
218

 Introduction

 Object-orientation names an approach to computing that views programs in terms of the
interactions between programmatically defined objects (computational objects) rather than as
an organized sequence of tasks incorporated in a strictly defined ordering of routines and
subroutines. Objects, in object-orientation, are groupings of data and the methods that can be
executed on that data, or stateful abstractions . In the calculus of object-oriented programming,
anything can be a computational object, and anything to be computed must be a computational
object, or must be a property of a computational object. Object-oriented programming is typi-
cally distinguished from earlier procedural (such as C) and functional (such as Lisp) program-
ming, declarative programming (Prolog) and, currently, component-based programming. Some
of today’s most widely used programming languages (Java, C#) have a decidedly object-oriented
flavour, and object-orientation is deeply sedimented in both the thinking of many computer
scientists and software engineers and in the multiple, digital-material strata of contemporary
social relations.

 This chapter explores some aspects of the turn towards objects in the world of computer
programming (a generic term that incorporates elements of both computer science and software
engineering). Developing a consideration of computational objects that goes beyond their
techno scientific enframing in representational terms (the idea that computational objects are
models of real-world entities) the chapter asks more broadly what powers computational objects
have, what effects they produce and, more importantly perhaps, how they produce them. Our
aim is to make perceptible the territorializing powers of computational objects, as they work to
model and remodel relations, processes and practices in a paradoxically abstract material space.
Such powers might be best understood in terms of a process of ontological modelling . Computational
objects are susceptible of a notation that frames them as epistemic operators , the technoscientific
incarnation of concepts in a formal-logical calculus. However, framing them in these terms by
no means exhausts their pragmatic virtues, their material efficacy, which bears more enduringly
and obscurely on the new forms of existence that they bring into play, shaping and reshaping
users, their dispositions and habits.

 19

 The unknown objects
of object-orientation

 Matthew Fuller and Andrew Goffey

The unknown objects of object-orientation

219

 Whereas in its broad and varied service as a metaphor for cognitive processes (witness the
ongoing search for artificial intelligence), on the one hand, and as a synecdoche of a mechanized,
dehumanized and alienated industrial society on the other, the formal qualities of computation
might appear divorced from the rich material textures of culture and a concern with the
ontological dimension of ‘things’, computation also has very efficacious and productive traction
‘in the real’. The formal calculus of signs that permits the effective resolution of a problem of
computation is at the same time a matter of the successful creation, through programming, of a
more or less stable set of material processes, within, but also without, the casing of the machine.
We refer to calculus of signs as ‘abstract materiality’, because computational objects are not really
immaterial; their operations unfold on a material plane, a plane of relative ‘consistency’ composed
of specific forms of agency that are abstracted from other kinds of material processes and com-
posed in a sometimes fragile ecology of relations. At the same time, computational objects remain
in contact with the material processes from which they are abstracted but only through ‘redefining’
or pacifying them, making them invisible and/or problematic.

 To take up the question of the production of this abstract materiality and its unsettling
qualities, we briefly consider object-oriented programming and its transformative effects,
addressing object-orientation as a sociotechnical practice. The argument develops in a number
of stages. A first section considers several key features of object-oriented programming through
a consideration of its earliest avatars, and highlights an ambiguity in understandings of program-
ming as a kind of modelling, the implications of which we then start to unpack in the second
section. Here, we seek to address such computational objects in non-representational terms as a
set of processes capturing agency, allowing us to reframe programming in sociotechnical terms
that do not fall into the trap of representation. We then turn our attention to a more direct con-
sideration of the efficacy of programming as a constructive process of modelling with objects.
Of particular importance is the question of how typical programming constructs, such as design
patterns, operate to stabilize patterns of relations between objects and their environments. In a
final section, we explore in more detail some of the ways in which the programming practices
that develop out of the use of computational objects are generative of obscurity, unknowability
and ignorance. Two main arguments are developed: (1) computational objects have historically
been understood in technoscientific terms as a set of formal-material ‘concepts’, and yet (2) in
the sociotechnical qualities of their development and deployment they concomitantly operate as
a limit to and as limiting of knowledge. In this respect, computational objects form a critical relay
in the generation of relations of power, which thus become something that is exercised in the
supple fabric of materiality that they generate.

 Modelling objects

 Object-oriented programming comes into the world through the development of new forms
of programming language. Such languages are intermediating grammars for writing sets of
statements (the algorithms and data structures) that get translated or compiled into machine-
coded instructions that can then be executed on a computer. Every programming language
forms a carefully and precisely constructed set of protocols established in view of historically,
technically and organizationally specific problems. This is as true in the case of object-oriented
languages as it is with other kinds of programming language. For instance, the simula language,
developed in Norway in the 1960s, aimed at providing a means to both describe (that is, pro-
gram) a flow of work, and to simulate it, with the aim of bringing the capacity to design work
systems (despite their relative technical complexity) into the purview of those who made up a
workplace. In this respect, the project had much in common with other contemporaneous

Matthew Fuller and Andrew Goffey

220

developments in higher-level computing languages and database management systems, which
aimed to bring technical processes closer to non-specialist understanding, and developed out of
a tradition that would become known as ‘participatory design’ (Bødker et al. 2004). The first ver-
sion of simula , simula 1 , was not developed with a view to establishing object-orientation as a
new format for programming languages per se but rather as a way of modelling the operation of
complex systems. Although it was not greatly popular as a general programming language,
 simula ’s technical innovation of providing for structured blocks of code (called classes), which
would eventually be instantiated as objects, was taken up fifteen years later in the development
of C++, a language developed in part to deal with running UNIX-based computational
processes across networks (Stroustrop n.d.), which later became a driver in the development of
another object-oriented programming language, Java.

 The crucial feature of object-oriented programming as a way of modelling entities in soft-
ware becomes more obvious in another precursor of today’s programming languages. In the
language Smalltalk, developed under the leadership of Alan Kay at Xerox PARC, in the 1970s
and 1980s, it is the relations between things that become central (Kay 1998). Objects are generated
as instances of ideal types or classes, but their actual behaviour is something that arises from the
messages passed to them from other objects, and it is the messages (or events; the distinction is
relatively unimportant from the computational point of view) that are actually of most impor-
tance. This is important because although the effective order in which computational messages/
events are executed is essentially linear, the order itself is not rigidly prescribed and there is an
overall sense of polyphony of events and entities in dynamic relation. This represents a significant
shift in relation to the extreme rigidity and inflexibility of the user interfaces that were available
on the mainframe computers of the time. An approach organized around computational objects
allows for a flexible relationship between the user and the machine.

 These early developments in object-oriented programming languages both point towards and
beyond the epistemic framing of computational objects and the ambivalence that computer
programming as a kind of modelling incarnates. Kay (1998), for example, argues that ‘… object-
oriented design is a successful attempt to qualitatively improve the efficiency of modelling the
ever more complex dynamic systems and user relationships made possible by the silicon explo-
sion’. However, if that were the case, modelling could not be understood as a simple representa-
tion. This is because when the complex dynamic systems and user relationships that object-oriented
design models are those that are made possible by technology, it is no longer a matter of repre-
senting the world through artefacts but of creating models of non-preexistent things. Yet, the
framing of computational objects in epistemological terms as representative concepts is wide-
spread. Kay (1993) himself suggests: ‘everything we can describe can be represented by the recur-
sive composition of a single kind of behavioural building block that hides its combination of
state and process inside itself and can be dealt with only through the exchange of messages’. On
this count, a computer program written in an object-oriented programming language develops
a kind of intensional logic, in the sense that the objects that the program comprises each have an
internal conceptual structure that determines its relationship to what it ‘refers’ to. Computational
objects are, in this sense, concepts that offer a mechanistic materialized representation of objects
generated through a kind of logical calculus. In this respect, we can consider that computational
objects have an ‘analytic’ function, embodying an understanding of the entities that they model.
However, given that the ‘silicon explosion’ makes possible new kinds of system and new kinds of
relations, a computational object must be seen as having a ‘synthetic’ function that adds to and is
in excess of the reality it might otherwise be thought to model. It is, we would suggest, this
second, synthetic aspect of computational objects (in which modelling is not so much modelling
 of objects, but modelling with objects) that needs to be understood more precisely.

The unknown objects of object-orientation

221

 Abstraction, errors and the capture of agency

 It is often argued that with the development of object-oriented programming, a new era of
 interaction between humans and machines was made possible. There is some truth in this, not least
because of the way that the architecture of relations between objects obviates having a program
structure in which the order of actions is rigidly prescribed. However, the notion of interaction,
as descriptive of a reciprocal relation between two independent entities, is sometimes insufficient
when trying to understand the historical genesis and the peculiar entanglement of computers
and humans. Indeed, given what we have said about modelling, it would be more appropriate to
consider these relations in terms of a series of forms of the abstractive creation, capture and codi-
fication of agency: a click of the mouse, a tap of the key, data input, affective investments and so
on. By referring to the creation and capture of agency we seek to underline two things:
(1) computational objects do not simply or straightforwardly build on preformed capacities or
abilities, they generate new kinds of agency, which may be similar to what went before but are
nevertheless different (for example, a typewriter, a keyboard and a keypad capture the agency of
fingers in subtly different ways); (2) the agency that is created is part of an asymmetric relation
between human and computer, a kind of cultivation or inculcation of a mechanic habitus , a set of
dispositions that is inseparable from the technologies that codify it and give it expression
(Pickering 1995). It would be too long a diversion to examine in detail how and why this asym-
metry exists, but such asymmetry is crucial to developing an appropriately concrete understand-
ing of the sociotechnical quality of contemporary relations of power.

 Part of the rhetoric of interactive computing insists on the ‘intelligent’, ‘responsive’ nature of
computational devices, but this obscures the dynamics of software development and the partial,
additive quality of the development of interactive possibilities. Computers are not very good at
 repairing interactions. They tend, in use, to be considerably more intransigent than their users,
bluntly refusing to save a file, open a web page or even closing down altogether. The everyday
experience of the development of human–computer interactions has been one in which humans
have been obliged to spend considerable amounts of time learning to think more like computers,
developing workarounds, negotiating with and adapting to computational prescription. In this
sense, ‘bugs’ have played an important role in setting up the asymmetric relations between
humans and machines. Relatively speaking, humans adapt to (or at least learn not to notice) the
stupidities of the computer more quickly than the computer adapts to humans, in part simply
because the time between software releases (with bug fixes) is greater than that between indi-
vidual interactions with an application. This asymmetry suggests that there is something of a
strategic value to the stupidity of machines, a stupidity that gives machines a crucial role and a
dual meaning in modelling the user with which they interact.

 In any case, and pace Kay, a computational object is a partial object: the properties and methods
that define it are a necessarily selective and creative abstraction of particular capacities from the
thing it models and which specify the ways with which it can be interacted. For example, the
objects (text boxes, lists, hyperlinks and so on) that populate a web page define more or less
exactly what a user can do. This is a function not just of how the site has been designed and built
but, importantly, of a range of previously defined sets of coded functionality. (A website is depen-
dent on a browser, which is in turn dependent on the operating system of the machine on which
it operates). There is a history to each of these objects and their development, which means that
the parameters for interaction are determined by a series of more or less successful abstractions of
a peculiarly composite, multilayered and stratified kind.

 However, it is important to note here that abstraction is a contingent, real , process. The taken-
for-granted ways in which humans now interact with machines are the product of material

Matthew Fuller and Andrew Goffey

222

arrangements that do not always apply. More pointedly, these real abstractions are concretely and
endlessly reactualized by the interactions between and with the computational. Such processes
of abstraction might be better understood as forms of deterritorialization , in Deleuze and Guattari’s
(1987) sense. Considered in these terms, the capture of agency links the formal structuring of
computational objects to the broader processes of which they are a part, allowing us in turn:
(1) to specify more precisely that the formal structuring and composition of objects has a vector-
like quality; and (2) to attend more directly to the correlative feature of reterritorialization.
Abstracting from , in this sense of a real process, is equally an abstracting to : an abstraction is only
effective on condition that it forms part of another broader set of relations, in which and by
which it can be stabilized and fortified.

 We now turn to a more direct consideration of these issues.

 Stabilizing the environment

 In theory, anything that can be computed in one programming language can also be computed
in another: this is one of the lessons of Turing’s conception of the universal machine. What that
means more prosaically for the case in hand is that an object-oriented programming language
provides a set of design constraints on the engineers working with it, favouring specific kinds of
programmatic constructs, particular ways of addressing technical problems, over others. The exis-
tence of such design constraints is particularly important when trying to consider the dynamics
governing the material texture of software culture. The question then becomes this: given the
way in which the asymmetries in human–machine relations enable the capture of agency, is there
a way in which the propagation and extension of those relations can be accounted for? Can
something in the practices of working with computational objects be uncovered that might help
us understand this dynamic?

 One feature that is associated in particular with object-oriented programming is the way that
it is argued to facilitate the reuse of code. Rather than writing the same or similar sets of code over
and over again for different programs, it saves time and effort to be able to write the code once
and reuse it in different programs. Reusability is not unique to object-oriented programming; the
routinization and automation of computational tasks implies it as a basic operating feature of
software per se. But object-oriented programming favours the reusability of code for computa-
tionally abstract kinds of entity and operation; in other words, for entities and operations that are
more directly referent to the interfacing of the computer to the world outside. Class libraries are
typical of this. Although not unique to object-oriented programming languages, they provide sets
of objects, with predefined sets of methods, properties and so on, that find broad use in program-
ming situations: in the Java programming language, for example, the Java.io library contains a ‘ File ’
object, which a programmer uses when a program needs to carry out standard operations on a
file external to the program (reading data from it, writing to it and so on). Code reuse in general
suggests that the contexts in which it is situated, the purposes to which it is put, the interactions
to which it gives rise, and the behaviours it calls forth, are relatively regularized and stable.
In other words, it suggests that typical forms of software have found their ecological niches .

 The possibility of reusability must thus be understood from two angles simultaneously: (1) as
something given specific affordance within the structure of an object-oriented language; and
(2) as something that finds in its context the opportunity to take root, to gain stability, to acquire
a territory. The simple dynamics of adaptation or habituation, we have just suggested, might
account for the latter. The former can be located directly in the technical features of object-
oriented programming languages. We address reusability first before moving on to a broader
consideration of stabilizing practices.

The unknown objects of object-orientation

223

 One of the main features of object-oriented programming, distinguishing it from others, is
the use of inheritance . A computational object in the object-oriented sense is an instantiation of a
 class , a programmatically defined construct endowed with specific properties and methods
enabling it to accomplish specific tasks. These properties and methods are creative abstractions.
Inheritance is a feature that is often (albeit erroneously) characterized semantically as denoting a
relationship: a Persian or a Siamese is a cat, a savings account is an account. The relation of
inheritance defines a hierarchy of objects, often referred to in terms of classes and subclasses.
How that hierarchy should be understood is itself a complex question but crucially the relation
of inheritance allows programmers to build on existing computational objects with relatively
well-known behaviour by extending that behaviour with the addition of new methods and
properties.

 The relation of inheritance implies a situation in which objects extend and expand their ter-
ritory through small variations, incremental additions that confirm rather than disrupt expecta-
tions about how objects should behave. To put it crudely, it is easier to inherit and extend (to
 assume that small differences are deviations from a broadly accepted norm) than it is to consider
that such variations might be indices of a different situation, a different world. Modelling behav-
iour through the technical constraint of inheritance offers a discrete way of capturing practices
and relations in software through a logic of imitation (cf. Tarde in Deleuze and Guattari 1987).

 Design patterns extend this logic of code reusability to the situation of a more complex set
of algorithms designed to address a broader problem. A design pattern in software provides a
reusable solution to the problem posed by a computational context, and although such a pattern
is obviously a technical entity, it is also a partial translation of a problem that will not originally
be computational in nature (Gamma et al. 1994 ; Shalloway and Trott 2005). This is what makes
it interesting, because its very existence is evidence of the increasing complexity and shifting
social relations that computational abstractions are required to address. A business information
system that is designed to keep track of stock, for example, based on a ‘just-in-time’ model of
stock control creates design problems entailing a different set of object-relations than in a system
based on more traditional models of stock control (such as amassing large amounts of uniform
items at lower unit cost) because the system needs to do different things. Design patterns imply
varied sets of relations between software and users, perhaps entailing an automated set of links
between one company and companies further up the supply chain. The latter might thus reason-
ably be expected to entail online ‘business-to-business’ communication on a ‘multitier’ model,
whereas the former might adopt a more traditional ‘client–server’ relationship. Although a user
might experience these as similar, the relations between the objects that make them up are con-
siderably different.

 In one respect, such patterns respond to the core difficulty of object-oriented software devel-
opment: the analytic decomposition of what a program has to do into a set of objects with well-
defined properties. Indeed, that is traditionally how design patterns are understood by software
engineers. Their very existence is interesting not just because they provide evidence of the grow-
ing complexity of the computational environment, but also of its stability and regularity, qualities
that such patterns in turn produce. Such material presuppositions are not normally considered
in discussions of object-oriented programming (or indeed any programming at all), where the
self-evident value and thinking in object-oriented terms is generally shored up in textbooks by
means of analogy with more commonsensically object-like objects: tables, chairs, papers, books,
and so on (Goldsack and Kent 1996). Yet, the stability of an environment is absolutely critical in
enabling computational objects to exert their powers effectively (Stengers 2011). However, the
pedagogical emphasis on the relatively simple does not do justice to the processes at work in
the historical development of software culture. Perhaps, it would be more appropriate to view

Matthew Fuller and Andrew Goffey

224

the stable, simple and self-evidently given quality of computational objects as the outcome of a
complex sociotechnical genesis.

 Encapsulation, exceptions and unknowability

 Thus far we have sought to address material aspects of the complex processes of abstraction that
are at work in object-oriented programming. We need nevertheless to insist that computational
objects do have a cognitive role. This role is fulfilled primarily through the, often blind and grop-
ing, ways in which such objects give shape to non-computational processes.

 The world in which computational objects operate is one to which they relate through pre-
cisely defined contractual interfaces that specify the interplay between their private inner work-
ings and public façades. One does not interact with a machine any old how but with a latitude
for freedom that is precisely, programmatically, specified. Along with the exception construct,
 encapsulation is often held to be one of the primary features that object-oriented programming
enforces, a strict demarcation of inside and outside that is only bridged through the careful
design of interfaces, making ‘not-knowing’ into a key design principle. The term ‘encapsulation’
refers to the way in which object-oriented programming languages facilitate the hiding of both
the data that describe the state of the objects that make up a program, and the details of the
operations that the object performs. 1 In order to access or modify the data descriptive of the state
of an object, one typically uses a ‘get’ or a ‘set’ ‘method’, rendering the nature of the interaction
being accomplished explicitly visible. Encapsulation offers a variant (at the level of the formal
constructs of a programming language) of a more general principle observed by programmers,
which is that when writing an interface to some element of a program, one should always hide
the ‘implementation details’, so that users do not know about and are not tempted to manipulate
data critical to its functioning.

 In addition to promoting code reuse, encapsulation minimizes the risk of errors that might
be created by incompetent programmers getting access to and manipulating data that might lead
the object to behave in unexpected ways. A key maxim for programmers is that one should
always code ‘defensively’, always write ‘secure’ code, and even accept that input (at whatever scale
one wishes to define this) is always ‘evil’ (Howard and LeBlanc 2003). A highly regulated inter-
play between the inner workings and the outer functioning of objects makes it possible to ensure
the stable operations of software. Arguably, this is part of a historical tendency and proprietary
trend to distance users from the inner workings of machines, effecting a complex sociotechnical
knot of intellectual property, risk management and the division of labour, the outcome of which
is to restrict the programmer’s ability to gain access to lower levels of operation (whilst theoreti-
cally making it easier to write code).

 As a principle and as a technical constraint, encapsulation and the hiding of data at the very
least give shape to a technicoeconomic hierarchy in which the producers of programming
languages can control the direction of innovation and change by promoting ‘lock-in’ and struc-
turing a division of work that encourages programmers to use proprietary class libraries rather
than take the time to develop their own. By facilitating a particular (and now global) division
of labour, the development of new forms of knowing through machines is in turn inhibited
through the promotion of technically constrained, normative assumptions about what program-
ming should be. Indeed, a more finely grained division of the work of software development
is made possible when the system or application to be built can be divided into discrete ‘chunks’.
Each class or class library (from which objects are derived) may be produced by a different
programmer or group of programmers with the details of the operations of the classes safely
ignored by other teams working on the project. 2

The unknown objects of object-orientation

225

 Finally, let us look briefly at exception handling . Where encapsulation works to create stabilized
abstractions by closely regulating the interplay between the inside and the outside of computa-
tional objects, defining what objects can know of one another, exception handling shapes the
way in which computational objects respond to anything that exceeds their expectations.
A program and the objects that make it up are only ever operative within a specified set of
parameters, defining the relations it can have with its environment and embodying assumptions
that are made about what the program should expect to encounter within it. If those assump-
tions are not met (your browser is missing a plug-in, say, or you deleted a vital.dll file when
removing an unwanted application), the program does not operate as expected. Exception
 handling provides a way to ensure that the flow of control through a program can be maintained
despite the failure to fulfil expectations, ensuring that an application or system need not crash
simply because some unforeseen problem has occurred. And in object-oriented programming,
an exception is an object like any other (one can create subtypes of it, extend its functionality
and so on 3), suggesting it too facilitates the logic of imitation.

 Technically, the rationale for exceptions is well understood and their treatment as objects,
with everything that entails, facilitates their programmatic handling. What is less well understood,
however, is the way that practices of exception handling give material shape to the kinds of rela-
tions that computational objects have with their outside. From the point of view of computa-
tional objects, the world in general is a vast and largely unknown ensemble of events, to which
such objects can only have access under highly restricted conditions, but also in which those
objects only have a limited range of interest, the role of the programmer being to specify this
range of pertinences as precisely as possible. This is something that can be achieved in many ways:
the practice of ‘validating’ user input, for example (by checking that the structure of that input
conforms to some previously specified ‘regular expression’, say), ensures that the computational
objects processing that input do not encounter any surprises (such as a date entered in the wrong
format).

 Because the use of exception handling in a program makes it possible for computational
objects to go about their work without too much disruption, and because their status as compu-
tational objects in their own right allows them to be programmatically worked with in the same
way as other objects, the need to pay closer attention to what causes the problems giving rise to
the exceptions in the first place (systems analysis and design decisions, the framing of the speci-
fication of the software and so on) is minimized. The common practice of programmatically
‘writing’ information about the problems that give rise to exceptions to a log file (because this
enables software developers to identify difficulties in program design, the routine causes of prob-
lems and so on) mitigates such ignorance, to a point. However, it must be understood that the
information thus derived presumes the terms in which the software defined the problem in the
first place. As a result, one can only ever make conjectures about the underlying causes of that
problem (a log file on a web application that repeatedly logs information indicating that a data-
base server at another location is not responding cannot tell us if the server has been switched
off or broken down, for example), leaving the commonplace of the information technology
helpdesk (for users having problems with software, ‘read the fucking manual’) as evidence of the
structure of judgement this situation yields.

 The point is that because exception handling facilitates the smooth running of software, it not
only helps to stabilize the software itself but also the programming practices that gave rise to it.
Exceptions work to preserve the framing of technical problems as technical problems, allowing
errors to be typically defined as problems that the user creates through not understanding the
software (rather than the other way round). In this way, exception handling obviates developing
a closer consideration of the relationship between computational objects and their environment

Matthew Fuller and Andrew Goffey

226

or problematizing the framing of programming practices. Although this can allow software to
gain a certain routinized unobtrusiveness (Kitchin and Dodge 2011), this ‘grey’ quality makes it
difficult to obtain a better sense of the differences (Stengers 2006) that its abstract materiality
produces.

 Conclusion: ontological modelling and the matter of the unknown

 In the course of this chapter, we have endeavoured to sketch out some reasons for developing an
account of object-oriented programming that considers computation not from an epistemic but
from an ontological point of view. It is true that there is historically well-sedimented association
between computation and discourses about knowledge, that computer programming seeks to
model reality, that there are links between programming languages and formal logic, and so on.
But this is not enough to make understanding computer programming as a science in the way
that say physics, chemistry, or even the social sciences (sometimes) are, a legitimate move. On the
contrary, we have tried to suggest that the abstractive capture and manipulation of agency
through software in the calculus of computational objects is better understood as an ensemble of
techniques engaged in a practice of ontological modelling . In other words, computer programming
involves a creative working with the properties, capacities and tendencies offered to it by its
environment that is obscurely productive of new kinds of entities, about which it may know very
little. Such entities make up the fabric of ‘abstract materiality’, a term that gestures towards the
consistency and autonomy of the zones or territories in which computational objects interface
with other kinds of entity.

 Object-orientation might be approached from many points of view: the angle taken here is
one that insists, in a manner analogous to Michel Foucault discussing power, that the problem is
not that the sociotechnical practice of programming does not know what it is doing. Rather the
techniques and technologies of object-orientation produce a situation in which one does not
know what one does does.

 Notes

 1 Not all computer scientists or software engineers agree that encapsulation is the same thing as informa-
tion or data hiding. The details of the disagreement need not concern us here.

 2 The contemporary trend towards the globalization of software development, with its delocalizing metrics
for productivity, would not have acquired its present levels of intensity without the chunking of work
that encapsulation facilitates. The global division of programming labour is discussed in Mockus and
Weiss 2001 and Greenspan 2005 .

 3 One might, for example, refer to Microsoft’s documentation of the System.Exception class for details of the
complex structure of inheritance relations, the properties and methods of exception objects in the C#
language, its subclasses and so on.

 Bibliography

 Bødker K. , Kensing F. and Simonsen , J. (2004) Participatory IT Design, Designing for Business and Workplace
Realities , Cambridge, MA : MIT Press .

 Deleuze G. and Guattari F. (1987) A Thousand Plateaus , trans. Brian Massumi , Minneapolis : University of
Minnesota Press, p . 193.

 Gamma E. , Helm R. , Johnson R. and Vlissides J. (1994) Design Patterns. Elements of Reusable Object-Oriented
Software , Indianapolis : Addison-Wesley .

 Goldsack S. and Kent S. (eds) (1996) Formal Methods and Object Technology , New York : Springer-Verlag .
 Greenspan A. (2005) India and the IT Revolution, Networks of Global Culture , London : Palgrave Macmillan .
 Howard M. and LeBlanc D. (2003) Writing Secure Code , Redmond WA : Microsoft Press .

The unknown objects of object-orientation

227

 Kay A. (1993) The Early History of Smalltalk , http://www.smalltalk.org/smalltalk/TheEarlyHistoryOfSmall
talk_Abstract.html/

 Kay A. (1998) ‘Prototypes Versus Classes’ , Squeak Developers’ Mailing List , 10 Oct , http://lists.squeakfoundation.
org/pipermail/squeak-dev/1998-October/017019.html/

 Kitchin R. and Dodge , M. (2011) Code/Space. Software and Everyday Life , Cambridge, MA : MIT Press .
 Mockus A. and Weiss D.M. (2001) ‘Globalization by Chunking, a Quantitative Approach’ , IEEE Software ,

 March/April , pp. 30 – 37 .
 Pickering A. (1995) The Mangle of Practice , 2 nd edition, Chicago : Chicago University Press .
 Shalloway A. and Trott J.R. (2005) Design Patterns Explained: A New Perspective on Object-Oriented Design (2nd

Edition) , Boston : Addison-Wesley .
 Stengers I. (2006) La vierge et le neutrino , Paris : Les empêcheurs de penser en rond .
 Stengers I. (2011) Thinking with Whitehead, a Free and Wild Creation of Concepts , trans. Michael Chase ,

 Cambridge, MA : Harvard University Press .
 Stroustrop B. (2007) A History of C++: 1979–1991 , www2.research.att.com/~bs/hopl2.pdf/

 Objects and Materials

 A Routledge Companion

 Edited by Penny Harvey, Eleanor Conlin Casella,
Gillian Evans, Hannah Knox, Christine McLean,

Elizabeth B. Silva, Nicholas Thoburn and
Kath Woodward

 First published 2014
 by Routledge
 2 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

 Simultaneously published in the USA and Canada
 by Routledge
 711 Third Avenue, New York, NY 10017

 Routledge is an imprint of the Taylor & Francis Group, an informa business

 © 2014 selection and editorial material Penny Harvey, Eleanor Conlin Casella,
Gillian Evans, Hannah Knox, Christine McLean, Elizabeth B. Silva, Nicholas
Thoburn and Kath Woodward; individual chapters, the contributors

 The right of the editors to be identified as the authors of the editorial material,
and of the authors for their individual chapters, has been asserted in accordance
with sections 77 and 78 of the Copyright, Designs and Patents Act 1988.

 All rights reserved. No part of this book may be reprinted or reproduced
or utilised in any form or by any electronic, mechanical, or other means,
now known or hereafter invented, including photocopying and recording,
or in any information storage or retrieval system, without permission in
writing from the publishers.

 Trademark notice : Product or corporate names may be trademarks or
registered trademarks, and are used only for identification and
explanation without intent to infringe.

 British Library Cataloguing in Publication Data
 A catalogue record for this book is available from the British Library

 Library of Congress Cataloging in Publication Data
 Objects and materials: a Routledge companion / edited by Penny Harvey,
Eleanor Conlin Casella, Gillian Evans, Hannah Knox, Christine McLean,
Elizabeth B. Silva, Nicholas Thoburn and Kath Woodward.
 pages cm
 Includes bibliographical references and index.
 1. Material culture. 2. Ceremonial objects. 3. Art objects. I. Harvey, Penelope,
 GN406.O28 2013
 930.1–dc23 2012049615

 ISBN: 978-0-415-67880-3 (hbk)
 ISBN: 978-0-203-09361-0 (ebk)

 Typeset in Bembo
 by Cenveo Publisher Services

Contents

ix

 17 The fetish of connectivity 197
 Morten Axel Pedersen

 18 Useless objects: commodities, collections and fetishes in the politics
of objects 208
 Nicholas Thoburn

 19 The unknown objects of object-orientation 218
 Matthew Fuller and Andrew Goffey

 20 How things can unsettle 228
 Martin Holbraad

 21 Objects are the root of all philosophy 238
 Graham Harman

 PART IV
 Interface objects 247

 Introduction 247
 Nicholas Thoburn

 22 True automobility 251
 Tim Dant

 23 The environmental teapot and other loaded household objects:
reconnecting the politics of technology, issues and things 260
 Noortje Marres

 24 Interfaces: the mediation of things and the distribution of behaviours 272
 Celia Lury

 25 Idempotent, pluripotent, biodigital: objects in the ‘biological century’ 282
 Adrian Mackenzie

 26 Real-izing the virtual: digital simulation and the politics of future making 291
 Hannah Knox

 27 Money frontiers: the relative location of euros, Turkish lira and gold
sovereigns in the Aegean 302
 Sarah Green

 28 Algorithms and the manufacture of financial reality 312
 Marc Lenglet

