
TEN THESES ABOUT SOFTWARE ART

FLORIAN CRAMER

WHAT THIS IS NOT ABOUT

“Software art” as it is defined in the free Internet encyclopaedia
Wikipedia (as of September 2003):

“Software art is a term for the graphic design of visual
elements contained in software, eg. GUI (Graphic User
Interface), Icons etc.”1

WHAT THIS IS ABOUT

Artists who use digital software to produce works which themselves
are digital data create—as only writers have done before them—
works made up of symbols using a set of instruments that is also
comprised entirely of symbols. No literary writer can use language
merely as a stopgap device with which to compose an artwork that is
not in itself language—so, like in a recursive loop, literature writes its
own instrumentation. In the same way, the zeros and ones of digital
art are closely related to the zeros and ones of the instruments with
which they are not only created, displayed and reproduced.

THERE IS NO DIGITAL ART WITHOUT SOFTWARE

It is always naive to assume that there is type, images, sound or net-
working in computers provided for themselves or in “multimedia”
combinations, since these data forms do not exist without the com-
puter programs that produce them. This applies not only to their
design and processing (through, for example, text, graphics or mu-
sic authoring software), but already to their mere display (in soft-
ware browsers, viewers and players) and reproduction (through net-
work and operating system software). Every digital artwork that is
not itself a computer program exists only within the framework that

Date: 9/23/2003.
1http://www.wikipedia.org/wiki/Software_art

1

http://www.wikipedia.org/wiki/Software_art


TEN THESES ABOUT SOFTWARE ART 2

prefabricated software has defined for it. All digital art is therefore
“software art” at least to the degree that it is software-aided art. It
becomes software art in the narrower sense, I would suggest, when
it does not regard software as an external aid, but as part of its own
aesthetics.

SOFTWARE ART NEED NOT BE DIGITAL OR ELECTRONIC

A computer program is a series of formal (algorithmic) instructions
which can, but must not necessarily be executed by a machine. Like
this example:

// Classic.walk

Repeat

{

1 st street left
2 nd street right
2 nd street left

}

This is an example program2 of “.walk” by http://www.
socialfiction.org. “.walk” has been labelled by its inventors
a “psychogeographical computer” because it is made up of the streets
of big cities rather than transistor grids and executes its programs
by having pedestrians rather than electrons run through them.
.walk therefore reflects two historical precursors: firstly Fluxus and
Concept Art with their para-algorithmic, minimalist action scores
(like those composed by George Brecht, La Monte Young and Sol
LeWitt following a paradigm set by John Cage), and secondly the
modern computer in its earliest incarnation of only an imaginary,
theoretical apparatus in the shape of the Turing Machine.

2socialfiction.org, .walk for dummies, http://www.socialfiction.org/
dotwalk/dummies.html

http://www.socialfiction.org
http://www.socialfiction.org
http://www.socialfiction.org/dotwalk/dummies.html
http://www.socialfiction.org/dotwalk/dummies.html


TEN THESES ABOUT SOFTWARE ART 3

SOFTWARE ART IS NOT SYNONYMOUS WITH CONCEPT ART

.walk differs from action scores such as George Brecht’s first “Lamp
Event” of 1961 and its binary instruction “on.off”3 inasmuch as it
reflects a tested cultural practice; the use of computers, software
and their programming. While the “Lamp Event” could be read as
an anticipation of artistic software programming through formalism,
.walk’s title—which is a play on Microsoft’s “.NET"—already identifies
itself as part of a software culture. In this work, therefore, it is not
Concept Art that points to software, but the opposite; software points
back to the conceptual actionism of the 1960s—which also included
the psychogeography of the Situationist International—, rereading it
as computer software. However, this look back is no longer concep-
tual in itself, but historical, ironic, a work of collage.

It is precisely in this respect that today’s software art contradicts the
equation of art and software as it was established in 1970 both in
Jack Burnham’s 1970 Concept Art exhibition “Software” in the Jew-
ish Museum New York and in the first issue of the video art magazine
“Radical Software.”4 Thirty years later, software is no longer a lab-
oratory construct and a paradigm of conceptualist purification, but
is—since the wide distribution of PCs and Internet—faulty code to a
large extent, the cause of crashes, incompatibilities, viruses and thus
of the contingency rather than the stringency of symbols.

As the Net.art by jodi, Alexei Shulgin, Vuk Cosic, I/O/D and others
aestheticised precisely these contingencies and so liberated digital art
from its apparent academic and industrial sleekness, it is no coinci-
dence that we encounter familiar names in recent software art, which
has a discursive continuity with the net art of the 1990s. Looking at
the development of jodi’s artistic work from 1996 to the present day,
we gain an exemplary view of how Net.art experiments with screen
graphics and network communication first became work rebelling
against the limitations of its software context (for example in the
browser manipulation “OSS” http://oss.jodi.org), then developed
into the reprogramming of software (as in the “Untitled Game” based
on the computer game “Quake” http://www.untitled-game.org)
and finally a reduction of the visible object to simple BASIC source-
code (in the most recent work “10 Programs written in BASIC c©

3Score-cards in [?]
4On the exhibition, see [?], “Radical Software” may now be found in facsimile

at http://www.radicalsoftware.org.

http://oss.jodi.org
http://www.untitled-game.org
http://www.radicalsoftware.org


TEN THESES ABOUT SOFTWARE ART 4

1984").5 It is true that recent software art has surface similarity to
older Concept Art when it makes use of minimalist form. But this
resemblance is contradictory, because it does not reflect the spirit of
what Lucy Lippard in her book “Six Years” called the dematerialisa-
tion of the art work from 1966 to 1971. On the contrary, in today’s
software art software is certainly understood as material. This under-
standing is also a precondition to the written “codeworks” of artists
including jodi, antiorp, mez, Alan Sondheim, Johan Meskens and
Lanny Quarles,6 which combine syntactic elements from program-
ming languages, network protocols, system messages, and computer-
cultural slang. The following email by the French artist Pascale Gustin
is an example of this:

L’_eN(g)Rage \ment politi][~isch][K et l’ _art is T(od)

][ref lex][1/O.ns 10verses NOT es][

--------\B(L)ien-sUr 2 que/S\tions f.Ond(ent)

----------------------------------------A:

-------------------------------][menta les_sel][l] a tenement) T nem T

-tout d_abord--------1/O(f.ne

1 of 1 deletions
1 deletion done
apply: Command attempted to use minibuffer while in minibuffer

SOFTWARE ART IS NOT SYNONYMOUS WITH ALGORITHMIC ART

If software, generally defined, is algorithms—does that mean soft-
ware art is the same thing as algorithmic or generative art? The
following, helpful definition of generative art was given by Philip
Galanter: “Generative art refers to any art practice where the artist
creates a process, such as a set of natural language rules, a computer
program, a machine, or other mechanism, which is then set into mo-
tion with some degree of autonomy contributing to or resulting in

5Exhibited at Electrohype in Malmö.
6In this respect, see sources including [?] and [?]



TEN THESES ABOUT SOFTWARE ART 5

a completed work of art.”7 It is true that software art may involve
autonomy in a sequence of events as it had also been described in
Jack Burnham’s essays, strongly influenced by cybernetics and gen-
eral systems theory, from the 1960s:8 for example as running code in
the guise of classic PC user software, or also as unambiguous formal
instructions as in “.walk.” But if one looks at popular sub-genres of
software art like game modifications9 and experimental browsers,10

these are not concerned with the aesthetic autonomy of algorithmic
processes, but with interrupting these by means of irritative couplings
of software, humans and network data. In generative art, according
to Galanter’s definition, software is only one of several possible means
which, rather than being an artwork in itself, may only “contribute”
to it, in the same way that many computer-aided arts (including elec-
tronic music) do not see software as part of their aesthetics, but per-
mit it to work in the background.

For its part, software art fails to meet the criterion of the generative,
or it only fulfils this in the metaphorical, rather than the technical
sense when it writes—as in “codeworks” for example—dysfunctional
and imaginary software.

SOFTWARE ART IS NOT BEING MADE IN A VACUUM, BUT AS PART OF A
SOFTWARE CULTURE

If recent software art does not understand software as generative
process control, but as material for play, it no longer reads it—as in
classic conceptual and generative art—as pure syntax, but as some-
thing semantic, something that is aesthetically, culturally and politi-
cally charged.11 While software culture in 1970—as is documented
by Burnham’s “Software” exhibition with its confrontation of concept

7Quoted for example at http://www.philipgalanter.com/pages/acad/idx_
top.html and http://www.generative.net

8See also the German edition of Burnham’s “Structure of Art", [?] rather unfor-
tunately translated as “Kunst und Strukturalismus”.

9jodis “Untitled Game", Joan Leandres “retroyou” http://www.retroyou.org
10I/O/D’s “Web Stalker” http://www.backspace.org/iod/, Netochka Nez-

vanovas “Nebula M.81", Jodi’s “wrongbrowsers” http://www.wrongbrowser.
org, Mark Napier’s “Shredder” http://www.potatoland.org/shredder/, Kensuke
Sembo’s and Yae Akaiva’s “Discoder” http://www.exonemo.com/DISCODER/indexE.
html, Peter Luining’s “ZNC Browser” http://znc.ctrlaltdel.org/pc_znc2.0.htm

11The “Injunction Generator” by ubermorgen.com http://www.ipnic.org/
intro.html, which automatically generates legal injunctions and the content-
censoring web proxy server “insert coin” by Alvar Freude and Dragan Espenschied

http://www.philipgalanter.com/pages/acad/idx_top.html
http://www.philipgalanter.com/pages/acad/idx_top.html
http://www.generative.net
http://www.retroyou.org
http://www.backspace.org/iod/
http://www.wrongbrowser.org
http://www.wrongbrowser.org
http://www.potatoland.org/shredder/
http://www.exonemo.com/DISCODER/indexE.html
http://www.exonemo.com/DISCODER/indexE.html
http://znc.ctrlaltdel.org/pc_znc2.0.htm
http://www.ipnic.org/intro.html
http://www.ipnic.org/intro.html


TEN THESES ABOUT SOFTWARE ART 6

art and research laboratory software development—was an academic
matter, and even hacker culture was limited to elite institutes such as
MIT and Berkeley, today there is not only a mass culture and everyday
aesthetics of software. As is indicated, for example, by the debates on
Free Software, software monopolies, software patents, adware and
spyware, software has become an increasingly political matter. How-
ever, cultural criticism of software only exists in scattered efforts, for
example in essays by Wolfgang Hagen and Matthew Fuller and on the
mailing list “softwareandculture” initiated by Jeremy Hunsinger.12

SOFTWARE ART IS NOT PROGRAMMER’S ART

Historically, the gap between the “using” and “programming” com-
puters results from the iconic user interface and its commercializa-
tion by Apple and Microsoft, which for the first time assigned the
two methods of operation different media: iconic images to “usage”
and alphanumerical text to “programmation.” It was only in this way
that the programming of computers became a black art, mystified
as a supposedly elitist, specialist knowledge.13 Programmers have of
course cultivated this myth, taking over the ideological heritage of
the late 18th century by creating, in the hacker, a reincarnation of
the romantic genius.

Every discourse on software art, therefore, is in danger of continu-
ing the cult of the programming genius. This is countered by imag-
inary, simulated and dysfunctional software as well as by manipula-
tions of existing software which require no programmer expertise at
all.14 If software can be not only the material of software art, but also
the object of its reflection, this reflection can also be set into com-
pletely different material to software itself, as was demonstrated, for
example, by the work “n:info” by Julia Guther and Jakob Lehr pre-
sented at the “browserday” Festival 2001. This was a browser in the
form of a portable window frame, a work that turns the rhetoric of

http://odem.org/insert_coin/ are two convincing examples of politically activist
software art.

12Wolfgang Hagen, Der Stil der Sourcen, [?], Matthew Fuller, Behind the Blip
[?], softwareandculture homepage and archive at http://listserv.cddc.vt.edu/
mailman/listinfo/softwareandculture

13Although in order to be able to program a computer in one of the common lan-
guages, all that is needed is a knowledge of variables, loops and if-then-conditions.

14Like for example the “SCREEN SAVER” by Ivan Khimin and Eldar Karhalev
http://runme.org/project/+screensaver/, a configuration of the Windows
screen saver into a suprematist-hypnotic, floating square.

http://odem.org/insert_coin/
http://listserv.cddc.vt.edu/mailman/listinfo/softwareandculture
http://listserv.cddc.vt.edu/mailman/listinfo/softwareandculture
http://runme.org/project/+screensaver/


TEN THESES ABOUT SOFTWARE ART 7

iconic PC software on its head by presenting an analog device as a
metaphor for digital software, and thus exposing the software appli-
cation “Web browsing” as a cultural technique, a mode of perception
and of thought.15 There is nothing, therefore, to be said against soft-
ware art in the form of a painted picture.

GENRE CLICHÉS COULD MAKE SOFTWARE ART BORING

Of course, the danger of becoming paralyzed in stereotypes also exists
in art forms which, like Fluxus, do not define themselves through spe-
cific materials. Nevertheless: software art would become boring if—
in the perception of critics, curators and juries—its repertoire were
to be narrowed down to experimental web browsers, data visualiza-
tions, modified computer games and cracker codes (like computer
viruses and fork bombs). Another problem is the association of soft-
ware art with the “media art” system, with the side-effect that artisti-
cally interesting computer programs—like those which emerge in the
field of GNU/Linux and Free Software, for example—do not reach
software art competitions, festivals and exhibitions.

THE DISCUSSION WHETHER SOFTWARE ART CAN BE CALLED ART AT ALL
IS NOT ACTUALLY CONCERNED WITH SOFTWARE ART

Over and over again, the question is raised whether software art
should be given the suffix “art” at all. The naïve version of the ques-
tion views software as simply engineering, and therefore doubts its
artistic value; a more complex variation complains that yet again a
multifaceted culture has had the unnecessary criterion, the attribute
of “art” stuck onto it. And indeed, just as, for example, traditional
Japanese culture existed without a concept of the liberal arts as op-
posed to the applied arts, an understanding of “art” in the old sense
of “ars", of artifice, is widespread both in free and corporate software
developer culture. Thanks to the hacker imagination of Free Soft-
ware programmers, it is certainly possible to combine the works of
declared artists and declared non-artists in the field of software art,
as a festival exhibition curated by artist Alexei Shulgin has demon-
strated.16 Nonetheless, ultimately, objections to the “art” suffix as it is

15http://myhd.org/ninfo
16Examples of this are the award-winning hacker program “WinGluk Builder”

at the readme-Festival 2002 http://www.macros-center.ru/read_me/art_work/
27/readme27.zip and the program “Tempest for Eliza” exhibited in the following

http://myhd.org/ninfo
http://www.macros-center.ru/read_me/art_work/27/readme27.zip
http://www.macros-center.ru/read_me/art_work/27/readme27.zip


TEN THESES ABOUT SOFTWARE ART 8

applied to software art are only a vehicle with which to question the
concept of “art” itself.

In his review “Don’t Call it Art: Ars Electronica 2003,”17 Lev Manovich
comes up with a third, refined variant of the objection when he called
software art “not art” because, due to its focus on a specific mate-
rial, it did not belong to the system of “contemporary art.” However,
the contemporary art that can be seen in galleries, on fairs and in
museum exhibitions is made up of subdisciplines which display any-
thing but a neutral attitude to their material: on the one hand there
is large-format painting and photo art for private collectors, on the
other hand academic (often video-aided) installation art, which is
typically exhibited in state- subsidised buildings and produced by cu-
rators and artists trained in cultural studies. Quite apart from that,
software art is simply a generic term no different to painting, sound,
script or video art—nor was it defined by the artists themselves, but
by critics and curators, who observed a trend towards work using
software as its material in contemporary digital art.18

The term “software art” is therefore easy to legitimate, because it
results quite simply from the fact that remarkable contemporary art
(like the works mentioned in this text) is being produced in the form
of software, therefore demanding a theory and criticism of software
art.

c© This work is licensed under the Creative Commons Attribution-
ShareAlike License. To view a copy of this license, visit http:
//creativecommons.org/ licenses/by-sa/1.0/ or send a letter to Cre-
ative Commons, 559 Nathan Abbott Way, Stanford, California 94305,
USA.

year http://www.erikyyy.de/tempest/, which implemented a short-wave radio
broadcast by means of screen graphics on tube monitors.

17Published on the mailing lists “Rhizome” and “Nettime”, [?]
18For example Saul Albert in his 1999 essay “Artware” [?], Alex Galloway in “Year

in Review: State of net.art 99” http://switch.sjsu.edu/web/v5n3/D-1.html, An-
dreas Broeckmann, who added a software section to the Transmediale-Festival in
the year 2000 and, in 2001, Tilman Baumgärtel with his article “Experimentelle
Software” [?]

http://creativecommons.org/
http://creativecommons.org/
http://www.erikyyy.de/tempest/
http://switch.sjsu.edu/web/v5n3/D-1.html

	What this is not about
	What this is about
	There is no digital art without software
	Software art need not be digital or electronic
	Software art is not synonymous with Concept Art
	Software art is not synonymous with algorithmic art
	Software art is not being made in a vacuum, but as part of a software culture
	Software art is not programmer's art
	Genre clichés could make software art boring
	The discussion whether software art can be called art at all is not actually concerned with software art

