax
lim Y&+Ax) - ¥Y(x) ., . _
= == M-y =
Ax—0 Ar (x) = y(x)
Chapter 3

3.1 (a)f=100Hz (b)f,=600Hz (c) Q=5 (d) B =120 Hz

21600 _ 4 9646, r = e 29 - 09813

3.2 See ﬁg.3.4.1; ¢ = 2cos
20000

the coefficients are thus: ¢:r = 1.9279 and -2 = -0.9630.
3.3
a.

y(®) = e P*(4,cos w1 + A sin @, 1)

dy . . .
v() = 2 = pe P'Acosw,t -e P4 w,;sin w1 —pe PAsinw,t + e P4,

ye=0) =4, =y,

v(=0) = pdA, +4,0, = ~py, +4,0, = v,
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3.4

3.7

See fig.3.3.4; withrule (3.4): 5 = ELE R S 800
* 2n\LC

from this: C = 100 nF.

0= 12" - 1L _ 2000
R? CR?

See fig.3.4.1.c.

Withrule 3.25) Inr - - L y = 2 _ 4,

20 f,

From this: r = 0.99995, ¢ = 2-cos y = 1.9597
Thus: cr=1.9596 and -2 = -0.9999.

0 =750/150 =5 and Q = 1800/150 = 12
ty=1/p=1/(Bn)=2.122 ms.

When the frequency of the undamped vibration f; is equal to 0.

See page 78: R? _ b

4m? m

Yes; if y =0 (thusc=1).

— or -b—z’y—(:Qz):%; thus Q =

%o

2 2 2
_ Blz+B; _ xoz(l . cosy) = x, sIn"y +cos’y _
sin’y siny

-1 COS Y
sin Y

= —tan

sin Y
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According to (2.40): S0SY _ sin(90° - y) _ tan (90° - y)

sin Y cos(90° - y)

Thus: ¢ = -tan"' {tan(90° -y)} = v - 90°

*o

Together: y, =
sin

cos (Yk +y —90°) =
Y s

0

* sin (Yk +7Y)
ny

3.8 Withrule 3.3): f, = 23000 2 - 43209Hz
27 25125

39 0 =n!— R C = !
wc “F w\jR2+( L oLy
wC
Chapter 4
4.1 decimal octal  hexadecimal binary
a. 2748 5274 ABC 0000101010111100
b. -300 7324 FED4 1111111011010100
c. 592 1120 250 0000001001010000
d. -592 76660 FDBO 1111110110110000
4.2 sum product
a 1110001, 010001100010,
b. 710, 57554,
c. 1D0 436F ¢
43 a 7126, b. 67737 c. 161625,
44 a 0.00256 V b. 02615V ¢c. 04146V

45 (72+4.77-20log 3) = 67.23 dB
46 2250 V/s

4.7 y(H)=5-sin 27ft, dy/dr=5-2nf-cos 2nft, 10nf=2250 V/s thus f=71.62 Hz.
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48 a,=-0.178, b,=-1.681, C,=1.691, ,=83°

49
an—s'"—‘ thus  yp,. = }‘6—4(1+L+ 1 +...] =0577
@2n -1)’n? 2 g4 81 625
4.10 ,
2|7 ’ 2
=2 [ende + [(-Ddey = it -0-(T -1} =0
a, = 23 [CDar+ [ =3 (T-5D
0 1p
2
ir
2 2 T
a = = cos2Tinftdt + - 2Tnft dt
n Tf i f cos 2Tnf
[ 1p
2
3 r
= sin2Tnft | - sin 27n
2Tinft (l) ﬁx|

=T
2

With f= 1/T this becomes:

a, = 2 {sinZTrnl-l—T—o—(sjnznnl.‘_T)}
27n T? T2
-2 (sinTin - 0 - sin27n +sin Tn) = 0
27n
1
) r T
b == in2Tnftdt + [ —sin2Tnnftdt
- fsm nfl ;f sin 2 TTnfi
) ir
2 %T T
= -cos2Tnyft | +cos2mnft| | =
ZTInfT 1 iT
2
=2 {—(cOSZnn-!-—l—T -1) + (cosZTtn—l—T - cos21tn—l——l—T)} =
27n T? T T?

-2 (-cosTtn +1 + cos2Tn - cosTn) = -l—(2 - 2cos Ttn)
27n Tn
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4.11 f,=20000/512 = 39.0625 Hz

a. g=04,f=15439.0625=601.6 Hz, 4 = 720-n1-0.4/sin(7-0.4) = 951.3

b. 750 = 19.2-39.0625. The value of g thus is 0.2 and the largest amplitude
coefficients are found at C,;, and ¢, . The value of C follows from:
550-5in(0.2-1) = C,,°0.2-7 thus C,, = 514.519.
From C,, and g now follows C,, = 128.63.

4.12 The function rule is: y(¢)= sin /T

T
a = 1fsin—n—£co(;21tn-t—dt
To T T

With rule (2.46) this becomes:
17 Tt 17 Tt 2 2
a = —|[sin(1 +2n)—dt + — [ sin(1 -2n)—dt = + =
" T{m( )T T{s ( n)T A +2m  (1-2m)%

From a similar calculation of b, follows: b, = 0.

4.13

a. 125Hz

b.  The 8-th, 16-th, 24-th etc. harmonics, thus all multiples of 1000 Hz.

c. C= A/m)sin(n/8); { =(2A4/4m)sin(4n/8), ,C JC =4-sin(1/8)=1.531. This

corresponds to 3.698 dB.
414
v m2nse® 24
a(f) = 24 f cos2Tftdt = 24 SR 2Tt | = ==cos2mnft, sin TfW
t 1w 2nf t°7';_W f
.

2
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1
to*;W t r.l.W

0 5
b(f) = 24 [ sin2nfide = 24 OS2I 24 G gy sin W
1 2nf t, lW nf
to ;W 0 2
_ 2 2 _ 24 .
C(H) = Va“(f) + b*(f) = —sinTfW
nf
sin 2 U1,
tan P(f) = —————— = —tan27fr,, thus
cos 2 Tft,
1 do 1
= -271ft,, and = - = = - — -2TWt, =t
o0 I %, 2n df 2n o

4.15 The first two harmonics are below half the sampling frequency; the third
harmonic (21 kHz) generates 19 kHz, the fourth harmonic (28 kHz) gener-
ates 12 kHz, the fifth harmonic (35 kHz) generates 5 kHz.

4.16 The attenuation by a zero-order hold filter is described by: S,

(See fig.4.4.5). When f = '4f, the attenuation that should be corrected is
2/m=-3.92 dB, and with f; = 4-f;: (sin 7/8)/(1/8)=-0.22 dB.

4.17 a,=xy + kx, - kxy-x, - k'xs + kx,
b, =kx, +x,+ kxy - kxs - x5+ kx;

by=kx,-x,+ kxy-kxs+ x5 - kxy

4.18
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1 . n_
¥ sin2m—¢ W y
a =2 fAcosZ‘n:lt:—z-‘i—T | =—(sin21t-'—'—'lW—sin2
" T T T n Ly n T 2
ly 2T — 2
2 T
. —cos2M—t W
b’l = 2 f AsinZTElt = ﬁ | = —(—cos2‘n£'iW + ¢
T T n 1 Tin T
1 2T — L
Ay 2
2 T
Chapter 5§

5.1 FIR; with a transversal filter.
5.2 With linear distortion, because h(k) = d(k).
5.3 Yes, because A(k) is symmetrical.
5.4 (k) = Vax(k) + x(k-1) + Yax(k-2)
5.5 (k) = Ysin sk + sin s(k-1) + Y2sin s(k-2)
= sin s(k-1) - cos s + sin 5(k-1) = sin s(k-1)(1 + cos 5)
5.6 Low-pass filter.

=] aee0

5.7 Uses=2nflf.
At 3500 Hz s =1.100 and 1 + cos s: 1.454
At 7000 Hz s =2.199 and 1 + cos s: 0.412
The proportion is 10.9 dB.

5.8 50 us, 0.314 rad = 18°, linear.
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59 T, o o v L - 045 thus 45%.
9 25 49 225

5.10 The presence filter, because this is a system with waveshape distortion.
5.11 At the resonance frequency, because there the steepness d/df is maximal.

5.12

x(k) + x(k-1) +. .. + x(k-20)

a  yky = n

b. The impulse response has the shape of a single impulse with pulse-width
W = 21/10000 s. The amplitude response is thus described by sin nfW/nfW.
The filter is a low-pass with cut-off frequency (better: first zero point):
10000/21 = 476 Hz.

c. Yes, the impulse response is symmetrical around A#(k=10) or z, = 1 ms; this
is therefore the time delay.

d.  The sample frequency should be above twice the highest signal frequency =
2-476 Hz; 1000 Hz is a good choice. The easiest way to achieve this reduc-
tion is to skip 9 clock pulse before calculating a new y(k)-value.

5.13 From the superposition principle it follows that
ifx-y
then x+x+x+... (n times) -~ y+y+y+... (n times) or nx - ny
Suppose x' = (n/m)x then mx' = m(n/myx = nx
And as mx' -~ my' we can conclude nx - my'
This means my' = ny or y' = (n/m)-y

Chapter 6

6.1 The total load is 1 kQ parallel to 9 kQ = (1-9)/(1+9) = 0.9 kQ.
Input volitage: 0.9/(4+0.9) = 0.184 volt.
The pre-amplifier delivers 900/4900% = 37.5 uW; 0.184%/1000 = 33.7 uW in
the resistance of 1 k€ and 0.184%/9000 = 3.8 uW in the other one.
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6.2

6.3

(N,/N,)? = 0.9/4 thus N, /N, = 0.474. The output voltage without load resis-
tance is 0.474 volt, with load resistance it is half that value. The power is
0.474%(4-900) = 62.5 uW. From this power 0.237%/1000 = 56.25 uW in the
resistance of 2 kQ, and 0.237%9000 = 6.25 uW in the other one.

1.6 = 1 2, thus 1.6 + 1.6x =2, x =250Q

1+x

The total load resistance consists of the series circuit of (1-)R and the
parallel resistance of aR and Ry thus
R_‘aR

R, = —2— +(1-0)R
R +aR ( )

R, varies between (Rg°R)/(Rz+R) if a=1 and R if a=0.

We can determine the output resistance by connecting a certain resistance
R,, with such a value that the output voltage is reduced by a factor 2. This
R, is then equal to the output resistance. Let us indicate the 'upper' resis-
tance of the potentiometer with R, and the 'lower’ one with R,.

The total output resistance is now the sum of R, and the contribution of the
potentiometer. To find this contribution we may assume R, = 0.

Half the value of the unloaded voltage is: 1 1
2

Rl + R2
Rx‘R2
. R +R
and this is equal to: * 2
RR,
X + Rl
Rx * R'l
. . . R ‘R
If we work out this equation we find the following result: g = —1 2
* R +R
1 2

The output resistance due to the potentiometer is equal to that of the parallel
circuit of the upper and lower section of the potentiometer and is thus de-
pendent upon its setting.
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6.5

6.6

6.7

The factor P is 4/(1+4) = 0.8
Open loop gain A4: 80 dB,

closed loop gain: 4' = 10000 . 1.2498 = 1.937dB

1 + 0.8-10000

This is almost equal to 1/p = 1.25 (= 1.938 dB). The gain factor has been
reduced from 10000 to 1.25; this reduction corresponds to 78 dB, the differ-
ence between the open loop and closed loop gain.

To determine the output resistance we connect a load resistance with such a
value R, that the output voltage is reduced by a factor 2. Assume an input
voltage of 1 volt. The output voltage without load is then 1.25 V, and with
load 0.625 V. The voltage across R, is: 10000(1 - 0.8:0.625) = 5000 V, the
output current is 5000/1000 = 5 Ampere. This current also flows through
R, , across which a voltage of 0.625 V exists. From this it follows that
R,=0.625/5 = 0.125 Q. The reduction factor is again 1.25-10*,

The length of the trajectory of the reflected sound is 2-(V(1.75%2.50%) =
6.10 m. The difference in distance is 1.10 meter, the time delay T = 3.24
ms. The circuit of fig.6.3.1a can be used when g is given the value -0.9.
This means that in the table below fig.6.3.3 the maxima change into min-
ima and vice versa.

Maxima at multiples of 1/t: 309 Hz, 618 Hz etc;

minima at 1/27, 3/2t,... : 154.5 Hz, 463.6 Hz etc.

Peak/valley proportion: (1+0.9)/(1-0.9) = 19 = 25.6 dB.

A sin (w1 + ) = sin wr + g4 sin {w( - T) + $)

sin w7 + ¢4 sin (Wf + )  cos WT — g4 cos (W£ + D) sin 0T

gA sin wT- cos (w1 + ) + A(1 ~cos WT) - sin (W +P) = sin W2

B

= Jqg?4%sin’ 0T + 42(1 -cosWT)?, tany =

The left-hand expression can be written as: B sin (wt + ¢ +y) with

gA sinwT
A(l —~gcoswT)
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Bsin(wt+d +Y) = Bsinwt-cos (P +7y) + Bcoswt sin(P +y) = sin ot

{Bcos(¢p +y)-1lsinwt + Bsin(p +y)-coswt = 0

This is true if ¢ = -y and B = 1. From this:

1

A\/qzsinzo)‘t +(1-coswT)> =1 or A =

\/1 -2qcosWT +¢q°

dv.
6.8 The first equation is: v, + RCd—y =V,
t

The step response is found by giving V, the value V,. In that case the solu-
tion is:

-t

_ _ _RC
v, =V,(1 - e*)

. dv.
Verification: substitute p and y Y = "¢
y

-t -t

V i
v, = RC—I;(%—eRC V- Vehe

For the sine response we substitute the same V, and ¥, as was done with the
differentiating network of fig.6.3.7:

RC-wB cos (wt - $) + Bsin(wt - ) = sin Wt

Dcos(wt - +vy) = sin wr

with

D = {B*w?R2C? +B? = B\1 + @R’C?, tanp = -—2__ - 1
BwWRC WRC

D cos Wt cos (Y —d) - Dsinwt-sin (Y - ¢) = sin wt
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Thisistrueif y-¢=-%nand D=1o0r 1 = Byl + w*R3C?

With this we know B (= H,(f) and ¢ (= A,(f):

H,() = 1 s Byt =y %ﬂ: =arctan -

V1 +4n’f?R?C?

1
27fRC

+ 1x
2

6.9 2nf=1/RC; with f=20 Hz and R = 5 kQ: C = 1.59 pF.

6.10 Same formula as in 6.9; with /= 1000 Hz and e.g. R = 5 kQ we find C =

31.9 nF.
6.11 mean
.001 .193 .585 .350 .823 391
174 710 .304 .091 .147 285
989 .119 .009 .532 .602 450
.166 .451 .057 .783 .520 395
876 956 .539 462 .862 .739
780 .997 .611 .266 .840 .699
376 .677 .009 276 .588 385
.838 485 .744 458 .744 .654
599 735 572 .152 425 .497 Between 0.0and 0.2 : 0
517 752 169 492 .700 .526 02and04: 5
.148 .142 .693 427 .967 475 0.4and 0.6: 10
153 .822 .191 817 .156 428 0.6and08: 5
732 280 .682 .722 .123 .508 0.8and 1.0: 0
.835 517 426 .949 .550 .655
472 847 456 983 .739 699
.196 .839 .501 .027 .573 427
.531 .843 658 .842 .110 597
314 286 .140 .835 .600 .435
.253 .002 .806 .211 .553 365

114 752 543 437 .696 .509
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6.12
a. f.=1000 Hz, amplitude = 1
f. + f= 1200 Hz, amplitude = Y2m = 0.1
£ - f-. = 800 Hz, amplitude = Yoam = 0.1
b.  Simplify the function rule to sin(a + m-cos b). This can be worked out to:
sin a-cos(m-cos b) + cos a-sin(m-cos b).
Use rule (6.23) and (2.42):

cos(mcosb) =cos(msin (b +%Tr)) =J,(m) +{ ~J,(m)cos2b +J,(m)cos4b ~.. A

sin (m cosb) =sin(msin (b + iﬂ:)) =2 {Jl(m) cosh -J,(m)cos3b +J(m)cosSh -...
With this we find:

sin (@ + m cosb) =
= J(m)sina - [J,(m){sin (a + 2b) +sin (a - 2b)} + J,(m)!sin (a + 4b)

+ [J(m){cos (a +b) + cos (a - b)} - J(m){cos (a +3b) + cos (a - 3b)}

For the given function rule y(¢) = sin(2nf;t + m-cos 2nf, f) we find:
y(t) = sin (27f,t + mcos 2Tif, 1)
= J(m)sin2Tf,t +
+ Ji(m)cos2(f, +f ) + J(m)cos2TL(f, - fHym)t +
- J(m)sin 2T0(f, + 2f, )t - Jy(m)sin 2T(f, - 2, )t +

= Jy(m)cos2T(f, +3f, )t - J(m)cos2T(f, -3f )t +

+ ...

¢. f.=1000 Hz, amplitude = J,(0.2) = 1
f. +fa= 1200 Hz, amplitude = J,(0.2) = 0.1
f. - /.= 800 Hz, amplitude = J,(0.2) = 0.1
Higher and lower frequency components are not significant.

The only difference is a phase shift of 90° between the central components
of the AM and the FM signal.
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6.13
frequencies amplitudes (J,(10))
940 0.246
740 1140 0.043
540 1340 0.255
340 1540 0.058
140 1740 0.220
(-) 60 1940 0.234
(-)260 2140 0.014
(-)460 2340 0.217
(-) 660 2540 0.318
(-) 860 2740 0.292
(-)1060 2940 0.207
(-)1260 3140 0.123
(-)1460 3340 0.063
(-)1660 3540 0.029
(-)1860 3740 0.012
(-)2060 2940 0.005
(-)2260 3140 0.002
Chapter 7
7.1

T
R(T) = %fsin 2Mftesin 2Tf( + T) dt
0

T
- %f{icoshtft - Leos(@nfr +2mfm)l dr
0
1, r
= —cos2TfT t| —
2T |

The conclusion that R is sinusoidal also follows from rule (7.6).

0

sin (4Tt ft +2TfT) T}

4f

0

1
2

cos2TfT
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7.2

1.3

7.4

The power spectrum of a square wave is equal to the amplitude spectrum of
a triangular wave. According to (7.6) R also has a triangular shape.

0.918 =q, + 0918q,
0.690 = 0.918-a, + a,
From this: a, = 1.807 and a, = -0.969

h(0) = 1, h(1) = -1, y(k) = x(k)-h(0) + x(k-1)h(1) = x(k) - x(k-1)
If x(k) = sin s°k : y(k) = sin sk - sin s(k-1) = 2-sin Vas-cos(sk-Y%)
Thus H,(f) = 2:sin niflf, = 2nflf, if nf <<(f,.

4-cos’x - 3-cos x = (4-cos?x - 3)-cos x = (2 + 2-cos 2x - 3)cos x =
= 2-c0s 2X°COS X - COS X = €OS 3x + COS X - COS X = cos 3x

This will exhibit a peak with direct sound and strong reflections. It will
decrease with reverberation.

By introducing linear distortion that changes the waveshape of the signals.
For this purpose a filter could be used with a straight, horizontal amplitude
response and a non-linear phase response.



