
Mathematical Research
Today and Tomorrow
Viewpoints of Seven Fields Medalists

Lectures given at the Institut d'Estudis Catalans,
Barcelona, Spain, June 1991

Editors: C. Casacuberta, M. Castellet

Springer-Verlag
Berlin Heidelberg NewYork
London Paris Tokyo
Hong Kong Barcelona
Budapest

Symposium on the Current State
and Prospects of Mathematics

Barcelona, June 1991

Theory of Computation

by

Stephen Smale

Fie ld s M e d a l 1966

for his work in differential topology, where
he proved the generalized Poincard conjecture
in dimension n >__ 5: Every closed n-dirnen-
sional manifold hornotopy equivalent to the
n-dirnensional sphere is horneornorphic to it.
He introduced the method of handle-bodies to
solve this and related problems.

A b s t r a c t : It could be said that the modern theory of computation began with Alan Turing in the
1930's. After a period of steady development, work in complexity, specially that of Steve Cook and
Richard Karp around 1970, gave a deeper tie of the Turing framework to the practice of the machine.
I will discuss an expansion of the above to a theory of computation and complexity over the real numbers
(joint work with L. Blum and M. Shub).

Theory of Computation

60

The reason for a theory of computation, for me in particular, comes from an at tempt to
understand algorithms in a more systematic way. The notion of algorithm is very old in
mathematics; it goes back a couple of thousand years. Mathematicians have talked about
algorithms for a long time, but it was not until G6del that they tried to formalize the
notion of algorithm. In Ggdel's incompleteness theorem one saw for the first time the
limitations of computations or the need to study more clearly what could be done.

To do so, one has to establish more explicitly what an algorithm is, and I think that
this became clearer in the way that Turing interpreted Ggdel. So let us stop for a moment
and look more closely at Turing and his achievements. I think it is fair to say that he laid
down the first theory of computation. Perhaps I wilt be more specific later about what
Turing's notion of computation was.

We can take as set of inputs the integers 7, so in the Turing abstraction tile input
is some integer; perhaps not every integer is allowed but only those that were eventually
called the halting set f~M of the machine M. This is the domain of computation of the
machine M. Given an integer in f~M, we feed it to the machine M and obtain as output
another integer.

~M

Z D ~m input :~ M output

/

There is some kind of mechanism here, described by Turing, which I will later on formal-
ize in my own way. Turing gave different versions of the input set; for instance, finite
sequences of zeroes and ones.

Thus Ggdel's incompleteness theorem can be stated in the following way.

THEOREM. There is some set S C Z which is definable in terms of a finite number of
polynomial conditions and is not decidable.

This is GSdel's incompleteness theorem as formulated by Turing. Not decidable means
that there is no computable function over Z which is 1 on o e and 0 out of S. In other

61

words, S is decidable if its characteristic function is computable by some machine. Thus,
GSdel's incompleteness theorem asserts that there exists a set S which is very definable
mathematically, yet is not decidable.

This is in some sense the beginning of the theory of computat ion, which shows the
limits of decidability. Eventually, from this evolved a theory for present-day computers.
It is from this formulation that it evolved into one of the foundations of computer science.
Even a very refined theory of computer science is developed from this: This is complexity
theory, which I could say today lies in the center of theoretical computer science, specially
after the work of Cook [3] and Karp [7]. They made use of the notion of speed of
computation; now the question is not whether a set is decidable, but whether it is decidable
in a t ime that can be affordable by present-day machines, or whether it is a "trackable"
problem.

The fundamental question is
P C N P ?

This is a very famous conjecture and it is the most important new problem in mathemat ics
in the last half of this century; it is only 20 years old. To me it is the most beautiful new
problem in mathematics . Very hard to solve, a very fine notion coming from this theory
of Cook and Karp.

So we have a very active subject in this area but there is something that is missing. I
have talked about the need for a notion of definable algorithm, yet the algorithms mathe-
maticians have used for a couple of thousand years at least do not fit into this framework.
The algorithms we are talking about have to do with real numbers, and specially since
the t ime of Newton they have had to do with differential equations, nonlinear systems,
etc. We see the notion of the real numbers R is central.

Newton's method to me is a paradigm of a great classical algorithm like the procedure
of the Greeks for finding square roots, and it does not fit naturally into this framework,
because the framework is quite discrete and to fit Newton's method into it requires de-
stroying geometric concepts. One can do this in a very cumbersome way - - I find this
a very destructive way- - to deal with the algorithms of continuous mathemat ics with
Turing machines.

Indeed, some work has now been done to adapt the Turing machine framework to deal
with real numbers. Let me mention two such at tempts . One of them is recursive analysis,
which initially was worked out by Ker-I-Ko and Harvey Friedman [5] and the main name
connected with it is Marian Pour-E1. She worked with Richards [8] in developing a kind of
real number analysis based on Turing machines. There has been very extensive work on
this which deals with partial differential equations, and the way to deal with real numbers
in this context is to consider a real number s defined by its decimal expansion

s --- 1.2378

A real number is computable in this sense if there exists a Turing machine which says
that the first digit is 1, the second 2, the third 3, and so on, with the decimal point in the
appropriate place. So a computable real number is given by a Turing machine. These work
with computable real numbers and eventually provide a very successful theory. Similarly
there is the notion of interval arithmetic from R. E. Moore (see [1]). In some ways it is
close to the work of Pour-E1 but in a quite different direction. Thus, the foundations are
probably being laid for a theory of computation over the real numbers.

62

Now, continuing from a very different point of view, I will devise a notion of computa-
tion taking the real numbers as something axiomatically given. So, a real number to me
is something not given by a decimal expansion; a real number is just like a real number
that we use in geometry or analysis, something which is given by its properties and not
by its decimal expansion. Eventually, I will talk about a notion of computability over the
real numbers which takes this point of view. There one thinks of inputing a real number
not as its decimal expansion but as an abstract entity in its own right.

Some mathematicians and computer scientists have trouble with the idea that a ma-
chine takes as input an arbitrary real number. I wrote a paper [13] on precisely this
point, saying that here one idealizes, as in physics Newton idealized the atomistic uni-
verse - -making it a cont inuum-- in order to use differential equations. One can idealize
the machine itself by conceiving it as allowing an arbitrary real number as input, but I
am not going to argue about this point today.

In a preliminary phase, I was concerned with the problem of root finding for polyno-
mials for many years. In that process I faced tile kind of objects known as tame machines.
It is not a theory of computation, but just a preliminary.

We take as input now the coefficients {a0 ,a l , . . . , ad} of a complex polynomial f of
degree d, and we think of it over the real numbers, i.e., each ai is given by its real and
imaginary parts. Thus, we think of this as the input and we describe the computation in
the language of flowcharts. Then comes a box describing the computations. We replace
a by g(a), where g is a rational function. This vector of numbers [a0, a l , . . . , ae] can be
considered as a state and in this step this state is transformed by a rational function.
Then we can put down and answer the question of whether some coordinate of the state
is less than or equal to 0. Depending on the outcome of this comparison, we continue
along the corresponding branch.

a l , . • . , an)

I

a ~ g(a) I
J

output
approximate

zero
~ 1 , - . - , ~ d

So we go down the tree in this way, and eventually we may output the approximate

63

zeroes { (1 , . - . , (d) of f up to some c.
In fact this is a good way to express an algorithm for solving this equation. We next

ask: How about these nodes which branch? To what extent are they necessary?
The topological complexity of a problem in general is the minimum number of these

branch nodes for any machine which solves the problem.
I am not being completely precise about what resolving a problem means. One can

imagine this example as a prototype of the general situation of a machine that solves
problems. In particular, for this problem of finding the zeroes of polynomials we have the
notion of its topological complezity. And the theorem [12] is as follows:

THEOREM. The topological complexity of the root finding problem is greater than or equal
to log d.

So the topological complexity increases with the degree, and the proof of this theorem
actually is not so easy; it uses the cohomology of the braid group worked by Fuchs
in Russia [6]. Subsequently, Vasiliev [14] extended this bound to _~ d. So the answer
eventually emerged that the topological complexity grows linearly with d and this is a
sharp bound.

One notes that the Turing machine framework could never deal with this way of
looking at all possible algorithms, even in this limited class. There is no useful way of
thinking about it in terms of Turing machines, whereas using this kind of tree we were
able to give necessary conditions on all algorithms, what we call lower bound theorems.
There is some early work dealing with this kind of tree, but this is the first time we have
obtained topological complexity results using algebraic topology.

Then, shortly after this, we did a joint work with Lenore Blum and Mike Shub [2] and
developed this into a complete theory of computation over the reals by allowing loops.
We certainly increased the computational power of tame machines by allowing loops to
give a notion of computation in general. This situation is reflected in the next picture.

output

computation

64

So here we have also

• an input space R l,

• an output space r k,

• and also a state space S = R j for things happening inside the machine.

If l, k , j are finite, this essentially defines a machine. We can take here an oriented graph
where the nodes are computat ion nodes given by rational functions, branch nodes given
by inequalities, and input and output defined inside accordingly. At each computat ion
node there is a single output, a single branch going out of the node. A decision node
has two. Remember that the number of input branches is arbi t rary except for the input
node where nothing comes in and there is a branch going out, and an output node, where
nothing comes out.

This gives a theory of computat ion for finitely dimensional input and output spaces
motivated directly by the flowcharts used in scientific computation. Yet the full theory
will have to allow l, k, j = c~ and we will have to have a little more technical process to
access far out coordinates, but this is the idea.

This model gives an algebraic flavour to the process of computat ion. We defined
this not only over the real numbers but over any ordered ring, eventually any ring. In
particular, if we take the ring to be Z, the input space to be a subset of Z, the output
space again Z, and the state space l °°, we obtain Turing theory, and so this extends the
Turing theory of computation.

We can now say that a Turing computable function is one which is given on some ~t
of the machine, a domain of inputs, by following the flow of the machine and doing what
is said at each node.

{admissible inp~ts} = ftM CM Rk

And this essentially is a complete picture of what we mean by computable function. A
function OM defined by a machine going from the admissible inputs or the halting set of
the machine to the output set.

And it is precisely equivalent - - o r practically so - - to the notion of Tttring computable
in the case when the ring is the ring of integers.

We have developed for this model notions of computabili ty itself; we have, for instance,
shown the existence of universal machines. We have a complexity theory and the problem
"P # N P ?" is also defined over these rings; for example, the theory for R or C possesses
universal or NP-comple te problems just as in the case of Cook and Karp.

An NP-comple t e problem over C (a machine over C is like one over R except that the
branch nodes just ask " # 0 ?") is the following:

Does a system of quadratic polynomials have a zero?

The idea of the reduction is to have more polynomials than variables. So it is an open
question whether there is a machine that can decide in polynomial t ime if there is such a
zero. All this is written very carefully in our paper.

In Barcelona, Felipe Cucker [4] gave an analog for the real numbers of the ari thmeti-
cal hierarchy of classical recursion theory. There have been developments in different

65

directions in the theory of computation of these machines from the point of view both of
complexity theory and of computability.

There has also been a lot of controversy and criticism. Let me deal with one main
point, making some comments on two sharp critiques by Pour-E1 and Moore. Our theory
of computat ion is very different from their two theories. In a way this is more or less the
basis of their criticism. It has to do with the branching

We branch according to whether one of the coordinates of the state space is greater than
or equal to 0. This is in some respects one of the most controversial elements in the
kind of machines we have, because the question is that an actual machine cannot do this.
Given a number, for example

0 . 0 0 0 0 . . . 0 0 . . . ,

it may or may not have a one after that eventually. If it never has a one, and we input it
to an actual machine, we can never decide this question. If it does have a one, we wait
long enough and we can decide it.

So we have a problem here when branching at _> 0, or equivalently at = 0, and this is
the focus of at tack of both Pour-E1 and Moore. Let me give an example here.

Both of their theories of computation lead to a notion of computable function which is
continuous. Every computable function here is continuous. Even in a strong sense: They
have to be constructively continuous.

Now the clue to this lies in the philosophy of thinking about the real numbers as
abstractly given, and choosing the idealization of the right machines. For example, in
scientific computat ion this is the kind of computat ion carried out traditionally by algo-
r i thms like Newton's method. One does test if something is _> 0, then do this, if not do
something else.

Moreover, the need for these branchings is given by our earlier results on topological
complexity. Topological complexity states that if one wants to find zeroes of polynomials
then one has to branch, and the number of branchings in the machine is given approxi-
mately by the degree. Even to approximately solve the fundamental theorem of algebra
one needs to branch. So I would imply that these two theories of computat ion do not lead
even to an approximate solution of the fundamental theorem of algebra.

Here I would refer to a letter I received from Moore a year ago. I do not intend to
dwell here on my opinion that numerical analysis and scientifical computing have weak
foundations. Moore is the main developer of interval arithmetic and he wrote that "There
are foundations for scientifical computation. More than 2000 papers and dozens of books.
I invite you to read all of Aberth 's book" [1]; it is a book that Moore even sent to me.
He said "It will open your eyes to a whole new world." So I opened the book - -ac tua l ly
a few weeks ago- - and read on page 34 of the book (called Precise Numerical Analysis)
"The problem of deciding whether two computable real numbers are equal is therefore a
computational problem one should avoid." But problem 3.1 on this book reads: "Given

66

two numbers a, b decide whether a = b." Later, on page 62, Aberth says: "Solve the
problem 6.1: Find k decimals for the real and imaginary parts of the zeroes of a polynomial
of positive degree." But the answer to this solvable problem - - t h e fundamental theorem
of algebra-- needs to pass through d versions of this single problem that "one should
avoid."

Marian Pour-E1 very kindly sent me a review that she has given of our paper in the
Journal of Symbolic Logic [9], in which she says that it is a very good, highly developed
theory of computability over the reals. In the review she confirms that in her theory she
can only produce continuous functions and so she cannot solve the fundamental theorem
of algebra, not even approximately.

What I will now do is to pass on to something which relates to this problem of NP-
completeness if only a little indirectly. This is work done jointly with Mike Shub in the
last few months. It is an example of an algorithm which fits into our framework. But it
is a simple algorithm, so the fact that it is an algorithm in our strict sense is secondary.
It is the problem of the complexity analysis of Bfizout's theorem. Let me say a little bit
about what this is. The situation we look at is as follows: We have a polynomial system

f : Cn--~ C ~

of n polynomials in n variables of degrees d l , . . •, d~ respectively. One wants to find an
algorithm and analize its speed for solving the equation

f(z) = 0;

not to produce a solution but to analize how much time it takes. The idea is to make
complexity analysis on this.

The work done so far on polynomial equation solving can be summarized by dividing
it into two parts: one is Newton's method as the basic algorithm - - i t is essentially the
method used by the Greeks for finding square roo ts - - and the other method is elimination
theory, a very algebraic method; it works over arbitrary fields. In the first one we are
using some kind of norm or metric, so it is metric-oriented. It is the method of choice
of numerical analysts. The second is probably the method that would be chosen by a
computer scientist. My own inclination is to the first side. Numerical analysts have
a better focus on the problem. They do not have a complexity theory or any kind of
foundation, but they have a better instinct about how to solve this problem.

In any case, what we use is some global version of Newton's method to solve Bfizout's
theorem. That is, we use Newton's method to follow a path in the space of polynomials.

All these are homogeneized. It is more elegant to think entirely in terms of homoge-
neous coordinates and projections

and

with

7~(u) = { f : C ~ -_, C n)

7t(d) = { f : C T M "-'+ C n homogeneous of degree d },

Thus we are going to work in projective space, and the main thing we will analize is a
projective version of Newton's method which is due to M. Shub [11]. The previous work

67

has been done mostly in one variable on this problem, using Newton's method to solve
this; I spent many years doing that. J im Renegar [10] has some extension to n variables.

What we want to do here is give a very conceptual process. All the ideas are lying
there; we can try to understand the best, most elegant ways of looking at algorithms to
solve this. In this way perhaps eventually we will be able to see more clearly the problem
"P :~ N P ?" over the real numbers or the complexes. I hope it will eventually shed some
light on the practical problem "P ¢ N P ?"

Given the space 7-/(a) we consider a function f0 for which we know the zeroes. The
zeroes of f0 could be given by a set of intersections in a grid so we get a set of equally
spaced zeroes

This could be the initial element in H(d) for which we know the answer, and we simply
homotope that back

ft = t f + (1 - t) fo,

where t goes from 0 to 1. Let us denote by ~- the curve ft in the space H(d).
We try to trace the zeroes, which we know for f0, to give the answer for fa- This seems

to be a very good method that has been used for the last decade or two. It embodies
some kind of global Newton's method. The idea is to consider some sequence ti and
apply Newton's method to the function ft,+l, starting from some approximation X~ of the
solutions for ft,

Xi,,+ ' (X,) = X~+I

where, here, N f (X) stands for applying Newton's method to solve f s tart ing with the
initial guess X. In the projective space P ~(R) we can see the paths given by the solutions
Xt of ft and the algorithm provides a sequence of points X~ following this path very
closely.

So, what kind of results can we expect here? What kind of things may we prove? Here
is the main theorem. The question is how many iterative steps are necessary, how many
t i , in such a way that we can follow this path very closely, and our result is

THEOREM. The number of steps is bounded above by

t~O3/2
p2

where 6l is a universal constant (given by a set of equations which can be solved itself by
Newton's method) which is approximately 1/16, D is m a x { d a , . . . , dn} and p is the distance
from the arc joinin 9 fo and f l to the discriminant variety.

68

It should be reca l led t ha t the d i sc r iminan t var ie ty is t he subse t of ~(d) of all s ingular
p o l y n o m i a l sys tems. I t is the var ie ty of p o l y n o m i a l sys tems which are degenera te at
some zero. A n d this is an a lgebra ic var ie ty t ha t we shall call E. The t h e o r e m says t ha t
wha t is crucia l are not the coefficients of f . T h e y do not even enter . In fact , not even
the d imens ion comes d i rec t ly here; this is even dimension-free . But wha t is crucial here
is the d i s t ance p be tween .T and the d i sc r iminan t var ie ty E. This is the crucia l fac tor
- - t h e only f a c t o r - - in e s t ima t ing the complex i ty for f inding t h e zeroes of a p o l y n o m i a l
sys tem. Now we have to make a l i t t le caveat here because we are not f inding the zeroes
of every p o l y n o m i a l sys tem. There m a y be a con t inuum of zeroes and then we cannot

do this. So we have to pu t some kind of condi t ion , let us say to solve f + e where ¢ is

a smal l po lynomia l . This is the th ing we solve. We cannot f ind the so lu t ion of a r b i t r a r y
p o l y n o m i a l sys tems; the re m a y be a con t inuum of solut ions, bu t for some de fo rma t ion we
can find the zeroes in a very exact sense.

Now, the grea t p r o b l e m to me is: To what ex ten t is the t e r m D a/2 necessary?
W h i l e we have no proof of this , we suspect t ha t the D i tself could be e l imina ted f rom

the formula. For a po lynomia l in one var iable , this is the f u n d a m e n t a l t h e o r e m of a lgebra ,

and we show tha t we can take off the 3 /2 to get D. This is wha t we have done in the
last months ; t he p roof is in h a n d w r i t t e n form. Since las t week we be l ieve t h a t we can
e l imina te the D in the one var iable case, bu t this uses the theory of Schlicht funct ions ,
which is only avai lable for one var iable . There is no theo ry of B i e be rba c h con jec tu re for
more t han one var iable . If i t is t rue, if it is D-free, if we can do this , t hen one can find
for e x a m p l e one zero of a po lynomia l in one var iable in a universa l n u m b e r of s teps, say
one hundred .

R e f e r e n c e s

[1] O. Aberth, Precise Numerical Analysis, Brown Publishers, Dubuque, Iowa, 1988.

[2] L. Blum, M. Shub and S. Smale, On a theory of computation and complexity over the real numbers:
NP-completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. (N.S.) 21
(1989), no. 1, 1-46.

[3] S. A. Cook, The complexity of theorem-proving procedures, Proceedings 3rd ACM STOC (1983),
80-86.

[4] F. Cucker, The arithmetical hierarchy over the reals, to appear in J. Logic Comput.

[5] H. Friedman and K. Ko, Computational complexity of real functions, Theoret. Comput. Sci. 20
(1986), 323-352.

[6] D. Fuchs, Cohomologies of the braid group rood 2, Functional Anal. Appl. 4 (1970), 143-151.

[7] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations,

R. Miller and J. Thatcher (eds.), Plenum Press, New York, 1972, 85-104.

[8] M. B. Pour-E1 and I. Richards, Computability and noncomputability in classical analysis, Trans.
Amer. Math. Soc. 275 (1983), 539-560.

[9] M. Pour-El, Review of [2], to appear in J. Symbolic Logic.

69

[10] J. Renegar, On the efficiency of Newton's method in approximating all the zeroes of a system of

complex polynomials, Math. Oper. Res. 12 (1987), 121 148.

[11] M. Shub, Some remarks on B~zout's theorem and complexity theory, to appear in Proceedings of
the Smalefest, M. Hirsch, J. Marsden and M. Shub (eds.).

[12] S. Smale, On the topology of algorithms I, J. Complexity 3 (1987), 81-89.

[13] S. Smale, Some remarks on the foundations of numerical analysis, SIAM Rev. 32 (1990), no. 2,

211-220.

[14] V. Vasiliev, Cohomology of the braid group and the complexity of algorithms, to appear in Pro-
ceedings of the Smalefest, M. Hirsch, J. Marsden and M. Shub (eds.).

Stephen Smale
Mathematics Department
University of California
Berkeley, California 94720
USA

Transcribed from the videotape of the talk by Felipe Cucker, Francesc Rossell6 and Alvaro Vinacua;

revised by the author.

