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D iderot, great character of the Enlightment, 
is one of the more remarkable scientific and humanistic 
symbols of the eighteenth century. His work, performed in 
collaboration with d'Alembert, Encyclopedie (1751-1765) [1 ] 
summarizes, although in hundreds of pages, the triumphs 
of the intellect and of the age-and of these two visionary 
men of genius. D'Alembert, the other half of that editorial 
adventure, in his article entitled "Dimension", alluded to the 
fourth dimension, in contrast to traditional learning [2]. 
And in Diderot's '"Traite du Beau", contained in Volume II, 
we find the first example of an analogy of beauty with a 
mathematical theorem concerning a curve [3]. Nearly a 
century later, in the second stanza from the fifth song in 
Lautreamont's evil treatise Les Chants de Maldoror, the same 
analogy (although he does not refer to Diderot's work) is 
repeated: "beau comme un memoire sur la courbe que 
decrit un chien en courant apres son maitre" (as beautiful 
as the memory of the curve described by a dog running after 
its master) [4]. 

Note the view, especially popular among mathematicians, 
that beauty can be found in mathematical discourse. Of 
course, this idea could not occur to anyone without knowl- 
edge of mathematics, as Diderot and, to a lesser degree, 
Lautreamont had. However, the beauty of the visual image 
was not their business. Nevertheless, in the eighteenth and 
nineteenth centuries, the study of bizarre and mysterious 
curves became important. 

It was only in the last half of the nineteenth century that 
an interest in visualizing contemporaneous mathematical 
ideas began. I shall make no attempt to describe that epoch 
called Modernism, whose genesis and strength are still mat- 
ters under discussion [5]. However, there was at that time a 
general momentum that carried with it art, poetry, science, 
fashion, advertising and architecture. We can establish some 
interplay between these distinct types of activities. Consider 
the influence of mathematics upon the arts. It is my opinion 
that mathematics had three roles in the visual arts. First, it was 
a metaphor for progress. Second, it provided a language of 
forms and shapes. And third, mathematical concepts could 
enlighten, modify and penetrate art notions that were then 
reflected in the visual arts. My discussion of these roles will 
be best considered in the climate of the Russian avant-garde 
(Fig. 1), which constitutes one vigorous, optimistic and neat 
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example of Modernism, and 
which perhaps served as a fore- 
runner of some of the present 
attitudes in visual mathematics. 

THE METAPHOR 
OF PROGRESS 

ABSTRACT 

Generally speaking, all avant- 
garde movements have had one 
characteristic in common: belief in 
the new. It is also true that all of 
those movements were aware of 
changes, progress and advances 
in science. As a consequence, non- 
Euclidean geometry was consid- 
ered a manifesto for revolution in 
the arts. This article discusses the 
visualization of mathematics-the 
process of transferring concepts 

In the 1920s Russian writer trom mamematics to works or art- 
with examples from the artworks Iouri Tynianov, referring to Fu- 

tunist Tynao .lmrefherrn 
to 

Fv 
and writings of El Lissitzky and 

turist poet Velimir Khlebnikov, Naum Gabo. 
wrote "the poet Khlebnikov 
becomes the Lobachevskii of 
words" [6]. In this sentence 
Tynianov is using Nicolai Lobachevskii as a metaphor for a 
founder of a new system or a novel theory-for this is what 
Lobachevskii had done. From Tynianov's point of view, the 
old theory was Euclidean geometry, the deductive theory 
founded upon Euclid's five postulates. The first four of 
Euclid's postulates are self-evident, and the fifth can be 
paraphrased as "there exists only one parallel to a given 
straight line through a given point". Tynianov's metaphor 
refers to Lobachevskii's idea about this postulate, which 
Lobachevskii introduced in his lecture delivered at the 
University of Kazan on 12 February 1826. That lecture 
replaced Euclid's fifth postulate without affecting the coher- 
ence of the geometrical discourse. Also proposed inde- 
pendently byJ. Bolyai, the new postulate allowed the exist- 
ence of an infinite number of parallels to a line through 
a given point. However, the general acknowledgment of 
Lobachevskii's ideas came many years later. 

Meanwhile, another lecture questioned the dominant 
role of Euclidean Geometry. In fact, on 10 June 1854, 
Bernhard Riemann addressed the topic On the Hypotheses 
which Lie at the Basis of Geometry [7]. Indeed, this lecture, 
published 13 years later, introduced important mathemati- 
cal concepts, such as the concept of manifolds, mentioned 
others (such as the fourth dimension), and contributed 
strongly to the philosophy of geometry [8]. Riemann also 
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" ............-Fig. 2. El Lissitzky, Proun 99, oil on wood, 129.4 x 99 cm, 1923. 

Fig. 1. First Russian Art Exhibition, Van Diemen Gallery, Berlin, (Courtesy of Yale Univ. Art Gallery, Gift of the Societe Anonyme, 
1922. Two of Lissitzky's pictures are barely visible on the left New Haven, Connecticut) Lissitzky followed the logic of the avant- 
wall. In the corner of the room is Gabo's Head of a Woman, and at garde movements: to plunge into the waters of scientific progress. 
the centre is Gabo's sculpture Torso. Rodchenko's Hanging Spatial If the geometry of curved surfaces led to new conceptions of 
Construction hangs from the ceiling. space, how is it possible that pictorial space looks so traditional? 

discussed the geometry of spherical surfaces on which 
straight lines correspond to great circles, called equators. As 
a consequence, there is a geometry (popularly known as 
Riemann's Geometry) with no parallel lines, for two equa- 
tors always meet at two points: the poles. 

Riemann's ideas together with Lobachevskii's geometry 
have constituted the subject matter of philosophical and 
scientific debates since 1860. Thus, in the last half of the 
nineteenth century, the dominance of Euclidean geometry 
ended. A revolutionary change with respect to tradition had 
been accomplished. 

Looking back on the turn of the century, we find signs of 
fundamental changes in science, in literature, in technol- 
ogy, in fashion-in short, everywhere. In the arts, the attacks 
on the role of representation followed one after another, 
from Impressionism to Cubism, which was the deepest criti- 
cism of the role of visual imagery as representations of 
reality. A never-ending story traverses all these 'isms'. Most 
simply, we can regard them as the emblems of change and 
of denial of tradition. 

For artists there was a widespread feeling that behind 
these changes, science was the ultimate cause of this trans- 
forming world. And progress legitimated the process. Thus, 
a Futurist manifesto says: "Comrades, we tell you now that 
the triumphant progress of science makes profound 
changes in humanity inevitable, changes which are hacking 
an abyss between those docile slaves of past tradition and us 
free moderns" [9]. 

In these lines we note the assured volume of confidence 
in progress implanted by the contemporaneous scientific 

avalanche. These manifestos are evidence of how science 
imposed itself on artistic thought. 

This tendency was common to several avant-garde move- 
ments bearing different banners. Cubism and Futurism in 
the West were no less involved with science as a metaphor 
of progress than were the avant-garde artists in Russia. For 
example, I refer to a passage from Vladimir Markov's Prin- 
ciples of New Art (1912): "It must be noticed that contempo- 
rary Europe which had done great conquests in the scientific 
and technological domains is very poor with respect to the 
evolution of plastic principles inherited from the past" [ 10]. 

This sentence could not have been written some years 
later. Indeed, the following years were years of increasing 
renewal in visual art, which achieved its chief goal in Con- 
structivism. 

Constructivism was the confluence of several diverse as- 
pects of the avant-garde. As a collective ideology, it grew up 
in the years of 1917 to 1920. The Russian Revolution had 
provided the optimistic atmosphere sympathetic to new 
formulations in art. This was a period of discussion and of 
revolution extended to all spheres. Many explanations have 
been proposed for this historical avant-garde [11]. For our 
present purpose it suffices to scan the bundle of mathemati- 
cal ideas involved in visual art practice. On the one hand, 
advance in mathematics contributed to support the meta- 
phor of progress. On the other hand, mathematics repre- 
sented a new way to approach visual arts problems and also 
created an appropriate place to look for non-naturalistic 
shapes according to the ideals of both Constructivism and 
Suprematism. 
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THE VISUALIZATION OF 
ABSTRACT MATHEMATICAL 
NOTIONS 

El Lissitzky's essay Art and Pangeometry is 
an essential document for studying the 
mathematical issues discussed by the 
Russian avant-garde [12]. Although it 
was published in 1925 in Germany, 
from its first line we note it deals with 
our present situation: "In the period 
between 1918 and 1921 a lot of old 
rubbish was destroyed. In Russia we also 
dragged Art off its sacred throne" [ 13]. 

This tone, a typical denial of the past 
under Dadaist influence, is a rhetorical 
detour from the essay's aim of describ- 
ing the parallel development of art and 
science-geometry-by means of anal- _ 
ogies. For example, perspectival space, 
the representation of space that origi- y 
nated in the Renaissance, corresponds 
to the laws of three-dimensional Euclid- Fg. 3 El Lissitzky, 
ean geometry. However, "in the mean- the 1923 original. (C 

From theoretical spl time science undertook fundamental going to bring to yo 
reconstructions" [14], for Euclid's laws mathematics, "is pu 
had been destroyed by Lobachevskii, but to clarify my vie 
Gauss and Riemann. And, in the arts, 
Cubism had replaced perspective [15]. So said Lissitzky, and 
so wrote Apollinaire, 12 years earlier [ 16]. 

The spatial conception of Suprematism is expressed by 
the phrase 'irrational space' [17]. In order to explain it, 
Lissitzky began with an inquiry into non-Euclidean geome- 
tries and Gaussian curvature (Fig. 2). Let us pause to sketch 
this point. Descartes' translation of geometry into algebra 
allows us to state geometrical properties in terms of func- 
tions involving the coordinates of the points concerned. In 
this way, the study of purely geometrical, and to some extent 
visual, properties of figures is reduced to the study of func- 
tions. Since the seventeenth century this approach has been 
to state and solve problems about curves. Consider the 
equality of shapes among figures. All will agree that for 
planar figures bounded by straight lines, equality of shape 
means equality of corresponding angles. But what if the 
borders are curved lines? 

We can naively think that curvature at a point is, in some 
unprecise sense, like an angle. Thus, equality of shape would 
mean equality of curvature at the corresponding points. 
However much we stay on informal ground and understand 
curvature at a point as the index of the deviation of the curve 
from its tangent line in that point, or, in the case of surfaces, 
from its tangent plane, nevertheless a precise formal defini- 
tion must refer to the functional translation of curves and 
surfaces. 

For plane curves, curvature intuitively is the degree to 
which a curve is bent at each point. Consider the simplest 
plane curve, the circle. Because it is equally curved through- 
out, its curvature is constant and is measured by the recip- 
rocal of the radius. So the smaller the radius, the larger the 
curvature. In all other curves the amount of curvature varies 
from point to point, therefore it must be measured with 

-I . 
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Proun Space, painted wood, 300 x 300 x 260 cm, 1965 reconstruction of 
Courtesy of Stedelijk Van Abbemuseum, Eindhoven, The Netherlands) 
eculation to a real environment: "The series of analogies which I am 
ur attention", writes Lissitzky, referring to analogies between art and 
t forward not to prove, for the works themselves are there for that, 
ws" [60]. 

Therefore, there exists a circle through P, Qand R. If Q R 
approach P, then the curvature of the circle approaches a 
limiting number. This number is defined as the curvature 
of the given curve at P [ 18]. 

The measure of curvature for surfaces can now be re- 
duced to the computation of the curvatures for plane curves. 
The method for determining the curvature of a surface is, 
briefly, as follows. Given a point on a surface, the lines 
tangent to this point lie on a plane. Draw the planes perpen- 
dicular to that plane through the point. Each of these planes 
will intersect the surface in a plane curve. As they are plane 
curves, their curvatures can be calculated in the way just 
shown. Thus we determine a set of real numbers, in which 
each number corresponds to the curvature of one of the 
plane sections. However this set has a minimum and a 
maximum, called the principal curvatures of the surface at the 

Fig. 4. El Lissitzky, Proun, lithograph, 60.5 x 44.5 cm, 1923. 
(Published by Kestner Gessellschaft, Hanover, 1923) One of 
Lissitzky's purposes was the visualization of abstract concepts 
from mathematics. To do so, and strictly adhering to his much- 
quoted belief in the creation of a new conception of space, he 
designed Proun Space. 

infinitesimals. Thus arises the necessity of using the func- 
tional translation of geometrical figures in order to deal with 
infinitesimals. Now consider a given plane curve and a point 
Pon it. Let Qand R be two neighboring points of the curve. 
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i Fig. 5. El 
Lissitzky, 
P\ oun, litho- 
graph, 60.5 x 
44.5 cm, 1923. 
(Published by 
Kestner Ges- 
sellschaft, 
Hanover, 
1923) 
Lissitzky's use 
of sections of 
geometrical 
objects might 
well have de- 
scended from 
popular ideas 
that consid- 

/" " 
' 
X" \ ered material 

// y/ \ ?\ objects as sec- 
// \ dtions of four- 

/ / / \ 9 dimensional 
entities. 

point considered [19]. The product of the principal curva- 
tures is called the Gaussian curvature of the surface at the point 
under consideration [20]. This definition originated with 
the work of Gauss in 1827 [21]. 

It is by means of the Gaussian curvature, actually a num- 
ber, that a very elegant characterization of non-Euclidean 
geometries can be formulated. In fact, if the sum of the 
internal angles of a triangle lying on a surface is less than 
two right angles (180?), then the surface has negative curva- 
ture. If the sum is greater than two right angles, then the surface 
has positive curvature. Euclid's law, which says that the sum 
of the internal angles of a triangle equals two right angles 
(Euclid, I. 32), holds in surfaces of zero curvature [22]. 

Now, let us come back to Lissitzky's essay. Its discussion 
refers to spaces of non-zero curvature [23]. More precisely, 
it says that spaces in which Euclid's postulates hold are the 
only spaces we can visualize. For spaces of non-zero curva- 
ture "only a mirage can simulate this" [24]. This constitutes 
Lissitzky's criticism of irrational space, which, for him, was 
the spatial concept of Suprematism. What does irrational 
space mean? Lissitzky's explanation can be easily and accu- 
rately expressed in mathematical terms [25]. For irrational 
space is a four-dimensional manifold. This was one of the 
fundamental notions introduced by Riemann's 1854 lec- 
ture, although Lissitzky does not mention it. 

The definition of the concept of manifold is a difficult 
task [26]. Briefly, an n -dimensional manifold is a space M, 
which near each point is like the Euclidean space of dimen- 
sion n, i.e. the set of all n-ples of real numbers [27]. 
Most geometrical forms whose points may be defined by n 
parameters are n -dimensional manifolds. Of course, Euclid- 
ean space of dimension n is the simplest n -dimensional 
manifold. Also, perceptible color qualities form a manifold 
of dimension three by virtue of the fact that all colors are 
produced by mixing three basic colors [28]. 

Riemann's 1854 lecture begins with the advice that mani- 
folds.are rare in ordinary life: "Color and the position of 
sensible objects are perhaps the only simple concepts whose 

space: " In this space the distances are measured only by the 
intensity and the position of the strictly defined color areas" 
[30]. He thus continues with several remarks that simply 
yield to the coincidence of Suprematist or irrational space 
with a four-dimensional manifold [31]. 

There is no evidence that Lissitzky had read Riemann's 
lecture or any other book that contains such kinds of ideas. 
However, these ideas had become part of the philosophical 
and scientific knowledge of the time [32]. For instance, in 
The Foundations of Geometry (1897) Bertrand Russell wrote 
two passages dealing with color as an example of manifold 
[33]. Another account of Riemann's ideas was given by H. V. 
Helmholtz in On the Origin and Significance of Geometrical 
Axioms [34]. This was the first attempt to expose manifolds 
and curved spaces to an audience knowing only "the amount 
of geometry taught in our gymnasia" [35]. 

Despite the impossibility of determining the exact origin 
upon which Lissitzky built his explanation of irrational 
space, it is still possible to make some comments. To start 
with, manifolds, even if they are not explicitly mentioned, 
form the underlying mathematical concept that gives mean- 
ing to Lissitzky's account of Suprematist space. Second, it 
seems reasonable that the concepts are of a mathematical 
kind, for the essay is full of advice to artists not to use 
'advanced' scientific concepts without a deep understanding 
of the corresponding theories. Third, as they are mathemati- 
cal spaces, "Our minds are incapable of visualizing this, but 
that is precisely the characteristic of mathematics-that it is 
independent of our powers of visualization" [36]. From this 
Lissitzky concludes that those spaces, "cannot be conceived, 

Fig. 6. Naum Gabo, Head of a Woman, construction in celluloid 
and metal, 62.2 x 48.9 x 35.4 cm, 1916-1917. (Courtesy of the 
Museum of Modem Art, New York) Gabo's Constructivist empha- 
sis on economy of materials and his rejection of mass volumes 
challenged the solid-space tradition of sculptural forms. The tech- 
nical device he used to make these sculptures is analogous to rep- 
resenting second-order surfaces by the use of intersecting planes. 

?, ;. .A a : _ . A; * 

instances form a multiply extended manifold" [29]. Com- 
pare Riemann's advice with Lissitsky's ideas about irrational 
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Fig. 7. A multi- 
faceted model of K _ _ 
the ellipsoid: sev- 
eral circles create 
a curved surface 
built with planes. 
(Model and photo: 
Gonzalo Puga) 

cannot be represented; in short, it is impossible to give them 
material form" [37]. 

This last sentence contains the refutation of a then- 
current belief that had oversimplified and confused the 
discussion of the interplay between art and mathematics 
during the avant-garde period. I am referring to the belief 
that avant-garde visual art is, ultimately, nothing more than 
a transference from mathematics or from a mathematical 
approach to relativist space to the visual arts [38]. But, 
Lissitzky's lines touch upon a concept essential to an under- 
standing of the role of mathematics in avant-garde visual 
arts-the concept of mathematical visualization. Thus, vis- 
ual images with mathematical notions underlying them do 
not depend on models or representations of those notions. 
Visual works may be generated from purely abstract mathe- 
matical notions that, of course, have no three-dimensional 
representation. 

Malevich's Black Square illustrates the effect of abstract 
mathematical notions upon the arts [39]. Insightful critics 
have shown that behind this artwork are thoughts about the 
fourth dimension [40]. But Black Square is a picture-it can 
be seen, it can be photographed. This is not possible with 
the fourth dimension-it is a mathematical concept, it can- 
not be photographed. At most we can obtain designs of 
representations of objects belonging to four-dimensional 
space in spaces of fewer dimensions, but not designs of the 
abstract concept of dimension itself [41]. 

When Lissitzky refers to Black Square, he says it "has now 
started to form a new space" [42]-indeed, irrational space 
[43]. He then points out the impossibility of visualizing 
those new spaces. Here Lissitzky approaches visualization in 
its more straight meaning, which, he says, neither Malevich's 
Black Square nor Suprematist painting had achieved. How to 
visualize irrational or Suprematist space? Or, to use mathe- 
matical terms, How to visualize four-dimensional manifolds? 

In Lissitzky's opinion, he has answered these last ques- 
tions in Proun Space (Fig. 3) [44]. The trick, influenced 
by motion pictures and advertisements, was to transform 
the surfaces of an almost-cubic room by displaying objects 
on them. The movement of the viewer and daylight changes 
in this environment produced the temporal coordinate. 
The objects were very simple-parallelepipeds, cubes and 
spheres-and established a relationship with the walking 
viewer. Clearly, all this comes from the mathematical ap- 
proach to relativity [45]. Lissitzky designed a series of six 
lithographs in Proun [46] . One of the lithographs (Fig. 4)is 
a perspectival view of the Proun Space; another shows one of 
the objects (the object on the left wall in Fig. 3). Four other 
lithographs present planar sections of geometrical figures 
(Fig. 5). This probably comes from popular ideas that three- 
dimensional objects are sections of four-dimensional 

Proun Space was Lissitzky's visualization of a four-dimen- 
sional manifold-in his own words, the creation of 'imagi- 
nary space'. Whether or not he achieved it may be a subject 
of discussion. Yet his method of visualizing abstract mathe- 
matical notions was coherent, even if from these works alone 
it seems impossible to comprehend the mathematical con- 
cepts involved. 

THE LANGUAGE OF NAUM GABO 

Although Lissitzky's Suprematist ideas were in the sphere of 
a Constructivist tendency, his approach, similar to Ma- 
levich's, did not allow any kind of direct transference from 
mathematical concepts to visual artworks [48]. In order to 
discuss the analogical visualization of mathematical notions 
we must draw our attention outside Suprematism and ap- 
peal to Constructivism. A glance at Rodchenko's or Tatlin's 
works immediately reveals clear geometrical patterns. This 
does not mean that Constructivist works can be generally 
characterized by their resemblance to geometrical shapes. 

Since the 1920s the controversy concerning who and what 
belongs to Constructivism has given rise to declarations, 
debates and writings. Rodchenko's spatial constructions, for 
example his Hanging Spatial Construction (see Fig. 1), and 
Tatlin's 'counter-reliefs' (a term coined by Tatlin in 1913 to 
describe assemblages of industrial materials) may have 
many elements in common with Pevsner's and Gabo's sculp- 
tures. Pevsner and Gabo declared their work to be Construc- 
tivist art; however, Gan called Rodchenko and Tatlin Con- 
structivist artists at the same time that he excluded Pevsner 
and Gabo. It is a complex and many-sided topic. Art issues 
were, as always, confluent with social, ideological and politi- 
cal affairs [49]. However, for most artists, mathematics had 
an important role in the genesis of visual images. The role 
could be subtle, as was the case for Lissitzky and Malevich, 
or direct, as in Gabo's sculptures. 

Gabo's proposal was stated in his Realistic Manifesto 
(1920), signed together with his brother Anton Pevsner 
[50]. The 1920s meant new days because of the Revolution, 
new knowledge thanks to science and technology and, as a 

Fig. 8. Naum Gabo, Construction in Space: Crystal, celluloid, 7.6 x 
7.6 x 3.8 cm, 1937. (Courtesy of the Tate Gallery, London) This 
piece is artistic, although it looks mathematical. The shape is a bit 
complex and the equation simple, but that is part of its interest. 

entities [47]. 
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Fig. 9. The 
shape of 
Enneper's Mini- 
mal Surface pro- 
vides the basic 
form for many 
different Gabo 
sculptures. 
(Model and 
photo: Gonzalo 
Puga) 

consequence, new art for the new epoch. However, new 
art cannot be founded upon old principles. Accordingly, 
Gabo's manifesto presents five fundamental principles for 
Constructivist technique. Two of them, relevant to our dis- 
cussion, reject mass volumes as spatial elements and explore 
the construction of volumes by means of planes, which, 
moreover, results in economic use of materials. 

The sculptures made by Gabo in the period previous to 
the publication of his manifesto followed those principles. 
I refer to works he made in Norway, Head of a Woman (1917) 
(Fig. 6), Torso (1917) (see Fig. 1) and two works both entitled 
Bust (1915-1916). As, according to Gabo, "older sculpture 
was created in terms of solids; the new departure was to 
create in terms of space" [51 ], it was necessary to develop a 
construction device. The four sculptures I have mentioned 
show its use. They are constructed by the use of intersecting 
planes following a craft principle. Let me explain it with a 
simple example. If we take four cardboard squares and make 
slots in each, then the intersection at right angles of two 
parallel squares with the remaining two will produce a cube. 
By this principle it is very easy to build a sphere, for it suffices 
to take two families of concentric circles and fit them to- 
gether in such a way that the planes of the circles intersect 
at right angles. What happens if we hinge one family of 
circles? We get a surface, called an ellipsoid, which has the 
same relation with the ellipse as does the sphere with the 
circle (Fig. 7). Namely, the plane sections of the ellipsoid 
are ellipsesjust as the plane sections of the sphere are circles. 

The ellipsoid thus built fulfills one of the requirements 
of the Realistic Manifesto, the construction of volumes by 
means of planes. Gabo's technique was founded upon this 
particular way of constructing surfaces. He had studied 
physics and certainly had become acquainted with mathe- 
matics. In those years the use of models was the standard 
method to illustrate properties of surfaces, for in visualizing 
them, one gained the intuitive background needed to dis- 
cuss more abstract notions [52]. The model of the ellipsoid 
we have described is a particular case of a second-order 
surface constructed with cardboard circles. 

Second-order surfaces, also called quadrics, are surfaces 
satisfying a second-order equation in three Cartesian coor- 
dinates. In the eighteenth century Euler classified them into 
nine different types according to their equations. Another 
criterion for classification of quadrics is whether they inter- 
sect a plane in a circle. In this way we get two classes. The 
first sort consists of quadrics that do not intersect any plane 
in a circle. They are the parabolic and hyperbolic cylinders 
and the hyperbolic paraboloid. The second sort includes the 

elliptical cylinder, the elliptical paraboloid, the hyper- 

boloids of one and two sheets, the cone and the ellipsoid. 
In other terms, surfaces of this kind have circular plane 
sections that, in turn, allow the construction of models for 
these surfaces with the use of cardboard circles, as was the 
case for the ellipsoid [53]. 

As we see, the Constructivist principle of Gabo's 1916- 
1917 sculptures rests upon free artistic variations of circle 
models for second-order surfaces. Gabo remained linked to 
the Moscow avant-garde and to Constructivism until he left 
Russia in 1922. Even if his subsequent works are not Con- 
structivist in the historical sense, they are characterized by 
the use of geometrical forms. The basis of most of Gabo's 
sculptures can be traced back to his Spheric Theme (1936) and 
Construction in Space: Crystal (1937) (Fig. 8). These sculptures 
have analogous mathematical representations. For exam- 
ple, Crystalwas inspired by a model of the cubic ellipse. This 
is a space curve defined by a third-degree algebraic equa- 
tion. Furthermore, it can be proved that it is obtained from 
the intersection of two quadrics [54]-indeed, from the 
intersection of an elliptical cylinder and a cone [55]. 

Spherical Theme is, by far, Gabo's most popular sculpture 
and the basis upon which he constructed numerous works. 
Again, surprisingly, it corresponds to a mathematical repre- 
sentation of a surface, even if Gabo never made this claim. 
Indeed, its form coincides with the shape of the three- 
dimensional representation of Enneper's Minimal Surface 
(Fig. 9) [56]. 

Gabo's sculptures may be considered words in the artist's 
language, an alphabet containing mathematical forms and 
shapes. Thus, in my mind, mathematics supplies visual arts with 
a marvelous and almost infinite catalogue of mysterious, 
enigmatic and unknown figures. And art gives pleasure to us. 

THE TEACHINGS OF APOLLINAIRE 

Gabo's sculptures illustrate one of the roles mathematics 
plays in the visual arts. Visual mathematics supplied an 
alphabet of new forms that the epoch needed. For the sake 
of estimating the strength of scientific influence on Gabo's 
sculptures, we can cite a precise remark by Herbert Read: 

The creative construction which the artist presents to the 
world is not scientific, but poetic. It is the poetry of space, the 
poetry of time, of universal harmony, of physical unity. Art-it 
is its main function-accepts this universal manifold which 
science investigates and reveals, and reduces it to the concrete- 
ness of a plastic symbol [57]. 

This remark goes to the heart of our difficulty. How can 
we describe the process of visualizing mathematics? As we 
have seen there is notjust one answer to this question. Gabo 
started from visual representations of mathematical ele- 
ments and ended with sculptures. Lissitzky theorized con- 
cepts of art by means of mathematical notions that, in turn, 
resulted in visual works [58]. Both are attitudes resulting in 
visual mathematics. They are the more brilliant and extreme 
examples of an attitude common to the Russian avant-garde, 
and therefore to Modernism, for the Russian avant-garde 
was a compendium of Modernism. 

Today's equivalent of cardboard, plaster and wire models 
are computer-generated images. They propose to us, among 
other things, a catalogue of forms and shapes, as models did 
to Gabo. Nondeterminist ideas explain a whole world of 
phenomena and can be the source of fresh insights-in the 
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same way that Lissitzky reached an understanding of Supre- 
matist space by appealing to Riemann's ideas. 

The effect of this convergence of art and science has a 
long history. Yet, in the age of Modernism a great period of 
direct mathematical influence upon the visual arts began. 
Mathematics provided the arts with an example of continu- 
ous progress-an encyclopedia of deep ideas, a cartography 
of forms. Apollinaire, perhaps the spokesperson of avant- 
garde movements, while meditating on art, concluded that 
art must advance as mathematics had done. He advised, 
"Geometry is to the plastic arts what grammar is to the art 
of the writer" [59]. Why not believe this idea to still be valid? 
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