Eur. Phys. J. Special Topics 145, 217-229 (2007)
© EDP Sciences, Springer-Verlag 2007 THE EUROPEAN

DOI: 10.1140/epjst /e2007-00158-y PHYSICAL JOURNAL
SPECIAL TOPICS

A trace formula for the nodal count sequence

Towards counting the shape of separable drums

1,2,3,a 1,4,c

S. Gnutzmann , P. Karageorge*", and U. Smilansky

! Department of Physics of Complex Systems, The Weizmann Institute of Science,
Rehovot 76100, Israel

2 Fachbereich Physik, Freie Universitit Berlin, Arnimallee 14, 14195 Berlin, Germany

3 School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK

4 School of Mathematics, Bristol University, Bristol BS8 1TW, UK

Abstract. The sequence of nodal count is considered for separable drums. A
recently derived trace formula for this sequence stores geometrical information
of the drum. This statement is demonstrated in detail for the Laplace-Beltrami
operator on simple tori and surfaces of revolution. The trace formula expresses the
cumulative sum of nodal counts This sequence is expressed as a sum of two parts:
a smooth (Weyl like) part which depends on global geometrical parameters, and a
fluctuating part which involves the classical periodic orbits on the torus and their
actions (lengths). The geometrical context of the nodal sequence is thus explicitly
revealed.

1 Introduction

More than 200 years ago, when Ernst Florens Friedrich Chladni found the sound figures which
now bear his name, he tried to classify the emerging patterns e.g. by the number of lines or
the number of domains defined by the lines [1]. We are happy to dedicate a piece of work to
E.F.F. Chladni whose 250th birthday we celebrate this year which follows his ideas closely.
Chladni’s work inspired research in physics and in mathematics until today. He not only con-
siderably advanced the knowledge on resonance and wave phenomena but also introduced the
nodal set as a new concept in the research of wave phenomena which is visualised in the sound
figures. The nodal set is the zero set of a wave function. In the two dimensional case of vibrating
plates or drums the nodal set consists of nodal lines which are the borders of nodal domains,
i.e. maximally connected domains where the sign of the wave function does not change.
We consider drums (or quantum billiards) as the eigenproblem

~Apmt(x) = Bi(x) (1)

of the Laplace-Beltrami operator —A 4 on a compact Riemann surface M (if M has a boundary
we consider Dirichlet boundary conditions on dM). The spectrum {E, }52 ; is discrete and can
be ordered F, < FE,;i. The eigenfunction v, corresponding to the eigenvalue FE, can be
characterized by the number v, of its nodal domains. The intimate connection between the
spectra, wave equations, and nodal sets is well known and frequently used or investigated in
various branches of physics and mathematics (see [2] for a recent review). The relation between

® e-mail: sven.gnutzmann@nottingham.ac.uk
b e mail: panos.karageorge@bristol.ac.uk
¢ e-mail: uzy.smilansky@weizmann.ac.il



218 The European Physical Journal Special Topics

the nodal count and the spectrum is highlighted by Sturm’s oscillation theorem [3] that states
that in one dimension the n-th eigenfunction has exactly n nodal domains. In higher dimensions
Courant proved that the number of nodal domains v, of the n-th eigenfunction cannot exceed
n [3]. More recently, statistical properties of the nodal count have been investigated. It was
shown that the fluctuations in the nodal count sequence {v,,}32; display universal features
which distinguish clearly between integrable (separable) and chaotic systems [4]. This statistical
approach also lead to surprising connections with percolation theory [5] and the Schramm-
Loewner evolution [6,7].

Numerical and analytical evidence lead to the belief that the sequence of nodal counts in a
billiard contains a lot of information about the dynamics and the geometry, beyond the
difference between integrable and chaotic. This lead to the question [8,9]: ‘Can one count
the shape of a drum?’ This is a reformulation of the famous question by Kac [10]: ‘Can one
hear the shape of a drum?’ More precisely, the question is: does the sequence of nodal counts
determine the geometry of a drum (compact Riemmannian surface)? The independence of
the inverse counting question from Kac’ question has been shown in that nodal counting can
distinguish between some isospectral systems [8,11]. For separable systems a trace formula for
the nodal counting sequence has been established that explicitly shows the dependence of the
nodal sequence on the geometry of the surface in both the smooth (Weyl-like) and the fluctu-
ating parts. Thus, the nodal count trace formula is similar in structure to the corresponding
spectral trace formula [12-15]. The sequence of nodal counts does not involve any spectral
information (apart from the order) yet the nodal count trace formula contains all information
on periodic orbits on e.g. surfaces of revolution. Thus it is an important step towards ‘counting’
the shape of such surfaces.

In this paper we give a more detailed account of the nodal count trace formulae for convex
smooth surfaces of revolution and for simple two-dimensional tori. Generalizations to other
Riemannian manifolds in two or more dimensions are possible, provided the wave equation is
separable.

2 The cumulative nodal count

If the spectrum of the Laplace-Beltrami operator on a compact Riemannian manifold is void of
degeneracies we may order the spectrum such that E,, < E,, ;. The corresponding nodal counts
v, then form an ordered sequence which will be central to this discussion. Let [K] denote the
largest integer smaller than K € R, then we define the cumulative nodal count

[K]
C(K)=Y v, for K>0. (2)
n=1

To generalize this definition to degenerate spectra one has to uniquely choose a basis of
wave functions in the degeneracy eigenspace and also decide on the order in which they appear
in the nodal counting sequence. There are several more or less natural ways to do this. For
separable systems which are the focus of this paper we propose to choose the unique (real)
basis in which the wave functions appear in product form. This still does not suffice to set a
unique order within the degenerate states. Chosing an unambiguous order can be circumvented
by modifying the definition of the cumulative nodal count in the following way. First define the
function

E) =Y wmO(E - E,) (3)

which is independent of the order of the nodal counts. Here, ©(x) is Heaviside’s step function.
This comes at the price that now the function is based on information obtained from both the
nodal counting sequence and the exact positions of the eigenvalues. To eliminate the dependence
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on the latter, we use the e-smoothed spectral counting function
N(E) = O.E - Ey), (4)
n=1

where O.(z) is a continuous, symmetric and monotonically increasing function with

21_13(1) O (z) = O(z).
As a consequence, for finite €, NV (E) is a continuous strictly monotonically increasing func-
tion which can be inverted. Let E.(K) as the solution of N .(E) = K. Then we define the
modified cumulative nodal count by

¢(K) = lim ¢(E(K)). (5)
e—0

For non-degenerate systems this is equivalent to the original definition (2) up to a trivial
shift ¢(K) =C (K + %) In the limit € — 0 the contribution of a g-times degenerate eigenvalue
E, = Ent1 = -+ = Eyy9-1 reduces to a single step @(K —(n—-1+ %)) Zgzl Vnts—1 at
the central index K = (n -1+ %) where the cumulative nodal count increases by the sum of
the nodal counts within the degeneracy class. We will derive a trace formula for this modified

cumulative nodal count (omitting ‘modified’ in the sequel).

3 A trace formulae for the cumulative nodal count

Trace formulae for spectral functions like the spectral counting function N'(E) have been derived
for many classes of drums (and more general quantum systems) and they have been applied
with great success. In the case of separable drums, we will show that the same methods that
are used for spectral functions can be applied to spectral nodal counting function é(E) which
eventually leads to a trace formulae for ¢(K).

The main ingredients of the derivation of spectral trace formulae for spectral functions are
the Poisson summation formula (for finite sums)

S fm= 3 /

n=ng N=—oco "

oo ni+1 )
S [ e dn = 5 () + fn) (©)

T dn ot L[ (g) + S )]

N=—co“M0~1

and saddle point approximations to the resulting integrals.

3.1 Simple tori

Let us start with the simpler case of a 2-dim torus represented as a rectangle with side lengths
a and b and periodic boundary conditions 1(0,y) = ¥(a,y) and (z,0) = ¥(z,b). This leads

to (real) eigenfunctions
cos [ 2mn \ cos [ 2mm
Ynm(2,y) = sin <a) sin (b) (7)

for m,n € Z (cosines apply for m,n > 0 and sines for negative m,n). The corresponding
eigenvalues take the values

By = (20)? [" i m] | (8)

a? b2
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Due to the checkerboard like structure of the nodal set, it is straight forward to count the
nodal domains in the wavefunction ¢y, ,,, which gives

U = (2|1] 4 0,.0)(2lm] 4 6mo) - 9)

The only free parameter of the nodal count sequence for tori is the aspect ratio 7 = a/b
because the number of nodal domains is invariant to rescaling of the lengths.
Applying Poisson’s summation formula (6) to the spectral counting function

o0

> O(E-Enm) (10)

n,m=—oo

N(E)

2

o0 00 %) 2
Z / dn / dm © (E — (2m)? {22 + ”;D p2mi(nN+mM) (11)

N,M=—oc0

all appearing integrals can be performed exactly. Here we are only interested in the leading
asymptotic behaviour obtained by saddle-point approximation of all oscillatory integrals which
gives

N(E) = AE + \/gAEi > M +O(E™%) (12)
T : L;

The leading smooth term AF is obtained from the term N = M =0 in (11) and A = ab/(4m)
is proportional to the area of the torus. The sum in 12 runs over r = (N, M) € Z?\(0,0) (in
the sequel every sum over r will not include (0,0) unless stated otherwise). These terms are
oscillatory functions of E. Here, L, = /(Na)? + (Mb)? is the length of a periodic geodesic
(periodic orbit) with winding numbers r = (N, M).

One can treat ¢(F) analogously. Here a closed analytic expression for the integrals would be
out of reach, but higher order corrections to the leading result can be obtained systematically.
The leading asymptotic contributions are given by

n MN
(B) =2 B+ BN Q sin (L,«f ~ 5) + O(E). (13)
T2 - LE 4

We now have the leading asymptotic expressions for both ¢(F) and N (E). The next step
would be to invert N'(E) = K and eliminate the dependence of ¢(E) on the spectrum. However,
the leading orders of the trace formula (12) for the spectral counting functions do not define
a manifestly monotonically increasing function. Still, one may think of the exact inverse F(K)
as an asymptotic series itself. The leading orders of this series can formally be obtained from
the trace formula (12)

+ O(KY). (14)

23 Z sin(l, VK — ')
Arz lr%

r

Here, I, = L./v/A is the re-scaled (dimensionless) length of a periodic orbit. The above step
definitely needs a more detailed justification. Here, we can only refer to the numerical tests
that we will give below.

We may now replace E by E(K) in (13) to obtain the leading orders of the cumulative
nodal count ¢(K) = é(E(K)). The latter can be written as

o(K) =2(K) + cosc(K) (15)

with a smooth part
2
K) = pK2 + O(K) (16)
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and an oscillatory part

Cosc(K) = K5 arsin(leVE — Z) +O(K), (17)
where we introduced the amplitudes
25 (4r?|NM
ap = 23<” |—1>. (18)
515 12
T2 r

Note, that the smooth part is independent of the geometry of the torus. However, the oscillating
part depends explicitly on the aspect ratio 7 = a/b and can distinguish between different
geometries.

When trying to calculate higher order corrections to the leading terms in the smooth and
oscillatory parts of the cumulative nodal count one runs into some difficulties. Already in the
next-to leading order products of sums over periodic orbits appear and it is no longer straight
forward to discern the smooth from the oscillatory parts.

3.2 Surfaces of revolution

Let us now consider surfaces of revolution M which are created by the rotation of the line
y = f(z) for x € I = [-1,1] about the z-axis. We restrict our attention to smooth (analytic)
and convex surfaces. In more detail we make the following assumptions:

(i) The function g(z) = f?(x) is analytic in I = [-1,1], and vanishes at * = +1 where
q(z) ~ ax (1 F x), with ag positive constants. This requirement guarantees that the surface
is smooth even at the points where M is intersected by the axis of rotation. In particular,
M has no boundary.

(ii) The second derivative of f(x) is strictly negative, so that f(z) has a single maximum at
T = Tmax, Where f reaches the value fp,.x. This requirement guarantees convexity of M.

Surfaces which satisfy the requirements above are convex, mild deformations of ellipsoids of
revolution. Below we will add a further technical requirement that will exclude the sphere
among other surfaces — generic mild deformations of ellipsoids will not be affected.

The metric on the surface (induced from the Euclidian metric in R?) is given by

ds* = [1+ f'(z)?] dz* + f(z)*d6?, (19)

where the prime denotes differentiation with respect to x, and 6 is the azimuthal angle.

3.2.1 The wave equation on a surface of revolution

Considering a surface of revolution as a drum we have to discuss the solutions of the wave
equation
—Anmy(z,0) = Ey(x,0) (20)
where the Laplace-Beltrami operator corresponding to the metric (19) for a surface of revolution
is given by
1 0 f(z) 0 1 02
F@)o(@) 0z 0(x) 02 f(a)? 06°°

Apm = (21)

where o(x) = /1 + f/'(z)2.

Solutions ¥(z,d) to (20) can be found for a discrete spectrum of eigenvalues E and are
doubly differentiable, 27-periodic in  and non singular on [I x S1]. The wave equation (20) is
separable and the solutions can be written as a product

_ cos

W(2,0) = S(mb) dn(x) (22)
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where m € Z to ensure 27m-periodicity in 6. In the seperation ansatz (22) we choose to use the
cosine for m > 0 and the sine for m < 0.
For any fixed m, (21) now reduces to the ordinary differential equation

1 d f(z) d m?
_ il — — bm(x) = Ed,, 23
Fo1oe) i o) e 8+ Foyz (@) = (@) (23)
which is of the Sturm-Liouville type. Let us denote the eigenvalues E, ,, and eigenfunctions
¢nm(z), where n = 0,1,2,... and E, ,, < E,y1m. Sturm’s oscillation theorem then implies

that ¢y, () has n nodes.
The nodal pattern of the wave ¥y, m (2, 0) = ¢ m(x) Sn (m0) is that of a checkerboard typical
to separable systems and contains

Unm = (n+1)(2|m| 4 0m0) (24)

nodal domains.

3.2.2 The semiclassical approach to the spectrum

To proceed further we also need to know the eigenvalues E,, ,,. For n,m > 1 the latter can be
replaced by the semiclassical eigenvalues using the Bohr-Sommerfeld approximation [13]

1
Eif%:H<n+2,m>—|—h(n,m) ,neN, meZ. (25)

where H (n,m) is the classical Hamiltonian defined in terms of the action variables, and h(n,m)
is homogeneous of order 0. Neglecting h(n,m) in the sequel, amounts to introducing an error
which is bounded by a constant. As indicated by the notation the action variables m and n
in (25) coincide with the integers m and n used in the separation ansatz above. Note, that in
general classical integrability leads to analogous semiclassical approximations for the spectrum.
However classical integrability does not imply quantum separability. In our approach we use
the property of quantum separable drums that the nodal sets have a checkerboard structure
which implies that the number of nodal domains is an explicit function v, ,, = v(n,m) of the
action variables n and m (basically a product). Since quantum separability implies classical
integrability our approach can be generalized to all drums for which the wave equation is
separable.

The classical Hamiltonian H (n,m) can be obtained from the observation that the classical
trajectories are the geodesics on the surface. The latter can be derived from the Euler-Lagrange
variational principle with the Lagrangian

v? 1 . .
L= 11 ([1 + f'(2)*] & + f(x)292) . (26)
where a dot above denotes time derivative (the factor 1/4 in front of the squared velocity is
consistent with our choice of energy and action units). The angular momentum along the axis

po=f (m)29 /2 is conserved and we shall use it as the first action variable m = % f027r pedf = pg.
The momentum conjugate to z is

pr == [1+ f'(2)?] %, (27)

DN | =

and the conserved kinetic energy is obtained by a Legendre transformation

2
pm m

1+ f/(x)?  f(2)?

E = H(py,z,m) = pgd + ppi — L = (28)
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We may now introduce the action variable n,

n(E;m) = %%px(E,x) dx = %/u pe(E, z)dz (29)

where

pa(E,2) = V[Ef(2)? —m?][1+ f'(2)?]/ f(2) (30)

and x4 are the classical turning points where Ef(:r)2 —m? =0, with 2_ < Tpax < Ty.
Real classical trajectories exist only if E > (m/fmax)?. The classical Hamiltonian H (n,m) in
the action-angle representation is obtained by inverting (29) to express the energy in terms of
n and m.

The classical Hamiltonian H (n,m) is a homogenous function of order 2

H(Mn, Am) = \>H (n,m). (31)

For the discussion of the classical dynamics and the structure of phase space it is therefore
sufficient to consider unit energy £ = 1. Any other energy can be obtained from simple rescaling
(and trajectories remain the same upto a rescaling of the time). All dynamic content is thus
stored in the function

n(m) =n(E =1,m) (32)

which defines a line I" in the (n,m) plane and is one of the main building blocks of the semi-
classical theory which will be used throughout this work. We shall list therefore its relevant
properties:

(i) n(m) is defined on the interval — frax < m < frax.
(ii) The reflection symmetry, n(—m) = n(m), follows from the definition (29).
(iii) In the interval 0 < m < fpnax the function n(m) is monotonically decreasing from its
maximal value n(0) to n(m = fmax) = 0.
(iv) At m = 0 the function n(m) is not analytic.
(v) Some authors (e.g., [15]) prefer to use the Clairaut integral Z instead of the angular

momentum. They are related by
m

IT=—. 33
oT (33)
Let us now turn to periodic motion on the surface of revolution. Periodic geodesics apear if
the angular velocities
_ OH(m,n) _ OH(m,n)

34
n on wm om (34)
have a rational ratio. Since % = —“m this is equivalent to the condition
dn(m)
M+N——=0 35
tN— (35)

for M, N # 0. The integers r = (M, N) € Z?\(0,0) are the winding numbers in the § and z
directions.
The classical motion is considerably simplified if the twist condition [15]

n'(m) = dngT)

#0 for 0<m < fiax (36)

is obeyed. This excludes, for example, the sphere but includes all mild deformations of an
ellipsoid of revolution. We will assume the twist condition for the rest of this work. It guarantees
that there is a unique solution to (35) which we will call m,.

Note, that n/(m) has a finite range that we will denote by 2. A solution to (35) only exists
if —M/N € {2. Periodic motion with winding numbers N =0, M # 0 or with M #0, N =0
are not described by solutions of (35). The first case, N = 0 describes a pure rotation in the
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0-direction at constant r = .« Where mo,+|Mm| = T fmax and the second case M = 0 is a
periodic motion through the two poles at fixed angle # mod 7 such that my| o = 0.

The length of a periodic geodesic can be obtained by observing that E = v?/4 is a constant
of motion the metric length L = § v?dt/v of a periodic geodesic is given by

L, =27 |Nn(my) + Mm,|. (37)

Returning to the spectrum, we note that the leading terms in the trace formula for the spectral
counting function N(E) = > O(E — E, ) can be obtained by using (25) and Poisson’s
summation formula [15].

N(E) = AE + E% Y N,(E) (38)
where 5
A= n(m) dm = ||M||/4r (39)
7fmax

and ||M|| is the area of the surface. The oscillating parts contain integrals

fmax
Nr O(/ dm eQﬂi\/E[Nn(m)JrMm]. (40)

— fmax

We will calculate these to leading order in E? using the stationary phase approximation.
The stationary phase condition turns out to be identical to equation (35) which describes
periodic motion. As a consequence the stationary points are m = m,. Note that the range
of contributing r values is restricted to the classically accessible domain —M/N € Q. For
—M/N ¢ Q the integral does not have a stationary point and contributes only to higher orders

in 1/v/E. Eventually one obtains, in stationary phase approximation [15]

. ysin(LeE2 +07%)

+O(E3 41
27| N3nl/|z (E7%) 4

Ne(E) = (

/) which is the same for all values of r. The contribu-

tions of the terms with either N =0 or M = 0 or with —M /N ¢ Q are of higher order in 1/FE
and will not be considered here.

where nl = n’’(m = m,) and o = sign(n,

3.2.3 The cumulative nodal count

We have now all ingredients to derive an asymptotic trace formula for the cumulative nodal
count

o(K)=EEK) =Y > tmn O(E(K) = Enpn). (42)
n=0m=—o0

Inverting the asymptotic trace formula (38) for the spectral counting function N (E) = K
one obtains

i K
B(K) = g - (i) 3 % + O(K?) (43)

to leading order in 1/K.

The function ¢(E) can be obtained as an asymptotic trace formula by the same approach
that we used for N'(E) in the preceding section 3.2.2. Expanding the result in 6E = E(K)—K/A
such that

c(K) =¢&K/A) + & (K/A)JSE + O(E"S§E?) (44)
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is consistent if we neglect all orders smaller than O(K). In almost complete analogy to the
trace formula (15) for simple tori, this can be expressed as a sum

c¢(K) =¢(K) + cosc(K) (45)

of a smooth part ¢(K) and an oscillatory part, cosc(K). Defining

1
mPnd = — dm dn |m|Pn? (46)
E(m,n)<1

as the action moments (averaged over the area under the curve I') the smooth part can be
expressed as

oK) =2""k?+ K3 1 O(K) (47)

A Az
which, compared to the trace formula of the torus (15), has an additional term o K 3/2 which
can be traced back to the different way of counting nodal domains in tori (9) and surfaces of
revolution (24). Likewise, the oscillatory part can be expressed as

cosc(K) = KT Y apsin (zr\/EJr %) + O(K) (48)

r:—%eﬂ

with the amplitude
N Mmen(me) — 2mn

ar =(—1
== Ain|N3ny|z

(49)

and rescaled length
Ly

VA

of a periodic geodesic r with —% € Q. Note, that for m, = 0 or m, = 4 fi,ax only one half of
the stationary phase integral contributes and the amplitude a, has to be multiplied by 1/2. If
the (finite) interval Q@ C R is bounded by rational numbers, then the amplitudes a, for periodic
geodesics with winding numbers satisfying —% € 09 also have to be multiplied by 1/2.

The above trace formula reveals a quite astonishing relation between the nodal count
sequence and the geometry of the surface. So far, similar relations have only been
derived for spectral functions. Yet the cumulative nodal count does not contain any spectral
information apart from the ordering inherited from the spectrum and still the oscillatory part
can be written as a sum over all different periodic geodesics.

For ellipsoids defined by the rotation of the curve

f(z) =RvV1—2? (51)

with maximal radius fma.x = R at the equator the curve n(m) can be expressed explicitly in
terms of elliptic integrals.

Iy =

(50)

4 Application of the trace formula and comparison to numerical results

We have tested the approximations in the above calculations numerically on four different
systems for which we built up a large data base which will be denoted as data sets (a) to (d).
We chose two different ellipsoids of revolution with R = 2 (for data set (a)) and R = 1/2 (for
data set (b)). These parameters provide us with data sets for an oblate (R = 2) and prolate
(R = 1/2) ellipsoid. We also considered two different tori with 72 = 2 (for data set (c)) and
72 = /2 (for data set (d)). For rational 72 the spectrum contains growing number theoretic
degeneracies which are absent in the irrational case. Our parameters cover both cases.
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107 =

1015 =
R(K) _
1010 =
10° ==
_I IIIIIIIll [T TTTTI IIIIIIIIl [T TTTI IIIIIIIll [ TTTI
102 10* 10°
K

Fig. 1. The integrated variance R(K) (double logarithmic plot, the plots have been shifted for better
visibility) for the two ellipsoids (data set (a) with R = 2 and data set (b) with R = 1/2), and the two
tori (data set (c) with 72 = 2 and data set (d) with 72 = v/2). The full line has slope 7/2.

For the ellipsoids the first 10° eigenvalues and eigenfunctions have been calculated, from
which we constructed the sequence of nodal counts. For the tori obtaining the spectrum and the
corresponding eigenfunctions is straight forward — in our numerics we used the lowest ~ 4 x 108
eigenvalues.

To obtain the fluctuating part the numerically computed ¢(K') were fitted to a fourth order
polynomial in k = /K. Not surprisingly, the numerically obtained two leading coefficients
(x K? and K 3/2) fitted extremely well with the corresponding analytically obtained coefficients
in the smooth parts of the corresponding trace formulae.

The more critical tests, which we will present here, involve the fluctuations decribed by the
oscillatory part of the trace formulae. The latter has been obtained numerically by subtracting
the best polynomial fit from the exact ¢(K).

The tests of on the oscillatory part of the trace formulae give us also the opportunity to
discuss some aspects of the fluctuations of the cumulative nodal count sequence.

4.1 The integrated variance

The simplest measure of the fluctuations is the variance given by the squared oscillatory part
averaged over some interval — or its integral

K
R(K) ~ /0 dK' cose(K')2. (52)

Substituting the trace formula this expression consists of a double sum over periodic geodesics.
The main contribution can be expected from the diagonal pairs. Neglecting all non-diagonal
terms one obtains

R(K) = 2K% Y |anf? (5)
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Fig. 2. Absolute value of length spectra of the cumulative nodal counts 54 for the two ellipsoids (data
set (a) with R = 2 and data set (b) with R = 1/2), and the two tori (data set (c) with 7> = 2 and
data set (d) with 72 = v/2). The full line is obtained from the trace formulae (47) (for the ellipsoids)
and (17) (for the tori). Points represent the numerical data.

which scales like K7/2. This scaling has been tested and the results are shown in Fig. 1. Clearly,
the expected power law is reached for sufficiently large values of the counting index K. The
prefactor % >, lar|? in the diagonal approximation cannot be expected to fit the numerical data
because the non-diagonal parts will shift the result considerably.

4.2 The length spectrum

The integrated variance is still a quite rough test of the variance. A much more elaborate test is
provided by computing the length spectrum, which we define roughly as the Fourier transform
of cosc(K) with respect to kK = VK. In more detail, before the Fourier transformation we
multiply cose by a Gaussian window function which defines a finite interval of width y/w centered
at K = Ko (in practice all numerical nodal count sequences are finite — a Gaussian window
is the appropriate way to deal with that). To obtain a result which does not scale with &g
we also multiply with x~%/2 such that the amplitude of a periodic geodesic is independent of &.
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Fig. 3. Real and imaginary part for the length spectra of the cumulative nodal count (54) for the
torus with irrational 72 = /2 (data set (d)) near the |N| = 2, |[M| = 3 peak (with scaled length
In,m = 12.445). The black full line is obtained from the trace formula (17) neglecting contributions
with |N| # 2 and |M| # 3. The blue dashed line is obtained numerically from the exact cumulative
nodal. There is a phase shift of /2 between the real and imaginary parts as can be checked by plotting
both in a single graph.
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Altogether we define the length spectrum by
o0 P 2 .
S(l) = 13/2 / dk K 2 cose(K = K2)e™ “uM iRl (54)
0

The final multiplication with [3/2 is not necessary but improves visibilty of peaks in a plot over
a large range of lengths [.

The trace formula for the cumulative nodal count predicts pronounced peaks at the scaled
lengths [ = [,. of the periodic geodesics. For the absolute value of the length spectrum these can
be seen very nicely in Fig. 2 which shows a remarkable agreement of the numerical data with
the theoretical predictions.

Not only the absolute value of the length spectrum is recovered by the trace formula but also
its phase. This can be seen in fig. 3 where the real and imaginary parts of the length spectrum
of the torus with 72 = v/2 (data set (d)) are plotted near the peak corresponding to periodic
motion with winding numbers (|[N|, |M]) = (2, 3).

This excellent agreement provides further support for the validity of the approximations
which were used in the derivation of the two versions of the nodal counts trace formula.
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