
1

In, Out and Through Computing
Edwin Gardner & Marcell Mars

VVeeVVeVV rrsion sion 11..00

2

TRACING
CONCEPTS
In, Out and Through Computing
Edwin Gardner & Marcell Mars

While degrees, titles, institutes and schools constitute disci­
plinary boundaries and define professions, the ideas and con­
cepts that circulate in a discipline are much more difficult, if
not impossible, to cage. Ideas are borrowed and appropriated
from one field to another. When adopted in new contexts
concepts are mutated, bastardized and are re-utilized and,
more often than not, depoliticized. When it comes to ideas
we are all opportunists; we use them in our rhetoric and to
shed new light on familiar problems. Emerging knowledge
fields are especially hungry for ideas and prolific in gen­
erating new ones that travel across neighboring disciplines
and beyond.

The arrival of the computer has produced a new
knowledge field that was especially hungry for, and prolific
in, concepts. Since computing is embedding itself ever deeper
in the fabric of reality through a pervasive network of
connected, communicating and sensing objects, it is worth­
while to trace and characterize the concepts going in, out
and through computing. This is exactly what the Tracing
Concepts project deals with.

The artificial environment of the computer is a place
where particularly abstract concepts find fertile ground.
Since “software is perhaps the ultimate heterogeneous tech­
nology, it exists simultaneously as an idea, language,
technology, and practice” NE2010. In a very real way, a
concept is literally put to work very differently than it would
be in natural language, speech, thought or moving images. In
a programming language, concepts become operative, mech­
anical cogs in the machinery of the Universal Machine.

How to use Tracing Concepts
This is the first iteration – version 1.0 – of Tracing Concepts.
It focuses on the exchange of concepts between the fields of
computing, architecture and philosophy, with a specific in­
terest in the object-oriented paradigm that links these three
fields together. The document is structured as a series of
alphabetized encyclopedia entries, which can be navigated
by the hyperlinks that connect all entries. We encourage you
to follow the links, break out of the narrative, and start
where you see fit rather than going from A to Z. Unlike an
encyclopedia our entries are subjective, seeking to provoke
and not insisting on a neutral position. Entries vary from
definitions to extended quotations to full articles. Sources
can be found at the end and are denoted by codes throughout.
At tracingconcepts.net, the tracing continues.

Introduction

3

Actor-Network-Theory (ANT) � JL2011

Actor-Network-Theory is a disparate family of material-
semiotic tools, sensibilities and methods of analysis that treat
everything in the social and natural worlds as a continu­
ously generated effect of the webs of relations within which
they are located. It assumes that nothing has reality or form
outside the enactment of those relations. Its studies explore
and characterize the webs and the practices that carry them.
Like other material-semiotic approaches, the actor-network
approach thus describes the enactment of materially and
discursively heterogeneous relations that produce and re­
shuffle all kinds of actors including objects, subjects, human
beings, machines, animals, ‘nature’, ideas, organizations, in­
equalities, scales and sizes, and geographical arrangements.

Alexander, Christopher� WP2011

Alexander (1936) is trained as an architect and mathema­
tician. Reasoning that users know more about the buildings
they need than any architect could, he produced and validated
(in collaboration with Sarah Ishikawa and Murray Silverstein)
a ‘pattern language’ designed to empower anyone to design
and build at any scale (published as A Pattern Language)
CA1977. Alexander has gradually positioned himself outside
contemporary architectural discourse by his opposition to
any contemporary architectural practice at large arguing in­
stead for a return to pre-industrial building methods and for
his fervent belief in an objective theory of beauty.
Alexander’s Notes on the Synthesis of Form CA1964 was
required reading for researchers in computer science
throughout the 1960s. It had an influence throughout the
sixties and seventies on programming language design, mo­
dular programming, object-oriented programming, software
engineering and other design methodologies. Alexander’s
mathematical concepts and orientation were similar to Edsger
Dijkstra’s influential A Discipline of Programming.

A Pattern Language’s greatest influence in computer
science is the design patterns movement. Alexander’s phi­
losophy of incremental, organic, coherent design also influ­
enced the extreme programming movement. The ‘wiki’ was
invented to allow work on programming design patterns (the
wiki was named WikiWikiWeb and is the concept upon
which Wikipedia is based). More recently, The Nature of
Order’s “deep geometrical structures” have been cited as
having importance for object-oriented programming, particu­
larly in C++ (one of the most popular programming languages,
for example Microsoft Windows is written in it).

Will Wright wrote that Alexander’s work was influential
in the origin of The Sims computer game, and in his later
game, Spore.

Anthropocentric
see Correlationism

Anti-pattern� WP2011 & WWW2011

In software engineering, an anti-pattern (or antipattern) is a
pattern that may be commonly used but is ineffective and/or
counterproductive in practice.

The term was coined in 1995 by Andrew Koenig, inspired
by Gang of Four’s book Design Patterns, which developed
the concept of design patterns in the software field. The
term was widely popularized three years later by the book
AntiPatterns, which extended the use of the term beyond the
field of software design and into general social interaction.
An Anti-Pattern goes from a problem to a bad solution. A
well formulated Anti-Pattern also tells you why the bad so­
lution looks attractive (e.g., it actually works in some narrow
context), why it turns out to be bad, and what positive pat­
terns are applicable in its stead. According to Jim Coplien:
“an anti-pattern is something that looks like a good idea,
but which backfires badly when applied.”

Often pejoratively named with clever oxymoronic neol­
ogisms, many anti-pattern ideas amount to little more than
mistakes, rants, unsolvable problems, or bad practices to be
avoided. Sometimes called pitfalls or dark patterns, this in­
formal use of the term has come to refer to classes of com­
monly reinvented bad solutions to problems. Thus, many
candidate anti-patterns under debate would not be formally
considered anti-patterns. By formally describing repeated
mistakes, one can recognize the forces that lead to their re­
petition and learn how others have gotten themselves out of
these broken patterns.

Examples of anti-pattern are ‘design by committee’,
‘groupthink’, ‘inner-platform effect’, ‘object orgy’, ‘golden
hammer’ etc.

Beirdo � Mars

Masters of the Universe

There are only a very few fields whose practitioners imagine
themselves to be creating the universe. They are able to
imagine this because they have acquired the skill of working
with a machine that holds the promise of performing this
amazing ability. These practitioners are known as program­
mers, and the tool they wield is the Universal Machine –
better known to us mere mortals as the computer.
Speaking about this Universal Machine in 1947, Alan Turing
said, “it can be shown that a single special machine of that
type can be made to do the work of all. It could in fact be
made to work as a model of any other machine.” This vision
goes beyond mere mimicry among machines. Working with
these machines programmers are able to see the world in
this machine’s image, all the while attempting to improve and
augment the world through the language, analogies, images,
and concepts that have been produced under the influence
of the Universal Machine. Or when looking through the pro­
grammer’s eyes and speaking in programmer speak: the world
is a suboptimal place that can be optimized, and computers
are the tools to do it with.

Actor-Network-Theory (ANT) – Beirdo

4

Cover of the Homebrew Computer Club Newsletter of 12 April 1972

Programming can improve the world incrementally by way
of tiny steps or through utopian projects. Some of the holy
grails of programming include:

	-	� The dream of human-computer symbiosis and
artificial intelligence.

	-	� To give birth to a robot so intelligent that it will
interact with humans as if it were one of them.

	-	� Making a parallel, decentralized financial system,
based on a cryptocurrency that cannot be controlled
by central banks (thus proposing an alternative to
fiat currency) and which can be traded anonymously
with anyone.

	-	� To make all the knowledge ever written accessible
to everyone on the planet for free.

	-	 To write a program that writes programs.
	-	� To upload your mind into a machine, so it can do all

of the above.

But you should be silent about your search?q=”holy
grail of programming” – (About 16,600 results
(0.19 seconds), because the world will think you are
a beirdo .

The field of computer technology developed out of an
interplay between science, engineering, business and the mili­
tary, and has been characterized by a versatile group of experts
and amateurs. Unfortunately, not only popular culture but also
historiography tries to reduce the history of the computer boys
to a small set of brilliant inventors. The computer boys remain
an elusive group to trace, as are the many contributions of
hackers, end users, operators, system administrators, geeks,
nerds, wizards, gurus and other ‘invisible technicians’ who are

often left unaccounted. Without them we would have but a
very small subset of today’s computer infrastructure.
From the early nineteen-seventies, once computer proces­
sors (which filled up entire rooms) evolved into their ‘micro’
relatives (which you could hold between your fingers), the
world was introduced to an army of passionate amateurs,
working in their garages, living rooms or even sitting on their
beds, computer on their lap, hacking things done. To play for
sake of play. To dream and share their love for computers
with their fellow computer hobbyists – who usually wore
beards too.

While technology and science have always been seen as
a means to an end in cultural production, it was becoming
apparent from the mid-twentieth century onwards that sound
and video synthesis, recording and broadcasting technology,
and computers and digital networks were themselves sources
of cultural production, not just mediators of information.
Computers have produced a very vibrant culture within the
fields of science and technology, ranging from bureaucratic
boredom to fantastic eccentricity. At first the cultural mani­
festations remained obscure and unpopular, safely confined
to the domain of nerds, but the nerds have steadily made
their way to mainstream popular culture.

For the past twenty years the computer boys’ play of con­
structing a reality in between the two cultures of science and
the humanities has made them the first-class citizens of con­
temporary artistic and cultural production: forensics in TV
shows, conspiracy theories in documentaries, comics, science
fiction and fantasy in Hollywood blockbusters, or entire new
industries like video gaming – whose revenue rivals that of
the movie and music industry and radically outpaces it in
growth. As Kevin Kelly puts it, a “pop culture based in tech­
nology, for technology. Call it nerd culture” simply became
cool. This ‘third culture’, as Kelly and others like John
Brockman and Nigel Cross have dubbed it, represents iden­
tifiably different aims, values and methods of knowledge
production than the other two cultural fields, science and
the humanities.

Yet a regular problem is that a mastery of technology –
the true essence of the third culture – is not being translated
to a very wide audience. Technology continues to be perceived
as a kind of black magic, something that happens behind the
hectic animations of the bespectacled geek’s screen.

Up until personal computers became connected to a glob­
al digital network, technological change took place through
the emergence of relatively specific technologies (electricity,
radio, television, transistors, video and tape recorder, and
communications satellites, to name a few). Once the world
of technology fuses with the digital network, soon each de­
vice will communicate with every other device in the net­
work of (all) networks and the tool for making tools will
slowly transform into software: the development of software
will become metonymical for all technological development.
Understanding what software is as well as the context in
which it is developed is as much a privilege as it was to be
literate in the sixteenth century. As Marshall McLuhan said,
“If we understand the revolutionary transformations caused
by new media, we can anticipate and control them; but if
we continue in our self-induced subliminal trance, we will
be their slaves.” MM1969 This is a warning that echoes in
Douglas Rushkoff’s Program or be Programmed. DR2010

Beirdo

5

Software is a socio-technical system in which computing
technology meets social relationships, organizational poli­
tics, and personal agendas. Every time an organization starts
to implement software it will need to restructure itself in
order to accommodate new procedures, flows of information,
social relations, corporate memory, monitoring, control, and
demand to understand the new system as a whole. That pro­
cess binds together, as Nathan Ensmenger writes, “machines,
people, and processes in an inextricably interconnected and
interdependent system” which never goes without “conflict,
negotiation, disputes over professional authority, and the
conflation of social, political, and technological agendas.
Software is perhaps the ultimate heterogeneous technology.
It exists simultaneously as an idea, language, technology,
and practice.” NE2010

Building Code
see Programming Language

Building Information
Modeling (BIM)� Gardner
�

One Building Said To The Other
The involvement of the computer in the building industry
has catered so far to every expertise separately. Every spe­
cialist works with their own software package, their own
methods for calculation, analysis or design, and each with
their own proprietary file formats. Up until recently there
were no frameworks or models in which all these specialists
could integrate their work. Information flows and formats
are predominantly closed due to proprietary software, copy­
right issues, and disclaimers, and a general reluctance and
distrust prevents participants in the building process from
easily sharing information. In 2004 it was estimated that the
U.S. building industry lost close to $16 billion per year due to
inadequate interoperability highlighting “the highly frag­
mented nature of the industry, the industry’s continued
paper-based business practices, a lack of standardization,
and inconsistent technology adoption among stakeholders”.
WP2011

Building Information Modeling (BIM) is the post-Computer
Aided Design (CAD) paradigm for how the computer can be
employed in the building industry. It is an approach that
could overcome the industry’s information asymmetry prob­
lems. Charles M. Eastman at Georgia Tech coined the term
BIM; his theory is based on a view that the term BIM ‘Building
Information Model’ is basically the same as ‘Building Product
Model’ which Eastman used extensively in his book CE1999
and papers since the late 1970s. (‘Product model’ means ‘data
model’ or ‘information model’ in engineering.) WP2011 How­
ever, BIM is currently developing off the radar from the archi­
tectural avant-garde and academia who are more focused on
digital fabrication and algorithmic-driven form-finding. BIM
is an innovation that occupies the more corporate sectors of
the building industry – the business of big projects and full-
service offices. It is currently mostly used as a way of having

one singular model from which all kinds of drawings for
a project can be extracted, and as a way to manage and
(re)use building components and systems across projects.
Though, the BIM project has much more in store, it consti­
tutes a radically different way of dealing with the built envi­
ronment. With BIM programming is entering the construction
industry at an industrial scale. This opens up a potential far
greater than the algorithmic form-finding experiments of the
architectural avant-garde. This is a potential we should seize
and bring into the heart of our schools and discourse, one
that should not be left to the corporate world alone. BIM’s
potential is that it constitutes a building as an entity in a vastly
interconnected network in which it lives and engages with
other entities in real time. The building becomes an object in
an object-oriented world.

BIM defines the building as a node of information, a net­
worked object, potentially a technologically enabled Gordian
knot so to speak. The building-object is born with the act of
making a file: it is simply given a name. Thus this object
starts its life as an empty vessel at first vague and undefined
and then begins to accrete information and definition over
time, across various fields of knowledge. Bundles of data –
the objects that are within the BIM-object or communicate
with it – can be product-specific, void-space oriented, climatic
data, GIS data, real estate taxes, cost calculations, energy
data. Eventually, what began as a file turns into a virtual
building with all its parts, nuts and bolts defined: a model
that allows for simulating the flow of people, energy and
matter. Using simulation scenarios can be quickly tested in­
cluding the shearing of layers, maintenance costs, and per­
haps even how material ages and acquire patina.

The virtual building then gradually becomes actualized
on the construction site and the model is updated in real-
time with the construction process. Changes are incorporated
when necessary and market information on product and
labor costs is verified and updated.

The life of the BIM model does not end when the building
is handed over to its owner, however. Supported by the smart-
sensor revolution, the virtual building will continue a parallel
life to the actual building, becoming its information-laden
avatar, accumulating data about usage, energy and the build­
ing’s overall health. It will be able to indicate when mainte­
nance is required, where problems are located, what specific
replacement parts will be needed. The building and its avatar
will make the real estate market more transparent and the
problem of hidden deficiencies will be minimized. Imagine a
real estate market in which you have a BIM model to go with
the house; it might even become a requirement to trade real
estate. Gradually the entire existing building stock would
become virtualized.

During its lifespan the building will carry its growing his­
tory with it and, analogous to the accumulated data, it would
will be able to make predictions about the future. It will have
expectations. Buildings will be networked into a web and
grouped into families, species, streets, neighborhoods, quar­
ters, cities, regions, and countries. Each will become an ob­
ject in its own right into which data from lower-scale objects
will be aggregated;, each object will learn not only from its
peers, but also from objects up and down the hierarchy –
from leagues of nations to the microscopic droplets of
moisture in the wall. These are the promises of BIM, an

 Beirdo – Building Information Modeling (BIM)

6

object-oriented building code, a programming language for
the built environment, a Building Code.

BIMstorm� Gardner

Massively Multiplayer Online
Building-Fest
From Silo-Culture to Share-Culture

BIMStorm is like a twenty-four-hour, worldwide LAN party
for architects, engineers, technologists, consultants, and var­
ious experts from the building industry working on a parti­
cular site . BIMStorm has been held in cities across the globe
including Los Angeles, New Orleans, London, Tokyo and
Rotterdam. BIMStorm is structured according to a kind of
unconference model, promoting self-organization, knowl­
edge and skill sharing. This (an ethos was underscored by its
the Woodstock-inspired poster for BIMStorm LAX in 2008).
In an industry conditioned to protect specialist information
from falling into the hands of others in the building industry’s
information silo, this gathering represents a culture alien
to the industry. Everything is shared completely and open-
sourced to peers and other experts. Here is a description by
the initiator of BIMStorm Kimon Onuma: “During the early
morning hours of January 31, 2008, ‘BIMmers’ from the
east to the west began collaborating. By noon, engineering
teams from Honolulu to Manila engaged their efforts to
provide structural support on a 54-story building. Multiple
buildings and fire stations were located in the BIMStorm
arena. While many U.S. teams closed for the night, teams
in Hawaii, Asia and Europe picked up the project and
designed the HVAC and structural systems. For the first
time, global ‘BIMmers’ reacted much like stock market in­
vestors. These requests were then picked up by teams to
resolve the design and placed on sites. Data was opened in
energy analysis tools to generate calculations and graphics.
Connecting the dots from early design through to the 20-
year life-cycle was possible by sharing design decisions
with many different experts and software. Building code
checking using International Code Council rules, happened
in parallel.” JBIM2008

Onuma is the man behind OPS (Onuma Planning System),
a system which coordinates and shares all the BIM data over
the Cloud. These shared efforts were brought together vis­
ually in GoogleEarth where the apartment blocks and sky­
scrapers grew out of a city hotbed over the course of twenty-
four hours. It was like SimCity, but instead of adjusting the
variables of an intricate algorithm, it was being generated by
a human collective. OPS provided the platform, but what
really made the exchange possible was the adoption of open
standards such that one individual’s tools could talk to
everyone else’s – a digital lingua franca. Cycles of feedback,
design and consequence, analysis and adjustment could now
feed each other across participating knowledge fields. A crit­
icism begins to emerge: is this not a threat to the craft of de­
sign? When design processes are hybridized by programming,
the character of design will certainly will change. But the
opportunity is that since architects and engineers are the

highly educated knowledge-wranglers of the industry – the
industry’s digital-natives, so to speak – they have a head
start. A head start at reclaiming lost terrain in the building
process, over which one can hear the architect so often
lament. The precondition, however, is that architects not
retreat into the mystique of craft, but make an effort to
systematize and organize their knowledge so that it becomes
easily utilizable. Socio-spatial Gordian knots embedded in
neighborhoods and cities will have to become socio-spatial
Gordian nodes in a network. Craft has always been about
mastering technology. Craft will always be there; technology
will always change.

CAD � WP2011

Computer Aided Drafting, or Design (CAD) began with
Sketchpad SketchPad (aka Robot Draftsman) was a revolu­
tionary computer program written by Ivan Sutherland in 1963
in the course of his PhD thesis, for which he received the
Turing Award in 1988. It helped change the way people inter­
act with computers. Sketchpad is considered the ancestor of
modern computer-aided drafting programs as well as a ma­
jor breakthrough in the development of computer graphics
in general. For example, Graphic User Interface (GUI) was
derived from Sketchpad as well as modern object-oriented
programming. Ivan Sutherland demonstrated that computer
graphics could be used for both artistic and technical pur­
poses, in addition to showing a novel method of human
computer interaction..

Building Information Modeling (BIM) – CAD

Poster for BIMStorm LAX 2008

7

SketchPad in use. On the display part of a bridge. Ivan Sutherland is holding

the Light pen. The push buttons used to control specific drawing functions are

on the box in front of the author. Part of the bank of toggle switches can be

seen behind the author. The size and position of the part of the total picture

seen on the display is obtained through the four black knobs just above the tabl

�

� Illustration from the SketchPad manual

Cellular Automata � MW2011

A Cellular Automaton is a collection of ‘colored’ cells on a
grid of specified shape that evolves through a number of
discrete time steps according to a set of rules based on the
states of neighboring cells. The rules are then applied iter­
atively for as many time steps as desired. Von Neumann was
one of the first people to consider such a model, and incor­
porated a cellular model into his ‘universal constructor’.

An example of a cellular automaton that has run for 200.000 iterations.

These cellular automata ran on the 345/3/6 rule. Source: www.thewildca.com

Cloud, The� Gardner

The Cloud is a metaphor for the Internet in cloud computing,
based on how it is depicted in computer network diagrams
and as an abstraction for the complex infrastructure it con­
ceals. It suggests an omnipresent network that is (wirelessly)
accessible everywhere and provides resources and applica­
tions to users. Underpinning the notion of the Cloud is that
the lion’s share of computing power and thus also all com­
puter applications can be delegated to a powerful distributed
computer network, i.e., the Internet. All one needs is a light
terminal-like device which provides access to the Cloud. This
means your computer only needs an operating system and a
web browser. Google Chromebook is the first commercial
devise based on this principle (released 15 June 2011).

Correlationism� Gardner

The internet of things is more than just a technological term:
it is a worldview, a framework for understanding the world
at large. But it is also a philosophical framework, one that
has fallen from grace since Kant. Kant’s Critique of Pure

CAD – Correlationism

8

Reason removed philosophical speculation on what the world
is and thinking about the nature of reality beyond human
reach. Basically any form of realism was rendered naive and
uncritical. The consequence of Kant’s argument is that the
human mind is confined to a transparent cage; all access to
reality, all apprehension of the world becomes the world ‘for-
us’ in contrast to the world ‘in-itself’ – a world to which we
have no access to because we cannot have access to the world
outside our human point of view and outside language. We
are captured in a correlate, the correlate of human-world,
subject-object, thinking-being: we cannot step outside. Quintin
Meillassoux calls this notion correlationism: “the idea ac­
cording to which we only ever have access to the correlation
between thinking and being, and never to either term con­
sidered apart from the other” QM2008. In recent years a
movement has sprung up around the critique of correla­
tionism dubbed ‘Speculative Realism.’ Although disparate in
their approaches, they all try to escape the correlate that has
dominated post-Kantian philosophy. One of these is Object-
Oriented Philosophy.

Cryptocurrency� WP2011

Bitcoin is a digital currency created in 2009 by Satoshi
Nakamoto. The name also refers to the open-source software
he designed that uses it, and the peer-to-peer network that it
forms. Unlike most currencies, bitcoin does not rely on trust­
ing any central issuer. Bitcoin uses a distributed database
spread across nodes of a peer-to-peer network to journal
transactions, and uses cryptography in order to provide
basic security functions, such as ensuring that bitcoins can
only be spent by the person who owns them, and never more
han once.

Design Patterns
In software engineering a design pattern is not a finished
design that can be transformed directly into code. Rather, it
is a description or template for how to solve a problem that
can be used in many different situations. Design patterns
are based on Christopher Alexander’s architectural theory of
patterns, and pattern language. In 1987 Kent Beck and Ward
Cunningham began experimenting with the idea of applying
patterns to programming and presented their results at the
OOPSLA conference that year:
“We propose a radical shift in the burden of design and
implementation, using concepts adapted from the work of
Christopher Alexander, an architect and founder of the
Center for Environmental Structures. Alexander proposes
homes and offices be designed and built by their eventual
occupants. These people, he reasons,know best their require­
ments for a particular structure. We agree, and make the
same argument for computer programs. Computer users
should write their own programs. The idea sounds foolish
when one considers the size and complexity of both build­
ings and programs, and the years of training for the design
professions. Yet Alexander offers a convincing scenario. It
revolves around a concept called a ‘pattern language’”.
KBWC1987

In the following years Beck, Cunningham and others fol­
lowed up on this work. Design patterns gained popularity in
computer science after the book Design Patterns: Elements
of Reusable Object-Oriented Software was published in 1994
by the so-called ‘Gang of Four’. In 1995 Cunningham launched
the Portland Pattern Repository, an online collection of com­
puter programming design patterns that was accompanied by
the WikiWikiWeb, the world’s first wiki. WP2011

Digital Physics � WP2011

In physics and cosmology, digital physics is a collection
of theoretical perspectives based on the premise that the
universe is, at heart, describable by information, and is
therefore computable. The universe can be conceived as
either the output of a computer program or as a vast, digi­
tal computation device (or, at least, mathematically iso­
morphicto such a device). Digital physics is also known
as Pancomputationalism or the computational universe
theory.

Digital physics is grounded in one or more of the follow­
ing hypotheses listed here in order of increasing starkness.
The universe, or reality, is:

	 1.	�essentially informational (although not every
informational ontology needs to be digital);

	 2.	essentially computable;
	 3.	essentially digital;
	 4.	itself a computer;
	 5.	�in essence the output of a simulated

reality exercise.

Correlationism – Digital Physics

The figure shows the relations between all the software

design patterns from Design Patterns (DP1994)

9

Konrad Zuse was the first to propose that physics is just com­
putation, suggesting that the history of our universe is being
computed on, say, a cellular automaton. His ‘Rechnender
Raum’ (Computing Cosmos / Calculating Space) started the
field of Digital Physics in 1967. Today, more than three dec­
ades later, his paradigm-shifting ideas are becoming popular.
Digital Physics gave rise to Digital Philosophy, a modern re­
interpretation of Gottfried Leibniz’s monist metaphysics, one
that replaces Leibniz’s monads with aspects of the theory of
cellular automata. Digital Philosophy purports to solve cer­
tain hard problems in the philosophy of mind and the philos­
ophy of physics, since, following Leibniz, the mind can be
given a computational treatment.

Forrester, Jay� WP2011

Jay Forrester (1918) is a pioneer American computer en­
gineer and systems scientist, and was a professor at the MIT
Sloan School of Management. Forrester is known as the
founder of System Dynamics which deals with the simulation
of interactions between objects in dynamic systems.

Forrester directed the development of DYNAMO
(DYNAmic MOdels), a simulation language and accompany­
ing graphical notation developed within the system dynamics
analytical framework. It was originally for industrial dynam­
ics but was soon extended to other applications, including
population and resource studies and urban planning.

DYNAMO was used for the system dynamics simulations of
global resource-depletion reported in the Club of Rome’s
Limits to Growth.

Gardner, Edwin
Edwin Gardner (1980) is an architect, writer and
regular contributor to Volume magazine. His re­
search and work deals with diagrammatic reason­
ing in architecture, whether by brain or machine.
Currently, he is a researcher at the Jan van Eyck Academie
where he is working on his Diagram Catalogue project.

Gordian Knots� EG2011

Gordian Knots are hard, if not impossible, problems to solve.
They denote the incredible complexity of dealing with or
even ‘solving’ ‘certain Gordian Knots problems’ in society.
Problems can neither be consider in an isolated way, nor can
all possible influences and connections be integrated. Never­
theless, one needs to engage the challenge of adding some­
thing to the world in a way that is neither naive nor nihilistic.
These Gordian knots, when technologized, become Gordian
nodes. By technologizing the problem it might seem tractable
since technology (especially networks and systems) provide
the aesthetics of control, management and rationality.

Digital Physics – Gordian Knots

Forrester’s diagram of the world model interrelating the five level variables – population, natural

resources, capital investment, capital-investment-in-agriculture fraction, and pollution.

10

Industrial Foundation
Classes (IFC)� WP2011

Industrial Foundation Classes were introduced to describe
building and construction industry data according to specific
standards. It is a neutral and open specification that is not
controlled by a single vendor or group of vendors. It is an
object-based file format with a data model developed by
buildingSMART (International Alliance for Interoperability,
IAI) to facilitate interoperability in the building industry, and
is a commonly used format for Building Information Modeling
(BIM). The IFC model specification is open and available. It
is registered by ISO as ISO/PAS 16739 and is currently in the
process of becoming the official International Standard ISO
16739. Because of its focus on ease of interoperability be­
tween software platforms the Danish government has made
the use of IFC format(s) compulsory for publicly funded
building projects. Finnish state-owned facility management
company Senate Properties also requires IFC compatible
software and BIM in all their projects.

Information Asymmetry
�

When one party in an economic transaction has privileged
and/or better access to specific knowledge which is inacces­
sible or hard to attain for the other party, the first party
profits from the information asymmetry between buyer and
seller of a goods or service; for example, in fields such as
legal advice, finance, medicine and education. In economic
terms, the condition of information asymmetry is undesir­
able, whether the lack of information lies with the buyer or
seller. While one can say that there is always some degree of
information asymmetry in every transaction, too much asym­
metry results in suspicion and a decrease in trust between
the trading parties. It results in a non-transparent and dys­
functional market, and can even lead to the disappearance
of a specific market since there is no exchange of information
or mutual trust at all. This is why markets involving specialist
knowledge are highly regulated, professionalized, and/or inter­
mediated: in large part to protect the consumer BLP2007.
In the relationship between owner/client and contractor
these mechanisms are lacking or work very poorly. There is
a lot of room for the contractor to take advantage of
information asymmetry. An excerpt from a 2007 book by
Barry B. LePartner, the director of a law firm solely serving
as business and legal advisor to design professionals, illus­
trates this problem:
“The fact that owners do not have near equal knowledge [as
the contractor] is the major reason why inefficiency and
mutable costs persist in construction. For a number of rea­
sons peculiar to construction, building owners cannot easily
compare building price or quality – at the start, during
construction, or even after the job is done. Most owners
cannot even read blueprints, much less fathom the complex
process of transforming the prints into usable structures.
In most instances, the construction team pre-sets the pro­
ject budget by reviewing the design documents prepared by
the architect and the engineers. There is rarely anyone
equally knowledgeable about material or labor costs to

effectively challenge the budget set by the contractor. Most
inexperienced owners cannot readily distinguish between
reasonable and unreasonable contractor bids. Even when
they can, their only real alternative if the price comes in
higher than the project budget is to reduce or eliminate
features since the contractor will be unlikely to reduce its
overall price without a commensurate scope reduction.
Even then, the contractor will maintain the same degree of
profitability.” BLP2007

LAN Party (Local Area
Network Party) � WP2011

A LAN Party is a temporary, sometimes spontaneous, gath­
ering of people with computers with which they establish a
local area network (LAN) primarily for the purpose of play­
ing multiplayer computer games. The size of these networks
may vary from very small (two people) to very large. Small
parties can form spontaneously, but large ones usually re­
quire a fair amount of planning and preparation.

LAN party events differ significantly from LAN gaming
centers and Internet cafés in that they generally require
attendants to bring their own computer (BYOC) and are
not permanent, often taking place in general meeting places
or residences.

LAN parties have their own unique culture. Case modding
(modifying a computer case in any non-standard way) en­
thusiasts often show off computers with flashy aftermarket
lighting, LCD screens, enhanced speakers, and many other
computer accessories. Highly caffeinated drinks, termed
energy drinks, are very popular at these events to improve
concentration and stamina as LAN parties often run into the
early morning hours. Large parties can last for several days
with no scheduled breaks. Participants often play through
the night and into the next day although there is often a
designated room separated from the LAN party in which to
sleep. BIMStorm could be qualified as a 24-hour LAN Party
of sorts for architect, engineers and building consultants,
although technically is it uses the Internet, not the LAN.

Latour Litany � FG2010

Ian Bogost coined the term Latour litany, referring to Bruno
Latour’s Actor-Network-Theory. A ‘Latour litany’ is any list
of objects/actors in the world designed to provide an expres­
sionist sample of the lavishness of the non-human world. For
example ‘washing machines, snowstorms, blades of grass,
satellites, gods, pots, paintings, laws, horseshoes and engines’
is a Latour litany.

Lingua Franca � WP2011

Lingua Franca (also working language, bridge language, or
vehicular language) is a language systematically used to
make communication possible between people not sharing a
mother tongue, in particular when it is a third language dis­
tinct from both mother tongues. The equivalent of a lingua
franca in software are open standards, which provide the

IFC – Lingua Franca

11

12

possibility for data to be produced, exchanged and read by
anyone. A good example of this are Extensible Markup Language
(XML) based formats. The design goals of XML emphasize sim­
plicity, generality, and usability over the Internet. It is a tex­
tual data format with strong support via Unicode for every
language. Although the design of XML focuses on documents,
it is widely used for the representation of arbitrary data struc­
tures, for example, in web services. Many application pro­
gram ming interfaces (APIs) have been developed which soft­
ware developers use to process XML data, and several schema
systems exist to aid in the defi nition of XML­based languages.

Examples of XML formats available in the building in dus­
try are ifcXML (Industrial Foundation Classes XML), gbXML
(Green Building XML), and aecXML (Architecture, Engi­
neer ing and Construction XML). Within the building industry
the Industrial Foundation Classes are an effort to realize
these open standards.

Lock-in WP2011

Lock­in can result from network effects. For example, if net­
work standards are open enabling competitive implemen­
tation by different vendors, there is no vendor lock­in. One
example of this would be email, for it has a considerable
network effect but there is interoperability between different
email providers, thus no lock­in. Apple’s App Store has had
an enormous network effect because of the popularity of the
iPhone, but one has to comply with Apple’s rules to be able
to use the network; those in the network are locked­in.

Machine Readable WP2011

In telecommunications a machine­readable medium (auto­
mated data medium) is a medium capable of storing data in
a machine­readable format that can be accessed by an auto­
mated sensing device and be turned into (practically in every
case) a binary form. Examples of machine­readable media
include magnetic disks, cards, tapes, and drums, punched
cards and paper tapes, optical disks, barcodes and magnetic
ink characters. Common machine­readable data storage and
data transmission technologies include processing wave­
forms, optical character recognition (OCR), and barcodes.
Any information retrievable by any form of energy can be
machine­readable.

Mars, Marcell
Marcell Mars aka Nenad Romic (1972) is a free soft­
ware advocate, cultural explorer and social instiga­
tor. Mars is one of the founders of Multimedia
Institute – mi2 and net.culture club mama, both
located in Zagreb. He initiated the GNU GPL publishing label
EGOBOO.bits, started Skill sharing meetings of enthusiasts
at mama and Skill sharing’s satellite events – g33koskop,
‘Nothing will happen’ and ‘The Fair of Mean Equipment’.
When in Zagreb Marcell hangs out in Hacklab at mama; in
Belgrade he runs Wonder of technology/Cudo tehnike at the
Faculty of Media and Communication; and at the Jan van

Eyck Academie in Maastricht he is working on the project
Ruling Class Studies and collaborates with Edwin Gardner
on Tracing Concepts. also sings, dances, tells stories and
makes music as Nenad Romic za Novyi Byte.

Material-semiotic WP2011

Material­semiotic refers to a form of analysis that maps rela­
tions that are simultaneously material (between things) and
semiotic (between concepts). It assumes that many relations
are both material and semiotic. For example, the interactions
in a school involve children, teachers, their ideas, and tech­
nologies (such as tables, chairs, computers and stationery).
Together, these form a single network.

Meta-circular Evaluator Mars

An interpreter in computer science is a computer program
which executes code written in some programming lan guage.
It is different from a compiler which translates code written
in some programming language into a stand­alone, exe cut­
able program. A self­interpreter, or meta­interpreter, is a
programming language interpreter written in the language it
interprets. A special case of self­interpreter is meta­circular
interpreter which can accept input code written in the
programming language in which it itself is written without
any modifi cation. The input code can be accepted without
any modifi cation because of homoiconicity, a property of
programming language in which the primary representation
of programs is also a data structure in a primitive type of the
language itself (“code is data, data is code…”).

Network Eff ect WP2011

In economics and business, a network effect (also called
network externality or demand­side economies of scale) is
the effect one user of a good or service has on the value of
that product to other people. When network effect is present,
the value of a product or service increases as more people
use it.

The classic example is the telephone. The more people
own telephones, the more valuable the telephone is to each
owner. This creates a positive externality because a user
may purchase a telephone without intending to create value
for other users, but does so in any case. Online social net­
works work in the same way, with sites like Twitter and
Facebook being more useful the more users join.

The expression ‘network effect’ is applied most com­
monly to positive network externalities as in the case of the
telephone. Negative network externalities can also occur
when more users make a product less valuable, but are more
commonly referred to as ‘congestion’ (as in traffi c congestion
or network congestion).

Over time positive network effects can create a band­
wagon effect as the network becomes more valuable and
more people join in a positive feedback loop.

Lingua franca – Network Eff ect

Material-semiotic Material-semiotic

13

Neumann, John von � WP2011

John von Neumann (1903 – 1957). A Hungarian-American
mathematician and a pioneer of the application of operator
theory to quantum mechanics as well as in the development
of functional analysis. He was a principal member of the
Manhattan Project and the Institute for Advanced Study in
Princeton (as one of the few originally appointed), and a key
figure in the development of game theory and the concepts
of cellular automata, the universal constructor, and the
digital computer.

Object-oriented � Gardner

Hello, Everything*
As we speak the web is spilling into the physical world. The
internet is growing into things, into objects, into literally
everything. The internet is like a brain in a vat that is now
rapidly extending out of its dark sensory-deprivation tank.
Growing neurons and limbs, developing more senses than
any human ever had, and carefully feeling its way around the
great outdoors. Today, most visions of an internet of things
focus on a particular rendering of urban life. They focus on
the interaction between city and user as an extension of the
personal computing paradigm distributed over many devices,
whether static or mobile, whether controlled with gestures
or by touch. This vision privileges the user’s point of view on
the city. It does not register the real implications, not to men­
tion the real disruptions, of weaving the internet into the built
environment. The anthropocentric point of view prevents us
from seeing other perspectives than that of the user. It cre­
ates a blind spot for other concerns and other perspectives,
such as those of things – the entities that populate the non-
human world. This is precisely what we need to consider:
‘the things themselves’. It’s not about writing off the human
perspective; it’s about having an additional perspective, to
see the human as equal to things, as an object amongst ob­
jects, a flat hierarchy, a democracy of objects. The change of
view from user-oriented to object-oriented is necessary when
one wants to consider and work with the idea that the city is
an internet of things: in other words, a collection of bricks,
cars, glass, steel, piping, wires, air conditioning, streets, in­
teriors, furniture, permits, a city hall, a cathedral, construc­
tion sites, zoning laws, window washers, fraternities, garbage
collecting, policing, squatting, sewer systems, traffic lights,
cars, billboards, sidewalks, squares, parks, apartments, pent­
houses, junkies, prostitutes, fathers, sons, hospitals, metro
lines, bike stands, nuts and bolts…one could continue this
Latour litany forever. The internet of things is the world of
real and virtual objects. Each object can have behaviors,
characteristics, internal workings, external affects, particular
methods or practices. Each object relates to other objects
by hierarchy, affiliation, set, or sequence. Each object can
mobilize other objects, move in clusters and swarms, rein­
force their constellation and gain meaning and influence. This
world view is classified as ‘object-oriented’ or as ‘material-
semiotic’ webs or networks. Fields are springing up around

these world views like object-oriented philosophy in terms
of theorizing, object-oriented programming in terms of oper­
ating and Actor-Network-Theory in terms of analyzing. The
object-oriented view is a worldview, a perspective unbound
by disciplinary perimeters; it is a worldview disseminated
throughout society wherever software and computing emerges.

Language is the platform upon which the naming and
relating of objects into a fabric of meaning occurs. With the
internet of things, language is no longer about us conversing
about objects, it’s us conversing with objects, and further­
more objects conversing with each other about us. This is
what differentiates natural language from programming lan­
guage (or even more fundamentally from ‘computation’ see
digital physics). Programming language is not about the world
anymore. It’s not language as transparent cage standing
between the human-thinking subject and being-in-the-world
(the world ‘out there’, the world of objects); it’s as if lingual
objects can speak the same language as the sentences in
which they are found. It’s like a text that can talk to itself,
rewrite itself, and write other new texts with new objects.
This is what it would mean when objects are increasingly
woven into a ubiquitous technological fabric. Objects can
sense things, give them and themselves names; they can
speak and write about things. But these object do not have a
free will – they are determined but still unpredictable. Meta­
phor and ambiguity are alien concepts to this language, but
this genus of language does have the some of the same
characteristics of natural languages, most importantly that
language can exclude or include. Of key importance for the
internet of things and its potential is to have a mutual agreement
on vocabulary and grammar – a lingua franca for objects.

A network of things would be relatively impotent if these
things did not adopt a common language. Things that could
exclusively communicate with similar things would ultimately
be locked-in. Whether this is beneficial or not depends on
how power in the network is organized and exercised, and
on what side of the power relation objects are. When certain
knowledge is inaccessible for some who need it, those who
do have access can benefit; in economic terms this is known
as information asymmetry. Information asymmetry is the
single biggest obstacle to be overcome to truly network the
built environment – to allow contractors, realtors, home­
owners, architects, city authorities, engineers and project
developers to cooperate openly on a level informational
playing field. Only at this point can the built environment
really reach network effect and take full advantage of the
potential of the Building Code.

* The title comes from the ‘Hello, Everything’ conference on
speculative realism and object-oriented ontology held at
UCLA, December 1, 2010.

Object-Oriented Programming
(OOP) � WWW2011, WP2011

Object-Oriented programming is a programming language
paradigm using ‘objects’ – data structures consisting of data
fields and methods together with their interactions – to design
applications and computer programs. An object-oriented
system, language, or environment should include at least the

Neumann, John von = OOP

14

following properties: Encapsulation, meaning restricting ac­
cess to some of the object’s components. Polymorphism,
meaning the ability to create a variable, a function, or an ob­
ject that has more than one form. And inheritance, meaning
a way to compartmentalize and reuse code by creating col­
lections of attributes and behaviors called objects which can
be based on previously created objects.

Polymorphism and Inheritance are certainly patterns that
facilitate OO programming, but encapsulation seems to be
the key distinction between OO and procedural programming:
“asking data to do things instead of doing things to data”
(David Wright).

Object-Oriented Philosophy � WP2011

The central tenet of object-oriented philosophy (OOP) is that
objects have been given short shrift for too long in philosophy
in favor of more ‘radical approaches.’ Graham Harman has
classified these forms of ‘radical philosophy’ as those that
either try to ‘undermine’ objects by saying that objects are
simply superficial crusts of a deeper, underlying reality ei­
ther in the form of monism or a perpetual flux, or those that
try to ‘overmine’ objects by saying that the idea of a whole
object is a form of folk ontology, that there is no underlying
‘object’ beneath either the qualities (e.g., there is no ‘apple’,
only ‘red’, ‘hard’, etc.) or the relations (as in both Latour and
Whitehead, the former claiming that an object is only what it
“modifies, transforms, perturbs, or creates”). OOP is notable
for not only its critique of forms of anti-realism, but other
forms of realism as well. Harman has even claimed that the
term ‘realism’ will soon no longer be a relevant distinction
within philosophy as the factions within Speculative Realism
grow in number. As such, he has already written pieces dif­
ferentiating his own OOP from other forms of realism which
he claims are not realist enough as they reject objects as
“useless fictions”.

Object oriented ontology has also found favor among a
group of philosophers including Levi R. Bryant, Ian Bogost,
and Timothy Morton, who blog often and are preparing to
publish several full-length monographs on their varying on­
tologies. Bryant’s volume will be titled ‘The Democracy of
Objects’; Bogost’s will be ‘Alien Phenomenology’; and cur­
rently Morton is working on a volume called ‘Dark Ecology’,
which promises to explicate his idea of hyperobjects.

Related: Correlationism

OOPSLA� CA1996

The Object-Oriented Programs, Languages and Applications
conference wittnessed Christopher Alexander as Keynote.
What follows is the closing fragment of his lecture in a hall
full of computer activists and software engineers in San Jose,
California in 1998.
“When a paradigm change occurs in a discipline it is not
always the members of the old profession who take it to the
next stage. In the history of the development in technical
change very often the people responsible for certain spe­
cialty are then followed by a technical innovation. And then
the people who become responsible for the field after the

technical innovation are a completely different group of
people. When the automobile came along the people who
built the buggies for the horse and buggy did not then turn
into Henry Ford. Henry Ford knew nothing about horse
buggies. The people who were building automobiles came
from left field and then took over – and the horse and buggy
died off.

It is conceivable to imagine a future in which this prob­
lem of generating the living structure in the world is some­
thing that you – computer scientists – might explicitly
recognize as part of your responsibility. (…) The idea of
generative process is natural to you. It forms the core of the
computer science field. The methods that you have at your
fingertips and deal with everyday in the normal course of
software design are perfectly designed to do this. So, if only
you have the interest you do have the capacity and you do
have the means. (…) What I am proposing here is some­
thing a little bit different from that. It is a view of pro­
gramming as the natural genetic infrastructure of a living
world which you/we are capable of creating, managing,
making available, and which could then have the result
that a living structure in our towns, houses, work places,
cities, becomes an attainable thing. That would be remark­
able. It would turn the world around, and make living
structure the norm once again, throughout society, and make
the world worth living in again.

This is an extraordinary vision of the future in which
computers play a fundamental role in making the world –
and above all the built structure of the world – alive, hu­
mane,ecologically profound, and with a deep living structure”.

Pancomputationalism
see Digital Physics

Pattern
From things to patterns, Christopher Alexander explains:
“It is one thing to say in a kitchen, for example, you have
a certain relationship between a counter, a refrigerator, a
sink, and a stove. Everyone can see that. But in that view
of the thing you still consider the kitchen to be made of the
counter, refrigerator, sink, and stove, and their relationship
is kind of playing a secondary role in trying to organize it.
But when you look more closely you realize that the stove is
a relationship between an oven, some heaters, and some
switches and furthermore, that the switch is a relationship
between something you can turn with your hand and some
electrical contacts, and so on. Finally you realize that the
whole substance of all this is in fact made of these patterns
and that the ‘things’ are just convenient labels which we
give to bundles of patterns, or patterns themselves.” SG1983
Reyner Banham adds: “The heart of Alexander’s matter is
the concept of a ‘pattern’, which is a sort of package of ideas
and forms which can be subsumed under a label as com­
monplace as ‘comfortable window-seat’ or ‘threshold’ or
‘light on two sides of a room’, or as abstract as ‘intimacy
gradient’. Such a labeled pattern contains not only the
knowledge of the form and how to make it, but ‘there is an

OOP – Pattern

15

imperative aspect to the pattern … it is a desirable pat­
tern… [the architect] must create this pattern in order to
maintain a stable and healthy world.’ (…) In other words,
each pattern will have moral force, will be the only right
way of doing that particular piece of designing – at least
in the eyes of those who have been correctly socialized into
the profession. (…) And in general, as an outsider who was
never socialized in the tribal long-house, it seems to me that
Alexander’s patterns are very like the kind of packages in
which architects can often be seen to be doing their think­
ing, particularly at the sort of second sketch stage when
they are re-using some of what was sketched out in the first
version.” RB1990

Pattern Language
A Pattern Language is the approximation of “the idea that a
set of rules could actually generate a building is as dis­
turbing as the idea that a human being is generated by a
few genetic rules operating on chromosomes or that a poem
is generated by a few grammatical rules operating on lan­
guage. [This] is precisely what Alexander is claiming. For
him, the two examples just cited – genetics and linguistics
– are not just analogies. In each case there is a principle of
‘generativity’ involved and Alexander is not just interested
in a theoretical equivalent of this principle. He is actually
interested in generativity itself and is therefore serious
about a set of rules which generates buildings as structural
principle of natural creation as it is understood in modern
science.” SG1983
Pattern Language is a concept developed by Christopher
Alexander as a theory for the structure of our built environ­
ment. “The elements of this language are entities called pat­
terns. Each pattern describes a problem that occurs over
and over again in our environment, and then describes the
core of the solution to that problem in such a way that you
can use this solution a million times over without ever do­
ing it the same way twice.” CA1977.

The theory was intended to eventually become a genu­
inely generative approach, something which never happened.
But the format of the pattern language is a powerful idea
that has been adopted across various disciplines, most prom­
inently in object-oriented programming in the design patterns
movement. It might very well be that Alexander’s Pattern
Language might somehow end up back in the built environ­
ment again via the field of programming and the Internet of
things – a premonition one might have experienced when
Alexander gave his keynote address to a lecture hall full of
computer scientists and software engineers in October 1996
at the Association for Computing Machinery (ACM) Confer­
ence on Object-Oriented Programs, Systems, Languages and
Applications (OOPSLA) – San Jose, California.

Within architecture Alexander’s theories have fallen from
grace. This has more to do with Alexander’s unnuanced and
unforgiving tone against practically anything modern, con­
temporary and artistic, and advocating a pre-industrial, tra­
ditionalist and romantic view with absolutist ideas about
beauty. Although Alexander’s tone and his theory have ob­
vious shortcomings, he has been successful in grasping some
of architecture’s essence. Reyner Banham explains:

“Looking back on the early days of his ‘pattern language’,
[Alexander] revealed one of its apparent failures to his bio­
grapher, Stephen Grabow:

“Bootleg copies of the pattern language were floating up
and down the west coast, and people would come and
show me the projects they had done, and I began to be
more and more amazed that, although it worked, all
these projects looked like any other buildings of our time
(…) still belonged perfectly within the canons of mid-
century architecture.”

Now, if one hoped that the pattern language would be a rev­
olutionary way of designing buildings, a new paradigm
in architecture comparable with the Copernican revolution
in cosmology, then clearly the project had failed and fur­
ther research was indeed needed. But, in another light, the
failure of the pattern language to change the nature of
architectural design could be seen as something of a
triumph: an unwitting first approximation description of
what architects actually do when they do architecture.

Pattern Language

16

(…) Such patterns – perhaps even a finite set of patterns –
and their imperatives seem to be shared by all architects.
… This is not to say that Alexander’s accidental revelation
exhausts the topic, far from it; for a start, it is still much
too crude to explain anything really subtle. Being cast in a
prescriptive, rather than a descriptive, format, it avoids
such questions as how such patterns are formed, and where,
and cannot support the kind of anthropological investiga­
tion that has revealed the workings of other secret cultures
to us in the past.” RB1990

Program � NE2010

“Program has come to mean any prearranged information
that guides subsequent behavior, as in, for example: formal
proceedings (1837), political platforms (1895), broadcast
presentations (1923), electronic signals (1935), computer
instructions (1945), educational procedures (1950), and
training (1963).”

Programming � Mars

Evolutionary Stable Concepts
and Strategies
A Short History of Making Machines Work

In a period of roughly sixty years, from military-funded main­
frames with privileged access to the personal computer of
today, the concepts that sprung out from the Universal
Machine have seen great evolution. Some have failed, while
others have become stable concepts within the field. In game
theory, a strategy adopted by a population of players cannot
be invaded by any alternative strategy that is initially rare –
this kind of strategy is denoted as evolutionary stable. Bor­
rowing from this, here we consider ourselves with the evo­
lutionary stable concepts and strategies in computing, where
the ‘players’ are the computer boys, and the concepts and
strategies they adhere to constitute their culture.

Any particular computer’s spectrum of usefulness is lim­
ited by its performance. In the earliest computers, every bit
(one or zero) had to be entered, one at a time, on rows of
mechanical switches or by jumper wires on plug boards in
order to make them perform a specific task. It would take
ages to write even the simplest of programs. How to auto­
mate these repetitive tasks was an obsession for program­
mers from the very start of software development. Often, the
automatization would occur by writing programs which sim­
ulated commonly repeating patterns found in a variety of
tasks. However, one pays a price for bringing in programming
expressiveness and abstractions that are more understand­
able to humans than machine code. The computer has to
do the extra work of converting lines of code written in
programming language into machine-executable sequences
of bits. So in order to write in code, a language that is more
accessible for humans than 01001001110101, one has to
sacrifice machine performance – an abstraction penalty, as
programmers call it.

In 1952 Grace Hopper, a pioneer in the field of computer
science, and her team developed a system called the ‘A-0
Compiler’ which could translate one line of code written
by a programmer into several machine instructions (bits).
The compiler was invented to improve the productivity of
programmers by letting them express their solutions in more
human-readable language: programming language. It took
five more years for hardware to catch up and become fast
enough for that process to be efficient. In April 1957, after
two and a half years of work, a team of a dozen programmers
led by John Backus released a programming language called
FORTRAN (IBM Mathematical Formula Translating System)
– and subsequently became a huge success. General Motors
estimated that the productivity of programmers had been in­
creased by a factor somewhere between 5 and 10, and that,
even taking into account the extra time the machine needed
to run the compiler program, the overall cost of programming
was reduced by a factor of 2.5. MCK2003

Grace Hopper’s team didn’t sit silently. A couple years
later, in 1959, together with other researchers from private
industry, universities, and government, they created a commit­
tee responsible for what would become one of the most suc­
cessful programming languages of all time: COBOL (COmmon
Business-Oriented Language). While FORTRAN became the
programming language of choice for science and mathema­
tics, COBOL mainly worked for business and administration.

During the fifties a number of research activities estab­
lished a basic suite of programs and terminology. In other
words, terms such as programming language, compiler, util­
ity, and mathematical subroutine became stable concepts.
This was also the period in which the organizational model
of how the proposed technology was to be developed was
established – a stable strategy, one could say.

This model was one of cooperative association, where
skill and knowledge were being shared among a group of
developers in a forum-like setting.

But it was not solely developers who were advancing the
field. In November 1952 the Digital Computer Association
was founded, an owner- and user-group of IBM 701s. They
often held informal meetings, one outcome of which became
PACT, a new programming system that was considerably bet­
ter than anything IBM was offering at the time. Next, the
users of the following IBM model, the 704, founded SHARE.
Their organizational model – distributed development of a
library of programs, cooperation, informal communication,
and discussion groups – remains the preeminent way for
computer users to interact with one another to the present
day; furthermore it has served as inspiration for hobbyists of
the Homebrew Computer Club in the 1970s, as well as the
Free software movement since the 1980s. The SHARE user
group developed the world’s first operating system: a program
which lets other programs run by taking care of the common
management tasks of hardware resources. The operating
system would then take over a role that was once fulfilled by
bare hardware. From that point on most software applications
were developed to run on top of an operating system, instead
of on bare hardware. Importantly, this was the first develop­
mental step in making the machine increasingly virtual.

It didn’t take too long after that – 1967, to be exact – for
hardware performance to improve enough to implement an
operating system with two components: Control Program

Pattern Language – Programming

17

(CP) and Console Monitor System (CMS). CP first creates a
virtual machine environment in which a standalone main­
frame computer (IBM System/360) is simulated. On top of
that simulated computer, a lightweight, single-user operating
system could be run – the Console Monitor System (CMS).
The CP/CMS made it possible to virtually divide a large main­
frame into smaller mainframe computers each of which could
then be independently and simultaneously used (known as
time-sharing). So the very same hardware (IBM System/360/67)
on which software is running is simulated in as many virtual
instances as computational power would allow.

While computational power was constantly increasing,
the physical space it required was steadily decreas-
ing. Room-sized mainframes were shrinking into mini-
computers that could fit beneath a desk. With its small size,
its keyboard as a handy input device, a feeling of individual
usability through time-sharing access, and the sensation of
interactivity, the mini-computer was becoming much easier
to use. It opened up the imagination to the possibility of
giving the general public direct access to computers.

It was in the San Francisco Bay area during the late 1960s
and early 1970s that this idea found especially fertile ground.
The passionate idea arose that computers could become
vehicles of empowerment and freedom, of radical personal
and social transformation. These ideas were rapidly multi­
plying in the minds of those working in an area of just a few
blocks; situated here were the offices of Stewart Brand’s
Whole Earth Catalog, Douglas Engelbart’s Augmentation
Research Center (ARC), and the People’s Computer Com­
pany (later Homebrew Computer Club). FT2006

On December 9, 1968 Stewart Brand filmed Engelbart’s
the ‘mother of all demos’ to an audience of a thousand com­
puter professionals and amateurs. It showed an experimental
computer system in which mouse-keyboard-screen, video con­
ferencing, teleconferencing, email, hypertext, word proces­
sing, hypermedia, object addressing and dynamic file linking,
bootstrapping, and a collaborative real-time WYSIWYG editor
(WhatYouSeeIsWhatYouGet) were all introduced. In attend­
ance, as well, were two members of the Homebrew Computer
Club: Steve Wozniak and Steve Jobs.

Nine years later, heavily inspired by this ‘mother of all
demos,’ Wozniak and Jobs launched Apple II. This started
the real revolution of the personal computer. As a result, a
strange variety of the computer boy breed began to emerge
– one who could now work on his own, outside of the large,
centralized mainframes guarded over by institutions. Sure
enough, the personal computing movement garnered its own
heroes, or rather, antiheroes: hackers. A hack was defined
as “a project undertaken or a product built not solely to
fulfill some constructive goal, but with some wild pleasure
taken in mere involvement” SL1984.

The hackers would come from MIT Artificial Intelligence
Lab, Homebrew Computer Club and the ‘New Age’ scene
found at Whole Earth Catalog. From their keyboards and
screens they shared a common ethos, a ‘hacker ethic’ stating:

	-	� Access to computers – and anything which might
teach you something about the way the world works
– should be unlimited and total. Always yield to the
Hands-On Imperative! …

	-	 All information should be free …

	-	 Mistrust Authority
	-	 Promote Decentralization …
	-	� Hackers should be judged by their hacking, not bogus

criteria such as degrees, age, race, or position …
	-	 You can create art and beauty on a computer …
	-	 Computers can change your life for the better.
	 SL1984

This hands-on implementation of the idea that ‘all informa­
tion should be free’ confronted the very basis of many indus­
tries, and would continue to do so for decades to come. But
the hacker ethic is also today still very much present in the
corporate world of software development. Conventionally,
one of the criteria that establishes a profession is a formal­
ized procedure of obtaining a title. But innovative, creative
and excellent programmers may not hold even a program­
ming degree or perhaps have no formal education at all. Crit­
icizing any form of discipline of rigid formalism, knowledge
between hackers is transmitted, peer-to-peer, during gather­
ings at informal meetings (known as unconferences) or dur­
ing endless discussions in chatrooms that run on protocols
from the late 80s. Large software empires celebrate the myths
of their foundations by young geniuses who dropped out of
university out of boredom. One of the most reputable cult soft­
ware companies today, GitHub, takes pride in the fact that half
of the programmers never obtained a degree. OM2011

The counter-culture revolution provides the computing
field with a powerful set of concepts and strategies that have
thus radicalized the cooperative gatherings of mainframe pro­
grammers into anarchic meetings of hackers and amateurs
with a mission to change the world with the help of PCs into
a self-organizing and information-sharing techno-utopia.

Returning to the issue of technology, the virtual machine,
a self-contained operating environment that behaves as if it
is a separate computer, had proved to be a very useful envi­
ronment for software development. With a virtual machine
one had an environment within which one could perfect a
programming language that could be closer to the principles
of the Universal Machine – an environment that ideally
would make programs completely platform-independent.

When the Macintosh, the first successful personal com­
puter with mouse and Graphical User Interface (GUI), was
released this shifted programmers’ priorities towards con­
cerns of education and ease of use. Until the late 1970s the
typical computer system had to be operated like a factory
assembly line: a batch processing system received input data
that typically had the format of sequential file on tape, that
file was processed by a program, the results were written
into another sequential file that in turn was again processed
by another program, and so on. The procedural model of com­
putation was not the most suitable for the GUI system. The
GUI is nothing like a factory; it operates more like a stimulus/
response machine. The system quietly waits for a stimulus,
or event, and when the event arrives the system springs to
life, processing the event before returning to a waiting state.
Based upon this idea Alan Kay and Dan Ingalls developed
the Smalltalk programming language at Xerox PARC in the
late seventies and early eighties. Smalltalk was conceptual­
ized as an object-oriented language that would provide an
ultimate stimulus/response human-computer symbiosis. In
the world of Smalltalk everything is an object. Smalltalk

Programming

18

objects are in a certain state of being which can be queried
or changed by messages from other objects or by the object
itself. While the Smalltalk virtual machine is running all of
the objects, each object can observe and modify its own (as
well as the overall) structure and behavior (of all the other
objects in the system). Smalltalk is a totally reflective system
which means that it can modify its own structure and behav­
ior while it is running. smalltalk := ‘a lot of small
talks’ Got it? Beautiful. SF2006

Together with LISP, Smalltalk was trying to attain a state
of perfection within its own universe – its own self-referential
system. It was the beauty of reinventing the whole history of
computing within the boundaries of one programming lan­
guage. But this beauty comes as a price: namely, that every
communication with the world outside that self-referential
universe makes the code messier, less pure. Even communi­
cation between LISP and Smalltalk – deemed two of the
most advanced and beautiful programming languages
amongst programmers – pollutes the purity of their
respective universes because one of them (Smalltalk)
doesn’t have a characteristic called homoiconicity (“code is
data, data is code…”). Homoiconicity is a property of some
programming languages in which the primary representation
of programs is also a data structure in a primitive type of the
language itself, which means you can write programs which
write programs that can modify themselves while running,
This operation is known to programmers as a meta-circular
evaluator. While this characteristic is an integral part of
LISP, Smalltalk can do this only through a workaround
without the homoiconic property thereby resulting in
contaminated universes. Beside the perfect universes LISP
and Smalltalk were designed to be, they were also parts
of very ambitious projects. LISP became the favored
programming language in Artificial Intelligence research,
while Smalltalk was inspired by Seymour Papert’s construc­
tionist learning theories and was to be the ultimate environ­
ment for learning programming.

Both projects failed. They failed in the world where pro­
gress is iterative, one small concept per cycle of understand­
ing; moreover, these languages were proprietary and not open
for the community for continued development. LISP and
Smalltalk failed at a time when personal computers were
neither sufficiently powerful, widely disseminated, or fully
interconnected. Although they are less in use today, the
beauty of LISP and Smalltalk have become influential touch­
stones in the world of programming. And maybe they will
one day come back with a bang!

The Internet naturally changed everything – except the
good old habit of running brand-new virtual machines on top
of other virtual machines or operating systems. Web brows­
ers started to become the most used, truly multiplatform
application. The object-oriented paradigm in programming
reached its peak with the release of the canonical book,
Design Patterns DP1994. In 1995 Sun Microsystems launched
the Java programming language and virtual machine; and
Java was also object-oriented. It promised to “Compile Once,
Run Everywhere”, meaning developers could expect the
Java Virtual Machine to run on all possible platforms – in
operating systems, in computer architectures, and inside
every web browser – making the Java programming language
truly platform independent.

Although Java failed to fulfill the promise of becoming a
major software development environment for desktop appli­
cation or small web apps, it definitively became the industry
standard in the field of server enterprise technologies and,
recently, became the heart of the most popular operating
system for smartphones – Google’s Android.

The Universal Machine – and the concept of the universe
being a cellular automaton – are beautiful ideas that have
already inspired a couple of generations of programmers.
Software developers cultivate an ecosystem in which these
ideas circulate, evolve, thrive, succeed and fail. It’s not sim­
ply technical implementation, it’s not only pure rationality:
it’s the implementation of ideas and of ideology. It’s the slo­
gans, narratives and metaphors that are able to quickly intro­
duce ideas of practicality, elegance, completeness, symmetry
and universality. It is a battle between the worlds of devel­
opers and scientists, and then winning over the interests of
investors (both corporate and governmental) which will make
a certain technology into an evolutionary stable concept. In
the world of software developers it’s about the transfer of
knowledge, the informal meetings, the methodologies, the
underground culture, and a sense of humor. In the world of
capital, it is about giving back power and control, and cre­
ating viable business models. In the world of science, it’s
about the universe. Above all, making the machine work is a
very complex game – but it’s worth it.

Programming Language � Gardner

Building Code v0.0
Architecture schools around the globe are jumping on the
parametric or computational design bandwagon, each having
their departments experimenting with digital fabrication, gen­
erative and evolutionary algorithms. They fetishize flexible
structures designed to move or change, and are enchanted by
the aesthetics of smooth-surfaced, amoeba-shaped buildings.
Of course, these are experimental projects that aim to explore
new technologies – both their potentials and their limitations.
But this engagement can be very akin to rabbits staring into
the headlights of the car of technological progress rushing
towards them, rendering them unable to move, completely
struck by the spectacle. Beyond the fetish and the fad there
is something missing: an involvement with the amalgam of
space, concept, system, materiality, the social and the political
at the heart of the architectural discipline. Architecture is a
practice of unraveling socio-physical Gordian knots.

The rapid increase of network technology in the past
decade has made these knots all the more interesting, as it
has provided radical new perspectives and handles on their
unraveling and re-assembling. What should not be under­
estimated, however, is that the methods for dealing with this
changing playing field are shifting from form-making to
code-making, from designing to programming, from a focus
on aesthetics to a focus on performance.

The most powerful and influential designs are those
which have become invisible. They have embedded them­
selves into our daily lives and are so omnipresent that we
use them unconsciously. Building Code is one of these

Programming – Programming Language

19

designs – or rather, systems – that has developed over time,
a system to which many authors contributed. As an exper­
iment let’s entertain the thought for a moment that what we
know as ‘Building Code’ is not the set of constraints and
safety regulations with which architects and engineers
comply on a daily basis in order to produce the built envi­
ronment. Instead let’s assume that Building Code is a pro­
gramming language that generates built environment –
generates form, interfaces between various systems, nego­
tiates between social interests, and allows for hacking,
tweaking and designing.

Imagine the building industry not as a conservative do­
main resilient to change, but rather more akin to the software
industry, buzzing with new ideas, start-ups and collabora­
tions. Perhaps it is difficult – and especially for those within
it – to imagine the building industry as such. It is not an
incomprehensible idea, but we would have to revisit the
very practices which produce the built environment.

It is already evident that the computer boys have an
interest in the built environment. They also have the best Trojan
horse imaginable to penetrate any discipline they wish: it’s the
computer sitting on your – and everyone’s – desk.

It is inevitable that the computer and the Building code,
the de facto algorithm of our built environment, will eventu­
ally meet. So for now let’s speculate upon the Building Code
as a powerful programming language for the built environment.

Building Code would deal with machine-readable, net­
worked laws and regulations. It would run on top of urban
operating systems. It would be informed by civic information
systems. SimCity would be seen as the communal touch­
stone for this image of the future – the future that those who
would dream of Building Code will dream about. It is the
dream of a city growing out of an algorithm, a city that gen­
erates processes that need to be managed, steered, guided,
and controlled. But Building Code would be no mere simu­
lation. Where SimCity is inhabited by Sims and viewed from
a distance, Building Code would have to be much more than
just the omni-perspective, it would also need to facilitate the
citizens’ perspective. It would not primarily be about making
an interface between man and machine; rather, its real chal­
lenge would be to interface between the two dominant kinds
of organization of human culture: the regulative – top-down
– and the generative – bottom-up.

Shearing Layers � WP2011

Shearing Layers is a concept that views buildings as a
set of components that evolve in different timescales.
Frank Duffy summarized this view: “Our basic argument is
that there isn’t any such thing as a building. A building
properly conceived is several layers of longevity of
built components”.

The concept is based on work in ecology and systems
theory. The idea is that there are processes in nature which
operate on different timescales and as a result there is little
or no exchange of energy/mass/information between them.
Stewart Brand transferred this intuition to buildings and
noticed that traditional buildings were able to adapt because
they allowed ‘slippage’ of layers; i.e., faster layers (services)
were not obstructed by slower ones (structure).

Shearing Layers leads to an architectural design principle
known as Pace-Layering which arranges the layers to allow
for maximum adaptability.

SimCity � WP2011

The game SimCity (1989) was originally developed by game
designer Will Wright. The inspiration for SimCity came from
a feature of the game Raid on Bungeling Bay that allowed
Wright to create his own maps during development. Wright
soon found he enjoyed creating maps more than playing the
actual game, and SimCity was born. While developing SimCity,
Wright cultivated a real love of the intricacies and theories
of urban planning. He acknowledges the influence of System
Dynamics developed by Jay Forrester whose book Urban
Dynamics laid the foundations for the simulation. In addi­
tion, Wright also was inspired by reading The Seventh Sally,
a short story by Stanisław Lem, in which an engineer en­
counters a deposed tyrant and creates a miniature city with
artificial citizens for the tyrant to oppress.

Sims, The� WP2011, WW2011

The Sims is a strategic life-simulation computer game first
released in 2000. The inner structure of the game is actually
an agent-based artificial life program. The presentation of
the game’s artificial intelligence is advanced and the Sims

Programming Language – Sims, The

Back cover of SimCity 200 box

20

respond to outside conditions by themselves, although often
the player/controller’s intervention is necessary to keep them
on the right track. The Sims technically has unlimited replay
value in that there is no way to win the game and the player
can play on indefinitely. It has been described as more like a
toy than a game. A neighborhood in The Sims consists of a
single screen displaying all playable houses.

In addition, the game includes a very advanced architec­
ture system. The game was originally designed as an archi­
tectural simulation alone inspired by Christopher Alexander’s
Pattern Language, with the Sims there only to evaluate the
houses, but during development it was decided that the Sims
were more interesting than originally anticipated and their
initially limited role in the game was developed further.

“The Sims really started out as an architectural game
– you were designing a house and then the people were
the scoring system. They came in and you were looking at
how happy they were and how efficiently your house met
their needs.”

Third Culture	� NC2007

“Even a ‘three cultures’ view of human knowledge and abil­
ity is a simple model. However, contrasting design with
the sciences and the humanities is a useful, if crude, way
of beginning to be more articulate about it. Education in
any of these ‘cultures’ entails the following three aspects:

	-	� the transmission of knowledge about a phenomenon
of study

	-	 a training in the appropriate methods of enquiry
	-	� an initiation into the belief systems and values

of the culture

If we contrast the sciences, the humanities, and design un­
der each aspect, we may become clearer of what we mean
by design, and what is particular to it.

	 The phenomenon of study in each culture is
	-	 in the sciences: the natural world
	-	 in the humanities: human experience
	-	 in design: the artificial world

	 The appropriate methods in each culture are
	-	� in the sciences: controlled experiment,

classification, analysis
	-	 in the humanities: analog, metaphor, evaluation
	-	 in design: modelling, pattern-formation, synthesis

	 The values of each culture are
	-	� in the sciences: objectivity, rationality, neutrality,

and a concern for ‘truth’
	-	� in the humanities: subjectivity, imagination,

commitment, and a concern for justice’
	-	� in design: practicality, ingenuity, empathy, and

a concern for ‘appropriateness’

In most cases, it is easier to contrast the sciences and the
humanities (e.g., objectivity versus subjectivity, experiment
versus analogy) than it is to identify the relevant com­

parable concepts in design. This is perhaps an indication
of the paucity of our language and concepts in the ‘third
culture’, rather than any acknowledgement that it does not
really exist in its own right. But we are certainly faced
with the problem of being more articulate about what
it means to be ‘designerly’ rather than to be ‘scientific’
or ‘artistic’.

Perhaps it would be better to regard the ‘third culture’
as technology rather than design. This ‘material culture’ of
design is, after all. the culture of the technologist – of the
designer, doer and maker. Technology involves a synthesis
of knowledge and skills from both the sciences and the
humanities, in the pursuit of practical tasks; it is not
simply ‘applied science’, but ‘the application of scientific
and other organised knowledge to practical tasks…’ (Cross.
et al, 1981). The ‘third culture’ has traditionally been iden­
tified with technology. For example, the philosopher A.N.
Whitehead (1932) suggested that: ‘There are three main
roads along which we can proceed with good hope of ad­
vancing towards the best balance of intellect and character:
these are the way of literary culture, the way of scientific
culture, the way of technical culture. No one of these methods
can be exclusively followed without grave loss of intellectual
activity and of character.’ ”

Two Cultures � CPS1990

“Two polar groups: at one pole we have the literary intel­
lectuals, who incidentally while no one was looking took to
referring to themselves as ‘intellectuals’ as though there
were no others. I remember G. H. Hardy once remarking to
me in mild puzzlement, some time in the 1930s: “Have you
noticed how the word ‘intellectual’ is used nowadays?
There seems to be a new definition which certainly doesn’t
include Rutherford or Eddington or Dirac or Adrian or me.
It does seem rather odd, don’t y’know?”. Literary intellec­
tuals at one pole-at the other scientists, and as the most
representative, the physical scientists. Between the two a
gulf of mutual incomprehension – sometimes (particularly
among the young) hostility and dislike, but most of all lack
of understanding. They have a curious distorted image of
each other. Their attitudes are so different that, even on the
level of emotion, they can’t find much common ground.

(…) The non-scientists have a rooted impression that
the scientists are shallowly optimistic, unaware of man’s
condition. On the other hand, the scientists believe that the
literary intellectuals are totally lacking in foresight, pecu­
liarly unconcerned with their brother men, in a deep sense
anti-intellectual, anxious to restrict both art and thought
to the existential moment. And so on. Anyone with a mild
talent for invective could produce plenty of this kind of
subterranean back-chat. On each side there is some of it
which is not entirely baseless. It is all destructive. Much
of it rests on misinterpretations which are dangerous.” –
C .P. Snow

This quote is from the 1959 Rede Lecture by British scientist
and novelist C. P. Snow. Its thesis was that the breakdown
of communication between the ‘two cultures’ of modern
society – the sciences and the humanities – was a major

Sims, The – Two Cultures

21

hindrance to solving the world’s problems. As a trained
scientist who was also a successful novelist, Snow was well
placed to articulate this thesis.

Unconference � WP2011

The term unconference, indicating a participant-driven meet­
ing, has been applied, or self-applied, to a participant-driven
meeting. The term unconference has been applied, or self-
applied, to a wide range of gatherings that try to avoid one or
more aspects of a conventional conference, such as high
fees, sponsored presentations, and top-down organization.
BarCamp, Foo Camp, Mashup Camp and Bloggercon are
examples of unconferences.

Universal Machine� MM2011

It must be understood that the idea of the universal machine
– or, more precisely, the idea of computation itself – is not
a mechanical device, not a computer and not a machine. It
is a (mathematical) model of a computation; it is Alan
Turing’s thought experiment given to all of us. It proposes a

theoretical device that manipulates symbols on an infinite
strip of tape according to a table of rules. It tells us that a
very simple device can solve any ‘reasonable’ problem in a
finite period of time (but perhaps not in our lifetime), and it
allows us to rationalize nature in computational models in
addition to the mathematical models that are currently dom­
inant in science.

The idea of a computable universe can be traced from
Leibniz to Konrad Zuse to Edward Fredkin and to Stephen
Wolfram, who claims that the universe may be a cellular
automata (another equivalent model of computation together
with: lambda calculus, combinatory logic, Markov algorithm,
register machine, etc.).

Urban Dynamics � WP2011, JF1969

Jay Forrester’s book Urban Dynamics (1969) models a city
as a set of nodes connected through feedback loops.

The nodes would be entities like ‘industry’, ‘worker
housing’, ‘premium housing’, ‘labor’, ‘underemployed’, ‘man­
agerial profession’. Urban Dynamics strongly influenced
game-designer Will Wright when he developed the city
simulation game SimCity which was released in 1989.

Two Cultures – Urban Dynamics

A diagram from Urban Dynamics (JF1969) depicting a part of Forrester’s Urban Model.
The major levels (rectangles) and rates (valve symbols) for the model of an urban area

22

Wright, Will � WP2011

Will Wright (1960) is an American video game designer and
co-founder of the game development company Maxis, now
part of Electronic Arts. In April 2009 he left Electronic Arts
to run ‘Stupid Fun Club’, an entertainment think tank in
which Wright and EA are principal shareholders.

The first computer game Wright designed was Raid on
Bungeling Bay in 1984 but it was SimCity that brought him to
prominence. The game was released by Maxis, a company
Wright formed with Jeff Braun, and he built upon the game’s
theme of computer simulation with numerous other titles
including SimEarth and SimAnt.

Wright’s greatest success to date came as the original
designer for the Sims games series which, as of 2009,
was the best-selling PC game in history. The game spawned
multiple sequels and expansions and Wright earned many
awards for his work. His latest work, Spore, was released in
September 2008 and features play based upon the model of
evolution and scientific advancement.

Zuse, Konrad � JS2011

Konrad Suze (1910-1995) not only built the first program­
mable computers (1935-1941) and devised the first higher-
level programming language (1945), but also was the first to
suggest (in 1967) that the entire universe is being computed
on a computer, possibly a cellular automaton. He referred to
this as ‘Rechnender Raum’ or Computing Space or Com­
puting Cosmos. Many years later similar ideas like digital
physics were also published, popularized and extended by
Edward Fredkin (1980s), Jürgen Schmidhuber (1990s), and
more recently Stephen Wolfram (2002).

Wright, Will – Zuse, Konrad

23

Sources

BLP2007 Barry B. LePatner, Broken
Building, Busted Budgets – How to Fix
America’s Trillion-Dollar Construction
Industry 	(The University of Chicago
Press, 2007)

CA1964 Christopher Alexander, Notes on
The Synthesis of Form (Harvard University
Press, 1964)

CA1977 Christopher Alexander, Sara
Ishikawa, Murray Silverstein, A Pattern
Language (Oxford University Press, 1977)

CA1996 Christopher Alexander, The
Origins of Pattern Theory the Future of
the Theory, And The Generation of a
Living World. http://www.patternlanguage.
com/archive/ieee/ieeetext.htm
(accessed 22 may)

CE1999 Charles M. Eastman, Building
Product Models: Computer Environments
Supporting Design and Construction.
(CRC Press, 1999)

CPS1990 C. P. Snow, The Two Cultures,
Leonardo, Vol. 23, No. 2-3, New
Foundations: Classroom Lessons in Art/
Science/ Technology for the 1990s
(The MIT Press, 1990) pp. 169-173

DP1994 Erich Gamma, Richard Helm,
Ralph Johnson, John Vlissides, Design
Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley, 1994)

DR2010 Douglas Rushkoff, Program
or be Programmed, Ten Commands for
a Digital Age (OR Books, 2010)

FG2010 Fabio Gironi, Science-Laden
Theory, Speculations I (2010)

FT2006 Fred Turner, From Counterculture
to Cyberculture – Stewart Brand, the
Whole Earth Network, and the Rise of
Digital Utopianism (University
of Chicago Press, 2006), page 106.

JF1969 Jay Forrester, Urban Dynamics
(Pegasus Communications, 1969)

JB1989 James Beniger, The Control
Revolution: Technological and Economic
Origins of the Information Society
(Harvard University Press, 1989)

JBIM2008 Journal of Building
Information Modeling (Spring 2008)

JL2011 John Law, Actor Network Theory
and Material-Semiotics, 25 April 2007,
heterogeneities.net (accessed May 22, 2011)

JS2011 Zuse’s Thesis: The Universe is a
Computer, http://www.idsia.ch/~juergen/
digitalphysics.html (accessed June 6, 2011)

KBWC1987 Using Pattern Languages
for Object-Oriented Programs –
Submitted to the OOPSLA-87 workshop
on the Specification and Design for
Object-Oriented Programming.

MW2011 Wolfram Mathworld, http://
mathworld.wolfram.com/CellularAutomaton.
html (accessed June 1, 2011)

MM1969 Marshall McLuhan The Playboy
Interview: Marshall McLuhan, Playboy
Magazine (March 1969)

MCK2003 Martin Campbell-Kelly, From
airline reservations to Sonic the Hedgehog:
a history of the software industry
(MIT Press, 2003)

NE2010 Nathan Ensmenger, The computer
boys take over: computers, programmers,
and the politics of technical expertise
(MIT Press, 2010)

NC2007 Nigel Cross, Designerly Ways
of Knowing (Birkhäuser, 2007)

OM2011 – Om Malik, What Do Don
Draper and GitHub Have In Common?,
http://gigaom.com/2011/04/07/what-do-don-
draper-and-github-have-in-common/
(accessed May 29, 2011)

RB1990 Reyner Banham, A Black Box,
the secret profession of architecture;
(New Statesman & Society 12 October 1990)

SG1983 Stephen Grabow, Christopher
Alexander, The Search for a New Paradigm
in Architecture (Oriel Press, 1983)

SL1984 Steven Levy, Hackers: Heroes of
the Computer Revolution (Doubleday, 1984)

SF2006 Stephen Fer, Event-Driven
Programming: Introduction, Tutorial,
History (2006)

WW2011 Will Wright interviewed by
William Wiles for IconEye http://www.
iconeye.com/index.php?option=com_conte
nt&view=article&id=3068:will-wright-
interview (Accessed May 30, 2011)

WP2011 Wikipedia, http://wikipedia.org
(accessed May & June, 2011)

WWW2011 WikiWikiWeb, http://c2.com/
cgi/wiki (accessed May & June 2011)

Acknowledgement
A special thanks to Steven Chodoriwsky
and Dubravka Sekulić

Design by Oscar David
Quijano Robayo

Tracing Concepts is produced by
Marcell Mars and Edwin Gardner
and supported by the Jan van Eyck
Academie.

The programme of the Jan van Eyck
Academie is funded by the Ministry
of Education, Culture and Science,
the province of Limburg and the City
of Maastricht.

www.janvaneyck.nl

24

