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Abstract-Shannon’s communicat ion (information) theory cast about  
as  much light on  the problem of the communicat ion engineer as  can be  
shed.  It reflected or encompassed earlier work, but it was so new that it 
was not really understood by  many  of those who first talked or wrote 
about  it. Most of the papers  publ ished on  information theory through 
1950  are irrelevant to Shannon’s work. Later work has  given us  useful 
information and  encoding schemes as well as  greater rigor, but the 
wisdom of Shannon’s way of looking at things and  his original theorems 
are of primary importance. 

I NFORMATION theory came into a  confusing and  
confused world. Communicat ion engineers had  a  prob- 

lem, but none  had  successfully formulated the problem or 
provided a  measure of the commodity with which com- 
mun ication engineers deal. There were on  the one  hand  
interesting and  useful special cases, and  on  the other hand  
inconclusive attempts to provide a  general  theory that 
would successfully include and  elucidate such special cases. 
In 1948  Claude Elwood Shannon publ ished in the Bell 
System Technical Journal a  two-part paper  [l], which cast 
about as much light on  the problem of the communicat ion 
engineer as can be  shed. 

My approach will be  to say something about the pre- 
Shannon world, to say something about the circumstances 
in which he  worked, to say something about what he  
accomplished, and  to describe the immediate aftermath 
through, say, 1950. F inally, I will give my own view of the 
promises (then) and  the accomplishments (now) of in- 
formation theory. 

I. THE PRE-SHANNON WORLD 

In 1951, E. Colin Cherry publ ished “A history of in- 
formation theory” [2], which is worth consulting in itself 
and  which provides an  invaluable bibliography, to which I 
am indebted, as I am to the bibl iography in his book, On  
Human Communicat ion [3]. I recommend Cherry’s paper  
and  book, though what I say now is not in entire accord 
with what he  said then. 

W ith 20-20 hindsight, it is easy to pick out the earlier 
work most contributive to Shannon’s synthesis. 

Among these is the invention in 1832  of Morse’s method 
of telegraphy with its highly efficient code [4]. Another 
was the elucidation of the problem of s idebands by Carson 
in 1922  [5]. In retrospect, Morse’s work showed a  way of 
speeding transmission; Carson’s an  apparently inviolable 
preservation or widening of the frequency spectrum of a  
signal in the process of modu lation or, as we would now 
say, encoding. 
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In 1924  Nyquist [6] in the United States and  Ktipfmiiller 
[7] in Germany showed that in order to transmit telegraph 
signals at a  definite rate a  certain definite bandwidth was 
required. This result, like Carson’s, is as central and  valuable 
now as it was then-but it was only a  part of the story. 

In 1928  Hartley [8] tried to formulate a  theory of the 
transmission of information. In retrospect, his idea of 
defining the quantity of information as the logarithm of 
the number  of symbols seems very modern,  but its success 
in elucidating knotty problems was not great. It is Shan- 
non’s feeling, and  m ine, that Nyquist’s work was more 
fruitful. 

One  knotty problem was posed by Armstrong’s realiza- 
tion in 1936  [9] that a  positive advantage in combatt ing 
noise and  interference could be  realized by increasing the 
bandwidth used for transmission. Armstrong’s wide-devia- 
tion frequency modu lation was and  remains an  epochal  
step in processing signals for transmission. 

On  the other hand, Homer Dudley (as he  told me  a  
number  of years ago)  set out to and  did overthrow any idea 
that communicat ion requires a  bandwidth at least as wide 
as the bandwidth of the message to be  communicated. He 
did this by inventing the vocoder, which he  described in 
1939  [lo]. At the transmitting end, the vocoder analyzes 
speech and  produces a  number  of slowly varying parameters 
or control signals. These are transmitted and  used to 
control a  distant speaking machine that m imics the ut- 
terance of the talker. Together with Morse and  the men  who 
devised shorthand and  commercial code books [2], Dudley 
was a  pioneer in source encoding. Gabor’s “frequency 
compression” [ 1  l] came much later. 

In 1945, Potter publ ished “Visible patterns of sound” 
[12]. This was elaborated in 1947, with George H. Kopp 
and  Harriet Green Kopp, in a  wonderful book, Visible 
Speech [13]. These publications present a  variety of sound 
spectrograms in which intensity is represented by degree 
of darkness; frequency is the ordinate and  time  is the 
abscissa. The  spectrograms show clearly that one  can in- 
crease the frequency resolution (by using a  narrow filter) 
at the expense of time  resolution, or one  can increase the 
time  resolution (by using a  broader filter) at the expense 
of the frequency resolution, but one  cannot increase the 
frequency and  time  resolution simultaneously. 

In 1946  Dennis Gabor,  in “Theory of communicat ion” 
[14], proposed a  time-frequency uncertainty of the form 
At . Af A 1. This uncertainty, which is a  direct conse- 
quence of Fourier transform relationships, is not unrelated 
to Heisenberg’s uncertainty principle of wave mechanics. 
His diagrams look much like Potter’s sound spectrograms. 
From his considerations, Gabor  arrived at the idea of a  
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logon or unit of information. This idea is really related to 
Nyquist’s work on signaling speed. It is nonstatistical in 
nature. 

The idea of a statistical message source is central to 
Shannon’s’ work. The study of random processes had en- 
tered into communication before his communication theory. 
There was a growing understanding of and ability to deal 
with problems of random noise. Rice was at work in this 
field [15]. Wiener had dealt extensively with the extra- 
polation, interpolation, and,smoothing of time series [16]. 
Although Wiener’s book was published in 1949, it had been 
available earlier in a wartime version known as the Yellow 
Peril (the cover was yellow). Shannon and Bode took 
considerable pains to put Wiener’s work in a form more 
directly useful to them (and to many others) [17]. 

Thornton Fry headed a group of mathematicians at the 
Bell Laboratories with whom Shannon was associated, both 
during the summer of 1940 and as a regular employee 
beginning in 1941. Fry told Brockway McMillan that he 
had once called Shannon into his office and told him that 
he (Fry) felt that the work of Nyquist and Hartley was 
deficient in that it ignored noise. Shannon does not recall 
such an incident. 

This constitutes, I believe, the work that in retrospect 
seems most germane to information theory. Some of the 
work is substantial and rather general, like that of Carson 
and Nyquist, Rice and Wiener; some can best be viewed 
as special cases of the highest importance, like that of Morse, 
Armstrong, and Dudley, and some like that of Hartley, 
Potter, and Gabor is suggestive. 

It is hard to picture the world before Shannon as it 
seemed to those who lived in it. In the face of publications 
now known and what we now read into them, it is difficult 
to recover innocence, ignorance, and lack of understanding. 
It is easy to read into earlier work a generality that came 
only later. It is also easy to overlook important, if not 
directly pertinent, features of the environment in which 
Shannon worked. 

The postwar world was filled with novel modulation 
schemes, many of which had been proposed or used for 
military communication. Besides frequency modulation, 
these included pulse-length modulation, pulse-rate or pulse- 
position modulation, and complicated variants of these. 
Finally, pulse-code modulation, invented earlier [ 181, had 
intriguing features. Notably, the signal-to-noise ratio in 
decibels of the recovered message was proportional to the 
transmission bandwidth, rather than to the logarithm of 
that bandwidth, as in wide-deviation frequency modulation. 

Pulse-code modulation (PCM) was in an exciting stage 
at the Bell Telephone Laboratories where Shannon,worked. 
The AN/TRC-6, a military communication system using 
PCM, had been demonstrated publicly on October 31, 
1945. Details of this work were later published in 1947 [19]. 
Goodall was working toward the exploitation of PCM [20]. 
C. B. H. Feldman, together with Meacham and Peterson, 
were (vainly, it turned out) pushing PCM for the first Bell 
System long-haul microwave radio-relay system [21]. Some 

of us felt that PCM was the wave of the future and that the 
future was already upon us [22]. (It was not.) 

There were other heady and inspirational activities. In 
1940, George Stibitz had demonstrated the “Complex 
Computer” at the fall meeting of the American Math- 
ematical Society [23]. The complex computer was a relay 
device which added, subtracted, multiplied, and divided 
complex numbers. Its input terminal was a teletypewriter; 
in the 1940 demonstration the computer in New York was 
operated remotely from Hanover, N.H., thus anticipating 
by a quarter century the essentials of today’s time-shared 
computers. A number of other relay computers were built 
at Bell Laboratories up to 1950 [23]. 

Shannon’s master’s thesis had been on the use of Boolean 
algebra in the analysis of relay (or other) logical circuits. 
At the Bell Laboratories he found that Stibitz had had 
similar ideas. Shannon’s interest in computers overlapped 
his interest in the problems of communication and probably 
provided an added stimulus for his emphasis on the digital 
aspects of communication. 

While pulse-code modulation and early work on com- 
puters may seem less directly related to information theory 
than the work of Nyquist, Hartley, Gabor, or Wiener, 
these were the activities that Shannon’s colleagues were 
pursuing while he was trying to formulate a general theory 
of communication. 

II. INFORMATION THEORY 

Shannon told me recently that he had been working 
toward information theory as early as 1940, when he was 
a National Research Fellow at Princeton. Although we 
worked in quite different fields, I saw Shannon frequently 
after the war, during the gestation of information theory at 
Bell Laboratories. When he visited my office I asked him 
if he had proved any new theorems; if he had, I asked him 
to write them down in a notebook (alas, the notebook has 
been lost, but there were few theorems in it). I cannot really 
give any details of the progress of communication theory in 
Shannon’s mind. I do remember lots of talk about pulse- 
code modulation and digital transmission, and criteria- 
sometimes wrong-for optimizing these. In the end, “The 
Mathematical Theory of Communication,” [l] and the book 
based on it [25] came as a bomb, and something of a 
delayed-action bomb. 

It is presumptuous, but necessary, to say something 
about the content of Shannon’s paper. This I shall do. 

In Shannon’s words, “the fundamental problem of com- 
munication is that of reproducing at one point either 
exactly or approximately a message selected at another 
point.” 

Shannon’s model of the message source is a stochastic 
process that chooses messages from among possible mes- 
sages on the basis of known (or in some sense knowable) 
probabilities. This is a fair but by no means exact fit to the 
behavior of many message sources. We should observe that 
the probabilities of a source of English text are not know- 
able and do not exist in any precise sense. What we can 
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say about Shannon’s mode l is that it is a  good  phenomeno-  
logical description of a  message source, and  that, using it, 
we can either make life simple by assuming an  ergodic 
source, or tractable by assuming a  source that is stationary, 
or much more complicated by considering various non-  
stationary sources. 

Shannon gives mathematical definitions of the informa- 
tion rate or entropy of a  source and  the capacity of a  
communicat ion channel, noiseless or noisy. In principle, 
and  within his assumptions, both are measurable quantities. 
These quantities are important because they are related by 
a  theorem. If the information rate of a  source is greater 
than the capacity of a  communicat ion channel, messages 
from the source cannot be  transmitted over the channel  
without error; there will necessarily be  errors of a  degree 
that can be  measured by a  quantity called the equivocation. 
But, if the capacity of the channel  is greater than the rate 
of the source, it is possible to send information through the 
channel  “with as small a  frequency of errors or equivocation 
as desired.” The  nigh-perfect performance possible when 
the channel  capacity exceeds the information rate of the 
source can be  realized only at the cost of complicated 
encoding involving a  long delay in transmission. 

After some examples of sources and  a  discussion of the 
discrete noiseless channel, Shannon analyzes the discrete 
noisy channel. Shannon’s proof that messages can be  trans- 
m itted with vanishingly small error if the source rate is 
less than the channel  capacity is indirect rather than con- 
structive. But in discussing encoding for transmission he  
gives a  variable-length encoding in which short codes are 
assigned to more probable messages and  long codes to less 
probable messages. He also cites an  error-correcting code 
from work, not then published, of Hamming. 

After discussing the discrete case without and  with noise, 
Shannon turns to the more difficult continuous case. Here 
one  clear and  sometimes m isapplied result caught people’s 
attention: the formula for the channel  capacity C, for a  
signal of average power P in additive white Gaussian noise 
of power N. For a  bandwidth W  the channel  capacity C is 

C = W  log, (1 + (P/N)) bits/s. (1) 
The  channel  capacity is the signaling rate for the best 
possible encoding, which in this case leads to a  Gaussian 
signal. Shannon distinguished and  made  some calculations 
concerning channels with a  peak power lim itation, a  
distinction many carelessly disregard. 

O ther matters concerning continuous information go  
perhaps a  little less smoothly. The  entropy measure suffers 
from a  problem of entropy encountered in classical statistical 
mechanics; if we don’t do  something the entropy of a  
continuous distribution is infinite. The  continuous case is 
saved by introducing a  fidelity criterion. 

It is useless, wasteful, and  impossible to provide the 
recipient of a  continuous message, such as voice or a  scene, 
with a  perfect reproduction of the message. He will be  
satisfied if the message he  receives meets some appropriate 
fidelity criterion. This fidelity criterion is not necessarily 
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mean  square error. It can be  a  kind of error specified a  
priori. In the case of the discrete source the rate or entropy 
can be  determined only by an  exhaustive and  exhausting 
examination of the message source statistics. In the case 
of the continuous source, the proper fidelity criterion can 
be  obtained only by an  exhaustive and  exhausting examina- 
tion of the requirements of the message destination. 

It is interesting to examine the immediate reaction to 
Shannon’s work [l]. We  have in print two reviews. The  
first is a  review of the paper  in the Bell System Technical 
Journal [1] by J. L. Doob [26]. After a  careful summary 
the content of the paper, Doob says, 

of 

The  discussion is suggestive throughout, rather than 
mathematical, and  it is not always clear that the author’s 
mathematical intentions are honorable. The  point of 
view is that stressed by W iener in his NDRC report 
(soon to be  publ ished as a  book) “The  Interpolation, 
Extrapolation, and  Smoothing of Stationary T ime 
Series,” in which communicat ion is considered as a  
statistical problem, specifically in its mathematical 
formulation as the study of stationary stochastic 
processes, and  of the results of various operations 
performed on  them. 

It is clear that Doob, a  mathematician, did not appreciate 
the engineering importance of Shannon’s work. He appears 
not to have seen, either, that a  brand new field of math- 
ematics had  been  opened  up. 

The  book with Weaver  [25] was not widely reviewed, 
presumably because of the earlier appearance of Shannon’s 
part in the ,Bell System Technical Journal. We  do  have a  
review by W iener [27]. 

W iener’s head  was full of his own work and  an  inde- 
pendent  derivation of (l), the capacity of a  channel  with a  
lim ited average power, and  a  Gaussian noise. After a  few 
introductory remarks, W iener took off on  the trail of Max- 
well’s demon and  the human brain. Competent people have 
told me  that W iener, under  the m isapprehension that he  
already knew what Shannon had  done, never actually 
found out. This would be  consistent with his review of 
Shannon’s work. 

We  come next to Warren Weaver’s part of his and  
Shannon’s book [25]. A version of some of this material 
had  also appeared in the ScientiJic American [28]. 

Weaver  starts out by recapitulating and  explaining what 
Shannon had  done. Weaver  recognized clearly the im- 
portance and  nature of Shannon’s work. Like many others 
later, he  was not satisfied with the territory that .Shannon 
claimed. Weaver  plausibly divided the problem of com- 
mun ication into three levels. 

Level A: How accurately can the symbols of com- 
mun ication be  transmitted? (The technical problem.) 

Level B: How precisely do  the transmitted symbols 
convey the desired mean ing? (The semantic problem.) . 

Level C: How effectively does the received mean ing 
affect conduct in the desired way? (The effectiveness 
problem.) 

Weaver  recognized that Shannon’s work pertained to 
level A, but he  argued persuasively that it over lapped and  
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had significance for levels B and C. Weaver was intrigued 
by the idea of using the powerful body of theory concerning 
Markov processes in connection with both languages and 
semantic studies. And, in pointing to the pertinence of 
information theory to cryptography, he argued that in- 
formation theory “contributes to the problem of translation 
from one language to another-.” 

The examples that Shannon gave of stochastic text 
stimulated an interest in statistical models of language. 
Weaver [25] seems to have been convinced of the validity 
of such a model. Linguists later rejected the idea, but this 
lies well beyond the era I shall cover. 

Such ideas were not foreign to Shannon. In a paper on 
programming a computer to play chess, published in 1950 
[29], Shannon lists the following as some possibilities. 

1) Machines for designing filters, equalizers, etc. 
2) Machines for designing relay and switching circuits. 
3) Machines to handle the routing of telephone calls 

based on the individual circumstances rather than by fixed 
patterns. 

Shannon’s fascinating examples of stochastic text, to- 
gether with the compelling phrase information theory, 
created another diversion-information theory and art. 
Here I shall cite only two early papers which, unlike many 
later ones, are both informed and sensible [35]. 

4) Machines for performing symbolic (nonnumerical) 
mathematical operations. 

5) Machines capable of translating from one language 
to another. 

Shannon’s 1949 paper, “Communication theory of secrecy 
systems” [36] was not so much a diversion as an inspired 
application of the techniques he had developed to the 
determination of when a cryptogram should in principle 
be decipherable. The paper also contains a sensible discus- 
sion of what is desirable in cryptography-mixing trans- 
formations that are easy to do and undo and yet make the 
encrypted text seem random. 

6) Machines for making strategic decisions in simplified 
military operations. 

7) Machines capable of orchestrating a melody. 
8) Machines capable of logical deduction. 
Such ideas are, however, foreign to information theory 

in the sense in which Shannon formulated it, a theory that 
provides models of message sources and communication 
channels and theorems relating entropy to channel capacity. 
In the same way, except for material concerning the capacity 
of a continuous channel, Wiener’s book, Cybernetics, which 
appeared in 1948 [30], is also irrelevant to information 
theory in the sense in which Shannon proposed it. So is 
much else that was inspired by information theory. 

Thus, much of the early reaction to Shannon’s work was 
either uninformed or a diversion from his aim and ac- 
complishment. Some work, however, was germane and 
sound. Among this was, of course, Shannon’s paper in the 
January 1949 issue of the PROCEEDINGS OF THE IRE [37]. 
In this paper Shannon 1) gave a proof of the sampling 
theorem, 2) pointed out that there must be a threshold 
effect in mapping a signal into a space of higher dimen- 
sionality (as in frequency modulation) because such map- 
pings cannot be continuous (a result apparently arrived at 
by Kotelnikov earlier [38], but then inaccessible to Shan- 
non), and 3) gave a clear and appealing geometrical 
derivation of (1). 

One entirely legitimate diversion was to relate Shannon’s 
entropy meaningfully to the entropy of statistical mechanics. 
Equation (l), for the capacity of a continuous channel, 
should apply to real physical channels plagued by classical 
Johnson noise, which is indeed Gaussian. Brillouin [31] 
and Mandelbrot [32] worked toward this end. How far 
they and others succeeded I will not judge. I later satisfied 
myself that (1) and the inoperability of Maxwell’s demon 
are consistent in the classical case [33]. This early work 
did leave unsettled the capacity of a channel as limited by 
quantum effects, a problem not yet resolved in a general 
way. 

In 1949, William G. Tuller published a paper giving his 
justification of (1) [39]. 

In 1950, S. 0. Rice computed the probability of error 
for two encoding schemes [40]. Following Shannon, he 
chose codewords at random. He considered two cases: 
time-limited codes and band-limited codes. He showed that 
in each case channel capacity was approached as the codes 
became very long, and (a very important result) that the 
probability of error could be made to decrease exponentially 
with code length. 

While forays from information theory into statistical 
mechanics are legitimate, they miss the heart of Shannon’s 
theory: the idea of source rate and deliberate, efficient 
encoding for transmission with negligible error over a 
channel of limited capacity. So did work by Jacobson 
concerning information and the eye and ear [34]. Each 
paper attempts to estimate something that may or may not 
be a rate for a part of the biological system. But, in such a 
system the encoding is given, and details of the message 
source and the message destination are unknown. I suppose 
that one might try to construe the calculations as bearing 
on fidelity criteria for hearing and seeing, but the rates 
arrived at appear unreasonably high (5 x lo4 bits/s for the 

Choosing codewords at random is fine for proving 
theorems but impractical for transmitting messages. We 
have noted that Shannon quoted an error-correcting code 
due to Hamming. In 1950 Hamming published his work in 
a simple and clear paper that describes all perfect binary 
codes save one [41]. This had been given by Golay in 1949, 
in a paper that refers to the example of error correction 
cited by Shannon [42]. 

Error correction in binary signals has become strongly 
associated with information theory, yet Hamming makes it 
clear in his paper that he was led to error-correcting codes 
because of the errors made in computing and switching 
machines, and particularly in relay machines, rather than 
through information theory. 

In January of 1951 Shannon published “Prediction and 
entropy of printed English” [43]. By an ingenious experi- _ _ . . 

ear; 4.3 x 10b bits/s for the eye). ment in which a human subject guessed what letter would 
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come next, Shannon reduced his estimate of the redundancy 
of English text from an  earlier value of “around 50  percent” 
to an  entropy of about 1  bit per character (lower bound  
0.6, upper  bound  1.3). This is of interest in connection 
with both source encoding and  cryptography. 

Shannon also sought to arrive at a  general  definition of 
information through a  lattice theory of information. In- 
formation was taken as what is common to all encodings of 
a  stochastic source. Apparently, the structure was not great 
enough  to lead to anything very valuable. He publ ished on  
this in at least two places [44-J, [45]. 

Strangely, we have now covered both a  number  of 
peripheral areas roughly to the end  of 1950  and  all central 
and  substantial contributions to information theory in that 
period. One  important matter had  not emerged:  a  con- 
viction on  the part of mathematicians that Shannon had  
done  something important and  a  motivation to search for 
proofs more satisfactory to them. Early steps in this direc- 
tion came with the publication in 1953  of McMillan’s 
paper, “The  basic theorems of information theory” [46], 
and  a  paper  by Khinchin [47]. 

III. THEN AND Now 

We have seen the problem of communicat ion worried 
but not resolved prior to 1948. We  are now familiar with 
its resolution, but the first response to that resolution for 
many people was to ride off in their own directions, old 
and  new, rather than to pay attention to what had  hap- 
pened  and  to the issues that Shannon’s theory raised. 
This is particularly noticeable in the largely irrelevant 
material presented at the Burlington House Symposium in 
1950  [44]. 

There were strong engineering reactions to information 
theory. 

One  of the earliest reactions was to try to reduce the 
bandwidth used for transmission by encoding a  band-  
lim ited signal for transmission over a  channel  of narrower 
bandwidth. In the long run, this proved to be  the wrong 
direction to go. 

Another reaction was to speculate about and  to try to 
measure something concerning the rate of sources (as, 
picture-element-to-picture-element probability). I think that 
no  one  obtained information of value comparable to Shan- 
non’s concerning English text. 

Another reaction was to try to evaluate existing transmis- 
sion systems in terms of information theory. One  really 
cannot do  this without knowing how well one  can hope  to 
encode as a  function of delay. This led to work that others 
will presumably describe. 

Another reaction was to seek better systems of modu la- 
tion or encoding suited to various sorts of noise or distor- 
tion. This finally led to some very complex ideas and  some 
complex systems. 

Another reaction was to devise and  exploit error-correct- 
ing codes. This is still a  happy field of endeavor.  

When  I look back on  the early days of information 
theory, I ask myself, what did we expect and  what did we 
get? We  expected knowledge-particular knowledge of how 
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to do  this or that simply by turning a  mathematical crank. 
But most often, when-the problem was real and  serious, the 
crank refused to budge  or the m ill g round endlessly. Just 
imagine really trying to gather useful results by block en- 
coding and  taking statistics! When  the crank spun most 
easily, there was no  practical effect on  the art of com- 
mun ication. 

What  some of us attained was perhaps wisdom rather 
than knowledge. Like the laws of thermodynamics, in- 
formation theory divided a  world into two parts-that 
which was possible and  that which was not. O ften these 
were separated by a  gap  between upper  and  lower bounds,  
but the general  geography was clear. Ingenious people no  
longer invented coding or modu lation schemes that were 
analogous to perpetual motion. But, they were offered the 
novel possibility of efficient error-free transmission over 
noisy channels. 

Like the vocoder, color television thrives on  human 
lim itations-on slowness of eye and  on  our failure to 
resolve detail in color. And, ingenious frame-repeating 
experiments in Picturephone@ transmission succeed because 
when a  face moves the background does not change. 

The  way we look at these forms of source encoding comes 
from information theory; the schemes themselves from 
human ingenuity. 

Occasionally the mathematical crank does turn to good  
advantage,, as in error-correcting codes. These, however, are 
most useful in rare special cases-transmission back from 
Mariner spacecraft, or data transmission over noisy voice- 
grade circuits that may eventually be  replaced by low-error- 
rate digital circuits. 

In general, I am content with the wisdom that information 
theory has given us, but sometimes I wish that the math- 
ematical machine could provide a  few more useful details. 

One  cannot judge a  scheme of modu lation without 
knowing how good  it is, yet many useful schemes, including 
frequency-modulat ion receivers with feedback and  some 
other aspects of frequency modu lation have proved to be  
mathematically rather intractable. Perhaps this lies outside 
of the range of information theory. 

In data transmission, we use redundant encoding in 
order to shape the signal spectrum. Our knowledge of the 
relation between spectrum and  efficiency, and  as to what 
sort of spectra are attainable, is unsatisfactory. 

The  use of computers in connection with large data bases 
has raised the question of data compression. We  usually 
feel that a  code book comes free; in the computer memory 
it could occupy as much space as the message-- lor more. 
Attempts have been  made  to apply information theory to 
the problem-but, is information theory the right theory- 
or is there a  right theory? 

I think that I have never met a  physicist who understood 
information theory. I wish that physicists would stop talking 
about reformulating information theory and  would give us 
a  general  expression for the capacity of a  channel  with 

@  Registered service mark of the American Te lephone and  Telegraph 
Company.  
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quantum effects taken into account rather 
of special cases. 
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