
GENERATOR: THE VALUE OF SOFTWARE ART

Geoff Cox

Practices that combine the fields of art and technology employ a contested range of

terms. The term ‘software art’ has become popular to describe the contemporary

artistic preoccupation with software production. Certainly ‘media arts’ is far too broad

a description and one that would focus attention too heavily on the ‘medium’ and

‘mediation’ of software rather than emphasize its dynamic properties, processes and

metaphors. Software art is clearly not just media art, as it expresses more complex

processes than simply something mediated between sender, apparatus and receiver.

Software refers to a computer program and the resources related to it that act upon the

hardware of the physical machine components and machine. In more detail, this means

software includes not only the instructions written in a particular language as the

program, but also the other materials required for it to run, that are usually combined

for distribution. Hardware is worked upon, and software performs the work. This link

to performance also clarifies something about the use of the term ‘software art’, in

describing not merely software used to produce art, but the software itself as the

artwork. In other words, the programmers put the pre-existing hardware to work, in a

similar way to artists producing concepts and manipulating materials in more traditional

forms.

There is little new in placing emphasis on process rather than end product in this way,

but the assertion of this essay is that software art exemplifies process-orientated

practice in a way that lends itself to critical work appropriate to contemporary

conditions. Clearly there is a history to this, and there have been many previous

examples of artists generating creative work in an algorithmic manner, using instructions

and constraints, whether using computers or not. The older term ‘generative art’ is

generally used in this connection, as well as ‘computer arts’ with reference to practices

Issues in Curating.qxd 9/11/07 8:29 am Page 147

of the 1960s and 70s. A general view has emerged that older definitions associated with

generative art stress the formal rule-based and syntactical properties of software, and

thus do not place sufficient emphasis on semantic concerns and social context.

Although, in general, this may be the case, formal concerns are essential to understand

the more cultural aspects and the generative or transformative aspects of software. The

chapter argues that taken together, the terms generative art and software art emphasize

productive contradictions – inherent to both, and between the two.

Generator
There is broad agreement that generative art is a term applied to artwork that is

automated by the use of instructions or rules by which the artwork is executed. The

outcome of this process is unpredictable, and can be described as being integral to the

apparatus or situation, rather than a direct consequence of the artist’s intentions. But

importantly, the description recognizes that other agencies are at work, including

human agency as an integral part of the production process in setting the rules. It is this

line of thinking that informed the curation of the touring exhibition Generator (2002/3),1

presenting a series of self-generating projects, incorporating digital media, instruction

148 | ISSUES IN CURATING CONTEMPORARY ART AND PERFORMANCE

Figure 1. (detail, video still): Yoko Ono’s Mend Peace for the World (2001).

Issues in Curating.qxd 9/11/07 8:29 am Page 148

and participation pieces, experimental literature and music technologies. The work of

artist-programmers was combined with artists from a conceptual tradition who employ

rules and instructions in their practice. For instance, the work of Alex McLean, Joanna

Walsh and Adrian Ward were presented in parallel to Stuart Brisley, Sol LeWitt and Yoko

Ono, amongst others (http: //www.generative.net/generator). All work was considered

performative in the sense that the artwork was generated through a real-time process.

To stress the point about agency, two specific examples are offered: Ono’s Mend Peace

for the World (Figure 1) consisted of broken dishes from around the world and materials

to mend them. The instructions, to be executed by those visiting the exhibition, were:

‘Keep adding more crockery as it gets fixed. Keep wishing while you mend.’

In contrast, McLean’s forkbomb.pl was a program script designed to take a computer to its

operational limit. The program script creates new processes repeatedly using the fork

system call, until the process table gets filled up and the system crashes. A computer system

under such high load causes unpredictable results that pattern differently depending partly

on the operating system it runs upon, in this case visualized as binary data.

GENERATOR: THE VALUE OF SOFTWARE ART | 149

Figure 2. Output and program script from Alex McLean’s forkbomb.pl (2001).

#!/usr/bin/perl -w

use strict;

die “Please do not run this script without reading the

documentation”

if not @ARGV;

my $strength = $ARGV[0] + 1;

while (not fork) {

exit unless – $strength;

print 0;

twist: while (fork) {

exit unless —$strength;

print 1;

}

}

goto ‘twist’ if —$strength;

Issues in Curating.qxd 9/11/07 8:29 am Page 149

Both examples – one tending towards reparation or reconstruction, the other towards

destruction – emphasize a rejection of what one might refer to as ‘software-

determinism’. They demonstrate how the producer can concede control to some extent

– and this is an important qualification – over the production of the work but that

human intervention is paramount to (software) production. In other words, the artwork

is necessarily programmed – with or without the aid of a computer. Whether the artist

was involved in the writing of the software or not is beside the point. Someone was.

Generative art
In contrast to what has been said about these examples from Generator, much of the

work in the field of generative art stresses issues of unpredictability and autonomy

rather differently. In seeking to clarify what constitutes generative art, Philip Galanter’s

definition is much cited and positions generative art as broadly rule-based:

Generative Art refers to any art practice where the artist uses a system, such as a set

of natural language rules, a computer program, a machine, or other procedural

invention, which is set into motion with some degree of autonomy contributing to

or resulting in a completed work of art. (Galanter 2003)

Also defining generative art, John McCormack adds the influence of biology and

emergent behaviour and, in particular, the terms ‘genotype’ and ‘phenotype’. He argues

that software can be seen in terms of ‘genotypes’ (DNA in cells) as machine code, and

‘phenotypes’ (the higher level form of behaviour) as what happens when it runs. The

programmer would set the parameters that defined the fitness, and the software would

evolve ‘autonomously’. Put simply, McCormack generalizes that the authoring process

is directed towards a genotype as the specification of a process, and when this process

is executed it generates the phenotype as the ‘experience of the artwork’ (in Brown

2003). It is worth noting the elevated position of the artist in this description as

responsible for the DNA of the artwork in the perpetuation of a ‘creationist’ myth.

Clearly, other external factors are at work in creative production in art and life.

In his essay ‘What is Generative Art? Complexity Theory as a Context for Art Theory’

(Galanter 2003), Galanter supplements his earlier definition by referring to generative

systems as also displaying emergent behaviour. His definition of generative art is an

eclectic one, contributing to wider discussions around cultural practices (and not just art)

that allow for the inclusion of practices that do not necessarily involve computers at all.

But to Inke Arns, this is part of the problem as the definition is far too inclusive, applied

across many fields of practice that focus attention on the end product of a process. She

quotes Tilman Baumgärtel’s article ‘Experimental Software’ (from 2001) to stress the

distinction between earlier work using computers and software art, where the latter is:

…not art that has been created with the help of a computer, but art that happens in

the computer, software is not programmed by artists in order to produce

autonomous artworks, but the software itself is the artwork. What is crucial here is

150 | ISSUES IN CURATING CONTEMPORARY ART AND PERFORMANCE

Issues in Curating.qxd 9/11/07 8:29 am Page 150

not the result but the process triggered in the computer by the program code.

(Arns 2004)

Both Galanter and McCormack’s statements do appear to verify an emphasis on end

product as opposed to Baumgartel’s emphasis on process. There is a danger of

emphasizing the formal and syntactic aspects in using the term generative art. But in

the case of software, it is not simply a choice of process or product but of the interaction

between source code and its executed form. An example of this is McLean’s

forkbomb.pl (2001, described earlier) that demonstrates both the aesthetic appreciation

of source code in parallel to a visualization of the process when run. This is, in fact, how

it was exhibited as part of the Generator show, with the source code displayed as an

integral part of the work. Nevertheless, the criticism Arns is making is that the privileging

of execution, even if in combination with source code, avoids some of the

contemporary practices associated with software art. She is thinking of programs that

are not necessarily executable, or executable only on a conceptual level (often referred

to as ‘codework’). Perhaps it is simply a case of generative art requiring improved

description to shift emphasis from the object generated to the process of generation.

In this way, and quite literally, the term generator stands for: that which generates.

To generate something accounts for most creative activity in a very general sense. A

more specific use in relation to arts practice can be traced to a lecture, ‘Generative Art

Forms’ (presented at the Queen’s University, Belfast Festival), in 1972, by the Romanian

sculptor Neagu (who also founded a Generative Art Group). But a more common

reference is Noam Chomsky’s Syntactic Structures (1972), first published in 1957, often

cited as the source of the concept ‘generative grammar’ (sometimes referred to as

‘transformational grammar’). Chomsky assumes that somehow grammar is given in

advance (‘hard-wired’) and, therefore, human consciousness contains innate

grammatical competence that is pre-social (Chomsky 1972). This explains his interest in

‘syntactic structures’ by which sentences are constructed in particular languages to

understand the properties that underlie successful grammars (ibid.). These concerns

have also been the inspiration for much artistic experimentation using computers, as it

lends itself to the procedural qualities of programming as an expression of

transformative grammar.

Often cited in this connection is the ‘Ouvroir de Littérature Potentielle’ (OuLiPo), a

group of writers and mathematicians founded in 1960 by Raymond Queneau and

François Le Lionnais. Their concerns were syntactic rather than semantic, concerned

with constraints ‘brought to bear on the formal aspects of literature’ (Le Lionnais, in

Motte 1998). Rather than a chance operation (such as in the work of John Cage),

Oulipean texts are generated through the use of constraints or rules, wherein any ideas

associated with freedom of expression is undermined. An example that lends itself to

computation is Queneau’s Cent Mille Milliards de Poèmes [one hundred thousand

billion poems] (1961) in which ten sonnets can be arranged according to formal rules.

To each of the ten first lines, the reader can add any of ten different second lines, and

GENERATOR: THE VALUE OF SOFTWARE ART | 151

Issues in Curating.qxd 9/11/07 8:29 am Page 151

so on. The sonnet has fourteen lines, so the possibilities are of the order of 10 to the

power of 14, or one hundred trillion sonnets. Le Lionnais makes a claim for the

significance of this in terms of technical superiority: ‘the work you are holding in your

hands represents, itself alone, a quantity of text far greater than everything man has

written since the invention of writing’ (Motte 1998).

Potential writing in this sense implies the impossibility of its potential reading – and both

are exponentially bound. The full potential of this work lies unrealized for practical

reasons, perpetually in a suspended state of its further reading. In an experiment to

exploit the potential of the computer, Paul Braffort was commissioned to program some

of the OuLiPo works, such as Queneau’s Cent Mille Milliards de Poèmes. In describing

this enterprise as ‘algorithmic literature’, Paul Fournel argues that the machine allows

the author to dominate the existing relations of computer, work and reader in new ways

(Motte 1998: 140–2). Inspired by such examples, for Generator, Joanna Walsh’s Oulibot

operated as a member of an active ‘irc’ (chat room) community (Figure 3). The program

(bot) learnt from the channel and produced plausible utterances based on constraints,

and other oulipean transformations of text; such as Jean Lescure’s ‘S+7’ method in

152 | ISSUES IN CURATING CONTEMPORARY ART AND PERFORMANCE

Figure 3. (detail, video still): Joanna Walsh’s Oulibot (2002).

Issues in Curating.qxd 9/11/07 8:29 am Page 152

which a text is taken and each word (‘s’ for substantive) is replaced by the seventh

following it in a dictionary.

Originality is clearly not the point in this work. Rather, creative endeavour is seen to

be programmable and is considered in terms of its execution. But far from a deferral

of authorship, the computer offers new potentialities in this way. What Le Lionnais

calls a ‘combinatory literature’, is expanded greatly by the computer and its

systematic compositional structure. The use of executable formal instructions makes

explicit the idea of software as potential literature (or art), whether running on a

computer or not. Indeed all conventions of writing and reading, of both text and code,

have in common that they are part of a set of abstract (coded) systems of input and

output.

Software art
In the many comparisons between contemporary software art and the older practices

associated with generative art, McCormack explains one key difference was that in the

1960s and 1970s artists simply had to write (or ask someone to write) their own software

in order to generate the outcomes (McCormack in Brown 2003). The now wide

availability of authoring software has changed the conditions for the production of

software art by the artist-programmer. It is with some of these issues in mind that

Richard Wright traces the ‘divergence between programmers and program users’,

based around the issue of whether a computer is considered a medium or a tool (Wright

2004). In a hierarchy of programming languages, Wright points out that not all

programming practices are equal. He is thinking of the predominance of scripting

languages such as Flash Actionscript (but also Lingo, Perl, MAX, JavaScript, Java, C++,

as well as other programming and scripting languages) that use libraries of functions

and a certain shared, if not prescribed, vocabulary of styles.

For Wright, this changes the terms of the discussion from a general issue of artistic

programming to one of what kind of programming is being used. He cites the historical

shift in Harold Cohen’s practice from a painter to developing software to automate his

artwork, through the use of what Cohen refers to as ‘autonomous machine (art making)

intelligence’ (http: //crca.ucsd.edu/~hcohen/). Developed from 1973 onwards, the

AARON program represents to Wright the historical transition towards contemporary

culture, where the use of computers has become pervasive. As a result, the terms of

practice have fundamentally changed for the artist-programmer. His argument is that

‘Programming is not only the material of artistic creation, it is the context of artistic

creation. Programming has become software.’ (Wright 2004)

This refers to earlier practices that were characterized by artists working at the meta-

level of programming. Despite this, programming in Cohen’s work operates in a rather

ambiguous relation to the overall artwork. Clearly in a general sense it is part of the

artistic output but more in terms of a representation of his skills and technique, rather

than as a constituent part of the artwork as such. In the tradition of generative art, the

GENERATOR: THE VALUE OF SOFTWARE ART | 153

Issues in Curating.qxd 9/11/07 8:29 am Page 153

emphasis tends towards the completed work of art rather than the program or

programming being a work in itself.

In contrast to Cohen’s work, a more contemporary reference that situates software art

overtly in terms of programming is the exhibition CODeDOC first for the Whitney

Museum of American Art’s ‘artport’ website (2002) and later at Ars Electronica (2003)

(http: //artport.whitney.org/commissions/codedoc/index.shtml). The curator, Christiane

Paul, set the invited artist-programmers an instruction to ‘connect and move three

points in space’ in a language of their choice (Java, C, Visual Basic, Lingo, Perl) and to

exchange the code with the other artists for comments. The viewers of all the works in

CODeDOC were invited to first read the written code and then see the executed work.

This raised some controversy on mail lists at the time, for deliberately obfuscating or

aestheticizing code to non-programmers, rather than demystifying the creative process.

Yet the significance is that code is taken to be part of the work and not simply meant

to assist interpretation. The curatorial statement contains a number of useful comments

154 | ISSUES IN CURATING CONTEMPORARY ART AND PERFORMANCE

Figure 4. (screen grab): Adrian Ward’s Auto-Illustrator (2000).

Issues in Curating.qxd 9/11/07 8:29 am Page 154

on the intentions of the experiment and reiterates the potential of software itself as

artwork:

In software art, the ‘materiality’ of the written instructions mostly remains hidden. In

addition, these instructions and notations can be instantaneously activated; they

contain and – further layers of processing aside – *are* the artwork itself. While one

might claim that the same holds true for a work of conceptual art that consists of

written instructions, this work would still have to be activated as a mental or physical

event by the viewer and cannot instantaneously transform, transcend, and generate

its own materiality. (Paul 2003)

This approach parallels some of the curatorial decisions for the Generator show, in

particular McLean’s forkbomb.pl where the source code was exhibited as an integral

part of the artwork. Whereas formerly artists had to engage with programming in early

computer arts practice, the lack of necessity now allows for other critical issues to be

engaged (just as previously the invention of photography perhaps freed painting from

figurative representation).

An example of critical software is Signwave’s Auto-Illustrator that defies user

expectation as a parody of the vector graphics design software Adobe Illustrator. It looks

like and indeed works like conventional commercial software, but carries some extra

auto-generative functionality that renders designs outside of the direct control or

creativity of the user. Cheekily included in early releases was a license agreement that

indicated that any designs were necessarily co-authored by the company Signwave who

supply the software (aka Adrian Ward). Here, the parody operated particularly

effectively, as some users were outraged that a company would insist on such a clause

in a direct assault on their creative and intellectual rights. It highlights the issue that full

authorship is rarely acknowledged in making art using software, as is the labour of all

those involved in the process. The software was released as a boxed version for the

exhibition Generator with a ‘User’s Manual’ that contained both technical detail and

critical essays. In this way, the commercial packaging added a further layer to its ironic

critique of the commodification of art and software as art.

In linguistic terms, artist-programmers appear to have shifted their attention from an

engagement with the syntax of programming to semantic concerns. This is, indeed,

how Cramer makes the distinction between generative art and software art, by

associating the former with syntax and the latter with semantics (2003). But this is not

simply a shift from one to the other. Syntax, although not concerned with meaning in

itself, certainly has implications for semantics, and both are required to inform an

overall theory of language. Yet what Cramer is trying to emphasize is a shift in software

art from ‘pure syntax’ to ‘something semantic, something that is aesthetically, culturally

and politically charged’ (2003). It is not a choice of one or the other but a change of

emphasis.

GENERATOR: THE VALUE OF SOFTWARE ART | 155

Issues in Curating.qxd 9/11/07 8:29 am Page 155

The apparent dualism between generative art and software art is also something that

Mitchell Whitelaw disputes in questioning the binary relation of formalism (associated

with generative art) and culturalism (associated with software art). Rather than seeing

this as an impasse, Whitelaw suggests a ‘complementarity’ of positions that leads to

alternative modes of being and relation (Whitelaw 2005). He calls this ‘critical

generativity’ to stress the emergent and transformative properties that reflect social

complexity and software’s latent cultural agency (ibid.). This chapter also argues for new

critical forms, but rather than seeking Whitelaw’s complementarity or fusion, argues for

a contradictory relation. That said, the competing definitions matter little in themselves

but only in as much as they operate in terms of an overall contribution to a critical

discourse around the practice of software art and culture. Software necessarily includes,

if only on a conceptual level, a generative process in which something is always ready

to come into being, however latent. It is for convenience only that this is referred to as

software art.

The generative properties of software can be seen in parallel to the argument that art

should now deal with the central issue of transformation rather than representation

(whether software is used directly or not). On the surface this sounds like a very

contemporary position, supported by the curator Nicolas Bourriaud’s claim that the

image is now defined by its ‘generative power’, and that art can be seen to be a

program(me) for the generation of forms and situations (Bourriaud 2002). His term

‘relational aesthetics’ describes a practice that involves human interactions, social

context and the new aesthetic and cultural concerns that arise from this. He is referring

to artwork that is a programme to be followed, a model to be reproduced, or an

encouragement to do something – and points to the parallel activities of artists engaging

in ideas of interaction and sociability, set against the hype of interactive computer

systems. To Bourriaud, artwork not using the computer has as much potential to make

work about its effects. This may well be the case (as with many of the works selected

for Generator), but this position is simply based on systems thinking, and the statement

is consistent with Gregory Bateson’s 1971 position on art (from Steps to an Ecology of

Mind) that focuses attention not on the message but the code (Bateson 2000). Bateson

considers the production of art, and art as product, in terms of behaviours or rules that

are embodied in the machinery that then generates transformations (Bateson 2000).

Software appears to characterize arts practices that privilege the idea, code, process,

system and its transformational qualities. Whether using a computer or not, art has

become ever more like software.

Software as cultural metaphor
Clearly there is a history to software art, and a canon appears to have emerged. Andreas

Broegger is one researcher amongst many who situates the contemporary term

software art in the historical context of the Radical Software journal published by the

Raindance collective (launched in 1970, http: //www.radicalsoftware.org/) and Jack

Burnham’s exhibition Software, Information Technology: Its Meaning for Art at the Jewish

Museum, New York (also 1970). Broegger describes the ways the term software was

156 | ISSUES IN CURATING CONTEMPORARY ART AND PERFORMANCE

Issues in Curating.qxd 9/11/07 8:29 am Page 156

used as a metaphor for arts practice at that time, to stand for the transmission of

information using available communications technologies, in contrast to the ‘hardware’

of object-based art (Broegger 2003). Although any discussion of software requires an

understanding of its relationship to hardware (even if it is accepted that software can

exist without hardware), it is clear that the term software is being used in a rather

different sense in the 1970s. In the field of art at least, the description runs in parallel to

Conceptualism and its associated shift away from the end product at that time. A

contemporary use of the term software reflects an emphasis on process, which has

become the orthodoxy in contemporary cultural practices. Software is more than just

art and expands an understanding of art’s possibilities to engage wider social issues.

A statement from the first issue of the Radical Software journal gives a clear indication

of its agenda: ‘Power is no longer measured in land, labour or capital, but by access to

information and the means to disseminate it’ (Ross 2003). On a technical level, it was

the widespread availability of the video portapak that inspired the belief that this could

contribute to social transformation, through people gaining increased access to the

means of production and becoming producers. In the context of its publication in the

United States, the position of the journal was influenced by the rise of the civil rights

movement, a general mistrust of the communications media on offer, requiring more

independent and alternative media and cultural practices, combined with ecological

concerns (according to Ross 2003). Those associated with this project ‘imagined a

world in which the contest of ideas and values could take place freely and openly’

outside of the existing institutional and ideological frameworks of commercial

telecommunications. They proposed ‘a new information order in which the very idea

of hierarchical power structure might be transformed or even eliminated’ (Ross 2003).

In this sense, what is radical about software is that it acts upon hardware. It operates as

a metaphor for an emphasis on social processes that involve an engagement with

relations of production and ‘radical’ transformation.

In parallel to the Radical Software journal, ‘software as a metaphor for art’ was explored

in Burnham’s Software exhibition. The show can be seen as a product of its times with

its overt structuralist and conceptualist concerns, and its aim to focus attention on the

technical apparatus. It corresponds to what has since become commonplace in

looking to the ‘dematerialization’ associated with the conceptual arts tradition and the

‘immaterialization’ of information and communications technology. In his essay ‘The

House that Jack Built’ (1998), Shanken traces Burnham’s concerns with particular

reference to his book Beyond Modern Sculpture: The Effects of Science and Technology

on the Sculpture of this Century (1968) that ends with an account of ‘systems

aesthetics’. By an aesthetics of systems, Burnham refers to non-object–based art and

time-based practices such as performance, interactive and conceptual art, but also

public interaction that breaks down the false distinction between the operating

systems of art and non-art. This is software metaphorically speaking, the abstract

‘internal logic’ of a program receiving feedback from human subjects. In summary, the

exhibition Software was an attempt to reveal some of the contradictions between

GENERATOR: THE VALUE OF SOFTWARE ART | 157

Issues in Curating.qxd 9/11/07 8:29 am Page 157

object and non-object, art and non-art, artist and non-artist, evident in art’s

organizational and systemic logic.

Conceptualism has been particularly influential in attempts to draw software art into an

art historical register. Referring to Lucy Lippard’s portrayal of dematerialization, software

art is clearly both concerned with art as idea and action, which both on a conceptual

and technical level describes source code and its execution. The generative approach

of conceptual artist Sol LeWitt is evocative of software in this connection: ‘The idea

becomes a machine that makes the art’ (in Lippard 1997). In LeWitt’s work, instructions

are provided for the production of artworks that are then executed by other people.

For instance, in Chicago, a publication produced for Generator, a serial variation using

nine found postcards was produced using a simple algorithm as follows:

1

2

1 2

3

1 2 3

4

1 2 3 4

5

1 2 3 4 5

6

1 2 3 4 5 6

7

1 2 3 4 5 6 7

8

1 2 3 4 5 6 7 8

9

1 2 3 4 5 6 7 8 9

The comparison of software art to earlier art movements such as Conceptualism, but

also the avant-garde activities of the 1920s in Russia and Germany, provides an historical

understanding of radical forms and strategies. But in the contemporary situation, it

appears that many of the claims of the historical avant-garde have become:

…embedded in the commands and interface metaphors of computer software. In

short, the avant-garde vision became materialized in a computer. All the strategies

developed to awaken audiences from a dream-existence of bourgeois society […]

now define the basic routine of a post-industrial society: the interaction with a

computer. (Manovich 1999)

The once radical technique of montage has become commonplace. On the surface, it

seems that what was once a radical aesthetic vision to reveal the social structure behind

158 | ISSUES IN CURATING CONTEMPORARY ART AND PERFORMANCE

Issues in Curating.qxd 9/11/07 8:29 am Page 158

the visible surfaces has become a standardized form through the use of computer

technology. Lev Manovich discusses these perceptions of change and the ways in which

ideology naturalizes these changes. This reflects contemporary culture’s reliance on

appropriation, wherein recycling, re-working, and re-combining media are the standard

techniques. He concludes that ‘the avant-garde becomes software’ and that it continues

to introduce revolutionary techniques but the terms are different:

‘software does not simply adopt avant-garde techniques without changing them; on

the contrary, these techniques are further developed, formalized in algorithms,

codified in software, made more efficient and effective’ (Manovich 1999).

If art holds radical potential at all in these post-political times, the issue remains how to

produce art that resists its seemingly inevitable commodification and how to reconcile

the apparent failure of the avant-garde to deliver its promises (evident in Conceptualism

GENERATOR: THE VALUE OF SOFTWARE ART | 159

Figure 5. (video still): final page of Sol LeWitt’s Chicago (2002), produced in
collaboration with Alec Finlay of MorningStar/Pocketbooks.

Issues in Curating.qxd 9/11/07 8:29 am Page 159

and Dada). If, as Manovich thinks, software has naturalized montage techniques, how

can software be further developed as a radical project in revealing the ideological

processes at work?

Exhibited as part of Generator in the form of a large projection, Stuart Brisley and Adrian

Ward’s Ordure: : real-time is both a representation and a process of detritus that slowly

‘corrupts’ – pixel by pixel. The corruption is triggered by viewing the image. The more

people that view the image, the more prevalent its decay. When the image is left alone,

it rewrites itself anew. On one level, the resultant image with pixels moving

incrementally out of order is the same as the first image where the pixels are in the

correct order. The data is consistent, the pixels merely rearranged. The work

demonstrates the dialectical play between two interconnected states of order and

disorder, between generation and corruption, suggesting the potential for change built

into any system. Indeed, complexity theory verifies that systems are not closed but can

be seen to be also sensitive to small changes.

160 | ISSUES IN CURATING CONTEMPORARY ART AND PERFORMANCE

Figure 6. (detail, video still): Stuart Brisley and Adrian Ward’s Ordure: : real-time
(2002), courtesy of the UK Museum of Ordure.

Issues in Curating.qxd 9/11/07 8:29 am Page 160

The challenge for a critical practice in software art is to maintain contradiction in the

process of transformation, for this is where politics is evident and where re-invention

takes place. In terms of the legacy of previous radical arts practice and some of the

examples cited here, the lessons of art history exemplify the point that Lippard makes:

that in a contemporary situation where conceptual strategies have become the

orthodoxy of contemporary art and effectively recuperated, radical art can be found in

social energies not yet recognized as art (Lippard 1997). Perhaps software art and

culture represents such an instance – for now at least.

Note
1. Generator was a SPACEX touring exhibition, curated by Geoff Cox and Tom Trevor, with

support from the National Touring Programme of the Arts Council of England. It was shown

at Spacex, Exeter (2002), then toured to the Liverpool Biennial (2002) and Firstsite, Colchester

(2003). Commissioned artists included emerging computer artist-programmers, as well as

more established figures from a conceptual art tradition, all of who work with generative forms

and ideas: Mark Bowden, Stuart Brisley, Angus Fairhurst, Alec Finlay, Tim Head, Jeff Instone,

Zoë Irvine, Sol LeWitt, limbomedia, Alex McLean, Guy Moreton, Netochka Nezvanova, Yoko

Ono, Organogenesis Inc., Jon Pettigrew, Colin Sackett, Sulawesi Crested Macaques from

Paignton Zoo, Joanna Walsh, and Adrian Ward. http: //www.generative.net/generator/.

References
Arns, I., ‘Read_me, Run_me, Execute_me: Software and Its Discontents, or: It’s the Performativity

of Code, Stupid!’, in Goriunova, O., & A Shulgin, A., (eds.) Read_Me: Software Art & Cultures

– Edition 2004, Ärhus: Digital Aesthetics Research Centre, University of Ärhus, 2004, pp.

176–193.

Bateson, G., Steps to an Ecology of Mind, Chicago/London: University of Chicago Press, 2000

[1971].

Bourriaud, N., Relational Aesthetics, trans. Simon Pleasance & Fronza Woods, Dijon-Quetigny:

Les Presses de Réel, 2002.

Broegger, A., ‘Gigliotti on “(radical) software”‘, as part of software art thread, Rhizome (via

Andreas Broeckmann) 10 Oct 2003, http: //www.rhizome.org/.

Brown, P., (ed.) ‘Generative computation and the arts’, in Digital Creativity, vol. 14, no. 1, Lisse:

Swets & Zeitlinger, 2003.

Burnham, J., Beyond Modern Sculpture: the Effects of Science and Technology on the Sculpture

of this Century, New York: George Braziller, 1968.

Chomsky, N., Syntactic Structures, The Hague: Mouton, 1972 [1957].

Cramer, F.,‘Exe.cut[up]able statements: the Insistence of Code’, in Gerfried Stocker & Christine

Schöpf (eds.), Code – The Language of Our Time, Ars Electronica, Linz: Hatje Cantz, 2003, pp.

98–103.

Galanter, P., ‘What is Generative Art? Complexity Theory as a Context for Art Theory’, Generative

Art 03, international conference, Politecnico di Milano, Italy, 2003, http:

//www.generativeart.net.

Lippard, L., (ed.) Six Years: the dematerialization of the art object from 1966 to 1972, London:

GENERATOR: THE VALUE OF SOFTWARE ART | 161

Issues in Curating.qxd 9/11/07 8:29 am Page 161

University of California Press, 1997.

Manovich, L., ‘Avant-garde as Software’, 1999, http: //www.manovich.net/TEXTS_04.HTM.

Motte, W. F. Jr (ed.), Oulipo: a Primer of Potential Literature, trans. Warren F. Motte, Illinois: Dalkey

Archive Press, 1998.

Paul, C., ‘Public Cultural Production Art(Software)’ in Gerfried Stocker & Christine Schöpf (eds.),

Code – The Language of Our Time, Ars Electronica, Linz: Hatje Cantz, 2003, pp. 129–135.

Ross, D. A., ‘Radical Software Redux’, 2003, http: //www.radicalsoftware.org/e/ross.html.

Shanken, E. A., ‘The House That Jack Built: Jack Burnham’s Concept of “Software” as a Metaphor

for Art’, in Leonardo Electronic Almanac, 6: 10, November 1998, http: //mitpress.mit.edu/e-

journals/LEA/ARTICLES/jack.html.

Shanken, E. A., ‘From Cybernetics to Telematics: The Art, Pedagogy, and Theory of Roy Ascott’,

in Roy Ascott, ed., Telematic Embrace: Visionary Theories of Art, Technology, and

Consciousness, Berkeley: University of California Press, 2003, pp. 1–94.

Whitelaw, M., ‘System Stories and Model Worlds: A Critical Approach to Generative Art’, in Olga

Goriunova (ed.), Readme 100: Temporary Software Art Factory, Dortmund: Hartware Medien

Kunst Verein, 2005, pp. 134–153.

Wright, R., ‘Software Art After Programming’, Metamute, July 2004, http: //www.metamute.org/

en/node/414.

162 | ISSUES IN CURATING CONTEMPORARY ART AND PERFORMANCE

Issues in Curating.qxd 9/11/07 8:29 am Page 162

Issues in Curating
Contemporary Art and

Performance

Edited by Judith Rugg and Michèle Sedgwick

Issues in Curating.qxd 9/11/07 8:28 am Page 3

Issues in Curating.qxd 9/11/07 8:28 am Page 4 f

Acknowledgements

The editors would like to thank all the contributors and acknowledge the financial support of
the University College for the Creative Arts; the University of the Arts, London; the University
of Plymouth; the University of Surrey and the University of Northumbria.

First Published in the UK in 2007 by
Intellect Books, PO Box 862, Bristol BS99 1DE, UK

First published in the USA in 2007 by
Intellect Books, The University of Chicago Press, 1427 E. 60th Street, Chicago,
IL 60637, USA

Copyright © 2007 Intellect Ltd

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without
written permission.

A catalogue record for this book is available from the British Library.

Cover Design: John McCabe
Copy Editor: Holly Spradling
Typesetting: Mac Style, Nafferton, E. Yorkshire

ISBN 978-1-84150-162-8/EISBN 978-1-84150-215-1

Printed and bound by Gutenberg Press, Malta.

Thoughts on Curating 113
Richard Hylton

Part 4: Emergent Practices: Subverting the Museum 129

Oscillating the ‘high/low’ Art Divide: Animation in Museums and Galleries 131
Suzanne Buchan

Generator: The Value of Software Art 147
Geoff Cox

Who Makes Site-specific Dance? The Year of the Artist and the Matrix of Curating 163
Kate Lawrence

The Movement Began with a Scandal 175
Alun Rowlands

Notes on Contributors 181

Issues in Curating.qxd 9/11/07 8:28 am Page 6

