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Fie ld s  M e d a l  1966 

for his work in differential topology, where 
he proved the generalized Poincard conjecture 
in dimension n >__ 5: Every closed n-dirnen- 
sional manifold hornotopy equivalent to the 
n-dirnensional sphere is horneornorphic to it. 
He introduced the method of handle-bodies to 
solve this and related problems. 

A b s t r a c t :  It could be said that the modern theory of computation began with Alan Turing in the 
1930's. After a period of steady development, work in complexity, specially that of Steve Cook and 
Richard Karp around 1970, gave a deeper tie of the Turing framework to the practice of the machine. 
I will discuss an expansion of the above to a theory of computation and complexity over the real numbers 
(joint work with L. Blum and M. Shub). 
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The reason for a theory of computation, for me in particular, comes from an at tempt to 
understand algorithms in a more systematic way. The notion of algorithm is very old in 
mathematics; it goes back a couple of thousand years. Mathematicians have talked about 
algorithms for a long time, but it was not until G6del that they tried to formalize the 
notion of algorithm. In Ggdel's incompleteness theorem one saw for the first time the 
limitations of computations or the need to study more clearly what could be done. 

To do so, one has to establish more explicitly what an algorithm is, and I think that 
this became clearer in the way that Turing interpreted Ggdel. So let us stop for a moment 
and look more closely at Turing and his achievements. I think it is fair to say that he laid 
down the first theory of computation. Perhaps I wilt be more specific later about what 
Turing's notion of computation was. 

We can take as set of inputs the integers 7, so in the Turing abstraction tile input 
is some integer; perhaps not every integer is allowed but only those that were eventually 
called the halting set f~M of the machine M. This is the domain of computation of the 
machine M. Given an integer in f~M, we feed it to the machine M and obtain as output 
another integer. 

~M 

Z D ~m input :~ M output 

/ 

There is some kind of mechanism here, described by Turing, which I will later on formal- 
ize in my own way. Turing gave different versions of the input set; for instance, finite 
sequences of zeroes and ones. 

Thus Ggdel's incompleteness theorem can be stated in the following way. 

THEOREM. There is some set S C Z which is definable in terms of a finite number of 
polynomial conditions and is not decidable. 

This is GSdel's incompleteness theorem as formulated by Turing. Not decidable means 
that there is no computable function over Z which is 1 on o e and 0 out of S. In other 
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words, S is decidable if its characteristic function is computable by some machine. Thus, 
GSdel's incompleteness theorem asserts that  there exists a set S which is very definable 
mathematically,  yet is not decidable. 

This is in some sense the beginning of the theory of computat ion,  which shows the 
limits of decidability. Eventually, from this evolved a theory for present-day computers.  
It is from this formulation that  it evolved into one of the foundations of computer  science. 
Even a very refined theory of computer  science is developed from this: This is complexity 
theory, which I could say today lies in the center of theoretical computer  science, specially 
after the work of Cook [3] and Karp [7]. They made use of the notion of speed of 
computation;  now the question is not whether a set is decidable, but whether it is decidable 
in a t ime that  can be affordable by present-day machines, or whether it is a "trackable" 
problem. 

The fundamental  question is 
P C N P ?  

This is a very famous conjecture and it is the most important  new problem in mathemat ics  
in the last half of this century; it is only 20 years old. To me it is the most beautiful new 
problem in mathematics .  Very hard to solve, a very fine notion coming from this theory 
of Cook and Karp. 

So we have a very active subject in this area but there is something that  is missing. I 
have talked about the need for a notion of definable algorithm, yet the algorithms mathe- 
maticians have used for a couple of thousand years at least do not fit into this framework. 
The algorithms we are talking about have to do with real numbers,  and specially since 
the t ime of Newton they have had to do with differential equations, nonlinear systems, 
etc. We see the notion of the real numbers R is central. 

Newton's method to me is a paradigm of a great classical algorithm like the procedure 
of the Greeks for finding square roots, and it does not fit naturally into this framework, 
because the framework is quite discrete and to fit Newton's method into it requires de- 
stroying geometric concepts. One can do this in a very cumbersome way - - I  find this 
a very destructive way- -  to deal with the algorithms of continuous mathemat ics  with 
Turing machines. 

Indeed, some work has now been done to adapt  the Turing machine framework to deal 
with real numbers. Let me mention two such at tempts .  One of them is recursive analysis, 
which initially was worked out by Ker-I-Ko and Harvey Friedman [5] and the main name 
connected with it is Marian Pour-E1. She worked with Richards [8] in developing a kind of 
real number analysis based on Turing machines. There has been very extensive work on 
this which deals with partial differential equations, and the way to deal with real numbers 
in this context is to consider a real number s defined by its decimal expansion 

s --- 1.2378 . . . .  

A real number  is computable in this sense if there exists a Turing machine which says 
that  the first digit is 1, the second 2, the third 3, and so on, with the decimal point in the 
appropriate  place. So a computable real number is given by a Turing machine. These work 
with computable real numbers and eventually provide a very successful theory. Similarly 
there is the notion of interval arithmetic from R. E. Moore (see [1]). In some ways it is 
close to the work of Pour-E1 but in a quite different direction. Thus, the foundations are 
probably being laid for a theory of computation over the real numbers. 
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Now, continuing from a very different point of view, I will devise a notion of computa- 
tion taking the real numbers as something axiomatically given. So, a real number to me 
is something not given by a decimal expansion; a real number is just like a real number 
that we use in geometry or analysis, something which is given by its properties and not 
by its decimal expansion. Eventually, I will talk about a notion of computability over the 
real numbers which takes this point of view. There one thinks of inputing a real number 
not as its decimal expansion but as an abstract entity in its own right. 

Some mathematicians and computer scientists have trouble with the idea that a ma- 
chine takes as input an arbitrary real number. I wrote a paper [13] on precisely this 
point, saying that here one idealizes, as in physics Newton idealized the atomistic uni- 
verse - -making  it a cont inuum--  in order to use differential equations. One can idealize 
the machine itself by conceiving it as allowing an arbitrary real number as input, but I 
am not going to argue about this point today. 

In a preliminary phase, I was concerned with the problem of root finding for polyno- 
mials for many years. In that process I faced tile kind of objects known as tame machines. 
It is not a theory of computation, but just a preliminary. 

We take as input now the coefficients {a0 ,a l , . . . , ad}  of a complex polynomial f of 
degree d, and we think of it over the real numbers, i.e., each ai is given by its real and 
imaginary parts. Thus, we think of this as the input and we describe the computation in 
the language of flowcharts. Then comes a box describing the computations. We replace 
a by g(a),  where g is a rational function. This vector of numbers [a0, a l , . . . ,  ae] can be 
considered as a state and in this step this state is transformed by a rational function. 
Then we can put down and answer the question of whether some coordinate of the state 
is less than or equal to 0. Depending on the outcome of this comparison, we continue 
along the corresponding branch. 

a l ,  . • . , an) 

I 

a ~ g(a) I 
J 

output 
approximate 

zero 
~ 1 , - . - ,  ~ d  

So we go down the tree in this way, and eventually we may output the approximate 
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zeroes { (1 , . - . , ( d )  of f up to some c. 
In fact this is a good way to express an algorithm for solving this equation. We next 

ask: How about these nodes which branch? To what extent are they necessary? 
The topological complexity of a problem in general is the minimum number of these 

branch nodes for any machine which solves the problem. 
I am not being completely precise about what resolving a problem means. One can 

imagine this example as a prototype of the general situation of a machine that solves 
problems. In particular, for this problem of finding the zeroes of polynomials we have the 
notion of its topological complezity. And the theorem [12] is as follows: 

THEOREM. The topological complexity of the root finding problem is greater than or equal 
to log d. 

So the topological complexity increases with the degree, and the proof of this theorem 
actually is not so easy; it uses the cohomology of the braid group worked by Fuchs 
in Russia [6]. Subsequently, Vasiliev [14] extended this bound to _~ d. So the answer 
eventually emerged that the topological complexity grows linearly with d and this is a 
sharp bound. 

One notes that the Turing machine framework could never deal with this way of 
looking at all possible algorithms, even in this limited class. There is no useful way of 
thinking about it in terms of Turing machines, whereas using this kind of tree we were 
able to give necessary conditions on all algorithms, what we call lower bound theorems. 
There is some early work dealing with this kind of tree, but this is the first time we have 
obtained topological complexity results using algebraic topology. 

Then, shortly after this, we did a joint work with Lenore Blum and Mike Shub [2] and 
developed this into a complete theory of computation over the reals by allowing loops. 
We certainly increased the computational power of tame machines by allowing loops to 
give a notion of computation in general. This situation is reflected in the next picture. 

output 

computation 
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So here we have also 

• an input space R l, 

• an output  space r k, 

• and also a state space S = R j for things happening inside the machine. 

If l, k , j  are finite, this essentially defines a machine. We can take here an oriented graph 
where the nodes are computat ion nodes given by rational functions, branch nodes given 
by inequalities, and input and output  defined inside accordingly. At each computat ion 
node there is a single output,  a single branch going out of the node. A decision node 
has two. Remember  that  the number of input branches is arbi t rary except for the input 
node where nothing comes in and there is a branch going out, and an output  node, where 
nothing comes out. 

This gives a theory of computat ion for finitely dimensional input and output  spaces 
motivated directly by the flowcharts used in scientific computation.  Yet the full theory 
will have to allow l, k, j = c~ and we will have to have a little more technical process to 
access far out coordinates, but this is the idea. 

This model gives an algebraic flavour to the process of computat ion.  We defined 
this not only over the real numbers but over any ordered ring, eventually any ring. In 
particular, if we take the ring to be Z, the input space to be a subset of Z, the output  
space again Z, and the state space l °°, we obtain Turing theory, and so this extends the 
Turing theory of computation.  

We can now say that  a Turing computable function is one which is given on some ~t 
of the machine, a domain of inputs, by following the flow of the machine and doing what 
is said at each node. 

{admissible inp~ts} = ftM CM Rk 

And this essentially is a complete picture of what we mean by computable function. A 
function OM defined by a machine going from the admissible inputs or the halting set of 
the machine to the output set. 

And it is precisely equivalent - - o r  practically so - -  to the notion of Tttring computable 
in the case when the ring is the ring of integers. 

We have developed for this model notions of computabili ty itself; we have, for instance, 
shown the existence of universal machines. We have a complexity theory and the problem 
"P  # N P  ?" is also defined over these rings; for example, the theory for R or C possesses 
universal or NP-comple te  problems just as in the case of Cook and Karp. 

An NP-comple t e  problem over C (a machine over C is like one over R except that  the 
branch nodes just ask " #  0 ?") is the following: 

Does a system of quadratic polynomials have a zero? 

The idea of the reduction is to have more polynomials than variables. So it is an open 
question whether there is a machine that  can decide in polynomial t ime if there is such a 
zero. All this is written very carefully in our paper. 

In Barcelona, Felipe Cucker [4] gave an analog for the real numbers of the ari thmeti-  
cal hierarchy of classical recursion theory. There have been developments in different 
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directions in the theory of computation of these machines from the point of view both of 
complexity theory and of computability. 

There has also been a lot of controversy and criticism. Let me deal with one main 
point, making some comments on two sharp critiques by Pour-E1 and Moore. Our theory 
of computat ion is very different from their two theories. In a way this is more or less the 
basis of their criticism. It has to do with the branching 

We branch according to whether one of the coordinates of the state space is greater than 
or equal to 0. This is in some respects one of the most controversial elements in the 
kind of machines we have, because the question is that  an actual machine cannot do this. 
Given a number, for example 

0 . 0 0 0 0 . . . 0 0 . . .  , 

it may or may not have a one after that  eventually. If it never has a one, and we input it 
to an actual machine, we can never decide this question. If it does have a one, we wait 
long enough and we can decide it. 

So we have a problem here when branching at _> 0, or equivalently at = 0, and this is 
the focus of at tack of both Pour-E1 and Moore. Let me give an example here. 

Both of their theories of computation lead to a notion of computable  function which is 
continuous. Every computable function here is continuous. Even in a strong sense: They 
have to be constructively continuous. 

Now the clue to this lies in the philosophy of thinking about  the real numbers as 
abstractly given, and choosing the idealization of the right machines. For example, in 
scientific computat ion this is the kind of computat ion carried out traditionally by algo- 
r i thms like Newton's method. One does test if something is _> 0, then do this, if not do 
something else. 

Moreover, the need for these branchings is given by our earlier results on topological 
complexity. Topological complexity states that if one wants to find zeroes of polynomials 
then one has to branch, and the number of branchings in the machine is given approxi- 
mately by the degree. Even to approximately solve the fundamental  theorem of algebra 
one needs to branch. So I would imply that these two theories of computat ion do not lead 
even to an approximate  solution of the fundamental  theorem of algebra. 

Here I would refer to a letter I received from Moore a year ago. I do not intend to 
dwell here on my opinion that  numerical analysis and scientifical computing have weak 
foundations. Moore is the main developer of interval arithmetic and he wrote that  "There 
are foundations for scientifical computation. More than 2000 papers and dozens of books. 
I invite you to read all of Aberth 's  book" [1]; it is a book that  Moore even sent to me. 
He said "It will open your eyes to a whole new world." So I opened the book - -ac tua l ly  
a few weeks ago- -  and read on page 34 of the book (called Precise Numerical Analysis) 
"The problem of deciding whether two computable real numbers are equal is therefore a 
computational  problem one should avoid." But problem 3.1 on this book reads: "Given 
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two numbers a, b decide whether a = b." Later, on page 62, Aberth says: "Solve the 
problem 6.1: Find k decimals for the real and imaginary parts of the zeroes of a polynomial 
of positive degree." But the answer to this solvable problem - - t h e  fundamental theorem 
of algebra--  needs to pass through d versions of this single problem that "one should 
avoid." 

Marian Pour-E1 very kindly sent me a review that she has given of our paper in the 
Journal of Symbolic Logic [9], in which she says that it is a very good, highly developed 
theory of computability over the reals. In the review she confirms that in her theory she 
can only produce continuous functions and so she cannot solve the fundamental theorem 
of algebra, not even approximately. 

What I will now do is to pass on to something which relates to this problem of NP- 
completeness if only a little indirectly. This is work done jointly with Mike Shub in the 
last few months. It is an example of an algorithm which fits into our framework. But it 
is a simple algorithm, so the fact that it is an algorithm in our strict sense is secondary. 
It is the problem of the complexity analysis of Bfizout's theorem. Let me say a little bit 
about what this is. The situation we look at is as follows: We have a polynomial system 

f : Cn--~ C ~ 

of n polynomials in n variables of degrees d l , . .  •, d~ respectively. One wants to find an 
algorithm and analize its speed for solving the equation 

f(z) = 0; 

not to produce a solution but to analize how much time it takes. The idea is to make 
complexity analysis on this. 

The work done so far on polynomial equation solving can be summarized by dividing 
it into two parts: one is Newton's method as the basic algorithm - - i t  is essentially the 
method used by the Greeks for finding square roo ts - -  and the other method is elimination 
theory, a very algebraic method; it works over arbitrary fields. In the first one we are 
using some kind of norm or metric, so it is metric-oriented. It is the method of choice 
of numerical analysts. The second is probably the method that would be chosen by a 
computer scientist. My own inclination is to the first side. Numerical analysts have 
a better focus on the problem. They do not have a complexity theory or any kind of 
foundation, but they have a better instinct about how to solve this problem. 

In any case, what we use is some global version of Newton's method to solve Bfizout's 
theorem. That  is, we use Newton's method to follow a path in the space of polynomials. 

All these are homogeneized. It is more elegant to think entirely in terms of homoge- 
neous coordinates and projections 

and 

with 

7~(u) = { f :  C ~ -_, C n) 

7t(d) = { f  : C T M  "-'+ C n homogeneous of degree d }, 

Thus we are going to work in projective space, and the main thing we will analize is a 
projective version of Newton's method which is due to M. Shub [11]. The previous work 
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has been done mostly in one variable on this problem, using Newton's method to solve 
this; I spent many  years doing that.  J im Renegar [10] has some extension to n variables. 

What  we want to do here is give a very conceptual process. All the ideas are lying 
there; we can try to understand the best, most elegant ways of looking at algorithms to 
solve this. In this way perhaps eventually we will be able to see more clearly the problem 
"P  :~ N P  ?" over the real numbers or the complexes. I hope it will eventually shed some 
light on the practical problem "P ¢ N P  ?" 

Given the space 7-/(a) we consider a function f0 for which we know the zeroes. The 
zeroes of f0 could be given by a set of intersections in a grid so we get a set of equally 
spaced zeroes 

This could be the initial element in H(d) for which we know the answer, and we simply 
homotope that  back 

ft = t f  + (1 - t ) fo,  

where t goes from 0 to 1. Let us denote by ~- the curve ft in the space H(d). 
We try to trace the zeroes, which we know for f0, to give the answer for fa- This seems 

to be a very good method that  has been used for the last decade or two. It embodies 
some kind of global Newton's method. The idea is to consider some sequence ti and 
apply Newton's method to the function ft,+l, starting from some approximation X~ of the 
solutions for ft, 

Xi,,+ ' (X,)  = X~+I 

where, here, N f ( X  ) stands for applying Newton's method to solve f s tart ing with the 
initial guess X.  In the projective space P ~(R) we can see the paths given by the solutions 
Xt of ft and the algorithm provides a sequence of points X~ following this path  very 
closely. 

So, what kind of results can we expect here? What  kind of things may we prove? Here 
is the main theorem. The question is how many iterative steps are necessary, how many 
t i ,  in such a way that  we can follow this path very closely, and our result is 

THEOREM. The number of steps is bounded above by 

t~O3/2 
p2 

where 6l is a universal constant (given by a set of equations which can be solved itself by 
Newton's method) which is approximately 1/16, D is m a x { d a , . . . ,  dn} and p is the distance 
from the arc joinin 9 fo and f l  to the discriminant variety. 
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It  should  be  reca l led  t ha t  the  d i sc r iminan t  var ie ty  is t he  subse t  of ~(d)  of all s ingular  
p o l y n o m i a l  sys tems.  I t  is the  var ie ty  of p o l y n o m i a l  sys tems  which are  degenera te  at  
some zero. A n d  this  is an a lgebra ic  var ie ty  t ha t  we shall  call  E. The  t h e o r e m  says t ha t  
wha t  is crucia l  are  not  the  coefficients of f .  T h e y  do not  even enter .  In  fact ,  not  even 
the  d imens ion  comes d i rec t ly  here; this  is even dimension-free .  But  wha t  is crucial  here  
is the  d i s t ance  p be tween  .T and the  d i sc r iminan t  var ie ty  E. This  is the  crucia l  fac tor  
- - t h e  only f a c t o r - -  in e s t ima t ing  the  complex i ty  for f inding t h e  zeroes of a p o l y n o m i a l  
sys tem.  Now we have to make  a l i t t le  caveat  here because  we are  not  f inding the  zeroes 
of every p o l y n o m i a l  sys tem.  There  m a y  be a con t inuum of zeroes and  then  we cannot  

do this.  So we have to pu t  some kind  of condi t ion ,  let  us say to  solve f + e where  ¢ is 

a smal l  po lynomia l .  This  is the  th ing  we solve. We cannot  f ind the  so lu t ion  of a r b i t r a r y  
p o l y n o m i a l  sys tems;  the re  m a y  be  a con t inuum of solut ions,  bu t  for some de fo rma t ion  we 
can find the  zeroes in a very exact  sense. 

Now, the  grea t  p r o b l e m  to me  is: To what  ex ten t  is the  t e r m  D a/2 necessary?  
W h i l e  we have no proof  of this ,  we suspect  t ha t  the  D i tself  could be e l imina ted  f rom 

the  formula.  For  a po lynomia l  in one var iable ,  this  is the  f u n d a m e n t a l  t h e o r e m  of a lgebra ,  

and  we show tha t  we can take  off the  3 /2  to get  D. This  is wha t  we have done in the  
last  months ;  t he  p roof  is in h a n d w r i t t e n  form. Since las t  week we be l ieve  t h a t  we can 
e l imina te  the  D in the  one var iable  case, bu t  this  uses the  theory  of Schlicht  funct ions ,  
which is only  avai lable  for one var iable .  There  is no theo ry  of B i e be rba c h  con jec tu re  for 
more  t han  one var iable .  If i t  is t rue,  if it  is D-free,  if we can do this ,  t hen  one can find 
for e x a m p l e  one zero of a po lynomia l  in one var iable  in a universa l  n u m b e r  of s teps,  say 
one hundred .  
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