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Preface 

There are two fundamental types of models which are studied in 
algebraic linguistics: generative and analytic. Simplifying, we might say 
that within the framework of a generative model, the starting point is 
a certain grammar, while the object we study is the language generated 
by this grammar. An analytic model presents an inverse situation; here 
the starting point is a certain language, i.e., a certain collection of sen- 
tences, whereas the purpose of the study is to establish the structure of 
these sentences, their constitutive elements, and the relations among 
them within the framework of sentences. 

As shown by the title, the present book is devoted to analytic models. 
These models cover to a great extent the area of descriptive linguistics 
and therefore present a great interest for linguists. 

Special attention has been given to the axiomatic-deductive structure 
of analytic models. At the same time we have tried to explain the linguistic 
origin of the notions, the linguistic meaning of the theorems and the 
manner in which the models studied are used to investigate natural 
languages. 

Most of the examples belonging to natural languages have a hypothetical 
and explanatory character; here we must take into account that the model 
is only an approximation of the reality. Hence there exists a certain lack 
of fit between a phenomenon and its model. 

In view of the close connection between analytic and generative models 
and of the fact that some models have a mixed, generative-analytic 
character, we have also discussed some questions currently considered 
as belonging to generative models. An example of this sort is the calculus 
of syntactic types, discussed in the second part of Chapter 111. We have 
also given those notions and results concerning generative models which 
permit us to understand the links between the two types of models; these 
links are pointed out in various paragraphs of the book. 

The book is primarily directed to those mathematicians who desire 
to become acquainted with the mathematical aspects of linguistic struc- 
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viii Preface 

tures and to those linguists who wish to know (and to use) one of the most 
powerful tools for investigating the structure of language: mathematical 
modeling. The book can also be useful to all those who are interested in 
the problems of linguistic information processing (automatic translation, 
informational languages, programming languages, etc.). Thus, the notion 
of configuration, dealt with in Chapter V, has already been used in con- 
struction of some algorithms of automatic translation (see the correspond- 
ing references in Chapter V). 

In view of the rapid progress of algebraic linguistics, we made a 
definite effort to take into account the most recent contributions in this 
field. Of course, we have not presented all analytic models existing in 
literature. We hope that the selection we have made enables us to confer 
on the book a certain unity of conception and treatment. 

A good portion of the book relies on some of the author’s papers, as 
specified in the references placed at the end of each chapter. On the other 
hand, the book contains many results published here for the first time 
(especially in Chapters 11,111, IV, and V). 

We are very indebted to Professors Miron Nicolescu, Grigore Moisil, 
and Alexandru Rosetti for their support and encouragement in pursuing 
the research in the field of mathematical linguistics. 

In writing this book we have been stimulated by the proposal made to 
us by Richard Bellman in June 1964 to publish in his famous series 
“Mathematics in Science and Engineering” an English version of our 
previous book “Lingvistic6 matematic&” (Editura didactic6 sj pedagogic&, 
BucureSti, 1963). We thought it more appropriate to write an entirely new 
book, which would reflect the general status of analytic models and our 
own most recent views. We are deeply grateful to Richard Bellman for 
the opportunity to publish this book. 

Bucharest 
November, I966 

SOLOMON MARCUS 
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Chapter I 

Languages and Partitions 

1. Languages and Grammars 

Let r be a finite set called the vocabulary. The elements of r are words. 
Consider the free semigroup T generated by r, namely, the set of all 
finite strings of words endowed with an associative and noncommutative 
binary operation of concatenation. Since we are considering only finite 
strings, we shall say strings instead of finite strings. A string of words will 
also be called a s t h g  over F. The zero string, denoted by 8, is a string 
such that 8x = x8 = x for each string x. Without contrary assumption, 8 
does not belong to r. 

A subset @ of T is a language over r. The semigroup T is the total or 
the universal language over r. 

A generative grammar of @ is a finite set of rules (called grammatical 
rules) specifying all strings of @ (and only these strings) and assigning to 
each string of @ a structural description that specifies the elements of 
which the string is constructed, their order, arrangement, interrelations, 
and whatever other grammatical information is needed to determine how 
the string is used and understood. ( [ 5 ] ,  p. 285). It is to be noted that 
in such a grammar the structural description is made with the aid of 
grammatical rules. 

Such a point of view is closely related to the theory of formal systems 
and to other fundamental chapters of contemporary mathematical logic 
(such as Turing machines and recursive functions). But we shall consider 
in this book a quite different point of view: that of an analytic grammar. 

An analytic grammar of @ considers @ given, and its purpose is to 
obtain an intrinsic description of the strings belonging to @, that is, a 
description of the relations between the words and between the substrings 
with respect to their position in the strings of @. Such a point of view is 
very closely related to the traditional structural Iinguistic theory, especially 

1 



2 I. Languages and Partitions 

to the so-called descriptive Iinguistics developed by Bloomfield [2, 31, 
Harris [13], Hockett [15], Wells [38], and others. 

To provide a clearer distinction between a generative grammar and an 
analytic grammar, let us consider the following example. It is known that 
a finite-state language may be generated in several ways. If an ambiguous 
grammar is used, we may detect the so-called constructional homonymy 
that arises when a sentence has several representing sequences, that is, 
-several different “constructions” ([ 11, pp. 93-94). Note, for instance, the 
ambiguous English sentence: They are flying planes, which is really two 
different sentences: (1) They (are (flying planes)) and ( 2 )  They ((are 
flying) planes). The grammatical structures, or the meanings of these two 
sentences are different ([5], p. 274); an ambiguous finite-state grammar or 
a nondeterministic finite automaton may detect this difference ([ 11, 
pp. 93-94). Such a situation is the basic concern of generative grammar. 

Let us now consider another situation. We shall say that two strings 
x and y are Q, equivalent if, for each pair of strings u ,  v, we have either 
uxv E @, uyv E Q,, or uxv E T - @, uyv E T - CP. A fundamental result 
of Rabin and Scott ([29], Theorem 1) and a theorem of Bar-Hillel and 
Shamir [ l ]  imply that @ is a finite-state language if and only if there are 
only finitely many @-equivalence classes. Such a characterization of the 
finite-state languages, which involves only the intrinsic structure of these 
languages, is at the basis of an analytic grammar. 

The above example shows not only the difference, but also the close 
connection between the two types of grammars. Each completes the 
description given by the other. 

The utiIity of an analytic study of the languages follows also from 
another fact. Since r is finite, the universal language T is denumerable, 
and, consequently, the set of all languages over r is not denumerable. On 
the other hand, as is noted in [4], the set of all generative grammars over 
r (more precisely, the set of all constituent-structure grammars over r) 
is denumerable. Therefore, there exists a nondenumerable set 3’ of 
languages over F, such that, for L E 9, there is no generative grammar 
of L. For such languages, the analytic study of their structure is the only 
method of grammatical investigation. An analytic study is appIicable to 
every language. 

2. Enriching the Structure of a Language 

There are many problems concerning a language Q, which can be suc- 
cessfully studied without enriching the structure of CP, that is, by knowing 



2. Enriching the Structure of a Language 3 

only that Q, is a determined subset of the free semigroup generated by r 
and being able to say, for each string over r, whether it belongs to Q,. An 
example of such a problem is that of morphologic homonymy. We shall 
say that the morphologic homonymy of the word x is not greater than the 
morphologic homonymy of the word y ,  if for each pair of strings u and 
v such that uxv E Q,, we have uyv E Q,. Moreover, if the converse is 
not true, that is, if there are two strings u and v such that uyv E Q, but 
uxv E T - @, we shall say that the morphologic homonymy of x is less 
than the morphologic homonymy of y .  Thus, if r is the French vocabulary 
and Q, is the set of all well-formed French sentences, the morphologic 
homonymy of beau is less than the morphologic homonymy of mince. 
Indeed, in each well-formed sentence containing the word beau the re- 
placement of beau by mince also gives a well-formed sentence; but there 
exists a well-formed sentence containing the word mince, such that the 
replacement of mince by beau gives no well-formed sentence (compare 
jepossBde une feuille mince and j e  yoss2de une feuille beau). A systematic 
development of this idea- which originates with DobruSin [7, 81 and 
Sestier [34]- was given in [21-231. For fui-ther developments, see 
[6,24,3 1,321. 

Another problem which may be studied without enriching the basic 
structure of the language is that of the morphemic segmentation. If 
r is the set of phonemes of a natural language and @ is the set of all 
well-formed sequences of phonemes in this language, then, by counting 
the possible successors of each initial segment, one can obtain the 
morphemic boundaries in the considered sequence. Such a procedure 
was discovered by Harris [ 121. 

We have discussed so far two problems of a pure distributional and 
syntagmatic character. Other such probIems are considered in [24]. 
But there are many problems which also involve a paradigmatic structure 
of the considered language, that is, a partition of r. Such problems will 
be considered in Chapters I through IV. The customary linguistic inter- 
pretation of the partition of r is the decomposition of the set of words 
in paradigms, the paradigm of a word being the set of its Aectional forms. 
For instance, the paradigm of book is {book, books} and the paradigm 
of great is {great, greater, greatest}. In fact, the paradigms do not form 
a partition of r, since there exist distinct paradigms which are not dis- 
joint. Such nonconcordances are unavoidable in all modeling processes. 

A triple {r, P ,  a}, where r is a finite vocabulary, P is a partition of 
r, and Q, is a subset of the free semigroup generated by r will be called 
a language with paradigmatic structure. Since we are considering 



4 I. Languages and Partitions 

especially such languages, we shall say, briefly, that {r, P ,  @} is a 
language. 

The linguistic analysis needed in machine translation requires a richer 
structure of the considered languages. Here, a language must be con- 
sidered a system {r, P ,  @, K ,  4 } ,  where r, P and @ are the objects 
already defined, K is a class of subsets of r called grammatical categories 
(such as the set of words in nominative or the set of words in the past 
tense), and 4 is a function which associates to each word x the intersection 
of all grammatical categories containing x.  For a further discussion of 
this point of view, see [331, pp. 42-43. 

3. The Notion of Natural Language 

The notion of a language over the vocabulary r includes both natural 
languages and the artificial languages of logic and of computer-programing 
theory. The notion of a natural language is much more complicated, since 
its structure is very rich. Kalm6r has proposed a definition of the concept 
of language, especially concerning the natural languages, which was 
intended to cover all parts of linguistics [ 161. He defines a language as 
an 1 1-tuple { P ,  R, F ,  W ,  C, A ,  S, Mw, M,, Aw, A,} ,  with the symbols 
as follows: 

P is an arbitrary set called the set of protosemata (in the case of a 
spoken language the set of physical sounds used as representatives of 
phonemes; in the case of a written language the set of geometrical figures 
used as representatives of letters). 
R is an equivalence relation defined on the set of occurrences of the 

protosemata in the strings of the free semigroup generated by P .  The 
classes of R equivalence are called semata (phonemes or graphemes, 
respectively). 

F is a subset of the free semigroup generated by the set of semata 
(the elements of F are called wordforms). 

W is a subset of the power set of F ,  that is, a set the elements of which 
are subsets of F ,  or a decomposition of the set F into not necessarily 
disjoint subsets. (The elements of W ,  or the subsets of F into which it 
has been decomposed, are called words, every word being identified with 
the set of all its forms). 
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C is a partition of the set W into subsets called word classes or parts 
of discourse. 

A is an application of the set C onto some set the elements of which 
are sets of functions such that if c E C (that is, if c is a word class) and 
G is the image of c under application A ,  then G is a set of functions f 
defined for all elements w of c (that is, for all words w belonging to the 
word class c) and for each such w, we have f ( w )  E w [that is, f ( w )  is 
one of the forms of w]. For example, if c is the class of all nouns (suppose 
this to be a word class), the elements of the corresponding G are the 
functions “the nominative of.  . . ,” “the accusative of.  . . ,” etc.; if c is 
the class of all verbs (supposed to be a word class), the elements of the 
corresponding G are the functions “the indicative present tense singular 
second person of .  . . ,” etc. A is called the morphologic application. 

S is a subset of the free semigroup generated by the set F .  The elements 
of S are called grammatically correct sentences. 
Mw is a set called the set of word meanings. 
M s  is a set called the set of sentence meanings. 
Aw is an application of the set W into the power set of Mw. For any 

word w E W ,  we call the elements of the set onto which w is mapped by 
Aw, the (possible) meanings of w. 

As is an application of the set S into the power set of Ms. For any 
sentence s E S, we call the elements of the set onto which s is mapped 
by As,  the (possible) meanings of s. 

Tentatively, we can regard the sets M ,  and M s  as arbitrary abstract 
sets; however, to have a better model of natural languages, we suppose 
them to be sets having some logical structures still to be determined. 
Approximately, Mw corresponds to the set of concepts and M s  to the set 
of propositions in the sense of traditional logic. The sets Mw and Ms are 
common for different natural languages, which makes translation from one 
to the other possible. 

A theory based on this definition needs some structure axioms (the 
term “structure” being used in a sense similar to that of an algebraic 
structure). In such a theory, phonology, morphology, syntax, and seman- 
tics will appear as subtheories similar to those of the additive group of a 
ring in relation to ring theory. Thus, P ,  R ,  and F define the phonetics, 
the graphematics, and the phonology; W ,  C ,  andA define the morphology; 
S defines the syntax; Mw, M,, Aw, and As define the semantics. In such 
a theory, a generative grammar may show how to generate the set F 
of word forms or the set S of grammatically correct sentences. 

The customary nonconcordance between a phenomenon and its 
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logical model appears also in the above construction. So, in a natural 
language the parts of discourse are not disjoint, and the passage from 
physical sounds to phonemes is not simple enough to describe by an 
equivalence relation. See, in this respect, [ 17, 27, 28, 361. 

The sets Mw and M ,  are ambiguous, for we do not have a clear criterion 
for deciding when two word meanings or two sentence meanings can be 
regarded as identical. The definition of identity has to be the main part 
of the determination of the logical structure of the sets Mw and M,. 
For the delicate questions of semantics and the possibility of using the 
methods of generative grammars here, see [18, 28, 391. We also note 
the absence, in the above construction, of such a fundamental linguistic 
notion as morpheme. Finally, let us remark that, according to some recent 
papers [14, 331, the notion of grammatical correctness, attached to the 
set S ,  may be reduced to simpler notions. 

By postulating appropriate axioms, the above model can probably be 
improved, so as to become more adequate to the nonbanal aspects of 
natural languages. 

4. Distribution 

Let us first consider the most simple notion of a language, given as a 
pair (r, a}. The strings which belong to 0 are called marked strings. 
In many linguistic problems we are concerning with various partitions of 
r, that is, decompositions of r into nonvoid mutually disjoint sets. 

The most important partition of r which arises in linguistics is the so- 
called partition in distributional classes, defined as follows. Two words 
a and b will be considered in the same distributional class if for each 
pair of strings x, y, the relation xay E implies xby E @, whereas the 
relation xby E 0 implies xay E @. 

The notion of distributional class-becomes more intuitive if we intro- 
duce the notion of context. A context over I' will be defined as an ordered 
pair of strings over r and will be denoted by (x, y), where x E T and 
y E T .  A word a is allowed by the context (x, y) if the stringxay belongs 
to @. Denote by Y(a) the set of all contexts with respect to which a is 
allowed. It follows immediately that two words a and b belong to the 
same distributional class if and only if Y ( a )  = SP(b), that is, if and only 
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if a and b are allowed by the same contexts. This notion has its origin in 
descriptive linguistics (see, for instance, [9] and [ 131). 

If we interpret r as the English vocabulary and @ as the set of well- 
formed English sentences, the words book and chair are in the same 
distributional class, whereas book and books are not. If we interpret 
r as the French vocabulary and @ as the set of well-formed French 
sentences, the words mince and maigre are in the same distributional 
class, whereas grand and mince are not; indeed, the sentencej’ai une 
feuille mince is well-formed, whereas j’ai une feuille grand is not. One 
of the principal tasks in the study of a language is the establishment 
of its distributional classes. 

It is easy to see that two different distributional classes are disjoint; 
thus these classes define a partition S of r, called the distributional parti- 
tion of I?. The first mathematical study of this notion was made in 1958 
[19] and will be the point of departure in the following considerations. 
A distributional class is called, in [19], a family. We shall use these two 
denominations as equivalent. 

The properties defined exclusively in terms of contexts and of distribu- 
tional classes are the simplest and the most elegant in a linguistic descrip- 
tion. We may consider the following situations concerning the reciprocal 
distribution of two words a and b: (1) Y ( a )  C Y ( b )  (where C means that 
the inclusion is strict); in this case we shall say that a and b are in defective 
distribution. If r is the French vocabulary and @ is the set of well-formed 
French sentences, then a = grand and b = mince are in defective distribu- 
tion. (2) 9 ( a )  n Y ( b )  # 0,  Y ( a )  - Y ( b )  # 0 # Y ( b )  - 9 ( a ) ;  in this case 
we shall say that a and b are in equipollent distribution. If r is the English 
vocabulary and @ is the set of well-formed English sentences, then a = a 
and b = the are in equipollent distribution. (3) 9 ( a )  n Y ( b )  = 0;  in this 
case we shall say that a and b are in complementary distribution. (4) Y ( a )  = 

9 ( b ) ;  in this case a and b are in identical distribution (that is, they belong 
to the same distributional class). 

The most frequent type of distribution in a natural language is that of 
equipollent distribution. But the three other types are very significant 
from the linguistic point of view. Let us consider, for instance, the French 
word grand. It is an adjective with values singular and masculine. The 
words which belong to S(grand) are also singular, masculine adjectives, 
but there are singular, masculine adjectives which do not belong to 
S(grand); such adjectives are mince, large, maigre, and others. It is pos- 
sible to find a formal procedure which detects all adjectives with the 
values singular and masculine? The answer is affirmative and involves 
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the consideration of defective distribution. Indeed, let us consider all 
adjectives a such that grand and a are in defective distribution. Denote 
by &(grand) the set of these adjectives. The union S(grand) U &(grand) 
contains all adjectives with the values singular and masculine for two 
reasons. First there exists no word a such that a and grand are in defective 
distribution; second, grand and a are in defective distribution if and only 
if a is a singular, masculine adjective and a $ S(grand) since a must have 
a greater morphologic homonymy than grand. 

The above considerations may be generalized. Consider, in a natural 
language, a word b for which no word a exists such that a and b are in 
defective distribution. Then, the union S(b)  U &(b), (where &(b) = {a; b 
and a are in defective distribution}) is exactly the set of words whose set 
of values contains those of b. 

The complementary distribution is very important in the phonological 
descriptions, where two individual sounds which differ only by their 
position (such as an initial a and a final a) are in complementary distribu- 
tion [17, 36, 371. 

5. P-Structures; Derivative of a Partition 

A more complex concept considers a language to be a triple {r, P ,  @}, 
where P is a partition of other than into distributional classes. Formally, 
we may also admit the possibility that S(x) = P(x)  for each x E r, but this 
situation is of no linguistic interest. 

In a language with paradigmatic structure there are three species of 
properties: ( 1 )  properties of a purely distributional (syntagmatic) charac- 
ter, which involve only the sets r and @ (such properties are, for instance, 
those discussed in the preceding section); (2) properties of a purely para- 
digmatic character, which involve only the set r and the partition P (such 
properties appear, for instance, in the description of flectional forms in 
Latin, Russian, and other flectional languages; see a model description of 
these phenomena in [25]  and in Chapter I11 of [24]); (3) properties of a 
mixed character, which involve all three components r, P ,  and @. We 
are concerned in the first five chapters of this book especially with 
properties of the third species. Thus we need some preliminary notions 
and propositions. 

If P is a partition of r, each set of P will be called a cell of P or a P-cell. 



5. P-Structures; Derivative of a Partition 9 

If the partition P is written 
n 

r = u p + ;  
i= 1 

then each Pi denotes a cell of P and the number of cells is equal to n. 
Since the sets Pi are mutually disjoint, each word belongs to a single cell. 
We denote by P(a)  the cell of P containing the word a. It follows that, for 
two distinct words a and b, we have either P(a) = P(b) or P(a) f l  P(b) = 0. 

As we have remarked, the customary interpretation of the set P(a) in 
a natural language is the consideration of P(a)  as the set of flectional forms 
of the word a. This situation suggests the introduction of the so-called 
unit partition of r, in which each cell is formed by a single word. With the 
interpretation just adopted for P,  a language whose partition P is the unit 
partition is a language without morphology; following traditional termin- 
ology used in the classification of natural languages, such a language will 
be called an amorphic language (for instance, Chinese). This type of 
language will be studied in Chapter 11. 

Another simple partition of r is the improper partition, which has a 
single cell identical to r. 

The starting point of linguistic analysis is the unit partition of r. Each 
process of abstraction involves an equivalence relation which leads to a 
partition with fewer cells. This situation makes the following definition 
natural. 

Let us consider two partitions P and Q of r. We shall say that P is finer 
than Q if P(a) 

The unit partition is finer than every other partition of r, and each 
partition of r is finer than the improper partition. If we interpret P(a) as 
the set of all flectional forms of a, partition P seems to be finer than the 
partition of r into the parts of discourse. This idea will be expanded in 
Chapter 111. 

If x1x2 . . . x, is a string over r, the sequence P(xl)P(x2). . .P(x,) is called 
the P-structure of the string xlxz. . . x,. If Pi C r for 1 s i s s and there 
exists a string xlx2 . . . x, over r, such that Pi = P(xi) for 1 G i S s, then the 
sequence PlP2. . . P, is called a P-structure. This P-structure is marked 
if the string x l x 2 ,  . . x, may be chosen so it belongs to @. In other words, 
the P-structure PlP2.. . P, is marked if there exists a marked string 
x1x2 . . . x, such that Pi = P(x,) for 1 S i G s. 

The P-structures may be composed by concatenation. This operation 
leads to a new P-structure. 

Let us consider two P-structures B, = P(xl)P(xz). . .P(x,) and B2 = 
P(yl)P(yz). . .P(y,). We shall say that 9, and B2 are P-equivalent and we 

Q(a) for each a E r. 
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shall write PI - P2 or PI ++ P2, if, for each pair of P-structures P3, P4, 
the P-structures P3P1P4 and P3P2P4 are either both marked or both 
unmarked. 

The P-equivalence of two P-structures may be easily illustrated when 
P is the unit partition, denoted by E. In this case, the E-structures are 
strings over r, and an E-structure is marked if and only if the correspond- 
ng string is marked. Thus, the strings f and g are E-equivalent if and 

only if, for each pair p ,  q of strings, the strings pfq  and p g q  are either 
both marked or both unmarked. In other words, two stringsfand g are 
E-equivalent if and only if they are allowed by the same contexts. Thus, 
the classes of E-equivalence define a partition of T ,  and it is easy to verify 
the following two properties: 

Iff is a marked string and g is E-equivalent with respect tof, then g is 
also a marked string. 

If x E r, y E I', and x E S(y), then x and y-considered strings-are 
E-equivalent and conversely. If the words x and y are E-equivalent, they 
belong to the same distributional class. 

A string f will be called parasitic (with respect to the considered lan- 
guage) if there exist no strings g and h such that the string gfh be marked. 

A string which is unmarked but not parasitic will be called a semimarked 
string. 

It is easy to verify the following properties. 
If the string f is parasitic, each parasitic string is E-equivalent with 

respect to f and each string E-equivalent with respect to f is parasitic. 
If the string f is semimarked, each string g ,  E-equivalent with respect 

tof ,  is also semimarked. 
We may now specify in a new manner a notion considered in the first 

section. Indeed, the notion of @-equivalence, introduced in Section 1, 
is identical to the notion of E-equivalence in T .  It follows that a language 
is a finite-state language if and only if there are only a finite number of 
E-equivalence classes in T .  Since the parasitic strings form a single 
E-equivalence class, a language is a finite-state language if and only if 
there are only a finite number of E-equivalence classes of nonparasitic 
strings. 

Let us consider two partitions P and Q of r. We shall say that P is 
regularly finer than Q if P is finer than Q, and for each triple of words 
x, y, z the inclusions P(x)  C Q(z) 2 P(y) imply the P-equivalence 
P(x)  ++ Pb). 

The simplest example of a regularly finer partition is that of the unit 
partition E; this partition is regularly finer than the partition S into 
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distributional classes. Indeed, we have E(x) = { x } ,  E(y) = {y}, and the 
inclusions { x }  C S(z) 2 {y} imply x E S(& y E S(z); hence S(x) = S(y) 
and x and y are E-equivalent. For each partition P of r, let us consider 
the partition P’ whose cells are defined by 

P’(x)  = U P(y) (foreachx E r), 

where the union is taken with respect to all words y for which P(y) * P(x). 
By its own definition, the partition P’ is such that P is regularly finer 

than P‘. The partition P‘ is called the derivative of the partition P. Its 
linguistic significance will become clearer in the following chapters. 

It may be remarked that the partition S into distributional classes is the 
derivative of the unit partition E : S = E’. Indeed, for each x E r the 
set S(x) contains all words y that are E-equivalent with respect to x. 

It is easy to see that, if P is regularly finer than Q, then Q is finer 
than P‘; it follows that, if we consider the set II of partitions of r, ordered 
by the relation “finer than,” the set II(P) of those partitions Q, for 
which P is regularly finer than Q, has P’ as a maximal element. 

P W  tf P ( X )  

6. P-Domination and Some of Its Properties 

In the following, we shall establish some fundamental facts concerning 
the derived partitions. We shall use, in a systematic manner, the following 
generalization of the relation of P-equivalence between two P-structures: 

Let P be a partition of r. We shall say that P(x) P-dominates P(y), and 
we shall write 

P(x) + Pot), 

if, for each pair of P-structures, 9, and P2, such that the P-structure 
P1P(x)P2 is marked, the P-structure P1P(y)P2 is also marked. It is easy 
to see that P(x) * P(y) if and only if P(x)  + P(y) and P(y)  --+ P(x) .  

Lemma 1. Let A and B be two partitions of r such that A is finer than 
B. Let x l x 2 . .  . x, be a string such that xi E r for 1 s is n. If the A- 
structure 

A(xMx2) .  * .A(xn) (1) 
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is marked, then the B-structure 

B(xdB(x2). * *B(xn) 

is also marked. 

PROOF. Since (1) is marked, there exists a marked string yl, y2,. . . , y n  
with yi E r for 1 s i n and such that A(xJ =A(y i )  for 1 < i ZG n. Since 
A is finer than B, we have A(xJ c B(x,); therefore A&) C B(xJ and yi E 
&xi) for 1 s i s n. Thus, B(xi)=B(yi)  for 1 6 i S n and (2) is marked. 

REMARK. Without proof, lemma 1 is given in [ 191, p. 205. 

Lemma 2. Let A and B be two partitions of r such that A is finer than 
B. Let x E r and y E r. If, for each u E r, 

implies 

(3) 

(4) 

PROOF. 
i # n) and such that 

is marked B-structure. There exists a marked string 

Let x1 . . . X,-~XX,+~. . . xP be a string with xi E r ( 1  s i =s p ,  

B(x1). *B(x,-l)B(x)B(x,+l)* * . B ( X P )  (6) 

(7) YlY2 * * * Yn-lYnYn+l * - * Y P  

(yi E r for 1 S i S p )  whose B-structure is (6): therefore, 

B(yJ = B(xJ (8) 

NY,) = B(x).  (9) 

(10) 

A b i )  c B(yi) (1 S i s p ) .  (1  1 )  

(1 s i 6 p ,  i f n), 

Since (7) is marked, it follows that the A-structure 

Ah). * .Ab,-l)Abn)Ab,+l)- * NY,) 
is also marked. Since A is finer than B, we have 
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In view of (9), it follows that 

Ab,) c B b ) .  (12) 

Hence (3) is satisfied for u = y n  and, consequently, (4) is also satisfied 
for u = y,: 

A bn) + A b). (13) 

A b l ) .  * .Ab,- l )Ab)Ab, , l ) .  * ‘Ab,) (14) 

From (13) and since (10) is a marked A-structure, it follows that 

is also a marked A-structure. From (1 1) and in view of Lemma 1, we 
deduce that 

Bbd. *Bbn-l)B(Y)Bbn+l)* * .B(y,) 

B(x1). * .B(x,-,)Bb)B(x,+,)* .B(x,) (15) 

is a marked B-structure; hence, in view of (S), the B-structure 

is also marked. But (1 5) is obtained from (6) by replacing B(x) by B b ) ;  
therefore, (5) is proved. 

In the same way we obtain the next lemma. 

Lemma 2’. Let A and B be two partitions of r such that A is finer 
than B. Let x E r and y E r. If for each u E r, 

c Bb) (3’) 

then 

Bb) -+ B(x). (5‘) 
From Lemmas 2 and 2’ we deduce another lemma. 

Lemma 3. Let A and B be two partitions of r such that A is finer than 
B. Let x E r and y E r. If, for any u E r, the inclusion A(u) c B(x) 
implies A(u) +A(y)  and, for any 0 E f ,  A(v)  c B(y) implies A(v)  +A(x) ,  
then 

B(x) * B b ) .  (1  6) 

A corollary follows from Lemma 3. 
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Corollary 1. Let A and B be two partitions of r such that A is regul- 
arly finer than B. Let x E r and y E r such that A(x)  *A(y) .  Then, we 
have (16). 

PROOF. Let u E r be such that A(u) C B(x).  Since A is finer than B ,  
it follows that A(x)  c B(x)  and, since A is regularly finer than BI we have 
A(x)  @A(u) ;  therefore, A(u) @ A ( y ) ,  which implies that A(u) +A(y) .  

Now let o E r such that A(v)  C B(y).  By changing u to o and x to y 
in the above considerations, we deduce that A(v)  + A(x) .  Thus, all the 
hypotheses of Lemma 3 are satisfied and (1 6) follows. 

REMARK. Corollary 1 was established, in another way, by Kulagina 
([ 191 Lemma 2). 

Lemma 4. 
finer than B. Let x E r and y E r be such that 

Let A and B be two partitions of r such that A is regularly 

B(x) + B(y) (17) 

and let u E r and o E r be such that 

Then 

A(u) + A(o).  

PROOF. Let 

A(z1). * .A(zrn-dA(u)A(zrn+l)* *A(z,) (21) 

u1 * - Urn- lUrnU,+~ * * . 11; (22) 

be a marked A-structure. There exists a marked string 

whose A-structure is (21); thus 

A(uJ = A(zJ (1 =G i =2 s, i # m), (23) 

A(u,) = A(u).  (24) 

B(u1). * .B(urn-l)B(urn)B(urn+l). * .B(us) 

Since the string (22) is marked, the B-structure 

(25) 

is also marked. Since A is finer than B ,  we have 
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A(uJ c B(uJ 

From (24) and (26), it follows that 

(1 c i G s). 

A(u) c B(um). (27) 

B(x)  = B(u,). (28) 

From (18) and ( 2 7 ) ,  we deduce 

From (28) and, since (25) is a marked B-structure, it follows that the 
B-structure 

B(u1). . *B(um-,)B(x)B(u?n+,). - -mu,)  

B(u1). * 'B(u,-l)BOI)B(u,+l)- * * m u , )  

(29) 

(30) 

is marked. In view of (1 7), we deduce that the B-structure 

is marked. There exists a marked string 

21, * - * 21,-1 21, v,+1* * - VS 
such that 

(3 1) vi E B ( U i )  (1 s i s s, i # m) 

and 

vm E &Y)- (32 )  
Therefore, the A -structure 

A(v1). * .A(v,-,)A(v,)A(v,,,). . .A(%) ( 3 3 )  

is marked. From (3 1) and (32), and since A is finer than B, it follows that 

A(vJ C B(ui) ( 1  s i c s, i f m) (34) 

A(vm) c Bb). (35) 

From (19), (26), (34), and ( 3 9 ,  and since A is regularly finer than B, 
we deduce 

A(uJ -A(vJ  (1 i s s, i f m),  (36) 

A(v)  -A(vm). (37) 

From (36) and (37) and since the A-structure (33) is marked, it follows 
that the A-structure 

A(u1). * *A(um-l)A(v)A(u,+l)* . -A(u,) (38) 
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is marked. But in view of (23), the A-structure (38) may be written 

A(z1). * 'A(z,-l)A(v)A(zm+l)' * .A(zs). (39) 
Since the A-structure (39) may be obtained from the A-structure (21) by 
replacing A(u) by A(v) ,  relation (20) follows. Lemma 4 is completely 
proved. 

Changing x by y in hypothesis (17) of Lemma 4, we obtain Lemma 4'. 

Lemma 4'. Let A and B be two partitions of r such that A is regularly 
finer than B. Let x E r and y E r be such that 

m y )  -+ Wx), (17') 

and let u E r and v E r be such that we have the inclusions (18) and 
( 1  9). Then 

A ( v )  + A(u).  (20') 

From Lemmas 4 and 4' two lemmas follow. 

Lemma 5. 
finer than B. Let x E r and y E lr be such that 

Let A and B be two partitions of lr such that A is regularly 

B(x) - Bb), (40) 

and let u E r and v E r be such that we have the inclusions (18) and 
(19). Then 

A(u) - A ( v ) .  

7. Comparable Partitions with the Same Derivative 

Theorem 1. Let A and B be two partitions of r such that A is finer than 
B. We have A '  = B' if and only if A is regularly finer than B. 

PROOF. Let 

A : r = U A i  and B : r = U B j  

be the considered partitions. We have, for each x E r, 
i j 

A (x )  c Wx). 
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Suppose first that A’ = B‘ = P and that P is given by 

P : r = U c k .  
k 

Let 

Ai C Bj 2 A [ .  (42) 

Since P = B‘, B is finer than P; hence there exists a cell c k  of P, such that 
Bj C C k .  It follows that Ai C C k  and Al C c k .  Since P = A ’ ,  we have 

Ai - -A[;  (43) 

therefore, two cells of A contained in the same cell of B are A-equivalent 
and A is regularly finer than B. 

Let us now suppose that A is regularly finer than B ;  this means that 
(42) implies (43). It will be shown that A’  = B’. In view of (41), the 
equality A ’  = B’ is equivalent to the fact that, for each x E r, we have 

X ( x )  = W), (44) 

where 

X ( x )  = U A(y)  and Y(x)  = U B(z). 

We shall prove equality (44). Let u E X(x) .  There exists y E r such that 
u E A(y)  and A(y)  is A-equivalent to A(x) .  In view of Corollary I ,  it 
follows that B(y) is B-equivalent to B(x);  hence B(y)  C Y(x). On the other 
hand, (41) implies, for x = y, that u E B(y ) ;  therefore, u E Y(x) and 

ACv)-+A(x) B(z) -B(x)  

X (x )  C W).  (45) 

Now let v E Y(x). There exists z E r such that v E B(z) and B(z) is 
B-equivalent to B(x).  We have B(u) = B(z); hence, in view of (41) (for 
x = v) it follows that A ( v )  C B(z). From (41) and using Lemma 5 (with 
y = z and u = x), we deduce that A(x)  is A-equivalent to A ( v )  and, con- 
sequently, A ( v )  C X(x)  and v E X(x) .  Therefore, 

Y(x) G X(x>. (46) 

From (45) and (46) it follows (44) and Theorem 1 is proved. 

Corollary 2. 

PROOF. 
and obtain D’ = (D’)’ = D”. 

If D is any partition of r, then D’ = D”. 

Since D is regularly finer than D’, we may apply Theorem 1 
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REMARK. In another way, Corollary 2 has been established in [19], 
p. 206. 

8. Partitions with the Same Derivative 

In the preceding Section we have given a necessary and sufficient 
condition that two comparable partitions of r have the same derivative. 
We shall now consider the same problem in the general case when the 
partitions are arbitrary. 

Theorem 2. Let A and B be two partitions of r. We have A’ = B’ if 
and only if there exists a partition P of r such that A and B are regularly 
finer than P .  

PROOF. Let A‘ = B’.  Partition P = A ‘  satisfies the desired conditions. 
Conversely, consider a partition P satisfying the desired conditions. In 
view of Theorem 1, we have A ‘ =  P’ and B’= P ’ ;  hence A ’ =  B’. 

Theorem3. Let 

A : T = U A i  and B : T = U B ,  

be two arbitrary partitions of r. We have A ’ = B‘ if and only if the follow- 
ing condition is satisfied: 

i .i 

If 

and 

then 

implies 

and (50) implies (49). 
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PROOF. 
exists a cell G of P, such that 

First let A' = B' and put P = A' .  If (49) is satisfied, there 

Ai C G 2 Ak. (51) 

From (47) the existence of a cell H of P follows, such that 

Bj C H 2 Ai. 

From (51) and (52) we deduce H = G; thus 

Bj C G. ( 5 3 )  

From (48) follows the existence of a cell L of P, such that 

Ak C L 2 Bi. 

Inclusions (51) and (54) imply L = G; therefore 

(54) 

B1 c G. ( 5 5 )  

From (53) and (55) we deduce (50); hence, (50) follows from (49). 

also that (50) implies (49). 

valent to (50). We shall prove that A' = B'.  

Since the hypotheses are symmetric with respect to A and B ,  it follows 

Now let us suppose that we have (47) and (48) and that (49) is equi- 

Let x E r and y E r be such that there exists a cell M of A ', for which 

x E M, (56) 

y E M. (57) 

(58 )  

(59) 

We have 

A ( X )  n ~ ( x )  z 0, 

~ ( y )  n BOI) z 0. 

From (56) and since x E A(x) ,  it follows that 

A(x)  c M .  

From (57) and since y E A(y) ,  it follows that 

AOI) c M .  

Thus (60) and (61) imply 

A(x)  "A(Y).  (62) 

From (58 ) ,  (59), and (62) we deduce, in view of the hypothesis, that 
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B(x) - B(y);  

hence there exists a cell N of B' ,  such that 

x E  N and y E N .  (63) 

We have proved that (56) and (57) imply (63); therefore, if two words 
belong to the same cell of A ' ,  they belong to the same cell of B' .  Since the 
hypotheses are symmetric with respect to A and B ,  it follows that two 
words which belong to the same cell of B' also belong to the same cell of 
A ' .  Thus, M = N and A' = B ' .  

From Theorem 3, Corollary 3 follows immediately. 

Corollary 3. Let A and B be two partitions of r, such that A is finer 
than B .  We have A' = B' if and only if the following condition is satisfied: 

If 

and 

then 

Ai C Bj (64) 

implies 
Bj * Bi 

and (67) implies (66). 
Now let us remark that Corollary 1 and Lemma 5 imply Corollary 4. 

Corollary 4. Let A and B be two partitions of r, such that A is regularly 
finer than B .  If we have (64) and (65), then (66) is equivalent to (67). 

Corollaries 3 and 4 immediately imply Theorem 1. 

9. Conditions That a Partition Be a Derivative 

It is obvious that the derivative of a partition P depends not only on r 
and P ,  but also on the set @ of marked strings. Thus, the notion of deriva- 
tive concerns those properties of the language which involve both 
paradigmatic and syntagmatic aspects. 
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In a language { r, P, @} the derivative P' is uniquely determined. On 
the other hand, if Q is a partition of r, it is possible to have several 
languages {r, P ,  @} such that P' = Q. For instance, if Q = S, there 
exist at least two languages {r, P,, @} and {r, P2,  @} such that 
Pi = Pi = S; indeed, in view of Theorem 1 ,  we may take P,  = E and 
Pz = S, whereas if @ is suitably chosen, E # S. 

If Q is any given partition of r and Q, is any given set of marked strings, 
does there always exist a partition P of r such that P' = Q (with respect 
to @)? The negative answer to this question follows from a proposition. 

Proposition 1. The unit partition is a derivative if and only if each 
family is formed by a single word. 

PROOF. Let us suppose that E is a derivative with respect to @ and 
let P be such that P' = E. It follows that P is finer than E ;  hence P(x)  C 
E(x) for each x E r; but E(x) = {x}. Therefore P(x)  = {x} for each x E r 
and P = E. This equality implies E' = E. On the other hand, we know that 
E' = S. Thus, S = E,  and each family S(x) is formed by the unique word x. 

Let us now suppose that S = E .  Since we always have E ' = S ,  it 
follows that E' = E ;  thus, E is a derivative. 

Given a partition P of r, does there always exist a set @ of strings over 
r, such that P is a derivative with respect to @? The affirmative answer 
follows from the next proposition. 

Proposition 2. 
over I', such that P is the derivative of the unit partition of r. 

Let P be a partition of r. There exists a set @ of strings 

PROOF. Let us suppose that P is given by 

r = u p i .  
I 

We shall define the set @ as follows: The string xlxz  * * x, belongs to 
@ if and only if p = n and xi E Pi for 1 < i 6 n. It is easy to see that for 
each x E r we have P(x)  = S(x), hence P =  S .  But it is known that 
E' = S ;  therefore, E' = P. 

It would be interesting to solve a problem. 

PROBLEM. Let P be a partition of r and let @ be a set of strings over 
r. Find a necessary and sufficient condition that P be a derivative with 
respect to @. 

We shall say that the partition P of r is proper if the number of its 
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cells is at least equal to 2 (in other words, if P is not the improper partition 
of r). 
Proposition 3. Let us suppose that the zero string 8 is an element of 
r and let @ be a set of strings over the vocabulary r. A necessary and 
sufficient condition that no proper partition of r be a derivative with 
respect to @ is that either @ be void, or each string over r belongs to @. 

PROOF. Let us suppose that the single partition of r which is a deriva- 
tive with respect to @ is the improper partition. We shall show that 
@ is either void or formed by all strings over r. Indeed, let CP be non- 
void and let us admit the existence of a string x = a1a2 - * e ai - a, 
over r, which does not belong to @. It follows that the E-structure 
E(a,)E(a,). - .E(a,). - .E(a,) is unmarked. It is known that E' = S ;  on 
the other hand, in view of our assumption, E' is the improper partition. 
It follows that S is the improper partition; that is, for each x we have 
S(x) = r. Since @ is not void, there exists a string y = b,b,. * 6 ,  
belonging to @. If m s n, then y is obtained from x by replacing ai by 
bi when 1 s i s m and at by 6 when m < i G It. Since all words form a 
unique family and since x is unmarked, it follows that y is also un- 
marked; but this is false, since y E CP. If n < m, then x is obtained from 
y by replacing bi by ai when 1 s i S n and bi by 8 when n < i rn. Since 
y is marked, it follows that x is also marked; but this is false, since x 
does not belong to @. Therefore, in any case the assumption 0 C CP C T 
is contradictory. 

Let us now suppose that either CP = 0 or @ = T .  It is easy to see that, 
in both cases, all words form a single family. Let P be any partition of 
r. Since we have P(x)  -P(y) ,  for each pair of words x, y ,  it follows 
that P' is the improper partition of I?. 

The proof of Proposition 3 suggests the introduction of a new notion, 
as follows: A P-structure B will be called perfect if it is marked and if 
each string whose P-structure is B is a marked string ([ 3 1 1, pp. 122- 123). 

Theorem 4. Consider a language {r, P ,  @}. The partition P is finer 
than S if and only if each marked P-structure is perfect. 

PROOF. Let us first suppose that P is finer than S and let 9' = P(xl)P(x,)  
- * .P(x,) a marked P-structure. We shall show that x = xIx2 * * x, is a 
marked string. Since 9 is marked, there exists a marked string y =  
y1y2 - - - y,, such that P(xi) = P(yi) for 1 s i s n. Since P is finer than S, 
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it follows that xi E P(yi) C S(yi)  for 1 s i S n. Therefore, x is obtained 
from y by replacing each term yi of y by a word belonging to S(ui). Since 
y is marked, it follows that x is also marked. 

Let us now suppose that each marked P-structure is perfect. We 
shall show that P is finer than S. Indeed, let b E P(a).  It must be proved 
that b E S(a).  Let x = a, - - ai-laai+l - - . a, be a marked string con- 
taining a and let y = a, * . * ai-,bai+, - * * a,. Since b € P(a) ,  y has .the 
same P-structure 9 as x; since x is marked, B is marked. Hence 9 is 
perfect and y is a marked string. Conversely, if y is marked, its P- 
structure B is marked, and thus is perfect; since P ( b ) = P ( a ) ,  B is 
the P-structure of x; thus x is marked. It follows that b E S(a) and 
Theorem 4 is proved. 

Corollary 5. Each marked S-structure is perfect. 

PROOF. Since S is finer than itself, we may apply Theorem 4. 

REMARKS. The part of sufficiency in Theorem 4 and Corollary 5 were 
given by Revzin [3 1 pp. 179- 1801. 

Theorem 4 shows that a partition P whose P-structures are all perfect, 
has each of its cells contained in a family. But we have already remarked 
that the customary interpretation of the partition P is that in which P(x)  
is the set of flectional forms of x. Since two different flectional forms of 
the same word are not, ordinarily, in the same family, it follows that a 
perfect P-structure is not in the spirit of the paradigmatic structure of a 
natural language. 

10. Mixed Cells; Union and Intersection of Two Partitions 

Let us consider a language {F, P, @}. A chain between the words a 
and b is a finite sequence of words x,, x,, . . . , x i ,  x i+ , , .  . . , x n ,  such that 
x1 = a, x, = b and 

xi E S(xi+,) U P(xi+,) for 1 s i s II - 1. 

The number rz is the length of the chain. We shall consider that for 
each word a there exists a chain of length one between a and a. 
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Let us denote by R(a)  the set of those words b such that there exists 
a chain between a and 6. It is easy to see that ( 1 )  a E R(a);  (2) if b E R(a),  
then a E R(b); if b E R(a)  and c E R(b), then c E R(a). Thus, the sets 
R(a)  for a E r define a partition R of r, called the partition in mixed cells. 
For each a E r, we have S(a) C R(a)  2 P(a). Hence the partitions P 
and S are finer than R. 

Proposition 4. There exists a language {r, P ,  @}, where neither P 
nor S are regularly finer than R. 

PROOF. Let r = {a, b, c},  P(a) = P(b)  = {a ,  b} ,  P(c)  = {c}, @ = 

{ab, ac}. We have S(a) = { a } ,  S(b) = S(c) = {b, c} and R(a) = R(b) = 
R(c) = r. On one hand, S(a) C R(a)  2 S(b), but S(a) and S(b)  are 
not S-equivalent, since S’ = S (in view of Corollary 2) and S(b) # S(a). 
Thus, S is not regularly finer than R. On the other hand, P(a)  C R(a)  2 
P(c) ,  but P(a) and P(c) are not P-equivalent, since the P-structure 
P(a)P(c) is marked, whereas the P-structure P(c)P(c) is unmarked. Thus, 
P is not regularly finer than R. 

The partition into mixed cells is a particular case of a general operation, 
the so-called union of two partitions. If A and B are two partitions of 
r, we shall say that the finite sequence of words xl, xz, . . . , x, is an 
AB-chain which connects the words a and b if x1 = a, x, = b, and 

xi E A(xi+J U B(X,+~) for 1 G i s n- 1. 

We shall also say that the pair {a ,  b}  is AB-connected. 
A subset rl of r is called AB-connected if for each pair {a ,  b}  of 

words in f ,  there exists an AB-chain which connects a and 6. The subset 
Tz of r is called saturating AB-connected if Tz is AB-connected, but no 
AB-connected subset rl of r exists such that Tz can be strictly contained 
in rl. 

Each word a belongs to a saturating AB-connected subset of r, namely 
to that subset which contains all words b such that the pair {a ,  b} is 
AB-connected. Since the union of several AB-connected subsets of r 
having a common word is also an AB-connected subset of r, it follows 
that the saturating AB-connected subsets of r are pairwise disjoint; the 
corresponding partition of is called the union of the partitions A and 
B ([l I], Section 4). 

Now it is easy to see that the mixed cells of r are the cells of the 
partition which is the union of P and S; that is, the union of P and S is R. 

Another operation with partitions is the intersection of two partitions, 
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defined as follows: If A and B are two partitions of r, the intersection of 
A and B is the partition whose cells are the intersections between any 
cell of A and any cell of B .  

It is obvious that the intersection partition of A and B is finer than 
A and than B ,  whereas both A and B are finer than their union. 

Proposition 5. There exists a language {r, P ,  a}, where the inter- 
section Q of P and S is not regularly finer than P. 

PROOF. Let us consider the same language as in the proof of Proposi- 
tion 4. It is easy to see that Q is the unit partition E. We have b E P(a). 
Hence E(a) C P(a) 2 E(b), but E(a) and E(b) are not E-equivalent, 
since S(a) # S(b). Thus, E is not regularly finer than P. 

The union and the intersection of two partitions are used in the abstract 
theory of automata ([ 1 11, Section 4, and [ 101). 

11. Classes and Their Structure 

Let us denote by K(a) the set of words b such that at least one of the 
following two conditions is fulfilled: (1) P(a)  fl S(b) # 0; (2) P(b) fl 
S(a)  # 0. The set K(a)  is, by definition, the class of a. Since a E P(a)  fl 
S(a) ,  it follows that a E K(a)  for each a E r. Since Condition 2 is ob- 
tained from Condition I by replacing a by b and b by a, it follows that 
b E K(a) implies a E K(b). Thus, the relation p,  defined by a p b if and 
only if a E K(b), is reflexive and symmetric. 

Proposition 6. 
p is not transitive. 

There exists a language {r, P ,  a} where the relation 

PROOF. Let r =  {a ,  b, C ,  d } ,  P(a)= {a ,  b}, P(c)  = { c ,  d } ,  c D =  {ad, 
bb, ab, bc, bd, dc, db, dd}. We have S ( a )  = { a } ,  S(b) = S(d) = {b, d} ,  
S(c) = {c} .  Since P(d)  fl S(c)= { c }  # 0 and S(d) n P(a) = {b} # 0, 
it follows that we have c p d and d p a. But we do not have c p a, since 
~ ( a )  n S ( C )  = P ( C )  n S ( U )  = 0. 

Proposition 7. We always have 

S ( x )  u P(x)  C K(x)  c R(x) .  
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PROOF. The proof follows directly from the definitions. 
Let 

M(x)  = u Sb), N ( x ) =  u P(Y). (68) 
YE P(x)  Y E  S(x )  

Theorem 5. In any language {r, P ,  (a} and for each x E r we have 
K(x)  = M(x)  u N(x) .  

PROOF. Let u E K(x). If P(x)  n S(u) # 0, there is a word v E S(u) n 
P(x);  hence u E S(v)  and v E P(x) .  Therefore, u E M(x) .  

If P(u) n S ( x )  # 0, let w E P(u) fl S(x); hence u E P(w) and w E S(x) .  
Therefore, u E N(x).  Thus, we have proved the inclusion 

K(x)  c M(x)  u N(x).  

Let us now consider u E M ( x )  U N(x).  If u E M(x) ,  there exists 
a word y E P(x)  such that u E S(y); hence y E P(x)  n S(u). Therefore, 
P(x)  n S(u) # 0 and u E K(x) .  If u E N ( x ) ,  there exists a word y E S(x) ,  
such that u E P(y) .  Hence y E S(x) f l  P(u),  and it follows that 
S(x) n P(u) # 0 and u E K(x) .  We have thus proved the inclusion 

M(x)  u N(x)  c K(x) ,  

and Theorem 5 is established. 
For any subset rl of r, let 

Proposition 8. For any x E r, we have 

M ( x )  = S(P(x ) ) ,  N ( x )  = P(S(x)).  

PROOF. The proof follows immediately from the definitions. 
Let us put, for each x E r, 

H(x)  = u Kb). 
KCV) nK(x)+o 

Proposition 9. 
ff(4 c R(x). 

In any language {r, P ,  (a} we have, for each x E r, 

PROOF. Let z E H(x).  There exists y E r such that z E K b )  and 
K(y)  n K(x)  # 0. Let t E K b )  n K(x) .  In view of Proposition 7 and 
since R is a partition of I', we have t E K(x)  c R(x), y E K(t )  C R(t) = 

R(x),  z E K(y)  c R b )  = R(x);  thus, Proposition 9 is proved. 
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12. Partitions of the Free Semigroup Generated by r 

In various problems we must consider some partitions of the set T- the 
free semigroup generated by r. An example of such a partition is that used 
in Sections 1 and 5 in connection with the so-called finite-state languages. 
Let us recall these facts, using a new terminology and a more systematic 
presentation. 

The unit partition E of T is, by definition, that partition for which 
E(x) = {x} when x E T. Two strings x and y belonging to T are called 
E-equivalent with respect to the subset @ of T, if for any u E T ,  v E T, we 
have either uxv E @, uyv E @, or uxv E T - @ ,  uyv E T-@. The set 
p(x) = {y; x and y are E-equivalent with respect to @} will be called the 
T-distributional class of x or the T-family of x (with respect to a). A 
language { r, @} will be called a Jinite-state language if there are only 
finitely many T-distributional classes with respect to a. This definition 
agrees with the customary one, as is shown in [ I ]  and [29]. 

Let us denote by p the equivalence relation in T, defined by the disjoint 
sets p(x). By p we also mean the partition of T into the sets p(x) .  

An equivalence relation r in T is called invariant from the right if, for 
any x E T ,  y E T, z E T such that xry, we have xzryz; r is called invariant 
from the left if, for any x E T, y E T, z E T such that xry, we have zxrzy. 
An equivalence relation r in T is called a congruence relation in 1' if it is 
invariant from both the left and the right. 

We shall define a binary relation 6 in T, as follows: x 6 y if for any z E T 
we have either xz E @, yz E @, or xz E T-@, yz E T-@. 

Proposition 10. 6 is an equivalence relation in T, invariant from the right. 

PROOF. Since it is obvious that 6 is an equivalence relation, let us 
show that it is invariant from the right. Given x E T, y E T, z E T such 
that x 6 y ,  let u E T such that xzu E a. Since x 6 y, it follows that yzu E @. 
Now let w E T such that xzw E T - a .  It follows that yzw E T - @ .  
Hence xz 6 yz and 6 is invariant from the right. 

Proposition 11. There exists a language {r, a} in which 6 is not in- 
variant from the left. 

PROOF. Let r = {a ,  6 ,  c}, @ = {ba, ca, aab, ac}. It is easy to see 
that b 6 c ;  but ab and ac are not &equivalent, since aab E @, whereas 
uuc E T - a .  
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We shall define a binary relation A in T as follows: x A y if for any z E T 
we have either zx E @, zy E @, or zx E T - @, zy E T - 0. 

Proposition 12. A is an equivalence relation in T, invariant from the left. 

PROOF. Since it is obvious that A is an equivalence relation, let us 
show that it is invariant from the left. Given x E T, y E T, z E T such 
thatxAy,ifu E Tanduzx E @,thenuzy E @.Ifw E Tandwzx E T - @ ,  
then wzy E T - @. Therefore, zx A zy and A is invariant from the left. 

Proposition 13. There exists a language {r, @} where A is not invariant 
from the right. 

PROOF. Let = {a ,  b, c } ,  @ = {ab, ac, baa, ca} .  It is easy to see 
that b Ac; but ba and ca are not A-equivalent, since baa E @, whereas 
caa E T - @ .  

Proposition 14. The partition p is finer than the intersection of the 
partitions 6 and A, but there exists a language {r, @} and two strings 
x E T ,  y E T such that x 6 y ,  x X y ,  although x and y are not p-equivalent. 

PROOF. If x p y ,  then, for any u E T ,  v E T, we have either uxv E @, 
uyv E @, or uxv E T-@, uyv E T-@. Taking as u the zero string, 
we deduce that x 6 y. Taking as v the zero string, we deduce that x A y .  

Now let r = { a ,  b, c } ,  @ = {ab, ac, ba, ca, aba}. We have a 6 b and 
a A b, but not a p b, since aba E @, whereas aaa E T - @. 

Theorem 6. p is a congruence relation in T .  

PROOF. Since p is an equivalence relation in T ,  it remains to show 
that p is invariant from both the left and the right. Let x E T, y E T ,  
z E T ,  and x p y .  Let u E T, v E T such that uxzv E @. Since x p y ,  it 
follows that uyzv E @. On the other hand, let u' E T, v' E T such that 
u'xzv' E T - @. Since x p y, it follows that u'yzv' E T - @. Hence xz p y z  
and p is invariant from the right. In a similar manner, we prove that 
p is invariant from the left. 

Proposition 15. The relation Y for which r(x) = {x} for any x E T is 
a congruence relation in T. 

PROOF. Obvious. 
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Theorem 7. Let r be an equivalence relation in T. r is a congruence 
relation in T if and only if, for any x E T, y E T, z E T, w E T such that 
xrz and yrw, we have xyrzw. 

PROOF. Let r be a congruence relation in T and let x E T, y E T, 
z E T, w E T such that xrz and yrw. Since r is invariant from the right, 
we have xyrzy. Since yrw and in view of the invariance of r from the left, 
we have zyrzw. Using the transitivity of r ,  we deduce xyrzw. 

Suppose now that for any x E T, y E T, z E T, w E T such that 
xrz and yrw, we have xyrzw. Let us show that r is invariant both from 
the right and from the left. Since r is reflexive, we may take w = y and 
deduce xyrzy. Hence r is invariant from the right, Using the reflexivity 
of r again, we may take z = x and deduce xyrxw; hence r is invariant from 
the left. Theorem 7 is proved. 

Given two subsets A and B of T, we denote by A B  the set of strings 
xy, where x € A  and y E B. Given an equivalence relation r in T, let us 
denote, (as done this far) by r(u) the r-equivalence class containing the 
string u. From Theorem 7 we shall deduce another characteristic of the 
congruence relations. 

Theorem 8. An equivalence relation r in T is a congruence relation 
in T if and only if for any two strings x E T and y E T, there exists a 
string u E T such that r(x)r(y) c r(u). 

PROOF. Let r be a congruence relation in T and let x E T and y E T. 
If z E r(x) and w E r(y), then, in view of Theorem 7 (necessity of the 
condition), we have xyrzw. Hence, by putting u = xy, we have zw E r(u). 
Since zw is an arbitrary element of r(x)r(y), the required inclusion follows. 

Now suppose that, for any two strings x E T and y E T, there exists 
a string u E T such that r(x)r(y) C r(u). This means that, for any z E r(x) 
and w E r(y),  we have zw E r(u). In particular, we have xy E r(u). Hence 
r(xy) = r(u) and zw E r(xy), that is, xyrzw. In view of Theorem 7 (suffi- 
ciency of the condition), r is a congruence relation in T. 

Another form of Theorem 8 is now given. 

Theorem 8’. An equivalence relation r in T is a congruence relation 
in T if and only if, for any x E T and y E T, we have r(x)r(y) c r(xy). 

A partition P of T is called automatic from the right (from the left) 
if, for any cell Pi of P and for any x E r, there exists a cell Pj of P such 
that P,{x} C Pj({x}Pi C Pj). A partition P of T is called invariant from 
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the right yrom the left) if the corresponding equivalence relation is 
invariant from the right (from the left). A partition P of T is called 
semigroupal if the corresponding equivalence relation is a congruence 
relation. 

Theorem 9. A partition of T is semigroupal if and only if it is invariant 
both from the left and from the right. A partition of T is invariant from 
the right (from the left) if and only if it is automatic from the right (from 
the left). 

PROOF. The first assertion follows immediately from the definitions 
and from Theorem 8. Since it is obvious that any partition invariant from 
the right (from the left) is automatic from the right (from the left), it 
remains to prove the converse of this assertion. Let P be automatic 
from the right and let x = a,az * * * a, be a string of T.  Given a cell P(y)  
of P ,  there exists a cell P1 of P such that Pot) {a,} = P,; then there exists 
a cell P, such that P,{a2} = P2. Hence P2 = Pl{al ,  az}.  Continuing in this 
way, we find, after n steps, some cell P ,  of P ,  such that P(y){a,a2 - * a,} 
= P,; hence Pot) {x} = P,. Since x is an arbitrary element of T ,  it follows 
that P is invariant from the right. 

One proceeds in a similar way when P is automatic from the left. 

Proposition 16. If A and B are two semigroupal (invariant from the 
right, invariant from the left) partitions of T ,  the intersection of A and 
B is also a semigroupal (invariant from the right, invariant from the 
left, respectively) partition of T .  

PROOF. This proof follows immediately from the definitions. 

Theorem 10. If A and B are two partitions of T ,  invariant from the 
right (from the left), their union P is also a partition of T invariant from 
the right (from the left). 

PROOF. If x and y are two strings belonging to the same cell P j  of P,  
there exists an AB-chain x = xo, x,, . . . ,x, = y ,  that is, xi E A(xi,,> U 
B(x,+,) when 0 S i s n-  1 .  Since A and B are invariant from the right, 
we have, for any z E T ,  xiz E A(x,,gj  U B(x,+,z) when 0 s i s n - 1 .  
Hence the pair {xz, y z }  is AB-connected. Since xz and y z  are two arbitrary 
elements of P j { z } ,  it follows that P j { z }  is AB-connected. Therefore it is 
contained in some cell of P and P is invariant from the right. 
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One proceeds similarly when A and B are invariant from the left. 

Corollary 6.  
union P is also a semigroupal partition of T .  

If A and B are two semigroupal partitions of T ,  their 

PROOF. It is enough to take account of Theorems 9 and 10. 
Let P be a partition of T .  Denote, as done so far, by P(x) that P-cell 

which contains the string x E T.  If xlxz * - - x,  is a sequence of strings, 
then P(x,),  P ( x J , .  . . , P(x,) is the P-structure of this sequence. Given 
a sequence of P-cells P,, Pz, .  . . , P,, that is, a P-structure, we shall 
say that it is marked with respect to CP C_ T ,  if there exists a sequence 
of strings x,, xz, . . . , x, belonging to T ,  such that P, = P(xl), P2 = 
P(xz), . . . , P ,  = P(x,) and the composed string xlxz - * - x,  belongs to 
a. If such a sequence of strings does not exist, we shall say that the 
sequence (or the P-structure) PIP, * * * P, is unmarked (with respect 
to CP). 

Given two P-cells P(x)  and P(y )  of the partition P of T ,  we shall say 
that P(x) P-dominates P(y) [or that P(y) is P-dominated by P(x)] with 
respect to Q, C T ,  if for any two strings u E T and v E T ,  such that the 
P-structure P(u)P(x)P(u) is marked, the P-structure P(u)P(y)P(v) is 
also marked. 

If P(x)  P-dominates P(y )  and P(y) P-dominates P(x)  with respect to 
CP, we shall say that P(x) and P(y) are P-equivalent with respect to CP. 

Let P be a partition of T.  For any string x E T ,  denote by P'(x) the 
union of all P-cells PCy), such that P(x) and P(y) are P-equivalent with 
respect to @. It is easy to see that the sets P'(x) define a new partition of 
T ;  it is denoted by P' and called the derivative of P (with respect to @). 

Proposition 17. The partition of T into T-distributional classes is the 
derivative of the unit partition of T .  

PROOF. 
Given two partitions A and B of T ,  we shall say that A is finer than B 

if for any string x E T we have A@) C B(x).  A is said to be regularly 
finer than B if A is finer than B and if, for any x E T and for any y E B(x) ,  
the A -cells A (x )  and A (y)  are A-equivalent. 

Most of the results concerning the partitions of l- remain true when r 
is replaced by T.  We give here only some of these results, which will 
be used later. Since the corresponding proofs are essentially the same 
when r is replaced by T ,  no proof will be given. 

The statement follows immediately from the definitions. 
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The following results will be considered with respect to a fixed language 
{ r, @}. A and B will always denote partitions of T. 

Lemma 1’. If A is finer than B, then for any marked A-structure 
A(x,) ,  . . . , A(x,) (where xi  E T for 1 S i S n)  the B-structure B(x, ) ,  . . . , 
B(x,) is also marked. 

Lemma 2”. Let A be finer than B and let x E T and y E T. IfA(u) C B(x) 
implies that A(y)  is A-dominated by A(u),  then B(x)  B-dominates B(y).  

Lemma 3’. Let A be finer than B and let x E T and y E T. If A(u)  C_ 
B(x) implies that A(u) A-dominates A(y)  and if A(v )  G B(y) implies that 
A(v)  A-dominates A(x),  then B(x) and B(y) are B-equivalent. 

Corollary 1’. If A is regularly finer than B and if there exist x E T 
and y E T such that A(x)  and A ( y )  are A-equivalent, then B(x) and B(y) 
are B-equivalent. 

Lemma 4“. Let A be regularly finer than B. If there exist x E T and 
y E T such that B(x) 23-dominates B ( y )  and if u E T and v E T are such 
that A(u) C B(x)  and A(v)  B(y) ,  then A(u) A-dominates A(v).  

Lemma 5‘. Let A be regularly finer than B. If there exist x E T and 
y E T such that B(x)  and B(y) are B-equivalent and if u E T and v E T 
are such that A(u)  C B(x) and A(v) C B(y) ,  then A(u) and A(v) are A -  
equivalent. 

Lemma 6. 
regularly finer than B. 

Let A be finer than B. We have A ’ =  B’ if and only if A is 

Corollary 2’. 
Let P be a partition of T; let @ C T, x E T, and y E T. We shall say 

that P(x) and P(y) are P-equivalent from the right with respect to @, if 
for any w E T, the P-structures P(x)P(w) and P(y)P(w) are both either 
marked or unmarked. Denote, for each x E T, by PA(,) the union of all 
P(y) such that P(x) and P(y) are P-equivalent from the right with respect to 
CP. The corresponding partition P& is called the derivative of P from the 
right, with respect to @. Considering the unit partition E of T, the EA- 
cells are called the T-semifamilies with respect to @. It follows for any 
x E T ,  that, &(x) contains exactly those strings y E T for which, for any 

For any partition A ,  we have A’ = A”. 
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w E T ,  the strings xw and yw belong either both to @ or both to T - @ .  
In a similar manner we define, with respect to a given set @ C T ,  

such facts as “A is regularly finer than B f rom the right,” “P(x) P- 
dominates P(y) from the right,” and others. Lemmas 2“, 3‘ ,  4”, 5‘, 6 ,  
and Corollaries 1 ’ and 2’ remain true when the A-domination (B-domina- 
tion, A -equivalence, B-equivalence) is replaced by the A -domination 
from the right (B-domination from the right, A -equivalence from the 
right, B-equivalence from the right, respectively), “regularly finer” is 
replaced by “regularly finer from the right,” and “derivative” is replaced 
by “derivative from the right.” The corresponding results will be denoted 
by Lemmas 2f, 3:, 4p, 5:, 6, and Corollaries 1; and 2;, respectively. 

In a similar manner we define the corresponding notions “from the 
left,” and we obtain corresponding results, denoted by Lemmas 2‘1, 3:, 
4f, 51, 6l and Corollaries l i  and2,‘. 

13. Bibliographic Remarks 
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NOTE ADDED IN PROOF 

An extensive study of the morphologic homonymy, by the method sketched in Sections 
2 and 4, may be found in Chapter V of our forthcoming book, “Introduction Mathkmatique 
B la Linguistique Structurale”, Gauthier-Villars, Paris, and Mouton, The Hague. Con- 
cerning the same question, see L. Nebesky (Conditional replacement of words, Prague Bull. 
Math. Linguistics (3), 3-12 (1965)) and B. H. Mayoh (Simple structures defined on a 
transitive and reflective graph, Rev. Roumaine Math. Pures Appl .  11 (11, 43-51 (1966); 
Grammatical categories, to appear in the same journal). A more general treatment 
of some questions studied in Sections 5-8 was given by M. Novotnyi (On algebraization of 
the set-theoretic language models (in Russian), Probl. Kibernetiki 15, 235-244 (1965)). A 
notion of quasi congruence, which generalizes the congruence relation studied in Section 
12, was introduced by V. Amar and G. Putzolu (On a family of linear grammars, Inform. 
Control 7 ,  283-291 (1964)). A graph theoretical generalization of the results concerning 
morphologic homonymy is given by C. Raischi, Asupra unui model algebric al categoriilor 
gramaticale, to appear in Studii si cercetriri matematice 18 (1 967). 



Chapter I /  

Linguistic Typology 

In this chapter we deal with some restrictions imposed on a language. 
These restrictions are of three types. We first have restrictions concerning 
only the set Ca of marked strings, that is, restrictions of a purely syntag- 
matic character. We then have restrictions concerning only the partition 
P of r, that is, restrictions of a purely paradigmatic character. Finally, 
and most frequently, there are those restrictions which concern both the 
set Ca and the partition P. Each of these restrictions yields some class of 
languages, and we shall investigate the relations between these classes 
and their significance as models of various natural languages. The latter 
will be accomplished in Section 8 of this chapter and in the next two 
chapters. 

1. Adequate Languages 

A language {r, P ,  Ca} is said to be adequate if for each x E r we have 
S(x) C P'(x).  The simplest example of an adequate language is obtained 
when P is the unit partition of r. 

Theorem 1. There exists a language which is not adequate. 

PROOF. Let r = { a ,  b, C ,  d} ,  P(a)  = {a ,  b } ,  P(c) = { c ,  d} ,  Ca = {ad, 
bd, cd}. We have S(a)  = {a ,  b, c } ,  S(d) = {d} .  We shall show that 
P'(a) = P(a); the 
theorem will be established. 

It is easy to see that P(c) is not contained in P'(a),  since the replacement 
of P(c) by P(a)  in the marked P-structure P(a)P(c) yields the unmarked 
P-structure P(a)P(a). Thus, P'(a)  = P(a). 

36 

since S(a) -P(a) = {a ,  b, c}  - {a, b}  = { c }  # 0. 
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Theorem 2. If {r, P ,  (a} is adequate, the partition R is finer than the 
partition P’. 

PROOF. For each x E r we have, by hypothesis, S(x) c P’(x)  and, 
in any case, P(x)  C P’(x).  Let us put R,(x) = S(x) U P(x) .  It follows that 
R,(x)  c P’(x) .  If we put, for any set rl c r, 

s(rl) = u SW, w,) = u PW, 
xEr, xEr,  

R(rl) = s(rl) u P(r1)7 

then we may define by induction the sets R&) = R(R,(x)) ,  . . . , R,+,(x) = 

R(R,(x)),  . . . . 
Let A c P’(x).  Since R,(x)  c P’(x) ,  it follows that R(A) c P’(x) .  Hence 

R,(x) c P’(x)  for each x E r and for each positive integer n. But it is 
easy to see that 

m 

R(x)  = u R,(x); 
n= 1 

therefore, R(x) c P’(x)  for each x E r and Theorem 2 is proved. 

Theorem 3. If {r, P ,  @} is adequate, then R is regularly finer than P’ 

PROOF. Let x E r, y E r, u E r such that 

It must be shown that 

Let 
R(zl) ,  . . . 7 R(zi-l)? R(x)7 R(zi+l)7. . . 

be a marked R-structure. There exists a marked string 

4 = W ]  - . . Wi-IW{Wi+] * * * w, 

whose R-structure is precisely (4). It follows that 

R ( W j )  = R(Zj) ( 1  s j  zz n, j # i), 



38 11. Linguistic Typology 

R(wJ = R(x). (7) 

On the other hand, we have P(wj) C R(wj) for 1 G j  S n; hence the 
P-structure 

P(w,)* * .P(w~_l)P(w~)P(w~+,) .  - *P(w,) (8) 

is marked, as a consequence of the fact that the string $I given by (5) is 
marked. From (6) and (7)  we deduce 

P(Wj)  G R(Zj) (1 G j S  n, j # i), (9) 

P ( W i )  c R(x). (10) 

P(wJ c P’(Zj) 2 P(Zj) ( 1  G j  c n, j # i), ( 1  1) 

Using inclusions ( l ) ,  ( 2 ) ,  (9), (lo), and in view of Theorem 2 ,  we obtain 

P ( W J  c P’(u) 2 P(Y>. 
From ( 1  1) and (1 2) we deduce 

P(wJ * KY). (14) 
From ( 1  3 )  and (1 4) and since the P-structure (8) is marked, it follows that 
the P-structure 

P(Zl) .  * -P(zi-l>P(u>P(zi+l>* * *P(z,) 

is marked. Since P(a)  C R(a) for each a E r, it follows that the R- 
structure R(zl). * . R ( Z ~ - ~ ) R ( ~ ) R ( Z ~ + ~ ) .  - .R(z,) is marked. But this R- 
structure is obtained from (4), by replacing R(x) by R(y). Hence R(x) 
R-dominates R(y). In view of the symmetry of hypotheses (1) and (2) 
with respect to x and y ,  it follows that R(y) R-dominates R(x), and relation 
(3) is proved. 

Theorem 4. If {r, P ,  @} is adequate, then R’ = P’. 

PROOF. Theorem 1, Chapter I says: “If the partition Q is finer than 
P ,  then P‘ = Q’ if and only if Q is regularly finer than P.” Let us take, in 
this theorem, P‘ for P and R for Q .  Since, in view of Theorem 3 ,  R is 
regularly finer than P’, it follows that P“ = R‘. But P is regularly finer 
than P ’ ;  thus, again using Theorem 1, Chapter I,  we obtain P = P‘ .  
Hence R‘ = P’, and Theorem 4 is proved. 

The converse of Theorem 2 is true, as is shown by the next theorem. 



1. Adequate Languages 39 

Theorem 5. If R is finer than P ‘ ,  the language {r, P ,  @} is adequate. 

PROOF. In view of the definition of R ,  we have S(x) C R(x)  for any 
x E r. On the other hand, since R is finer than P ‘ ,  it follows that R(x)  C_ 

P’(x). Hence S(x) C P’(x)  for any x E r and Theorem 5 is proved. 
It follows immediately that the converses of Theorems 3 and 4 are 

also true. 

Corollary 1. If R is regularly finer than P ’ ,  then {r, P ,  @} is adequate. 

Corollary 2. 
A word x is said to be adequate if S(x) C P’(x) .  A language is said to 

be locally adequate if each of its words is adequate. It follows immediately 
that a language is adequate if and only if it is locally adequate. 

If P’ = R ’ ,  then {r, P ,  @} is adequate. 

Proposition 1. There exists a language in which no word is adequate. 

PROOF. Let r =  {a ,  6, C ,  d } ,  P(a) = { a } ,  P(b) = { b } ,  P(c) = {c ,  d } ,  
= {ab, cb, ad, cd } .  It is easy to see that S(a)  = { a ,  c} and S(b)  = 

{b, d } .  We have P(x)  = P’(x)  for each x E r. Since S(x) is contained 
in P(x) for no x E r, it follows that no word is adequate. 

The above example is the simplest possible, since we have another 
proposition. 

Proposition 2. If r contains fewer than four words, then for any P and 
any @, the language {r, P ,  @} possesses at least one word which is 
adequate. 

PROOF. If S is the improper partition of r, then P’(x)  = r for each 
x E F and the considered language is adequate, hence locally adequate. 
If S is not the improper partition, there exists a word a E r such that 
S(a)  = { a } .  Therefore S(a)  C P ( a )  and a is an adequate word. 

Lemma 1. 
and P is finer than Q and if L‘ = Q ’ ,  then L‘ = P’. 

If L, P, and Q are partitions of r such that L is finer than P 

PROOF. In view of Theorem 1 ,  Chapter I, Lemma 3 will be proved if we 
can show that t is regularly finer than P. To this aim, let x, y ,  and u be three 
words such that L(x) C P(u) 2 L(y), and let us put H = L‘ = Q’. Since 
Q is finer than H and P is finer than Q, it follows that P is finer than H .  
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Hence P(u)  C H(u) and thus L(x) C H(u)  2 L(y). Since H = L', L is regu- 
larly finer than H .  Therefore, L(x) and L(y) are L-equivalent. It follows 
that any two L-cells contained in the same P-cell are L-equivalent, 
and we have that L is regularly finer than P .  

Theorem 6. 
K(x)  define a partition K of r , then K' = P' .  

Let {F, P ,  Ca} be an adequate language. If the classes 

PROOF. The partitions P, K ,  and R fulfill all hypotheses of Lemma 1 .  
Indeed, P is finer than K ,  K is finer than R, and, in view of Theorem 4, 
P' = R' .  Thus, Lemma 1 implies K' = P'; Theorem 6 is proved. 

2. Homogeneous Languages 

A language {r, P ,  Ca} is said to be homogeneous if the relation S(x) rl 
P(y) # O(x E r, y E r) implies S(y) n P(x)  # 0. 

A word x is said to be homogeneous if, for any y E P(x)  and any 
z E S(x) ,  we have S(y) n P(z )  # 0. If each word is homogeneous, the 
considered language is said to be locally homogeneous. 

Theorem 7. 
geneous. 

{ r, P ,  Ca} is homogeneous if and only if it is locally homo- 

PROOF. Let us consider {I?, P ,  Ca} homogeneous, and let y E P(x) 
and z E S(x) .  It follows that x E P(y) rl S(z). Hence P(y )  n S(z) # 0. 
In view of the homogeneity, we deduce that S(y) f l  P(z) # 0. There- 
fore x is an homogeneous word. But x is arbitrarily chosen in r; thus, 
{r, P ,  Ca} is locally homogeneous. 

Let us now suppose that {r, P ,  Ca} is locally homogeneous and let 
u E r, v E r such that P(u)  f l  S(v)  # 0. There exists w E r such that 
w E P(u) n S(v);  hence u E P(w) and v E S(w).  In view of the local 
homogeneity, w is an homogeneous word. Therefore, S(u) rl P(u) # 0, 
and the considered language is homogeneous. 

Theorem 8. Each homogeneous language is adequate. 

PROOF. ( 1 )  We shall first establish the following property: If y E S(x) 
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and y’ E P(y) ,  there exists a word x’ E P(x)  such that y’ E S(x’) .  Indeed, 
since y E S(x), we have x E S(y). On the other hand, we have y’ E P(y). 
In view of the homogeneity and in view of the preceding theorem, the 
considered language is locally homogeneous. Hence the word y is homo- 
geneous. Thus P(x)  n s(~ ’ )  # 0. Any word x ’  E P(x)  n S(y‘) satisfies 
the required condition. 

(2) Let y E S(x). We shall show that P(x)  and P(y) are P-equivalent. 
Let 

* * * PIP(y)Pz * * * 

be a marked P-structure containing PCy); there exists a marked string 

. . . 2)1y‘v2 . . . 

. . . , v1 E PI, y’ E P(y),  u2 E P z , .  . . . 
such that 

In view of ( l ) ,  we deduce the existence of a word x’ E P(x)  such that 
y’ E S(x’). Hence the string . . . v1x’v2. . . 
is marked. It follows that the P-structure 

* . - P,P(x)P,  . * * 

is marked, that is, P(y) P-dominates P(x) .  To establish that P ( x )  P- 
dominates P(y),  it suffices to remark that the result of (1) may be formu- 
lated as follows: If x E S(y) and x’ E P(x) ,  there exists a word y’ E PCy), 
such that x’ E SCy’). 

REMARK. 
false. Precisely, we have the next proposition. 

I t  is interesting that the “local variant” of Theorem 8 is 

Proposition 3. There exists a language {r, P,  @} and a word x E r 
such that x is homogeneous, but not adequate. 

PROOF. Let us consider the language used in the proof of Theorem 1 .  
Since we have P’(a) = P(a)  and S(a) - P(a) # 0, it follows that the word 
a is not adequate. On the other hand, we have S(a) = {a,  b, c } ,  P(a)  = 

P(c) n S(b) = {c} # 0, P(a)  n S(b) = {a,  b}  # 0. Hence a is homo- 
geneous. 

{ a ,  b} ,  P(c) = {c, d } ,  ~ ( b )  n S ( U )  = {a ,  b}  # 0, P(C)  n s(a) = {c}  # 0, 

Theorem 9. There exists an adequate language which is not homo- 
geneous. 



42 11. Linguistic Typology 

PROOF. Let r = {a ,  b, C, d},  P(a) = {a ,  b} ,  P(c) = {c, d} ,  @ = {ad, bb, 
ab, bc, bd, dc, db, dd}. We have S(a)  = { a } ,  S(b) = {b, d } ,  S(c) = { c } .  
It follows that P(a)  n S(d) = {b}  # 0, whereas P(d) n S(a) = {c,  d }  n 
{ a }  = 0. Hence the considered language is not homogeneous. 

Let us show that S(x) C P’(x)  for each x E r. If either x = a or x = c, 
the inclusion is obvious, since we always have x E P‘(x ) .  Now let x = b. 
It is easy to see that b E S(d); it must be shown that P(b) and P(d) are 
P-equivalent. Since the length of each marked string is equal to 2, it 
follows that each marked P-structure has two terms. But the only 
P-structures having two terms are P(b)P(b), P(&P(d), P(b)P(d), and 
P(d)P(b). It is easy to see that all these P-structures are marked: hence 
P(b)  and P(d) are P-equivalent and Theorem 9 is proved. 

Lemma 2. If {r, P ,  @) is homogeneous, x E r and y E r, then y E 
R(x) if and only if P(x)  n S ( y )  f 0. 

PROOF. 
x1,x2,. . . , x i , x i C l , .  . . , x, = y ,  that is, we have 

Let us first suppose that y E R(x) .  There exists a chain x = 

(15) xi+l E S(xi) U P(xi) 

P(x)  n S(xJ # 0 

for 1 =s i s n - 1 .  

We shall show, by induction, that 

for 1 s j  d n; (16) 

the particular case corresponding to j = n is precisely the required 
relation. 

For j = 1, relation (1 6) is true, since x1 = x; thus x E P ( x )  n S(x,). Let 
us suppose that (1 6) is true for each j s i. Since the language is homo- 
geneous, it follows that 

P(xj )  n S(x) # 0 f o r j  =s i. (17) 

In view of (15) we have xi+l E P(xi) or xi+l E S(xi). If xi+l E P(xi),  then 
P(xi) = P ( X ~ + ~ )  and, in view of (17), for j = i, it follows that P ( X ~ + ~ )  n 
S(X) # 0. This implies, in view of the homogeneity of the language, that 

P(X)  n S(X~+J # 0. (18) 

If xi+l E $(xi), we have S(xi)  = S(X~+~).  Hence relation (1 6) f o r j  = i implies 
(18). It follows that the validity of (16) for j G i implies the validity of 
(16) for j = i+ 1 ,  and thus, for j = n, we obtain 

P ( X )  n s(y) z 0. (19) 
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Now suppose that ( 1  9) is true. There exists a word z E P(x)  n S(y), 
that is, we have the chain x, z ,  y ,  with x E P(z)  and z E S ( y ) .  Therefore, 
Y E R(x) .  

Lemma 3. If, in any language {r, P ,  @}, the relation y E R(x)  implies 
(1  9), the language is homogeneous. 

PROOF. Let x and y be such that P(y )  n S ( x )  +O. There exists a 
word z E P(y) n S(x) ,  and we have the chain x, z ,  y between x and y .  
Hence y E R(x).  In view of the hypothesis, this implies relation (19), 
and the language is homogeneous. 

Theorem 10. If {r, P ,  @} is homogeneous, K(x)  = R(x) for each x E r, 
that is, the classes coincide with the mixed cells. 

PROOF. Let x E K(y). It follows that, if P(x)  n S(y)  # 0, then P(y) f l  
S(x) # 0. This implies the existence of a word z such that the sequence 
x, z,  y is a chain. Hence x E R(y) .  

Let us now suppose that x E R(y ) .  Since the language is homogeneous, 
we have, in view of Lemma 2, POI) n S(x)  # 0. Thus x E K(y). 

REMARK. The hypothesis of homogeneity is used only to establish 
that x E R(y)  implies x E K(y).  The inclusion K ( y )  C R ( y )  is true for 
each x E r and for each language. 

Corollary 3. 
partition K of r and we have K' = P' .  

If {r, P ,  @} is homogeneous, the classes K(x) define a 

PROOF. In view of Theorem 8, the language is adequate. We may 
apply Theorem 4 and obtain R' = P'. In view of Theorem 10 and since 
the mixed cells define a partition of r, it follows that the classes K(x)  
define a partition K of r and K = R; hence K' = P'. 

Theorem 11. The language {r, P,  @} is homogeneous if and only if 
M(x)  = N(x)  for each x E r, where M(x)  and N(x)  are given by relations 
(68) of Chapter 1. 

PROOF. Let us first consider {r, P, @} homogeneous and let u E 
M(x) .  There exists a word y E P(x)  such that u E S(y ) .  Hence P(x)  f l  
S(u) # 0. In view of the homogeneity, it follows that P(u)  fl S(x)  # 0. 
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Then let z E P(u) r l  S(x). We have u E P(z)  and z E S(x). Thus u E N(x) ,  
andM(x) c N(x) .  

Now let u E N(x).  There exists a word y E S(x) such that u E P b ) .  
Hence S(x) f l  P(u) # 0. In view of the homogeneity, we deduce that 
S(u) n P(x)  # 0. Then let z E S(u) n P(x) .  We have u E S(z) and 
z E P(x) .  Hence u E M(x) .  Thus, N ( x )  c M(x).  We have also proved 
that the homogeneity of the language implies M(x)  = N ( x )  for each 

Let us now suppose that M(x)  = N ( x )  for each x E r. If P(x)  f l  S ( y )  # 0, 
let z E P(x) n Sb). We have x E P(z) and z E Sb). Hence x E N ( y )  and 
x E M(y).  This means that there exists a word u E P(y )  such that x E S(u). 
Hence u E S(x) n P(y).  We have also proved that P(x)  n S ( y )  # 0 implies 
S(x) n P(y) # 0, and thus the language is homogeneous. 

Corollary 4. If {r, P ,  (a} is homogeneous, then K(x)  = M(x)  = N(x)  
for each x E r. 
PROOF. 

Proposition 4. If N(x)  M ( x )  for each x E r, the language is homo- 
geneous. 

PROOF. Let P(x)  n S(y) # 0 and z E P(x)  f l  Sb); hence, x E P(z)  
and z E S(y) .  It follows that x E N(y) .  But N(y)  c M(y) .  Thus x E M ( y )  
and there exists u E P(y)  such that x E S(u). Therefore, P(y)  n S(x) # 0, 
and the language is homogeneous. 

Proposition 5. If M(x)  c N(x)  for each x E r, the language is homo- 
geneous. 

Corollary 5. If M(x) = K(x)  for each x E r, the language is homo- 
geneous. If N ( x )  = K(x)  for each x E r, the language is homogeneous. 

E r. 

It follows immediately from Theorem 5 and 11. 

In the same way we obtain a further proposition. 

Theorem 5 and propositions 4 and 5 imply a corollary. 

3. Various Types of Homogeneous Languages 

A language is said to be completely homogeneous if, for each x E F, we 
have S(x) c P(x) .  
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Proposition 6. 
pletely homogeneous. 

If P is the improper partition, then {r, P ,  @} is com- 

PROOF. Obvious. 

Proposition 7. 
{r, P ,  @} is completely homogeneous. 

If {r, P ,  @} is such that S is the unit partition of r, then 

is said to be completely homogeneous if S(x) C P(x). A word x E 

Proposition 8. In any language {r, P ,  @}, each completely homo- 
geneous word is homogeneous. 

PROOF. Let x be completely homogeneous and let y E S(x) ,  z E P(x). 
Since S(x)  C P(x) ,  we have y E P(x); hence P(y )  = P(x) and S(z )  n P(y )  = 
S(z) n P(x)  2 { z }  # 0. Therefore, x is homogeneous. 

Proposition 9. 
geneous. 

If {r, P ,  @} is completely homogeneous, it is homo- 

PROOF. 
geneous, and therefore homogeneous. Then apply Theorem 7 .  

It suffices to remark that each word is completely homo- 

Proposition 10. Each completely homogeneous word is adequate. 

PROOF. Obvious. 

In view of Theorem 4, Chapter I, we have a further proposition. 
A language is said to be perfect if for each x E r we have P(x)  C S(x). 

Proposition 11. A language is perfect if and only if each marked P- 
structure is perfect. 

The following two propositions are obvious. 

Proposition 12. If P is the unit partition of r, then {r, P ,  @} is perfect. 

Proposition 13. If {r, P ,  @} is such that S is the improper partition 
of I?, then {r, P ,  @} is perfect. 

S(x) .  A word x is said to be perfect if P(x)  

Proposition 14. In any language {r, P ,  @}, each perfect word is homo- 
geneous. 
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PROOF. Let x be perfect and let y E S(x), z E P(x). Since P(x) 
S(x), we have z E Stx). Hence S(z) = S(x) and S(z) n P(y)  = S(x) n 
P(y)  2 { y }  # 0.  Therefore, x is homogeneous. 

Proposition 15. Each perfect language is a homogeneous language. 

PROOF. It suffices to remark that each word is perfect, and therefore 
homogeneous. Then apply Theorem 7. 

A language {r, P ,  (a} is said to be simple if it is homogeneous and if 
P(x) f l  S(x) = {x} for each x E r. Thus, by definition, any simple lan- 
guage is homogeneous. The converse is not true, as is shown by Pro- 
position 16. 

Proposition 16. There exists a homogeneous language which is not 
simple. 

PROOF. Let {r, P ,  (a} be a language such that S(x) C P(x)  for each 
x E r, whereas S is not the unit partition of r. (An example of such a 
language is {r, S, (a}, where r = { a ,  b }  and (a = { a ,  b } . )  This language 
is completely homogeneous and, in view of Proposition 9, it is homo- 
geneous. On the other hand, P(x)  n S(x) = S(x) and, since S # E ,  there 
exists a word x1 such that S(x,) # { x l } .  

A word x is said to be simple if for y E P(x)  and z E S(x) the set 
S ( y )  n P(z) contains exactly one word. 

A language is said to be locally simple if all its words are simple. 

Theorem 12. A language is simple if and only if it is locally simple. 

PROOF. Let {r, P ,  @} be simple and let x E r. Since any simple 
language is homogeneous and in view of Theorem 7, it follows that x 
is a homogeneous word. Hence for y E P(x)  and z E S(x) we have 
SCy) n P(z) # 0. To prove that Sb)  n P(z)  contains exactly one word, 
we shall reason by contradiction. Let us admit that there exist two dif- 
ferent words x’ and x” such that x’ E S ( y )  f l  P(z)  and x” E S(y) n P(z). 
It follows that P(x’)  = P(x”) = P(z)  and S(x’) = S(x”) = S(y).  Hence 
P(x’) n S(x’ )  = P(x”) n S(x”) = P(z)  17 S ( y ) ;  there fore,^" E P ( x ’ )  n S(x’). 
Since x’ E P(x’)  n S(x‘), it follows that P(x’)  n S(x’) contains more than 
one word, in contradiction to the assumption that the considered language 
is simple. Thus, { r, P ,  @} is locally simple. 

Let us now suppose that {r, P ,  @} is locally simple. 
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Since any simple word is homogeneous, it follows that {r, P, @} 
is locally homogeneous and thus, by virtue of Theorem 7, r, P, @} is 
homogeneous. To prove that P(x) n S(x)  = {x} for each x E r, it suffices 
to take, in the definition of the notion of a simple word, y = z = x and to 
remark that x E S(x) n P(x).  Therefore, {r, P, a} is simple. 

Since any simple language is homogeneous and any homogeneous 
language is adequate, it follows that any simple language is adequate. 
The “local variant” of this fact is not true, as it is shown by Theorem 13. 

Theorem 13. There exist a language {r, P, @} and a word x E r 
such that x is simple, but not adequate. 

PROOF. Let us consider the language used in the proof of Proposition 1 .  
As shown in this proof, no word of this language is adequate. On the 
other hand, we have S ( a )  = {a, c}, P(a) = { a } ,  P(c)  = {c,  d}.  Hence 
P(c) fl S(a)  = {c} # 0 and P(a)  r l  S(a)=  { a }  # 0. Therefore, a is a 
simple word. 

It is easy to see that there exist simple languages which are neither 
completely homogeneous nor perfect, whereas there exist completely 
homogeneous and perfect languages which are not simple. Moreover, 
we have two stronger propositions, as follows. 

Proposition 17. There exists a perfect and completely homogeneous 
language in which no word is simple. 

PROOF. Let T={a,  b}, P(a) = {a,  b}, @ = {a, b}. We have S(a)  = 
{a ,  b}. Hence P = S and the language is perfect and completely homo- 
geneous; but neither a nor b is simple, since P(a)  r l  S(a)  = P(b) n S(b) = 
{a, b}  # { a }  and # {b}. 

Proposition 18. There exists a simple language in which each word is 
neither perfect nor completely homogeneous. 

PROOF. Let r = {a, b, C, d} ,  P(a) = {a, c}, P(b) = {b, d} ,  @ = {QC, 
bc, ad, bd}. We have S(a)  = {a, b},  S(c) = {c, d}. Hence, for any x E I? 
we have neither P(x)  G S(x) nor S(x) C P(x) .  

Proposition 19. Any amorphic language is simple. 

PROOF. A language is amorphic if and only if P = E. Thus, in view 
of Propositions 12 and 15, any amorphic language is homogeneous. 
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On the other hand, in any amorphic language we have, for each x E r, 
S(x) n P ( x )  = S ( x )  n {x} = {x}. Hence any amorphic language is 
simple. 

A word x is said to be amorphic if P(x)  = {x}. 

Proposition 20. There exists a simple language in which no word is 
amorphic. 

PROOF. Let us consider the same language as in the proof of Pro- 
position 18. In view of that proposition and since each amorphic word 
is perfect, it follows that the considered language is simple, but no 
word is amorphic. 

A language is said to be purely paradigmatic if S = E.  A word x is 
said to be purely paradigmatic if S(x) = {x}. 

Proposition 21. Any purely paradigmatic language is completely 
homogeneous. 

PROOF. The proof follows immediately from Proposition 7 

Proposition 22. Any purely paradigmatic language is simple. 

PROOF. In view of Propositions 9 and 21, if {r, P ,  @} is purely 
paradigmatic, it is homogeneous. On the other hand, since we always 
have x E P(x)  n S(x) and since the language is purely paradigmatic, 
it follows that P ( x )  = {x}. Hence P(x)  n S(x) = {x} for any x E r. 
Therefore, {r, P,  @} is simple. 

It is to be remarked that the “local variant” of Propositions 19 and 22 
is not true. Indeed, we have another proposition. 

Proposition 23. There exist a language {r, P,  @} and two words x E r 
and y E r such that x and y are not simple, but x is purely paradigmatic, 
whereas y is perfect. 

PROOF. Let r =  { a ,  b, c, d } ,  P ( a ) =  {a, b, c } ,  P(d)= { d } ,  @ =  
{ab,  ac,  ad} .  We have S(a) = { a } ,  S(b) = {b, c, d } .  The word a is purely 
paradigmatic, but it is not simple, since P(a)  n S(b) = {b, c} .  The word 
d is perfect, but it is not simple, since S(d) n P(b) = {b, c} .  



4. Completely Adequate Languages 49 

4. Completely Adequate Languages 

In some languages there exists a stronger property than that of ade- 
quacy: For any two words x and y such that x E-dominates y we have 
y E P’(x).  A language {r, P, a} in which such a condition is fulfilled 
will be called a completely adequate language. 

Proposition 24. 

PROOF. 

Proposition 25. There exists an amorphic and purely paradigmatic 
language which is not completely adequate. 

PROOF. Let r =  {a, b, c}, P =  E ,  @ = {ab, cb, CC}. It is easy to 
see that S = E and a E-dominates c.  If the language were completely 
adequate, we would have c E E‘(a).  But E‘ = S and, by hypothesis, 
S = E. Thus E’ = E.  It follows that c E E’(a) implies c E E(a).  There- 
fore c = a.  This contradiction shows that the considered language is not 
completely adequate. 

Any completely adequate language is adequate. 

It is enough to remark that, if y E S(x), then x E-dominates y.  

Proposition 26. There exists a completely adequate language which is 
not homogeneous. 

PROOF. Let us consider the language used in the proof of Theorem 9. 
By Theorem 9, this language is not homogeneous. We shall show that it 
is completely adequate. I t  is easy to see that x E-dominates y only in the 
following cases: x = b, y = d ;  x = a, y = b; x = d ,  y = 6 ;  x = c ,  y = d ;  
x = c, y = b; x = a ;  y = d. We have already proved (in the proof of 
Theorem 9) that P(b) and P(d)  are P-equivalent. In fact, for any two words 
x and y ,  P(x)  and P(y )  are P-equivalent, since for any string of length 
exactly equal to 2 the corresponding P-structure is marked. In particular, 
P(x)  and P(y )  are P-equivalent in each of the six above cases in which 
x E-dominates y. 

Proposition 27. There exists a homogeneous language which is neither 
amorphic nor completely adequate. 

PROOF. Let r = { a ,  b, c, d ,  e, f), @ = {ab, ac, de, fe, ff), and P = S. 
The last equality shows that the considered language is perfect. Hence, 
by virtue of Proposition 15, it is homogeneous. We have S(x)  = {x} for 
x # b and x f c and S(b) = {b, c } .  Thus, P(b) = (6, c }  # {b}  and the 
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language is not amorphic. To  see that this language is not completely 
adequate, let us remark that, on one hand, d E-dominates f and, on the 
other hand, P(d) and P ( f )  are not P-equivalent, since P(d) = { d } ,  P ( f )  = 
cf), the P-structure P( f )P( f )  is marked, whereas the P-structure P(d)P(f) 
is not. 

A word x is called completely adequate from the left (from the right) if 
for each y such that x E-dominates y ( y  E-dominates x) we have y E P’(x). 
A word x is called completely adequate if it is completely adequate from 
both the left and the right. It is easy to see that each word completely 
adequate from the left and each word completely adequate from the right 
are adequate. A language is said to be locally completely adequate (from 
the right) if each word is completely adequate (from the right). 

Let us consider a word x such that there is no word y whose morpho- 
logic homonymy is less than the morphologic homonymy of x (in the 
sense of Chapter I,  Section 2). This assertion means that there is no word 
y which E-dominates x and such that x does not E-dominate y .  We shall 
say that such a word x is an initial word. Another presentation of this 
notion was given in Section 4, Chapter I. Denote by G(a) the set of words 
b such that a E-dominates b. By definition, G(a)  is the elementary gram- 
matical category generated by a; the same notion was introduced, in 
another way, in Section 4, Chapter I ,  where its linguistic significance was 
also explained. We recall that, with the customary interpretation adopted 
in a natural language, G(a) is the set of all words whose set of grammatical 
values contains those of a. For instance, in printed French beau is an 
initial word; G(beau) contains exactly those adjectives whose set of 
values contains those of beau: singular, masculine. 

An initial word x is said to be strongly adequate if G(x) C P’(x) .  If 
each initial word is strongly adequate, the considered language will be 
called a strongly adequate language. 

It is obvious that the set G(x) may be defined for any word x, initial or 
not; the linguistic significance just explained is true also if x is not an 
initial word. Even i fx  is not an initial word, C(x)  contains only words 
whose set of grammatical values contains those of x, and all such words. 
For instance, in printed French mince is not an initial word; however, 
G(mince) contains only adjectives admitting the values singular, mas- 
culine, feminine, and all such adjectives [beau does not belong to 
G(mince)]. Let us then extend the property of strong adequacy to 
any word; a word x-initial or not-is said to be strongly adequate if 
G(x) C P’(x) .  Consequently, a language will be called locally strongly 
adequate if each of its words - initial or not - is strongly adequate. 
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A family F is said to be initial if there is an initial word a such that 
F = S(a).  It is easy to see that each word belonging to an initial family 
is an initial word. 

Lemma 4. In any language, and for any x E I‘, there exists an initial 
family F such that each word of F E-dominates the word x. 

PROOF. If S(x) is an initial family, we may take F = S(x).  If not, there 
is a word x1 which does not belong to S(x) and which E-dominates x. 
If S(xl) is an initial family, we may take F = S(xl). If not, we find a word 
x2 which is not in S(x , )  and which E-dominates xl. Continuing in this way, 
we obtain a sequence of words x,, x2, . . . , x,, . . . such that x,, E-dominates 
x,-~ but is not E-dominated by x,-~. We shall prove that the sequence 
{x,} is finite; in this case, if x, is the last term of the sequence, we may 
take F = S(x,). Thus Lemma 4 is proved. In this aim, it is enough to 
prove that the terms of {x,} are pairwise distinct. We reason by contra- 
diction. If we would have two positive integers p and s, p < s, such that 
x, = x,, then, since the relation of E-domination is transitive, x, would 
E-dominate x, for any positive integer r s s; in particular, x, would E- 
dominate X,+~. On the other hand, we know that x,,, E-dominates x,. 
It follows that xPix E S(x,), in contradiction to the definition of the 
sequence x,. 

Theorem 14. A language is locally strongly adequate if and only if 
it is strongly adequate. 

PROOF. Let us assume that {r, P ,  a} is strongly adequate and let 
x E r. If x is initial, we have, by hypothesis, G(x) C P’(x) .  If x is not 
initial, then, in view of Lemma 4, there is an initial word y such that 
y E-dominates x. In view of the hypothesis, we have G(y)  C P’(y) .  
On the other hand, since y E-dominates x, we have G(x) C G(y).  Hence 
G(x) C P’(y )  and x E P’(y) .  This implies P‘(x)  = P’(y)  and G(x) C P’(x) .  
Therefore x is strongly adequate, and the considered language is locally 
strongly adequate. 

It is immediate that the converse is also true; each locally strongly 
adequate language is a strongly adequate language. 

Proposition 28. 
pletely adequate from the left. 

A word x is strongly adequate if and only if it is com- 

PROOF. Obvious. 
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Proposition 29. 
are pairwise equivalent: 

Given a language L,  the following three assertions 

(1 )  L is locally completely adequate; 
(2) L is locally strongly adequate; 
( 3 )  L is locally completely adequate from the right. 

PROOF. Let us prove that (1) +3 (2). If y E G(x), then x E-dominates 
y and, in view of ( I ) ,  y E P’(x) .  Let us now prove that (2) j (1). If x 
E-dominates y ,  then y E G(x) and, in view of (2), y E P’(x) .  If y E- 
dominates x, then x E Gb) and, in view of (2), x E P’(y ) ;  the last relation 
implies that y E P’(x) .  Since it is obvious that ( I )  +3 ( 3 ) ,  it remains to 
prove that ( 3 )  j (1). Let us admit ( 3 ) .  If x is E-dominated by y ,  then, 
since x is completely adequate from the right, we have y E P’(x) .  If x 
E-dominates z ,  then, since z is completely adequate from the right, we 
have x E P’(z) .  Hence z E P’(x) .  Thus, we have (1). 

The local variant of Proposition 29 is not true, as is shown by the next 
two propositions. 

Proposition 30. There exist a language {r, P ,  @} and a word b E r 
which is completely adequate from the right, but not strongly adequate. 

PROOF. Let r = {a ,  b, c}, P(a)  = {a ,  b} ,  P(c )  = {c}, @ = {ab, ac, cc} .  
Since there is no word x # b such that x E-dominates b, it follows 
that b is completely adequate from the right. On the other hand, since 
b E-dominates c, P’(b) = P(b) and since c does not belong to P(b) ,  it 
follows that b is not strongly adequate. 

Proposition 31. There exist a language {r, P ,  @} and a word c E r 
which is strongly adequate, without being completely adequate. 

PROOF. Let us consider the language used in the proof of Proposition 
30. Since G(c) = { c } ,  c is strongly adequate. Since b E-dominates c, 
but b does not belong to P’(c)  (= P(c)  = { c } ) ,  we deduce that c is not 
completely adequate. 

Theorem 15. 
strongly adequate. 

A language is completely adequate if and only if it is 

PROOF. If a language is completely adequate, it is locally completely 
adequate from the left and, in view of Proposition 28, it is locally strongly 
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adequate. Thus, by Theorem 14, the language is strongly adequate. 
Conversely, if a language is strongly adequate, then, in view of Theorem 
14, it is locally strongly adequate and, by Proposition 29, it is locally 
completely adequate. Hence it is completely adequate. 

REMARK. In the proof of Lemma 4, as in the proof of Theorem 14, 
essential use is made of the fact that the vocabulary r is finite. This 
general assumption was used only in very few situations. Theorem 15 
also makes use, in an essential manner, of this assumption. As we shall 
see in the following, Theorem 15 ceases to be true if this assumption is 
removed. 

Theorem 16. Let r be a countable infinite set. There exists a strongly 
adequate language over r, which is not completely adequate. 

PROOF. Let = {xl, x,, . . . ,x,,. . . } with xi #xj when i f  j ,  and let 
P = E. By definition, the set will contain all strings of the form xlxl . . . , 
xlx,, where, denoting by n the number of occurrences of xl, we have 
n 1 and p =z n + 1 .  We shall prove that {F, P,  @} fulfills the required 
conditions. 

Let x, E r. If n = 1 ,  there is no positive integer p # 1 such that 
x, E-dominates x,. Indeed, in the marked string xlxl any replacement 
of the first term by x, (with p > 1)  yields an unmarked string. 

Let us now suppose that n > 1 .  In this case, any marked string contain- 
ing x, is of the form xlxl . . . xIx,, where x1 is repeated as least n - 1 
times. For any p < n, the string 

XlXl . * . x1x, 
n- I times 

is marked. Hence x, E-dominates x, for each p s n. Let us now consider 
an integer r > n. The string 

xlxl . * XIX, - 
is unmarked. Therefore x,, E-dominates x, for no integer r > n. It  follows 
that, for i < j ,  xj, E-dominates xi ,  but xi does not E-dominate xj. There- 
fore, for each x € r, we have S(x)  = {x}, whereas no word x is initial. 
The condition of strong adequacy is thus satisfied in a trivial manner. 

The language considered is not completely adequate. Indeed, if 
i < j ,  then P(xi) and P(xj) are not P-equivalent, since P = E = S and, as 
we have just shown, xj E-dominates xi. Theorem 16 is proved. 
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Let us denote by L(x) the set of all words y which E-dominate x and 
by i(x) the number of initial families contained in L(x). The linguistic 
significance of these objects follows from the fact that i (x)  measures 
the morphologic homonymy of x. Indeed, each initial family contained in 
L(x) generates an elementary grammatical category containing x and, 
conversely: Each elementary grammatical category containing x is gener- 
ated by an initial. family contained in L(x). Let us consider, for instance, 
the French adjectives difirent and heureux. We have L(diffirent) = 
S(di$e’rent), L(heureux) = S(di$e’rent) U S(di$e’rents). (We are consider- 
ing printed French, hence diffirent # difirents). It follows that i(dif- 
irent) = 1 and i(heureux) = 2. These values agree with our intuition. 
The adjective diffirent has distinct forms in the masculine singular and 
masculine plural, whereas the corresponding forms of heureux are iden- 
tical. Another, more significant situation, is that of Rumanian adjectives 
frumos, subtire, vechi, and gri. We have Lvrumos) = Swrumos), L(sub- 
t ire)  = S(frumos) U S(frumoasZ1), L(uechi) = Svrumos) U S(frumosi) U 
S(frurnoase), L(gri) = S(frumos) U S(frumogi) U S(frumoas6) U Swru- 
mouse). Hence iwrumos) = 1 ,  i(sub4ire) = 2 ,  i(vechi) = 3 ,  and i(gri) = 4. 

We shall now introduce a notion which is somewhat dual to that of 
locally strong adequacy. A word x is said to be perfectly adequate if 
L(x) P‘(x).  A language is said to be locally perfectly adequate if all 
its words are perfectly adequate. 

Proposition 32. A locally perfectly adequate language is adequate, 
but there is an adequate language which is not locally perfectly adequate. 

PROOF. The first assertion follows immediately from the inclusion 
S(x) C L(x); the second assertion is proved by the following example: r = 
{ a ,  b, c, d } ,  P(a)  = { a } ,  P(b) = {b,  c } ,  P(d)  = { d } ,  @ =  {ab,  ac, ad, dd} .  
We have S = P = P’. Hence S(x) = P’(x) for each x E r, and the language 
is adequate. On the other hand, L(d) = (6 ,  c, d }  and P’(d) = { d } .  Hence 
d is not perfectly adequate. 

A word x is said to be $nu[ if there is no word y # x,  such that x E- 
dominates y ,  but y does not E-dominate x. The linguistic significance of 
this notion is that of a word with maximum morphologic homonymy, such 
as ferox in Latin or souris in French. We remark that there exist words 
which are both initial and final; the English adjectives in the positive form, 
such as great, are such words. 

A language is said to be perfectly adequate if all its final words are 
perfectly adequate. 
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A family F is said to be $nu1 if there is a final word a such that F = 
$(a). It is easy to see that each word belonging to a final family is a final 
word. 

Lemma 4‘. In any language and for any x E I? there exists a final 
family F such that x E-dominates each word of F. 

PROOF. We may adopt the idea of the proof of Lemma 4, by replacing 
“initial” by “final” and by changing the sense of all E-dominations. 

Theorem 14’. A language is locally perfectly adequate if and only if 
it is perfectly adequate. 

PROOF. We may adopt the idea of the proof of Theorem 14 by re- 
placing “initial” by “final” and by changing the sense of all E-dominations. 
Instead of Lemma 4, we shall use Lemma 4‘. 

Proposition 28’. A word x is perfectly adequate if and only if it is 
completely adequate from the right. 

PROOF. Obvious. 

Proposition 29‘. A language is completely adequate if and only if it 
is locally perfectly adequate. 

PROOF. Let {I‘, P ,  CD} be completely adequate. If y E L(x), then y 
E-dominates x. Hence y E P‘(x),  L(x) C P’(x) ,  and the language is locally 
perfectly adequate. Conversely, let {I‘, P, CD} be locally perfectly ade- 
quate. If x E-dominates y, then x E L(y). Hence x E P’(y), and the 
language is completely adequate. 

The local variant of Proposition 29’ is not true. Indeed, we have 
Proposition 3 1 ’. 

Proposition 31’. There exist a language {I‘, P ,  CD} and a word b E r 
which is perfectly adequate, without being completely adequate. 

PROOF. Let us consider the language used in the proof of Propositions 
30 and 31. Since L(b) = { b } ,  b is perfectly adequate. On the other hand, 
since b E-dominates c, but c does not belong to P’(b),  it follows that b is 
not completely adequate. 
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Theorem 15’. A language is completely adequate if and only if it is 
perfectly adequate. 

PROOF. This proof follows immediately from Theorem 14’ and 
Proposition 29‘. 

REMARK. In the proof of Lemma 4’ and, consequently, in the proofs 
of Theorems 14’ and 15’, essential use is made of the fact that r is finite. 
As is shown by the next theorem, Theorem 15’ ceases to be true if this 
assumption is removed. 

Theorem 16’. 
adequate language over r which is not completely adequate. 

Let r be a countable infinite set. There exists a perfectly 

PROOF. LetT={x, ,..., x, ,... )withxi#xjwheni#j ,andletP=E. 
By definition, the set (I, will contain all strings of the form x l x l .  . . xlx,, 
where, denoting by IZ the number of occurrences of x,, we have n 2 1 and 
p z= n + 1 .  We shall prove that {r, P,  @} fulfills the required conditions. 
Indeed, it is easy to see that x, E-dominates x,+~ for each integer rn > 1 ,  
whereas x1 E-dominates no word xi with i > 1. Hence x1 is the only final 
word. But L(x,) = {x,}.  Therefore L(xl) P ( x l ) ,  and the considered 
language is perfectly adequate. On the other hand, if i < j ,  then xj does not 
E-dominate xi. Therefore, P(xi)  and P(xj )  are not P-equivalent. It follows 
that P(xJ = P’(xi) = {x i }  for each positive integer i; but xi E-dominates 
xj for each j > i, although xj does not belong to P’(xJ for j # i. Hence the 
considered language is not completely adequate. 

Theorems 14, 14’, 15, 15’ and Propositions 28, 28’, 29, 29‘ yield a 
further theorem. 

Theorem 17. Given a language L = {r, P, CD}, the following conditions 
are pairwise equivalent: 

(1) L is completely adequate; 
(2) L is locally completely adequate from the left; 
(3) L is locally completely adequate from the right; 
(4) L is locally completely adequate; 
( 5 )  L is strongly adequate; 
(6) L is locally strongly adequate; 
(7) L is perfectly adequate; 
(8) L is locally perfectly adequate. 



5. Other Types of Adequate Languages 57 

5. Other Types of Adequate Languages 

A language is said to be well adequate if for any pair of words x, 
y ,  such that x E-dominates y ,  we have that P(x)  P-dominates P(y). 
The word x is said to be well adequate from the left (right) if for any 
word y such that x E-dominates y (y E-dominates x) P(x) P-dominates 
P b )  [ P b )  P-dominates P(x) ] .  A language is called locally well adequate 
from the left (right) if all its words are well adequate from the left (right). 
A language is said to be locally well adequate if it is locally well adequate 
from both the left and the right. 

Proposition 33. 
tions are pairwise equivalent: 

Given a language L = {r, P ,  @}, the following condi- 

( 1 )  L is well adequate; 
(2) L is locally well adequate; 
(3) L is locally well adequate from the left; 
(4) L is locally well adequate from the right. 

PROOF. Since the implications (1) 3 (2), (2) j (l), (2) .$ (3), and 
(2) + (4) are obvious, it remains to prove the implications (3) j (1) 
and (4) j ( 1 ) .  Let us suppose that L fulfills (3) and let x and y be two 
words such that x E-dominates y .  Since x is well adequate from the 
left, it follows that P(x)  P-dominates P o ) .  Hence ( 1 )  is satisfied. Let us 
now suppose that L fulfills (4) and let x and y be two words such that x 
E-dominates y .  Since y is well adequate from the right, it follows that 
P ( x )  P-dominates P(y )  and (1) is satisfied. 

The local variant of Proposition 33 is not true, as shown by Proposition 
34. 

Proposition 34. There exist a language {r, P ,  a} and a word c E r 
such that c is well adequate from the left, but not from the right. 

PROOF. Let f = { a ,  b, c}, = {ab,  ac, cc}, P(a) = {a ,  b} ,  P ( c )  = 
{c} .  Though b E-dominates c,  P(b) does not P-dominate P(c) ,  since 
P(b)P(b) is a marked P-structure, whereas P(c)P(b) is an unmarked 
P-structure. Thus c is not well adequate from the right. On the other 
hand, since there is no word x f c which is E-dominated by c ,  it follows 
that c is well adequate from the left. 
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Proposition 35. Any completely adequate language is well adequate; 
any well adequate language is adequate. 

PROOF. The first assertion is obvious. To establish the second assertion, 
let us remark that, if x E S(y ) ,  then x E-dominates y and y E-dominates 
x. Hence, since the language is well adequate, P(x)  P-dominates P(y)  
and P b )  P-dominates P(x).  

Proposition 36. There exists a well adequate language which is not 
completely adequate. 

PROOF. Let r = {a ,  6, c, d} ,  @ = {ab, ac, ca, cc, cdd}, P(a)  = {a ,  b} ,  
P(c) = { c } ,  and P(d) = {d } .  Given two distinct words x and y ,  x E- 
dominates y if and only if x = b and y = c. Since P(b)  P-dominates P(c),  
the language is well adequate. On the other hand, since P(c)P(d)P(d) 
is a marked P-structure, whereas P(b)P(d)P(d) is an unmarked one, 
it follows that P(c)  does not P-dominate P(b).  Hence the considered 
language is not completely adequate. 

Proposition 37. There exists an adequate language which is not well 
adequate. 

PROOF. Let r = {a ,  b, c}, @ = {ab, a, C C } ,  P(a) = {a ,  b } ,  P(c) = {c}. 
Since S(x) = {x} for each x E r, the language is adequate. On the other 
hand, since b E-dominates c, but P(b) does not P-dominate P(c) (see the 
proof of Proposition 34), it follows that the considered language is not 
well adequate. 

Proposition 38. There exists a well adequate language which is not 
homogeneous. 

PROOF. Let us consider the language used in the proof of Theorem 9. 
Since all P-structures of length equal to 2 are marked and since the 
length of each marked string is equal to 2, it follows that this language is 
well adequate. On the other hand, in view of Theorem 9, this language 
is not homogeneous. 

Proposition 39. There exists a homogeneous language which is not 
well adequate. 
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PROOF. Let us consider the language used in the proof of Proposition 
37. We have P(a)  n S(b) = { b } ,  P(b) n S(a) = { a } ,  and P(x)  n S ( y )  = 0 in 
all other cases. Hence, the language is homogeneous. On the other hand, 
in view of Proposition 37, this language is not well adequate. 

A language is said to be inversely adequate if, for any words x and y 
such that x E-dominates y, Pot) P-dominates P(x) .  It is easy to see that 
each inversely adequate language is an adequate language. 

6. Various Types of Linguistic Isomorphism 

Let us consider two languages L,  = {r,, P 1 ,  01} and L, = {r,, P2,  %>. 
We shall introduce some types of isomorphism between L,  and L, as 
follows. 

L, and L2 are paradigmatically isomorphic (P-isomorphic) when there 
is a 1 : 1 mapping f of rl onto T,, such that y E Pl(x) (x  E r,, y E r,) if 
and only if f ( y )  E P,(f(x)) [in other words, P2cf(x)) =f(P,(x))l. 

L, and L2 are syntagmatically isomorphic (@-isomorphic) when there 
is a 1 : 1 mapping g of rl onto T, such that a,a, * . a,, E @, (ai E I’, 
when 1 =s i s  n) if and only if g(al)g(a,) .  . .g(u,,) E O,. 

L1 and L, are distributionally isomorphic (S-isomorphic) when there 
is a 1 : 1 mapping h of rl onto r,, such that y E S,(x)(x E r,, y E r,) if 
and only if h(y) E S,(h(x)) [in other words, S,(h(x)) = h(S, (x) ) ,  where 
S,  and S, are the partitions into families in L,, L2, respectively. 

Given a string u = a ,  * * a, and a mapping f: rl --$ Tz, we put f ( u )  = 

f(a,) * - .f(a,). 

Proposition 40. 
distributionally isomorphic. 

If L, and L, are syntagmatically isomorphic, they are 

PROOF. We shall show that y E Sl(x) (x E r,, y E r,), if and only if 
g(y) E S,(g(x)). Let y E S,(x). This means that, for any two strings u 
and v, we have either 

or 
uxv E @,, uyu E @ I ,  (20) 

uxv $? a, uyv $? @,. (21) 
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In view of the @-isomorphism, (20) implies 

g(u)g(x)g(u) E @2r g(u)g(y)g(v) E a,, (20') 

g(u)g(x)g(u) @ @,, g(u)g(Y)g(v) g a,. (2  1 '1 

whereas (2 1 )  implies 

Since u and v are arbitrary strings over rl, g(u) and g(v) are arbitrary 
strings over r2. Hence g(y) E S,(g(x)). Conversely, if the last relation 
is true, then, for any strings u, u over r,, we have either (20') or (2 1 7. 
Therefore, since L, and L, are @-isomorphic, we have either (20) or (2 I ) .  
Thus y E S~(X). 

Proposition 41. There exist two languages which are distributionally 
isomorphic, but not syntagmatically isomorphic. 

PROOF. Let rl = r2 = {a ,  b}, P ,  = P, = E,  @, = {ab, ba},  @, = 
{abb, baa}. It is easy to see that S1 = SI = E. Hence {F,, PI, @,} and 
{r2, Pz, @,} are S-isomorphic; but these languages are not @-isomorphic, 
since any string of @, is of length equal to 2 and any string of @ I  is of 
length equal to 3. 

We shall also define another type of isomorphism, as follows. Two 
languages L1 and Lz are PS-isomorphic when there is a 1 : 1 mapping 
cp of rl onto r,, such that y E P,(x)(x E r,, y E r,) if and only if cp(y) E 
Pz(cp(x)) and y E S,(x)(x E rl, y E r,) if and only if cp(y>E S,(p(x) ) .  

The simplest example of two PS-isomorphic languages {r1, P , ,  QL} 
and {r2, P,, (D,} is obtained when these languages are P-isomorphic, 
while P1 = S1 and P2 = S,. Another example is Proposition 42. 

Proposition 42. There exist two PS-isomorphic languages {r,, P I ,  @,} 
and {r, P,, a,}, such that P I  # S, and P, # S,. 

PROOF. Let rl = {a, b, c } ,  P,(a) = {a ,  b } ,  @, = {ab, U C } ,  r, = 
{x ,  y ,  z } ,  P,(x)= { x ,  z } ,  @,= {xz, y z } .  Define cp : rl 3 r, as follows: 
cp(a) = z,  d b )  = x ,  ~ ( c )  = y. We have P,(cp(a)) = cp(P,(a)), Pz(cp(c)) = 
cp(P2(c)) and, since S,(b) = {b, c}  and S,(x) = {x ,  y}, it follows that 
S,(cp(a)) = cp(S~(a)), S,(cp(b)) = cp(S,(b)). Hence, the considered languages 
are PS-isomorphic, although P I  # S, and Pz # S,. 

It is obvious that, if L, and L, are PS-isomorphic, they are both P- 
isomorphic and S-isomorphic. The converse is not true, as shown in the 
next proposition. 



6. Various Types of Linguistic Isomorphism 61 

Proposition 43. There exist two P-isomorphic and S-isomorphic 
languages which are not PS-isomorphic. 

PROOF. Let rl = rz = { a ,  b, C, d } ,  P,(b) = {b, C ,  d }  = P,(b), <P, = 
{ab, ac, ad} ,  Q, = {ad, bd, cd}. By taking as f the identical mapping of 
rl, it follows that L, and L, are P-isomorphic. Since S,  = PI and &(a) = 
{a,  6, c}, by taking a 1 : 1 mapping h of TI onto r2, such that h(a) = d,  
we get S,(h(x)) = h(S,(x)) for each x E r,. Hence L, and L, are S-iso- 
morphic. On the other hand, L,  and & are not PS-isomorphic. Indeed, if 
a 1 : 1 mapping cp of rl onto r, were to exist, such that P,(cp(x)) = cp(Pl(x)) 
and S,(cp(x)) = cp(Sl(x)) for any x E TI,  we would have, on one hand, 
p(a)  = a [since Pl(a)  = P,(a) = {a}], and, on the other hand, p(a) = d 
[since S,(x) = {x} only when x = a and S,(x) = {x} only when x = 4. 
This contradiction shows that such a mapping cp does not exist. Hence 
L, and L, are not PS-isomorphic. 

Proposition 44. If L, is amorphic, while L, and L2 are P-isomorphic, 
then L, is also amorphic. 

PROOF. Let f :  r, 4 r2 be such that P,(f(x)) =JP,(x)) for each x E r,. 
Since L, is amorphic, we have P,(x)  = { x } .  Hence P,cf(x)) =f(x) for 
each x E rl. Therefore, L, is amorphic. 

Proposition 45. 
isomorphic, then L, is also purely paradigmatic. 

If L, is purely paradigmatic, while L, and L, are S- 

PROOF. Let h : rl -+. T, be such that S,(h(x)) = h(S,(x)) for each 
x E rl. Since L, is purely paradigmatic, we have Sl(x) = { x } .  Hence 
S,(h(x)) = h(x) for each x E rl and therefore L, is purely paradigmatic. 

Theorem 18. 
then L, is also homogeneous. 

If L, is homogeneous, while L, and L, are PS-isomorphic, 

PROOF. By hypothesis, there exists a 1 : 1 mapping cp of rl onto T,, 
such that Pz(cp(x)) = cp(P,(x)) and S,(cp(x)) = cp(S,(x)) for any x E r,. If 
Sz(cp(x)) fl P,(cp(y)) # 0, then, since cp is 1 : 1 ,  we have cp(S,(x)) n cp(P1b))= 
cp(S,(x)) n P,(y)) # 0. Hence S,(x) f l  P1b) f 0. In view of the homo- 
geneity of L1, it follows that s,(~) f l  PI@) # 0. Thus (p(S,(y) n Pl(x)) # 0. 
But, again using the fact that cp is 1 : 1, we have cp(S,(y) n Pl(x))  = cp(SI(y)) 
n cp(Pl(x)) =S,(cp(y)) n P,(cp(x)) Z 0. Therefore L,  is homogeneous. 
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Proposition 46. There exist two P-isomorphic and S-isomorphic 
languages L,  and L, such that L, is homogeneous, but L, is not. 

PROOF. Let us consider the languages used in the proof of Proposi- 
tion 43. In view of that proposition, these two languages are P-iso- 
morphic and S-isomorphic. Since P ,  = S,, L, is homogeneous. On the 
other hand, since P,(a) n S,(d) = 0, whereas P 2 ( 4  f l  S,(a) = {b, c } ,  
it follows that L, is not homogeneous. 

The proof of Proposition 46 yields another. 

Proposition 47. There exist two P-isomorphic and S-isomorphic 
languages L,  and L, such that L1 is both completely homogeneous 
and perfect, whereas L, is not homogeneous. 

Proposition 48. 
then L2 is also simple. 

If L1 is simple, while L, and L, are PS-isomorphic, 

PROOF. Since L, is simple, it is homogeneous. Hence, in view of 
Theorem 18, L, is homogeneous. It remains to prove that, for any x E r,, 
we have P,(cp(x)) n S,(cp(x)) = {cp(x)}. Since cp is 1 : 1 and L, is simple, we 

Hence L, is simple. 
have f'z(cp(xN n S2(cp(x)) = cp(fl(x)) cp(Sl(x)) = cp(Pl(x> r~ Sl(x)) = cpW 

Proposition 49. 
guages L, and L, such that L1 is simple but L, is not. 

There exist two P-isomorphic and S-isomorphic lan- 

PROOF. Let rl = {a, b, c, d, e, 1} ,  Pl(a)  = {a,  6, c } ,  Pl(d) = { d ,  e, 1). 
= {ab,db,ae,de,ac,al,dc,dl}, r2= {x,y,z,u,u,w), P , ( x )  = {x,y,z), 

Pz(u) = {u ,  u, w}, QZ = {xz, yz, xu, yu, xu, xw, yu,  yw}. It is easy to see 
that S,(a) = {a, 4, Sdb)  = {b,  e}, Sdc) = { c ,  0, S Z W  = { x ,  Y}, S,(z) = 
{ z ,  u } ,  S,(V) = {u ,  w}. If Aa) = x ,  Ab) = y, Ac) = z ,  Ad) = u, Ae) = u,  
AZ) = w, then P,(jfm)) =APl(m))  for any m E rl. Hence L, and L, are P- 
isomorphic. If h(a) = x ,  h(b) = z ,  h(c) = u,  h(d) = y, h(e) = u, h(1) = w, 
then S,(h(m)) = h(S,(m)) for any m E r,. Hence L, and L, are S-iso- 
morphic. On the other hand, it is easy to see that S,(m) n Pl (n)  contains 
exactly one word for any m E r,, n E r,. Therefore L, is simple, whereas 
S,(x) n P2(x) = { x ,  y}. Hence L, is not simple. 

Theorem 19. There exist two PS-isomorphic languages L1 and L2 
such that L, is adequate, while L, is not. 
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PROOF. Let rl = r, = {a ,  b, C ,  d } ,  P ~ ( u )  = P ~ ( u )  = {a ,  b } ,  P,(c) = 

{ad ,  bd, cd}. We have S,(a)  = S,(a) = {a ,  b, c } ,  S,(4 = S,(4 = {d } .  
Hence cp may be taken as the identical mapping of r,, and we have 
S,(cp(x)) = cp(S,(x)), P,(cp(x)) = cp(Pl(x)); L, and L2 are PS-isomorphic. 
Since all P,-structures of length not greater than 2 are marked, it follows 
that Pi(a) = rl. Hence L, is adequate. On the other hand, since P,(a)P,(c) 
is a marked P,-structure, while P2(a)Pz(a) is an unmarked one, it follows 
that P:(a) = P,(a) = {a ,  b}.  Hence S2(a) is not contained in P;(a) and L2 
is not adequate. 

P ~ ( c )  = { c ,  d } ,  @I = { U U ,  bb, C C ,  ab, ba, CK, C U ,  bc, cb, a ,  b, C, d } ,  @z = 

Theorem 20. There exist two PS-isomorphic languages L, and L, 
such that L1 is completely adequate, while L, is not adequate. 

PROOF. The required languages L, and L, are precisely those used 
in the proof of Theorem 19. Indeed, since PI is the improper partition 
of rl, it follows that L1 is completely adequate. 

Proposition 50. 
such that L, is well adequate, while L, is not adequate. 

There exist two PS-isomorphic languages L, and L, 

PROOF. The proof of Theorem 20 also yields Proposition 50. 

REMARK. Theorems 19 and 20 and Proposition 50 make the intro- 
duction of the following definitions natural. 

A language is said to be absolutely adequate (absolutely completely 
adequate, absolutely well adequate) if all its PS-isomorphic images are 
adequate (completely adequate, well adequate). 

A language is said to be absolutely inadequate (absolutely noncom- 
pletely adequate, absolutely nonwell adequate), if all its PS-isomorphic 
images are inadequate (noncompletely adequate, nonwell adequate). 
It would be interesting to see if such languages exist. 

It is immediate that any absolutely adequate (absolutely completely 
adequate, absolutely well adequate) language is adequate (completely 
adequate, well adequate); any absolutely inadequate (absolutely non- 
completely adequate, absolutely nonwell adequate) language is inadequate 
(noncompletely adequate, nonwell adequate). 

Theorem 18 yields a further proposition. 

Proposition 51. Any homogeneous language is absolutely adequate. 



64 II. Linguistic Typology 

It would be interesting to find a necessary and sufficient condition that 
an adequate language be absolutely adequate. (Does there exist an 
absolutely adequate language which is not homogeneous?) 

Propositions 46, 47, and 49 make the following definitions natural. 
A language is said to be absolutely homogeneous (absolutely completely 

homogeneous, absolutely perfect, absolutely simple) if all its both P- and 
S-isomorphic images are homogeneous (completely homogeneous, 
perfect, simple). 

A language is said to be absolutely nonhomogeneous (absolutely non- 
completely homogeneous, absolutely nonperfect, absolutely nonsimple) 
if all its both P- and S-isomorphic images are nonhomogeneous (non- 
completely homogeneous, nonperfect, nonsimple). 

Propositions 12, 19, and 44 yield Proposition 52. 

Proposition 52. Any amorphic language is absolutely perfect and 
absolutely simple (hence absolutely homogeneous). 

Propositions 9, 21, and 45 yield Proposition 53. 

Proposition 53. Any purely paradigmatic language is absolutely homo- 
geneous and absolutely completely homogeneous. 

It would be interesting to find necessary and sufficient conditions that 
a language be absolutely homogeneous (absolutely completely homo- 
geneous, absolutely perfect, absolutely simple). The same problem arises 
for the absolutely nonhomogeneous (absolutely noncompletely homo- 
geneous, absolutely nonperfect, absolutely nonsimple) languages. 

A language for which P = E and S # E is an absolutely noncompletely 
homogeneous language. If P # E and S = E, we obtain an absolutely 
nonperfect language. 

We may define a new type of isomorphism, stronger than the PS- 
isomorphism. Two languages L, = {r,, P1, all and L, = {I?,, P,, @,I 
will be called P@-isomorphic if there exists a 1 : 1 mapping + of r, onto 
T,, such that P,(t,h(x)) = +(Pl(x)) for each x E rl and such that the 
string +(xl)+(x2). * +(xJ belongs to a, if and only if the string x,xz - * * x,  
belongs to @](xi E rl when 1 s is n). 

Proposition 40 and the proof of Proposition 41 yield a further 
statement. 

Proposition 54. If L, and L, are P@-isomorphic, they are PS-isomor- 
phic; but there exist two PS-isomorphic languages which are not P@- 
isomorphic. 
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The P@-isomorphism is sufficiently strong so that it preserves any 
property concerning a language and whose definition involves only 
the objects r, P,  and @. In particular, we have Proposition 55. 

Proposition 55. If L, and L, are Pa-isomorphic and L, is adequate 
(completely adequate, well adequate), then L, is also adequate (com- 
pletely adequate, well adequate). 

We may define a type of isomorphism which is weaker than the 
Pa-isomorphism, but stronger than the PS-isomorphism. Two languages 
L, = {r,, P , ,  a,} and L, = {r,, P,, r,} will be called PP’S-isomorphic 
if there exists a 1 : 1 mapping y of rl onto T,, such that P,(y(x)) = 
y(P,(x)),P4(?4x)) = Y(Pi(X)) andS,(y(x)) = y ( S , ( x ) )  foranyx E r1. 

Theorem 21. There exist two PP’S-isomorphic languages which 
are not P@-isomorphic. 

PROOF. Let Tl = Tz = { a ,  6, c}, P, = P, = E, @, = {ub, U C ,  U U } ,  

@, = {aab, aac, a m } .  Define y as the identical mapping of rl. Since 
S,(a) = &(a) = {a} and S,(b) = S,(b) = {b, c}, we have S,  = S,. But 
Pi = E’ = S, and Pi = E’ = S,. Hence Pi = Pi, and the three equalities 
defining the PP‘S-isomorphism are obviously fulfilled. On the other 
hand, the considered languages are not @-isomorphic, since the length 
of any string of L1 is equal to 2, whereas the length of any string of 
L, is equal to 3. 

Since the definition of an adequate language uses the partitions P’ 
and S exclusively, it is natural to define a new type of isomorphism 
as follows: Two languages L, and L, will be called P’S-isomorphic if 
there exists a 1 : 1 mapping o of rl onto r,, such that P;(w(x)) = w(PXx)) 
and S,(o(x)) = w(S,(x)). It is obvious that two PP’S-isomorphic languages 
are P’S-isomorphic, but the converse is not true, as is shown by Proposi- 
tion 56. 

Proposition 56. There exist two P‘S-isomorphic languages which 
are not PP’S-isomorphic. 

PROOF. Let rl, T,, P,, @I, and @, be defined as in the proof of 
Theorem 21 and let P,(a) = {a}, P,(b) = {b, c}. Since P,(a) and P,(b) 
are not P-equivalent, we have P, = Pi. On the other hand, P;= S,, 
Pi = S,, and S1 = S,. Hence Pi = Pi. Taking for o the identical mapping 
of r,, it is easy to see that L, and L, are P’S-isomorphic. But L, and 
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L, are not P-isomorphic, since PI is the unit partition of rl, whereas 
P, # E. 

The following proposition is almost obvious. 

Proposition 57. 
L, is adequate, then Lz is also adequate. 

If L1 and L, are two P’S-isomorphic languages and 

PROOF. Since S,(x) C Pi(x), we have w(S,(x)) C w(Pi(x)). Since S2(w(x)) = 
w(Sl(x)) and P;(w(x)) = w(P;(x)), it follows that S2(o(x)) C Pi(o(x)). Since 
x is arbitrary in rl, w(x) is arbitrary in r, and Proposition 57 is proved. 

Theorem 22. There exist two PP’S-isomorphic languages L1 and 
L2, such that L, is completely adequate, while L, is not. 

PROOF. Let rl, T2, P,, P, ,  and @, be detined as in the proof of Theorem 
21 and let @, = {b, c, ab, ac, aa} .  Given x E rl and y E rl, x E-domi- 
nates y in L1 if and only if either x = b, y = c, or x = c, y = b. Since 
P,(b) and Pl(c) are P-equivalent, it follows that L, is completely adequate. 
On the other hand, c E-dominates a in L,, but P2(c) and P,(a) are not 
P-equivalent, since c does not belong to $,(a). Finally, since P, = P,, 
Pi = P6, and S, = S,, L1 and Lz are PP‘S-isomorphic. 

Continuing this investigation, one can define a new type of isomor- 
phism, which preserves the property of being completely adequate. 
Similar problems arise for the well adequate languages and for the 
inversely adequate languages. 

7. Some Characteristics of Finite-State Languages 

Using some partitions of T and their derivatives, we shall give several 
characteristics of finite-state languages. We recall that a language 
{r, @} is a finite-state language if the number of T-distributional classes 
with respect to @ is finite. The notions and results of Section 12, Chapter I, 
will be used. It is to be remarked that a finite-state language involves no 
paradigmatic structure, that is, no partition of r. In exchange, the study 
of finite-state languages requires a systematic investigation of some par- 
titions of the free semigroup T generated by r. These partitions were 
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studied in Section 12, Chapter I. For simplicity, we shall denote by the 
same letter an equivalence relation in T and the corresponding partition 
of T in equivalence classes. 

Theorem 23. Let L = {r, @} be a language over r. The following 
propositions are pairwise equivalent: 

(1) L is a finite-state language; 
(2) There exists a congruence relation P in T ,  such that L is a union 

of P-equivalence classes, whereas the derivative of P is a finite partition; 
( 3 )  Given a congruence relation P in T, such that L is a union of 

P-equivalence classes, the derivative of P is a finite partition. 

PROOF. Let us first show that (1) + (2). Since L is a finite-state language, 
the sets p(x) define a finite partition of T, each p(x) being a T-distri- 
butional class. In view of Theorem 6 ,  Chapter I, p is a congruence relation 
in T. In view of Proposition 17, Chapter I ,  and of Corollary 2' ,  Chapter I, 
the partition in T-distributional classes is its proper derivative. Since for 
any x E @ and y E p(x) we have y E CP, it follows that @ is a union 
of T-distributional classes and (2) is proved by taking P = p. 

We shall now prove that (1) + (3) .  To this aim, we shall show that (1) 
implies P' = p; since (1) is equivalent to the finiteness of the partition p, 
the implication considered will be proved. 

Let x and y be such that x E T, y E T, and xPy. Since P is invariant 
from the right, we have xwPyw for any w E T. This implies, in view of 
the invariance from the left, that zxwPzyw for any z E T .  Since L is the 
union of some P-equivalence classes and since zxw E L, it follows that 
zyw E L. We have thus proved that xPy and zxw E L imply zyw E L. On 
the other hand, since P is symmetric, it follows that xPy and zyw E L 
imply zxw E L. Therefore, xPy implies xpy and the partition P is finer 
than p. Since, in any case, the unit partition E of T is finer than P and 
regularly finer than p (see Proposition 17, Chapter I), it follows that E 
is regularly finer than P. In view of Lemma 6 ,  Chapter I, and again using 
Proposition 17, Chapter I, we find that E' = P' = ,u. 

Let us assume (2). As we have just proved, P' = p. Hence p is a finite 
partition and (1) is true. Thus, (2) .$ (1 ) .  

Let us assume (3) .  Since p is a congruence relation in T (see Theorem 
6, Chapter I) and L is the union of some p-equivalence classes, we may 
take in (2) P = p. Hence (3) .$ (2), and Theorem 23 is proved. 

The following theorem is well-known in automata theory and uses 
some notions and results of Section 12, Chapter 1. 
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Theorem of Myhill and Rabin-Scott. The following assertions are 
painvise equivalent: 

(1) L = {r, @} is a finite-state language; 
(4) The number of &equivalence classes is finite; 
( 5 )  The number of A-equivalence classes is finite. 
All known proofs of this theorem use notions and facts concerning 

the generation of a finite-state language and therefore is beyond the object 
of the present book. (See [29, 321.) Since assertions ( l ) ,  (4), and (5). 
involve only the distributional structure of the language L, it would be 
very interesting to find a direct proof of the above theorem, that is, a 
proof which uses no notion and no fact concerning the generation of 
L by a finite-state machine. 

With the aid of the above theorem of Myhill and Rabin-Scott and using 
the notions and results concerning the derivative from the right (from the 
left) of a partition of T, we may obtain some new characterizations of 
finite state languages. We give here, without proof, a theorem of [29], 
p. 123. 

Theorem 24. Let L = {r, @}. The following assertions are pairwise 
equivalent: 

(1) L is a finite-state language; 
(6) There exists an invariant from the right equivalence relation r in 

T, such that @ is the union of some r-equivalence classes, while the 
derivative from the right of the partition r is a finite partition of T; 

(7) [is obtained from (6), by changing “right” to “left”]; 
(8) Given an invariant from the right equivalence relation r in T, such 

that @ is the union of some r-equivalence classes, the derivative from 
the right of the partition r is a finite partition of T; 

(9) [is obtained from (8), by changing “right” to “left”]. 
Other interesting characterizations of finite-state languages, which do 

not involve the manner of their generation, are given by Chomsky and 
Miller [7] ,  by Rabin and Scott [32], and by Kleene [21]. These studies 
are continued in [ l ,  8, 9, 101. We shall give without proof, a result of 
Kleene, Myhill, and Rabin and Scott [32]. 

Let us denote by cl(A) the union Ao U A’ U * - - U A n  U - . . , whereA 
is a subset of the free semigroup T generated by r, A o  contains only the 
zero string, and A n = A  . A  * - - A ,  with A being repeated n times. Then, 
we have a further theorem 

Theorem of Kleene, Myhill and Rabin-Scott. The class of finite-state 
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languages over r is the smallest class T of languages (sets of strings) 
over r, such that the following three conditions are fulfilled: 

(1) if A is a finite language over r, then A E 7; 
(2) if A E T and B E 7, then A U B E T and A B  E 7; 

(3) if A E T ,  then cl(A) E T .  

It would be interesting to find, for this theorem, a proof which does 
not involve automata structure. 

In conclusion, we shall give some nontrivial examples of finite-state 
languages and an example of language which is not a finite-state language. 
In this aim, we shall consider some languages introduced by Curry [l  11. 

Let rl = {a ,  b }  and (a, = {a, ab, abb,.  . . , abn, . . .}, where bn = 
b - b . .  .b, b being repeated n times. The language {rl, (al} is a model 
of the system of positive integers. I t  may be defined inductively, as 
follows: a E (Dl; if x E (a,, then xb E (al (x being a string over rl). It 
is easy to see that {rl, (a,} is a finite-state language. Indeed, on one 
hand, all marked strings belong to the same T-distributional class; on 
the other hand, all semimarked strings also belong to the same T-dis- 
tributional class. Since the parasitic strings form a single T-distributional 
class, it follows that we have only three T-distributional classes with 
respect to (al. Hence {rl, (al} is a finite-state language. 

Let Tz = {a ,  b, c }  and (a, = {abncaqm}n,mEN, where N is the set of 

nonnegative integers. If c is interpreted as the equality relation, each 
string of (Dz may be interpreted as an assertion, which is true if and only 
if n = rn. One can prove that {r,, (a,} is also a finite-state language [30]. 

. This is the set of theorems. It is not a finite- 

state language since, for rn # n, the strings b" and bn belong to different 
T-distributional classes. Hence we have infinitely many T-distributional 
classes with respect to Q3. Another proof of this fact is given in [30]. 

Some characterizations of finite-state languages which involve the 
manner of their generation are given by Chomsky [8, 91. 

Let (a3 = {abncabn} 
n E N  

8. Some Applications to Natural Languages 

We intend to discuss the various types of artificial languages studied 
above, in connection with some situations in natural languages. In the 
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following, I7 will be the vocabulary of a natural language L, P(x) (for 
x E r) will be the set of all flectional forms of x, and 6, will be the set of 
well-formed sentences in L. Sometimes, 6, will be only a subset of 
well-formed sentences (this fact will be mentioned explicitly). 

It is necessary first to anticipate an idea which will be explored in 
Chapter 111: In any language, for every word x, the set P’(x) is con- 
sidered the set of all words belonging to the same part of speech as x.  
According to this interpretation of the derivative partition P ’ ,  an ade- 
quate language is a language where the following implication is true: 
If two words x and y are in identical distribution, then x and y belong 
to the same part of speech. We do not know a natural language which 
is not adequate. Some examples which seem to contradict this asser- 
tion are based on the traditional point of view concerning the parts of 
speech. For instance, the Rumanian words un and acest are in identical 
distribution, although, according to the traditional grammar, un is an 
indefinite article, whereas acest is a demonstrative adjective. 

If the property of adequacy is general enough to belong to every 
natural language, the property of homogeneity is too restrictive to 
be fulfilled by a natural language. But in every natural language there 
are some homogeneous words, and we may obtain very large homo- 
geneous portions of natural languages if we ignore some words and 
restrict the set of marked strings. 

We recall first that each amorphic word is a homogeneous word. 
The so-called singularia tantum (nouns without plural form) and pluralia 
tantum (nouns without singular form) are, in both English and French, 
amorphic words, hence homogerieous words. Such examples are the 
words water, iron, air, sun, south, physics, politics, news in English, 
rnoeurs in French. Other French amorphic words are such nouns as 
bras, noix, nez, souris, whose singular and plural forms coincide. 

It is interesting to remark that almost all nonamorphic nouns are, 
both in English and French, nonhomogeneous. The English word 
book is not homogeneous, since sun E S(book), books E P(book), 
and P(sun) fl S(books) = 0. Passing to French, the only marked strings 
considered will be those of the form noun + qualifying adjective or 
qualifying adjective + noun. The French word mouches is not homo- 
geneous, since moeurs E S(mouches), mouche E P(mouches), and 
P(moeurs) n S(mouche) = 0. It is easy to see that the existence of 
singularia tantum and of pluralia tantum is precisely the reason for 
nonhomogeneity of almost all English and French nouns. If we ignore 
the singularia tantum and the pluralia tantum, almost all English nouns 
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and all French nouns become homogeneous. Let us prove this assertion. 
The English word book becomes a homogeneous word. Indeed, we 

have P(book) = {book, books), whereas every word belonging to 
S(6ook) is a singular noun form. Thus, if y E S(book), the plural form 
y’ of y belongs to S(books). Hence, if z E P(book), then S(z) fl P ( y )  # 0. 

Under the same assumption of ignoring the singularia and pluralia 
tantum, all French nouns are homogeneous. (We deal throughout with 
printed French.) If x = maison, then P(maison) = {maison, maisons} 
and S(maison) contains only feminine singular noun forms, without 
homonymy of number. If y E P(maison) and z E S(maison), then 
S(y)  n P(z) contains either the word z (when y = x), or the plural form 
of z (when y = maisons). Hence S ( y )  f l  P(z)  # 0. Therefore, maison is 
a homogeneous word. In the same way, we can prove that maisons, 
g a r y n ,  and garcons are homogeneous words. The other types of 
French nouns, such as souris, are arnorphic, and hence homogeneous. 

A quite different situation arises in Rumanian and in Latin, when the 
only marked strings considered are those of the form noun + qualifying 
adjective or qualifying adjective + noun. Here, the existence of non- 
homogeneous nouns is due to the specific structure of grammatical gen- 
der. Let us consider the Rumanian noun scaune. We have cLirli E 
S(scaune), scaun E P(scaune), and P(c5ryi) n S(scaun) = 0. Hence 
the word scaune is not homogeneous. In the same way we may prove 
that all plural forms of neuter or feminine nouns and all singular forms 
of neuter or masculine nouns are nonhomogeneous words. This non- 
homogeneity is due to the coincidence, in the singular, between mas- 
culine and neuter noun forms, and in the plural, between feminine and 
neuter noun forms. If we decompose every paradigm of a neuter noun 
into two paradigms, one containing all singular forms, the other con- 
taining all plural forms, the above proof of nonhomogeneity fails and 
the neuter nouns, such as scaun and scuune, become homogeneous; 
but the nonhomogeneity of several words persists, owing to the existence 
of singularia and pluralia tantum. Indeed, we have uur E Sbom),  
pomi E P(porn), and P(aur) n Sbomi) = 0, since aur is singulara 
tantum. Therefore “pom” is nonhomogeneous. We also have icre E 
S(ciir[i), carte E P(c&r[i), and P(icre) n S(carte) = 0, since icre is 
plurale tantum. Therefore c5r~i  is nonhomogeneous. A removal of 
this nonhomogeneity is obtained if we decompose every noun para- 
digm into two disjoint new paradigms, one singular, the other plural. 

The only Rumanian nouns whose homogeneity is assured even with- 
out decomposing the noun paradigms are such words as ochi, arici, 



72 11. Linguistic Typology 

invij@oare, nume, which present homonymy between singular and 
plural forms. 

It is scarcely probable that a natural language could be entirely homo- 
geneous. There are degrees of nonhomogeneity and Revzin shows 
[33 ,  3 4 ,  pp. 88-89] that Russian is more nonhomogeneous than Polish 
and Polish more than Czech. In general, the nonhomogeneity of nouns 
in Slavic languages is very great [33]. The Russian nouns are non- 
homogeneous, as is proved by the example P(stu9 n S(lampy) = {stulj,}, 
S(stu9 f l  P(larnpy) = 0 1331. This nonhomogeneity is because (Kulagina 
[22], p. 2 1 4 )  the plural forms of Russian adjectives are the same for all 
genders; this implies that all Russian plural noun forms of a determined 
case belong to the same distributional class, whereas the Russian sin- 
gular noun forms of a determined case are distributed in several families, 
each family containing only noun forms of a determined gender. The 
nonhomogeneity of Czech nouns is proved by the example P ( s t 2 )  n 
S( tuiky)  = { s to l y } ,  P( tu iky}  fl S(stGl) = 0. Other examples in Czech 
may be found in [I81 and [31]. Extensive remarks concerning various 
distinctions between the Slavic languages are made in [34], pp. 88-89 
and in [33]  using nonhomogeneous words. 

It is easy to see that all homogeneous words we have considered 
above are simple words. Indeed, the condition S(x) f l  P(x)  = {x} is 
always fulfilled when n is an English, French, or Rumanian noun and if 
we ignore stylistic or parallel variants. But there are other paradigms, 
for instance, verb paradigms, which do not always fulfill this condition. 
In Rumanian, we have mergeai E S(mergi) n P(mergi). Hence most 
verb forms are not simple. In [34], p. 87, is given the example of the 
nonsimple German words sagt and sprach. Indeed, we have sagte E 
P(sagt) n S(sagt) and spricht E S(sprach) r l  P(sprach). An interesting 
example of nonsimplicity occurs in Estonian [33 ,  34 ,  p. 861. 

Although, as shown by Propositions 24 and 27, the property of com- 
plete adequacy is effectively stronger than adequacy, it is hard to find 
an adequate word in a natural language which is not completely adequate; 
since the words of a natural language are adequate, it follows that a 
natural language is completely adequate. 

There are some situations which seem to contradict the complete 
adequacy of natural languages. Such a situation concerns the relation 
between nouns and pronouns. It is known that a noun x may be replaced 
by a corresponding pronoun y .  Hence it seems that x E-dominates y ,  
although the noun and the pronoun are different parts of speech. But in 
fact, a noun may be replaced by a pronoun only in certain contexts, 
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and thus a noun does not E-dominate a pronoun. For instance, let us 
consider the well-formed Russian strings Eolovek rabotaet and haroiii 
iolovek. The replacement of tolovek by on in the first string yields a 
well-formed string, but the same replacement in the second string does 
not yield a well-formed one. Consider then the well-formed French strings 
Jean mange and c’est pour Jean ce livre. The replacement of Jean by 
il in the first string yields a well-formed string; the same replacement 
in the second string does not yield a well-formed one. 

A similar situation arises when a noun and a corresponding pro- 
noun present different types of morphologic homonymy. For instance, 
the Rumanian noun form numele is both a singular and a plural form, 
whereas the corresponding pronouns (el and ele) are different. Thus, if 
we consider the well-formed Rumanian strings numele este frurnos 
and numele sint frumoase, we remark that the replacement of numele 
by el in the first string yields a well-formed Rumanian string. The same 
replacement in the second string does not yield a well-formed one. 
This situation will be studied from another point of view in the following 
chapter. 

Very significant from the standpoint of natural languages is Theorem 17, 
which asserts, among other things, that a language is completely adequate 
if and only if it is strongly adequate. It is not hard to see what constitutes 
the strong adequacy of a natural language. We have already seen that the 
elementary grammatical category G(x) generated by an initial word x 
contains exactly those words y such that every grammatical value of x 
is also a grammatical value of y. But these “grammatical values” are 
nothing more than the morphemes, in the sense of glossematic acceptance 
of this term. (See, in this respect, the fundamental works of Hjelmslev 
[ 15-17]). An elementary grammatical category is the projection, in the 
plane of expression, of a certain saturated combination of morphemes 
(such a combination is called sometimes a grammatem). It is natural to 
expect that all words which are projections of the same type of mor- 
phemic combination belong to the same part of speech. 

It should be remarked, however, that contrary to appearances, one 
can have some noncompletely adequate portions of a natural language. 
Indeed, the complete adequacy of a word involves a complex net of 
relations concerning the entire respective language. If we diminish this 
complexity, the complete adequacy may be removed. Consider, for 
instance, the following portion of French: r = Ge,  chante, chantais, 
parler, marcher, vite},  P(je> = f i e } ,  P(chante) = {chante, chantais}, 
P(parZer) = {parler}, P(marcher) = {marcher}, P(vite) = { vite},  CP = 

fie chante, j e  chantais, parler uite, marcher vite, marcher marcher}. 
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It is easily seen that this language is Pa-isomorphic to the language 
used in the proof of Proposition 27. Hence, by virtue of Propositions 27 
and 55, it follows that this portion of French is not completely adequate. 
A similar noncompletely adequate portion may be detected in Rumanian, 
if we take r=  {eu,  merg, mergeam, omul, repede, aleargii}, P(x)= 
{ x }  if x E r and x # merg, mergeam, P(merg)= {merg, mergeam), 
Q, = {eu merg, eu mergeam, omul aleargii, repede aleargii, repede 
repede}. 

The adequacy may also be removed when we consider only a portion 
of a natural language. Consider, for instance, the following portion of 
Latin: F= {vis, domus, res, rei}, P(vis) = {vis} ,  P(domus)= {domus}, 
P(res)={res, rei}, a= {vis domus, res domus, vis rei, res rei}. It is 
easy to see that this language is Pa-isomorphic to the language used 
in the proof of Proposition 1 .  Hence, by virtue of Propositions 1 and 55, 
it follows that this portion of Latin contains no adequate word. A similar 
nonadequate portion may be detected in Rumanian, by taking r =  
{casa, piimintului, omul, omului}, P(casa) = {casa},  P(piimintu1ui) = 
{piim?ntului}, P(omu0 = {omul, omului}, = { c a m  piimintului, omul 
piimintului, casa omului, omul omului}. Since such small portions 
permit us to isolate some phenomena and to study them in a pure 
form, the types of formal languages studied in this chapter may be 
of considerable utility. 

Since, in view of Proposition 35, every completely adequate lan- 
guage is well adequate, it follows that any natural language is well 
adequate. But it is not hard to find small well adequate portions of 
a natural language, which are not completely adequate. Consider for 
instance the following fragment of Latin: r = {rei, rerum, diei, civis}, 
P(rez) = {rei, rerum}, P(diei) = {diei},  P(civis) = {civis}, Q, = {rei rerum, 
rei diei, diei rei, diei diei, diei civis civis}. This fragment, which may be 
useful in the study of the genitive case, is Pa-isomorphic to the language 
used in the proof of Proposition 36. Hence, in view of Propositions 
36 and 55, it is well adequate, but not completely adequate. 

If, from the Latin fragment just considered, we retain the subfragment 
r = { vei, rerum, diei} , P(rei) = { rei, rerum}, P(diei) = { diei}, Q, = { rei 
rerum, rei diei, diei diei}, we get a P@-isomorphic image of the language 
used in the proof of Proposition 37. Hence, in view of Propositions 
37 and 55,  it follows that this Latin subfragment is adequate, but not 
well adequate. 

Very significant from the standpoint of a natural language are the 
finite-state languages. Every finite fragment of a natural language is 
a finite-state language. Indeed, we have a theorem. 
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Theorem 25. 
state language. 

If @ is a finite set of strings over r, then {r, @} is a finite- 

PROOF. Since 0 is finite, it follows that there are only finitely many 
semimarked strings with respect to @. Therefore, there are only finitely 
many T-distributional classes with respect to @, each of which con- 
tains at least one marked or semimarked string. Since all parasitic 
strings with respect to @ belong, obviously, to the same T-distributional 
class, it follows that {r, @} is a finite-state language. 

Chomsky discussed ([6], Section 2)  some possibilities of describing 
a natural language with the aid of an infinite sequence of finite-state 
grammars. Its description involves finite-state Markov processes. On 
the other hand, Ceitin proposed a notion of convergence of a sequence 
of models to a given object [5].  Let Qil, @,.. . , aTL,. . . be a sequence 
of languages over r and let @ be a language over r. We shall say that 
{Qn}(1 s n < m) converges to @ if the following two conditions are 
fulfilled: 

( 1 )  a =  u an; 
1 = 3 < m  

(2) given a string x E @, there exists a positive integer n, such that, 

We shall say that an is an n-approximation of @. 

if n > n,, then x E an. 

Theorem 26. Given a language over r, there exists a sequence 
{an}(1 s n < 00) of finite-state languages over r, which converges to @. 

PROOF. We may define Q n  as the set of those strings of @ whose 
length is not greater than n. It follows that Qfi is a finite language. Hence, 
in view of Theorem 25 it is a finite-state language. Conditions ( 1 )  and (2 )  
are obviously fulfilled. 

Starting with a finite fragment of a natural language, we easily get 
infinite fragments which are finite-state languages. One method is 
use of the so-called coordination rapports, formed by simple concate- 
nation or by such words as and. The coordination rapports preserve 
the finite-state language structure. The exact meaning of this assertion 
is given by the next two theorems. 

Proposition 58. If {r, cPl} and {r, a2} are finite-state languages, then 
{r, @,QD,} is a finite-state language. 
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PROOF. 
and Rabin-Scott (Section 2; see also [21, 321). 

It follows immediately from the theorem of Kleene, Myhill, 

Theorem 27. Let {r, (a} be a finite-state language and let a be a fixed 
word in r. Denote by (a, the smallest subset of T satisfying the following 
properties: 

(1) c a,; 
(2) if x E (a, and y E (a,, then xay E (a,. 

Then {r, (a,} is a finite-state language. 

PROOF. It is easy to see that (a, contains exactly those strings having the 
form xlax, .  . . xi_,axi .  . . , x,-,ax,, where n b 1 and xi E (a when 1 G 

i G n. It follows that @, is a T-distributional class with respect to (a,. 

As far as the semimarked strings with respect to (a, are concerned, 
they form at most three T-distributional classes, as follows: The first 
class contains all semimarked strings which have a as the first term 
but not as last term. The second class contains all semimarked strings 
which have a as last term but not as first term. The third class contains 
all semimarked strings which have a as both first and last term. Since 
all parasitic strings belong to the same T-distributional class, the number 
of T-distributional classes with respect to (al is at most equal to 5 ,  and 
so (al is a finite-state language. 

REMARKS. Theorem 27 was proved in another way, ([29], p. 203). 
It is interesting to remark that even if (a is finite, but nonempty, the 
corresponding set (a, is always an infinite language. 

Starting with a finite fragment (a of English and using the conjunction 
a = and, the corresponding fragment (a, of English, obtained by Theorem 
27, is a finite-state language. A similar result holds when we consider 
a finite collection of conjunctions such as and and or in English, i and 
ili in Russian, und and oder in German, et and ou in French. Indeed, it 
is not difficult to prove the following generalization of Theorem 27. 

Theorem 27'. Let {r, (a} be a finite-state language and let a,, a 2 , .  . . ,ap 
be p distinct fixed words in r. Denote by (a, the smallest subset of T 
satisfying the following properties: 

(1) c @1; 

(2) if x E (a, and y E (a,, then xaly  E (a,, xa,y E (a,,. . . , xa,y E (a,. 

Then {r, (a,} is a finite-state language. 
Other syntactic constructions, such as conditional subordination, 
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do not preserve the finite-state language structure. The exact meaning 
of this assertion is given by Theorem 28. 

Theorem 28. Let {r, @} be a finite-state language and let a and b be 
two distinct fixed words in r. Denote by Q, the smallest subset of 
T satisfying the following properties: 

(1) Q c 9 2 ;  
(2) if x E @, and y E CP,, then axby E CP,. Then {r, Q,} is not a 

finite-state language. 
PROOF. It is easy to see that @, contains all strings which have the 
form anx(by),, where x and y are arbitrary elements in and n is any 
nonnegative integer. Let us admit that {r, CP,} is a finite-state lan- 
guage. Then there exists an infinite sequence P ,  < P ,  < . < P,  < . 
of positive integers, such that the strings (by)p*, . . . , ( ~ Y ) ~ S , .  . . 
belong to the same T-distributional class with respect to Q2. It follows 
that all strings of the form ~~~x(by)~s(s = 1 , 2, .  . .) belong to Qz; this is 
a contradiction and so Theorem 28 is proved. 
REMARKS. Theorem 28 was given in [29], pp. 204-205. It must be 
remarked that Q2 is always infinite, even if CP is a finite (nonempty) 
language. If CP is a finite fragment of English and if a = if and b = then, 
then Q2 is the infinite fragment of English obtained from CP by conditional 
subordination. 

Other related questions are discussed in [ l ]  and [29]. 
Of great interest from the standpoint of a natural language is the fact 

that all Boolean operations preserve the finite-state language structure. 
Indeed, we have a further theorem. 

Theorem 29. The class T of the finite-state languages over a fixed 
vocabulary r is a Boolean algebra. 
PROOF. Let @ C T. It is obvious that the T-distributional classes 
with respect to Q are identical to the T-distributional classes with 
respect to T-CP. This implies that for any finite-state language Q, 
the complementary language T - Q is also a finite-state language. 

Consider now two finite-state languages Q1 and CP2.  We shall show 
that CP, f l  CPz is a finite-state language. Denote by C , ,  C , , .  . . , C,, the 
T-distributional classes with respect to CP, and by Ci, C;, . . . , C& the 
T-distributional classes with respect to CP,. Let x E C ,  n Ci and 
y E Ci f l  Ci (1 s i < n,, 1 s j  s n,). Given two strings u and 9 such that 
uxv E CP, n CP,, we have uyv E CP, (since x and y belong to Ci) and 
uyv E CP, (since x and y belong to Ci). Hence uyv E CPl rl CP2. Con- 
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versely, it is easily seen that uyv E n a2 implies uxv E a, n Q2. 

It follows that each intersection set Ci n C;  is contained in a T-dis- 
tributional class with respect to Q1 rl a*. Since the number of these 
intersection sets is at most equal to n1n2 (and thus finite), we see that 
(Dl rl 

f l  (T-Q2)andal U Q 2 = T - [ ( T - a 1 )  f l  (T--%)], 
it follows that T is a Boolean algebra. 
REMARK. Theorem 29 was proved in another way [32]. 

Passing to various types of linguistic isomorphism, we can remark 
that we have already used the Pa-isomorphism in the illustration of 
complete or noncomplete adequate languages and of well or non- 
well adequate languages. The importance of various types of linguis- 
tic isomorphism is given by such results as Proposition 44, Theorem 
18, Propositions 45, 48, 55, and 57, which permit us to detect the 
type of a language when we know its type of isomorphic image. For in- 
stance, most English noun paradigms are P-isomorphic to the correspond- 
ing French noun paradigms; if rl = { book, books, teacher, teachers}, 
F2 = {liure, livres, professeur, professeurs}, P,(book) = {book, books}, 
P,(teachers) = {teacher, teachers}, P,(livre) = {livre, livres}, P,(profes- 
seur)= {professeur, professeurs}, and f: rl -+r2 is such that for x E rl, 
f(x) is the French translation of x, then Ps(f(x)) =f(Pl(x)) for each x E rl. 

Other illustrations of the various types of linguistic isomorphism 
will be discussed in the next two chapters. 

is a finite-state language. 

9. Bibliographic Remarks 

The traditional linguistic typology, discussed in many papers (see, 
for instance, [2, 3, 12, 13, 24, 351 and, especially, [36]) may be cor- 
related with the above considerations, although they are based on the 
morphemic structure of words. For instance, homogeneity and strong 
adequacy are, in some ways, approximations of the so-called agglu- 
tinative languages (such as Hungarian) whereas the amorphic languages 
are approximations of the corresponding amorphic languages in the 
traditional linguistic typology. 

The notions of adequate language and that of homogeneous language 
were introduced by Uspenskii [37]. Theorems 1, 4, 8, and 10 are given, 
without proof, in [37]. The notion of simple language was introduced 
by Kulagina [22]. Corollary 3 is a generalization of a theorem of [22], 
where the same result is given for simple languages. Theorems 1 ,  4, 8 and 
10 are proved, in another way, by Revzin [34]. Some of the results con- 
tained in this chapter were previously proved [26-281. For French illus- 
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trations of various questions discussed above the work of Braffort may be 
used [4]; for Hungarian illustrations, those of Kiefer [ 19, 201. Finite-state 
languages are the first step in the so-called Chomsky hierarchy; see, 
in this respect, the very clear synthetic expositions of Gross [I41 and 
Kurki-Suonio [23]. Some notions and results of the first two chapters 
are discussed, using the algebra of binary relations, by Lenskoi [25]. 
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NOTE ADDED IN PROOF 
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in Sbornik Vysoke‘ Skoly strojni a textilni v Liberci; Sur le PS-isomorphisme des langues, 
to appear in Z. Math. Logik Grund. Math.). 



Chapter 111 

Parts of Speech and Syntactic Types 

1. Introduction 

The notion of part of speech is fundamental to linguistics and many 
authors have tried to give a rigorous description of it. Such great lin- 
guists as Brondal, Hjelmslev [22], Kurylowicz [28], and Harris [17] 
have explored this problem and the contemporary models of the part 
of speech use essentially the results of their investigations. Applied 
linguists are very interested in an adequate decomposition of the vocab- 
ulary into parts of speech (see, for instance, the paper of Ruvinskii [43]). 
The difficulties in this area arise from the very complex character of 
this notion, which is a mixture of semantic, morphologic, and syntactic 
factors. The proportion in which each of these factors occurs in the 
structure of the parts of speech depends on the language considered. 
For instance, the parts of speech in English are dominated by syntactic 
factors, whereas in Slavic languages, in Latin, and in Rumanian, the 
morphologic (paradigmatic) aspects of the parts of speech are essential. 
This is perhaps one of the reasons for the great variety of logical models 
proposed for the notion of parts of speech. We shall present in this 
chapter two points of view concerning the logical description of the 
parts of speech. The first point of view, having its starting point in the 
preceding chapters, has been developed by Kulagina [27], Uspenskii 
[46], Revzin [40, 411, and Marcus [33] and concerns especially flec- 
tional languages. The second has its origin in mathematical logic, in 
the work of Lesniewski [32] and Ajdukiewicz [l]; it has been developed 
by Bar-Hillel [3], Lambek [29-311, Bar-Hillel et al. [6], and Chomsky 
[ 1 11 and concerns especially the syntactic aspects of the parts of speech. 

2. Parts of Speech as Cells of the Derivative Partition P’ 

Let us consider a language {r, P ,  @} and let us interpret r as the 
vocabulary of a natural language L, P(x)  (for x E r) as the set of all 

81 
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inflected forms of x, and @ as the set of all well-formed sentences in 
L. Such an interpretation does not correspond to the real situation in 
a natural language, since the condition that P be a partition of r is not 
fulfilled. For instance, the English word excuse belongs to P(excuses), 
but also to P(excused). We may avoid this difficulty by considering the 
union P(excuse) u P(excused) as a single cell of P ,  but such an interpre- 
tation ignores the linguistic nature of the word excuse which is both 
a noun and a verb. In other languages, such as Rumanian, Russian, or 
Latin, the existence of two distinct sets P(xJ and P(x2) with a nonvoid 
intersection is less frequent than in English. We shall ignore, in the 
following, this possibility; two homonymous forms such as free (ad- 
jective) and free (verb) will be considered distinct and their corresponding 
P-cells disjoint. 

It should be remarked that the partial homonymy of two words is 
possible even if these words belong to the same part of speech. Con- 
sider, for instance, the Rumanian words cap (chief) with the plural 
form capi, cap (head) with the plural form capete, and cap (cape) with 
the plural form capuri. Each of these words is a noun and we have 
three mutually distinct P-cells: P(cupi), P(capete), P(capuri) such 
that cap E P(capi) f l  P(capete) n P(capuri). But such a situation 
will remain outside the model presented further on. 

With the interpretation considered above, the cells of the derivative 
partition P' will be adopted as a model of first approximation of the 
parts of speech in L. The adequacy of this model depends upon the 
nature of L; in this respect, we shall consider the linguistic typology 
investigated in the preceding chapter. In any case, it must be remarked 
that in such a model two distinct parts of speech are always disjoint. 
Although this condition is not fulfilled in a natural language, we may 
find large enough portions where the absence of homonymy makes 
it possible that two distinct parts of speech are always disjoint. 

We begin by discussing a short fragment of French, which will enable 
us to explain the model adopted. 

Let us put r = P(un) U Pbrofesseur) U P(maison) U P(grand) U 
P(petit) U P(vieux) U P(e'crit) U P(arrive) [where P(un) = {un, une, le, 
la, les, d e s } ,  P(professeur) = {professeur, professeurs}, P(maison) = 

{maison, maisons}, P(grand) = {grand, grande, grands, grandes}, 
Pbet i t )  = {petit, petits, petite, peti tes},  P(vieux) = {vieux, vieille, 
vieilles}, P(e'crit) = { tcrit, e'crivent, Bcrivuit, Ctrivaient, e'crira, tcriront}, 
P(arrive) = {arrive, arrivent, arrivait, arrivaient, arrivera, arriveront}] 
and = {un professeur arrive, le professeur arrive, un professeur 
arrivait, le professeur arrivait, un professeur arrivera, le professeur 
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arrivera, une maison arrive, La maison arrive, une maison arrivait, la 
maison arrivait, une maison arrivera, la maison arrivera, un grand 
professeur arrive, un petit professeur arrive, un vieux professeur arrive, 
Ee grand professeur arrive, le petit professeur arrive, le vieux professeur 
arrive, un grand professeur arrivait, un petit professeur arrivait, un 
vieux professeur arrivait, le grand professeur arrivait, le petit profes- 
seur arrivait, le vieux professeur arrivuit, un grand professeur arrivera, 
un petit professeur arrivera, un vieux professeur arrivera, le grand 
professeur arrivera, le petit professeur arrivera, le vieux professeur 
arrivera, une grande maison arrive, une petite maison arrive, une 
vieille maison arrive, la grande maison arrive, la petite maison arrive, 
la vieille maison arrive, une grande maison arrivait, une petite maison 
arrivait, une vieille maison arrivait, la grande maison arrivait, la petite 
maison arrivait, la vieille maison arrivait, une grande maison arrivera, 
une petite maison arriveru, une vieille maison arrivera, la grande maison 
arrivera, la petite maison arrivera, La vieille maison arrivera). 

Let us denote by CP2 the set of strings obtained from the strings of 
CPl by replacing the various forms of the verb arrive by the correspond- 
ing forms of the verb e'crit. Let us denote by CP3 and by @, the sets 
of strings obtained from the strings of Ql and CP, respectively, by re- 
placing every form of singulai by the corresponding form of plural 
(un and une by des, le and la by les, professeur by professeurs, grand 
by grands, arrive by arrivent, etc.) Finally, put @ = Ql U Q2 U @3 U (D4. 
It is easy to see that @ contains only such strings as are grammatically 
correct French sentences over the vocabulary r. A sentence such as 
une maison arrive, which seems to be incorrect, is doubtful from a 
semantic standpoint, but perfectly correct from a grammatical one. 
Conversely, we may have a grammatically incorrect sentence, which 
is semantically clear. The Rumanian sentence oamenii este de3tepti 
fulfills these conditions. 

3. Grammaticality 

In fact, the problem of grammaticality is more complex and many 
authors have tried to reduce this notion to a simpler one (see, for in- 
stance, Revzin [42]). Other authors, such as Chomsky [S], have intro- 
duced the concept of degree of grammaticalness [lo, 1 I]. Instead of 
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partitioning the free semigroup T generated by r into the two subsets 
@ (well-formed sentences) and T - @ (nongrammatical strings), one 
defines a set a* of perfectly well-formed sentences and all strings in 
T are partially ordered in terms of degree of grammaticalness. Strings 
not in @* can still often be understood, in terms of the structural des- 
criptions assigned to these strings. A string x of T-@* can be under- 
stood by imposing on it an interpretation, guided by its analogies to 
sentences of a*; x is called a deviant sentence, and the measure of 
this deviation from grammatical regularities gives the degree of gram- 
maticalness of x. A detailed discussion of these and other related 
questions may be found in some papers by Ziff [49, 501, Katz [26] ,  
Jakobson [24], Hill [19], and Putnam [39]. But the most rigorous attempt 
to give a precise description of the various degrees of grammaticalness 
has been made by Miller and Chomsky ([37], pp. 443-449). We shall 
not broach here the details of these points of view, since the notion 
of grammaticalness will not be used in this chapter. But it should be 
remarked that some authors do not agree with the above interpretation 
of the marked strings. For instance, Gross ([16], p. 35) considers the 
French sentence le loup mange le p r o b l h e  is not grammatically correct, 
since one of the rules of the French grammar says that an abstract word 
cannot be a direct object of a verb such as mange. Hence, for Gross, 
the French sentences une maison arrive and une maison e'crit are 
probably grammatically noncorrect sentences, in contrast to our above 
assumption. 

4. Linguistic Explanation of the Model of Part of Speech 

Let us now return to the fragment of French considered. It is easy 
to see that for each a E r the P-cell P(a)  contains only flectional forms 
of a.  For some words a,  P(a)  does not contain all flectional forms of 
a,  but only those which occur in the sentences of @. 

There is a general simple property fulfilled in every natural language: 
If two words a and b belong to the same paradigm [that is: if b E P(a)], 
they belong to the same part of speech. According to this rule, a rigorous 
definition of the parts of speech should regard every part of speech as 
the union of some P-cells. The problem is now the following: Given 



4. Linguistic Explanation of the Model of Part of Speech 85 

two words a and b, under which conditions may we consider that P(a) 
and P(b) are contained in the same part of speech? The answer given 
by Kulagina [27] says: if and only if P(a)  and P(b)  are P-equivalent, 
that is, if and only if b E P’(a). (See, for these notions and notations, 
Section 1.5.). 

Let us verify, on the above fragment of French, the legitimacy of 
this convention. We shall show that maison E P’(professeur), petit 
E P’(grand), vieux E P’(grand), and e‘crit E P’(arrive). 

Let us put Bll = P(un), Plz = P(un) P(grand), 9 1 3  = P(un) PCpetit), 
P14 = P(un) P(vieux), P,, = P(arrive), and BZ2 = P(e‘crit). It is easy to 
see that every marked P-structure containing the P-cell PCprofesseur) 
has one of the forms PIi P(professeur) Pz3, where 1 S i < 4 and 1 s j =s 2. 
We shall show that the P-structures obtained from Bli P(maison) BZj 
(1 s i S 4, 1 S j  < 2) are all marked. We have: une E P(un), maison E 
P(maison), arrive E P(arrive), and une maison arrive is a marked 
string. Hence Bll P(maison) Pzl is marked; grande E P(grand) and 
une grande maison arrive is a marked string. Thus PI, P(maison) P,, 
is marked; petite E PCpetit) and une petite maison arrive is a marked 
string. Hence BI3 P(maison) Bll is marked; vieille E P(vieux) and 
une vieille maison arrive is a marked string. Thus B1,P(maison) B,, 
is marked; since all the above strings remain marked when arrive is 
replaced by e‘crit, it follows that BliP(maison)B22 is a marked P-structure 
for every i such that 1 s i < 4. Since all marked P-structures containing 
P(maison) are of the form YliP(maison) BZi ( 1  S i < 4, 1 s j s 2), it 
follows that P@rofesseur) and P(maison) are P-equivalent. It follows 
immediately that P’(professeur) = P@rofesseur) U P(maison). 

Let us put B,, = PCprofesseur) P(arrive), 9 3 2  = P(professeur) P(e‘crit), 
B33 = P(maison) P(arrive), 934 = P(maison) P(e‘crit). It is easy to 
see that every marked P-structure containing the P-cell P(grand) has 
one of the forms B,, P(grand) B3i ( 1  S i S 4). Since PI, PCpetit) 93i 
is a marked P-structure for every i such that 1 d i G4 and since every 
marked P-structure containing PCpetit) has one of these forms, it follows 
that Pbeti t )  and P(grand) are P-equivalent. Similarly, we may see that 
P(vieux) and P(grand) are P-equivalent. It follows immediately that 
P‘(grand) = P(grand) U P(petit) U P(vieux). 

Let us put B 4 1 =  P(un)P(grund)PCprofesseur), P42 = P(un)P(petit) 
PCprofesseur), 943 = P(un)P(vieux)P(professeur), 9’44 = P(un)P(grand) 
P(rnaison), B45 = P(un)PCpetit)P(maison), B46 = P(un)P(vieux)P(maison). 
I t  is easy to see that every marked P-structure containing the P-cell 
P(arrive) has one of the forms B&arrive) (1 S i S 6). Since P4iP(e‘crit) 
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is a marked P-structure for 1 G i s 6 and since every marked P-structure 
containing P(e'crit) has one of these forms, it follows that P(arrive) and 
P(e'crit) are P-equivalent. It is easy to see that P'(arrive) = P(arrive) U 
P(e'crit). 

P'(un) [= P(un)] is the part of speech called article; P'(grand) is the 
part of speech called adjective; P'(professeur) is the part of speech 
called noun; P'(arrive) is the part of speech called verb. 

It is now clear that the parts of speech have no absolute character; 
they depend upon the set @ of marked strings (that is, they depend 
upon the syntax of the language) and upon the partition P(that is, upon 
the morphology of the language). The parts of speech of a natural lan- 
guage are a function of P and @, since we never take into account all 
possible sentences and paradigms of a natural language. In every con- 
crete problem we consider a fragment complex enough to give a good 
approximation of the natural language and simple enough to permit 
a systematic and detailed investigation. 

Let us consider another example, concerning Rumanian. If we in- 
tend to define only two parts of speech, the noun and the adjective, 
we may use the following language {r, P,  @}. r = P(cas5) U P(pom) 
U PY;lm) U Pvrumos) U P(mare) U P(nou), where P(casii) = {casir, 
casei, casa, casele, caselor, case}, P(pom) = {pom, pomului, pomul, 
pomi, pomilor, pomii), Pf i lm) = Cfilm, jilme, jilmului, jilmele, filmelor, 
jilmul}, Pvrumos) = Cfi.umos, frumoasir, frumopi, frumoase}, P(mare) = 
{mare, mari}, P(nou)= {nou, nouii, noi}. The set @ will contain, by 
definition, all well-formed Rumanian strings of length equal to 2, on 
the vocabulary I'. [Any string of the form aa (a E r) will be considered 
unmarked.] 

We may show that P'(cas2) = P(casir) U P(pom) U P@lm) and 
P'Cfrumos) = PCfrumos) U P(mare) U P(nou) [P'(casii) will define the 
noun, whereas P'Cfnlmos) will define the adjective]. Let us first show 
that P(casir) and P(pom) are P-equivalent. The P-structure P(casii) 
Pvrumos) is marked, since casii frumoasii is a well-formed string. 
The P-structure P(pom)P(casii) is marked, since pomul casei is a well- 
formed string. But every marked P-structure containing the P-cell 
P(cas2) has one of the forms P(x) P(casii) and P(cas2) P(x), where 
x E PCfrumos) u P(mare) u P(nou) U P(casb) U P(pom) U P(fi1m). On 
the other hand, each of the P-structures P(x)P(porn) and P(pom)P(x) 
is marked. Conversely, each marked P-structure containing the P-cell 
P(pom) has one of the forms P(x)P(pom), P(pom)P(x); therefore, P(casii) 
and P(pom) are P-equivalent. 
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In a similar manner one can prove that P(casii) and P(film) are P- 
equivalent; P(frurnos), P(mare), and P(nou) are also P-equivalent. 

Let us show that P(casii) and PCfrumos) are not P-equivalent. Indeed, 
if we consider the marked P-structure P(casii)P(frumos) and if we 
replace P(casii) by P(frumos), we obtain the unmarked P-structure 
P(frumos)P(frumos). 

It should be remarked that P'(cas5) contains nouns of different genders, 
whereas P'(frumos) contains adjectives of different types from the 
standpoint of their morphologic homonymy. 

To make the structure of the parts of speech clearer and more flexi- 
ble, we shall sometimes consider the part of speech of a word a not 
the union of all P-cells P-equivalent to P(a), but the set of all P-cells 
P-equivalent to P(a). We shall use these two acceptations alternatively, 
without specification. 

We may now explain the profound reason for the above definition 
of parts of speech. Let us consider a language L = {r, P ,  a}. To this 
language we may associate another one, namely, the language P(L) = 
{r,, PI, a,}, where rl is the set of all P-cells in L,  PI is the partition 
of rl into P-equivalence classes (with respect to L), and (P, is the set 
of all marked P-structures (with respect to L). The language P(L) will 
be called the P-abstraction of L. This level of abstraction is precisely 
the level at which the logical structure of the parts of speech may be 
understood, since they are nothing more than the distributional classes 
in P(L). Indeed, the P'-cells of L are precisely the distributional classes 
of P(L). En this manner, all results concerning distributional classes 
may be used in the investigation of the parts of speech. 

Given a language L = {r, P ,  (P}, we may consider the P-abstraction 
of its P-abstraction. If P(L) = {rl, P I ,  a,,}, then P(P(L)) = {r,, P,, Q2>, 

where T, is the set of Pl-cells [with respect to P(L)] ,  P, is the partition 
of T2 into PI-equivalence classes [with respect to P(L)] ,  and a2 is the 
set of marked Pl-structures [with respect to P(L)]. It is easy to see that 
every P,-cell in P(L) is a P'-cell in L and, conversely, every P'-cell in 
L is a P,-cell in P(L). Further, every P,-cell in P(P(L)) is a Pi-cell in 
P ( L )  . Hence it is a P"-cell in L. Conversely, every P"-cell in L is a P',-cell 
in P(L). Hence it is a P,-cell in P(P(L)).  In view of Corollary 2, Chapter I, 
we have, in L,  P' = P .  Therefore two distinct PI-cells are never equivalent 
in P ( L ) .  Since I', is precisely the set of P'-equivalence classes in L,  it fol- 
lows that P2 is the unit partition of I',. The paradigmatic structure of 
P(P(L))  is thus trivial. It may be ignored, and we get P(P(L)) = {r,, a,}, 
that is P(P(L)) is a language whose words are the parts of speech in L, 
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whereas the marked strings are those sequences of parts of speech which 
are possible in L. 

In some sense, the P-abstraction of the P-abstraction of a language is 
its maximum degree of abstraction. Indeed, if we intend to form the lan- 
guage P(P(P(L))) = {r,, P3,  Q3}, we find that r3 = Tz (since P p  is the 
unit partition of r2), Q3 = @,, and P ,  = P,; thus P(P(P(L))) = P(P(L)).  

Given a part of speech 8, it is interesting to find a class +? of contexts 
which fulfills the following conditions: (1) for each word a E 8 there 
is a context (x, y )  E %?, such that xay  E @; (2) given a word b which 
is not in 8, there is no context (u, v) E such that ubv E Q. The class 
9? is said to be a diagnostic class of 8. This notion owes its origin to 
Harris [17]. 

It stands to reason that the most interesting diagnostic classes of 
8 are those containing the minimum number of contexts. If there is 
a diagnostic class %? of 8 containing a single context (x, y ) ,  then (x, y )  
is said to be a diagnostic context of 9. The existence of diagnostic 
contexts is possible particularly in a language with a reduced flection, 
such as English. In other languages, with more complex morphology, 
most diagnostic classes contain several contexts. 

Determining the diagnostic classes is a very important task of struc- 
tural linguistics, since the diagnostic classes of 9’ permit us to isolate 
8 and to study it intrinsically. 

5. Parts of Speech in Adequate and in Homogeneous Languages 

In the above discussions we have made no assumption as to the 
nature of the language under consideration. But there is a general hy- 
pothesis, due to Uspenskii [46], which says that each natural language 
is adequate. This is not true for the artificial languages, as shown by 
Theorem 1,  Chapter 11. It is important to determine what new informations 
we may get concerning the parts of speech, if the language considered 
is adequate. 

Let us first recall Theorem 4, Chapter 11. If {I‘, P ,  Q} is adequate, then 
R‘ = P‘. This theorem yields a new way of determining the parts of speech. 
Given a word a E r, its part of speech is identical to R’(a).  A third 
possibility of determining the parts of speech in an adequate language 
is given by Theorem 6, Chapter 11. If, in such a language, the classes K(x)  
define a partition of r, then K’ = P‘. Hence the part of speech of a word a 
is identical to K’(a). In this connection, it is interesting to establish1 
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whether the assumption that the classes K(x)  form a partition is not 
redundant. The answer is negative, as it is shown by Proposition 1. 

Proposition 1. There exists an adequate language whose classes do 
not form a partition of r. 

PROOF. Let us consider the language L used in the proof of Theorem 
9, Chapter 11. In view of this theorem, L is adequate. On the other hand, 
using the notation introduced in Section 11, Chapter I, we have M ( a )  = 
S(a)  U S(b) = {a, b, d}, M(b)  = S(a)  U S(b)  = 
{a ,  6 ,  d } ,  N(b) = P(b) U P(d) = {a,  b, c, d}.  Hence K(a)  = {a ,  b, d }  and 
K(b) = {a ,  6, c ,  d }  and the classes do not form a partition of r. 

It is known (see Theorem 8,  Chapter 11) that each homogeneous 
language is adequate. But Corollary 3 ,  Chapter 11, asserts that in every 
homogeneous language the classes form a partition of r. Does this 
last property characterize the homogeneous languages among the 
adequate languages? The answer is negative, as shown by the following 
result of Zelinka [48]. 

Theorem 1. There exists an adequate nonhomogeneous language, 
whose classes form a partition of r. 
PROOF. Let I’={a, bl ,  b2, c,,  cz ,  d} ,  P(a)={a,  b,, c,},  P(bJ= 
{b2, c2} ,  P(d) = i d } ,  @ = {aa,  blc, ,  blcz, b,c,, b2c2, d} .  It is easy to 
see that S(a) = { a } ,  S(bJ = {b,, b2} ,  S(c,) = {cl, c,}, S(d) = {d } .  We 
have the following marked P-structures: P(a)P(b,), P(b,)P(a), P(a)P(a),  
P(b,)P(b,), and P(d). Since P(a) = P(b,)  = P(c,) and P(b,) = P(cz),  it 
follows that, for any x E I‘ such that x # d, P(x)  is P-equivalent to 
P(a) ,  that is, P‘(a) = P’(b,) = P’(b,) = P’(c l )  = P’(c2) = {a ,  b,, bz, cl, c2} 
and P’(d) = {d } .  We have, for every x E I?, S(x) P’(x),  and the con- 
sidered language is adequate. But it is not homogeneous, since 
P(a) fl S(bJ = {b,} Z 0, whereas P(b,) fl S(a)  = 0. 

In view of Theorem 5 ,  Chapter I,  we have, foranyx E r, K(x)  = M ( x )  U 
N(x).  By means of this formula, we get K(a)  = K(b,) =K(b,) = K(c , )  = 

K(c2)  = {a ,  bl ,  b2, c,, c2,}  and K(d) = {d } .  Hence the classes form 
a partition of r. 

Theorem 1 and Theorem 6, Chapter 11, show that there exist adequate 
nonhomogeneous languages whose parts of speech may be obtained in 
three ways: as P‘-cells, as R’-cells, and as K’-cells. This fact is very 
important, since many fragments of natural languages are adequate 
but not homogeneous (see, in this respect, Section 8, Chapter 11). 

N(a)  = P(a) = {a ,  b } ,  
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Thus, let us consider the fragment of the Russian vocabulary consisting 
of all Russian nouns and adjectives. For every noun a,  P(a)  will be the 
set of forms obtained from a by changing the case and/or the number; 
for every adjective 6 ,  P(b) will be the set of forms obtained from b by 
changing the gender, the number and/or the case. If r is the set of all 
noun forms and adjective forms and @ is the set of all noun syntagms 
of the form adjective-tnoun, the language {r, P ,  Q,} is adequate, but 
not homogeneous. (See Kulagina [27], p. 214.) 

Theorem 2. There exists a nonadequate language whose classes form 
a partition of r. 
PROOF. Let r = { a ,  bl, bz, cl, c2) ,  P(a)= { a ) ,  P(bl)= {b,, bz } ,  
P(cl 1 = {cl, c2> , We 
have a E S(bl). On the other hand, by comparing the marked P-structure 
P(bl)P(a) and the unmarked P-structure P(a)P(a), we deduce that P(a)  and 
P(bl) are not P-equivalent. Therefore, the language considered is not 
adequate. (See Revzin, [41], p. 175.) By means of the formula K ( x )  = 

M(x)  U N(x) (for every x E r; see Theorem 5 ,  Chapter I) we get M(a)  = 

Concerning the partition into classes, we have a Theorem. 

@ = {b2a,bzbl ,blbz, acl, blcl , cia, clcz, abz, clbl I. 

{ a ,  bl), N(a)  = {a ,  bl, b d ,  M(b1) = { a ,  61, bz), N(b1) = {a ,  bl, b2), 
M(bd= {a ,  bi, 621, N(bz)= {b13 bz} ,  M(ci)=N(ci)=M(c,)=N(cz)= 
{cl, cz}. Hence K(a)=K(b , )=K(b , )={a ,  bl, b2},  K(c,)=K(c,)= 
{cl, cz} and Theorem 2 is completely proved. 

The most advantageous conditions concerning the analysis of the parts 
of speech are offered by the homogeneous languages. Indeed, in view of 
Theorem 10, Chapter 11, in every homogeneous language the classes co- 
incide with the mixed cells, that is K(x)  = R(x)  for any x E r. Since 
we have (in any adequate language) R’(x) = P’(x)  for each x E r, it 
follows that, in homogeneous language, K’(x)  = R’(x) = P’(x)  for any 
x E r. On the other hand, the classes of a homogeneous language may 
be easily determined by means of Corollary 4, Chapter 11, which asserts 
that, in such languages, K(x)  = M(x)  = N(x)  for any x E r. 

To  illustrate the above situation, let us consider the fragment of 
French vocabulary consisting of all French nouns and adjectives (see 
Kulagina [27], p. 213, Braffort [7], pp. 69-71, and Revzin [40]). We 
shall ignore any homonymic form such as cus, mince, etc. For any 
noun a, P(a) will be formed by two elements: the singular and the plural 
forms. For any adjective b, P(b)  will be formed by four elements, namely, 
the forms of singular masculine, singular feminine, plural masculine, and 
plural feminine. The set Q, will be formed by all well-formed noun 
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syntagms of the type adjective+noun or noun+adjective. We have 
four families of nouns ( S ,  = the family of masculine singular noun 
forms, S, = the family of masculine plural noun forms, S ,  = the family 
of feminine singular noun forms, S ,  = the family of feminine plural 
noun forms) and four families of adjectives (S ,  = the family of mas- 
culine singular adjective forms, S ,  = the family of masculine plural 
adjective forms, S, = the family of feminine singular adjective forms, 
S8 = the family of feminine plural adjective forms. 

If a is a noun and b is an adjective, then P(a)  n S(b)  = P(h) n S(u) = 0. 
If a and b are either both nouns or both adjectives, each of the sets 
P(a) f l  S(b) and P(b) n S(a) contains exactly one element; if a and b 
are both adjectives, then P(a) n S(b)  contains the flectional form of 
a which has the same gender and the same number as b [and similarly 
for P(b) n S(a)]. If a and b are both nouns, we distinguish two pos- 
sibilities. If a and b are of the same gender, then P(a) n S(b) contains 
the flectional form of a which has the same number as b [and similarly 
for P(b) n S(a)]. If a and b are of different gender, then P(a) n S(b)= 
P(b)  n S(a) = 0. It follows that in any case the sets P(a) n S(b) and 
P(b) n S(a) are either both void or both nonvoid. Hence the considered 
fragment of French is homogeneous. In view of Corollary 4, Chapter 11, 
we have, for any word a, 

K(a)  = U {S(b) ;  b E P(a)} .  

If a is a noun, then K(a)  will contain all noun forms of the same gender 
as a since, in this case, P(a) contains only nouns of the same gender as 
a. We thus get two classes of nouns: one formed by masculine nouns, 
the other by feminine nouns. If a is an adjective, then K(a)  will contain 
all adjective forms, since, in this case, P(a) contains adjectives of both 
genders and both numbers. 

In view of Theorem 10, Chapter 11, we may get the parts of speech by 
taking the derivative partition K’. If a and b are two nouns of different 
genders and if c is an adjective, the K-structures K(a)K(c) and K(b)K(c) 
are both marked, whereas the K-structures K(c)K(a)  and K(c)K(b) are 
also both marked [since K(c)  contains adjectives of both genders]. It 
follows that K(a)  and K(b) are K-equivalent. Therefore K’(u) 2 K(a)  U 
K(b), that is, K’(a) contains all nouns. If a is a noun and c is an adjective, 
then K(a) contains all nouns. If a is a noun and c is an adjective, then 
K(a) and K(c) are not K-equivalent, since the K-structure K(a)K(c)  
is marked, whereas the K-structure K(c)K(c) is not. It follows that 
K’(a) = K(a)  U K(b). For any adjective c,  K’(c)  = K(c)  = the set of 



92 111. Parts of Speech and Syntactic Types 

all adjectives. Therefore, the parts of speech obtained by means of 
the above model coincide with the traditional ones. But for other choices 
of r and Q, some differences may arise, especially concerning pronouns, 
articles, numerals, adverbs, and some types of adjectives. For instance, 
the Rumanian words un and acest belong to the same P’-cell for most 
choices of @, although, in the customary Rumanian grammars, un is 
considered an article, whereas acest is considered a demonstrative 
adjective. Another example: If the expression il est trPs mort is not 
considered a well-formed French sentence, mort does not belong to 
the same P’-cell as beau. 

Given two languages L, = {I?,, P,, @,} and L2 = {r,, P2, Q2}, we shall 
say that they are P’-isomorphic, if there is a 1 : 1 mapping p of rl onto 
T,, such that y E Pi(x) in L, if and only if p(y) E P:(cp(x)) in L,. Since 
the parts of speech of a language are precisely its P‘-cells, it follows 
that the P’-isomorphism preserves the parts of speech. 

In Section 6, Chapter 11, were defined various types of linguistic 
isomorphism. It is immediately apparent that two P@-isomorphic 
languages, two PP‘S-isomorphic languages, and two P‘S-isomorphic 
languages are P’-isomorphic, but the converse is not true. It may be 
also seen that the P’-isomorphism is not comparable to the P S -  
isomorphism. 

6. Syntactic Types 

The starting point in the problem of syntactic types is described 
clearly by Lambek ([31], p. 166), using the following analogy: In 
classical physics it was possible to decide whether an equation was 
“grammatically correct” by comparing the dimensions of the two 
sides of the equation. One may ask whether it is similarly possible 
to assign grammatical types to the words of a natural language in such 
a way that the grammatical correctness of a sentence can be determined 
by computation with these types. Such possibilities already exist in 
certain artificial languages (for example, propositional calculus), where 
there are rules which distinguish between well-formed and non well- 
formed formulas. 

Let us first consider one simple example (see Bar-Hillel [3] or [ 5 ] ,  
p. 62). The English string poor John sfeeps would be analyzed, ac- 
cording to a customary method, in the following way: poor is an adjec- 
tive (A) ,  John is a noun ( N ) ,  sleep is a verb (V), -s is a morpheme added 
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to a verb to form a verbal phrase (Vv). Since poor John is a noun phrase 
and sleeps is a verb, we may say that A N  (the juxtaposition means 
concatenation) gives a N and V(Vv)  gives a V .  According to the notation 
to be proposed and explained in the following, John will belong to the 
type n, poor to n / n, sleeps to n \ s, where n is to be interpreted, 
approximately, as the category of namelike strings, n / n as the cate- 
gory of those strings that with an n to their right form a string belonging 
to the same category n, and n \ s as the category of those strings that 
with an n to their left form a string belonging to the category of sen- 
tences. That the string poor John sleeps is a sentence can now be 
tested mechanically, without recourse to any syntactic statements, 
by using something like ordinary multiplication of fractions on the 
index sequence corresponding to the given string (n / n)n(n \ s). In 
the subsequence (n / n)n we may simplify to the right and obtain n; 
the whole sequence becomes n(n \ s); we may simplify to the left 
and we get the type s, that is, poor John sleeps is a well-formed English 
sentence (sometimes we shall say sentence instead of well-formed 
sentence). 

Let us now proceed to sketch the general method following Lambek 
[29]. We consider a vocabulary V.  We begin by assigning certain primi- 
tive types to some words and some strings on V.  From these primi- 
tive types compound types are built up by three formal operations: 
multiplication, left division, and right division, denoted by simple 
juxtaposition, by \ and by /, respectively. We write X +  x to indicate 
that the string X has type x. The defined compound types have the 
following significance: If X + x  and Y + y ,  then X Y - x y ;  if X Y + z  
and Y + y ,  then X +  z / y (read z over y ) ;  if XY + z and X +  x ,  then 
Y -+ x \ z (read x under z). In other words, an expression of type x / y ,  
when followed by an expression of type y ,  produces an expression 
of type x, as does an expression of type y \ x when preceded by an 
expression of type y. 

If any expression of type x is also of type y ,  we shall write x -+ y.  
The definition of left division and of right division implies that 

(x / y)y-+x and y(y \ x)-x. (1) 

Among the primitive types there always exists the type s ascribed 
to all sentences (that is, marked strings) and only to sentences. Now, 
if we could say whether a given string a is a marked one, then we could 
compute the types ascribed to the terms of a and we verify whether 
the compound type is precisely s. 
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Sometimes, when we are dealing with fragments of natural languages, 
we consider only two primitive types: s, the type of sentences, and n, 
the type of names; but in more complex situations we must consider 
a greater number of primitive types. For instance, we sometimes intro- 
duce the primitive type i, of intransitive infinitive. For the sake of 
simplicity, we here restrict type s so it is ascribed only to complete 
declarative sentences (that is, we rule out requests and questions, as 
well as most replies, which are usually incomplete). By a name we 
understand primarily a proper name, but we shall also assign type n 
to all expressions which can occur in any context in which all proper 
names can occur. Thus type IZ is ascribed to the so-called class nouns 
milk, r ice , .  . . , which can occur without an article, and to compound 
expressions such as poor John orfresh milk. We do not need to assign 
type n to the so-called count nouns king, chair,. . . , which require 
an article, nor to the pronoun he, as it cannot replace John in poor 
John works. 

To better understand the linguistic significance of the above syn- 
tactic types, we shall illustrate the assignment of types to English 
words by considering a number of sample sentences (Lambek [29], 
p. 156-1 57).  Each word type is indicated in parenthesis. 

John (n)  works (n  \ s). (1) 

This remains a sentence if John is replaced by any other name. Hence 
works is type n \ s. 

b o o r  (n / n) John (n)] works (n  \ s). (2) 

Were poor John takes the place of the name in (1); in fact poor John 
can occur in any context in which all names can occur; hence it is type 
n. Moreover, so are poor Tom,  poor Jane , .  . . , thus poor is type n / n. 

(3) 

The word here transforms (l), or any other sentence, into a new sen- 
tence; hence it is type s \ s .  

(4) 

Since John can be replaced by any name, never works is type n \ s; 
therefore, never is (n  \ s) / (n \ s). 

( 5 )  

This indicates that .for Jane should be the same type as here in (3), 

[John (n)  works (n \ s)] here (s \ s) .  

John (n)  [never ( ( n  \ s) / (n  \ s ) )  works (n  \ s)]. 

[John (n)  works (n \ s)] Vor ( ( s  \ s) / n) Jane (n) ] .  
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namely, s \ s, and, since Jane can be replaced by any other name, 
f o r  is type ( s  \ s) / n. 

[John ( n )  works (n  \ s)]  [and ((s \ s) / s )  {Jane (n)  resrs ( n  \ s)}] (6 )  

This illustrates how and can join two arbitrary sentences to form a 
new sentence; its type is therefore (s \ s) / s. 

John ( n )  [likes ( (n  \ s ) / n )  Jane (n ) ] .  (7) 

Here likes Jane is the same type as works in ( 1 ) ;  hence likes is type 
(n  \ s) / n.  

Example (7) raises an important question. Let us group the sentence 

[John ( n )  likes ( n  \ (s / n ) ) ]  June ( n ) .  (7') 

Here John likes is type s / n. Hence likes must be the new type 
n \ ( s  / n). We would regard the two types of likes in (7) and (7') 
in some sense equivalent. Abstracting from this particular situation, 
we write symbolically 

(x \ y )  / z * x \ ( y  / 2). (11) 

We may write x \ y / z for either side of this equivalence. Further 
examples of this convention are afforded by the types of never, for ,  
and and (see Table 1 ) .  To avoid multiplication of parentheses, we 
may also abbreviate (x /' y )  / z as x / y / z and, symmetrically, 
z \ ( y  \ x) as z \ y \ x. However, parentheses must not be omitted 
in such compounds as x / 0, / z ) ,  ( z  \ y )  \ x, (x / y )  \ z ,  and 
z / 01 \ x). 

TABLE I 

Word Type Part of speech 

(1 )  Works n\s Intransitive verb 
( 2 )  Poor n / n  Adjective 
(3)  Here s \ s Adverb 
(4) Never n \ s / ( n  \ s) Adverb 
( 5 )  For s \ s / n  Preposition 
(6 )  And s \ s / s  Conjunction 
(7) Likes n \ s / n  Transitive verb 

The syntactic types correspond approximately to the traditional 
parts of speech. Thus, in ( 1 )  works is an intransitive verb, in (2) pour 
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is an adjective, in ( 3 )  here is an adverb, in (4 )  neuer is an adverb, in 
( 5 )  f o r  is a preposition, in (6 )  and is a conjunction, in (7) likes is a 
transitive verb. 

In this manner we can build up a list of types for a gradually increasing 
portion of the English vocabulary. To  distinguish between different 
forms such as works and work, usually represented by a single diction- 
ary entry, it is necessary to allow for more than two primitive types. 
Thus we might assign the type n* to all plural nouns, such as men, or 
chairs. In contrast to examples (l), (2), (9, and (7) we then have men 
(n*) work (n* \ s), poor (n* / n*) men (n*) work (n* \ s), John ( n )  
works (n  \ s) f o r  (s \ s / n*) men (n"), John (n) likes (n \ s / n*) 
girls (n*), men (n*) like (n" \ s / n) Jane (n). This assignment dis- 
tinguishes between the forms work and works, like and likes, but it 
introduces a multiplicity of types for poor, for ,  like, and likes. 

A more thorough analysis of the English verb phrase would compel 
us to introduce further primitive types for the infinitive and the two 
kinds of participles of intransitive verb. That analysis will be made 
in the next section. 

Suppose we have before us a string of words whose types are given. 
Then we can compute the type of the entire expression, provided its 
so-called phrase structure has been made visible by some device (such 
as brackets). Consider for example John (n)  [likes (n \ s / n) Cfresh 
(n  / n) milk (n)}] .  The corresponding computation can be written 
as n((n \ s / n)((n / n)n)) + n((n \ s / n)n) + n(n \ s) -+ s. 

In formal languages, this process offers an effective test of whether 
a given string of symbols is a well-formed formula. For in these lan- 
guages, each word (usually consisting of a single sign) has just one 
preassigned type, and the use of brackets is obligatory. 

Suppose we now wish to compute the type of a string of English words, 
which are taken from a given type list. We cannot proceed quite as 
directly as in the formal systems, for two reasons. First, brackets do 
not usually occur in English texts (unless we regard punctuation as 
an attempt to indicate grouping). Two ways of inserting brackets into 
an expression may lead to essentially different syntactic resolutions. 
Second, English words usually possess more than one type. For instance, 
the adverbial expression today is type s / s or s \ s, depending on whether 
it precedes or follows the modified sentence. The word sound may be a 
noun, an adjective, or a verb, either transitive or intransitive, depending 
on the context. 
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A mechanical procedure for analyzing English sentences would 

(1) Insert brackets in all admissible ways. 
(2) To each word, assign all types permitted by a given type list. 
(3) For each grouping and type assignment, compute the type of the 

total expression. 
(4) Select that method of grouping and that type assignment which 

yields the desired type s. 
To realize step (3), we must introduce some new rules of computa- 

tion. For instance, example (4) suggests the rule s \ s+ (n  \ s) \ 
(n \ s). 

Other rules are suggested by the following discussion concerning 
English pronouns. 

H e  (s / (n  \ s ) )  works (n \ s ) ,  
Jane(n). (8) 

Since he transforms such expressions as works or likes Jane of type n \ s 
into sentences, we assign to it type s / (n \ s). At any rate, assignment 
of type s / (n  \ s) to he is valid, irrespective of whether we regard 
pronouns as names. In fact, by the same argument, the name f o h n  also 
is type s / (n  \ s). To discuss this point, let us analyze the sentence 

(9) 
The sequence of types (s / (n  \ s)) ( n  \ s / n )  ((s / n) \ s) cannot be 
simplified any further by rules (I) and (II),  and we introduce two new 
rules : 

consist of four steps: 

he (s / (n \ s )  likes (n  \ s / n)  

H e  (s / (n  \ s)) likes (n \ s / n) him ((s / n) \ s). 

(x / Y)(Y / z>-+ x / z ,  (x \ YXY \ z)+x \ z.  (111) 

We may then assign type (s / n \ s)) (n  \ s / n) -+ s / n to he likes 
and type (n  \ s / n)((s / n) \ s)+ n \ s to likes him, permitting 
two equivalent resolutions: [he likes] (s / n) him ((s / n) \ s): he 
(s/(n\s)) [likes him] (n\s). Rules (111) also allow alternative, al- 
though equivalent, resolutions of expressions considered earlier; 
for example, sentence ( 5 )  can now also be grouped John [works v o r  
Jane)] ,  where the predicate has type ((n \ s)((s \ s / n)n)-+ (n \ s) 
(s \ s)+ n \ s. 

We saw, in the discussion of (8), that the name f o h n  is the same type 
as the pronoun him. We symbolize the situation by writing n+ s / 
(n \ s), n-+ (s / n) \ s, and, more generally, 

(1 V) x + y  / (x \ y ) ,  X’(Y / x) \ x. 
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These new rules may actually be required for computations. Suppose 
that from sample sentences such as books by him bore, we arrived at 
the type n* \ n* / n’ for by, where n’ is short for (s / n) \ s. The 
phrase books by John then requires the computation n*(n* \ n* / n’)n 
-+ (n” / n‘)n --j (n* / n’)n’ --j n*, which utilizes rules (I), (IV), and 
(I) in that order. 

All the considerations of Section 6 are, essentially, those of Lambek 
~ 9 1 .  

7. Analysis of the English Verb Phrase 

In this Section we shall use the method of syntactic types to examine 
the structure of the English verb phrase. All these considerations are 
due to Lambek [30]. 

We shall consider a fragment of English containing the names John 
and Jane, the verbs must, work, call, have, be, the adverb today, the 
conjunctions but and while and a few other words of the same types. 
We also admit inflected forms such as works, worked, or working. 
We shall attempt to decide which sequences of these words are sen- 
tences and which are not. However, we may as well admit that some 
sentences will escape our net, because certain constructions, for example, 
the gerund, will not be considered here. 

We adopt the following primitive types: s (complete declarative 
sentence), n (name), i (infinitive of intransitive verb), p (present par- 
ticiple of intransitive verb), q (past participle of intransitive verb). We 
shall regard the assignment of types to certain English words to have 
been successful provided (1 )  every sentence consisting of these words 
is type s and (2) only sentences are type s. It is hoped that the assign- 
ments of the present Section will conform with (2), but we cannot 
satisfy ( 1 )  as long as we omit some possible constructions from considera- 
tion, for example, While calling Jane, John is working today. 

A number of key sentences will illustrate our choice of types: John 
(n) works (n  \ s); John (n) must (n \ s / i)  work ( i ) ;  John (n) is (n  \ 
s / p )  working @); John (n) has (n \ s / q) worked (4). The choice 
of type for must, is, and has is determined by the desire to assure that 
must work, is working, and has worked are all the same type n \ s as 
works. 

Consider the sentences: John (n) must (n  \ s / i )  be ( i  / p )  working 
(p); John (n) must (n  \ s / i)  h a w  ( i  / q) worked (4); John (n) has 
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Present 
Participle 

( n  \ s / 4) been (4 / p )  working (p) .  Here, be working and have worked 
should be the same type i as work, whereas been working should be the 
same type 4 as worked. 

Finally, we consider a number of sentences containing different 
forms of the transitive verb call: John (n )  calls ( n  \ s / n) Jane (n);  
John (n )  (must ( n  \ s / i )  call ( i  / n)  Jane (n) ;  John (n )  is ( n  \ s / p )  
calling (p / n)  Jane (n ) ;  John ( n )  has ( n  \ s / 4)  called (4  / n )  Jane 
(n);  Jane (n)  is ( n  \ s / (4  / n)) called (4  / n)  (by John). The resulting 
types are embodied in Table 2. 

Working Calling 
P P / n  

TABLE 2 

Modal Intransitive Transitive Auxiliary Progressive Positive 
auxiliary auxiliary auxiliary 

Infinitive Call Have Be Be 
i / n  i / q  i / p  i / ( q / n )  

Past 1 ~ Worked Called Has B;; Be; 

Third Must Works Calls 

participle q / n  4 / P  4 / ( 4 / n )  

person n \ s / i n \ s n \ s / n  n \ s / q  n \ s / p  
singular n \ s / (4 / n )  

To illustrate calculations based on Table 2, let us consider the string 
John ( n )  must ( n  \ s / i )  have ( i  / 4)  been (4 / p )  calling (p / n)  
Jane (n). We have n(n \ s / i )  -+ s / i ,  ( i  / 4)(4 / p )  -+ i / p ,  (p / n)n 
-+ p ,  ( i  / p ) p  -+ i ,  (s / i)i+ s. Hence the considered string is a sen- 
tence. The string John (n )  i s  ( n  \ s / p )  being (p / ( 4  / n))  called 
(4  / n)  is also a sentence, since we have n(n \ s / p)+  s / p ,  
P / (4  / n)(4 / n )  - 4 p ,  and (s / P I P  -+ s. 

Table 2 is not complete. Principal omissions are the following: doubly 
transitive verbs such as give, or appoint; verbs which relate nouns 
and adjectives, as in the lunch tastes good; first person forms such 
as am;  plural forms of the verb such as are. 

Table 2 is more extensive than it looks, since many entries are merely 
representative samples. Thus work represents all intransitive verbs, 
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q / i  

n \ s / i  

calls represents all transitive verbs, and must represents all modal 
auxiliaries such as will, shall, can, may, would, should, could, might. 
Furthermore, the passive auxiliary be may often be replaced by get, 
and the progressive auxiliary be seems to represent a large class of 
verbs, including at first sight start, begin, keep, continue, stop and 
finish. 

Some of the forms appearing in the table can also be different types. 
Thus call may be a noun, and have and be may also appear as main 
verbs, as in John must have lunch and John must be good. 

The gaps in the first column of Table 2 are because must has no 
infinitive and the conceivable forms musting (p / i )  and musted ( q  / i) 
do not exist. The gaps in the second and third columns of Table 2 exist 
because the auxiliary have has no present and no past participle and 
the active auxiliary be has no present participle. This is not quite correct 
if we consider having in having worked, John rested as a participle. 
However, the main verb have and the passive auxiliary be (as well 
as the main verb be) has a present participle, as is attested by the sen- 
tences: John is having lunch; John has had lunch: John is being called. 
The corresponding types are having (p / n) ,  had ( q  / n),  being 

One can interpret Table 2 as a kind of multiplication table, as shown 
in Table 3.  The entries of Table 3 are in fact obtained by multiplication 
according to rules ( I )  and (111). For example, (p / i ) i -+p by ( I ) ,  and 
(q  / i>(i / p )  -+ q / p by (111). 

(P / (4 / n)). 

q / i  q q / f l  4 / 9  q / P  q / ( q / n )  

n \ s / i  n\s n \ s / n  n \ s / q  n \ s / p  n \ s / ( q / n )  

TABLE 3 

I 1 i / i  1 i / n  i / q  i / p  i / ( q / n )  
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works would be treated like the composite does work. If we assign 
compound types to verb forms in this manner, we are led to a new 
way of looking at  adverbs. Although the old assignment suggests 
[John (n) works ( n  \ s)] today (s \ s), where n(n \ s) -+ s, s(s \ s) -+ s, 
the new assignment allows the more intimate construction John (n) 
[works ((n \ s / i)i) today (i \ i)], where i(i \ i)-+ i, ( n  \ s / i)i 
-+ n \ s. Therefore, ((n \ s / i)i)(i \ i) +. n \ s and n(n \ s) + s. The 
new assignment also permits us to distinguish between the types of 
coordinate and subordinate conjunctions, as in the sentences [John 
works] (s) and (s \ s / s) [Jane sleeps] (s) and John (n) works 
( (n  \ s / i)i) while (i \ i / s) [Jane sleeps] (s). 

8. The Associative Syntactic Calculus 

Consider a vocabulary r and a set of elements called primitive types. 
Let us suppose that, to certain strings over I?, there have been assigned 
certain primitive types. Let us define a set Y of elements called types, 
defined as follows: All primitive types are types; if x and y are types, 
then xy, x \ y, and x / y are also types (the considered operations have 
already been explained in Section 6). The following theorem is now 
valid. 

Theorem 3. We have the following rules: 
(1) x-+x; 
(2) (XY)Z -+ x(yz>; 
(2’) xbz) -+ (xvlz; 
( 3 )  if xy + z ,  then x -+ z / y; 
( 3 ’ )  i fxy-+z , theny+x \ z ;  
(4) if x -+ z / y, then xy -+ z ;  
(4’) if y -+ x \ z ,  then xy -+ z ;  
(5) if x-+ y and y -+ z ,  then x+ z.  

PROOF. Rules ( 1 )  and (5) hold trivially. To prove (2) and (2’), let A 
be a string of type x, B a string of type y, and C a string of type z. Then 
(AB)C is type (xy)z. On the other hand, BC is of type yz. Hence A(BC)  
is of type x(yz). Since (AB)C and A ( B C )  are the same string, (2) and 
(2’) follow. Rules ( 3 ’ )  and (4’) are symmetric duals of (3) and (4). There- 
fore, it suffices to prove the latter. 

Assume xy + z and let the string A be type x: Then for any string B 
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of type y ,  A B  is type z ;  hence A is type z / y .  Thus x-+ z / y .  Con- 
versely, assume x+ z / y and let A ,  B ,  be types x ,  y ,  respectively; 
then A B  is type z .  Thus xy -+ z and Theorem 3 is proved. 

In view of rules (2) and (2’), the syntactic calculus developed here 
is called the associative syntactic calculus. It may be viewed abstractly 
as a formal language or as a deductive system ([29], p. 163). Another 
set of rules which are valid in the associative syntactic calculus are 
given by Theorem 4. 

Theorem 4. 
(6) x-+(XY)/y; 
(6’) Y -+ x \ (xY); 
(7) ( z  / YIY -+ z ;  
(7’) x(x  \ z )  -+ z ;  
(8) Y -+ ( z  / Y )  \ z ;  
(8’) x - - z / ( x \ z ) ;  
(9) (x \ y )  / z * x \ ( y  / z ) ;  
(10) ( x  / Y)Z *x(zy) ;  
(10’) z \ 0, \ x)*(yz) \ x; 
( 1  1 )  if x -+ x’ and y -+ y’, then xy -+ x’y’; 
(12) if x+x‘ and y+y’,  then x / y’-+x’ / y ;  
(12’) if x+x’  and y-+y’ ,  then y \ x-+y \ x’; 
(13) ( z / y ) ( y / x ) - + z / x ;  
(13’) ( y  \ x)(x  \ z ) - + y  \ z ;  
(14) z / Y -+ (z / X I  / ( y  / x); 
(14’) x \ z+ 0, \ x) \ ( y  \ z). 

PROOF. (6) follows from xy-+xy by (3); (6’) follows from xy-+xy 
by (3’); (7)  follows from z / y -+ z / y by (4); (7’) follows from x \ z -+ 

x \ z by (4’); ( 8 )  follows from (7) by ( 3 ’ )  and (8’) follows from (7’) by 
(3). 

Let us prove the first implication of (9). Denote by t the expression 
(x \ y )  / z. We then have, in view of (4), tz-+ x \ y .  This implies, in 
view of (4’), x(tz)-+y. Since, in view of (2), we have (xt)z+x(tz) ,  
it follows, by (3, that (xt)z -+ y .  We may apply (3)  and obtain xt -+ y / z. 
Finally, in view of (3’), it follows that t -+ x \ ( y  / z). 

To  prove the second implication of (9), let us put u = x \ ( y  / z). 
In view of (47, we have xu+y / z and, by (4), we obtain (xu)z-+y. 
Since (2’) implies x(uz)-+ (xu)z,  it follows, by (5 ) ,  that x(uz)+y. In 
view of (3’), we have uz+ x \ y .  Hence, by (3), u -+ ( x  \ y )  / z. 

Let us prove (10). Denote by t the expression (x / y )  / z and by u 
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the expression x / (zy). In view of (4), tz -+ x / y and, further, (tz)y -+ 

x. By (2’), t(zy)-+ (tz)y. Hence, by ( 5 ) ,  t(zy)-+x. Finally, in view of 
(3), t +x / ( zy ) .  To prove the other implication of (lo), we remark 
that, in view of (4), u(zy)-+ x. Since, by (2), we have (uz)y+ u(zy); 
it follows, by (9, that (uz)y --$ x .  This implies, in view of (3), uz-+ x / y 
and, further, u + (x / y) / z. 

(10’) may be proved in the same way as ( S O ) ,  but by using (3’) and 
(4’) instead of (3) and (4), respectively. 

Let us prove (1 1). Since x’y -+ x’y, we have, in view of (3), x’ -+ 

(x’y) / y and, since x-+ x ’ ,  it follows, by (3, that x 4  (x’y) / y. This 
implies, in view of (4), xy+x’y. On the other hand, from x’y’-+x‘y‘ 
it follows, in view of (3’), that y’ -+ x’ \ (x’y’). Since y + y‘, we deduce, 
by (5 ) ,  that y 4 x’ \ (x’y’) and, by (4’) we obtain x‘y 4 x’y’. Since we 
also have x y  + x’y, it follows, in view of (S), that x y  + x’y’. 

Let us prove (1 2). We have, by (I), x / y’ -+ x / y‘. Hence, in view of 
(4), (x / y’)y’ -+ x. This implies, by (3’), that y‘ -+ (x / y’) \ x. Since 
we also have y 4 y’, it follows, by (5 ) ,  that y -+ (x / y’) \ x and further, 
by (4’), we get (x / y’)y+x. This implies, in view of (3), that x / y’ * 
x / y. On the other hand, since, by (l) ,  we have x / y -+ x / y, it follows, 
by (4), (x / y)y -+ x. Hence, in view of ( 5 )  and of the fact that x x’, 
we get (x / y)y-+x’. This implies, in view of (4), that x / y-+ x’ / y. 
Since we have already proved that x / y ’  4 . x  / y, it follows, by ( 5 ) ,  
that x / y’ -+ x’ / y. 

In a similar way, but using (4’) instead of (4), (3) instead of (3’), 
(4) instead of (4’), and (3’) instead of (3), one can prove (12’). 

Let us prove (13). Since, in view of (8), we have y + ( z  / y) \ z, 
it follows, by (12), that y / x-+ ((z / y) \ z )  / x.  On the other hand, 
in view of (9), we have ( (z  / y) \ z) / x+ ( z  / y) \ (z / x). Hence, 
by (9, y / x+ (z / y) \ (z / x). This implies, in view of (4‘), that 
(2  / Y)(Y / x )  -+ z / x. 

In a similar way, but using (8’) instead of (a), (12’) instead of (12), 
and (4) instead of (4’), one can prove (13’). 

Finally, let us remark that (14) follows from (13) by (3) and (14’) 
follows from (13’) by (3’). Theorem 4 is thus completely proved. 

REMARK. Many plausible rules are in fact false. For example, the 
following are not valid: (x / y) / z+ x / (y / z),  (x  / y) \ z + 

x / 0, \ z ) ,  x y  -+ yx, z -+ ( z  / Y>Y (1301, P. 84). 
The syntactic rules (7) (77, (9), (13) (13’) and (8) (8’) coincide with 

rules (I), (II), (111), and (IV), respectively. Theorems 3 and 4 are due to 
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Lambek ([29], pp. 163-164), but some details of Theorem 4 are due to 
Geaniiu (personal communication). Theorems 3 and 4 have been used by 
Ionescu to establish the syntactic types of Rumanian [231. 

Hiz remarks that Lambek’s syntactic calculus is based on the as- 
sumption that a modifier of an expression occurs adjacent to the 
expression it modifies. An expression acts on another expression from 
the left, or from the right, but always in a juxtaposition. This is a proper 
grammatical analysis for languages in which concatenation plays a 
fundamental grammatical role (as it does in English). But there are 
nonconcatenative languages (Latin). In a Latin sentence, a masculine 
noun can be modified by an adjective in the masculine form at nearly 
any point of the sentence, provided that other nouns in the sentence 
are feminine or neuter ([21], p. 265). These remarks agree with those 
of Chomsky, who believes that only a small number of basic sentences 
in a language should be analyzed by Lambek’s method and that other 
sentences may be obtained from them by certain transformations (see 
the footnote of [30] p. 85). On the other hand, Ionescu claims that 
Lambek’s syntactic calculus is also applicable to languages - such 
as Rumanian - in which concatenation does not play a fundamental 
grammatical role, provided the order of words in the sentences is 
precise [23]. 

9. Nonassociative Syntactic Calculus 

As Lambek remarks ([31], p. 167), unless elaborate precautions 
are taken, the most natural assignments of types to English words 
tempt one to admit many pseudo-sentences as grammatical: John is  
poor sad; John likes poor him; Who works and John rests? However, 
these pseudo-sentences could be systematically ascribed to one cause, 
namely, the fact that types had been assigned to unstructured strings 
of words. Suppose we assign types not to strings, but to phrases, that 
is, bracketed strings of words (or perhaps morphemes). 

Let us consider a set of  strings called atomic phrases and let us 
adopt the following recursive definition of phrases (juxtaposition 
denotes concatenation and parentheses denote themselves; brackets 
on the outside of a complete phrase may be omitted). All atomic phrases 
are phrases: If A and B are phrases, so is (AB).  

Types are introduced by a similar recursive definition. We shall 
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consider a finite set of elements called primitive types. All primitive 
types are types. Three binary operations with types are defined, such 
that, if x and y are types, so are (xy) ,  ( x  / y ) ,  and (x \ y ) .  

Types are assigned to phrases in accordance with the following 
rules: If A is type a and B is type b,  then (AB) is type (ab); if (AB) is 
type c for all B of type b ,  then A is type (c / b); if (AB) is type c for 
allA of type a, then B is type (a \ c) [3 11. 

Theorem 5. In a nonassociative syntactic calculus we have the 
following rules [3  I]: 

(1)  x + x ;  
(3) if xy  + z ,  then x-+ z / y ;  
( 3 ’ )  if xy+z ,  then y - x  \ z ;  
(4)  if x + z  / y ,  then x y + z ;  
(4’ )  if y + x  \ z ,  then x y + z ;  
(5) if x + y  and y + z ,  then x + z .  

The following rules fail to hold: 
(2) ( X Y ) Z  + xolz); 
(2’) xolz) + (xy)z ;  
(9) (x \ y )  / z @ x \ 0, / z ) ;  
(13) ( x / y ) C y / z ) - + x / z ;  
(15) ( x / y ) / z * x / ( z y ) .  

PROOF. (l), (3), (3 ’ ) ,  (4), (4’), and (5) may be proved as in Theorem 3. 
Now let A,  B ,  and C be phrases of types a, b, and c ,  respectively. The 
phrase (AB)C is type (ab)c, and the phrase A(BC)  is type a(bc). But 
(AB)C and A(BC) are different syntactic constructions; hence (2) and 
(2’) fail to hold. For similar reasons, (9), (13), and (15) [which are 
consequences of the associative laws (2) and (2’)]  also fail to hold. 

Theorem 5 permits us to present the nonassociative syntactic cal- 
culus as a deductive system, as follows. First we consider a set of 
elements called variables. Then we recursively define another set 
whose elements are called terms: All variables are terms; if x and 
y are terms, so are (xy) ,  (x  \ y ) ,  and ( x  / y ) .  We introduce a single 
formula: x + y (where x and y are terms) and a single axiom scheme: 
x - j x .  Theorem 5 suggests the rules of inferences ( 3 ) ,  (3‘1, (4), (47, 
and (5). 

The syntactic calculus permits us to transfer some grammatical 
rules from the grammar to the dictionary. This fact may be illustrated 
by the sentence John must work. A phrase-structure analysis of this 
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sentence is: John (n) [must (m)  work (i)], mi -+ u,  nu -+ s. This analysis 
presumes that we are given a dictionary with the type assignments 
John .+ n, must -+ m, work --j i, and a list containing two grammatical 
rules: mi+ v and nu -+ s. By the syntactic calculus, the last two rules 
become m +  o / i and o-+ n \ s .  Thus, we get the single rule 
m +  (n \ s) / i. We may now revise the dictionary thus: John -+ n, 
must--+ (n \ s)  / i, work-+ i. We may then analyze the same sentence 
as follows: John (n)  [must ( (n \ s) / i) work (i)], ((n \ s )  / i)i)+ 
n \ s, n(n \ s) + s. 

Suppose we have replaced all grammatical rules of a language by 
suitable type assignments in the dictionary. It is then possible to parse 
a given string of words in mechanical fashion: We turn the string into 
a phrase X by bracketing and write under each word one of the types 
assigned to it by the dictionary. Let x be the compound type of the 
whole phrase. If we have x+  s, X is a statement. If x-+ i, X may be 
one kind of request, and so on. This process is repeated for all bracketings 
and type assignments. 

It is interesting to know for which languages it is possible to replace 
all grammatical rules by type assignments in the dictionary. Many 
formal languages of mathematical logic (see [29], pp. 159-160) admit 
this possibility. But we shall concern ourselves here with other important 
languages, those generated by the so-called phrase-structure grammars, 
due to Chomsky [9]. For our purpose it will be convenient to think 
of a phrase-structure grammar as follows: The dictionary assigns to 
each atomic phrase a finite number of primitive types, whereas the 
grammar consists of a finite number of rules of the form p i ~ ~ + p ~ ,  
where the pi are primitive types. The set of all sentences in a phrase- 
structure grammar is called a phrase-structure language. These cor- 
respond to what is called by Chomsky [91 a type-2 grammar (a type-2 
language, respectively). There are some phrase-structure grammars 
for which the elimination of grammatical rules in favor of dictionary 
entries can be carried out, without making the dictionary infinite. In 
this respect, we shall consider the language Lo, defined by Chomsky 
([9], p. 151). The sentences of this language are all strings of the form 
X X * ,  where X is a string over the vocabulary { A ,  H ) ,  whereas X* is 
the mirror image of X .  It is easy to see that L, is defined by the dictionary: 
A -+ a, s / a, (s / a) / s, H +  h, s / h, (s / h) / s. On the other 
hand, L, is a phrase-structure language (more precisely, L, is a type-2 
language which is not a finite-state language; see, for instance, [9] 
and [34], p. 75 and pp. 166-167). 
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We shall now give some examples taken from English concerning 
elimination of grammatical rules in favor of dictionary entries [3 11. 

In a previous section it was suggested that the pronoun he be given 
the type s / (n  \ s). This means that he, when followed by any phrase 
of type ns (for example, must work) yields a phrase of type s. In other 
words, the type assignment he -+ s / (n  \ s) is equivalent to the trans- 
formation rule “if nX+ s, then he X-+ s.” Such a rule may indeed be 
implied by the totality of rules and type assignments of a phrase-structure 
grammar, but it is not one of these rules; it would not do to enter he+ 
n into the dictionary, for then the nonsentence John must like he would 
be type s. We have here a transformation rule which can be conveniently 
replaced by a type assignment in the dictionary. 

A similar example is the rule “if nX+ s, then who X-+ (?)”, where 
(?) is the type assigned to well-formed questions. This is equivalent to 
the dictionary entry who -+ (?) / (n \ s). 

The transformation rule “if n(must i) 4 s, then (must n)i -+ (?)” 
could be handled by supplementing the original dictionary entry must 
+ (n \ s) / i by the further assignment must + ((?) / i) / n. This 
would not allow us to derive the sentence must he work? Let A = s / 
(n  \ s) be the type of he considered above; then we want the type assign- 
ment must- ((?) / i) / h. It is sufficient for the dictionary to carry 
this last assignment, since ((?) / i) / A + ((?) / i) / n is a derivable 
formula in the syntactic calculus. Instead of proving this rule, let us 
parse the sentence must John work? using must 4 ((?) / i) / A and 
the provable formula n-+ h = s / (n  \ s). Thus [must ((?) / i) / h) 
John (n)] work (i), (((?) / i) / h)h+ (?) / i, ((?) / i)i+ (?). 

10. Categorial Grammars 

Another kind of syntactic calculus has been investigated by Bar-Hillel 
((51, pp. 99-1 15) and Bar-Hillel et af. [6]. An improved version was 
given by Bar-Hillel ([4], [ 5 ] ,  pp. 185-218 and, especially, pp. 188- 
189). The standpoint of these authors is very similar to that of Lambek 
and is formulated by Bar-Hillel ( [ 5 ] ,  pp. 187-188). The grammar is 
meant to be a device by which the syntactic structure, and in particular 
the sentence analysis of a given string could be determined. This deter- 
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mination must depend exclusively on the shape and order of the elements. 
This is achieved by assuming that each of the finitely many elements 
of the given natural language had finitely many syntactic functions, by 
developing a suitable notation for these syntactic functions (or categories, 
as they are called [2, 6, 32]), and by designing an algorithm operating 
on this notation. It is assumed, in such an investigation, that every sen- 
tence can be parsed, according to finitely many rules, into two or more 
contiguous constituents, either of which is already a final constituent 
or else can itself be parsed into two or more immediate constituents. 
This parsing is not necessarily supposed to be unique. Syntactically 
ambiguous sentences allow for two or more different parsings. 

Following Ajdukiewicz [ 11, the combination of constituents is re- 
garded as the result of the operation of one of the constituents (the 
governor) upon the others. To each word are assigned finitely many 
fundamental categories. We can also define a set of rules operating 
upon these categories, so-called cancellation rules. 

Let us now give the exact definition of some grammars of the above 
type. A bidirectional categorial grammar is a quintuple (r, C, C, R ,  
f), where r is a finite set of elements (the vocabulary), C is the closure 
of a finite set of fundamental categories, say . . , +7t, under the opera- 
tions of right and left diagonalization [that is, whenever a and @ are 
categories, (a / p) and (a  \ @) are categories], C is a distinguished 
category of C (the category of sentences), R is the set of the two can- 
cellation rules (pi / cpj)cpj + 'pi and cpi(cpi \ cpj) + cpj ,  and f is a function 
from r to finite subsets of C (the assignmentfunction). 

We say that a category sequence a directly cancels to 0, if @ results 
from a, by one application of one of the cancellation rules. We say that 
cy cancels to  @ if @ results from a by finitely many applications of these 
rules; more exactly, if there exist category sequences yl ,  -y2,. . . , ylr 
such that a = yl, @ = yTL, and yi directly cancels to yi+,, for i = 1 , .  . . , 
n- 1. 

A string x over r is defined as a sentence if, and only if, at least one 
of the category sequences assigned to x byfcancels to 2. The set of all 
sentences is then the language determined by the given bidirectional 
categorial grammar. Such a language is called a bidirectional categorial 
language. 

The functioning of such a grammar can be clarified by an example 
(Chomsky [ 111, p. 412; we shall take C = s). Suppose that our grammar 
contains the fundamental categories n and s, the vocabulary r = {John, 
Mary, loves, died, is, old, very} and let us define the functionfas follows: 
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f (John)  = f (Mary)  = { n } ;  f(died) = { n  \ s}; f(loves) = { (n  \ s) / n } ;  
f (old)  = { n  / n>; f (very)  = { (n  / n) / (n / n)};  f ( i s )  = { (n  \ s) / 
(n  / 0)). Thus intransitive verbs (such as died) are regarded as operators 
that convert nouns appearing to their left to sentences; transitive verbs 
(loves) are regarded as operators that convert nouns appearing to their 
right to intransitive verbs; adjectives are regarded as operators that 
convert nouns appearing to their right to nouns; very is regarded as an 
operator that converts an adjective appearing to its right to an adjective; 
is is regarded as an operator that converts an adjective appearing to 
its right to an intransitive verb. Such strings as the following resolve to s. 
Therefore, they are sentences in the considered bidirectional categorial 
grammar: John (n)  died (n \ s), n(n \ s)  -+ s; John (n) loves ((n \ s)  / n)  
Mary (n), ( (n  \ s) / n)n+n \ s, n(n \ s)+s; John (n)  is ((n \ s) / 
(n / n)) very ( (n  / n) / (n / n)) old (n / n),  ((n / n) / (n  / n)) 
( n / n )  + n / n ,  ((n \ s)/ ( n /  n))(n \ n )  -9 n \ s, n(n \ s) + s. 

If instead of C we consider the closure of a finite set of fundamental 
categories under the operation of right (left) diagonalization, r, C ,  R ,  
and f remaining unchanged, we obtain the definition of a right (left) 
categorial grammar. A language determined by a right (left) categorial 
grammar is a right (left) categorial language. A right categorial gram- 
mar (language) and a left categorial grammar (language) are called 
unidirectional categorial grammars (languages). Ajdukiewicz considered 
only this last form, since he was primarily concerned with systems 
using Polish parenthesis -free notation, in which functors precede 
arguments. 

If in the definition of a left (right) categorial grammar, we replace 
C by a set containing precisely the (finitely many) fundamental cate- 
gories I,!J~ and the categories (I/J~ \ I,!J~) and (I,!J~ \ (& \ Gk))  [or, alter- 
natively, ($i / lLj) and ($i / (& / $ k ) ] ,  we get a restricted left (right) 
categorial grammar. The language determined by such a grammar is 
a restricted left (right) categorial language. 

We may now define a restricted unidirectional categorial grammar as 
a grammar which is a restricted left categorial grammar or a restricted 
right categorial grammar. We may also define a restricted bidirectional 
categorial grammar as a quintuple (r, C*, I;, R ,  f ) ,  where r, C, 
R, and f have the same significance as in the preceding definitions, 
whereas C* is the set of all categories of the form $i, (t,bi \ +J, (I++ \ 
(+j \ &J), (& / +J, (& / (k / $J). The language determined by such 
a grammar is called a restricted bidirectional categorial language. 

It follows immediately from the definitions that every unidirectional 
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(restricted unidirectional) categorial language is a bidirectional (re- 
stricted bidirectional) categorial language. On the other hand, it is easy 
to see that every restricted bidirectional categorial language is a bi- 
directional categorial language. But Bar-Hillel et al. have proved the 
surprising result that the converse of each of the above statements is 
also true, that is, we have Theorem 6. 

Theorem 6. Every bidirectional categorial language is an unidirec- 
tional categorial language and even a restricted unidirectional cate- 
gorial language ([6], [5], pp. 106-1 14, 189). 

The proof of this theorem is indirect. It is proved, in fact, that every 
bidirectional categorial language, every unidirectional categorial lan- 
guage, and every restricted unidirectional categorial language are 
type-2 languages in the sense of Chomsky [9] and, conversely, every 
type-2 language is a restricted unidirectional categorial language. 
Since the proof of the second part of this theorem is very long ( [ 5 ] ,  
pp. 107-1 14), we shall only give the first part. But first let us give the 
suitable form of the definition of a type-2 language ( [ 5 ] ,  pp. 104-105). 

A simple phrase-structure system is an ordered couple (I', P ) ,  where 
r is a finite vocabulary and P is a finite set of productions of the form 
X+x(x  ZX E r a n d  x is not the empty string). A stringy directly generates 
a string z(y + z )  if y has the form X,,X,X,. . . X,-,X, (n  2 0) and z can 
be given the form x x l x , .  . . X,-~X,, such that, for all i ,  either X i  = xi 
(in which case X i  is said to be carried over) or X i  + x i ,  in which case 
Xi is said to be rewritten. A string x generates y (x  => y )  if there exists 
a sequence of strings zo, zl, . . . , zr such that x = zo, y = zr and zi-l + zi 
(1 G i s r ) .  

A context-free grammar (or a type-2 grammar) is an ordered qua- 
druple G = (r, P ,  T ,  S ) ,  where (r, P )  is a simple phrase-structure 
system, T (the terminal vocabulary) is a subset of r, none of whose 
elements occur on the left side of a production, and S is a distinguished 
element of I'- T (the initial symbol). A string x is a sentence of G if 
x is a string over T (a terminal string) and S => x in the simple phrase- 
structure system (r, P ) .  We shall denote by L(G) the set of all sentences 
of G. 

A language L over a vocabulary T is a type-2 language if there exists 
a context-free grammar G such that L = L(G). (A context-free grammar 
can be viewed as a combinatorial system as defined, for example, by 
Davis [14], with S an axiom and P the set of productions. It is, more 
specifically, a rather special kind of semi-Thue system, since in a general 
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semi-Thue system the productions have the form x1 -+ x2, whereas in 
a simple phrase-structure system the form is X - x). 

Theorem 7. For any bidirectional categorial grammar H = (r, C ,  Z, 
R ,  f) it is possible to construct a context-free grammar G, such that 
L(G) is precisely the language determined by H .  
PROOF. Let g,. be the union of all category sets assigned b y f t o  the 
elements of r. Since r is finite and fix) is finite for every X E I‘, it 
follows that ‘3r is a finite set of categories. 

Let us now define inductively the set ??r as follows: If cp E gr, then 
p E q,.; if (p \ $) E Fr, then p and $ belong to %?r; if (cp / $) E pr, 
then cp and $ belong to %?r. Let V = r U V,. and let-P consist of the 
following productions: p +  (cp / $)$, if (cp / $1 E %?r; cp- $($ \ cp) 
if (+ \ cp) E gF; p +  X ,  if cp E~ (x )  (for every x E r). P is clearly 
finite and G = ( V ,  P, r, C)  is the required context-free grammar. (V 
is the vocabulary, P the set of productions, I’ the terminal vocabulary 
of G ,  and C the initial symbol of G.) Indeed, L(G)  is precisely the 
language determined by H .  

It would be interesting to find a direct proof of Theorem 6, that is, 
a proof that uses neither Theorem 7 nor its converse. In fact, such a 
direct proof of Theorem 6 does not use the notions of context-free 
grammar and type-2 language. 

The syntactic calculus developed by Lambek and exposed in the 
previous sections differs in several respects from the various types of 
categorial grammars; in particular, Lambek’s calculus allows a greater 
degree of flexibility in category (type) assignment. Thus his rules of 
resolution assert that a category a is at the same time a category of 
the form p / (a  \ p), so that, in this and other ways, it is possible to 
increase the complexity and length of the sequence of category symbols 
associated with a string by application of rules of resolution. It  is not 
known how Lambek’s system is related to bidirectional categorial gram- 
mars (unidirectional categorial grammars or context-free grammars), 
although one would expect to find that the relation is quite close; perhaps 
every type-2 language may be obtained by a Lambek system and, 
conversely, every language formed by the sentences of a Lambek 
system is of type 2 (see Chomsky [ l  11, p. 413). 

Similar approaches to those described in Section 6-1 1 are discussed 
by H i i  [20], Wundheiler and Wundheiler [47], Suszko [44], Curry and 
Feys [13], and Curry [12]. In the last paper, the syntactic calculus is 
regarded from the standpoint of functors; thus n / s would mean a 
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functor forming a noun from a sentential argument on its right, whereas 
n \ s would mean a functor forming a sentence from a nominal argu- 
ment on the left. 

A more formalized description of categorial grammars is given by 
Mitchell [38]. Some generalizations of the above systems are given by 
Matthews [35, 361. For the linguistic origin of the syntactic calculus see, 
among others, Fries [ 151 and Harwood [ 181. A specific approach to the 
problem of parts of speech may be found in Saumjan and Soboleva [45]. 

Lambek begins his paper [29] with the following words written by 
Otto Jespersen in 1924 [25]: “The definitions (of the parts of speech) 
are very far from having attained the degree of exactitude found in 
Euclidean geometry.” The models investigated in the present chapter 
are an attempt to diminish the discrepancy between the traditional 
concept of part of speech, on one hand, and mathematical rigor, on 
the other. 
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NOTE ADDED IN PROOF 

The above model of parts of speech was used by T. Tobias (The parts of speech in 
Estonian language (in Russian), SoobS?. MaSinnomu Perevodu 1, 90-96 (1962)). An 
interesting discussion concerning parts of speech may be found in the books by A. Juilland 
and E. Chang-Rodriguez C‘Frequency Dictionary of Spanish Words,” Mouton, The Hague. 
1964) and A. Juilland, P. M. H. Edwards and I. Juilland (“Frequency Dictionary of 
Rumanian Words,” Mouton, The Hague, 1965). A presentation of syntactic calculus, with 
the aid of the Theory of Categories, is given by Ana Burghelea (Syntactic types and Theory 
of Categories, to appear in Rev. Roumaine Math. Pures Appl.). Concerning categorial 
grammars, see Martin Kay (A parsing program for categorial grammars, Memorandum 
RM-4283-PR Rand Corporation, 1964). New results concerning linguistic typology are 
obtained by B. Zelinka in several papers to appear in Revue roumaine de math. pures et 
appl. and Bulletin math. de la Socie‘te‘de math. de la R .  S .  Roumanie. 



Chapter IV 

Grammatical Gender 

1. Introduction 

Grammatical gender is one of the most interesting problems of the 
theory of grammar. It has been studied from several points of view, 
such as the relation between the gender of a noun and its semantic con- 
tent (Lohmann [23]); the relation between the gender of a noun and 
its ending (Meltuk [30]); the gender, in the light of the correspondence 
between content and expression (Jakobson [ 171, Hjelmslev [14], 
Vasiliu [49]); the syntactic and contextual aspects of the grammatical 
gender (Diaconescu [6], Zaliznjak [50] ,  Karpinskaja [20]); the study 
of the gender from the standpoint of its origin and evolution (that is, 
diachronic aspects; Graur [ 10, 111, Rosetti [42-441, Fodor [7]); 
synchronic aspects (Revzin [37-391; Marcus [25 ,  271). 

Some of these points of view are, of course, closely connected; others, 
on the contrary, are very different. But aimost all authors agree at present 
that the semantic criteria are not sufficient for understanding the complex 
nature of the grammatical gender. We must make use of all related 
facts concerning this category. In this respect, Hjelmslev writes [ 151 : 
On est souvent meme amen6 B admettre la supCrioritC des d6finitions 
sCmantiques ou par substance, qui pretent souvent B 1’Cquivoque et 
restent fuyantes et difficilement maniables. On ne saurait citer B cet 
Cgard un meilleur exemple que celui du genre grammatical: ici la dCfi- 
nition sCmantique parait insuffisante ou meme impossible, et ce n’est 
que la dCfinition fonctionnelle, determinant le genre comme un indice 
de concordance, qui fournit un point de vue solide et vCridique. 

Indeed, if we recognize that the grammatical gender is other than the 
natural one (that is, the sex), we must be consistent and recognize that 
the form and not the substance will be decisive in the problem we are 
considering. 
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We present in this chapter some mathematical models of grammatical 
gender. The mathematical starting points of these models are some 
notions and results investigated in the preceding chapters (especially 
the notions of mixed cells, chains - due to Revzin - and the correspond- 
ing results), whereas the linguistic one is the passing from the natural to 
the grammatical gender. As we shall see, all proposed models involve 
both morphologic and syntactic aspects, by means of the partitions 
P and S of the vocabulary r. 

The analysis we develop has a purely synchronic character, but we 
hope that it may be useful for a better understanding and a more syste- 
matic presentation of the evolution of the structure of grammatical 
gender in any natural language. We intend also to discuss some very 
controversial problems such as the neuter gender, the ambiguous gender, 
the animate and the inanimate, personal genders, and others. 

2. From the Natural to the Grammatical Gender 

We begin by an attempt to explain, in an intuitive and practical fashion, 
the formal nature of the relation between natural and grammatical gender. 
This explanation will anticipate the mathematical models constructed 
in the next section. 

Given a natural language, we shall take, as starting point, two nouns 
( and r )  representing the prototype of the natural gender (such as man 
and woman in English). In certain languages, even this operation, so 
simple at first sight, claims attention: In German, for instance, the noun 
Weib (woman) cannot be taken as the starting point in such a construc- 
tion, since its grammatical gender is other than its natural one (the first 
is neuter, whereas the second is feminine). The problem we are concerned 
with is to characterize the masculine grammatical gender as well as the 
feminine so as to reveal clearly the mechanism, the operations by which 
these are obtained from the respective natural genders. It thus follows 
that every grammatically masculine noun should be in a formal well- 
determined relation with the noun 8 and that every grammatically fem- 
inine noun should be in a similar relation with the noun q. To obtain such 
a relation, we shall resort to a concept introduced by Revzin and studied 
in Section 10, Chapter I ,  namely, the concept of chain. Though it has 
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already been defined, we shall explain it through some linguistic examples 
and recall some simple facts. 

Each word is naturally associated with two sets of words: the set of 
its flectional forms and the set of the words occurring in the very same 
contexts with the given word. The first of these sets is the paradigm of 
the word, whereas the second is the class of distribution of the given 
word. For instance, the paradigm of the word house is {house, houses}, 
whereas the class of distribution is {house, table, book,. . .}. The 
flectional forms of each word are considered known and well-deter- 
mined; therefore, the paradigms are also considered known. As far as 
the classes of distribution are concerned, they depend upon the set of 
sentences we have in view. It is desirable to consider, as a sentence, 
every grammatically well-constructed sequence of words. But this is a 
difficult task; as long as no contrary statement is made, the set of sen- 
tences will consist, in all following examples, only of syntagms of the type 
noun + qualitative adjective in the positive degree or qualitative ad- 
jective in the positive degree + noun. 

Let us now consider the following four sequences of Latin words: 
(1) dies, diem, rem; (2) lupi, lupus, urceolus, urceolorum, librorum, 
libros; ( 3 )  vir, viro, puero; (4)  mulierem, aestatem, aestates, instruc- 
tiones. A common trait of all these sequences of words is the fact that, 
in each, two consecutive words are either in the same paradigm (that 
is, they are flectional forms of the same word) or in the same class of 
distribution (in other words, they appear in the same contexts). Thus, 
lupi and lupus are in the same paradigm, urceolorum and librorum are 
in the same class of distribution, etc. Such a sequence of words illustrates 
the notion of chain (Section 10, Chapter I) when P is the partition into 
paradigms, whereas S is the partition in families of the Latin vocabulary. 
We recall that the number of terms in a chain is called the length of the 
chain. Thus, chains (1) and (3) are of length equal to 3, chain (4) is of 
length 4, whereas chain (2) is of length 6. Chains (l), (2), (3), and (4) 
allow us to assert that the words dies and rem may be linked by a chain of 
length equal to 3; lupi and libros may be linked by a chain of length 6, etc. 

The using of chains in defining the grammatical genders appears 
very natural, and indeed, the notion of chain is but a joining of the two 
fundamental grammatical aspects, the paradigmatic and the syntagmatic 
one. It is particularly such a joining that is needed in a theory of the 
gender, because (intuitively speaking) it does not necessarily follow 
from the fact that two nouns belong to the same gender, that they should 
belong to the same paradigm or to the same class of distribution. The 
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interconnection alone of the paradigms with the distribution classes can be 
fruitful in such a problem. Otherwise, in some characterizations of the 
parts of speech we also use a special type of interconnection of the para- 
digms and distribution classes: the partition R‘. We recall, in this respect, 
Theorem 4, Chapter 11. 

The notions of chain and chain length enable us to characterize 
the masculine and the feminine grammatical gender to be able to pass 
over from the natural to the grammatical gender. The rules we shall 
give are but a drawing out of the “formal carcass” of a great number of 
particular facts noticed in the English, French, Italian, Spanish, Ruman- 
ian, Russian, and German languages. All these facts will be explained 
as illustrations of the following rules. 

A noun belongs to the masculine grammatical gender i f  any word 
of its paradigm may be joined to any word of the paradigm of ( by 
a chain whose length is at most equal to 3 .  It follows immediately 
(as a tautological statement) that 5 is of the masculine grammatical 
gender. 

A noun is of the feminine grammatical gender i f  any word of its para- 
digm may be joined with any form of 77 by a chain whose length is at 
most equal to 3. It follows immediately that 77 is of the feminine gram- 
matical gender. 

A noun is in the neuter i f  it is neither of the masculine nor of the 
feminine grammatical gender. 

A noun is a double gender if it is both masculine and feminine. 
By replacing, in the above rules, the nouns .$ and 7 by suitable cor- 

responding nouns, we may apply these rules to characterize the gram- 
matical genders of a great number of natural languages. The grammatical 
category of the gender of nouns.is considered not degenerate in a lan- 
guage, if there is in that language at least one masculine noun which 
should not be feminine, and at least one feminine noun which should 
not be masculine. 

3. Grammatical Genders in Natural Languages 

Let us illustrate the above rules and procedures in several natural 
languages. 
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ENGLISH. The form of an English adjective changes only in function 
of its degree of comparison. It follows that, given two English nouns 
tf and x, there exists a chain of length not greater than 3 ,  which joins 
E' and x. Indeed, the paradigm of x contains a word x r  which is in the same 
distribution class as t', and we have the chain Ef ,  x' ,  x. For instance, if t r  = 

book and x = teachers, then x f  = teacher. If x belongs to the distri- 
butional class of e', we have the chain r ' ,  x; for instance, ef = book, 
x = teacher. 

It follows that any English noun may be joined with man by a chain 
whose length is not greater than 3 ;  the same is true if we replace man by 
woman. Therefore, any English noun is a double gender; the grammatical 
gender of English nouns is degenerate. 

FRENCH. Let 5 = homme, =femme. The nouns colins, cahier, 
murs, etc., are masculine, since we have the chains (a) colins, Colin, 
homme, (b) colins, hommes, (c) Colin, homme, hommes, (d) cahier, 
homme, (e) cahiers, hommes, homme, (f) cahier, homme, hommes, (g) 
mum, mur, homme, (h) murs, hommes, (i) mur, homme, hommes; 
the nouns plumes, pluie, feuille, etc., are feminine, since each form of 
their paradigms may be joined with any form of femme by a chain of 
a length not greater than 3 ;  we have the chains plumes, plume, femme; 
pluie, femme, femmes; feuille, femme, etc. The nouns cas, tas, tapis, 
nez, voix, etc., whose singular form coincides with the plural, are neuter, 
since there exists no form of homme and no form of femme which belong 
to the distributional class of cas (we have petit cas, petits cas, but 
neither petit hommes, nor petits homme) and no form of homme and no 
form of femme which belongs to the distributional class of voix (we 
have belle voix, belles uoix, but neither belle femmes, nor belles femme; 
we have homme beau, hommes beaux, but neither voix beau nor voix 
beaux). The nouns camarade, e'lkue, enfant, etc, which may be preceded 
both by a masculine adjective and by a feminine adjective, are neuter 
since no form of homme and no form of femme belong to the distributional 
class of such a word. Indeed, we have bon e'lkve, bonne e'lkue, but neither 
bon femme, nor bonne homme; we have bons e' lhes,  bonnes e'li?ves, 
but neither bons femmes, nor bonnes hommes, etc. 

Since there are French nouns which are masculine but not feminine 
(cahier, mur, soleil, etc. and those which are feminine but not mas- 
culine (plume, pluie, feuille, etc.), we deduce that the grammatical 
gender of French nouns is not degenerate. 

ITALIAN. Let us consider as prototypes of the natural genders the 
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noun fratello (masculine) and donna (feminine). The noun frutto is 
masculine since each of its forms may be joined to any one of the forms 
of fratello by a chain whose length is not greater than 3 .  For similar 
reasons, castagno, bordone, giro, etc., are masculine. The noun boccola 
is feminine, since each of its forms may be joined to any one of the forms 
of donna by a chain of length not greater than 3. For similar reasons, 
confezione, maremma, roba, etc., are feminine. Since giro is masculine 
without being feminine, whereas roba is feminine without being mas- 
culine, it follows that the grammatical gender of Italian nouns is not 
degenerate. 

The nouns nipote, consorte, cantante, giovane, paciente, etc., which 
may be preceded both by a masculine and by a feminine adjective, 
are neuter since no form of fratello and no form of donna belong to the 
distributional class of such a word. Indeed, we have buono giovane, 
buona giovane, but neither buono donna nor buona fratello, etc. 

SPANISH. Let us consider as prototypes of the natural genders the 
noun padre (masculine) and madre (feminine). The noun libro is mas- 
culine, since we have the chains libro, padre; libro, padre, padres; 
libros, padres; libros, padres, padre. The noun casa is feminine since 
we have the chains casa, madre; casa, casas, madres; casas, madres, 
madre. Since libro is masculine without being feminine, whereas casa 
is feminine without being masculine, it follows that the grammatical 
gender of Spanish nouns is not degenerate. 

LATIN. Let 8 = vir, 7 = mulier. The noun puer is masculine, since 
each of its forms may be joined to each of the forms of vir by a chain 
whose length is not greater than 3 .  Since vir and puer each have seven 
distinct flectional forms, we obtain 49 chains (puero, puer, vir; pueri, 
viri, virum; pueros, pueris, viris, etc.). 

The noun aestas is feminine, since each of its forms may be joined 
to each of the forms of mulier by a chain whose length is not greater 
than 3.  Since each of the nouns aestas and mulier has eight distinct 
flectional forms, we obtain 64 chains (aestas, mulier; aestatis, aestati, 
mulieri; aestate, muliere, mulieribus, etc.). 

The noun tempus is neither masculine nor feminine. Thus it is neuter. 
It seems that our rules agree with the traditional genders of Latin 

nouns. But let us consider the noun capra. The shortest chain which 
joins the forms caprae and mulieris has length 4: caprae, capra, mulier, 
mulieris. Therefore, despite common intuition and traditional grammar, 
capra is not a feminine noun. 
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This example shows that the rules are not suitable for detecting the 
grammatical genders of Latin nouns in their customary form. 

RUMANIAN. Let 5 = biirbat, 7 = femeie. To verify that porn is mas- 
culine, we must prove that any word of its paradigm may be joined to 
any word of the paradigm of biirbat by a chain having length less than 
or equal to 3. Since each paradigm has 7 words, the proof requires the 
building up of 49 chains. We note some of them, leaving the others to 
the reader: porn, biirbat; pomi, biirbagi, biirbatul; pomule, pornului, 
biirbatului, etc. It follows that pom is of the masculine grammatical 
gender. In a similar way, we deduce that par, copil, stilp, etc., are 
also masculine. 

The noun mas5 is of the feminine grammatical gender, since each of 
its flectional forms belongs to the distributional class of some form of 
femeie. We have, for instance, the chains masii, mesei, femeii; mesele, 
femeile, femeilor, etc. 

Pom and femeie cannot be joined by a chain whose length is less 
than 4, since no word of the paradigm of pom is in the same distribution 
class with femeie and no word of the paradigm of femeie enters the 
distribution class of porn. Therefore, pom is not feminine. It may be 
shown in a similar way that masii cannot be joined with biirbat through 
a chain whose length is less than 4. Hence masir is not masculine. Thus, 
we have proved that in Rumanian the grammatical gender of nouns 
is not degenerate. 

We now remark that the above reasoning may be applied to any mas- 
culine and to any feminine noun; hence we deduce that Rumanian has 
no double gender nouns. 

Let us consider the noun scaun. This is not a masculine noun, since 
scaune and biirbali can be joined only by a chain of length 4: scaune, 
scaun, biirbat, biirbati. On the other hand, scaun is not a feminine noun 
either, since scaun and femeie can be joined only by a chain having a 
length of 4 :  scaun, scaune, femei, femeie. It follows that scaun is a 
neuter noun. 

RUSSIAN. Let 4 = muitina and 7 = ZenWina. The noun stol has the 
masculine grammatical gender, since any form x' of stol belongs to the 
distribution class of some form of (. For instance, stoly belongs to the 
distribution class of muic'iny, etc. The noun kniga has the feminine gram- 
matical gender, since each of its forms belongs to the distribution class 
of some form of 7. There exist no Russian double-gender nouns, since 
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the adjectives have, in the singular, different masculine and feminine 
forms, whereas there exist nouns (such as stol) which are masculine 
but not feminine and those (such as kniga) which are feminine but not 
masculine. 

The noun okno is neither masculine nor feminine, since it belongs to 
no distribution class of form 5 or of form 7. Therefore, okno is a neuter 
noun. The existence of neuter Russian nouns is because the adjectives 
that can be used with okno are not the same as the adjectives for ( 
or q. 

GERMAN. Let 5= Vater and q =  Mutter. The noun Titel has the 
masculine gender, since we have the following chains: Titel, Vater; 
Titel, Titels, Vaters; Titel, Titeln, Vatern; Titel, Vater, Vater; Titels, 
Vaters, Vater; Titels, Vaters, Vater; Titels, Vaters, Vatern; Titeln, 
Vatern, Vater; Titeln, Vatern, Vater; Titeln, Vatern, Vaters. The noun 
Gabel has the feminine gender, since we have the chains Gabel, Mutter; 
Gabel, Mutter, Muttern; Gabeln, Muttern; Gabeln, Muttern, Mutter. 
The noun Fenster is neither masculine nor feminine; therefore there 
exist neuter German nouns. But let us consider the word Knabe. It 
is known as a masculine German noun. However, the shortest chain 
between Knabe and Vater has length 4. Indeed, Knabe and Vater do 
not belong to the same distribution class, since we may say guten 
Vater but not guten Knabe. Since Knaben and Vatern have the same 
distribution (guten Knaben, guten Vatern), we obtain the chain Knabe, 
Knaben, Vatern, Vater, the shortest chain between Knabe and Vater. 
It follows that our rules are inadequate for some German nouns. 

In conclusion we make the following remarks: 
(1 )  The rules considered permit us, in general, to detect the gram- 

matical genders of English, French, Italian, Spanish, Rumanian, and 
Russian. Some minor discrepancies, such as the fact that in French 
the nouns cas, tas, tapis, etc., belong to the neuter gender, result from 
the level of grammaticality we have adopted (adjective + noun, noun + 
adjective). If we modify the set of marked strings correspondingly, 
such discrepancies disappear. 

(2) The rules considered are not sufficiently adequate for Latin 
and German. One must seek other rules to detect in a better way the 
grammatical genders of these languages and, perhaps, of others. 

(3) In view of the procedure adopted, a language cannot have more 
than four genders, whereas its fundamental genders are always the 
masculine and feminine. But there are situations which do not fall 
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into this scheme. A deeper analysis of a natural language may reveal 
the so-called personal genders, whereas in some languages (such as 
Swedish, where the fundamental genders are the common and the 
neuter gender) there is a fundamental distinction other than masculine- 
feminine. 
(4) The grammatical genders have no absolute character. They are 

relative by a certain choice of the paradigms and sentences (marked 
strings). If we take, for instance, only isolated words in the function 
of the sentences, all the words will form but a single class of distribution 
so that, taking two words at random, we might join them by a chain of 
length equal to 2. In particular, all nouns will be both masculine and 
feminine, and therefore the grammatical gender will be degenerate. This 
remark reveals the essential contextual, syntagmatic character of 
grammatical gender. 

Certain changes in the choice of the paradigms can also upset some 
of the conclusions obtained above. Thus, if by the paradigm of the 
Rumanian noun scaun we mean the totality of its flectional forms in 
the singular, and if by the paradigm of the noun scaune we understand 
all its flectional forms in the plural, then scuun is of the masculine 
gender, whereas scaune is feminine. Indeed, each of the words scaun, 
scaunul, scaunului, scaunule may be joined with any word of the 
paradigm of b%bat by a chain having at the most a length of 3. Each 
of the words scaune, scaunelor, scaunefe may be joined with any word 
of the paradigm offemeie by a chain having, at most, a length equal to 3. 

If we reorganize all the paradigms of the neuter Rumanian nouns 
as we have done above with the paradigm of scaun, and divide them 
into two paradigms, one singular and one plural, the neuter gender 
ceases to exist in Rumanian. Such a conclusion agrees with that of 
some others: BuJor[3], Gabinskii[9], Hor’ejSi[l6]. 

Another reorganization of the paradigms which seems in a certain 
way natural, is the following: Let us put together the paradigms P(x) 
and P(y) of the nouns x and y obtained, one from another, by means 
of an inflection denoting the gender: in French P(cousin) with P(cousine), 
P(6poux) with P(&pouse), P(1oup) with P(1ouve). etc.: in Italian, P(eroe) 
with P(eroina), P(re) with P(reginu), P(signore) with P(signora), etc.; 
in Rumanian, P(profesor) with P(profesoavZI), P(elev) with P(efevLi), 
etc. By such an operation, all the nouns mentioned become double- 
gender nouns. If we consider, for instance, the French noun cousin, 
we see that it is masculine, because any word from P(homme) is in 
the same distribution class as a certain word from P(cousin). It is also 
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a feminine noun, because any flectional form of femme is in the same 
distribution class with a certain word from the former paradigm of 
cousine, P(cousine), and thus from the present enlarged paradigm 
P(cousin) U P(cousine). Therefore, cousin has a double gender. 
In the same way one can show that eroe, re, and signore become 
double-gender nouns in Italian, whereas profesor and elev become double- 
gender nouns in Rumanian. This is the way the existence of the double- 
gender nouns is obtained, as well as that of the four distinct genders, 
for the nouns in Rumanian. A similar idea, but in a different way, has 
been expressed by Moisil[3 13. For the double-gender nouns in Rumanian, 
see also Pgtruf [34]. The legitimacy of such operations of reorganizing the 
paradigms must be justified either by practical necessities, such as the 
making up of algorithms for translating from one language into 
another[31], or by a more lucid understanding of the logical structure 
of the paradigms. (A logical pattern of the notion of paradigm has been 
studied by Marcus[26].) 

All the above facts require a general treatment, more formalized 
and more supple, for us to detect a greater part of the complexity of the 
grammatical gender. This task will be accomplished in the following 
sections. 

4. Mathematical Models of Grammatical Gender 

Let {r, P, @} be an arbitrary language. We shall say that two words 
a E r and b E r belong to the same gender, and we shall write a y b 
if, for any a’ E P(a) and any b’ E P(b), at least one of the following 
two conditions is fulfilled: P(a) n S(b’) # 0; P(b) n S(a’) # 0. We shall 
say that a and b belong to the same restricted gender and we shall write 
a p b if, for any a’ E P(a)  and any b’ E P(b) ,  we have P(a)  n S(b’)  # 
0 # P(b)  n S(a’). 

Proposition 1. The relation y is reflexive and symmetric, but not tran- 
sitive in r. 

PROOF. If b = a, we have, for a’ E P(a) ,  a‘ E P(b)  f l  S(a’). Hence, 
P(b) n S(a’) # 0 and a y a, that is, y is reflexive. 

Since the definition of y is symmetric with respect to a and 6 ,  it follows 
that y is symmetric: a y b .$ b y a.  
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To prove that y is not transitive, let us consider the language used 
in the proof of Proposition 1, of Chapter 11. We have r = {a ,  6 ,  c, d } ,  
P(a) = { a } ,  P(b) = {b} ,  P(c) = {c,  d} ,  @ = {ab, cb, ad, cd}. Hence 
S(a) = {a, c }  and S(b) = {b,  d}.  We have a y c; indeed, P(a)  n S(c) = 

{ a }  n {a ,  C }  = { a }  # 0 and P(c)  n S(a)  = { c ,  d }  n {a ,  C }  = { c }  # 0. 
We have c y b; indeed, P(c) r l  S(b) = {c,  d }  n {b, d }  = { d }  # 0 and 
P(b) n S ( 4  = {b}  f l  {b,  d }  = {b}  # 0. On the other hand, we do not 
have a y b, since P(a) f l  S(b) = P(b) n S(a)  = 0. 

REMARKS. Two words may belong to the same gender, although they 
do not belong to the same part of speech. Indeed, as was shown in the 
proof of the Proposition 1, Chapter 11, we have in the above language 
P = P’. It follows that a and c do not belong to the same part of speech. 
But they belong to the same gender, as was shown in the proof of Proposi- 
tion 1. 

This fact introduces a discrepancy between the grammatical gender 
and its mathematical model, because the gender concerns a well-deter- 
mined part of speech.” For instance, the grammatical gender of the 
adjective is quite different than the grammatical gender of nouns; our 
models concern only nouns, which is revealed by the next proposition. 

Proposition 2. Given a language {r, P,  a}, if b E P(a),  then a y  b. 

PROOF. We have, for any a’ E P(a)  and for any b’ E P(b), b’ E P(a) n 
S(b’) and a’ E P(b) n S(a’),  since P(a)  = P(b). Therefore P(a)  n S(b’) # 

REMARK. Since two different forms of an adjective may have different 
genders, it follows from Proposition 2 that the model considered does 
not concern adjectives. 

Proposition 3. There exist a language {r, P, a} and two words x E r, 
y E r such that y E S(x),  but we do not have x y y .  

PROOF. Let us consider the following language. r = {a ,  b, c,  d } ,  
P(a)  = {a,  c } ,  P(b) = {b,  d } ,  = {ac, bc, cd} .  We have S(a)  = {a ,  
b} ,  S(c) = { c } ,  S ( 4  = {d } .  But a and b do not belong to the same gender, 
since d E P(b), c E P(a), but P(a)  f l  S(d)  = P(b) n S(c) = 0. 

REMARK. An illustration of Proposition 3 may be found in Rumanian. 
The nouns scuun and porn belong to the same class of distribution, 
although the first is a neuter noun, whereas the second is masculine. 
The nouns caiete and scaune belong to the same distribution class, 

o z ~ ( b )  n s(u’). 

*This discrepancy will be removed by Proposition 8. 
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although the first is a feminine noun, whereas the second is neuter. 

Proposition 4. Given a language {r, P , @ } ,  if a p b ,  then ayb ,  but 
the converse is not true. 

PROOF. The implication a p b + a y b follows from the definitions. 
On the other hand, in the language considered in the proof of Proposition 1 
we have a y c, but not a p c, since d E P(c) and P(a) n S(d) = { a }  n 
{b, d }  = 0. 

Proposition 5. If b E P(a),  then a p b. 

PROOF. The proof follows immediately from the proof of Proposition 2. 

Proposition 6. We have a y b if and only if, for any a‘ E P(a)  and any 
b‘ E P(b), there exists a chain which joins a’ and b‘ and whose length 
is not greater than 3. 

PROOF. Let a y  6,  a’ E P(a) ,  and 6’ E P(b). If P(a) n S(b’) # 0, 
there exists a word a,  E P(a)  f l  S(b’). Hence a,  E P(a’) n S(b’), and 
we have the chain a’, a,, b‘. If P(b) fl S(a’)  # 0, there exists a word 
b, E P(b) n S(a’). Hence b, E P(b’)  n S(a’) and we have the chain 
a’, b,, 6‘. 

Conversely, let us suppose that, for any a’ E P(a)  and any b’ E P(b), 
there exists a chain whichjoins a’ and b’ and whose length is not greater 
than 3. If the length is equal to 1, we have a’ = b. Hence a = b and, in 
view of Proposition 1, it follows that a y b. If the length is equal to 2 ,  
we have b‘ E P(a’) or b’ E S(a’). If b‘ E P(a‘), then 6‘ E P(a)-since 
P(a’) = P(a)-and it follows that P(a)  f l  S(b’) # 0. Hence a y b. If 
b‘ E S(a’),  then b’ E P(b) r l  S(a‘). Hence P(b) n S(a’) # 0 and a y  b. 
If the length is 3 ,  the chain has the form a’, c ,  b’, where c E P(a’) ,  
b‘ E S(c),  or c E S(a’), b’ E P(c). In the first case, we have c E P(a’) n 
S(b‘) = P(a)  n S(b’) # 0. Hence a y b; in the second case we have 
c E P(b’) n S(a’) = P(b)  f l  S(a’) f 0. Hence a y b. 

Let us denote by C ( a )  the set of all words having the same gender 
as a. Let us recall that R(a)  denotes the set of all words which may be 
joined with a by a chain (see Section 10, Chapter I). We then have a 
further proposition. 

Proposition 7. In any language {I?, P ,  @} and for any a E 
G ( 4  C W). 

we have 
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PROOF. The Proposition follows immediately from Proposition 6. 
We remarked, after the proof of Proposition 1, that two words belong- 

ing to the same gender may belong, in our model, to different parts of 
speech. But, in view of Proposition 1 ,  Chapter II, the language used 
in the proof of Proposition 1 is not adequate, whereas the natural lan- 
guages are adequate. We may ask whether this situation is still possible 
in an adequate language. If the answer is negative, the discrepancy we 
mentioned after the proof of Proposition 1 is considerably diminished. 
This is precisely the case, since we have Proposition 8. 

Proposition 8. In an adequate language, two words belonging to the 
same gender belong to the same. part of speech. 

PROOF. Let {r, P ,  @} be an adequate language and let a E r. In view 
of Proposition 7, we have G ( a )  C R ( a ) .  On the other hand, since 
the language is adequate, we may apply Theorem 2, Chapter 11, and 
deduce that R is finer than P‘, that is, we have, for any a E r, that 
R ( a )  C P’(a ) .  I t  follows that G ( a )  C P ’ ( a ) ;  but P ’ ( a )  is precisely the 
part of speech of a. Thus Proposition 8 is proved. 

We may ask whether the relation y may still be nontransitive in an 
adequate language. 

Proposition 9. There exists an adequate language {r, P ,  @} such 
that y is not transitive in r. 
PROOF. Let ~ = { a , b , c , d , e , f , g , i , k , 1 , m , n , p , r } , P ( a ) = { a , c , e , n } ,  
P (b )  = ( 6 ,  d, L k )  P(g)  = (8, i}, P(1) = (1, m } ,  P(p) = b, r } ,  @ = 
cd, ef, gb ,  rb, ik, ld, mk, nk, pf). We have S(a) = {a ,  g ,  r } ,  S (b )  = { b } ,  
S(c) = { c ,  1 } ,  S(d) = { d } ,  S(e) = { e ,  p } ,  S o  = cf), S(i)  = {i, m, n } ,  S ( k )  = 
{ k} .  We have the following marked P-structures: P(u)P(b) ,  P(g)P(b) ,  
P(I)P(b), and P(p)P(b). All other P-structures are unmarked. It follows 
immediately that P’(a) = P(a) U P(g)  U P(1) U P ( p )  = { a ,  c, e ,  n, p ,  r, 
g ,  i, 1, m } ,  P ’ (b )  = P(b)  = {b,  d ,J  k } ,  and S(x) C P’(x )  for every x E r. 
Therefore, the language is adequate. 

To  show that y is not transitive in r, we shall prove that r y a  and 
a y 1, but we do not have r y 1. Let r’ E P(r).  If r’ = r ,  then P(a)  n S(r’) = 
P(a)  n S(r)  = { a }  # 0. If r’ = p ,  then P(a)  f l  S(r’ )  = P(a)  n S(p) = 

{ a }  # 0. It follows that r y  a. Let 1’ E P(I). If I’ = 1, then P(a) n S(1’) = 
P(a) n S(I) = {c} # 0. If 1’ = m, then P(a)  f l  S(1’) = P(a)  n S(m) = 
{ n }  f 0 and we have a y 1. But we do not have r y 1, since P(r)  f? S(I)  = 

P(r)  n S(m) = P(I) n S(p) = P(I) n S(r)  = 0. 

REMARK. To illustrate Proposition 9, we may consider the following 
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fragment of Rumanian: a = profesor, b = frumos, c = profesoar~,  d = 
frumoasi3, e = profesori, f = frumo?i, g = scaun, i = scaune, k = frumoase, 
1 = carte, m = ci3r[i, n = profesmre; P and CP are defined as in the proof 
of Proposition 9. Thus, we obtain all types of Rumanian noun syntagms 
having the noun first and the adjective second. 

Proposition 9 shows the necessity of introducing a new notion, which 
generalizes that of double gender, considered in Sections 2 and 3. Given 
a subset A of r, we shall say that 

n GW 
x E A  

is the archigender induced by A .  Every gender is an archigender, since 
we may take A = { x } .  Thus, the double gender is the archigender in- 
duced by the set A = {a, b} ,  where a is a masculine noun, whereas b 
is feminine. The term archigender, used in a similar way by Diaconescu 
[6], follows from the well-known similar term archiphonem. See, for 
instance, Martinet [29]. 

Let us consider a set A C r containing at least two words x and y 
for which G(x) # G(y). If the archigender induced by A is nonvoid, 
it is called a proper archigender. 

Given a word x, we shall define the order of gender multiplicity of x 
as the greatest number n such that there exist n words a,, a 2 , .  . . , a, 
for which the following two conditions are fulfilled: 

(1) if 1 s i zs n, 1 s j  s n, and i # j ,  then ai and aj do not belong to 
the same gender; 

(2) x belongs to every G(ai) ( 1  s i s n) .  If n > 1, we shall say that x 
has a multiple gender. 

The structure of genders may be better understood with the aid of 
some topological notions. 

Recall that a topology for a nonvoid set X is a class ? of subsets of 
X such that: ( 1 )  0 and X are members of .T, (2) the intersection of each 
finite subfamily of ? is a member of ? and (3) the union of each sub- 
family of .T is a member of S. The ordered pair ( X ,  ?) is said to be a 
topological space. 

We may define for the set r of words the following topology: A subset 
A of I- belongs to F if for every x E A we have G(x) C A .  It is easy 
to see that the conditions (l) ,  (2), and (3) are fulfilled. But this topology 
has a property which is stronger than (2): The intersection of each 
subfamily of ? is a member of ?. Hartnett called such a topology 
a total topology[ 131. A topological space ( X ,  S) for which S is a total 
topology is said to be a total space. 
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The members of a topology are said to be open sets, whose comple- 
ments are then closed sets. Therefore, a total topology has the pro- 
perty that the intersection of an arbitrary collection of open sets is 
an open set. 

We say that a topological space ( X ,  F) has the smallest open set 
property if, for each x E X ,  there exists a unique member H ( x )  of .T 
such that x E H ( x )  and H(x)  C H for each open set H such that x E H .  
Hartnett has obtained the following result[ 131. 

Proposition 10. Let ( X ,  7) be a topological space. Then ( X ,  7) is a 
total space if and only if ( X ,  JF) has the smallest open set property. 

PROOF. If ( X ,  F) is a total space and x E X ,  let H ( x )  be the inter- 
section of all the open sets to which x belongs. Clearly, H(x)  satisfies 
the definition above, and so the space is total. 

Conversely, suppose that ( X ,  7) has the smallest open set property. 
If { H i ;  i E I }  is a family of open sets indexed by I, H = n { H i ;  i E I }  
and x E H ,  then x E H i  for each i. But each Hi is an open set and 
so {x) c H(x)  c Hi, where H(x)  is the smallest open set to which x 
belongs. Hence, H ( x )  n { H i ;  i E I} for each x E H and, therefore, 

H = U { { x } ; x  E H }  c U { H ( x ) ; x  E H )  
c n { H i ;  i E Z } = H .  

Hence H is an open set and .T is a total topology. 

H(x)  in the total space (r, F). In this aim, let us put C,(x)=U{G(y); 

(x)}, . . . , G,(x)=UG,(x). It is easy to see that G,(x) C C,+,(x) for 
n = 1 ,  2 , .  . . . 
Proposition 11. In the total space (r, 7) we have H ( x )  = G,(x) for 
each x E r. 
PROOF. Let y E G,(x). There exists an integer n such that y E G,(x). 
Hence G(y) G,+,(x) S G,(x). Therefore G,(x) is an open set. Since 
x E G,(x) and H(x)  is the intersection of all the open sets to which x 
belongs, it follows that H(x)  G,(x). On the other hand, there exists 
a finite sequence of words x1,x2,. . . , xn ,  such that x1 E G (4, 
x, E G(x,), . . . ,x, E G(xn-,) and x, = y .  Since H ( x )  is open, we have 
G(xi) c H(x) for 1 G i s  n. Therefore y E H(x) and G,(x) C H(x).  

Corollary 1. Given two words x and y ,  we have either H(x)  = H(y) ,  

It is interesting to establish the linguistic significance of the sets 

y E G(x)}, GAx)=U{G(y); Y E Gi(x)}, . . . , Gn(x)=U{G(y); Y E Gn-I 
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or H(x)  n H(y)  = 0 [that is, the relation b E H(a)  is an equivalence 
relation]. 

PROOF. The proof follows immediately from Proposition 11  

Corollary 2. 
if G(x) = H(x)  for each word x. 

A language possesses no proper archigender if and only 

PROOF. Let us suppose that no proper archigender exists. Given 
two words x and y such that y E G(x), we have C ( x )  n G ( y )  # 0 (in 
view of Proposition 1). Hence C ( y )  = G(x). It follows that G,(x) = G(x). 
Therefore G,(x) = G(x) for YZ = 1, 2, .  . . and, in view of Proposition 11, 
H(x)  = G(x). 

Conversely, if H(x)  = G(x)  for each x E I‘, then, by Corollary 1 ,  the 
relation y ‘is an equivalence relation in r. Hence G(x) n G(y) # 0 
implies G(x) = G(y) and no proper archigender exists. 

Corollary 3. We have G(x) = H(x)  for every x E r if and only if no 
word has a multiple gender. 

PROOF. It is enough to remark that a word has a multiple gender 
if and only if it belongs to a proper archigender and to take into account 
Corollary 2. 

A base 36’ for a topology for a set is a subfamily of the topology such 
that each open set is the union of members of W. The family of all bases 
for a total space has the following property[ 131. 

Proposition 12. Let ( X , Y )  be a total space. For each x E X ,  let 
H(x)  be the smallest open set such that x E H ( x )  and let = { H ( x ) ;  
x E X > .  Then for any base 36’ of F we have 8, C %’ (that is, W 1  is 
a minimal base for F). 

PROOF. If H is an open set and y E H ,  then { y }  C H(y)  C H and 
so H = U { { y } ;  y E H }  C U {H(y ) ;  y E H }  C H .  Therefore, is 
a base. To  show that Wl is a minimal base, let W be an arbitrary base 
for the total topology. For each x E X ,  H(x) is open, H(x)=  u { B i ;  
Bi E %’}, and so x E Bj  C H ( x )  for some B j  E W. But then Bi = H(x)  
because H(x)  is the smallest open set to which x belongs. Hence 
H(x) E 36’ for each x E X and Bl C 36’. 

We now may characterize some types of isomorphism concerning 
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the structure of grammatical gender. We say that two languages 
{rl, P I ,  (al} and {rZ7 Pz,  (a,} are isomorphic with respect to the gender 
if there exists a 1 : 1 mappingfof rl onto T,, such that for any x E rl, 
we have AG(x)) = G(f(x)) .  We say that {r,, P , ,  and {r,, P,, QZ} 
are isomorphic in the broad sense with respect to the gender, if there 
exists a 1 : 1 mapping g of rl onto Tz, such that, for any x E rl we 
have gW(x) )  = H(g(x)). 

Let us recall two well-known notions. 
Given two topological spaces ( X ,  J9 and ( Y ,  Y), a mapping cp of X 

into Y is said to be continuous if for any open subset K of Y the set 
cp-'(K) = (x; cp(x) E K }  is open in ( X ,  F). Moreover, if cp is 1 : 1 and 
onto and its inverse cp-l is also continuous, then cp is said to be a homeo- 
morphism between ( X ,  F) and ( Y ,  8). Two topological spaces are 
called homeomorphic if there is a homeomorphism between them. 

Proposition 13. Let ( X ,  JF) and ( Y ,  8) be total spaces, let a E X ,  and 
let cp : X +  Y .  cp is continuous if and only if cp(H(a)) C H(cp(a)) for each 
a E X ;  cp is a homeomorphism if and only if cp is 1 : I , onto, and cp(H(a)) = 
H(cp(a)) for each a E X[13]. 

PROOF. The first assertion follows from the fact that continuity can be 
described in terms of the bases for the topologies and Proposition 10. 
Let us prove the second assertion. If cp is a homeomorphism, then cp 
and cp-l are continuous and so, for each a E X ,  cp(H(a)) C H(cp(a)) and 
cp-'(H(cp(a))) C H(cp-l(cp(a))) = H(a).  From the latter inclusion, we 

On the other hand, if cp(H(a))=H(cp(a)) for each a E X ,  cp is 1 : 1 and 
onto, then cp is continuous because cp(H(a)) C H(cp(a)). But cp-l is con- 
tinuous at each b E Y because b = cp(a) for a unique a E X ,  cp-'(H(b)) = 
cp-'(H(cp(a))) = cp-'(cp(H(a))) = H(u)  = H(cp-l(b)), and therefore cp-'(H(b)) C 

have c p ( P  (H(cp(4)))  = H(cp(a)) G cp(H(a)), and hence cp(H(4) = H(cp(a)). 

H(cp-Yb)). 
From Proposition 1 3 follows Proposition 14. 

Proposition 14. Given two languages L, = {r17 P, ,  @,} and L, = 
{r,, P,,  a,}, the corresponding total spaces (TI, F,) and (I?,, S,) are 
homeomorphic if and only if L, and L, are isomorphic in the wide sense 
with respect to the gender. 

In Section 6, Chapter 11, we defined the notion of PS-isomorphism. 
Since the genders of a language are completely determined by the 
partitions P and S ,  Proposition 15 follows. 
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Proposition 15. If two languages are PS-isomorphic, they are iso- 
morphic with respect to the gender. 

It would be interesting to establish whether the converse of Proposi- 
tion 15 is also true. 

Proposition 16. There exist two P-isomorphic and S-isomorphic lan- 
guages, which are not isomorphic with respect to the gender. 

PROOF. Let us consider the languages used in the proof of Proposition 
43, Chapter 11: rl = r2 = {a ,  b, c, d} ,  P,(b) = {b, C, d }  = P,(b), a1 = 
{ab, ac, ad},  Q2 = {ad,  bd, cd} .  It is easy to see that S, = P1 and &(a) = 
{a ,  b, c } .  Since Pl(a)  = S,(a) = { a } ,  it follows that Gl(a) = {a} .  In  view 
of Proposition 2, we have {b,  c, d }  C G,(b) n G1 (c )  f l  C,(d). Since 
Pl (a )  f l  S,(b’) = P,(b) n S,(a‘ )  = 0 for any b’ E P,(b) and a’ E Pl (a ) ;  
Pl(a) fl S,(C’) = Pl(c)  f l  S,(a’) = 0 for any c’ E P,(c)  and a’ E Pl(a),  
and Pl(a)  n S,(d’) = P,(d) f l  Sl(a’) = 0 for any d’ E Pl(d) and a’ E Pl (a ) ,  
it follows that G,(b) = G,(c) = G,(d) = (6 ,  c, d}. On the other hand, we have 
P2(c) fl &(a) = {b, C} # 0 and P,(d) n &(a) = {b, C} # 0,  P,(u) n 
S,(d)=P,(b) f l  S,(a)=O; in view of Proposition 2, it follows that 
GAa) = {a ,  c, 4, Gdb) = { h ,  c, 4, GAc) = {a ,  6,  c, 4, and G2(4  = 
{a, b, c, d}.  Since G,(x) contains at most three words for any x E rl, 
whereas G,(y) contains four words for some y E 11,, it follows that the 
languages considered are not isomorphic with respect to the gender. 
On the other hand, in view of Proposition 43, Chapter TI, these languages 
are both P- and S-isomorphic. 

Proposition 17. If two languages are isomorphic with respect to the 
gender, they are isomorphic in the broad sense with respect to gender. 

PROOF. Let us suppose that L1 and L2 are isomorphic with respect 
to the gender, that is, there exists a 1 : 1 mappingfof r‘, onto Tz such 
that f(G(x)) = G(f(x)). Let y E H(x) .  In view of Proposition 1 1 ,  there 
exists a finite sequence x,, x,,. . . , x i , .  . . , x, such that xi  E G(x,-,) 
(2 c i =a), x1 = x and x, = y.  Since f (G(u) )  = Gcf(u)) for any u E rl, 
it follows that Axi) E G(f(xiPl))  (2 4 i 6 n). Hence, using Proposition 
11 again, we get f(y) E H ( f ( x ) )  and f ( H ( x ) )  C H(f (x ) ) .  In a similar 
way one proves that H H x ) )  cAH(x)). 

Proposition 18. There exist two languages which are isomorphic 
in the broad sense with respect to the gender, but not isomorphic with 
respect to the gender. 
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PROOF. Let Pl(a)  = {a, 6, c, d ,  e } ,  
Plcf) = 03, r2 = 
{ a ’ ,  b‘, c’,  d’, e’ , f ,  g’, h’, i’,.?}, P,(b’) = {b’, d’}, 
P d e ’ )  = { e ’ ,  f}, P,(g’) = {g ’ ,  h’, i’, j ’ } ,  Q2 = {a’g’, b’g’, c’h’, d‘i‘, e’j’, 
f h ’ } .  We have Sl(a) = { a ,  b ) ,  Sl(c) = { c } ,  Sde) = { e , f ) ,  Sl(g) = { g } ,  
&(h)= { h } ,  S I ( ~ ) =  { i } ,  S,O= Ci), S,(a‘)= {a’ ,  b’}, S,(c’)= {c’,f}, 
Sdd’) = {d ’ } ,  W e ’ )  = { e ’ } ,  S2(g’) = { g ’ } ,  S,(h’) = {h’} ,  S2(i‘) = {i’}, 
S,(j’) = { j ’ } .  I t  is easy to see that G(a) = {a, 6, c, d,  e, f}, C(g) = 
{g, h, i , j }  (we make use of Proposition 2), G(a’) = {a’, c’}, G(b’) = 
{b’, d’} ,  G(e’)  = {e’,f}, G(g’) = {g ’ ,  h‘, i’,j’}, H(a) = H(b) = H(c)  = 

H ( d )  = H ( e )  = H ( f )  = { a ,  b,  c, d ,  e ,  f>, H(g) = H(h) = H(i )  = Hb] = 
{ g ,  h, i, j , } ,  H(a’)  = H(b’) = H(c’)  = H(d’) = H ( e ‘ )  = H V )  = {a ’ ,  b‘, c’, 
d’ ,  e ’ , f ’ } ,  H ( g ’ )  = H(h’)  = H(i’) = H(j ’ )  = {g ’ ,  h‘, i’ , j’}.  Let us 
define cp as follows: cp(x) = x’, where x = a, b, c, d, e , J  g ,  h, i , j .  We 
have cp(H(x)) = H(cp(x)) for every x E rl. Hence the languages con- 
sidered are isomorphic in the broad sense with respect to the gender, 
since G(a) contains six words, whereas G(x’) contains at most four words, 
for any x’ E r2. 

rl = { a ,  6, c, d, e,f, g ,  h, i , j } ,  
Pdg) = (8 ,  h, i , j } ,  = {as ,  bg, ch, di, ej,f}, 

P,(a’) = { a ’ ,  c’}, 

REMARK. The languages considered in the proof of Proposition 18 
become fragments formed by nominal syntagms of Latin and Rumanian, 
respectively, if we take a = vir, b = viri, c = viro, d = virum, e = viris, 
f = generis, g= fortis, h = forti, i= fortem, j =  fortibus, a’ = scaun, 
b’ =porn, c’ = scaune, d‘ =pomi, e’ = carte, f = cLiqi, g’ = frumos, 
h’ = frumoase, i’ = frumosi, j ’  = frumoasLi. 

5. Grammatical Genders in Homogeneous Languages 

The grammatical genders of a homogeneous language present some 
important particulars. 

Proposition 19. If {r, P, @} is a homogeneous language, then y is 
transitive in r. 
PROOF. Let a E I‘, b E r, and c E such that a y b and b y  c. We 
shall show that a y c. Let a’ E P(a)  and c’ E P(c).  Since a y b, we have 
at least one of the relations (1) P(a)  n S(b) f 0 or (2) P(b) n S(a’ )  # 0. 
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Since b y e ,  we have at least one of the relations ( 3 )  P(c) n S(b)  # 0; 
(4) P(b) n S(c‘) # 0. If we have (1) and ( 3 ) ,  then b E R(a)  and c E R(b). 
Hence, because R is a partition of r, c E R(a) .  If we have (1) and (4), 
we deduce from (1) that b E R(a), whereas (4) implies, in view of the homo- 
geneity, that P(c’) n S(b) # 0. But P(c’) = P(c) .  Hence P(c) n S(b) f 0 
and c E R(b); therefore, c E R(a). If we have ( 2 )  and ( 3 ) ,  we deduce 
from (2), in view of the homogeneity, that S(b) n P(a’) # 0; but P(a’ )=  
P(a).  Hence P(a) f l  S(b)  f 0 and b E R(a).  On the other hand, (3) 
implies c E R(b); therefore, c E R(a). If we have (2) and (4), we deduce, 
in view of the homogeneity, that S(b) f l  P(a’) # 0 # S(b) n P(c’). 
Hence, since P(a’) = P(a)  and P(c’) = P(c), b E R(a),  c E R(b) ,  and, 
therefore, c E R(a). We have thus proved that a y b and b y  c imply 
c E R(a). But in view of Theorem 10, Chapter 11, we have for each 
word x of a homogeneous language, K(x)  = R(x). Hence c E K(a) .  It 
follows that we have at least one of the relations P(c) n S(a) # 0, 
P(a) n S(c)  # 0. But in each of these cases we have c E G(a).  Hence 
a y c.  

Proposition 20. In any homogeneous language, y is an equivalence 
relation in r. 

PROOF. The proof follows from Propositions 1 and 19. 

Proposition 21. 
for each word x. 

In any homogeneous language we have G ( x ) = N ( x )  

PROOF. Let x1 E G(x). In view of Proposition 20, we have G(x,)= 
G(x). Hence G,(x) = G(x). It follows, by induction. that G,(x) = G(x) 
for every word x and every positive integer n. Therefore G,(x) = G(x). 
By Proposition 11, we deduce H ( x )  = G(x) for each word x. 

Proposition 22. 
archigender. 

In a homogeneous language there exists no proper 

PROOF. The proof follows from Proposition 21 and Corollary 2. 

Proposition 23. 
gender. 

In a homogeneous language no word has a multiple 

PROOF. This proof follows from Proposition 21 and Corollary 3. 
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Proposition 24. 
same gender, they belong to the same part of speech. 

If two words in a homogeneous language have the 

PROOF. This follows from Theorem 8, Chapter 11, and Proposition 8. 

Proposition 25. If {r, P ,  @} is homogeneous, the associated total space 
(r, F) has the following property: For each x E r, G(x) is the smallest 
open set to which x belongs. 

PROOF. The proof follows from Propositions 10 and 21. 

REMARKS. The total topology of a homogeneous language is the top- 
ology of an equivalence relation, in the sense that each open set is a 
union of y-equivalence classes, that is, a union of genders. Conversely, 
every union of genders is an open set, in view of Proposition 25. Since 
the complement of a union of y-equivalence classes is also a union 
of y-equivalence classes, it follows that every closed set is open, and 
conversely. A systematic investigation of the topology induced by an 
equivalence relation has been made by Tondeur [48]. Some properties of 
total topologies have been given by Marcus [24] (see also the corrections 
indicated in [28 ] ) .  

The results just obtained enable us to reconsider some facts concern- 
ing grammatical genders in natural languages. In Section 2 we found 
that every English noun has a double gender. But in fact no English noun 
has a multiple gender in the sense of our definition, because the mascu- 
line and feminine genders are not distinct in English. On the other hand, 
in Section 8, Chapter 11, we established that all English nouns which are 
neither singularia tantum nor pluralia tantum are nonhomogeneous. 
This situation suggests that the converse of Proposition 23 is not true. 
In fact, all English nouns belong to the same grammatical gender. 

We remarked in Section 2 that some choice of paradigms yields the 
existence of the nouns having double gender in French, Rumanian, and 
other languages. In the light of the last results, we may explain-the 
reason for this situation. 

Let us ignore the singularia tantum and the pluralia tantum. In this 
case, as we remarked in Section 8, Chapter 11, the French nouns become 
homogeneous and, in view of Proposition 23 ,  the existence of nouns 
having a multiple gender is not possible. However, let us consider, 
in contrast to the customary situation, that bergdre is an inflected form 
of berger. Hence P(berger) = { berger, bergke,  bergers, bergkres}. 
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Berger and maison are of the same gender, since we have the chains 
bergdre, maison; bergdres, maisons. Hence berger and bergers may 
be joined with any form of maison by a chain of length not greater 
than 3. For similar reasons, we find that berger and crayon have the same 
gender. Since maison and crayon do not have the same gender (there 
exists no chain joining crayon and maison), it follows that berger has a 
multiple gender. But this situation- which seems to contradict Propo- 
sition 23 -becomes possible because the reorganizing of some paradigms 
requires the sacrifice of the homogeneity, even in the absence of sin- 
gularia tantum and pluralia tantum. Indeed, we shall show that, with 
the new paradigms, the fragment of French noun syntagms is not homo- 
geneous. We have P(berger) n Sveuille) = {bergdre} # 0,  whereas 
Pveuille) r l  S(berget) = 0. 

A similar situation occurs in Italian and in Spanish, but a quite dif- 
ferent one occurs in Rumanian. As we established in Section 8, Chapter 
11, most Rumanian nouns are not homogeneous and, as is easy to see, 
the nonhomogeneity persists when we reorganize some paradigms 
following the above procedure. 

Let us return to the results just proved. Propositions 19-23 show the 
simplicity of the structure of genders in homogeneous languages. It is 
known that the genders in Slavic languages have a more complex struc- 
ture than in the Western romance languages. Propositions 22 and 23 
enable us to understand the formal nature of this difference. Moreover, 
we may ask whether this simplicity is characteristic for homogeneous 
languages, for instance, if the converse of Proposition 20 is true. The 
answer is negative, as shown in the next proposition. 

Proposition 26. There exists an adequate nonhomogeneous language 
in which y is an equivalence relation. 

PROOF. Let us consider the language used in the proof of Theorem 1 ,  
Chapter 111: r=  { a ,  bl, b,, cl, c,, d) ,  P(a)  = { a ,  bl, c,}, P(bJ = {b,, c,} ,  
P(d) = {d } ,  CP = {aa ,  blcl, blc2, bzcl, b2c2, d } .  As shown by Theorem 1 ,  
Chapter 111, this language is adequate and nonhomogeneous. We have 
S(a)= { a } ,  S(b,)= {bl ,  b2},  S(cl)= {cl, cz}, S(d)= Ed}. Since P(a) n 
S(b,) # 0 # P(a) n S(c,), a and b, have the same gender; since P(a) = 
P(bl) = P(cl), we have also bl y b, and c1 y b,. Since P(a) n S(b,) # 0 # 
P(a) n S(c,), we have a y c,. In a similar way, we find that 6, y c, and 
c1 y c,. Since G(d)  = { d }  and in view of Proposition 2, we have G(a) = 
G(b,) = G(c,) = G(b,) = G(c,) = { a ,  bl, c,, bZ,  c,} and y is an equivalence 
relation in r. 
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REMARK. By comparing the proof of Theorem 1 ,  Chapter 111, with 
the proof of Proposition 26, we find that K(x)  = G(x) for each x E r. 
It would be interesting to establish whether in each adequate language 
whose genders form a partition of r, the above equality holds. In any 
case we have a further proposition. 

Proposition 27. If, in an adequate language, y is an equivalence relation 
in r, the corresponding partition G of r fulfills the equalities P’ = G‘ = R’. 

PROOF. We have, in view of Propositions 2 and 7, P(x)  C G(x)  C R(x)  
for each x E r. On the other hand, since the language is adequate, we 
may apply Theorem 4, Chapter I1 and deduce that P’ = R’. Then, by 
Lemma 1 ,  Chapter 11, G’ = P ’ .  

Proposition 28. If, in an adequate language, y is an equivalence relation 
in r and the classes form a partition of r, then G’(x) = K’(x)  for every 

E r. 

PROOF. We have, by Proposition 7, Chapter I, P(x)  C K ( x )  C R(x)  
for each x E r. Since the language is adequate, we have, in view of 
Theorem 4, Chapter 11, that P‘ = R‘. Since the classes define a partition 
of r, we deduce from Lemma 1 ,  Chapter 11, that P ’  = K’ = R’. In view 
of Proposition 27, we have K’ = G’. 

We shall now give a result which makes the structure of the gram- 
matical genders in homogeneous languages quite precise. 

Proposition 29. In a homogeneous language the genders coincide 
with the classes, that is, we have G(x)  = K(x)  for each word x. 

PROOF. In view of Proposition 7 we have G(x) C R(x) for every word 
x. On the other hand, since the language is homogeneous, we have, by 
Theorem 10, Chapter 11, that K(x)= R(x) for any x E r. Thus, Proposi- 
tion 29 will be proved if we show that K ( x )  C G(x) for each x E r. Let 
y E K(x) .  We have at least one of the inequalities P(x)  fl S(y) # 0 or 
P(y )  fl S(x)  # 0. Let x’ E P(x) and y r  E P(y).  If P(x)  fl S(y) # 0, then, 
since P(x)=P(x’ ) ,  P(x’) f l  S(y) # 0 and, in view of the homogeneity, 
P(y) f l  S(x’) # 0. If P(y )  fl S(x) # 0, since P(y)  = P(y’),  P (y ’ )  f l  S(x)  # 0, 
and in view of the homogeneity, we have P(x)  f l  S(y’) # 0. Hence 
y E G(x) and Proposition 29 is proved. 
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REMARK. Since, in view of Theorem 10, Chapter 11, in any homo- 
geneous language, the classes form a partition of r, it follows from Pro- 
position 29 that the genders of a homogeneous language form a partition 
o f r .  Thus, Proposition 29 is an improvement of Proposition 20. 

The converse of Proposition 29 is not true, as shown by the language 
used in the proof of Proposition 26. The same language shows the exis- 
tence of a nonhomogeneous language in which K(x)  = G(x) = R(x) 
for any x E r. 

An illustration of Proposition 29 is given by French nouns, if we ignore 
the singularia and pluralia tantum. Thus we get a homogeneous language 
in which the nouns form two classes: one contains all masculine nouns, 
the other all feminine nouns. 

Another peculiarity of homogeneous languages is given by Proposi- 
tion 30. 

Proposition 30. In any homogeneous language we have S(x) G(x) 
for any x E r. 
PROOF. In view of Proposition 7, Chapter I, we always have S(x) C 
K(x)  for any x E r. Then, by Proposition 29 and since the language is 
homogeneous, S(x) 2 C(x). 

REMARK. Proposition 30 shows an important difference between 
nonhomogeneous and homogeneous languages. Indeed, by Proposi- 
tion 3, there exists a nonhomogeneous language in which two words 
belong to the same gender, although they are not in the same family. 

Proposition 31. There exist adequate nonhomogeneous languages, 
in which the coincidence between the genders and the classes is no 
longer valid. 

PROOF. Indeed, let us consider the language used in the proof of 
Theorem 9, Chapter 11. We have r = {a ,  6 ,  c, d } ,  P(a) = { a ,  b} ,  P(c)  = 
{ c ,  d } ,  @={ad,  bb, ab, bc, bd, dc, db, dd} ,  S ( a ) = { a } ,  S(b)={b, d} ,  
S(c)= { c } .  In view of Theorem 9, Chapter 11, this language is adequate 
and nonhomogeneous. On the other hand, it is easy to see that G(b)= 
{ a ,  b } ,  K(b)= { a ,  b, c,  d}.  Hence G(b) # K(b).  

Proposition 32. 
coincide with the genders; that is, we have y=p.  

PROOF. Let a E r, b E r. Since a p b implies a y b, it remains to prove 
that the converse holds. But, in view of Proposition 29, a y b implies 

In any homogeneous language, the restricted genders 
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b f K(a). Therefore we have at least one of the relations P(a) r l  S(b) f 0 
or P(b) n S(a) # 0. But, by virtue of the homogeneity, both these relations 
are true. Hence, for any a’ E P(a) and b‘ E P(b), we have P(a) r l  S(b‘) # 
0 f P(b) n S(a’); therefore, a p b. 

It would be interesting to find the particular characteristics of the 
genders in other types of languages studied in Chapter 11. 

6. Categories in the Sense of Revzin 

As we remarked at the end of Section 2, Chapter I ,  Revzin has defined 
a language as a system {r, P ,  CJ, Y”, cp}, where r, P ,  and CJ maintain their 
customary acception, whereas Y is a collection of subsets of r, called 
categories, and cp is a function which associates to each word x the 
intersection of all categories containing x; cp(x) is called the elementary 
categovy of x ([38], p. 42-43). We may take Y large enough to contain 
such important sets of words as the parts of speech and the grammati.ca1 
genders of the considered language. 

Following Revzin, a category V E T is said to be paradigmatic 
if, for any x E V ,  we have P(x)  c V:  the category V is said to be syn- 
tagmatic if for any x E V we have S ( x )  C V ([38, 391). 

It is obvious that the parts of speech are paradigmatic categories. 
In order that every part of speech of a language L be a syntagmatic 
category, it is necessary and sufficient that L be adequate. 

We recall that the word a dominates the word b if for any pair of 
strings x and y such that xay E CJ, we have xby E CJ. If any word of 
a set A dominates any word of a set B ,  we say that A dominates B 
and we write A +3. If no word c exists such that c + A ,  and c A ,  
we say that A is an initial set. Let us denote by A ,  the set of all words 
b such that A -+ 6. The set Y ( A )  = A  U A l  is called a grammatical 
category; it is the grammatical category generated by A .  If A is a family, 
then 9 ( A )  is called an elementary grammatical category. 

It is easy to see that, in general, a grammatical category is neither 
paradigmatic nor syntagmatic, whereas an elementary grammatical 
category is always syntagmatic. Since most grammatical categories 
which occur in linguistics are unions of elementary grammatical cate- 
gories, it follows that most customary grammatical categories are 
syntagmatic. 
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As it was shown by Propositions 2 and 3, the grammatical genders 
are paradigmatic, but not always syntagmatic categories. Moreover, 
in view of Proposition 30, we deduce that the grammatical genders 
of any homogeneous language are both paradigmatic and syntagmatic. 

Proposition 33. (Revzin [38] and [39], Theorem 3). If V is both para- 
digmatic and syntagmatic, for any word x E V we have R(x)  C V.  

PROOF. Let x E V and y E R(x).  There exists a chain x = xl, x 2 , .  . . ,xi, 
x i : l , .  . . , x n = y ,  that is, xi+l E P(xi) U S(xi) for 1 s is n-  1. Since 
V is both paradigmatic and syntagmatic, and x E V ,  it follows that 
xz E V. Hence P(xJ U S(x,) C V. This implies x3 E V. Continuing 
in this way, we obtain x, E V ,  that is, y E V.  

REMARK. Since in any homogeneous language the grammatical genders 
are both paradigmatic and syntagmatic, it follows that in such a language 
we always have R(x) C_ G(x) for any x E I?. Since G(x) c R(x) in any 
case, we deduce that G(x)  = R(x) for each x E r. In another way, this 
result was obtained in Proposition 29; indeed, in a homogeneous language 
we have K(x)  = R(x) for any x E r (Theorem 10, Chapter 11). 

Following Revzin, a category V is P-uniformly distributed if, for 
any pair of words x and y such that y E R(x) and P(x)  fl V # 0, we 
have PCy) fl V # 0. V is S-uniformly distributed if from y E R(x) and 
S(X) n V # 0 it follows that SCy) n V # 0. 

Proposition 34. If {r, P ,  @} is homogeneous, the grammatical genders 
are both P-uniformly and S-uniformly distributed. 

PROOF. Let y E R(x) and P(x) 17 G(u) # 0. In view of the remark 
following Proposition 33, we have R(x) = G(x). Hence, by Proposition 
20, G(y) = G(x). Since, by Proposition 2, P(x)  G(x), it follows, in 
view of Proposition 20, that G(u) = G(y);  but PCy) C G(y). Hence 
PCy) fl G(u) = P(y )  f l  G(y)  = P(y) f 0. Therefore G(u) is a paradigmatic 
category. 

Suppose now that y E R(x) and S(x) n G(u) # 0. We have, by Pro- 
position 30, S(x)  C G(x). Hence, by virtue of the homogeneity, G(x) = 

G(y) = G(u) and S ( y )  n G(u) = S ( y )  n G(y)  = SCy) # 0. Therefore 
G(u) is a syntagmatic category. 

Proposition 34 is a particular case of a more general result, due to 
Revzin ([38] and 1391, Theorem 5). 
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Proposition 35. If {r, P, @} is homogeneous, every syntagmatic 
category is P-uniformly distributed, whereas every paradigmatic 
category is S-uniformly distributed. 

PROOF. Let V be a syntagmatic category, that is, x E V implies 
S(x) C V. Let y E R(x) and P(x)  n V f  0. Let z E P(x)  n V. Since 
P(x)  C K(x)  = R(x) (Theorem 10, Chapter 11), we have z E K ( x )  and 
y E K(x) .  Hence z E K(y). Therefore, in view of the homogeneity, 
S(z) rl P(u) # 0 # P(z) n S b ) .  Let u E S(z) n P(y). Since z E V and 
V is syntagmatic, we have S(z)  C V. Hence u E V. Therefore 
u E P(y) n V # 0 and V is P-uniformly distributed. 

To  prove the second part of Proposition 35, we proceed in a similar 
fashion, replacing P by S and S by P. 

The coincidence between genders and classes in homogeneous 
languages receives new support by virtue of Proposition 36. 

Proposition 36 (Revzin [38] and [39], Theorem 4). Let V ,  and V, 
be two distinct categories contained in some R-cell R(x) ,  where x E r 
and {r, P, @} is an arbitrary language. If both V,  and V,  are para- 
digmatic, at least one is not P-uniformly distributed. If both V ,  and 
V, are syntagmatic, at least one is not S-uniformly distributed. 

PROOF. Let us admit that both V, and V, are P-uniformly distributed. 
We shall show that V,  = V,. 

Given y E V,, let x be such that P(x) fl V ,  # 0. Since V,  C R(x) ,  
we have y E R(x) and, since V,  is P-uniformly distributed, it follows 
that P(y) n V ,  # 0. But V,  is paradigmatic. Therefore P ( y )  C V,, and 
thus y E V,  and V,  C V,. In a similar way, but replacing V ,  by V,  and 
V,  by V,, we obtain V,  C V,. 

The second part of Proposition 36 may be obtained by replacing 
P by S in the proof above. 

REMARK. If {r, P, @} is homogeneous, x E r, and C(u)  and G(v) 
are two genders such that G(u) U G(v) C R(x).  Then, in view of Pro- 
position 36 and since G(u) and G(v) are both paradigmatic and syntag- 
matic, it follows that either G(u) = G(v) or G(u) # G(v) and neither 
G(u) nor C(v)  are P-uniformly distributed and neither G(u) nor G(v) 
are S-uniformly distributed. The second possibility contradicts Pro- 
position 34. Hence G(u) = C(v)  = R(x). This result agrees with Proposi- 
tion 29, since K(x)  = R(x).  
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7. Subparadigms and Subfamilies 

Given a language {r, P ,  (a} and a word x E r, we shall define the 
Subparadigm Ps(x) of x, as the set of words y which fulfill the following 
three conditions: ( 1 )  y E P(x); (2) if x r  E S(x), then P(x’)  fl S(y) # 0; 
(3) if y’ E S(y), then P(y’) n S(x) # 0. We shall also define the subfamily 
Ss(x) of x as the set of words z which fulfill the following three conditions: 
(a) y E S(x); (b) if x1 E P(x) ,  then S(xl) n P(z) # 0; (c) if z ,  E P(z),  
then S(z,) n P(x)  # 0. These notions were introduced by Revzin ([38], 
p. 45). 

Proposition 37. The relations y E Ps(x) and z E Ss(x) are equivalence 
relations in I?. 

PROOF. We have x E P ( x ) ,  x’ E P ( x ’ )  fl S(x) for each x‘ E S(x), 
and y’ E P(y’) n S(x) for each y r  & S(x). Hence x E Ps(x). The defini- 
tion of y E Ps(x) is symmetric with respect to x and y .  Hence y E Ps(x) 
implies x E Ps(y).  To prove the transitivity, let y E Ps(x) and z E Ps(y) .  
We have y E P(x) and z E P(y). Hence z E P(x) .  If x r  E S ( x ) ,  then 
P(x’)  f l  S(y) # 0. Let u E P(x’)  n S(y). Since u E S(y), we have 
P(u) n S(z) # 0. But P(u) = P(x’).  Hence P(x’)  n S(z) # 0. If z r  E S(z), 
then P(z’) f l  S(y) # 0. Let u E P(z’) f l  S(y) .  Since z1 E S ( y ) ,  we have 
P(v)  n S(x) # 0. But P(u) = P(z’). Therefore, P(z’) f l  S(x) # 0 and 
the relation considered is transitive. 

In a similar way (by replacing P by S and S by P)  one can prove 
that z E Ss(x) is also an equivalence relation. 

Proposition 38. There exist a nonadequate language {r, P ,  @} and 
a word x E r such that P(x)  # Ps(x) = Ss(x) # S(x) .  

PROOF. Let r= {a,  b, c, d } ,  P(a)= { a } ,  P(b)= {b} ,  P(c)= {c ,  d } ,  
Q, = (ab, cb, ad, cd}. We have S(a) = {a ,  c } ,  S(b) = {b, d } .  Since 
c E P(d) ,  a E S(c), but P(a) n S(d)=O, it follows that P s ( c ) = { c } .  
Hence Ps(c) # P(c). Since c E S(a), d E P(c), but S(d) n P(a) = 0, 
it follows that Ss(c) = { c } .  Hence SS(C) # S(c). The word x = c fulfills 
the required conditions. On the other hand, in view of the proof of 
Proposition 1, Chapter 11, the language considered is not adequate. 

Proposition 39. There exist an adequate language (r, P ,  (a} and a 
word x E r such that P(x)  # Ps(x) = Ss(x) # S(x). 
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PROOF. Let r =  { a ,  b, C ,  d } ,  P(u)  = {a ,  b} ,  P(c)  = { c ,  d } ,  Q, = {ad,  
bb, ab, bc, bd, dc, db, dd} .  We have S(a)  = { a } ,  S(b) = {b, d} ,  S(c) = 

{ c } .  Since b E P(a), d E S(b) and P(d) rl S(a) = 0, we have Ps(b) = 
{b}.  Hence Ps(b) f P(b). Since b E S(d), a E P(b), and S(a) rl P(d)=O, 
we have Ss(b) = {b} .  Hence Ss(b) # S(b). The word x = a fulfills the 
required conditions. On the other hand, in view of the proof of Theorem 9, 
Chapter 11, the language considered is adequate. 

The linguistic significance of the subparadigms may be illustrated by 
the following example. Consider the Rumanian neuter nouns, such 
as scaun. The paradigms of these nouns have the specific property 
that each inflected form of the singular belongs to the family of some 
masculine noun, whereas each inflected form of the plural belongs 
to the family of some feminine noun. For instance, we have P(scaun) = 
P,(scaun) U P,(scaun), where P,(scaun) = {scaun, scaunului, scaunule, 
scaunul}, P,(scaun) = {scaune, scaunele, scaunefor}. Each element 
of P,(scaun) belongs to the singular, whereas each element of P,(scaun) 
belongs to the plural. We have scaun E S(pom), scaunului E S(pomului), 
scaunule E S(pomule), scaunul E S(pomul), whereas pom, pornului, 
pomule, and pomul belong to the masculine grammatical gender and 
belong to the same gender in the sense of the definition given in Section 4. 
We have also scaune E S(ciirti), scaunele E S(ciirlile), scaunelor E 
S(cslr(ilor), whereas ciirli, carqile, and cirrqilor belong to the feminine 
grammatical gender and belong to the same gender in the sense of the 
definition given in Section 4. On the other hand, scaun and pom do 
not belong to the same gender, and the same is true for scaune and 
cslrgi. However, if we consider P,(scaun) and P,(scaun) as two distinct 
paradigms and we adopt this convention for all neuter Rumanian nouns, 
scaun is the same gender as porn, whereas scaune is the same gender 
as cLir4i; the Rumanian neuter no longer exists. 

The differences between P,(scaun) and P,(scaun) may be detected 
with the aid of subparadigms. Indeed, it is easy to see that Ps(scaun) = 
P,(scaun), whereas Ps(scaune) = P,(scaun). That scaune does not 
belong to Ps(scaun) results from the relations scaune E P(scaun), 

There are Rumanian nouns which belong to the same family, al- 
though they do not have the same gender. For instance, scaun E S(pom), 
scaune E S(c5rqi) but scaun and porn, scaune and c5rqi do not have 
the same gender. We may detect this peculiarity with the aid of the 
subfamilies. Indeed, two Rumanian nouns which belong to the same 
family have the same gender if and only if they belong to the same sub- 

E S(scaune), P(c5rqi) f l  S(scaun) = 0. 
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family. For the sake of illustration, let us prove that scaun does not 
belong to Ss(porn). We have pomi E P(porn), but S(pomi) r l  P(scaun) = 0. 

The linguistic significance of subparadigms and subfamilies, partic- 
ularly concerning Slavic languages, are discussed by Revzin [38, 391. 

It is not accidental that all linguistic illustrations of subparadigms and 
subfamilies are taken from languages such as Rumanian and Russian, 
in which, as we have already proved, most nouns are not homogeneous 
words (see, for instance, Section 8,  Chapter 11). Indeed, we have Pro- 
position 40. 

Proposition 40. If the language {r, P ,  Ca} is homogeneous, the sub- 
paradigms coincide with the paradigms, whereas the subfamilies coincide 
with the families. 

PROOF. Since in any case Ps(x) C P(x)  for each x E r, let us prove 
that P(x)  C_ Ps(x). Let y E P(x> and y r  E S(y).  We have y E P(x)  fl S ( y )  = 
P(x)  n S(y’) # 0. Hence, in view of the homogeneity, P(y’) f l  S(x)  # 0. 
Now let x r  E S(x). We have x E P(y )  n S(x)  = P(y )  n S ( x ’ )  # 0. Thus, 
in view of the homogeneity, P(x’ )  f l  S(y) # 0; therefore, y E Ps(x). 

In the same way, but replacing P by S and S by P ,  we prove that 
Ss(x) = S(x). 

Given two words x and y such that y E S(x),  we cannot deduce that 
x and y belong to the same categories. In a nonadequate language, x 
and y may belong to different parts of speech, whereas in a nonhomo- 
geneous language x and y may have different genders. It is interesting 
to decompose S(x) into subsets S1, Sz, . .  . , S, such that, for y E St, 
z E Si (1 S i s n), y and z belong to the same categories. If, for each word 
x ,  the subfamilies of S(x) yield such a decomposition, we shall say that 
the language considered is S-regular (Revzin [38], p. 45). The S-regu- 
larity and the homogeneity are very close properties. Indeed, if we 
consider as categories only the grammatical categories (in the sense 
defined in the first part of this section), the parts of speech and the 
genders, then, in view of Theorem 10, Chapter 11, and of Propositions 
2 and 40, this Chapter, any homogeneous language is S-regular. As a 
matter of fact, it would be interesting to see whether there exists a 
part of speech or a gender in a homogeneous language, which is not 
a grammatical category. 

Another interesting problem is to investigate the notions introduced 
in Chapter 11, when S(x) is replaced by Ss(x), whereas P(x)  is replaced 
by Ps(x).  
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8. A Measure of the Difference between Genders 

We shall now study the problem of finding a measure of the difference 
between two given genders. To this aim, we shall introduce the notion 
of distance between two genders G(x)  and GCy), defined as the smallest 
number n having the property that any word of G(x)  may be joined with 
any word of G(y)  by a chain of a length smaller than, or equal to n+ 1. 
In case there is no natural number having this property, we shall say 
that the distance between G(u)  and G(y)  is injnite. 

Let us denote by S(x, y )  the distance between G(x)  and G(y) .  It is easy 
to see that S(x, y )  3 0;  6(x, y )  = 6 ( y ,  x ) ;  S(x, y )  d 6(x, z )  + S(z ,  y )  for any 
word z.  Thus, S(x, y )  fulfills almost all the properties of a distance. It 
is useful especially whenever the genders are pairwise disjoint (as in 
most of the following examples). 

To establish the distances between genders in various natural lan- 
guages, we shall reconsider the results of Section 3 in the light of the 
definitions given in Section 4. We do not claim completeness; we intend 
only to illustrate the notion of distance and its linguistic significance. 

ENGLISH. We have, for two arbitrary nouns x and y ,  G(x )  = G(y) 
and 6(x, y )  = 2. 

FRENCH. Let us consider the following six genders: G(crayon) (first 
masculine), G(arbre) (second masculine), G(maison), (feminine), G(cas) 
(first neuter), G(voix) (second neuter), G(enfant) (third neuter), and 
G(camarade) (fourth neuter). Since the strings be1 arbre and bels arbres 
are correct, whereas the strings be1 crayon, bels crayons are not, we have 
G(crayon, arbre) = 00. Since the strings beau crayon and beaux crayons 
are correct, whereas beau maison and beaux maisons are not, it follows 
that S(crayon, maison) = 00. Since the strings nouveau cas and nouveaux 
cas are correct, whereas the strings nouveaux crayon and rzouveau 
crayons are not, we have G(crayon, cas) = w. Since beau voix and 
beaux voix are not correct strings, it follows that S(crayon, voix) = 00. 

Since the correct strings belle enfant and belles enfants are no longer 
correct when we replace enfant by crayon and enfants by crayons, we 
have G(crayon, enfant) = 00. Since the correct strings belle maison and 
belles maisons become incorrect when we replace maison by arbre and 
maisons by arbres, it follows that G(arbre, maison) = 00. Since the strings 
be1 arbre, bels arbres are correct, whereas be1 cas and bels cas are not, 



146 IV. Grammatical Gender 

we have G(arbre, cas) = m. Since be1 voix, bels voix are not correct, it 
follows G(arbre, voix) = a. Since the strings belle enfant and belles 
enfants are correct, whereas belle arbre, belles arbres are not, we have 
G(arbre, enfant) = a. Since grande voix and grandes voix are correct 
strings, whereas grande maisons and grandes maison are not, it follows 
that G(maison, voix) = a. Since the strings be1 enfant and bels enfants 
are correct, whereas be1 maison and bels maisons are not, we have 
G(maison, enfant) = 00. In the same way we find G(maison, cas) = w, 

G(cas, voix) = 00 and G(voix, enfant) = 03. Since the strings beau cama- 
rade, beaux camarades, belle camarade, and belles camarades are all cor- 
rect, whereas beaux camarade, beau camarades, belles camarade, belle 
camarades, be1 camarade, and bels camarades are not, it follows that 
G(crayon, camarade) = G(arbre, camarade) = G(maison, camarade) = 
G(cas, camarade) = G(voix, camarade) = G(enfant, camarade) = a. 

It is easy to see that two different genders are always disjoint. 

ITALIAN. Let us consider the following three genders: Gvratello) 
(masculine), G(bocol1a) (feminine), G(giovane) (neuter). Since the 
strings buono fratello and buoni fratelli are correct, whereas the strings 
buono bocolla and buoni bocolle are not, we have Gvratello, bocolla) = 
00. Since buona giovane and buone giovani are correct strings, whereas 
buona fratello and buone fratelli are not, we have Gvratello, giovane) = m. 

Since buono giovane and buoni giovani are correct strings, whereas 
buono bocolla and buoni bocolle are not, it follows that G(bocolla, gio- 
vane) = a. It is easy to see that two distinct genders are always disjoint. 

SPANISH. Let us consider the genders G(padre) and G(madre). For 
similar reasons we find G(padre, madre) = 00. 

RUMANIAN. Let us consider the following six genders: G(pom) (mas- 
culine), G(carte) (feminine), G(scaun) (first neuter), G(ochi) (second 
neuter), G(tnvZg2toare) (third neuter), and G(nume) (fourth neuter). 

The shortest chain between pomi and carte is of a length equal to 6: 
pomi-pom-scaun-scaune-c&-<i-carte. Since any word of P(pom) may 
be joined with any word of P(carte) by a chain of length not greater than 
6, it follows that G(pom, carte) = 5 .  The shortest chain between pomi 
and scaune is equal to 4: pomi-pom-scaun-scaune. Since any word 
of P@om) may be joined with any word of P(scaun) by a chain of length 
not greater than 4, we have G(pom, scaun) = 3. 

The shortest chain between pom and ochi is of length 4: pom-pomului- 
ochiului-ochi. Since any word of P@om) may be joined with any word 
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of P(ochi) by a chain of length not greater than 4, we have G(pom, ochi) = 
3. The shortest chain between pomi and inviiyiitoare is of length 6: 
pomi-pom-scaun-scaunelor-inviiliitoarelor-inviiriitoare. Since any word 
of P(pom) may be joined with any word of P(invii4iitoare) by a chain no 
longer than 6, it follows that G(pom, inviitiitoare) = 5 .  Since for any x E 
P(pom) and any y E P(nume) we have the chain x-pomului-numelui-y, 
it follows that G(pom, nume) = 3 .  

For each x E P(carte) and each y E P(scaun) we have the chain x- 
ciirti-scaune-y. Hence G(carte, scaun) = 3.  For each x E P(carte) and 
y E P(ochi) we have the chain x-c~rti-scaune-scaunului-ochiului-y; 
hence G(carte, ochi) = 5. For each x E P(carte) and y E P(invii[iitoare) 
we have the chain x-ciir[ii-inviitiitoarei-y. Hence G(carte, inviitiitoare) = 

3.  For each x E P(carte) and y E P(nume) we have the chain x-ciiryilor- 
numelor-y. Hence G(carte, nume) = 3. 

In the same way we find that G(scuun, ochi) = 3 ,  G(scaun, Pnviif& 
toare) = 3 ,  G(scaun, nume) = 3 ,  G(ochi, inviitiitoare) = 5 ,  G(ochi, 
nume) = 3 ,  G(invii[iitoare, nume) = 3 .  Moreover, it is easy to see that 
two distinct genders are always disjoint. 

RUSSIAN. Let us consider the genders G(stol) (masculine), G(kniga) 
(feminine), and G(okno) (neuter). We use the following remark: A 
plural form of a Russian adjective is the same for all genders. It fol- 
lows that two plural noun forms having the same case are in the same 
family. If x E G(stol), y E G(kniga), and z E G(okulo) and x‘, y’, z’ are 
the corresponding forms of nominative plural, we have the chains 
x-XI-y’-y; x-XI-z’-z; y-y ’-z’-z. Hence G(sto1, kniga) = G(sto1, okno) = 
G(kniga, okno) = 3. 

GERMAN. Let us consider the genders G(Titel) (masculine), C(Gabe1) 
(feminine), G(Fenster) (neuter). For reasons similar to those concern- 
ing Russian we find G(Tite1, Gabel) = G(Tite1, Fenster) = G(Gabe1, 
Fenster) = 3. 

LATIN. Let us consider the genders G k u e r )  (masculine), C(aestas) 
(feminine) and G(tempus) (neuter). We use the following remark: A 
dative plural form of a Latin adjective is the same for all genders. It 
follows that two dative plural noun forms belong to the same family. 
If x E G(puer), y E G(aestas), and z E G(tempus), we have the chains 
x-pueris-aestatibus-y; x-pueris-temporibus-z; y-aestatibus-tempor- 
ibus-z. It follows that G(puer, aestas) = G(aestus, tempus) = G(puer, 
tempus) = 3. 
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We notice that the distance between masculine and feminine is maxi- 
mum in French, Italian, and Spanish (being equal to m) and minimum 
in Russian, German, and Latin (where it is equal to 3). Rumanian is, 
in this respect, intermediate. Unlike Russian, German, and Latin (where 
the three genders exhibit, in their reciprocal relations, identically strong 
oppositions- based on the constant value of all the distances), in Ruman- 
ian some of the neuter genders are obviously inferior compared to the 
masculine and the feminine. For instance, the distance between mas- 
culine and feminine is equal to 5 ,  whereas that between masculine and 
first neuter is equal to 3. 

The conditions under which we have settled the existence of the 
neuter in Rumanian and the conditions under which we have settled 
its disappearance (see Sections 3 and 7) define a specific position 
in this much argued problem of the neuter [1-5, 10, 11, 17, 18, 35, 
37,41-44,47,49]. In any event the neuter, under the condition that 
it exists in Rumanian, is fundamentally different from both the Latin 
and the Russian neuter, through its relatively weaker opposition in rela- 
tion to the masculine and the feminine. It is of interest that the diachronic 
analysis of Rumanian neuter leads to the conclusion that it continues 
neither the Latin neuter nor the Slavic one (see in this respect the paper 
of Rosetti [43]). The Rumanian neuter corresponds to neither the Slavic 
nor the Latin neuter, neither in form nor in semantic content. In sum and 
substance, as Rosetti [43] and Jakobson [ 181 have already mentioned, 
the first Rumanian neuter is an appanage of the inanimate alone, which 
does not exclude, of course, the existence of some masculine or feminine 
inanimate. 

As far as French neuter is concerned, as well the second, the third 
and fourth Rumanian neuter, they are exclusively a result of some pheno- 
mena of morphologic homonvmy. Hence they are, in some sense, secon- 
dary genders. 

9. Personal Genders in Rumanian 

Until now we have adopted as marked (correct) strings only those of 
the form noun + qualifying adjective in the positive degree or qualifying 
adjective in the positive degree + noun. But as soon as we take other 
sentences into consideration, we feel the need of detecting more shades 
of difference in grammatical genders. 
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Let us consider the Rumanian language. To understand in a better 
fashion the discussion we made, we shall also give here the English 
translation of all Rumanian strings we use. 

If we enlarge sufficiently the set of sentences (marked strings) so 
that they also contain sentences of the type cheamii pe biiiat (call the boy) 
or dau lui Zon o carte (I give John a book), we observe, in relation to 
the above definition, that each of the words porn (tree), biiiat (boy), 
and Zon (John) has its own characteristic gender. Indeed, if we admit 
the sentence cheamii pe biiiat (call the boy), we can never accept the 
sentence cheamii pe porn (call the tree); it follows that biiiat (boy)and 
porn (tree) are not in the same distribution class as they were when 
we considered a more restricted set of sentences. Hence it still follows 
that biiiat (boy) and porn (tree) can no longer be joined by anything 
except a chain having a length of 4: biiiat (boy), biiiatului (of (to) the 
boy), pomului (of (to) the tree),pom (tree); therefore, biiiat (boy) and porn 
(tree) are not of the same gender. 

If we admit the sentence dau lui Zon o carte (I give John a book), 
but do not agree to sentences such as dau lui porn o carte, (porn = tree) 
or dau lui b5iat o carte* (biiiat = boy), it follows that Zon is neither in the 
same distribution class with porn nor with biiiat. Since the paradigm of 
Zon is cut down to this single word [we are leaving aside the form Zoane 
(John) in the vocative], it follows that there is no chain, however long, 
that could join Zon to biiiat or Zon to porn. Thus, the grammatical gender 
of Ion differs both from the grammatical gender of biiiat and from that 
of porn. This conclusion is still valid even if we take into consideration 
the form Zoane (John, in the vocative). The only new factor in such a 
case is the possibility of joining Zon with biiiat and with porn by a chain 
having a length equal to 4. 

The grammatical gender of porn (tree) will be called nonpersonal 
masculine gender. The grammatical gender of Zon will be named personal 
masculine gender of proper nouns, whereas the grammatical gender of 
biiiat (boy) will be called abstract personal masculine gender. 

A similar analysis may be carried out for words such as mas3 (table), 
Maria and fat6 (girl). The outcome is that fatii and mas; are not in 
the same distribution class, because we do admit the sentence cheamii 
pe fatii (call the girl) and reject the sentence cheamii pe mas6 (call 
the table). Fat6 and masii may be joined only by a chain of a length 
equal to 4: fatic, fetei [of (to) the girl], mesei [of (to) the table], mas& 
Therefore fati? and masii are not of the same gender. In a similar manner 

*Nothing in English corresponds to the incorrectness of the two sentences. 
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it may be proved that Maria and masii are not of the same gender 
either; they may be joined only by a chain of a length equal to 4: Maria, 
Mariei (Mary’s or to Mary), mesei [of (to) the table], masir. We notice 
here a difference from the situation of the masculine nouns. If Zon 
and pom cannot be joined by any chain, Maria and masir can be joined 
by a chain. 

The question of whether Maria and fatir are of the same gender 
must now be settled. The answer to this question is different from 
the one given to the analogous situation for the masculine, because, 
if we do admit the sentence dau lui Zon o carte (I give John a book), 
we reject the sentence dau lui Maria o carte (Mary is a feminine proper 
name). 

But if we take into consideration sentences of the type Maria cea 
silitoare (Mary the diligent) we notice that Maria does not belong 
to the same class of distribution with fat6 because the sentence fat2 
cea silitoare (girl the diligent) is not admitted. The smallest chain uniting 
Maria with fatii is, in this case, a chain of a length equal to 4: Maria, 
Mariei (Mary’s or to Mary), fetei (the girl’s or to the girl), fatii (girl); 
therefore Maria and fati3 are not of the same gender. 

Let us consider now a feminine proper noun to which the article 
lui may be added, for instance, Mimi. For such a word, we apply the 
same reasoning as for the word Zon. The result is that Mimi belongs 
to a different gender from that offat t i  (girl) as well as from that of casir 
(house). At the same time, we notice that there is no chain to join Mimi 
with Maria, which means that these two nouns also have different 
genders. 

As far as the neuter genders are concerned, it is not difficult to see 
that their existence has not been affected by the fact that the set of 
sentences has been enriched. 

In conclusion, we have obtained the following grammatical genders 
of Rumanian nouns, with respect to the set of enriched sentences as 
shown above: 

(1) the nonpersonal masculine gender born (tree), sttlp (pillar), 
etc.]; 

(2 )  the first personal masculine gender or the abstract personal 
masculine gender [biiiat (boy), copil (child), etc.] ; 

(3) the second personal masculine gender or the personal masculine 
gender of proper nouns (Zon, Gheorghe, Vasile, etc.); 

(4) the nonpersonal feminine gender [casii (house), carte (book), 
ploaie (rain), etc.]; 
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(5)  the first nonpersonal feminine gender or the abstract personal 
feminine gender vat2 (girl), copilii (little girl), femeie (woman), etc.]; 

(6) the second personal feminine gender or the personal feminine 
gender of proper nouns (Maria, Sanda, etc.); 

(7) the third personal feminine gender or the personal semifeminine 
gender of proper nouns (Mimi, Jeni, etc.); 

(8) the neuter genders [scaun (chair), caiet (exercise book), etc.]. 
We are not yet sure that we have thus exhausted the Rumanian 

genders. The analysis of names of towns, of countries, of generic names 
of animals, and of other categories of words, as well as the enriching 
of the set of sentences, might reveal new grammatical genders. How- 
ever, we shall not investigate this problem now. 

The problem of determining the reciprocal distance between the 
above genders of the Rumanian language seems quite natural. We 
shall record here some of these distances; using the code M N  = non- 
personal masculine, Z M B  = first person masculine, ZZ MP = second 
person masculine, FN = nonpersonal feminine, Z FP = first person 
feminine, ZZ FP = second person feminine, ZZZ FP = third person 
feminine, N = first neuter. We obtain the results contained in Table 4 
(filling in the empty spaces may form the object of another investigation). 

TABLE 4 

M N  I M P  I I M P  F N  I FP I1 FP 111 FP 

M N  2 3 m 5 

I M P  3 2 m 

F N  5 2 3 3 m 

I F P  4 2 m 

I 1  F P  4 2 W 

I I I  F P  m m W 2 

It is worthwhile to observe that the opposition between the nonpersonal 
masculine and the first person masculine is weaker than the opposition 
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between the first person masculine and the second person masculine. 
The first person masculine is nearer to the nonpersonal masculine than 
to the second person masculine. Likewise, the opposition between 
the third person feminine and any other feminine gender is stronger 
than the opposition between the nonpersonal feminine and any of the 
two first person feminine genders. 

As shown above, the widely accepted current thesis, according to 
which Rumanian has only one masculine and one feminine gender, cor- 
responds in fact to a relatively low level of grammaticalness, namely, 
to the one supplied by the syntagms consisting of a noun and an adjective 
in the positive degree. As soon as we move to a higher level of gram- 
maticalness in the Rumanian language the number of masculine and 
feminine genders increases considerably. 

We might raise the problem of the necessity of passing at first through 
lower levels of grammaticalness; might it not be possible to consider 
the entire grammaticalness at once? The answer is negative. In truth, 
the actual idea of such a consideration is an illusion. We can keep in 
mind a higher grammaticalness compared to a preceding stage of the 
investigation, but something will always escape our endeavor, because 
grammaticalness is inexhaustible. Besides (and, perhaps, this is the most 
important fact) this gradual passing from one level of grammaticalness 
to another superior one, enables us to identify certain simple, but essen- 
tial, connections which could not be detected otherwise. Thus, at the 
level of the syntagms noun + adjective we could detect the mechanism 
of the passing from the natural gender to the grammatical one, a mechan- 
ism which no longer appears at superior levels of grammaticalness, 
because, for example, birrbat (man) and porn (tree) cease, under such 
conditions, to be of the same gender. 

As we have seen above, the personal genders occur, in Rumanian, 
at a superior level of grammaticalness. These genders arise within the 
genders already detected at an inferior level of grammaticalness; two 
personal genders arise within the masculine and another three genders 
within the feminine. This situation tallies roughly with the results of 
the diachronic analysis [43]; yet, some details differ. We do observe, 
at the same time, that the passing on to a superior level of grammatical- 
ness does not cancel the results of the analysis done at an inferior level, 
but enlarges them, also adding a more subtle description. 

Concerning personal genders in Rumanian, see also Chifimia [4], Graur 
[lo, 1 1 1 ,  Hjelmslev [14], NandriS [32], Niculescu [33], Racovi@i [36], 
Rosetti [42], Seidel [46]. Concerning genders in Slavic languages see 
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also [8], [12], [19], [21], [22], and [45]. Concerning genders in Italian 
see [40]. 
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NOTE ADDED IN PROOF 

A new mathematical model of grammatical genders is studied by I. I. Revzin (Applying 
a set-theoretical model to a language with grammatical homonymity (in Russian), Nautn.  
Tekhn. Inform. 1965 (3), 34-38). In this model, two distinct genders are always disjoint. For 
some homogeneous languages, Revzin’s model coincides kith the above one. An application 
of the model studied in Chapter IV to genders in Western Slavic languages is made by 
J. Horecky (Model gramaticktho rodu v z&padoslovanskych jazykoch, Jazykovedny Casopis 
17 ( I ) ,  3-12 (1966). Concerning genders in Rumanian see also V. Horejsi (A propos 
des noms ambigenes (neutres) roumains, PhiMogica Pragensia, 7 (4), 401-407 (1964)). 
Some concepts and theorems discussed in Chapters I-IV can be included in a general 
algebraic theoryof so-called R-systems (M. Novotny, On some algebraic concepts of Mathe- 
matical Linguistics, Prague Studies in Mathematical Linguistics 1, 125-140 (1966)). 



Chapter V 

Configurations 

1. introduction 

In this chapter we intend to make a systematic investigation of one of 
the basic notions of any syntactic description- the notion of syntactic 
dependence. To  this aim, we concentrate on the theory of syntactic con- 
figurations, initiated by Ljapunov and Kulagina [26]. There are many 
notions in literature which express the fact that some groups of words 
(or morphemes) may behave, in some contexts, as a single word. Thus, 
we recall the notions of syntagm (see, for instance, MikuS [29]), constit- 
uent (Bloomfield [4, 51, Pike [37], Wells [45]), construction (Gleason 
[ 171). A configuration is none of these, but it has something in common 
with each of them. It permits us to detect, by a recursive procedure, 
various degrees of syntactic dependence. (For the signification of re- 
cursive definitions in empirical sciences see Bar-Hillel [ 1 ] .) Consider, 
for instance, the well-formed German string ein sehr alter Mann. The 
dependence of sehr upon alter may be recognized from the possibility 
of removing the word sehr and the impossibility of removing the word 
alter, without affecting the correctness of the sentence. (The string 
ein alter Mann is correct, whereas the string ein sehr Mann is not.) 
The group of words sehr alter behaves as the single word alter, that is, 
sehr alter and alter have (approximatively) the same distribution. But 
we intuitively agree that we also have another dependence: alter depends 
upon Mann. Nevertheless, this dependence may not be detected in the 
same way, since neither alter nor Mann may be removed without affect- 
ing the correctness of the sentence. But as soon as we replace the group 
sehr alter by the “resultant” of this group, alter, we obtain a sentence 
where the dependence of alter upon Mann may be detected as the depen- 
dence of sehr upon alter in the first sentence. Indeed, in the well-formed 
string ein alter Mann the group alter Mann behaves as the single word 
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Mann. It follows that the dependence of alter upon Mann is of another 
degree than the dependence of sehr upon alter. Precisely such distinc- 
tions will be the object of our study in this chapter. We shall define 
syntactic configurations of various orders, and we shall then apply them 
in the classification of dependence relations. 

2. P-Configurations and P-Structures of Order n 

Let us consider a language {F, P, @} . We recall that a P-structure is 
a finite sequence P1, P2,.  . . , P, of P-cells; n is the length of the P- 
structure. The P-structure is marked if there exists a marked string 
a1a2 . . . a, over r such that P(ai) = Pi ( 1  G i s n). 

Every P-structure will be considered in the present chapter as a P- 
structure of rank zero. The set of all P-structures will be denoted by 
Yo. We consider also the empty P-structure, whose length is equal to 0. 

Let us consider a P-structure 9 which fulfills the two conditions (1) 
the length of P is not less than 2 and (2) there exists a word a E r such 
that 8 and P(a) are P-equivalent, that is, given two P-structures 8, and 
P2, the P-structures 8(1P82 and Y1 P(a) P2 are either both marked or 
both unmarked. Then we shall say that 9 is a P-configuration of the 
first rank. The P-cell P(a)  will be called a resultant of 9. 

Let P be a P-structure such that no P-structures PI and P2 exist for 
which 8,9 P2 is a marked P-structure. We shall say that P is a parasitic 
P-structure. Moreover, 8 may be both a parasitic P-structure and a P- 
configuration of the first rank. In such a situation, we shall say that 9 
is a parasitic P-configuration of the first rank. 

Let Y be a subset of 9,. We shall say that two P-structures 8, and 8* 
are P-equivalent with respect to Y if for any pair of P-structures P3 
and P4, such that P3P1P4 and Y3Y2P4 belong to 9, the P-structures 
8 3 9 1 8 4  and 9 3 9 2 9 4  are either both marked or both unmarked. 

Let P be a P-structure which fulfills the following condition. If Pl 
and 9, are P-structures for which P18P2 E Y ,  then 9,8P2 is an 
unmarked P-structure. In this case, we shall say that the P-structure P 
is parasitic with respect to 9. 

The following proposition is obvious. 

Proposition 1. If 9' and 9'' are two subsets of Yo such that 9'' C Y' 
and if the P-structures 8, and P2 are P-equivalent with respect to Y' ,  
then 8, and P2 are also P-equivalent with respect to Y" 
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Given two P-structures B and 9,, we shall say that 9 contains 9, 
if there exist two P-structures g2 and Y3 such that B = B2 9, P3. (B2 or 
P3 may be the empty P-structure). 

We shall say that a P-structure 9 is a P-structure of the jirst rank if 
9 contains no P-configuration of the first rank. The set of all P-structures 
of the first rank will be denoted by Yl. 

Let us consider a P-structure B which fulfills the following two con- 
ditions: ( 1 )  the length of B is not less than 2; (2) there exists a word 
a E such that 9 and P(a) are P-equivalent with respect to 9,. Then we 
shall say that .9’ is a P-configuration of the second rank. The P-cell 
P(a) will be called a resultant of 9. 

If B is both a P-configuration of the second rank and a parasitic 
P-structure with respect to Yx,  we shall say that 9 is a parasitic P- 
configuration of the second rank. 

We shall say that a P-structure 9 is a P-structure of the second rank if 
B contains no P-configuration of the second rank. The set of all P- 
structures of the second rank will be denoted by Y2. 

Let us admit that we have defined, for every positive integer p < n, 
the P-configurations and the P-structures of rank p ;  let us denote by 
9, the set of all P-structures of rank p.  We shall say that the P-structure 
B is a P-conjiguration of rank n if the. following two conditions are 
fulfilled: (1) the length of 9 is not less than 2; (2) there exists a word 
a E r such that 9 and P(a) are P-equivalent with respect to 9,-,. The 
P-cell P(a) will be called a resultant of.9’. 

If B is both a P-configuration of rank n and a parasitic P-structure 
with respect to YnPl, we shall say that 9’ is a parasitic P-conjiguration 
of rank n. 

We shall say that a P-structure 9 is a P-structure ofrank n if B contains 
no P-configuration of rank n. The set of all P-structures of rank n will 
be denoted by Yn. 

Let us denote by gn the set of all P-configurations of rank n. 

Theorem I. We have 9, 2 9, 2 . - 2 Yn 2 Y,,, 2 * * * and %‘I C 
(6‘2 C * * * C Vn C Vn+1 C * * * . Moreover, if B E W n  and B admits the 
resultant P(a), then P(a) is also a resultant of .9’ conceived as an element 
of 97l+l. 

PROOF. Since 9, is the set of all P-structures, the inclusion 9, 2 9, 
is obvious. Then, in view of Proposition 1, we have F1 C V2, and any 
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resultant of 9 E Vl is also a resultant of 9 conceived as an element 
of VZ. 

Let us admit that SPp-l 2 SPp and f f p  C_ %‘p+l for every positive integer 
p < n. Let 9 be a P-structure of rank n. 9 contains no P-configuration 
of rank n and, since Vnp1 C gn, 9 contains no P-configuration of rank 
n - 1.  It follows that SPn C Yn-l. Then, in view of Proposition 1, we have 
Vn G Vn+l and any resultant of 9 E Vn is also a resultant of 9 conceived 
as an element of Vn+l. Theorem 1 is proved. 

Theorem 1 makes the following definitions natural. 
A P-structure 9 is said to be offinite order if there exists an integer 

n (obviously unique) such that 9 E 9, -.9n+l. The number n is the order 
of 9. If no such n exists, then 9 is said to be of infinite order. Let us 
denote by 9, the set of all P-structures of infinite order. 

A P-structure 9 is said to be a P-configuration of order n if we have 
9’ E Vn-Vnp1. (We put g o = O . )  It is easy to see that the rank of a P- 
structure 9 is less than or equal to the order of 9, whereas the rank 
of a P-configuration 9 is greater than or equal to the order of 9. More- 
over, if 9 is a P-structure of order n, then 9 is a P-structure of rank k 
for every k S n ;  if 9 is a P-configuration of order n, then 9 is a P-con- 
figuration of rank i for every i n. Therefore, the order of a P-structure 
is its maximum rank, whereas the order of a P-configuration is its mini- 
mum rank. 

A P-structure 9 is said to be a P-configuration of infinite order if 
the two conditions are fulfilled (1) the length of 9 is not less than 2 and 
(2) there exists a word a E r such that 9 and P(a) are P-equivalent with 
respect to 9,. The P-cell P(a) is a resultant of 9. We shall denote by 
grn the set of all P-configurations of infinite order. We may now develop 
a transfinite classification of the P -structures and P -configurations of a 
given language, but we do not insist on this idea. 

Proposition 2. We have 9, 2 Yn for every integer n 3 0 and gn C grn 
for every positive integer n. 

PROOF. If 9 E SP,, then B E Yn-SPn+l holds for no integer n 3 0. 
Since, in any case, 9 E Yo, it follows, in view of Theorem 1, that 

m 

9 E nyn, 
n=1 

and the first inclusion is proved. From 9, C_ 9, (n  3 0)  and in view of 
Proposition 1, the second inclusion immediately follows. 



160 V. Configurations 

3. The P-Configuration and the P-Structure Types of Language 

Theorem 2. For every positive integer n, the equality V n  = %‘n+l implies 
9, = Yn+l, whereas the equality Yn-, = 9, implies en = gn+,. 

PROOF. Let gn=$?n+l. In view of Theorem 1 we have, in any case, 
Yn+l 9,. It remains to prove the other inclusion. Let 9 E Y,; 9 
contains no P-configuration of rank n. Hence, since gn = gn+,, 9 contains 
no P-configuration of rank n+ 1. Therefore 9 E Y,,, and Y n  G Y n + , -  

Now let Yn-,=Yn. In view of Theorem 1 we have, in any case, 
gn C gn+,. It remains to prove the other inclusion. Let 9 E %‘n+l. There 
exists a word a E r such that 9 and P(a) are P-equivalent with respect 
to 9,. Since Yn=YnP1, it follows that 9 and P(a) are P-equivalent 
with respect to Y,-,; on the other hand, the length of 9 is not less than 
2, because 9 E %‘,+,. It follows that 9 E gn and gn+, C gn. Theorem 
2 is so proved. 

Corollary 1. If there exists an integer n such that %‘n=gn+l, then 
gn = gm for any m > n. If there exists an integer n such that Yn = Yn+,, 
then Yn = 9, for any m > n. 

PROOF. In view of Theorem 2, gn=Vn+,  implies Yn=Yn+,, which 
implies gn+, = gn+2, which implies Yn+, = Yn+2, which implies %‘n+z = 

gnf3  etc. 

Corollary 2. If the language {r, P, @} has no P-configuration of order 
n, it has no P-configuration of order m > n. The same is true for the 
P-structures. 

PROOF. If no P-configuration of order n exists, then %?n-%?n-l=O. 
Hence, in view of Theorem 1 ,  gn-, = %‘,, and, by Corollary 1, grn = g m - 1  

for every integer m 2 n. Therefore, %‘,-%?,-, = 0 for m 2 n and no 
P-configuration of order m exists. A similar proof holds for the P- 
structures. 

Corollary 2 makes the following definitions natural. 

Let us suppose the existence of an integer N which fulfills the follow- 
ing conditions: (1) there exists a P-configuration of order N; (2) there 
exists no P-configuration of order N +  1. In this case, we shall say that 
the considered language has a jinite, positive P-configuration. By 
definition, the P-conjiguration is equal to  N .  If %‘, = 0, we shall say 
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that the P-configuration is equal to 0. If no such integer N exists, and 
if g1 # 0, we shall say that the P-configuration is infinite. 

The P-configuration of a language L is a measure of the complexity 
of the dependence relations which exist in L. Unfortunately, we know 
nothing about the P-configuration of the natural languages. This seems 
to be a difficult problem. 

Let us suppose the existence of an integer M which fulfills the follow- 
ing conditions: (1) there exists a P-structure of order M ;  (2) there exists 
no P-structure of order M +  1. In this case, we shall say that the con- 
sidered language has a jinite nonnegative P-structure type. By defini- 
tion, the P-structure type is equal to M .  If Yo = Y,, we shall say that 
the P-structure type is equal to -1 .  If no such integer M exists and 
if Yo # Y1, we shall say that the P-structure type is  injinite. 

In the general case, denote by M the P-structure of a language L 
and by N its P-configuration. We always have -1 s M S a, 0 S N C m. 

Proposition 3. If gl = 0, then en= 0 and 9, =Yo for every positive 
integer n. 

PROOF. If gl = 0 and 9 E Yo, then 9 contains no P-configuration 
of the first rank. Hence 9 E Y, and Yo C 9,. Since, in view of Theorem 
1, we have in any case Y, C Yo, it follows that Y,  =Yo. Now, by 
Corollary 1, Yn=Y,, for every n. In view of Theorem 2, the last equality 
implies that gn = %?, for every n and, since %?, = 0, %', = 0 for every n. 

Proposition 4. If Y, = Yo, then gn=  0 for every positive integer n. 

PROOF. In view of Proposition 3 ,  it is enough to show that %?, = 0. 
Let us admit that %', # 0 and let 9 E g1. There exist in any case some 
P-structures which do not contain 9 (for instance, every P-structure 
whose length is equal to l ) ,  therefore Y,--Y, # 0. But this fact con- 
tradicts the assumption that 9, =Yo. It follows that = 0 and Pro- 
position 4 is proved. 

Propositions 3 and 4 yield Proposition 5 .  

Proposition 5. 
if and only if the P-structure type of L is equal to -1. 

P-conjiguration if N < a. 

type are related by Theorem 3 .  

The P-configuration of a language L is equal to zero 

We shall say that L is ofjinite P-structure type if M < a; L is ofjinite 

In the general case, the P-configurational type and the P-structure 



162 V. Configurations 

Theorem 3. Let M be the P-structure type of a language L and let 
N be its P-configurational type. M and N are either both finite or both 
infinite. If M and N are finite, then N = M+ 1. 

PROOF. Theorem 3 will be deduced from the following two proposi- 
tions: (1) If N is finite, then N = M +  1; (2) if M is finite, then N is 
finite. 

Let us prove (1). If N = 0 ,  in view of Proposition 5 ,  M=-1. Hence 
N = M +  1. If N =  1, we have gl # 0 and %'2-%?l=0. The first relation 
implies Y,-Yl # 0 and M b 0. In view of Theorem 1 ,  the second 
relation implies Yl=Y2 and, by Theorem 2, we obtain Yl=Y2 and 
Y1-92=0 .  Therefore M < 1. Thus, M=O and N = M +  1. If N > 1, 
we have V N  -YN-l # 0 and gN+l --gV = 0. In view of Theorem 2, the 
first relation implies YNPl # YNP2. Hence YNP1 - YN--2 # 0 and M 2 N - 1. 
In view of Theorem 1, the second relation is equivalent to gN = %?~v+l. 

By Theorem 2, we obtain YN = YN+I. Therefore - YN+l = 0 and, 
in view of Corollary 2, M < N .  It follows that N = M +  1 and (1) is 
proved. 

Let us prove (2). If M=-1 ,  in view of Proposition 5 ,  N=O. Hence 
N = M + 1.  If M is finite and nonnegative, we have YM - YM+l # 0 
and YM+l - YM+2 = 0. In view of Theorem 1 ,  the second relation is 
equivalent to sU,+l = YM+2. By Theorem 2, we obtain %?M+2 =gMt3. 
Therefore VM+3-%'M+2= 0 and, in view of Corollary 2, N S M +  2. 
Since M is finite, it follows that N is finite. Theorem 3 is proved. 

Let us denote by 9; the set of all P-structures of order n and by $?; 
the set of all P-configurations of order n. We always have 9; fl YZ= 
%'; rl %?;= 0 for m Z n. If Y m  = 0, then Y,, =Y; U Y,ll U * . for each 
integer n 0 and %??$ = %?: U %?; U * . U %?: for each positive integer n. 
Hence +?n=%?n-l U %?;. On the other hand, let us denote by Y ,  the 
set of P-structures of infinite order and by g, the set of P-configurations 
of infinite order. It is easy to see that Y , = O  implies $?,=O. 

4. Examples of €-Configurations 

To illustrate these notions and facts, we present several examples. 

EXAMPLE 1. Let us consider the following language. I?= { a ,  b} ,  P= E 
(the unit partition), @ = ( a 3 , .  . . , aZn+l,. . . , b2, b4, .  . . , bZn, .  . .}. For 
every integer n > 1, the string bZnP1 is an E-configuration of the first 
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rank, having as resultant the word 6.  Indeed, if x and y are two strings 
over I', we have xbZn-ly E 9, if and only x= bm, y = bp, and m + p  is an 
odd positive integer. Under the same conditions we have xby E @. Hence 
bZn-l and b are E-equivalent with respect to Yo. 

The strings of the form an are not E-configurations of the first rank. 
Indeed, if n is odd, neither a nor b may be resultants of an, since a 
and b do not belong to @; if n is even, neither a nor b may be resultants 
of an, since a2 and ab do not belong to @. No string of the form bZn may 
be an E-configuration of the first rank, since a and b do not belong to 
a. No string containing both a and b may be an E-configuration of the 
first rank, since there exist (infinitely many) marked strings containing 
a and (infinitely many) marked strings containing b ,  whereas no marked 
string exists containing both a and b. Thus, there exists no parasitic 
E-configuration of the first rank and we have 
The set 9, may be obtained by replacing in all strings every E-con- 
figuration of the first rank by its resultant. 

It follows that Y1 is formed by the strings over r that do not contain 
a substring of the form b"(n > 2). 

Since there exists no pair of strings u and v ,  such that ubnv E Yl 
(n  > 2), it follows that b" is a parasitic E-configuration of the second 
rank, having resultants a and b, for any n > 2 .  We have no other E- 
configuration of the second rank. I t  follows that Vl C F2, but every 
E-configuration of the second rank is parasitic. 

This example shows that the same P-structure may be a nonparasitic 
P-configuration of the first rank, but a parasitic P-configuration of the 
second rank. 

It is easy to see that YZ=Y1. In view of Theorems 1 and 2, we have 
V2 = V, for n 2 2 and .Yn = 9, for every positive integer n. Thus, all the 
E-configurations of the form b2"" (n 3 1 )  are of the first order, whereas 
those of the form b2"(n > 1 )  are second order. The E-configuration 
of the considered language is equal to 2. In view of Theorem 3, the 
E-structure type is 1 .  

= (b3, b5 , .  . . , b2nfl , . . .}. 

EXAMPLE 2. Let us consider the language {r, P, a}, where r = {a } ,  
P = E,  and @ = (aQ1,. . . , a q n , .  . . }, where 1 = ql, q2, .  . . , qn, . . . is the 
sequence of prime numbers. We shall show that this language has no 
E-configuration of the first rank. (Thus in view of Proposition 3,  it has 
no E-configuration of rank n, for any positive integer n.) Let us admit the 
existence of an E-configuration of the first rank; it necessarily has the 
form up and its resultant is a. 
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Let q be a prime number. Since an has the resultant a, it follows that 

3 ). . .  ) . . . )  a4,  a9+(P-1)  a9+2(n-1) un+n(P-l) 

are marked strings. Hence the numbers q, q + (p - l),  q + 2(p - I ) ,  . . . , 
q+ n(p- I), . . . are prime. But these numbers form an infinite arithmetic 
progression. A theorem of Erdos asserts that, for each positive integer 
n, there exist two consecutive prime numbers whose difference is 
greater than n[12]. This theorem makes the existence of the above 
infinite sequence of prime numbers as an arithmetic progression im- 
possible. Thus, the language considered has no E-configuration. The E- 
configuration is equal to zero, whereas the E-structure type is -1. 

It is shown [27] that the language considered is not a finite-state 
language. 

EXAMPLE 3. Let us consider the language of Kleene ([25], p. 40): 
r = { a } ,  P = E, @ = {an'}( 1 d n < w). Let us admit that up is an E- 
configuration of the first rank. Since the resultant may not be other 
than a ,  it follows that 

3 ) . . .  al+(P-l) al+2(P-1) ,..., al+n(P-l) 

are marked strings. Hence the numbers 1, 1 + (p - I) ,  1 + 2(p - I ) ,  . . . , 
1 + n(p - l), . . . are perfect squares. But these numbers form an infinite 
arithmetic progression, and no infinite arithmetic progression exists 
whose terms are perfect squares. Indeed, the difference of two consecu- 
tive perfect squares is n 2 - ( n -  = 2n- 1. Hence it tends to w when 
n 4 03. It follows that the language of Kleene has no E-configuration. 

Kleene has shown that this language is not a finite-state language [25]. 
Gladkii has proved (unpublished paper) that the language of Kleene may 
be generated by a context-sensitive grammar in the sense of Chomsky 
[9], but not by a context-free grammar (see also Bar-Hillel et al. [2]). 
As Gladkii has shown, all these conclusions hold for the language 
discussed in Example 2. 

EXAMPLE 4. Let us consider the following language of Curry ( [ l l ] ,  
p. 57): r = { a ,  b} ,  P= E, @ = {ab"}, where 0 d n < w (bo is the empty 
string). There exists no parasitic E-configuration of order 1. Every string 
of the form b", where n 2, is an E-configuration of the first rank, whose 
resultant is b. Every string of the form ab" (0 d n < w), that is, every 
marked string is an E-configuration of first order, whose resultant is a. 
All the E-configurations of the first rank are parasitic E-configurations 
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of the second rank. Every nonempty string over r, other than a and b 
that contains no string of the form b" (n 3 2 )  and no string of the form 
abn (n 3 1) is a parasitic E-configuration of order 2, with resultant b. 
It follows that Y2=.4p,. In view of Theorems 1 and 2, we have Y,=Y, 
for n 2 1 and gTL = g2 for n 2 2. Every E-configuration of the first rank 
is of order 1. The E-configuration is equal to 2, whereas the E-structure 
is 1 (see Theorem 3). 

The language considered, which will be designed by L,, is the first 
step of a model concerning the mathematical language ([ 1 I ] ;  see also 
Section 7, Chapter 11). The second step is given by the language L2: 
r = { a ,  b, c } ,  P = E, @ = {abncabm}, where m and n are arbitrary non- 
negative integers, bo being the empty string. It is easy to see that L2 
has the same E-configurations as L,. As shown in [ 1 1 1  , L2 is a model 
of the set of mathematical (true or not) propositions. L, is a finite-state 
language [28]. The third step is given by the language L,: r = {a ,  b, c} ,  
P = E, @ = {abncabn}, where n takes the values of all nonnegative in- 
tegers. In contrast to L, and L2, L3 has no E-configuration of the first 
rank. Hence, in view of Proposition 3 ,  L, has no E-configuration of rank 
n 2 1. L, may be considered a model of the set of theorems [ 1 I ] .  As 
was shown in Section 7, Chapter 11, L3 is not a finite-state language; 
but it is a context-free language [28] (for the notion of a context-free 
language see also Section 10, Chapter 111). 

EXAMPLE 5. Let r =  {a,b,c} ,  P =  E, @ = {ab,c}. The unique E- 
configuration of the first rank is ab, and its resultant is c. This example 
shows that a P-configuration does not always contain its resultant. 

EXAMPLE 6. Let r = {a ,b ,c ,d} ,  P = E, @ = {ab,c,d}.  The unique 
E-configuration of the first rank is ab and it admits two resultants c and d. 

Examples 5 and 6 describe a fragment of English. Thus, we may put 
a = very, b = large, c= great, d = short. It follows that a syntagm of the 
form adverb + adjective may have as resultant an adjective other than 
that contained in the syntagm. 

EXAMPLE 7. Let r =  { a ,  b, c}, P =  E, @ =  {c, cb, cab, ca2b,. . . , 
canb, . . ,}. For every n 3 2, an is an E-configuration of order 1 ,  with 
resultant a. For every positive integer n, the strings anb and can are E- 
configurations of the first order having the resultants b and c,  respectively. 
We obtain Y2=Y1, and every E-configuration of order 2 is parasitic. 

In view of Theorems I and 2, we have gfl = F2 for n 3 2 and 9, = 9, 
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for every n a 1. The E-configuration is equal to 2, whereas the E- 
structure type is l. 

Example 7 describes a short fragment of French syntax, namely, 
that concerning the strings of the forms noun, noun + adjective, noun + 
adverbs + adjective (such as hornrne, hornrne grand, hornrne trBs grand, 
hornrne trBs trBs grand,. . . , hornrne (trBsJn grand,. . .). The strings of 
the form (adverb)" + adjective are E-configurations of the first order, 
having the adjective as resultant. 

Example 7 also describes a similar fragment of the Rumanian syntax 
(om, om mare, om foarte mare,. . . , om (foarte)n mare,. . .). Thus, 
there is an isomorphism between French and Rumanian, concerning 
the dependence structure of noun phrases. 

EXAMPLE 8. Let T = { a ,  6 ,  c ,  d , e , f ) ,  P = E ,  @={cd,  cdf, cdemf, 
anbcd, anbcdemf), where 0 < rn < ~0 and 0 s n < m. We have the following 
E-configurations of the first order: an with resultant a for every II 2 2; 
em with the resultant e for every m a 2; anb with the resultant b for every 
n 3 1; emf with the resultant f for every m 3 1.  We obtain @ n Y, = 

{cd ,  cdf, bcd, bcdf). We have no nonparasitic E-configuration of the 
second order. 

The above example becomes a fragment of English if we take a =  
very, b = little, c = boys, d = look, e = many, f = pictures. 

EXAMPLE 9. Let r=  { a ,  b ,  c ,  d ,  e , f ) ,  P =  E and @= {abncmdePfq}, 
where rn, n, p ,  and q are integers such that rn 2 0, n 2 0, p 3 0, q 0, 
and the implications n > 0 3 rn > 0 and p > 0 .$ q > 0 are valid. We 
have the following E-configurations of the first order: bn(n 3 2) with the 
resultant b;  cm(m 3 2) with the resultant c; eP(p 3 2) with the resultant 
e ;  f 9 ( q  3 2) with the resultant f; bncm(n 2 1 ,  rn 3 1 )  with the resultant 
c ;  epfq@ 3 1, q 3 1) with the resultant f. We have @ n 9, = {ad,  acdf, 
adf, acd},  and no nonparasitic E-configuration of order 2 exists. 

The above example becomes a fragment of Rumanian syntax if we 
take a = elevul, b = foarte, c = silitor, d = studiazir, e = multe, f = cirrti. 

Examples 7 and 8 show the possibility that an E-configuration of the 
first order contains another first-order E-configuration. In Example 7, 
an is contained in can and in anb. In Example 8, an is contained in anb, 
whereas em is contained in emf. 

EXAMPLE 10 (Kulagina [26], p. 211). Let T = { a ,  b , c ,d} ,  P =  E, 
@ = {abncd, dd, bcm}, where rn 3 0 and n 2 0. For every n 3 1, ab" is 
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an E-configuration of the first order, with resultant a. We have = 
{ab, ab2,. . . , ab", . . .} and Q, r) 9, = {acd, dd, bc"}(rn 5 0). For every 
rn 1 ,  bc" is an E-configuration of order 2, with resultant b,  and we 
have Q, n Y2= {acd, dd, b}.  We have two E-configurations of order 3 
(with resultant b): acd and dd. 

EXAMPLE 1 1 .  Let r = {a ,  b, c, d, e } ,  P= E, = {abmcde, bc"de, 
cdPe, de'}, where m 2 0, n 2 0, p 0, and r 2 0. For every rn 2 1 ,  
abm is an E-configuration of order 1 ,  with resultant a,  and no other E- 
configuration of order l exists. We have Q, r) Y, = {acde, bcnde, cdPe, 
de'}, where n 5 0, p 1, bc" is an E-configuration 
of order 2, with resultant b and no other E-configuration of order 2 exists. 
Further, we find that cdp is an E-configuration of order 3 ,  with resultant 
c,  for any p 2 1 and de' is an E-configuration of order 4, with resultant 
d, for any r 1 .  Since Q, n Y4= {acde, bde, ce, d } ,  we have three E- 
configurations of order 5 (with resultant d): acde, bde, and ce. 

Example 1 1  shows how we can obtain, for every positive integer 
n,  a language which admits nonparasitic E-configurations of order n. 

It is not difficult to explain the significance of Examples 9 and 10 
from the standpoint of dependence structure. For instance, in Example 
10, b is dependent on a,  c on b ,  don c, and e on d. But these four depen- 
dencies are of different degrees, which implies the different orders of the 
corresponding E-configurations. 

0, r 3 0. For every n 

EXAMPLE 12 (Revzin [40], pp. 124-125). This example concerns 
the Russian language. Every marked S-structure of the form S(a)S(b),  
where a is an adverb and b is an adjective (for instance, a=vesma, 
b = rnalenkaja) is an S-configuration of the first order with resultant S(b), 
if we neglect Russian strings, such as vesrna i vesrna or vesrna vesma i 
vesrna. A marked S-structure of the form S(b)S(c), where b is an adjec- 
tive and c is a noun, is an S-configuration of the second rank, with resultant 
S(c); but S(b)S(c) may not be replaced by S(c)  in such marked S-struc- 
tures as S(a)S(b)S(c) (for instance a = vesrna, b = rnalenkaja, c = 
devotka). It is easy to see that no word x exists such that S(b)S(c) and 
S(x) are S-equivalent with respect to Yo. It  follows that S(b)S(c) is not 
an S-configuration of the first rank. Hence it is of order 2. There also 
exist S-configurations of the second order, formed by verbs, such as 
S(dolgo)S(laskala), whose resultant is S(laskala). If d is a transitive verb 
and e is its direct complement (for instance, d=laskala, e=koXu),  
and f is an intransitive verb (for instance, f= stojala), then S(laskala) 
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S(koiku), 
S (las ka la ) 
S(stojala); 

and S(stoja1a) are S-equivalent with respect to Y2. Hence 
S(koSku) is an S-configuration of the third rank, with resultant 

, it is easy to see that this S-configuration is third order. 

5. Removal of Parasitic Elements 

Now let us remark on the above examples. Examples 1 and 4 show 
that the parasitic P-configurations may cause an increase in the P-con- 
figuration of a language. In both these examples, the E-configuration 
type is equal to 2, but all E-configurations of order 2 are parasitic. It 
is natural then to introduce the following definitions. 

A language L has a finite effective P-configurational type if there 
exists an integer N ,  which fulfills the following conditions: (1) there 
exists a nonparasitic P-configuration of order N ,  ; (2) every P-configura- 
tion of order N ,  + 1 is parasitic. N ,  is the effective P-configuration 
of L (if every P-configuration of order 1 is parasitic, then, by definition, 
we put N ,  = 0). If no such integer exists, we say that L has an infinite 
eflective P-configuration and we put N1=a.  Thus, in Examples 1 
and 4 we have N ,  = 1, whereas N = 2. In Examples 2 and 3 we have 
N 1 = N = O .  In Examples 5 and 6, N 1 = N = l .  In Example 7, N , = 1  
and N = 2. In Examples 8 and 9, N ,  = 1 and in Example 10, N l = 3 .  
In Example 11, N l = 5 .  

Consider a language {r, P, @} and a word a E r. The word a is 
said to be parasitic, if a is contained in no marked string (that is, if 
x=uau, then x does not belong to @). 

Proposition 6. 
and if N ,  = 0, then N = 0. 

We always have N 1  S N .  If no parasitic word exists 

PROOF. Since the inequality is obvious, let us prove the second asser- 
tion. Suppose N 1  = 0 and let B be a P-configuration of order 1 and P(a) 
a resultant of B. Thus, B and P(a) are P-equivalent. Since a is not para- 
sitic, there exists a marked string containing a:  a1a2 * * * ap-laap+l * * * a,. 
Hence the P-structure P(ul). * .P(ap-l)P(a)P(a,+l). . -P(a,)  is marked. 
Since 9 and P(a)  are P-equivalent, the P-structure P(al ) -  * *P(up-,)B 
P(a,+,)- . .P(a,) is also marked. Hence B is not parasitic. But this fact 
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contradicts the assumption that N ,  = 0. Therefore no P-configuration 
(parasitic or not) of order 1 exists and N=O. 

It is to be expected that the difference N - N ,  may not exceed any 
integer. In this respect, it would be interesting to find the smallest 
integer n (if it exists) such that N - N I  S n in every language. 

In an obvious manner, we may define the efective P-structure type 
M I  of a language. We always have MI S M .  It is interesting to establish 
whether Theorem 3 remains true if M and N are replaced by M ,  and 
N , ,  respectively. 

6. Semiregular P-Configurations 

The examples considered show that the most interesting P-configura- 
tions 9’ are those which fulfill the following two conditions: ( I )  the 
length of 9’ is exactly 2; (2) there exists a resultant of 9 which is con- 
tained in 9. If P fulfills condition ( l ) ,  it is called a minimal P-conjiguru- 
tion. If 9 fulfills condition (2) ,  it is a semiregular P-con$gurution. 

Among the languages considered in the above examples, only those 
of Examples 5 and 6 are finite languages. On the other hand, only in 
Examples 5 and 6 is there no semiregular E-configuration of the first 
order. These facts are explained by Theorem 4. 

Theorem 4. Let L be a language containing no parasitic word. If L 
admits at least one semiregular P-configuration of order 1, then L is 
infinite. 

PROOF. Let 9’ be a semiregular P-configuration and let ui E I‘ such 
that P(ai) is a resultant of 9’ contained in 9’. Thus, there exist two P- 
structures 9, and P2 such that Y=P, P(ai) P2. Since at is not parasitic, 
there exist two P-structures P3 and P4, such that P3P(at)P4 is a marked 
P-structure. But 9’ and P(ai) are P-equivalent. Therefore the P-structure 
Y39’P4 = LP39’lP(at)9’29’4 is also marked. Further, again using the 
P-equivalence of 9 and P(ai), we deduce that the P-structure Pn= 
93(Pl)nP(ai)(9’2)fiP4 is marked for every positive integer n. If we denote 
by p l ,  p2,  p3 ,  p4 ,  and p n  the lengths of the P-structures P,, P2, B3, P4, 
and Pn, respectively, we have p n  = n(pl + p 2 )  + p 3  + p 4  + 1 .  Since the 
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length of 9 may not be less than 2, it follows that p1 + p z  2 1.  Hence 

lim p n  = to. 

Since every Pn is a marked P-structure, there exists, for any positive 
integer n, a marked string of length pn.  Hence L is infinite. 

e m  

Proposition 7. If the language L contains no parasitic word, then L 
admits no parasitic P-configuration of order 1.  

PROOF. Let 9 be a P-configuration of order 1 and let P(a) be a resultant 
of 9. Since a is not parasitic, the existence of two P-structures 8, and 
P2 such that P1P(a)P2 is a marked P-structure follows. In view of the 
P-equivalence of 9 and P(a),  the P-structure BIPBz is marked. Hence 
9 is not parasitic. 

REMARKS. Proposition 7 shows that all P-configurations occurring 
in Theorem 4 are nonparasitic. Moreover, Theorem 4 is a new confir- 
mation of a general hypothesis adopted in algebraic linguistics. Every 
natural language is an infinite language. Indeed, the assumptions of 
Theorem 4 are fulfilled by every natural language; for every word 
a of a natural language L,  there exists a sentence of L containing a ,  
and every natural language admits semiregular configurations of order 1. 
For instance, in English an E-configuration of the form secondary 
adverb + adverb (such as very clearly) is of order 1 and semiregular, 
since it admits the resultant adverb. 

Theorem 4 does not remain true if we remove the assumption that 
L contains no parasitic word. Indeed, we have another proposition. 

Proposition 8. There exists a finite language which admits a semi- 
regular E-configuration of order 1. 

PROOF. 
figuration of order 1 ,  with resultant b. Hence it is semiregular. 

Let r = { a ,  b }  and Q, = {aa} .  The string ab is an E-con- 

We also have Proposition 9. 

Proposition 9. 
of order 1 is parasitic. 

In a finite language, every semiregular P-configuration 

PROOF. Let B be a semiregular P-configuration of order 1 and let 
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P(a) be a resultant of 9 contained in 9. Thu,s, there exist two P-struc- 
tures Pl and P2 such that 9 = 9J'(a)P2. If 9 is nonparasitic, we may 
find two P-structures P3 and Pi4 such that 93P'1P(a)929'4 is a marked 
P-structure. We may replace successively P(a) by B1P(a)P2 and obtain 
infinitely many marked P-structures containing P(a): 93(91)"P(a)(9 'z)"9,  
(1 5 n < m). As in the proof of Theorem 4, we deduce the existence 
of infinitely many marked strings containing the word a. This fact 
contradicts the assumption that the language is finite. Hence, 9 is 
parasitic. 

The above examples suggest that, in any language without parasitic 
words, the existence of semiregular P-configurations of order n implies the 
existence of semiregular P-configurations of order p ,  for every positive 
integer p < n. But the validity of this conjecture requires an ulterior 
investigation. 

To obtain a better approximation of the situations occurring in 
natural languages, we shall consider a particular case of semiregular 
configurations. 

A P-configuration 9 of rank k is said to bejinally regular if the follow- 
ing conditions are fulfilled: (1) the last term of 9 is a resultant of 9; 
(2) no other term of 9 is a resultant of P. More precisely, if 9= P(al) 
P(az). . .P(a,), then 9 and P(a,) are P-equivalent with respect to YkPl, 
but P and P(ai) (1 s i < n) are not P-equivalent with respect to Yk-,. 
9 is said to be initially regular if the first term of 9 is a resultant of 
9, but no other term of 9 is a resultant of 9'. It is obvious that, if 9' is 
finally (initially) regular of rank k ,  then 9 is not initially (finally) regular 
of rank k.  9 is said to be a regular P-conjiguration of rank k if it is 
either initially or finally regular of rank k.  

It  is obvious that any regular P-configuration of rank k is also a semi- 
regular P-configuration of rank k ;  but the converse is not true, as is 
shown by the next proposition. 

Proposition 10. There exist a language L and a semiregular E-con- 
figuration 9 of rank 1 in L, which is not regular in L. 

PROOF. Let r= {a, 6,  c ) ,  Q, = {abnc, b ) ,  where n 3 1 .  It is obvious 
that abnc is an E-configuration of rank 1 ,  with resultant b. Hence it 
is semiregular, but not regular, since neither a nor c are resultants 
of abnc. Proposition 10 is proved. 
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7. Normal P-Configurations, Dependencies, and Constituents 

A P-configuration 9 is said to be initially normal if it is minimal 
and initially regular. 9' is said to be finally normal if it is minimal and 
finally regular. 9 is said to be normal if it is minimal and regular. 

The most frequent configurations encountered in natural languages 
are normal. The establishment of the order of a configuration in a natural 
language is a difficult task, because it involves a large quantity of strings 
and requires many explanations concerning the marked strings. We 
shall enumerate some normal configurations in various natural languages, 
without specifying their order. Afterwards, for the sake of illustration 
and without claim of completeness and exactness, we shall indicate 
the (plausible) relative order of some normal E-configurations in natural 
languages. 

Initially normal E-configurations: cartea elevului (noun in nomina- 
tive + noun in genitive), om mare (noun + qualitative adjective), citesc 
c2r@ (transitive verb 4- direct object) in Rumanian; enfunt obkissant 
(noun + qualitative adjective), Pcrire lentement (verb + adverb) in 
French; civis carus (noun + qualitative adjective), pater noster (noun + 
pronominal adjective), liber civium (nominative noun + genitive noun), 
gloria horum (noun +possessive adjective), imitatur patrem (transitive 
verb + direct object) in Latin; palabras nuevas (noun + qualitative ad- 
jective), expresado anteriormente (verb in participle + adverb), dices 
nada (transitive verb + direct object) in Spanish; rechnest gut (verb + 
adverb) in German; fetch me (verb + indirect object), go toduy (verb + 
adverb) in English; Ztaet knigu (transitive verb + direct object) in 
Russian. 

Finally normal E-configurations: foarte frumos (adverb + qualitative 
adjective), frumoastl carte (qualitative adjective + noun), trei pomi 
(cardinal numeral + noun) in Rumanian; trds joli (adverb + qualitative 
adjective), merveilleux destin (qualitative adjective + noun), mon livre 
(possessive adjective + noun), ces fruits (demonstrative adjective + 
noun) in French; vestra domus (possessive adjective + noun), hoc 
praemium (demonstrative adjective + noun), tres partes (cardinal 
numeral+ noun) in Latin: algunas horas (numeral+ noun), nuevas 
ramas (qualitative adjective -t noun) in Spanish; sehr gut (adverb + 
qualitative adjective), unsere Wohnung (possessive adjective + noun), 
schiines Gartchen (qualitative adjective + noun), viele Blurnen (indeJinite 
adjective + noun) in German; my friend (possessive adjective + noun), 
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very large (adverb + qualitative adjective), great house (qualitative 
adjective + noun), many boys (indejinite adjective + noun), almost 
surrounded (adverb +passive participle) in English; oten bolioi (adverb + 
qualitative adjective), bolioi dom (qualitative adjective + noun) in 
Russian. 

First let us remark that in every language the order of a normal E- 
configuration of the form adverb + qualitative adjective is less than 
the order of a normal E-configuration of the form qualitative adjective + 
noun. Indeed, the last configuration may be replaced by its resultant 
noun only after replacing the former with its resultant qualitative ad- 
jective. In the same way we find that the order of a normal E-configuration 
of the form secondary adverb + adverb is less than the order of a normal 
E-configuration of the form adverb + qualitative adjective, whereas 
the order of a normal E-configuration of the form noun+qualitative 
adjective is less than the order of a normal E-configuration of the form 
transitive verb + direct object. For instance, in the Rumanian string 
mult prea frumoasii. (secondary adverb + adverb + adjective) we first 
replace the normal E-configuration mult prea by its resultant prea, 
and only after this we may replace the normal E-configuration prea 
frumoasii. by its resultant frumoash. In the Rumanian string citesc 
ciirfi frumoase (transitive verb + noun + qualitative adjective) we must 
first replace the normal E-configuration cii.r[i frumoase by ciir[i, and only 
after this we may replace citesc c2ryi by citesc. So we have at least 
four different orders of E-configurations in most languages: secondary 
adverb + adverb, adverb + qualitative adjective, qualitative adjective + 
noun or noun + qualitative adjective, and transitive verb + direct object. 
This situation suggests that the effective E-configuration of a natural 
language is in any case greater than 4. 

Normal E-configurations enable us to define a hierarchy of syntactic 
dependences, as follows. If ab is an initially (finally) normal E-con- 
figuration of order n,  we shall say that b depends upon a from the right 
Cfrom the left), and the order of this dependence is equal to n. In the 
first case, a is said to be the nucleus and b is said to be the satellite of 
a,  whereas in the second case these functions are inverted. This termi- 
nology is very close to that of Pike [37] and of Pittman [38]. We may 
also say that a is the center of the initially normal E-configuration ab, 
whereas b is its adjunct. Thus, in a normal E-configuration of order n 
we have a nucleus or a center of order n and a satellite or an adjunct 
of order n. For other aspects concerning these notions see Revzin 
[39-4 11. 
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In descriptive linguistics, two notions play an important part in every 
syntactic description: the notions of constituent and immediate con- 
stituent. These notions are very closely related to E-configurations 
of different orders. An attempt to formalize the classical analysis in 
immediate constituents was given by Revzin [4 1 ,  421. 

Let x= a1a2 . . . a, be a string over r and let us consider a language 
{r, a}. We define the constituents o f x  as follows: (1) ai is a constituent 
of x for every positive integer i S n;  (2) if there exists a constituent z 
of x such that the strings y and z are E-equivalent (that is, for every 
pair of strings u and v the strings uyv and uzv are either both in Q, or 
both in the complement of @), then y is a constituent of x. By rule (1) 
we always obtain finitely many constituents ( n  constituents), whereas 
rule (2) may introduce infinitely many constituents. 

Let us consider the Rumanian string Elevul silitor invatLi foarte bine. 
By (1) we obtain the constituents elevul, silitor, invatii, foarte, and 
bine. By (2) we obtain a very large number of constituents but we shall 
specify only the constituents contained in the given string. Thus we 
find the constituents foarte bine (E-equivalent to bine), elevul silitor 
(E-equivalent to elevul), and invayG foarte bine (E-equivalent to invalii). 
In the Russian string bolbaja vorona vzletela nu vysokii kust, Revzin 
finds the following constituents of length not less than 2 and contained 
in the given string [41]: bolinja vorona (E-equivalent to vorona), vysokii 
kust (E-equivalent to kust), and vzletela nu vysokii kust (E-equivalent 
to vzletela). 

It is easy to see that a constituent of length 3 2 of the string x= 
a1a2.  . . a,  is nothing but an E-configuration of rank 1 ,  which admits 
at least one of the words a, ( 1  G i s n)  as resultant. 

The above examples show the necessity of making a distinction 
between constituents of x contained in x (these constituents are said 
to be proper) and constituents of x not contained in x (said to be im- 
proper). In the above examples, all the specified constituents are proper, 
but copilul is an improper constituent of the Rumanian string considered, 
because copilul E S(e1evuZ). It is immediately seen that every string 
admits only finitely many proper constituents. 

The notion of proper constituent enables us to define another important 
notion of descriptive linguistics, that of an immediate constituent. 

A constituent y of the string x is said to be an immediate constituent 
of x if it is a proper constituent of x and if y is contained in no proper 
constituent of x other than y .  In other words, an immediate constituent 
has a maximal character. Thus, the above Rumanian string admits two 
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immediate constituents: y = elevul silitor and z = invayi? foarte bine; 
y admits two immediate constituents: elevul and silitor, whereas z admits 
the immediate constituents invafi? and u = foarte bine; u admits two 
immediate constituentsfoavte and bine. The above Russian string admits 
two immediate constituents, v = boliaja vorona and w = vzletela nu 
vysokii kust; v is obviously formed by two immediate constituents, where- 
as w contains two immediate constituents vzletela and A = na vysokii 
kust; A has two immediate constituents na and vysokii kust. 

Other aspects of the analysis of immediate constituents and some 
details concerning immediate constituents in finite-state languages 
have been investigated by Marcus ([27], pp. 215-219). 

Let us remark that the notion of immediate constituent was tacitly 
considered in Sections 6-9, Chapter 111. The theory of configurations of 
various orders is a considerable improvement of the above description 
of constituents. 

8. P-Configurations, P-Structures, and Regularly 
Finer Partitions 

In a customary syntactic analysis we often deal with sequences of 
words or morphemes, although our interest and the conclusions we 
derive concern sequences of some classes of words or morphemes 
(such as distributional classes or parts of speech). In this respect, Ex- 
ample 12 of Section 4 and the various examples of normal E-configura- 
tions given in Section 7 are very significant. The analysis carried out in 
Example 12 concerns the Russian string malenkaja devoEka dolgo 
laskala koiku. But we have tacitly transferred the result of our analysis 
to the S-structure of this string, that is, to the sequence of distribution 
classes to which malenkaja, devotka, dolgo, laskala, and koiku belong. 
A similar tacit and unexplained transfer was made in Section 7. Thus, 
we state that enfant obkissant, om mare, civis carus, palabras nuevas 
are initially nomal E-configurations in French, Rumanian, Latin, and 
Spanish, respectively, but we show in parentheses that the associated 
parts of speech (noun and qualitative adjective) form a sequence with 
a similar property, that is, the P'-structures P' (enfant) P' (obkissant), 
P' (om) P' (mare), P' (civis) P' (carus), P' (palabras) P' (nuevas) are 
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initially normal P'-configurations. Similarly the initially normal E-confi- 
gurations foarte frumos, tr2s joli, sehr gut, very large, oten bolSoi yield 
(in Rumanian, French, German, English, and Russian, respectively) the 
initially normal P'-configuration adverb + qualitative adjective. 

It is the purpose in this section to investigate the legitimacy and the 
limits of the above procedure. We shall show that the dependence struc- 
ture of a string a l a 2 .  . . ai . . . a, is isomorphic to the dependence struc- 
ture of S(a,)S(a,) . . . S ( u i ) .  . . S(a,), whereas the dependence structure 
of P(al)P(a,). . .P(ai). . .P(a,) is isomorphic to the dependence structure of 
P'(al)P'(az). . .P'(a,). . .P'(a,). The exact meaning of these assertions 
will be explained later. 

In the following we shall frequently use the notion of regularly finer 
partition, introduced in Section 5 ,  Chapter I. To avoid overloading 
notation, we shall denote by P(x)  and Q(x) the P-structure and the Q- 
structure of x, where x is an arbitrary string over I'. 

Let us consider a language {r, a} and two partitions P and Q of r. 
We then have Proposition 11. 

Proposition 11. 
for which Q(x) = Q(y), then P(x)  and P(y) are P-equivalent. 

If P is regularly finer than Q and if x and y are two strings 

PROOF. Let x = a l a P . .  . a,, and y =  b,b, . . . b,. Since Q(x)= Qb), 
we have n = m and Q(ai) = Q(bi) for 1 G i d a. Since P is finer than Q, 
it follows that P(aJ C &(ai) and P(bJ Q(bi). Hence P(aJ C Q(a,) 2 
P(bJ for 1 4 i G n.  Since P is regularly finer than Q, we deduce that 
P(aJ and P(bJ are P-equivalent for 1 G i c n. Hence P(x) and P(y) are 
P-equivalent. 

Proposition 12. If P is regularly finer than Q and if x is a string for which 
P(x)  is an unmarked P-structure, then Q(x) is an unmarked Q-structure. 

PROOF. Let us admit the existence of a marked string y such that 
&(y)  = Q(x). In view of Proposition 11, it follows that P(x)  and P(y) 
are P-equivalent. Since P(x)  is unmarked, P(y) is also unmarked. On the 
other hand, since y is marked, P(y) is marked. This contradiction proves 
that Q(x) is an unmarked Q-structure. 

Theorem 5 (Kulagina [26]) .  If P is regularly finer than Q and if x is 
a string over r, such that P(x)  is a P-configuration of rank 1, with resul- 
tant P(a) ,  then Q(x) is a Q-configuration of rank 1 with resultant Q(a). 
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PROOF. Since the length of P(x)  is not less than 2 and Q(x) has the same 
length as P(x) ,  it follows that the length of Q(x) is not less than 2. I t  
remains to prove that Q(x) and Q ( a )  are &-equivalent. Let x1 and x2 be 
two strings such that Q(x,)Q(x)Q(x,) is a marked Q-structure. In view of 
Proposition 12, it follows that P(xl )P(x)P(x2)  is a marked P-structure. 
Since P(x)  is a P-configuration of rank 1, with resultant P(a) ,  it follows 
that P(xl)P(a)P(x,)  is a marked P-structure. Since P is finer than Q, 
it follows by Lemma I ,  Chapter I, Section 6, that Q(x,)Q(u)Q(x,) is a 
marked Q-structure. We have thus proved that Q(x) Q-dominates Q(a). 

Conversely, if Q(xl>Q(a)Q(x,) is a marked Q-structure, there exists a 
marked string y such that Q(y) = Q(x,)Q(a)Q(x,). Hence, in view of Pro- 
position 1 1  and since P is regularly finer than Q ,  P(y )  and P(x, )P(u)P(x , )  
are P-equivalent. Since y is marked, it follows that P(xl )P(u)P(x2)  is 
a marked P-structure; but P(a)  and P(x)  are P-equivalent. Therefore 
P(x1)P(x)P(x2) is a marked P-structure. Hence, by Lemma 1 , Chapter I ,  
Section 6, Q(xl)Q(x)Q(x2) is a marked Q-structure. We have therefore 
proved that &(a) Q-dominates Q(x); thus Q(x) and Q ( a )  are Q-equivalent 
and Theorem 5 is proved. 

Theorem 6 (Kulagina [26]). If P is regularly finer than Q and if x is 
a string over r such that Q(x) is a Q-configuration of rank 1 , with resultant 
Q(a) ,  then P(x)  is a P-configuration of rank 1 ,  with resultant P(a).  

PROOF. Obviously, the length of P(x)  is equal to the length of Q(x). 
Hence it is not less than 2. 

Let x1 and xs be two strings for which P(xl)P(x)P(x,)  is a marked 
P-structure. In view of Lemma 1 ,  Chapter I, Q(xl)Q(x)Q(x,)  is a marked 
Q-structure. But Q(x) and Q ( a )  are Q-equivalent. Hence Q(x,)Q(a)Q(x2) 
is a marked Q-structure. Now we may apply Proposition 12, Chapter V, 
and deduce that P(x, )P(a)P(xz)  is a marked P-structure. Hence P ( x )  
P-dominates P(a).  

Let x1 and x2 be two strings for which the P-structure P(xl)P(a)P(x,)  
is marked. In view of Lemma I ,  Chapter I ,  Q(x,)Q(a)Q(x2) is a marked 
@structure. Since Q(u) and Q(x) are Q-equivalent, it follows that 
Q(x l )Q(x)Q(x2)  is marked; there exists a marked string y such that 
Q(xl)Q(x)Q(x,)  = Q(y).  Hence, in view of Proposition 1 I ,  P(Y) and 
P(xI)P(x)P(xz)  are P-equivalent. But P(y )  is a marked P-structure. 
Therefore P(x1)P(x)P(x2) is also marked and P(a)  P-dominates P(x) .  

Proposition 13. Let P be regularly finer than Q and let x be any string 
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over r. P(x)  is a P-structure oE rank 1 if and only if Q(x) is a Q-structure 
of rank 1. 

PROOF. Let P(x) be a P-structure of rank 1 and let us admit that Q(x) 
contains a Q-configuration Q(x,) of rank 1. Hence there exist two strings x, 
and x3 such that Q(x) = Q(x,)Q(x,)Q(x3). This implies P(x)  =P(x2)P(xI)P(x3) 
and, by Theorem 6, P(xJ is a P-configuration of rank 1 ; thus, we obtain 
the absurd conclusion that P(x) is not a P-structure of rank 1. It follows 
that Q(x) contains no Q-configuration of rank 1. Hence it is a Q-structure 
of rank 1. 

Conversely, let Q(x) be a Q-structure of rank 1 and let us admit that 
P(x) contains a P-configuration P(xl)  of rank 1.  We have, for some 
strings x, and x3, P(x)  = P(x2)P(x1)P(x3). Hence Q(x) = Q(xp)Q(xl)Q(x3). 
By Theorem 5 ,  Q(xl) is a Q-configuration of rank 1 contained in Q(x); 
but this fact contradicts the assumption that Q(x) is a Q-structure of 
rank 1. Therefore, P(x)  is a P-structure of rank 1. 

Theorem 7 (Kulagina [26]). Let P be regularly finer than Q and let 
x be a string over r. Then P(x)  is a P-configuration of rank n ( n  3 1 )  
with resultant P(a)  if and only if Q(x) is a Q-configuration of rank n,  
with resultant Q(a). Moreover, if y is a string over r, then P(y)  is a 
P-structure of rank n if and only if Q ( y )  is a Q-structure of rank n (n  3 1). 

PROOF. We proceed by induction. For n =  1, Theorem 7 follows from 
Theorems 5 and 6 and Proposition 1 3 .  Let us admit that Theorem 7 
is true for any positive integer p < n and let us prove Theorem 7 for 
p = n. Let P(x)  be a P-configuration of rank n with resultant P(a).  We 
shall show that Q(x) is a Q-configuration of rank n with resultant Q(a). 
Since the length A of Q(x) is equal to the length of P(x), which is not 
less than 2, it follows that A 3 2. It remains to prove that Q ( x )  and Q(a) 
are Q-equivalent with respect to Y.,-,(Q) (equal the set of @structures 
of rank n -  1). Consider two strings x1 and x, such that the Q-structures 

are of rank n - 1 .  Since the theorem is supposed true for p < n, it follows 
that the P-structures 

P(Xl)P(X)P(x,) (3) 

P(xJP(a)P(xz) (4) 
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are of rank n-  1; moreover, if (1) is marked, then, by Proposition 12, 
(3) is also marked and, since P(x) and P(a) are P-equivalent with respect 
to Y n P l ( P )  (equal the set of P-structures of rank n-  l), (4) is marked. 
This implies, by Lemma 1, Chapter I, that (2) is marked. Conversely, 
if (2) is marked, then, by Proposition 12, (4) is also marked and, since 
P(x)  and P(a) are P-equivalent with respect to Y n W l ( P ) ,  (3) is marked. 
This implies, by Lemma 1, Chapter I, that (1) is marked. Hence Q(x) 
is a Q-configuration of rank n, with resultant Q(a). 

Let us now suppose that Q(x)  is a Q-configuration of rank n, with 
resultant Q(a). If (3) is marked, then in view of Lemma 1, Chapter I ,  
(1) is marked and (2) is also marked, because Q(x) and Q(a) are Q- 
equivalent with respect to Yn-l(Q). By Proposition 12, it follows that 
(4) is marked. Conversely, if (4) is marked, then, by Lemma 1, Chapter I ,  
(2) is marked, and (1) is also marked, because Q(x) and Q(u) are Q-equiv- 
alent with respect to Y,-,(Q>. In view of Proposition 12, it follows that 
(3) is marked. Hence P(x) is a P-configuration of rank n, with resultant 
P(a>. 

We shall now prove the last part of Theorem 7. Let y be a string over 
r and suppose that P(y) is a P-structure of rank n. If Q(y) contains a Q- 
structure Q b l )  of rank n, we find two strings y z  and y 3  such that Q(y) = 

Q(Yz)Q(YI)Q(YJ. Hence P(Y) = P(YZ)P(YI )P(Y~ .  Since Q ( Y ~  is a Q- 
configuration of rank n,  P(yl) is a P-configuration of rank n (as we have 
just proved), in contradiction to the assumption that P(y) contains no 
P-configuration of rank n. It follows that Q b )  contains no Q-configura- 
tion of rank n. Hence it is a Q-structure of rank n. In the same way one 
proves that P(y) is a P-structure of rank n if Q(y) is a Q-structure of rank 
n. Theorem 7 is proved. 

It is natural to ask whether Theorem 7 remains true if we replace the 
rank by the order. The answer is affirmative, as follows. 

Corollary 3. Let P be regularly finer than Q and let x and y be two strings 
over r. Then P(x)  is a P-configuration of order n with resultant P(a) 
if and only if Q(x) is a Q-configuration of order n, with resultant Q(u). 
P(Y) is a P-structure of order n if and only if Q ( y )  is a Q-structure of 
order n. 

PROOF. Let P(x)  be a P-configuration of order n with resultant P(a). 
On one hand, P(x) is of rank n. Hence, in view of Theorem 7, Q(x) is a 
Q-configuration of rank n, with resultant Q(a). On the other hand, P(x)  
is of no rank less than n;  using Theorem 7 again, it follows that Q(x) 
is of no rank less than n. Hence it is a Q-configuration of order n with 
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resultant Q(a).  Conversely, if Q(x) is of order n ,  with resultant Q(u), 
P(x)  is of order n, with resultant P(a). 

Consider now a P-structure Pty) of order n. On one hand, P(y )  is of 
rank n. Thus, in view of Theorem 7, Q ( y )  is also of rank n. On the other 
hand, P(y )  has no rank greater than n;  again using Theorem 7, it follows 
that Q ( y )  has no rank greater than n. Hence it is a Q-structure of order n. 
In the same way one can prove that, if Q ( y )  is of order tz, then P(y )  is 
also of order n. 

Corollary 4. Let P be regularly finer than Q. Then the P-configurational 
type N(f') of L, = {r, P ,  @} is equal to the Q-configurational type N ( Q )  of 
Lz= {r, Q ,  @I, whereas the P-structure type M(P)  of L, is equal to the Q- 
structure type M ( Q )  of L,. 

PROOF. The proof follows immediately from Corollary 3.  

Proposition 14. Let P be regularly finer than Q and let x be a string 
over r. Then, P(x)  is a parasitic P-configuration of rank n if and only if 
Q(x) is a parasitic Q-configuration of rank n. 

PROOF. Let y and z be two strings over r. In view of Theorem 7, we 
have P(yxz) E Y n P l ( P )  if and only if Q(yxz) E Y.lt-l(Q) and P(x)  E gn-,(P) 
if and only if Q(x)  E gn-,(Q). Moreover, from Lemma 1, Chapter I ,  
and Proposition 12, we deduce that P(yxz) is a marked P-structure if 
and only if Q(yxz)  is a marked Q-structure. Proposition 14 follows 
immediately. 

PROOF. The proof follows immediately from Corollary 4 and Proposi- 
tion 14. 

Proposition 15. Let P be regularly finer than Q and let us adopt the nota- 
tion of Corollary 4 Then, the effective P-configuration N , ( P )  of L, is 
equal to the effective Q-configuration N,(Q) of L2, whereas the effective 
P-structure M,(P) of L,  is equal to the effective @structure Ml(Q) of L,. 

Proposition 16. Let P be regularly finer than Q and let x be a string over 
r. Then, P(x)  is a semiregular (initially regular, finally regular, minimal, 
initially normal, finally normal) P-configuration of order n if and only if 
Q(x)  is a semiregular (initially regular, finally regular, minimal, initially 
normal, finally normal, respectively) Q-configuration of order n. 

PROOF. Let x = q a , .  . . a,. P(x) ,  as P-configuration of rank n ,  admits 
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the resultant P(a,) (1 < i < m) if and only if Q(x), as Q-configuration of 
rank n, admits the resultant Q(a,) (see Theorem 7). Therefore, P ( x )  
is semiregular (initially regular, finally regular) if and only if Q(x) is semi- 
regular (initially regular, finally regular, respectively). The other asser- 
tions of Proposition 16 follow immediately from the fact that P ( x )  
and Q(x) have the same length (equal to m) and by taking Corollary 3 
into account. 

Theorem 7, Corollaries 3 and 4, and Propositions 14-16 show that 
the most important properties concerning configurations and structures 
are invariant with respect to partitions one of which is regularly finer 
than’ others. This fact is very important from both a theoretical and 
practical point of view. Indeed, we know that every partition P is regul- 
arly finer than its derivative partition P’ and we always have E’ = S 
(Section 5 ,  Chapter I). We also have R’ = P’ in every adequate language 
(Theorem 4, Chapter 11) and R‘ = K’ = M‘ = N ’ =  G’ = P’ in every 
homogeneous language (see Theorem 10, Corollaries 3 and 4, Chapter 11, 
and Proposition 29, Chapter IV). Thus, the dependence structure of a 
customary string a1a2. .  . a, over r is the same as the dependence struc- 
ture of the corresponding sequence of distributional classes S(a,)S(a,). . . 
S(a,), whereas the dependence structure of the sequence of paradigms 
P(al)P(a2). . .P(a,) is the same as the dependence structure of the corres- 
ponding sequence of parts of speech P’(u1)P’(a2). . .P’(a,). It follows that 
Examples 1 - 1 1 investigated in Section 4 and concerning E-configurations 
and E-structures, are also valid with respect to the corresponding S- 
configurations and S-structures. The examples of normal E-configurations 
ab given in Section 7 remain valid if the word a is replaced by a word 
a’ E P(a), whereas b is replaced by a suitable word b’ E P(b). (For 
instance, in French, if a = mon, b = livre, and a‘ = mes, then b’ = livres.) 
Thus Proposition 16 enables us to transfer the corresponding examples 
and results to P’-configurations and so we obtain normal configurations 
whose terms are parts of speech. 

We may ask whether Theorem 7, Corollaries 3 and 4, and Propositions 
13- 16 remain true when P is merely finer (but not regularly finer) than 
Q. In this respect, we shall consider several examples due to Kulagina 
([26], pp. 21 1-222). 

Proposition 17. There exist a language L =  {r, @}, two partitions 
P and Q of r, P finer than Q, and two words a and b such that P(a)P(b) 
is a P-configuration of rank 1 in L, whereas Q(u)Q(b) is not a Q-con- 
figuration of rank 1 in L. 
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PROOF. Let r=  {a,  b, c, d }  and @= {dbcc, ab"cd} (n  3 0). As before, 
bo means the zero string. Let P=E and Q(a)={a,  d } ,  Q(b)={b},  
Q(c)= {c}. Obviously, E (the unit partition) is finer than Q. As before 
we shall denote by x both the element x and the E-cell of x. The E- 
structure ab is an E-configuration of rank l with resultant a. Indeed, 
by replacing ab by a in ab"cd (n > O ) ,  we also get a marked E-structure; 
the same is true when we replace a by ab. On the other hand, Q(a)Q(b) 
is not a Q-configuration of rank 1. Indeed, Q(a)Q(b) is contained in 
the marked Q-structure Q(a)Q(b)Q(c)Q(c) (this is the Q-structure of 
the marked string dbcc), whereas none of the Q-structures Q(a)Q(c)Q(c), 
Q(b)Q(c)Q(c), and Q(c)Q(c)Q(c) is marked. Hence none of the Q-cells 
Q(a),  Q(b), and Q(c) may be a resultant of Q(a)Q(b). It follows that 
Q<a)Q(b) is not a Q-configuration of rank 1. 

Proposition 18. There exist a language L = {r, @}, two partitions 
P and Q of r, P finer than Q, and two words a and b such that Q(a)Q(b) 
is a Q-configuration of rank 1 in L, but P(a)P(b) is not a P-configura- 
tion of rank 1 in L. 

PROOF. Let r, P,  and Q be defined as in the proof of Proposition 
17 and let @ =  {dc, a b V }  (n  3 1). Since each Q-structure of the 
form (Q(a)Q(b))nQ(c) (n  3 0) is marked, it follows that Q(a)Q(b) is 
a Q-configuration of rank 1, with resultant &(a). [(Q(b))O means the 
zero Q-structure.] On the other hand, we shall show that P(a)P(b) is 
not a P-configuration of rank 1. Indeed, if we replace P(a)P(b) by P(a),  
P(b), or P(c) in the marked P-structure P(a)P(b)P(c), we get the un- 
marked P-structure P(a)P(c), P(b)P(c), or P(c)P(c), respectively; if 
we replace P(a)P(b) by P(d) in the marked P-structure P(n)P(b)P(b)P(c), 
we get the unmarked P-structure P(d)P(b)P(c). Hence, none of the 
P-cells P(a) ,  P(b), P(c) ,  and P(d) may be a resultant of P=P(a)P(b).  
Therefore P is not a P-configuration of rank 1 in L. 

Proposition 19. There exist a language L= {l-, @}, two partitions 
P and Q of r, P finer than Q ,  and two words b and c such that P(b)P(c) 
is a P-configuration of order 2, with resultant P(b), whereas Q(b)Q(c) is 
a Q-configuration of order 1 ,  with resultant Q(b) in L. 

PROOF. Let r = { a ,  b, c, d } ,  P = E ,  Q(u) = { a ,  d } ,  Q(b) = {b,  c }  and 
@= {ab"cd, dd, bcm} (rn 0, n >  0). Since the strings abVd and ab"-lcd 
are both marked for n > 0, it follows that ab is a P-structure of rank 1, 
with rewltant a. The marked P-structures of rank 1 are acd, dd, and bcm 
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( m s O ) .  It is easily seen that bc is a P-configuration of order 2, with 
resultant b; indeed, the P-structures of rank 1 bc" and bcrn-l are both 
marked for m > 0, and so bc is a P-configuration of rank 2, with resultant 
b, whereas the replacement of bc by b in the marked P-structure abncd 
yields the unmarked P-structure ab"d. Hence bc is not a P-configuration 
of rank 1,  with resultant b. However, Q(b)Q(c) is a Q-configuration of 
order 1, with resultant Q(b), since we have the marked Q-structures 
Q(a)(Q(b))"Q(a) and (Q(b))" (n s 0) and the replacement of Q(b)Q(c) 
[=Q(b>Q(b)l by Q(b) or of Q(b) by Q(b)Q(c) transforms a marked 
Q-structure into a marked one and an unmarked Q-structure into an 
unmarked one. 

Proposition 20. There exist a language L= {r, (a}, two partitions P 
and Q of r, P finer than Q, and two words c and d such that P(d)P(c) 
is a P-configuration of order 1, with resultant 'P(d), whereas Q(d)Q(c) 
is a Q-configuration of order 2, with resultant Q(d) in L. 

PROOF. Let r= {a ,  b, c, d } ,  P= E ,  Q(a)=Q<d)= {a ,  d } ,  Q(b)= {b} ,  
Q(c)={c},  (a={banc, dcm} (rns 0, n a 0 ) .  The P-structure dc is a 
P-configuration of order 1, with resultant d, because the P-structures 
dcm and dcrn-l are both marked for m > 0. However, the Q-structure 
Q(d)Q(c) is not a Q-configuration of rank 1, with resultant Q(d), 
because the replacement of Q(d)Q(c) by Q(6) in the marked Q-structure 
Q(b)(Q(d))"Q(c) (n > 0) yields the unmarked Q-structure Q(b)(Q(d))". 
But Q(d)Q(c) is a @configuration of rank 2, with resultant Q(d). Indeed, 
Q(b)Q(a) is a Q-configuration of rani  1, with resultant Q(b), and we 
obtain the following Q-structures of rank 1: Q(b)Q(c) and Q(d)(Q(c))" 
(rn 5 0). It remains to remark that the replacement of Q(d)Q(c) by 
Q(d) or of Q(d) by Q(d)Q(c) in the marked Q-structure Q(d)(Q(c))" 
also yields a marked &-structure. 

Propositions 17-20 show that Theorem 7, Corollaries 3 and 4, and 
Proposition 13 do not remain true when P is finer, but not regularly 
finer, than Q. 

9. Configurations in the Sense of Gladkii 

Gladkii has introduced an important restriction in the definition 
of configurations of order higher than 1 [13]. We shall deal with E-con- 
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figurations only; thus, we may adopt a simpler terminology and say 
configuration instead of E-configuration. 

A string x over r is a Gladkii conjiguration of rank I ,  with resultant 
a E I', in the language L =  {r, a}, if and only if x is a customary con- 
figuration (that is, in the sense of Section 2) of rank 1, with resultant 
a in L. 

We recall that a string u is said to be contained in the string u if there 
exist two strings s and t such that v=sut. Given two strings x and y ,  
we shall say that y meets x (or that x meets y )  if there exists a nonvoid 
string z which is contained both in x and in y .  

Let n be a positive integer greater than 1, and suppose we have defined, 
for every i < n ( i  3 I) ,  the Gladkii configurations of rank i. A string 
x over r is a Gladkii configuration of rank n in L if the following two 
conditions are fulfilled: (1) the length of x is not less than 2; (2) there 
exists a word a (called a resultant of x )  such that, for every pair of 
strings y and z ,  we have: (a) if yaz E @, then yxz E @; (b) if y x z  belongs 
to CP and contains no Gladkii configuration of rank less than n ,  which 
meets x but is not contained in x, then yaz E CP. 

Proposition 2 1 follows immediately. 

Proposition 21. 
greater than n. 

ones is given by Theorem 8. 

Every Gladkii configuration of rank n is of any rank 

The relation between the Gladkii configurations and the customary 

Theorem 8. Every Gladkii configuration of rank n,  with resultant 
a ,  is a configuration of rank n,  with resultant a,  but the converse is not 
true. There exist a language L= {r, @} and a configuration of rank 2 
in L which is not a Gladkii configuration in L. 

PROOF. The first part of Theorem 8 follows from the remark: The 
definition of configurations of rank n may be obtained from the definition 
of Gladkii configurations of rank n by replacing condition (2) by the 
next condition: ( 3 )  there exists a word a E r (called a resultant of 
x) such that for every pair of strings y and z, for which yxz and yaz 
contain no configuration of rank less than n,  the strings yxz and yaz are 
either both marked or both unmarked. Indeed, it is easily seen that 
(2) implies ( 3 ) .  

To prove the second part of Theorem 8, let us consider the language 
L defined as follows. r=  {a ,  b, c ,  d,  e ,  f, g } ,  a= {aec, gc, aef, gf, ec, 
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bdc, ab, db}.  The unique configuration of rank 1 is ae, with resultant 
g. The marked strings which do not contain ae are gc, gf, ec, bdc, ab, db. 
It follows that bd is a configuration of rank 2 (with resultant e). But 
bd is not a Gladkii configuration in L,  since there is no word a E r such 
that the replacement of a in any marked string also yields a marked 
string. In particular, bd is not a Gladkii configuration with resultant 
e ,  since aec is marked, but abdc is not. Theorem 8 is proved. 

Although Gladkii configurations are a special kind of configurations, 
most configurations encountered in natural languages are Gladkii 
configurations. For instance, Russian configurations vysokii dom 
(qualitative adjective + noun) and novyi dom (qualitative adjective + 
noun) are Gladkii configurations of the same rank and with the same 
resultant (dorn), but &en vysokii (adverb + qualitative adjective) is a. 
Gladkii configuration with resultant vysokii and whose rank is less 
than the rank of the former, because in the marked string nu uglu stoit 
o:en vysokii dom the replacement of vysokii dorn by dom yields an un- 
marked string. But in the same string the replacement of dom by novyi 
dom yields a marked string, although the first string contains the Gladkii 
configuration of a lower rank &en vysokii. 

A Gladkii configuration x is said to be of order n if it is of rank n,  
but not of rank n -  1. If no such integer n exists, we say that x is of 
infinite order. We may also define the Gladkii configurational type G 
of a language L by the following two properties: There exists in L a 
Gladkii configuration of order G ;  there exists in L no Gladkii configura- 
tion of order G - 1. In view of Proposition 21, most of the results 
established for customary configurations and concerning ranks, orders, 
configurational types, remain true for Gladkii configurations. 

If there exists an integer n such that the string x is a Gladkii configura- 
tion of rank It, we say that x is a Gladkii configuration; we recall that 
x is not parasitic if it is contained in at least one marked string. 

In establishing Gladkii configurations of a natural language, the 
following result may be useful. 

Proposition 22. Let L= {r, (a} and let a be a nonparasitic word in 
L. Then every Gladkii configuration of L, with resultant a,  is not parasitic. 

PROOF. Since a is not parasitic, we find two strings u and v, such 
that uav E (a. Therefore, uxv E (a and x is not parasitic. 

The Gladkii configuration x is said to be simple of rank n if it contains 
no Gladkii configuration of rank n other than x. For instance, the English 
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string very great countries is not a simple Gladkii configuration of rank 
3, although it is a Gladkii configuration of rank 3 .  In exchange, great 
countries is a simple Gladkii configuration of rank 3 .  (Configurations of 
the form secondary adverb + adverb are of rank 1 ; those of the form 
adverb + qualitative adjective are of rank 2; those of the form qualitative 
adjective + noun are of rank 3 .) 

The notions of minimal, semiregular, regular, or normal configuration 
may be transposed to Gladkii configurations. Obviously, every minimal 
Gladkii configuration of rank n is simple of rank n. 

Unless a contrary assumption is made, all configurations considered 
in Sections 9 and 10 are Gladkii configurations. 

Given a language L = {r, a}, we shall denote by & a set of ordered 
pairs of the form (x, a )  , where x is a configuration in L and a is a re- 
sultant of x. We shall suppose that .,&! fulfills the following condition: 
If a and b are two resultants of x and (x, a )  E A, then (x, b )  E A. 

If x runs over the set of all configurations (the set of all simple con- 
figurations, the set of all configurations of rank n, the set of simple 
configurations of rank n) of L,  then 4 will be denoted by K(L)(II(L), 
K,(L), II,(L), respectively). Further, we denote by B(L)(B,(L)) the set 
of all strings of L which contain no configuration (configuration of rank 
n, respectively) of L. Strings belonging to B(L) are said to be irreducible. 

The ordered pair (B(L) ,  K ( L ) )  is said to be the complete conjigura- 
tional Characteristic of L,  whereas (B(L) ,  II(L)) is said to be the reduced 
conjigurational characteristic of L. It is natural to ask whether a language 
is completely determined by its configurational characteristics. Proposi- 
tions 23 and 24 and Theorems 9 and 10 will give an affirmative answer. 

Proposition 23. Let L,  = {r, (a,} and L2 = {r, CP2}. If B(L,) G B(L,) 
and II(L,) C K(L,), then a, C a2. 

PROOF. 
B(L1); but B(LJ c B(LJ c Q 2 .  

If CP, contains strings of length 1, all these strings belong to 

Let us suppose that every string of (a,, whose length is less than or 
equal to n, belongs to Q2. Let x= ala2.  . . a,,, be a string of length 
n+ 1 , x E (a,. If x E B(L,),  we proceed as for n = 1. Suppose that x 
does not belong to B(L,).  Denote by r the smallest rank of a configura- 
tion of L,, contained in x. Then, x contains a simple configuration of 
rank r. Hence there exist two integers i, j (1 S i < j  S n+ 1 )  and a 
word a E r, such that (aiai+l . .  . aj , a )  E II,(L,) C II(L,). Let y = 
a , .  . . ui-,uuj+,. . . a,,,. Since x contains no configuration of rank less 
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than Y ,  we have y E Ql; therefore, by our induction hypothesis, y E Q2. 
But ( a i .  . . ai , a )  E K(L,). Hence x E a,. 

Proposition 24. 
integer. If B,(L,) C B,(L,) and II&) c_ K(L,), then Q1 C %. 

Let L1 = {r, @,}, L2 = {r, @,}. Let s be a positive 

PROOF. We proceed as in the proof of Proposition 23, by taking into 
account that r s s implies K,(L) c K,(L). 

Theorem 9. Let L1 = {r, Q1}, L2 = {I?, Q2}. If B(L,) = B(L,) and 
K(Ld = K(L,) or if B(LJ = B(L2) and II(Ll) = II(L2), then Ql = @*. 

PROOF. 
Theorem 9 follows immediately from Proposition 23 .  

We obviously have II(L) C K(L) for any language L; hence 

Theorem 10. Let L1 = {r, Ql}, L2 = {r, Q2} and let s be a positive 
integer. If B,(Ll) = B,(L,) and K,(Ll) = K,(L,) or if B&) = B,(L2) 
and n,(L,) = II,(L,), then Q1 = Q2. 

PROOF. We obviously have II,(L) C K,(L) for any language L. Thus 
Theorem 10 follows immediately from Proposition 24. 

The notions and facts concerning configurations may be easily trans- 
posed from strings to S-structures. (We recall that S is the partition of 

into families.) It is enough to replace words, strings, and marked strings 
by families, S-structures, and marked S-structures, respectively. (We re- 
call that, in view of Corollary 6, Chapter I ,  each marked S-structure 
is perfect, that is, every corresponding string is marked.) In the same 
way one can define simple S-configurations and the sets Bs(L), Ks(L), 
W ( L ) ,  BS,(L), Ki(L) ,  IIS,(L) corresponding to the notion of simple con- 
figurations and to the sets B(L), K(L),  W), B,(L), K,(L), and II,(L), 
respectively. 

Proposition 25. Let L = {r, a} and a E I?; let x = ula2 . .  . u, be a 
string over r. Then the S-structure S(a,)S(a,). . .S(u,) is an S-configura- 
tion of rank rn, with resultant S(a) in L if and only if x is a configuration 
of rank rn with resultant a in L. 

PROOF. Since the unit partition E is regularly finer than S and since 
Theorem 7 is also valid after replacing customary configurations by 
Gladkii configurations, Proposition 25 follows immediately from 
Theorem 7. 
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Proposition 26. Let L1 = {r, Q1} and L, = {r, @,}. Suppose that ( 1 )  
for every S-structure 9 E Bs(L1) there exists an S-structure 9 E Bs(L,) 
such that 9’ is contained in 9’; (2) for every pair ( W ,  w )  € rP(L,) there 
exists a pair ( W ‘ ,  w’) E Ks(L2) such that W is contained in W‘ and w 
is contained in w’. Then, Q1 C Q2. 

PROOF. This follows from Proposition 23 and 25. 

Proposition 27. Let n be a positive integer and let L,  = {r, Ql} and 
L2 = {r, Q2} satisfying the following conditions: ( 1 )  for every S-structure 
9 E B:(L,) there exists an S-structure 9’ E B:(L,) such that 9 is con- 
tained in 9’; (2) for every pair ( W ,  w )  € IIi(L,) there exists a pair 
( W ’ ,  w’) E KZ(L,), such that W is contained in W‘ and w is contained 
in w’. Then, @, Q,. 

PROOF. 
Propositions 26 and 27 show that Theorems 9 and 10 remains true 

when we replace A(LJ and A,,(&) (i = 1, 2 ;  A = B ,  K ,  II) by As(&) and 
A:&), respectively. The theorems thus obtained will be called Theorem 
9S and lOS, respectively. 

The following example shows that Propositions 23, 24, 26, and 27 
and Theorems 9, 10, ‘S6 and 10s become erroneous if we replace 
Gladkii configurations by customary configurations. Let = {a ,  6 ,  c, 
d, e , f ,  g } ,  and Q2 = (Dl U 
{abd}. The unique Gladkii configuration of L, is ae (of rank I ,  with 
resultant g )  and the same is true for L2. Thus, B(L,) = B(L,)  U {abd}.  
From the standpoint of customary configurations, L, and L, also have 
configuration bd (of rank 2, with resultant e). Since for any word a we 
have S(a )  = {a}  in L, as well as in L2, it follows that from the stand- 
point of customary configurations we have As(L,)  = A(L,)  = A(L,) = 

AS(L,), where A = B ,  K ,  IT. 

The proof follows from Propositions 24 and 25. 

(D1 = {aec, gc,  aeJ gf, ec, bdc, ab, db} 

10. Gladkii Configurations and Generative Grammars 

Culik observes that one of the main aims of mathematics is to charac- 
terize infinite classes by a structure using finite classes only ([lo], 
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p. 14). Faithful to this principle, Gladkii introduces the following defini- 
tion: A language L = {r, (D} is said to be offinite type if both the sets 
B(L) and II(L) are finite[ 131. 

If Gladkii configurations are replaced by customary configurations, 
then B(L) = Y,(L). On the other hand, if the E-configuration of L is in- 
finite, there are, for every positive integer n, E-configurations of order n. 
Hence there exists, for each positive integer n, a simple E-configuration 
of order n and n(L) is thus an infinite set. We have therefore proved 
the next proposition. 

Proposition 28. If we concern ourselves with the customary configura- 
tions, every language L of finite type is of finite E-configuration, and 
Y m ( L )  is finite. 

Languages of finite type are an interesting approximation to natural 
languages, where, in any case, there are infinitely many configurations. 
For instance, in most European languages there are, for any positive 
integer a, configurations of the forms: transitive verb + n direct objects, 
n qualitative adjectives + noun, n adverbs + qualitative adjective, etc. 

To avoid insignificant results, we shall explicitly state an assumption 
tacitly adopted more often then not. We shall suppose that the vocabulary 
r contains no parasitic word, that is, for any a E r there exist two strings 
u and v over r such that uav E (D. 

Languages of finite type are closely related to some kinds of languages 
obtained in generative grammars. We wish particularly to point out the 
relations between languages of finite type, on one hand, and context- 
free languages and finite-state languages on the other. Although these 
notions were already defined (see Section 1 ,  Chapter I ;  Section 7, 
Chapter 11; Section 10, Chapter Il l ) ,  we shall give new definitions, 
more suitable to our present purposes, but equivalent to the previously 
definitions. (For this equivalence see Chomsky [9] .) 

Let r and rl be two mutually disjoint nonempty sets. r is the basic 
vocabulary, whereas rl is the auxiliary vocabulary. Choose an element s 
of rl. A generative grammar over U rl is a finite set of rules of the form 
x + y ,  where x and y are strings over r U rl, whereas the symbol+ 
does not belong to r U rl. If there exist four strings u ,  v, z,, and zz 
over r U rl, such that u = zlxzz and v = z,yzz (where x-+ y ) ,  we shall 
say that v is obtained from u b y  the rule x + y .  A finite sequence xO, 
x l ,  . . . , x,  of strings over r U rl is a derivation ofx,from x g  in the genera- 
tive grammar 9, if for l s i d  n the string xi is obtained from xi-1 by 
a rule of 9 (this rule is said to be the ith rule of the considered derivation). 
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If there is a derivation of x,  from xo in 9, we shall say that x,  is derived 
from xo in 9. The set of all strings over r, which are derived from s 
in 9, is a language over r; it is the language generated by 9 and is 
denoted by L(9). 

A generative grammar is said to be a context-free grammar if, in every 
one of its rules x - y ,  the string x is an element of rl. A context-free 
grammar is ajni te-s tate  grammar if and only if, in every one of its rules 
x + y ,  we have either y E r, or y = ab,  where a E r a n d  b E rl [8,9]. 
The language generated by a context-free grammar is said to be a con- 
text-free language, whereas the Ianguage generated by a finite-state 
grammar is afinite-state language. 

Theorem 11. If the language L = {r, a} is of finite type, then 0 is 
a context-free language. 

PROOF. Let y be the set of distribution classes of L. Consider a symbol 
s which does not belong to r U y and put = y U {s}. We shall define 
a generative grammar '3 over r U rl, by the following rules: (1) s 4 b ,  
where b E Bs(L); (2) to+ t ,  where ( t ,  to) E IIs(L); ( 3 )  A -+ a,  where 
A - €  y and a € A .  

We shall show that 0 = L(9). 
(1) Let x E L(9). Obviously, in each derivation of x from s, the 

first rule (and only this rule) has form (1). It is easily seen that there 
exists a derivation xo, x l , .  . . , x,  (xo= s, x , = x ,  n 2 2 )  such that for some 
i (1 s i s n), all rules from the (i+ 1)th to the nth rule inclusively have 
form (3); moreover, if i 2 2, all rules from the second to the ith rule 
inclusively have form (2). For every k ( 1  4 k s i), xk is an S-structure 
in L. Obviously, x = x n  E xi. Therefore, to prove that x E a, it is enough 
to establish that xi is a marked S-structure in L. But this is true for 
every S-structure x l ,  x,, . . . , xi. Indeed, (a) xi is obtained from xo=s 
by one rule of form (1); hence x1 E Bs(L) and, consequently, x1 is a 
marked S-structure in L; (b) if 1 s k < i and if xk is a marked S-structure 
in L,  then is also a marked S-structure in L, since it is obtained 
from xk by introducing some S-configuration instead of its resultant. Thus, 
L(9)  c @. 

(2) Let x be a marked S-structure in L. We shall show that x is derived 
from s in 9. We proceed by induction with respect to the length of x. 

If the length x is 1, then x E Bs(L). Hence x is obtained from s by a 
rule of form (1). 

Let us admit that every marked S-structure of length less than or 
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equal to n is derived from s in 9. Consider a marked S-structure x of 
length n + 1. If x E Bs(L), we proceed as for n = 1. If x does not belong 
to Bs(L), let Y be the smallest rank of an S-configuration of L, contained 
in x.  Then, x contains a simple S-configuration of rank Y in L. Therefore, 
if x = x1 * - * x,+] (xl,. . . , x,+] E y), there exist two integers i and j 
(1 G i < j S n + l),  and a family xo E y, such that (xi - * xj, xo) E ITs(L). 
The S-structure y =xl * - xi-lxfij+l - - xn+l is marked in L. In view 
of our induction hypothesis, y is derived from s in 9. But x is obtained 
from y by a rule of form (2): xo +. xi - * xj. 

Now let z E cP. Denote by x the S-structure of z. Since z E CP, x is a 
marked S-structure in L. Hence, in view of the result just obtained, x 
is derived from s in 9. On the other hand, z may be obtained from x, 
by a rule of form (3). Therefore, z E L(9)  and Q, C L(9),  and Theorem 1 1 
is proved. 

The converse of Theorem 11 is not true, as now shown. 

Theorem 12. There exists a finite-state language 
L= {r, Q,} is not of finite type. 

over r, such that 

PROOF. Let r ’ = { a ,  b}, W = { b a b ,  a, 2, a3 , .  . .}. If we put r;={s, A ,  
D , H }  and 9’={s+aH, H + a H ,  H j a ,  s+a ,  s + b A ,  A + a D ,  
D + b}, then Qr  = L(gr) .  Moreover, K(L)  = 0 and B(L’) = a’ (where 
L! = {r’, a’}). 

Let r” = {c, d, e , f ,  g } ,  Dfr = { fg ,  cd2eg, cd3eg, .  . .}. If we put 
rIr ’={s,  C ,  F ,  E ,  G }  and 9 r r = { s + f G ,  s-+cC, C + d F ,  F + d F ,  
F + dE, E + eG, G + g}, then a’’ = L(9”). Obviously, every string 
of the form cdne (n = 2, 3 ,  . . .) is a simple configuration of order 1 in 
L” = { Y”, @”}(with resultant f); B(L”) = cfg}. 

is 
a finite-state language over r but L = {r, @} is not of finite type, since both 
the sets B(L) and H(L) are infinite. Theorem 12 is proved. 

It is natural to ask whether Theorem 11 may be improved by replacing 
the words “context-free language” by “finite-state language”. The 
answer is negative, as shown now. 

Now let us put r=r’ U I”r and a=@’ u W‘. The language 

Proposition 29. There exists a language L =  {r, @} of finite type, 
such that Q, is not a finite-state language over r. 

PROOF. Let r= {a, b}, 0 = {b,  aba, a2ba2, a3ba3,. . .}. The unique 
simple configuration in L is aba (of rank 1, with resultant b); B(L)= {b}. 
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Therefore, L is of finite type. On the other hand, we shall show that Q, is not 
a finite-state language. Indeed, for m f n, the strings am and an are not 
E-equivalent, since the string amban does not belong to @. Thus, there 
exist infinitely many T-distribution classes with respect to @. 

Theorem 12 and Proposition 29 make the following problem natural: 
Determine a class of languages which are both finite-state languages 
and languages of finite type. In this aim, we shall use a new type of 
grammar [ 131. 

Let 9 be a finite-state grammar. Let a E r, b E rl, c E rl, d E rl, 
e E rl, f E rl. We suppose that 9 fulfills the following two conditions: 
(1) If b-+ a and c-+ ad are rules in 9, then b=c; (2) if c-+ ad and 
e + af are rules in 9, then c = e.  We shall say of such a grammar 9 that 
it is a finite-state grammar without homonymy. If we interpret the 
elements of r as words (or morphemes) and the elements of r, as gram- 
matical categories, each of the rules b +  a ,  b-. ac (a  E r, b E rl, 
c E r,) says that word a belongs to category b. If all rules occurring 
in 9 and containing the word a contain homogeneous grammatical 
categories (masculine and feminine are homogeneous; also, nominative 
and genitive, singular and plural, etc.; masculine and genitive are not 
homogeneous; also, singular and present, nominative and plural, etc.), 
then, in a grammar without homonymy, no word can belong to two 
homogeneous grammatical categories. This is precisely the meaning of 
grammatical homonymy in the customary grammar. Thus, the gram- 
matical homonymy of the French adjective maigre is that it belongs 
to two homogeneous grammatical categories, the masculine and the 
feminine, whereas the grammatical homonymy of the Rumanian adjective 
cumsecade is that it belongs to two pairs of homogeneous grammatical 
categories: masculine-feminine and singular-plural. 

A language which may be generated by a finite-state grammar without 
homonymy is said to be a jinite-state language without homonymy. 
We give here without proof the following result due to Gladkii ([131, 
p. 257). 

Theorem 13. Let @ be a language over r. If @ is a finite-state language 
without homonymy, then {r, @} is of finite type. 

The problem of finding the configurations of a finite-state language has 
been completely solved by Gladkii [15]. Indeed, we have another 
theorem. 

Theorem 14. If @ is a finite-state language over r, then, for every b E r 
and every positive integer n, the set K,(b, L) of the configurations of 
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rank n and having the resultant b in L = {f, a}, is also a finite-state 
language. Starting from the finite-state grammar which generates a, 
from the word b and from the number n, we may effectively find a 
finite-state grammar which generates the language K,(b, L). 

11. Quasi-Configurations and Syntagms 

Configurational analysis is quite adequate for the description of the 
so-called connected or continuous constituents of a string x, that is, of 
constituents which are substrings of x. But there are also discontinuous 
constituents such as the German string das Buch in das gute Buch. On 
the other hand, we have concerned ourselves until now only with depen- 
dence relations; but there are also coordination relations, which remain 
outside the configurational analysis. 

This section concerns itself precisely with these two problems which 
have not been previously discussed. To investigate discontinuous con- 
stituents, the notion of quasi-configuration will be introduced. Then, 
with the aid of quasi-configurations, two types of syntagms will be 
analyzed: dependence syntagms and coordination syntagms. All notions 
and results given in this section (as well as those given in Sections 9 
and 10) are due to Gladkii [14]. 

Two words a and b are said to be related if (1) for every pair of strings 
z1 and zz and every positive integer m ,  the string zlazz is a configuration of 
rank m with resultant a if and only if zlbz2 is a configuration of rank m 
with resultant b;  (2) there exists at least one configuration of the form 
z1az2, with resultant a. 

In Russian, transitive verbs are related to the corresponding non- 
transitive forms. Thus, the configuration horos6 moet corresponds 
to the configuration horoio rabotaet. 

The following proposition is obvious. 

Proposition 30. 
The configuration x is said to be decomposable if for any resultant 

a of x there exists a word b related to a, such that x = x,bxz (that is, b 
is contained in x); b is said to be a kernel of the conjiguration x, a is 
called aprincipal resultant of x, and the stringx,x, is said to be an attribute 

If b E S(a),  then a and b are related. 

of x. 
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In Russian, oten vysokii, vysokii dom, mbju ruki are decomposable 
configurations. In German, the configuration der Tisch (with resultant 
er) is not decomposable. 

The string x is said to be a quasi-configuration of rank m if x admits 
a representation of the form x=xoy1x1y2x2, where: the length of y =  
y ly2  is greater than 1 ; at least one of the strings x,,, xl, x2 is not the zero 
string; given two strings z1 and z2, the following two conditions are ful- 
filled: if zlyz2 E Q, then zlxzz E Q,; if z = zlxz2 E a, and if every configura- 
tion of rank less than m, contained in z and which meets x, is contained 
in x, then z lyz2  E Q,. The string y is said to be the kernel of the quasi- 
contguration x, whereas the string x x l x z  is called an attribute of x. 

In Russian, za boliim stolom is a quasi-configuration with the kernel 
za stolom. In German, das gute Buch is a quasi-configuration with the 
kernel das Buch; geht schnell voruber is a quasi-configuration with the 
kernel geht voruber. 

We recall that a string of (D is said to be irreducible if it contains 
no configuration. A string (belonging or not belonging to (D) in which a 
certain permutation of the terms yields an irreducible string is said 
to be a source string. Obviously, every irreducible string is a source 
string but the converse is not true. A word is said to be a source word if 
it is contained in at least one irreducible string, but it is not the attribute 
of a decomposable configuration or quasi-configuration. 

In Russian, telovek idet is a source string, whereas idet is a source 
word. 

Given a string x= a1a2 * * * a,, every string of the form ai,aiz * * * aik 
(1 < il < - . * < ik S n) is said to be a part of the string x. A connected 
part of x ,  that is, a part of the form ajaj+l * * (1 s j 6 n, 0 G p S n -11 
is said to be a substring ofx. It is obvious that a string y is a substring of 
x if and only if it is contained in x. A part of x other than x is said to be a 
proper part of x .  

A string u is said to be of degree m if it contains no configuration of 
rank less than m or equal to m and no quasi-configuration of rank less 
than m or equal to m. 

Two strings x and y are said to be m-equivalent if, for any pair of 
strings z1 and z2 such that the strings u = zlxz2 and v = z lyz2  are of degree 
m, u and v are E-equivalent. 

If x and y are parts of the string w and if x and y are m-equivalent 
for any positive integer m such that w contains no configuration of rank 
less than or equal to m, we shall say that x and y are w-equivalent; if 
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w contains at least one configuration of rank 1 ,  we define the w-equiva- 
lence between x and y as the E-equivalence between x and y .  

Let x be a decomposable configuration or a quasi-configuration; x 
is said to be a dependence syntagm if the following five conditions are 
fulfilled: (a) its attribute has a unique component that is, if x is a de- 
composable configuration, only one of the strings x1 and x, is not the zero 
string; if x is a quasi-configuration, only one of the strings xo, xl, and 
xz  is not the zero string; (b) its kernel and its attribute are uniquely 
determined; (c) no substring of its kernel and no substring of its at- 
tribute is a decomposable configuration or a quasi-configuration; (d) 
no substring of its attribute is a source string; (e) if y and z are two 
disjoint parts of x, then y and z are neither x-equivalent nor source strings. 

Every principal resultant of a decomposable configuration which is 
a dependence syntagm and every kernel of a quasi-configuration which is 
a dependence syntagm are said to be substitutes of the corresponding 
dependence syntagms. 

A dependence syntagm x is said to be of theJirst species if its attribute 
contains no source string and no source word; x is said to be of second 
species, if it is not of the first species. 

Russian dependence syntagms of the first species: oten  vysokii; 
v vysokom dome; mdju ruki; of the second species: dorn, v kotorom j a  
livu; o teoreme, kotoraja dokazana; znal, ?to on matematik; rasskalu, 
esli sumeju. The following strings are not dependence syntagms: vysokii 
novyi [condition (b) is not fulfilled]; oEen horoiuja kniga [condition (c) is 
not fulfilled]; j a  priehul vEera [condition (d) is not fulfilled]; protel 
gazetu i Zurnal [condition (e) is not fulfilled]. German dependence 
syntagms of the first species: das gute Buch; sehr gutes Buch; geht 
schnell voriiber. 

Let x be the attribute of a dependence syntagm of the second species. 
Suppose that 

x =ydclYl * .  ' X n Y ,  ( n  3 11, ( 5 )  

where (a) none of the strings xl, x,, . . . , x,, is the zero string; (b) the string 
Z=xlxz . * x, may be obtained from some string belonging to @, by a 
suitable permutation of its terms; (c) representation (5) is maximum, 
that is, if 

x = y;x:.y; * . * x;y; (6) 

and if every x, is contained in some x:, then (6) does not fulfill conditions 
(a) and (b). In this case, we shall say that Z is a principal part of x ,  
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whereas the string yo * y1 * . . * * yn (where the asterisk is a separating 
sign) is said to be an auxiliary part of x.  

Let us consider an attribute x of a dependence syntagm of the second 
species. Suppose that x does not admit a representation ( 5 )  fulfilling con- 
ditions (a) and (b), that is, no substring of x is a source string. Then we 
find a source word a such that x = z,,azl. In this case, we shall say that 
a is a principal part of x, whereas zo Y z1  is said to be an auxiliary part of x. 

In the above Russian examples of dependence syntagms of the second 
species, the principal parts and the auxiliary parts of the corresponding 
attributes are, respectively, the following: (1) j a  i ivu and v kotorom * 8; 
(2) dokazana and kotoraja * 8; ( 3 )  on matematik and ?to * 8; and (4) 
sumeju and esli * 8, where 8 is the zero string. 

Kernels and principal resultants of dependence syntagms as well 
as attributes of dependence syntagms of the first species are said to be 
elements of the first species. Principal parts of attributes of dependence 
syntagms of the second species and strings x E CD admitting no pair of 
disjoint x-equivalent parts and containing no dependence syntagm are 
said to be elements of the second species. 

The string x is said to be a coordination syntagm of species j ( j  = 1, 2), 
if the following conditions are fulfilled: (a) x is a configuration or a quasi- 
configuration; (b) we have x=yoxly l  * - * Xkyk (k > 21, where: x l , .  . . , xk 
are elements of species j ;  x l , .  . . , xk are pairwise x-equivalent; if x is 
a quasi-configuration or a decomposable configuration with kernel xi ,  
then the same is true for every xh ( I  G h G k) ;  if x = z1x'z2, where x f  
is an element of species j ,  then we have, for any i = 1 ,  2, .  . . ,k, x f  = 

The strings x l , .  . . , xk are said to be terms of the coordination syntagm 
x,  whereas the sequence of strings yo ;1; y1 * .  . - * yk (where the asterisk 
is a separating sign) is an auxiliary part of x.  

The notion of a substitute of a coordination syntagm is defined as 
follows: (1) If x is a nondecomposable configuration, every resultant of 
x is a substitute of x ;  (2) If x is a decomposable configuration, every prin- 
cipal resultant of x is a substitute of x ;  ( 3 )  If x is a quasi-configuration, 
every kernel of x having a minimum length is a substitute of x.  

Coordination syntagms in Russian: Zvanov, Petrov i Sidorov is a 
coordination syntagm of species 1 ,  with the auxiliary part 8 *, * i * 8. 
(We are concerned with written Russian; signs of punctuation are con- 
sidered words; however, periods at the ends of the strings are omitted.) 
This syntagm is a nondecomposable configuration (for instance, with 
resultant Zvanovy). N e  tolko Ivanov, no i Petrov is a coordination syntagm 

xi, z1=yO ' ' ' Xi-lyi-1, Z2=y&+l ' ' * yk. 
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of species 1, with the auxiliary part ne tolko, no i * 8. This syntagm is a 
decomposable configuration. Ivanov matematik, a Petrov Jizik and esli 
Ivanov priiel, to  Petrov ne priiel are coordination syntagms of species 2, 
with the auxiliary parts 8 *, a * 8 and esli *, to * 8, respectively. Both 
these syntagms are quasi-configurations. 

Given an element x of species 2, we shall say that the representation 
x = zl,. . . , zit is a canon representation ofx if (a) every zi is an element of 
species 1 ; (b) for any representation x = z; - * * z: fulfilling condition (a), 
every zi is a substring of some zi. 

Obviously, an element of species 2 may have no more than one canon 
representation. 

12. Final Remarks 

Very interesting notions and facts concerning Gladkii configurations 
are discussed by Paduieva [35]. Gladkii configurations are also used 
in [16]. Another notion of configuration is used by Moloinaja in her 
algorithm of translation from English into Russian [30]; see also [311. 
The determination of configurations in Russian sentences was made by 
Ceitin and Zasorina [7]. For various aspects concerning the analysis 
into immediate constituents see also Haugen [22] , Hockett [23], and 
Nida [34]. The notion of rank (of a constituent or of a configuration) 
has its origin in Jespersen [24] and was used by De Groot [18, 191 
and by Harris [21]. Some illustrations of configurations in the Czech 
language is given by Nebesky and Sgall([33], pp. 97-98). A definition of 
the dependence relation, without using the notion of configuration, was 
given by Nebesky [32] and improved by Revzin [43]. This point of 
view will be discussed in the next chapter, together with the notion of 
subordination. Interesting notions and facts related to configurations, 
such as the norm of an S-structure and the notion of sentence are dis- 
cussed by Revzin [39, 401. For the notion of syntagm see also Stati 
[44]. A new model of grammatical description, which improves in some 
respects the model of immediate constituents, was given by Parker- 
Rhodes and members of the Cambridge language research unit [36]. 
A classification of syntactic relations is given by Bloch and Trager [3]. 
For some logical aspects of syntax see Carnap [6]. Some ideas closely 
related to that of configuration are developed by Harris [20]. 
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Chapter Vl 

Subordination and Projectivity 

1. Introduction 

In the preceding chapter, we analyzed in a constructive and recursive 
way the dependence relations occurring in a string, and we introduced 
a hierarchy of dependencies, the order of a dependence relation being 
the order of the corresponding configuration. In the present chapter, we 
continue the study of syntactic relations, but from another point of view. 
The dependence structure of a string will be considered either as given 
(Sections 3, 7, and 8) or as a derived notion, the main notion being 
that of subordination (Sections 4 and 5).  In the first case, we shall 
obtain the subordination relation as the transitive closure of the depen- 
dence relation. In the second we shall insist on an axiomatic treatment 
of syntactic relations and various modes of representing a structured 
string by means of strings of a rudimentary structure. In both cases, 
we shall investigate various types of restrictions concerning the depen- 
dence and the subordination relations in a string. In this respect, the 
main properties we shall deal with will be the property of simplicity 
of a string (Sections 3-5) and the projectivity property (Sections 7-10). 

2. Some Notions and Results concerning Graph Theory 

The main mathematical tool we use in Sections 3 and 4 of this chapter 
is graph theory, and we give without proof some results which will be 
used subsequently. All these notions and results may be found in books 
and monographs concerning graph theory: Berge [7] ,  Berge and Ghouila- 
Houri [8], Ore [46]. We wish to point out that we make particular use 
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of the variant of [8], which differs in some respects from that of [7] 
(for instance, in the definition of a chain or a cycle) However, theorems of 
[7] remain valid with the definitions of [8]. 

When two sets V ,  and V,  are given, one can form the set of all ordered 
pairs (v,, v,), v1 E V, ,  v, E V,. This set is called the product space 
and denoted by V ,  x V,. 

Let V be a set and let U b a subset of V X V .  The couple G = ( V ,  U )  
is called a graph. V is the vertex set of G .  The elements of I/ are said 
to be vertices, whereas the elements of U are called arcs. Thus, an arc 
is an ordered pair a= (a ,  b )  of vertices; a is called the initial vertex 
of a, and b is its terminal vertex. a and b are the end points of a;  the 
arc a starts in a and arrives in b.  An arc ( a ,  b )  such that a =  b is called 
a loop. 

A graph is said to be jinite if its vertex set is finite. The cardinal 
number of V is called the order of G. 

A subgraph (V, ,  U , )  of G is a graph such that V,  c V and U ,  contains 
precisely the arcs in G whose end points are in V, .  A partial graph 
(V,, U , )  of G is a graph for which V,  = V and U ,  C U .  A partial sub- 
graph of G is a partial graph of a subgraph of G. 

Two arcs are said to be adjacent if they have a common end point. 
Two distinct vertices are said to be adjacent if they are the end points 
of an arc. 

A jinite path in a graph is a finite sequence of arcs such that the 
terminal vertex of each arc coincides with the initial vertex of the next 
arc. The length l(p) of a path p= (u,, u 2 , .  . . , uk) is the number of its 
terms; here, l (p )=k .  The initial extremity of a finite path is the initial 
vertex of its first arc, whereas the terminal extremity of a path is the 
terminal vertex of its last arc. Given a path p having a and b as its initial 
and terminal extremities, respectively, we say that p starts in a and 
arrives in b; p is a path between a and b. 

A graph G = ( V ,  U )  is said to be symmetric if ( a ,  b )  E U implies 
( b ,  a )  E U .  G is said to be antisymmetric if ( a ,  b )  E U implies 
( b ,  a )  9 U .  G is said to be complete if ( a ,  b )  9 U implies (b ,  a )  E U .  
G is strongly connected if for any two distinct vertices a and b there 
exists a path between a and b. 

The notions just defined depend in actuality upon the orientation 
of arcs. We also have some nonoriented notions, as follows. 

An edge is a (nonordered) couple of adjacent vertices. Ajinite chain 
is a finite sequence of arcs p= (u l ,  u,, . . . , uk, U k i - 1 , .  . . , u,) such that 
each of its intermediate arcs uk is adjacent to uk-1 by one of its end points 
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and adjacent to uk+l by the other. Thus, every finite path is a finite 
chain, but the converse is not true. 

In the following we shall use path (chain) instead of finite path (finite 
chain). 

Let ul= ( a l ,  b , ) ,  u,= (a,, bq) .  Let us denote by c1 the end point 
(if it exists) of u1 which is not an end point of u,; if such an end point 
does not exist (for instance, u, may be a loop), we put c l=al .  Let us 
denote by c, the end point (if it exists) of u, which is not an end point 
of uq-l; if such an end point does not exist, we put c,= b,. The vertices 
c, and c, are called the initial extremity and the terminal extremity of 
the considered chain p. We say that p starts in c ,  and arrives in c, or 
that p connects c ,  and c,. 

A graph is said to be connected if for any two distinct vertices a 
and b there exists a chain which starts in a and arrives in b. Every 
strongly connected graph is connected, but the converse is not true. 

Given a vertex a, the set formed by a and by all vertices which may 
be connected with a by a chain is called a connected component, the 
connected component of a. A graph is connected if and only if it has 
a unique connected component. 

A cycle of a graph is a chain fulfilling the following two conditions: 
( 1 )  no arc occurs twice in the chain; (2) the initial extremity of the 
chain coincides with its terminal extremity. 

A cycle p= (u,, u,, . . . , u,) is said to be a circuit if the terminal vertex 
of each arc uk ( 1  s k < q) is the initial vertex of uk+l,  whereas the terminal 
vertex of u, is the initial vertex of u,. 

A tree is a connected graph without cycles and having at least two 
vertices. 

Theorem A ([8], p. 131). 
The following propositions are pairwise equivalent: 

Let G = ( V ,  U )  be a graph of order n 2 2. 

( 1 )  G is connected and without cycles (that is, G is a tree); 
(2) G has no cycle and admits n - 1 arcs; 
(3) G is connected and admits n- 1 arcs; 
(4) G has no cycle, but if we add an arc, we obtain a (unique) cycle; 
( 5 )  G is connected, but it becomes nonconnected if we remove an 

(6) given two vertices a and b of G, there exists a (unique) chain 

A suspended vertex of a graph is a vertex which is the endpoint of 

(arbitrary) arc; 

starting in a and arriving in b. 

a unique arc. 



3. Simple Strings and Proper Trees 203 

Theorem B ([$I, p. 132). A tree admits at least two suspended vertices. 

Theorem C ([S], p. 132). A graph G contains a partial graph which 
is a tree if and only if G is connected. (The proof of this theorem gives 
a simple algorithm for obtaining a tree in a connected graph.) 

A center of a graph is a vertex a such that for any other vertex b 
there exists a path starting in a and arriving in 6. There exist graphs 
which admit no center. 

A graph is quasi-strongly connected if for any two vertices a and b 
there exists a vertex c,  a path between c and a and a path between c 
and b. It follows that any strongly connected graph is quasi-strongly 
connected (since we may take c = a) but the converse is not true. Every 
quasi-strongly connected graph is connected. 

A proper tree (for the French arborescence) is a tree endowed with a 
center. 

Theorem D (Roy [52];  see also [8], p. 135). Let G be a graph of order 
n > 1 ; each of the following conditions is both necessary and sufficient 
that G be a proper tree: 

(1) G is quasi-strongly connected and without cycles; 
(2) G is quasi-strongly connected and admits n -  1 arcs; 
(3) G is a tree with a center a ;  
(4) There exists a vertex a such that for any other vertex b there exists 

( 5 )  G is quasi-strongly connected, but it becomes nonquasi-strongly 
a unique path starting in a and arriving in b; 

connected if we remove an arbitrary arc. 

Theorem E ([$I, p. 137). A graph G admits a partial graph which is a 
proper tree if and only if G is quasi-strongly connected. 

3. Simple Strings and Proper Trees 

The automatic syntactic analysis is frequently made within the frame- 
work of a geometric representation. In this respect, graph theory and 
especially the theory of trees is of great utility. We shall first define the 
notion of a structured string. Then we shall associate a certain graph 
to each structured string. 
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Consider a language L = {F, a} and let x E a, x = a l a 2 . .  . a,. We 
associate to the string x a binary relation R, defined in the set N,= 
{ 1, 2 , .  . . , n } ,  that is, a subset of the Cartesian product N ,  X N,. (We 
recall that the Cartesian product A X B of two sets A and B is the set of 
all ordered pairs (a,  b ) ,  with a E A and b E B.)  R ,  is said to be a de- 
pendence relation. We may obtain this relation in a constructive manner, 
with the aid of configurations of various orders, as in Chapter V. But 
the dependence structure of a string is often considered given. 

If ( i t  j ) E R,, we shall also write aiR,aj. In fact, by ai ( I  s i G n) 
we mean the ordered pair ( ai, i ) .  Thus ai # ai if and only if i # j ,  and we 
may consider that R ,  is defined in the set {al, a 2 , .  . . , an} .  If aiRlai, 
we shall say that ai depends upon ai (with respect to the string x and the 
language L). The ordered pair (x, R,)  is said to be a structured string; 
it is a structured string associated with x. 

Given a binary relation p defined in the set A ,  we define in A the 
binary relation f i  as (a ,  b )  E f i  if and only if there exists a finite sequence 
a,, a,, . . . , a, of elements of A ,  such that a,  = a, a, = 6 ,  and ( ai, u ~ + ~ )  E p 
for any i, 1 s i G 1. f i  is called the transitive closure of p.  It is obvious 
that i j  is a transitive relation in A .  

Let us consider the transitive closure R ,  of R ,  in N,. If aiR,ai, we 
shall say that ai is subordinate to ai (with respect to x). R ,  is said to be a 
subordination relation; it is the subordination relation induced by R,. 

We say that the structured string {x, R,} is simple if the following 
three conditions are fulfilled: (a) there exists a term ai of x which depends 
upon no term of x; (b) for any j # i ( 1  ~j s n) there exists an integer k 
( 1  G k s n), uniquely determined, such that aj depends upon ak; (c) for 
any integer m # i ( l  s m s n), a ,  is subordinate to ai. I t  follows immed- 
iately that the term ai occurring in conditions (a) and (c) is uniquely 
determined; by definition, ai (or i )  is the center of the considered simple 
structured string. On the other hand, it is easily seen that we always have 
k # j  in condition (b). 

For the sake of simplicity, we shall often say a simple string instead 
of a simple structured string; but it is tacitly assumed that every simple 
string is also a structured string. 

Various notions very closely related to the notion of simple string may 
be found in Hays [22-251, Lecerf [35], Fitialov [ 161, Gaifman [ 181, 
and others. Condition (b) owes its origin to Tesnikre [57]. 

The notion of a simple string is a model of first approximation of the 
classical syntactic notion of sentence. The center of a simple string cor- 
responds to the predicative element of a sentence. 
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Let {x, R,} be a structured string, x = a,a2 - * a,. We associate 
with this string a graph G, defined as follows. The vertices of G, are the 
elements of J, (that is, the integers 1, 2 , .  . . , n). The ordered pair 
(i, j )  is an arc of G, if and only if (i, j )  E R,. It follows that the order of 
G, is equal to the length of x. Since by ai we mean in fact the ordered 
pair (ai, i), we may equally consider that the vertices of G, are a,, 
a 2 , .  . . , a,. 

Theorem 1. Let G be a finite graph of order greater than 1 .  G is a proper 
tree of center a if and only if the following three conditions are fulfilled: 

(1) every vertex other than a is the terminal vertex of an arc, but of a 
single arc; 

(2) no arc has its terminal vertex in a; 
(3) G has no circuit. 

PROOF. Let G be a proper tree of center a and let us verify conditions 
(1, 2), and (3). By Theorem D, for every vertex p # a there will exist an 
arc having p as terminal vertex. This arc is unique, because if there were 
two such arcs, then the existence of the center would imply the existence 
of a cycle, in contradiction to the assumption that G is a proper tree. Thus, 
condition (1) is fulfilled. If there were an arc ( y ,  a ) ,  then, since a is 
the center of G (and thus a path exists starting in a and arriving in y), 
there would exist a circuit passing through a and y. But any circuit is 
a cycle; we again obtain a contradiction with the assumption that G is 
a proper tree; thus condition (2) is fulfilled. Since every circuit is a cycle 
and because G, being a proper tree, contains no cycle, condition (3) 
is also fulfilled. 

Now suppose that the finite graph G (of order > 1) contains no circuit, 
but G has a vertex a satisfying conditions ( 1  and 2). We shall show that 
G is a proper tree of center a. In view of the hypotheses, there exists 
for every vertex p # a a path starting in a and arriving in p; thus, by 
theorem D, a is a unique center of G and G is a proper tree (another way: 
by (1) and since G has no circuit, G has no cycle. Hence in view of 
Theorem A, G is a tree. But a tree having a center is a proper tree.) and 
thus Theorem 1 is proved. 

REMARK. Theorem 1 establishes the equivalence, for finite graphs, 
between two definitions of the notion of a proper tree: that of [7] (Chap. 
16) and that of [8] (p. 135). The first of these definitions is given for finite 
graphs only, whereas the second does not introduce such a restriction. 



206 Vi. Subordination and Projectivity 

It should be observed that this equivalence holds and is interesting only 
if both the definitions consider the notion of cycle in the sense of Berge 
and Ghouila-Houri (@I, p. 122); as we have already remarked, this is 
not the case in [7]. 

Theorem 2. A structured string {x, R,} is simple if and only if the graph 
G, associated with {x,  R,} is a proper tree. The center of {x, R,} is 
precisely the center of G,. 

PROOF. Let x = alaz * * . a,. Assume that {x, R,} is a simple string, 
with center a,. To prove that G, is a proper tree with center a,, it is enough 
to show that conditions (l), ( 2 ) ,  and ( 3 )  of Theorem 1 are fulfilled with a= 
a,  and to take into account Theorem 1. In view of (a) (see the definition 
of a simple string), no arc of G, arrives in a,. Hence G, satisfies condition 
(2). In view of (b), condition ( 1 )  is also fulfilled. To prove (3), we shall 
establish a stronger result: G, contains no cycle. This property is a 
consequence of another, that: G, is a tree. To prove that G, is a tree, it 
is enough to show that G, is connected and has n - I arcs (Theorem A). 
The connectedness of G, follows from property (c) of a simple string, 
that is, from the fact that for any two integers j ,  k ( I  s j ,  k s n)  there 
exists a chain between a3 and a k  (indeed, we have a chain between a, 
and a, and another chain between a, and ah-). On the other hand, since G, 
has n vertices and by taking into account properties (a) and (b) of a simple 
string, it follows that C ,  has n-  1 arcs. 

Now suppose that G, is a proper tree with center a,. We shall show that 
{ x ,  R,} is a simple string, with center a,. Properties (a) and (b) follow from 
conditions (1) and ( 2 ) ,  fulfilled by every proper tree (see Theorem 1). 
To establish (c), let a, be a term of x (j # i). In view of ( I ) ,  there exists 
an integer j ,  such that we may find in G, an arc starting in a,, and arriving 
in a,. Ifj, # i, then, in view of (l), there exists an integer j ,  such that we 
may find in G, an arc starting in a,, and arriving in a31, Continuing in this 
way, we find afinite sequence jl, j,, . . . , j ,  = i of positive integers such that, 
for I s k s s - 1 , there exists in G, an arc starting in u , ~ + ~  and arriving in 

The existence of an integer s such that j ,  = i is assured; indeed, if 
if there were no such integer, then by properties ( 1 )  and (2) of a proper 
tree and since G, is finite, G, would have a circuit, in contradiction to 
property (3) of proper trees (see Theorem 1) .  Thus, there exists in 
G, a path starting in at and arriving in a,. This implies that N, is subor- 
dinate to at (with respect to x). Property (c) is fulfilled and Theorem 2 is 
proved. 
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Theorem 2 enables us to use all results concerning proper trees in 
the investigation of simple strings. 

Two structured strings may be compared from the standpoint of their 
dependence and subordination. To  this aim, we introduce two types of 
syntactic isomorphism. 

Two structured strings {x, R,} and { y ,  R,}  where x = a,az * - * h,, 
y = blb, * * b,, are said to be &isomorphic if the following two condi- 
tions are fulfilled: (1 )  x and y have the same length (m = n); (2) we 
have aiR,aj if and only if b,R,bj. If condition ( 2 )  is replaced by condi- 
tion ( 3 )  [ ( 3 )  we have aiRzaj if and only if b,R,bj], then we say that the 
considered structured strings are cT-isomorphic. The 6-isomorphism is 
called the dependence isomorphism, whereas the c*-isomorphism is 
called the subordination isomorphism. These two types of syntactic 
isomorphism are related by a theorem. 

Theorem 3. 
cT-isomorphic, but the converse is not true. 

If two structured strings are &isomorphic, they are also 

PROOF. Let x =  ala2, .  . . , a,, y = blbz, .  . . , b,. The first part of 
Theorem 3 follows immediately from the fact that, if ai depends upon 
aj (with respect to x), then a, is subordinate to aj  (with respect to x) and 
the same is true for y .  It is also necessary to take into account the trans- 
itivity of subordination relations. To prove the second part of Theorem 

b,), (b l ,  b,)}. Thestructuredstrings {x, R,} and { y ,  R,} are c-isomorphic, 
since we have R ,  = {(al7 a,), (a,, a,), (a , ,  a,)}, and R ,  = R,. But they 
are not 6-isomorphic, since (b ,  , b,) E R ,  , whereas ( a ,  , a s )  does not 
belong to R,. This example also yields a proposition. 

3,letx=aiaza37y=blbzb,,R,= {(a17 a,), (a,, a3)),Ru= {(b l ,  h) ,  (bz, 

Proposition 1. 
that one of them is a simple string but the other is not. 

There exist two cr-isomorphic structured strings such 

On the other hand, the following proposition is obvious. 

Proposition 2. If two structured strings are 6-isomorphic and if one 
of them is simple, the other is also simple. 

Proposition 1 admits a significant illustration in Rumanian. Let us 
consider the following Rumanian strings: x = zgomotoqii copii vin 
and y = zgomotoqi copiii vin. These two strings present the dependencies 
R, = { (copii, zgomotogii), (vin, copii)}, R ,  = { (copiii, zgomotosi), (vin, 
zgomotogi), (vin, copiii)}. Hence x and y are a-isomorphic, but not 6- 
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isomorphic. x is a simple string, its center being vin. Copii depends 
upon vin, and thus is subordinated to vin; zgomoto$ii is also subordinated 
to vin, by means of two dependencies. On the other hand, y is not a simple 
string since condition (b) of the definition of a simple string is not ful- 
filled; there exists a term of y(zgomotogi) other than the center vin, 
which depends upon two terms of x, copiii and uin. This fact has an 
interesting grammatical significance. The string x has the P’-structure 
adjective + noun + verb, whereas in the string y the first term is both an 
adjective (it depends upon copiii) and an adverb (it depends upon vin). 
Such phenomena often have stylistic value; they are often encountered 
in belletristic texts (see Marcus [40]). 

4. An Axiomatic Description of Simple Strings 

In the preceding section, the subordination relation was defined as 
the transitive closure of a dependence relation. There is another way, 
due to Beleckii et al. [4], who define the subordination relation by 
means of a system of axioms; then, as a derived notion, we obtain the 
dependence relation. 

We consider given a set of elements called words and two binary re- 
lations defined in this set: (1) the word a precedes the word b (a < b) 
and (2 )  the word b is subordinated to the word a (a 3 b). The coin- 
cidence of two words a and b is denoted by a = b;  the noncoincidence, 
by a # 6. We consider nine axioms, as follows. 

ORDER AXIOMS: (1.1) .  If a < b and b < a ,  then a = 6 ;  (1.2) if a < b 
and b s c, then a s c ;  (1.3) given two words a and b,  we have either 
a < b  or b s a .  

SUBORDINATION AXIOMS: (2.1). For any word a we have a =t a; (2.2) 
if a =f b and b 3 a, then a = b;  (2.3) if a =t b and b ==$ c ,  then a =t c.  

AXIOM OF THE SEMILATTICE CHARACTER: (3. I) .  Given two words a and 
b, there exists a word c such that c =f a and c 3 b. 

AXIOMS OF CORRECTNESS: (4.1). If a 3 c and b 3 c ,  then we have 
a = f b  or b i r a .  
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AXIOM OF FINITENESS: (5.1). 
If a d b, but a # b, we say that a strictly precedes b and we write 

a < b. If a 3 b ,  a # b, and there exists no word c such that a =t c =t b, 
a # c,  b # c ,  we write a + b and we say that b depends upon a. 

Each realization of the above system of axioms is said to be a B- 
string ( B  from Beleckii). If we consider order axioms only, a correspond- 
ing realization is said to be a string. 

Although not explicitly specified, all theorems, propositions and 
corollaries given in this section concern B-strings. 

The set of words is finite. 

Theorem 4. 
c =t a ,  c 
have d* c .  

Given two words a and b, there exists a word c fulfilling 
b, such that for every word d for which d=t  a ,  d=tb,  we 

PROOF. In view of (3.1) there exists a word do such that do* a, do* b. 
If it does not fulfill conditions of Theorem 4, there exists a word dl such 
that d,  3 a,  d, =t 6 ,  but we do not have d,  =t do. Then, by Axiom (4. l ) ,  
do* d,. If d,  is not the required word c ,  there exists a word d,, such that 
d, =t a ,  d, =t b,  but we do not have d2 * d,;  then do* d,  3 d,. In this way 
we obtain a sequence do =t d, =% * * =% d,  and, by Axioms (2.2) and (2 .3 )  
none of the terms of this sequence may be repeated. In view of Axiom 
(5.1), this sequence is finite; its last term d, is the required word c. 

Proposition 3. 
a = a,-+ a ,  -+ * * -+ a, = b. 

If a 3 b, then either a = b, or there exists a sequence 

PROOF. Let a 3  b and a # b. If a+ b, Proposition 3 is proved; if not, 
we may find a word a, such that a = a, =t a,  S a, = b, the words a,, a,, 
and a2 being mutually distinct. If a, -+ a, and a, + a,, Proposition 3 is 
proved; if not, we may find a sequence of four mutually distinct words 
a, + a,  + a2 + a3. In view of Axiom (5 .  I), this process may be continued 
only finitely many times, and we find after n steps the desired sequence. 

Proposition 4. If a + c and b + c,  then a = b. 

PROOF. Since a 3 c and b =t c ,  we have a =t b or b =% a [see Axiom 
(4.1)]; let us suppose that a =% b. Then, since a + c and a 3 b =t c, 
we have a = b or b = c;  but the last equality is not possible, because 
b -+ c. Thus, a = b. The case b =t a may be analyzed in the same way. 
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Proposition 5. 
c < a.  

Let a 3 b, b = $  c. If a < b,  then a < c ;  if b < a, then 

PROOF. Let a < b. If c G a ,  then c 6 a 6 b and, since b=t c, it follows 
that b 3 a and, in view of Axiom (2 .2 ) ,  we have b = a, which contradicts 
the assumption that a <  6 .  Hence, a < c .  In the same way one can 
prove the second assertion of Proposition 5. 

The word a is said to be a nonsubordinated word if there exists no 
word b such that b =t a and b # a. 

The word a is said to be a nonsubordinating word if there exists no 
word b such that a =f b and b # a. 

Proposition 6. A word a is a nonsubordinated (nonsubordinating) 
word if and only if there exists no word b such that b 4 a (a -3 b, 
respectively). 

PROOF. Proposition 6 follows immediately from Proposition 3 .  

Proposition 7. 
word and a nonsubordinating word. 

In every nonempty B-string there exist a nonsubordinated 

PROOF. Let us prove the existence of a nonsubordinated word. Let 
a be an arbitrary word. If a is not a nonsubordinated word, there exists 
a word a,  such that a, 4 a, = a. By continuing in this way and in view 
of Axioms (2.3), (2.2), and (5.1), we find a finite sequence of words 
a, --$ un-, -+ . * * + a, -+ a, = a such that alL is a nonsubordinated word. 

In an analogous way we can prove the existence of a nonsubordinating 
word. 

Proposition 8. 
word b. 

If a is a nonsubordinated word, we have a 3 b for any 

PROOF. Let b be an arbitrary word. By Axiom (3.1), there exists a 
word c such that c 3 a and c 3 b. Since a is a nonsubordinated word, 
we have c = a. Hence a =t b. 

Corollary 1. 
determined. [This foilows immediately from Axiom (2.2).] 

Corollary 2. If a B-string x possesses a word a which is both a non- 
subordinated and a nonsubordinating word, then x is formed by a single 
word. 

The nonsubordinated word of a B-string is uniquely 
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PROOF. 
contradiction to the fact that a is a nonsubordinating word. 

Let us suppose that x contains a word b # a;  then a =3 6 ,  in 

The words a and b are said to be comparable if a =f b or b =3 a. 

Proposition 9. If a -+ b, a 4 c and b # c, then b and c are not comparable. 

PROOF. Let us suppose that b and c are comparable; for instance, 
b =3 c.  Then, since a 3 b =f c and a+ c, we have a = b or b = c. But 
each of these equalities is false, because a + b and b # c. Thus, b and 
c are not comparable. 

Proposition 10. 
then c and d are not comparable. 

If a and b are not comparable and if a =3 c and b =t d, 

PROOF. Let us suppose that c and d are comparable, for instance, 
c 3 d. Then, by Axiom (2 .3 ) ,  we have a =3 d and, in view of Axiom (4. l),  
a and b should be comparable, in contradiction to the hypothesis. 

Corollary 3. If a and b are not comparable and if a 3 c  and b*d, 
then c # d. 

In the following, the relation S will be interpreted as the linear order 
of words (from the left to the right). Thus, every realization of the order 
axioms becomes a customary string. 

Theorem 5. If the string x = a1a2 . a, endowed with the relation 
=3 is a B-string, then, by putting aiRxaj if and only if ai + aj, the structured 
string {x, R,} is simple. 

PROOF. We shall prove that conditions (a), (b), and (c) from the defini- 
tion of a simple string are fulfilled. Let aj  be a term of x. In view of 
Proposition 6, the existence of a word a, such that ak-+ aj implies the 
existence of a word ap such that up =3 aj  and conversely, if up 3 aj ,  
there exists a word ak such that a, -+ aj. Moreover, if ak 4 a j ,  then 
k # j  (see the definition of +). By Proposition 7, there exists a term ai 
of x such that a,  =3 ai for no k (1 < k S n). Thus, we have a, + ai for no 
k( 1 S k S n). By Corollary 1 ,  the term ai is uniquely determined. Hence 
ai is the unique term for which akRxai for no k (1 s k 6 n). Condition 
(a) is thus fulfilled. 

Consider now a term aj  such that j # i. In view of Proposition 6 and 
Corollary 1, there exists a term a, such that a, + aj. By Proposition 4, 
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this term is uniquely determined. Condition (b) is thus fulfilled. Pro- 
position 8 shows that condition (c) is also fulfilled and Theorem 5 is 
proved. 

The converse of Theorem 5 is also true and we have Theorem 6. 

Theorem 6. 
by putting ak =t a, if k = j  or 
relation =t is a B-string. 

If the structured string {x, R,) (x = a, a, - * * a,) is simple, 
the string x endowed with the 

PROOF. The order axioms are obviously satisfied. Axiom (2.1) follows, 
immediately from the hypothesies. To verify Axiom (2.2), let us remark 
that a j 2  a k  implies the existence, in G,, of a path starting in aj and arriv- 
ing in a k ;  conversely, the existence of such a path implies a, =% ak. Assume 
that a, =t a k  and a k  3 uj. If there were k Z j ,  there would exist in G, a 
cycle passing through aj and a k .  But since {x, R,} is a simple string, it 
follows from Theorem 2 that G, is a proper tree. Hence, by Theorem D, 
G, contains no cycle. We deduce that j = k ,  and Axiom (2.2) is fulfilled. 

Axiom (2.3) follows from the transitivity of subordination relation R,. 
Axiom (3.1) is also fulfilled. Indeed, if aj and a k  are two terms of x, 

then, by denoting by ai the center of x (which is a simple string), we have 
ai=$ aj and at=$ ak (see the definition of 3). 

To prove Axiom (4. l ) ,  let us assume the existence of j ,  k ,  and rn such 
that a,=$ a,, a k = t  a,, and j # k and let ai be the center of the simple 
string x. Then, ai 3 a, , ai ==% ak and we deduce the existence of a cycle 
in G,. But this fact contradicts the hypothesis that G, is a proper tree 
(see Theorem 2). Thus, k =j, and Axiom (4.1) is proved. Since Axiom 
(5.1) is obviously fulfilled, Theorem 6 is proved. 

Theorems 5 and 6 establish, in some sense, the equivalence between 
simple strings and B-strings. 

5. Elementary Strings and Operations with Simple Strings 

In this section we define two classes of strings of a very rudimentary 
structure. Then we define some operations with B-strings. 

These notions will be used in Section 7, where we shall show that an 
important category of B-strings may be represented by means of the 
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operation of superposition, using only strings of a rudimentary structure. 
In view of the equivalence between simple strings and B-strings, we 

may investigate B-strings and apply the obtained results to simple strings. 
A B-string is said to be elementary if from a =3 6 ,  c 3 d, a # 6 ,  and 

c # d it follows that a = c. A B-string is said to be strongly elementary 
if from a =$ b, c 3 d ,  a # b, and c # d, it follows that b = d. 

Proposition 11. Every strongly elementary B-string x is elementary. 

PROOF. Let a 3 b, c 3 d, a # b, and c # d. We shall show that a = c. 
Since x is strongly elementary, we have b = d. Then by Axiom (4. l), we 
have a =$ c or c =t a. Assume that a 3 c. In view of Axiom ( 2 . 3 )  we have 
a 3 d and, since a 3 c ,  a * d ,  and c # d, we also have a = c or a = d. 
if a = c, Proposition 11 is proved; if a = d ,  then, since a =$ c and c =t a, 
we deduce, by Axiom (2.2), that a = c and Proposition 11 is proved. 

Proposition 12. 
ordinated word or a nonsubordinating word. 

Every word of an elementary B-string is a nonsub- 

PROOF. Let a be an arbitrary word. Assume that a is not a nonsubord- 
inated word. Thus, there exists a word b such that b # a and b =3 a. 
Suppose we may find a word c such that a =t c and a # c. Then, since 
b=$ a ,  a = $  c ,  b # a ,  and a # c and since the considered B-string is 
elementary, we have b = a, in contradiction to b # a. Thus, no word c 
with a 3 c and a # c exists, and a is a nonsubordinating word. 

Proposition 13. If a is a nonsubordinated word of a B-string x of length 
greater than 1 and if b is a nonsubordinating word of x, then a -+ b. 

PROOF. By Proposition 8, we have a=$ b; by Corollary 2, a # b. 
Assume the existence of a word c such that a =$ c=f 6 ,  a # c, c # b. 
From c # a, we deduce, in view of Corollary 1, that c is a nonsubordinat- 
ing word, in contradiction to c=$ b, c # b. Thus, no word c exists with 
the required properties and we have a -+ b. 

Proposition 14. 
than one nonsubordinating word. 

A strongly elementary B-string may not have more 

PROOF. Assume there are two nonsubordinating words a and b and let 
c be a nonsubordinated word. By Proposition 8, we have c=$ a ,  c 3 b 
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and, since a and b are nonsubordinating words, we also have c # a, 
c f b. Thus, c 3  a, c=3 b, c f a, c f: 6.  Hence, since the considered 
B-string is strongly elementary, we deduce a = 6. 

Corollary 4. A strongly elementary B-string has at most two terms. 

PROOF. It follows from Corollary 1 and Propositions 11, 12, and 14. 

Proposition 15. 
strongly elementary B-string. 

PROOF. Obvious. 
Let y be a subset of a B-string x. If y is a B-string with respect to the 

order relation and the subordination relation of x ,  then y is said to be 
a B-substring of x. 

Proposition 16. 
of words subordinated to a form a B-substring of x. 

PROOF. It is immediately seen that each axiom occuring in the definition 
of a B-string is fulfilled by y .  

We shall define four operations with B-strings. These operations 
will always be concerned with B-strings without common words. To 
show that the word a precedes the word b in the B-string x we shall 
write a s b(x). Analogously, a 3 b(x) means that b is subordinated to 
a in the B-string x. 

OPERATION OF RIGHT UNION. Let x and y be two B-strings; let a 
and b be the nonsubordinated words of x and y ,  respectively (if such 
words do exist). Let x’ and y r  be the sets obtained from x and y after 
removing a and b, respectively (if a or b does not exist, we put x=x‘ or 
y = y r ,  respectively). Let a be a word occurring neither in xr nor in y r .  
Let z be the set containing precisely the words of x’, the words of y r ,  
and the word a. We define in z the relations S and 3, as follows: 

(1) If both c and d belong either to x r  or to y ’ ,  then c s d(z) [or 
c 3  d(z)] if and only if the same relation holds in x or in y ,  respectively. 

(2) If c E xr and d E y r ,  then c 4 d(z) and we have neither c=3 d ( z )  
nor d r=t c(z). 

( 3  ’) For every word c E z we have c s a(z) and a 3 c(z). 
It is easily seen that z ,  endowed with 6 and 3, fulfills all axioms 

defining a B-string in z. The B-string z so obtained is said to be the 
right union of x and y.  

Every B-string of length less than or equal to 2 is a 

Let a be an arbitrary term of a B-string x. The set y 
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OPERATION OF LEFT UNION. This operation differs from the right 
union in formulation of rule ( 3 ’ )  only; (3’) is replaced here by ( 3 ” ) .  

OPERATION OF CENTRAL UNION. This operation differs from the 
right union in formulation of rule (3’) only; (3’ )  is replaced here by (3) .  

( 3 )  For every word c E x’, we have c s a(z) and a =$ c(z); a G a;  
a 3  a;  for every word d E y’ we have a s d and a 3  d. 

OPERATION OF SUPERPOSITION. Let us consider the B-strings 
x, y,, y z ,  . . . , ym. We shall define the superposition between x, on one 
hand, and yl, y z , .  . . , ym,  on the other. 

If x is the empty string, the superposition string is the empty string. 
If x is not empty, then x contains some nonsubordinating words 

a,, u 2 , .  . . , a,. If m < n, then we add to yl, y z ,  . . . , y ,  the strings y m + , , .  . . , 
yTL of length 1, such that the superposition of x and yl,  y 2 , .  . . , y ,  be 
equivalent to the superposition of x and y,, y 2 , .  . . , y m ,  . . . , y,. If m a n, 
then our superposition will be supposed equivalent to the superposition 
between x and y l , .  . . , y,. Thus, we may always assume that m = n. 

Let x‘ be the set obtained from x by removing the words a,, a 2 , .  . . , a,. 
Let z be the set of all words belonging to at least one of the sets x’, 
yl, y z ,  . . . , y,. We define in z the relations S and =t, as follows: 

(1) If both c and d belong either to x’ or to one of the sets y i ,  then 
c s d(z) [or c =$ d(z)] if and only if the same relation holds in x or in one 
of the sets yi, respectively. 

(2) If i Z j ,  then for any c E yi and d E yj we have not c 3 d(z); we 
have c G d(z)  if and only if ai < aj. 

(3) If c E x’ and d E y i ,  then c 3 d(z)  if and only if c =$ ui(x>; d G c(z) 
if and only if ai < c(x). 
(4) If d E y i  and c E x’, we have not d =3 c(z); we have c G d(z)  if 

and only if c < ai(x). 
It is easily seen that all axioms defining a B-string are fulfilled in z ,  

with the above definition of S and 3. 

( 3 ” )  For every word c E z, we have a S c(z) and a=t c(z). 

6. Subordination in the Sense of Nebesky 

Nebesky [62] has proposed a new way for the analysis of subordination 
relation which uses some semantic aspects but, as Revzin has pointed 
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out, one can remove the reference to semantics and obtain a more 
formalized description [64]. This remark of Revzin suggested to Nebesky 
a new and more general description of syntactic subordination, which 
we now present [63]. 

Let x be a string over r. Denote by T the free semigroup generated 
by r. Let f= {xl, x2,. . . , X ~ } ,  where xi denotes the position i in the 
string x and n is the length of x. Let i be a mapping of f into r; this 
mapping associates with xi E i the word which stands in x at position i. 
If we denote by 3 the binary relation which associates to each xi E i 
the element xi+l ( 1  c i < n), it is easily seen that the ordered set (X, 2, 
i} uniquely determines the string x. 

EXAMPLE 1.  Let r = { a ,  b,  c, d } ;  x = caababdc. We have i= {xl, x,, 
x3, x4, x57 x6, x7, xs}7 xi%xi+l (1 i < n), a(x1) = i(X8) = c, a(x2) = i (x3)  = 

= a, 2(x4) = 4x6) = b,  2(x7) = d. 
Let x and y be two strings over r. Suppose that y may be obtained 

from x by removing at least one term. Denote by xy the set of elements in 
X which are used in any derivation of y from x, by removing some terms. 

EXAMPLE 2. Let us adopt the assumptions of Example 1 and let 
y = cabdc. We have F = { y l ,  y , ,  y 3 ,  y 4 ,  y 5 } ,  yiyyi+l ( 1  s i < 5). The string 
y may be derived from x in four modes: ( 1 )  by removing the elements 
x,, x4, x,; (2) by removing x3, x4, x,; (3) by removing x2, x5, x6; (4)  by 
removing x3, x,, x6. Thus, x, = { x l ,  x7, x8}. 

Consider a language CP over r. We define a set R of mappings w of 
CP into 2* such that, if x E CP, y E w (x), then either y = x  or y may be 
derived from x by removing at least one term. Let us denote by k the 
mapping of @ into 2@ which associates to every x E @ the set k(x) 
containing x as well as all strings derived from x by removing at least 
one term. Obviously, k E R and w(x) C k(x). Let us denote by r the 
mapping of CP into 2@ which associates to each string x in CP the set r(x) 
of all y E @ fulfilling one of the conditions (1) y = x  or (2) there exists 
z E r(x) such that y may be derived from z by removing a unique word. 
Obviously, for any x E r we have x E r(x) C k(x). 

EXAMPLE 3. Let r = { a ,  b ,  c, d } ,  CP = {caababdc, ac, cabdc, caabbdc, 
abdc}. We have k(caabadc) = CP # r(caababdc) = {caababdc, caabbdc}; 
k(caabdc) = {caabdc, cabdc, abdc} = r(caabdc); k(ac) = r(ac) = {ac}. 

Let x E @, w E R. We shall define in X a binary relation x,, as follows. 
Let xi, xj E X. We have xlxdj if and only if the following conditions are 
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both fulfilled: (1) i Zj; (2) for any y E w(x) we have that if xj E x,, then 
xj E x,. 

EXAMPLE 4. Let r = {a ,  b ,  c,  d } ,  CD = {a ,  abd, abcd, abccd}. If 
x = abccd, then 5 = {xl , .  . . , x5} and we have, for w = k, x1xfi2, x1xfi5, 
x1xkx4, XlxG3, x2x$3, x 2 x f i 4 2  x2xkx5, x3xkx4, x4xf13 ,  x5xkx3, x5xkx2, xghx4; for 
0 = r ,  xlXA27 X Z X J l ,  x1x&5, xlxd3, Xlx$4, XZx93, x2xJ4, x2xd5, x3xq4, 
X 4 X J 3 ,  x5x92, X 5 X J 4 ,  X 5 X J 3 .  

We shall associate now with every string x E CD a binary relation X +  

defined in X; X +  will be called the subordination relation ofx .  Let w E 0. 
If for any x E CD we have X +  = x, we say that {r, CD} is a w-language. 

Let CD = {x,  x’, x”}, where x = x1 . - xixi+lxi+z x,, x’ = x1 . - xi 
xi+2 . * . x,, x = x1 - . - xi-2xi-lxi . x,, 
x’ = x1 . . . xi-zxi - * x,, x“ = x1 * . xi-3xi-lxi . * * x,). Suppose we have 
xix+xifl, but we do not have (or we have xix+xiPl but not xi-l 
x+xi-J; suppose also that i(xi+d = i(xi+z)[or = i(xi-JI 

It follows that x’ = x”, x = {xl , .  . . , x,} and xzt = X Y ,  = f = {xi+l, 
xi+2} (or = X = {xi-l, xi-2}).  We see that, for any w E s1, we have x+ # x,. 
Hence a language containing strings of the form x, x’, and XI’ may be a 
w-language for no w E 0. 

For the sake of simplicity, we shall suppose that no word occurs 
several times in a string belonging to @. 

Nebesky makes several interesting remarks concerning the applica- 
tion of his description to the Czech language. He observes that Czech is 
neither a k-language, nor an r-language, but some portions of Czech 
may be k-languages or r-languages. In this respect, he gives the following 
examples. 

XIt = x1 * * * X . X .  p + l  x.  1+3 . . . x, (or 

EXAMPLE 5. Let x = zpival davno zapomenutou piseh. We have k(x) = 
{zpival davno zapomenutou piseh, zpival zapomenutou piseh, zpival 
piseh, zpival ddvno, zpival}. It follows that zpival xk davno, zpival xk 
zapomenutou, zpival xk piseh, piseh xk zapomenutou; zpival x+ ddvno, 
zpival x+ zapomenutou, zpival x+ piseh, zapomenutou x+ da’vno, piseh 
x+ davno, piseh x+ zapomenutou. It follows that xk and x+ are different, but 
x, and x+ are identical. 

EXAMPLE 6. Let y = vidim bratra otce. We have k(y)  = r(y) = {vidim 
bratra otce, vidim otce, vidim bratra, vidim}, vidim y ,  bratra, vidim y ,  
otce, vidim Y k  bratra, vidim yk otce. Hence yk = y,. On the other hand, 
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vidim y' bratra, vidim y' otce, bratra y+ otce. Hence Yk and y+ are 
different. 

The next example belongs to a mathematical language. 

EXAMPLE 7. Let r =  { I ,  2, 3 } ,  @ = { I ,  2 ,  12, 13, 21, 23 ,  31,  32,  
123, 132, 213,  231,  321,  312) .  We interpret every string of @ as the 
result of some mathematical operations, as follows: Every term of a string 
is the exponent of the preceding term. For instance, 12, 23 ,  123, 231, 
3 12 mean, respectively, 

1 2  23 1 2 a  231 312. , , , ,  
Hence 

1 2  = 1, 23 = 8, 123 = 1(23) = 1 231 = 2(31) = 8, 312 = 3 ~ 2 )  = 3. 

Using the analogy with natural languages, we may define in each of the 
strings of Q, a subordination relation corresponding to the following prin- 
ciples: Each exponent is subordinated to its base; the subordination rela- 
tion is transitive. Thus, in the string x = 213 we have 2x+l, 1x+3, 2x+3, 

An important common peculiarity of the mappings k and r is their 
independence of the elements of r. The exact meaning of this assertion 
follows from the next definition. The mapping w E 0 is said to be inde- 
pendent of the elements of r if for every mapping cp of r into r we have 
if x ,  * . . x ,  E @ and y1 - . . yn E o(xl * - . xm), that cp(yl) . - - cp(u,) E o(cp(xl) 

but also 2Xk1, 2xk3, 2X,1, 2 ~ ~ 3 .  It fOllOWS that X+ # X k  = X,. 

* * * cp(xm>>. 

EXAMPLE 8. Let r = {a ,  b, c, d,  e,  f), Q, = {ab, ac, abc, dc, df, dc f ) ,  
x = abc and y = def. Define X +  and y+ as follows: bx+a, cx+b, cx+a; 
fy+d,fy+e. The considered language is an o-language for no mapping 
o independent of the elements of I?. 

EXAMPLE 9. Example 8 may be applied to Czech. Let x = tasto 
dlouho tetl, y = vteru dobie spal. We have k (x )  = {?asto dlouho Cetl, 
?usto tetl, dlouho Cetl, te t l} ,  k(y)  = {vtera d0bi.e spal, vtera spal, 
dobie spal, spal}, dlouho x' tasto, i-etl x+ dlouho, tetl x+ tasto, spal 
y+ vtera, spal y+ dobie. It follows that Czech is an o-language for no 
mapping o independent of the Czech vocabulary. 

All notions and examples in this section are due to Nebesky [63].  
It would be interesting to establish the precise connection between 

Nebesky's description and the other syntactic descriptions given pre- 
viously. 
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7. Various Types of Projectivity. Properties of 
Montonically Projective Strings 

We adopt here the definitions and the conventions of Section 3. Thus 
a dependence relation is considered given; a subordination relation is 
defined as the transitive closure of the dependence relation. Moreover, 
we suppose that the subordination relation is reflexive, that is, every 
term of a string is subordinated to itself. Let x = a,a2 * * ai * * . a,. We 
adopt the notation5 of Section 4: ai < aj means that ai strictly precedes 
(eventually, not immediately) aj ,  that is, i < j ;  ai 6 aj means that i 6 j ;  
ai + aj  means that aj  depends upon ai; ai =$ aj means that aj  is subord- 
inated to ai. We tacitly assume that all strings considered in Sections 
7-9 are structured strings, that is, strings endowed with three binary 
relations: 6, -+, and 3. 

There are some restrictions which considerably reduce the possible 
dependencies and subordinations between the terms of a string belonging 
to a natural language. Among these restrictions, the projectivity restric- 
tions are very important. The word projectivity suggests a geometric 
situation, which will be explained in Section 10. 

The string x is said to be regressively projective if for i # j we have 
ai =$ aj  if and only if aj  < ai. The English string very clearly projected 
pictures appeared (Yngve [61], p. 136) is regressively projective, since 
every term depends upon the following term. Hence every term is sub- 
ordinated to any term situated to its right and only to these terms. 

The string x is said to be progressively projective if for i # j we have 
ai 3 aj if and only if ai < aj. The Rumanian string citesc c5rti frumoase 
is progressively projective, since we have only two dependencies: 
citesc + cZwti + frumoase. Hence there are only three subordinations: 
citesc rt chrti =$ frurnoase, citesc =$ frumoase. 

The string x is said to be monotonically projective if it is progressively 
projective or regressively projective. If we consider + antisymetric 
(that is, if ai + aj is true, then aj + ai is false), no string exists which is 
both progressively and regressively projective. The hypothesis of anti- 
symetry of + agrees with most situations occurring in natural languages. 
However, for the sake of generality, we do not always adopt this 
hypothesis. 

The string x is said to be strongly projective if from ai*aj and 
min(i, j) < k < max(i, j) it follows that ai + ah-. The Russian string 
vesrna malenkaja devotka is strongly projective, since we have devotka + 

malenkaja -+ vesma. 



220 VI. Subordination and Projectivity 

The string x is said to be projective in the restricted sense if from ai -+ aj 
and min(i,J? < k < max(i,J? it follows that ai -+ ak. The German string 
ein steiler, sandiger, schwieriger Weg (Tesnikre [57], Chap. 8) is pro- 
jective in the restricted sense, since we have Weg -+ ein, Weg -+ steiler, 
Weg -+ sandiger, Weg -+ schwieriger. 

The string x is said to be projective in the sense of Harper and Hays 
(or H-projective) if from ai+ a j  and min(i, j )  < k < max(i, j )  follows 
ai 3 ak. The German string ein sehr schwieriger Weg is H-projective, 
since we have sehr -+ ein, Weg -+ schwieriger, Weg -+ ein. 

The string x is said to be projective in the sense of Lecerf and Ihm 
(or L-projective) if from ai S? aj  and min(i, 3) < k < max(i, j )  it follows that 
ai=t ak. The Rumanian string o foarte frumoas; cas; is L-projective, 
since we have cas; -+ 0, casii -+ frumoasii -+ foarte. 

The string x is said to be projective in the sense of Fitialov (or F- 
projective) if, for a ,  =t ai, a ,  =$ aj and min(i, 3) < k < max(i, 53, it follows 
that a,  =t a,. The Russian string v eto vremja molodoi telovek by1 v 
teatre (Fitialov [16], p. 105) is F-projective, since we have by/+ v-+ 
vremja -+ eto, by1 -+ telovek 4 molodoi, v -+ teatre. It should be re- 
marked that the dependence by[-+ v is true both for the first v and for 
the second v of the considered string, whereas the dependence v -+ teatre 
is true only for the second v and the dependence v+ vremja is true 
only for the first v. 

REMARK. The so-called condition Pr(I) of Lecerf and Ihm ([35], p. 8) 
is in fact the condition of F-projectivity. Thus, F-projectivity originates 
with Lecerf and Ihm. 

The string x is said to be quasi-projective if from a,* ai, a,* aj ,  
i # m # j ,  min(i, I ]  < k < max(i, 51, it follows that a, =t ak. The Russian 
string primerom mozBt sluiit sledujustii fakt  (PaduCeva [48], p. 112) is 
quasi-projective, since we have sluiit -+ primerom, moiet -+ sluiit, moiet 
--j fakt  -+ sledujustii. The French string nous avons tous e'tudie' (Hirsch- 
berg [26], example 3) is quasi-projective, since we have e'tudie' -+ nous -+ 

tous, e'tudie'-+ avons. 
We establish now some properties of monotonically projective strings. 

Proposition 17. If x is a regressively projective string, we have Q ~ + ~  -+ ai 
for 1 s i s  n -  1 and a?-+ ai implies i < j .  

PROOF. Let us admit the existence of an integer j ( 1  6 j 6 n - 1 )  such 
that aj does not depend upon a,+l. Then, since x is regressively projective, 
we have 3 aj. Hence there exists a finite sequence b,, . . . , 6 ,  of 
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terms of x, such that a, = bl,  aj+, = b,, and bk+, -+ bk for 1 S k S m - 1 .  
Since the dependence relation is a particular case of the subordination 
relation, we have bk < b,+, for 1 s k s m- 1. Hence b, < b, and aj < 6,. 
We also have b, -+ a,. Therefore b, # a,+,. Hence a,+l < b,. It follows 
that a,+, < b, for s 2. Hence aj+l < b, = aj+,. The contradiction so 
obtained shows that for every i, 1 G i s n - 1, ai depends upon ai+,. 

Now let a, -+ ai (i Z j ) .  We have aj =$ ai and, since x is regressively 
projective, it follows that ai < a,. Therefore i < j .  

Proposition 18. 
If a, -+ ai(i Zj) implies i < j ,  then x is regressively projective. 

Let x be a string such that ai+, -+ ai for 1 C i G n - 1. 

PROOF. We shall show that a, ai (i # j )  if and only if ai < a,. Suppose 
first that a, a ai. There exists a sequence b,, . . . , b, of terms of x such 
that b, = ai,  b, = a,, and bk+, -+ bk for 1 S k C m- 1. It follows that 
b k  < bk+, for 1 G k S m- 1. Hence ai < aj. 

Suppose now that ai < a,. In view of the hypothesis, we have aj -+ 

ajPl --$ . * -+ ai+, -+ ai. Therefore, by the transitivity of 3, we deduce 
that a, 3 ai. 

Propositions 17 and 18 yield the following result. 

Theorem 7. The string x is regressively projective if and only if the 
following two conditions are fulfilled: 

(1) ai+,-+aiforl ~ i ~ n - 1 ;  
(2) the relation aj -+ ai ( i  # j )  implies ai < a,. 
In a similar way we obtain another result. 

Theorem 7’. The string x is progressively projective if and only if the 
following two conditions are fulfilled: 

( 1 )  ai-,+ ai for 2 C is n; 
(2) the relation a,-+ ai ( i  # J ]  implies a, < ai. 
The regressive projectivity corresponds to the regressive structures in 

the sense of Yngve [61] [phrases centrip2tes in the sense of Tesnike 
([57], Chap. S)]. The progressive projectivity corresponds to the pro- 
gressive srructures in the sense of Yngve [61] [phrases centrifugues in 
the sense of Tesnikre ([57], Chap. S)]. These facts are clearly shown 
by Theorems 7 and 7’. 

It is known (see, for instance, Tesnikre [57]) that Turkish is very 
rich in regressive structures, whereas Hebrew is very rich in progressive 
structures. English and German are less regressive than Turkish, Latin 
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is less regressive than English and German, whereas French and Ruman- 
ian are more progressive than Latin, but less progressive than Hebrew. 
It follows that Hebrew and Turkish are the most suitable -languages to 
be described with the aid of a monotonically projective model. 

Important results concerning progressive and regressive structures 
are due to Yngve. We shall try to explain his ideas, by using his own 
considerations [60, 611. 

Psychologists have measured what they call the span of immediate 
memory. We are able to memorize at a glance and repeat correctly about 
seven random digits, about seven nonsense words, about seven items. 
This has been known for a long time and has been summarized by Miller 
[45]. Apparently we have to live with this restriction when we speak. 
We can remember only about seven grammatical or syntactic constraints 
at one time. Yngve has proposed a depth hypothesis, which states that 
much of the syntactic complexity of a natural language such as English 
(in contrast to the simplicity of mathematical notation) can be under- 
stood in terms of this memory restriction. The syntax of English contains 
many devices for automatically keeping utterances within the bounds of 
this restriction, and it contains many devices for effectively circumventing 
the restriction so as to regain the loss of expressive power that this res- 
triction on immediate memory span would imply. The depth hypothesis 
predicts that all languages have extensive syntactic complications for 
the same purpose. A restriction on immediate memory span would not, 
however, be expected to have any influence on the structure of mathe- 
matical notations because they are written. 

In producing a sentence, we have a device such as a phrase-structure 
grammar which must remember somehow its next step by the rules of 
the language. Having expanded S(sentence) into a subject NP(noun 
phrase) and a predicate V P  (verb phrase), it goes on to expand the left- 
most constituent, N P .  But somewhere in its memory it has to store the 
information that when it gets finished with all the branches of the N P ,  
it is committed to expand a V P ,  otherwise it will not have a grammatical 
English sentence. Similarly, after expanding N P  into T (article) and N 
(noun), it must store away the N while it is expanding the T .  In this way, 
every time the device goes down a left branch, it must store in its tem- 
porary memory one symbol for each step taken down the branch. 

Now a question arises: If the set of sentences is infinite, how much 
temporary memory will have to be provided in the device? Here there 
appears an essential difference between regressive structures and 
progressive structures. 



7. Various Types of Projectivity 223 

Let us consider a regressive structure such as Very clearly projected 
pictures appeared (secondary adverb + adverb + adjective + noun + 
verb). In producing this structure (see Fig. l) ,  the machine has to go 

Fig. 1. 

down the stem expanding 1 , 2, 3 ,  4, and 5 ,  storing a number of symbols 
in its memory - here four ( A ,  B ,  C ,  and D) ,  because there are four 
unexpanded branches. Then it has to go back, expanding in turn the 
branches growing from A ,  B ,  C, and D. This regressive structure has 
a depth of four, the depth of a node being numerically equal to the number 
of symbols in temporary memory when that node is about to be expanded. 

A quite different situation arises when progressive structures are 
considered. In producing such a structure, the machine can continue 
down the main stem (see Fig. 2), expanding as it goes, and never retrac- 
ing its steps. It puts only one symbol away in its temporary memory 

Fig. 2. 
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each time, and each time it takes it right out again and expands upon it. 
It is clear that as regressive structures grow longer they require more 

and more memory, but progressive structures do not. They can continue 
indefinitely with a minimum of memory. 

Yngve’s hypothesis is an interesting contribution concerning the 
problem of syntactic complexity in natural languages. Other signifi- 
cances and applications of Yngve’s ideas are discussed in an interesting 
paper of Varga [ 5 8 ] .  To apply these ideas to some questions concerning 
mechanical translation (especially in syntactic analysis of languages with 
progressive structure), Varga has used an algorithm of Domolki [14]. 

8. Relations between Various Types of Projectivity 

We shall establish in this Section the logical relations existing be- 
tween the various types of projectivity defined in Section 7 .  As in that 
section, we always put x = a1a2 * a,; all considered strings are tacitly 
assumed to be structured strings. 

Theorem 8. Every monotonically projective string is L-projective. 

PROOF. First let x be regressively projective. Assume that a, =t ai and 
min (i, j) < k < max(i, j). We have ai < a,. Hence i < j and i < k C j .  
By Theorem 7, we have a, -+ a,-, -+ * * . -+ a,,, -+ a, -+ akPl -+ . . 
-+ aifl -+ ai. Since.-+ is a particular case of =f and =f is transitive, we 
deduce that a, =t ak. Thus, x is L-projective. 

Now let x be progressively projective and assume that a, 3 ai and 
min(i, j )  < k < max(i, j ) .  We deduce that aj < ui. Hencej < i and j  < k < i. 
By Theorem 7 ’ ,  we have a, -+ a,+, -+ - * * -+ -+ a k  -+ a k + l - +  * . * -+ 

ai-, -+ ai. Hence a, =f a,  and x is L-projective. 

Proposition 19. There exists an L-projective string which is not mono- 
tonically projective. 

PROOF. Consider the string x = a1a2a3a4 and let -+ be defined as follows: 
a4 -+ a3 -+ a,, u4 -+ a,. This string is obviously L-projective, but, by 
Theorems 7 and 7’, x is neither regressively nor progressively projective. 

A French illustration of x is une tr2s bellejille. 



8. Relations between Various Types of Projectivity 225 

Proposition 20. There exists a monotonically projective string which 
is not strongly projective. There exists a strongly projective string which 
is not monotonically projective. 

PROOF. The string x = u1u2u3u4, with + defined by u4-+ u3+ u2-+ ul ,  
is monotonically projective (in view of Theorem 7), but it is not strongly 
projective, since we have u4 =3 a,, without having u4+ u2. (An English 
illustration of x is very clearly projected pictures.) 

The stringy = u1u2u3, with + defined by a,  + u2 and a,  -+ u3, is strongly 
projective, but, in view of Theorems 7 and 7’, y is not monotonically 
projective. (A Rumanian illustration of y is duu elevului curteu.) 

Proposition 21. There exists a monotonically projective string which 
is not projective in the restricted sense. There exists a string which is 
projective in the restricted sense, but not monotonically projective. 

PROOF. The string x = u1u2u3u4, with -+ defined by u4 + u3 -+ u2 + a, 
and u4 -+ a,, is regressively projective, since conditions (1) and (2) 
of Theorem 7 are fulfilled. But x is not projective in the restricted sense, 
since we have u4 -+ u1 without having u4 + u2. 

The string y = u1u2u3, with + defined by ul+ a,, ul-+ u3, is pro- 
jective in the restricted sense, but, in view of Theorems 7 and 7’, y is not 
monotonically projective. (See a Rumanian illustration of y in the proof 
of Proposition 20.) 

We shall now compare strong projectivity and projectivity in the res- 
tricted sense. 

Proposition 22. 
restricted sense, but the converse is not true. 

Every strongly projective string is projective in the 

PROOF. Let x be strongly projective and assume that uj+  ui and 
min(i, j) < k < max(i, j ) .  It follows that uj =3 ui. Hence, since x is strongly 
projective, we have u p  al, and x is projective in the restricted sense. 

The string x = u1u2u3u4u5, with + defined by a, --f a3 + u5, u2 + a,  and 
u3 + u4, is projective in the restricted sense, but it is not strongly pro- 
jective, since we have a,  =3 u5 without having a, -+ u4. (Rumanian illus- 
tration: x = duti elevului cuietul meu gros.) 

Another example is the string z = u1u2u3u4u5 with + defined by u5+ 
u4 + u3 + u2 -+ ul; z is projective in the restricted sense, without being 
strongly projective (since we have a, =t a, without having a, -+ uz). An 
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English illustration of z was given in Section 7 after the definition of 
regressive projectivity. 

Proposition 23. 
less than 4 and if aj 4 ai implies li-jl 
restricted sense, but it is not strongly projective. 

PROOF. Projectivity in the restricted sense is obvio$y fulfilled. Assume 
that x is regressively projective. We have aj =$ ai for i < j .  Take i = 1 
and j = 4. (This is possible because the length of x is not less than 4.) We 
deduce that a4 3 a,  but, in view of the hypothesis, we do not have a4 -+ a,; 
thus, x is not strongly projective. 

If x is progressively projective, we reason in a similar manner; we have 
a,  =t a4 without having a,  + a3. 

We now compare projectivity in the restricted sense and L-projectivity. 

Theorem 9. If the string x is projective in the restricted sense, then x is 
L-projective, but the converse is not true. 

PROOF. Let x be projective in the restricted sense and let aj 3 ai (1  s i, 
j Q n). Consider an integer k such that min(i, j )  < k < max(i,j). By 
definition of =3 there exists a sequence bl, bz, . . . , b, of terms of x, such 
that ai = b,, aj = bt, and b,,, .+ b, for 1 c rn c t - 1. If there exists an 
integer m such that ak = b,, we have aj 3 a k ;  if such an integer m does 
not exist, we distinguish two possibilities: 

(1) i < j .  Let s be the smallest integer m such that ak < b,. We have 
1 < s s t and bs-l < a k  < b,. Since b,+ b,-l and by taking into account 
that x is projective in the restricted sense, we deduce that b, -+ f f k .  Hence 
b, 3 a k .  On the other hand, we have aj 3 b,. Therefore, by the transi- 
tivity of 3, aj =f a k .  

(2) i > j .  Let s be the greatest integer m such that ak < 6,. We have 
1 s s < t and b,,, < a k  < 6,. Since b,,, -+ b, and by taking into account 
that x is projective in the restricted sense, we deduce that b,,, --Z a,. 
Hence b,,, 3 a k .  On the other hand, we have aj =f b,,,. Therefore, by the 
transitivity of 3, aj r=$ ak. 

We have proved that, from aj 3 ai and min(i,j) < k < max(i,j), it 
follows that aj =f a k ,  that is, x is L-projective. 

The string y = ala2a3a4, with -+ defined by a4 -+ a3 -+ a, and a4 -+ a,, 
is L-projective; but y is not projective in the restricted sense, because we 
have a4 -+ a, without having a4 -+ a2. (German illustration of y :  ein sehr 
alter Mann.) 

If the length of a monotonically projective string x is not 
1, then x is projective in the 
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Corollary 5. Every strongly projective string is L-projective, but the 
converse is not true. 

PROOF. This is an immediate consequence of Proposition 22 and 
Theorem 9. 

We now compare H-projectivity, L-projectivity, and F-projectivity. 
Theorems 10 and 11 will show that these three types of projectivity are 
painvise equivalent. 

Theorem 10. Every H-projective string is L-projective; every L- 
projective string is H-projective. 

PROOF. Let x be H-projective. Assume that ai 3 ai (1 S i, j S n)  
and let k be an integer such that min(i,j’) < k < max(i,j]. By definition of 
3, there exists a sequence b,, b2 , .  . . , bt of terms of x, such that ai = b,, 
ai = bt, and b,,, -+ b, for 1 S m < t - 1 .  If there exists an integer m such 
that a,  = b,, we obviously have ai =f a k .  If such an integer m does not 
exist, we distinguish two possibilities: 

(1) i < j .  Let s be the smallest integer m such that a k  < b,. We have 
1 < s =s t and b,-, < a k  < b,. Since b,+ bsp1 and since x is H-projective, 
we deduce that b,=3 a k .  But we also have aj 3 b,. Therefore a, 

( 2 )  i>j. Let s be the greatest integer m such that a k <  b,. We have 
1 c s < t and b,,, < a k  < b,. Since b,,, --+ b, and since x is H-projective, 
we deduce that b,,, 3 ak. But we also have aj * b,,,. Therefore ai * a k .  

Since in both (1) and (2) we have ai =f a k ,  x is L-projective; thus, H -  
projectivity implies L-projectivity. 

Consider now an L-projective string x. Let a j  + ai and min(i, j )  < k < 
max(i, j ) .  We have a, =t ai and, in view of the L-projectidty, we deduce 
that a, =t a k .  We have so shown that x is H-projective. Theorem 10 is 
proved. 

Theorem 11. The string x is F-projective if and only if it is L-projective. 

PROOF. Let x be F-projective. Let a, =t ai and consider an integer k such 
that min(i, j )  < k < max(i, j ) .  Since 3 is reflexive, we also have ai 3 a+ 
By the definition of F-projectivity (with m = j )  we deduce that a, =3 ak. 
Therefore x is L-projective. 

Assume now that x is L-projective. Suppose that a,  =t ai, a ,  =t a, and 
min(i,j]< k < max(i, j ) .  We distinguish three cases: 

(1) k = m; by reflexivity of 3, we have a,  =t ak. 

( 2 )  k < m. If i < k, then ai < ak < a,  and, since x is L-projective and 

ak. 
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because a ,  =t ai, we deduce that a,  =t ak. If i > k ,  then j < k. Therefore, 
aj < ak < a,. Since x is L-projective and because a,  =t uj, we deduce that 
a ,  =$ ak. 

(3) k > m. If j > k ,  then a,  < ak < uj. Since x is L-projective and 
a,  3 aj ,  it follows that a ,  3 ak. If j < k,  then i > k. Hence a,  < ak < ai. 
Since x is L-projective and a ,  =t ai, we have a,  =$ ak. 

Thus, we have in all cases a,  3 ak and x is F-projective. Theorem 1 1  
is proved. 

REMARK. 
Ihm [35]. 

In another way, Theorem 11 was outlined by Lecerf and 

We now compare quasi-projectivity and L-projectivity. 

Theorem 12. Every L-projective string is quasi-projective, but the 
converse is not true. 

PROOF. By Theorem 1 1 ,  L-projectivity and F-projectivity are equiva- 
lent; thus, it is enough to show that every F-projective string is quasi- 
projective but not conversely. Let x be F-projective and assume 
a,  3 uj,  a ,  3 ai, and min (i, j ]  < k < niax (i, j ] .  It follows that a,  =t ak. 
This means, among other things, that from a,* ai, a,* aj ,  min(i,j] < 
k < max(i, j ) ,  and i # m # j it follows that a,  =$ uk. Therefore, x is 
quasi-projective. 

An example of a quasi-projective string which is not L-projective 
is x'i a1a2a3a4a5, with + defined by a, -+ a3 -+ a, and a, + a, + a4. Since 
a3 3 a, and a,  < a, < a3, but we do not have a3 =t a,, x is not L-pro- 
jective. On the other hand, it is easily seen that x is quasi-projective. 
(A Russian illustration of x may be found in Section 7, after the definition 
of quasi-projectivity.) 

Proposition 24. There exist strings which are not quasi-projective. 

PROOF. Let x =  alu2a3u4a5, with+ defined by a,  + a3 -+ a, + a,, a4 3 a,. 
We have a3 =$ a,, u3 =t a,, and (I, < u4 < a,, but we do not have a3 =f a4. 
Thus, x is not quasi-projective. [Russian illustration of x :  goda terez  
tri j a  vedu (Beleckii et al. [41, p. 731.1 

We now make several remarks concerning the invariance of various 
types of projectivity by the dependence isomorphism or by the subor- 
dination isomorphism. It is obvious that every type of projectivity is 
invariant by the dependence isomorphism, that is, if the strings x and 
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y are &isomorphic and x is projective in some sense, then y is projective 
in the same sense. But we also have the following result. 

Theorem 13. If the strings x and y are a-isomorphic and if x is mono- 
tonically projective (L-projective, H-projective, F-projective, quasi- 
projective), then y is also monotonically projective (L-projective, 
H-projective, F-projective, quasi-projective, respectively). Strong 
projectivity and projectivity in the restricted sense are not invariant 
by a-isomorphism. 

PROOF. The definitions of monotone projectivity , L-projectivity , 
F-projectivity, and quasi-projectivity involve only the relations < and 
=t; since both these relations are invariant by a-isomorphism, it follows 
that the corresponding types of projectivity are also invariant by cr- 
isomorphism. What concerns H-projectivity, it is equivalent to L-pro- 
jectivity (in view of Theorem 10). Hence it is invariant by cr-isomorphism. 

T o  prove the second part of Theorem 13, let us consider the strings 
x = a1u2a3a4, with -+ defined by a, -+ u2 + a3 + a,, a ,  + u3, a, + a,, 
a, + a4, and y = b,b,b3b4 with + defined by b, -+ b, + bS+ b, and 
b, -+ b4. The strings x and y are obviously cT-isomorphic, but not 6- 
isomorphic. String x is strongly projective. Hence, by Proposition 22, 
x is projective in the restricted sense. On the other hand, y is not pro- 
jective in the restricted sense, because we have b, .-+ b4, but we do not 
have b, --+ b,. In view of Proposition 22, y is not strongly projective 
and Theorem 13 is proved. 

The most interesting and important type of projectivity is L-pro- 
jectivity. When we speak of projectivity, without otherwise specifying, 
we tacitly assume that we mean L-projectivity. 

9. Projectivity in Natural Languages 

Let us now remark on projectivity in natural languages. A language 
is said to be projective if each of its strings is projective. There are 
some close connections between projective languages and context-free 
phrase-structure languages. These two types of language are in some 
sense equivalent (Gaifman [ 181, Bar-Hillel I2]; for context-free languages 
see also [3]), but we shall not deal here with this problem. 

Most of the strings belonging to natural languages are projective, 



230 VI. Subordination and Projectivity 

which is a very restrictive property. As has been shown by Lecerf 
([31], p. 2-3), almost 100 percent of French strings are projective. 
The same seems to be true for German, Italian, Danish, and other 
languages. The projectivity of a string in a natural language is in some 
sense equivalent to the absence of discontinuous immediate constituents. 
In this respect, very interesting remarks are made by PaduCeva [48] 
and Iardanskaja [28], who have made a deep analysis of dependence 
and subordination structures in Russian, as well as of the connections 
between these structures and the description in terms of immediate 
constituents. According to an investigation of Hays, among 30,000 
Russian strings only 2 strings are not projective ([23], p. 4). On the 
other hand, Sreider ([56], p. 38) says that among 10,500 English strings 
only 610 are not projective. However, it seems that all these statistics 
refer to simple strings only. 

It is interesting to remark that there are about 117,000 structured 
strings which may be formed with seven given words, but only 3876- 
of these strings are projective. If we identify two q-isomorphic strings 
and we call a class of cr-isomorphic strings an abstract structured string, 
we may say that there are about 117,000 abstract structured strings of 
length 7, but only 3876 of them are projective. Projectivity becomes 
more useful when we are concerned with strings of greater length. Thus, 
there are about 1,000,000,000 abstract structured strings of length 10; 
there are about 2 x loz5 abstract structured strings of length 20. Projec- 
tivity enables us to select a relatively small number of these strings (Lecerf 
[3 I], p. 6). A complete study of the number of projective strings, when 
the length of the strings is less than 8, is given in Table 5 (Lecerf [31], 
p. 21). 

TABLE 5 

Length p = number of n = number of Total number n 
of projective nonprojective of 

strings solutions solutions solutions 

- 
n + p  

1 I 0 1 0 
2 2 0 2 0 
3 7 2 9 22 
4 30 34 64 53 
5 143 482 625 77 
6 728 7048 7776 90.6 
7 3876 113,773 117,649 96.7 
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Three concrete linguistic problems will now be discussed in the light 
of projectivity: the position of separable particle in German (Lecerf- 
Ihm [35], pp. 12-15); the dependencies in a certain French string (Lecerf- 
Ihm 1351, pp. 15-1 7); the so-called supplementary predicative element 
in Rumanian (Marcus [40]). 

THE SEPARABLE PARTICLE IN GERMAN. Let us consider the German 
strings (1)  ich gehe sofort aus, (2) ich bin sofort gegangen, and (3) 
ich bin sofort ausgegangen. In each of these three strings there exists 
a verb having a separable particle. We wish to establish how many words 
may be inserted between the verb and its separable particle without 
affecting the projectivity of the string. In (1) we have gehe -+ ich, gehe -+ 

sofort, and gehe 4 aus. Hence any word of ( I ) ,  other than gehe and aus, 
may be inserted between gehe and aus, without affecting the projectivity 
of (1)-and even the strong projectivity of (1). Thus, the interrogative 
construction gehe ich sofort aus? is strongly projective. A similar situation 
arises in (2), where we have bin 4 ich, bin -+ sofort, and bin + gegangen. 
Any word of (2), other than bin and gegangen, may be inserted between 
bin and gegangen without affecting the projectivity - or even the strong 
projectivity. Thus, the interrogative construction bin ich sofort gegangen? 
is strongly projective. A quite different situation arises in (3), where 
we have bin -+ ich, bin -+ sofort, and bin -+ gegangen -+ aus. Here, 
none of the words ich, bin, and sofort may be inserted between the verb 
gegangen and its separable particle aus, without affecting the projectivity 
of the string. For instance, the string ich bin gegangen sofort aus is not 
projective, since we have gegangen +. aus without have gegangen -+ 

sofort; the string bin sofort gegangen ich aus is not projective, since 
we have gegangen -+ aus without have gegangen -+ ich. This fact 
agrees with the known rules of German grammar, which require that 
gegangen and aus always be neighbors. In exchange, projectivity per- 
mits us to insert between bin and gegangen any word of (3) other than 
bin and gegangen; German allows us great liberty in forming the inter- 
rogative constructions. 

ESTABLISHING THE DEPENDENCIES IN A CERTAIN FRENCH STRING. 
In most cases, the dependencies occurring in a string are established 
in an intuitive way. But in many situations the intuition is not sufficient, 
and we must use some a posteriori criteria, having an explanatory 
power. Projectivity may sometimes be such a criterion. Consider, for 
instance, the French string x = j e  ne le rencontre ge'ne'ralement pas. 
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The group of words (Y = ne rencontre pas is customarily considered 
a single one and we have the following dependencies: a - j e ,  a+ le, 
and a+ ge'ne'ralement. But we wish to investigate the dependence 
structure of the nucleus a. Many solutions are intuitively plausible, but 
only a few of them fulfill the projectivity condition. Consider, for instance, 
the following four possibilities: (a) rencontre + j e ,  rencontre+ le, ren- 
contre + ge'ne'rulement, rencontre + ne +pus;  in this case, x is not 
projective, since we have ne +pas  and ne < rencontre < pas, without 
having ne 3 rencontre; (b) rencontre -+ j e ,  rencontre + le, rencontre + 
ge'ne'rulement, rencontre + p a s  + ne; in this case x is not projective, 
since we have pus + ne and ne < rencontre < pus, without having 
ne 3 rencontre; (c) rencontre j e ,  rencontre + le, rencontre -+ ge'n- 
e'ralement, rencontre +pas ,  ne -+ rencontre; in this case, x is not 
projective since we have rencontre 4 j e  and j e  < ne < rencontre , with- 
out having rencontre =% ne; (d) For every word e of x ,  other than ren- 
contre, we have rencontre 4 e;  in this case, x is projective and even 
strongly projective. This fact does not mean that the dependence struc- 
ture of x is undoubtedly that given by (d), but only says that solution 
(d) agrees with the projectivity condition. Hence it is more plausible 
than (a), (b), and (c). 

THE SUPPLEMENTARY PREDICATIVE ELEMENT IN RUMANIAN. Let 
us consider the Rumanian string zgornotogi copiii vin. Some facts con- 
cerning Rumanian grammar require us to consider the word zgornotogi 
as dependent both upon copiii and upon vin; thus, we have vin += zgomo- 
togi, vin + copiii + zgornotoji. Condition (b) of the definition of simple 
strings (see Section 3) is not fulfilled; the considered string is not simple, 
but, as is easily seen, this string is projective and even strongly projec- 
tive. But let us consider the string y = o pisicii trecu albii. As zgomotogi 
in the preceding string, albic has a double nature in y: one adjectival, 
the other adverbial. Indeed, albii depends both upon the noun pisicii 
and upon the verb trecu and we have the following dependencies: 
trecu += pisicii += albii, trecu -+ albic. String y is neither simple nor 
projective, since condition (b) of the definition of simple strings is not 
fulfilled (trecu + ulbii, pisich + albic, and we have pisich =t albii and 
pisicii < trecu < albii, without having pisicii 3 trecu). It is interesting 
to remark that such strings as y were considered earlier with another 
dependence structure, which differs from the above dependence struc- 
ture by the abscence of the relations copiii+ zgomotogi (in the first 
string) and pisicii 4 ulbic (in the second string). In other words, the 
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double nature of zgomoto3i and of albir was not recognized. But without 
this double nature, each considered string is both simple and projective. 
Thus, simplicity and projectivity are hypotheses of first approximation, 
which correspond to an elementary level of grammatical analysis. A 
finer analysis, which also takes into account some stylistic facts, must 
abandon both simplicity and projectivity. But we know very little about 
these more complex situations. Most of the known results concern 
strings which are both simple and projective. Some of these results will 
be presented in the next Section. 

10. Simple Projective Strings 

In the investigation of strings which are both simple and projective, 
we shall use the axiomatic description of simple strings given in Section 
4. We add a further axiom to the system of axioms introduced there. 

AXIOM OF PROJECTIVITY: (6.1). If a 3 b and a s c s b or b s c s a, 
then a = t c .  

It is easy to recognize in Axiom (6.1) the property of L-projectivity. 
The system of Axioms ( l . l ) ,  (1.2), (1.3), (2.1), (2.2) (2.3), (3.1), (4.1), 
(5.1), and (6.1) defines the projective B-strings. In view of Theorems 
5 and 6, we shall identify B-strings and simple strings; thus, instead of 
projective B-strings we shall speak of simple projective strings. 

Proposition 25. If the words a and b of a simple projective string are 
not comparable and if a =t c and b =$ d, then from a < b it follows that 
c < d and from b < a it follows that d < c. 

PROOF. Let a < b. By Axiom (4.1), we have c # d. Hence, in view 
of Axiom (1.3), we have either c < d or d < c. Assume that d < c; since 
a and b are not comparable, we deduce from Axiom (6.1) that we have 
neither b s c, nor d s a. Therefore, a < d < c < b. Then, since a 3 c ,  
we have a 3 d; by taking into account the relation b 3 d, we obtain a 
contradiction to Axiom (4.1). Hence, the relation d < c is false and we 
have c < d. 

If b < a, we find in a similar way that d < c. 
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Proposition 26. Axiom (1.1) is a consequence of Axioms (2.1), (2.2), 
and (6.1) ([4], pp. 84-85). 

PROOF. Assume that a S b and b S a. We have a < b d a and b < a S b. 
By Axiom (2.1) we have a =% a and b 3 b. Hence, by Axiom (6.1), we 
have a 3 b and b 3 a; further, by Axiom (2.2), we deduce that a = 6 ,  
and Axiom (1.1) is proved. 

It may be seen, by suitable examples, that each of the other nine 
axioms is independent. 

Theorem 14. None of the axioms (1.2), (1.3), (2.1), (2.2), (2.3), (3.1), 
(4.1), (5.1), and (6.1) follows from the other axioms (Beleckii el al. 
[4], pp. 83-84). 

PROOF. 
Q is not fulfilled, but all other axioms are fulfilled. 

For every axiom a we shall give an example of a set A where 

AXIOM (1.2). A = { 1, 2,3,  4); 1 c 1, 2 c 2, 3 6 3, 4 c 4, 1 4 2, 1 s 3, 
1 s 4 , 2  c 3,3 4 4 , 4 c 2 ;  1 3  l , 2 3 2 , 3 ~ 3 , 4 = f 4 , 1 3 2 , 1 3 3 , 1  =%4. 

AXIOM (1.3). A = { l , 2 , 3 } ;  l c l ,  2 ~ 2 ,  3 c 3 ,  l c 2 ,  l S 3 ;  1 3 1 ,  
2 3 2 , 3 3 3 , 1 * 2 , 1 * 3 .  

AXIOM (2.1). A = (1, 2); 1 G 1, 2 4 2, 1 S 2; 1 3 1, 1 3 2. 

AXIOM (2.2). A={1,2};  l e l ,  2 c 2 ,  l c 2 ,  1 3 1 ,  1 3 2 ,  2 3 1 ,  
2 3 2 .  

AXIOM (2.3). A = { 1 , 2 , 3 , 4 } ;  1 6 2 c . 3 ~ 4 ;  1 3 1 ,  2 3 2 ,  3 3 3 ,  
4*4, 1*2, 1*3, 1 4 4 ,  2*3, 3 3 4 .  

AXIOM (3.1). A = (1, 2); 1 4 1 ,  1 d 2, 2 S 2; 1 3 1, 2 =$ 2. 

AXIOM (4.1). A = {1,2,3,4}; 1 6 2 s 3 s 4; 1 3 1; 2 3 2:3 =3 3: 
4 3  4, 1 3 2, 1 3  3, 1 3 4 , 2  * 3 , 4 *  3. 

AXIOM (5.1). A = the set of positive integers; m S n if and only if 
m is not greater than n ;  m 3 n if and only if m s n. 

AXIOM (6.1). A = { l , 2 , 3 } ;  1 ~ 2 ~ 3 ;  1 3 1 ,  2*2, 3 3 3 ,  2 3 1 ,  
1 3 3 ,  2 3 3 .  
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In Section 5 we defined some operations with simple strings. When 
these operations are applied to simple projective strings, the resulting 
simple strings are also projective, that is, Axiom (6.1) is fulfilled (see 
also [4], p. 76). 

In the following, we shall show that every simple projective string 
may be obtained from elementary strings, by means of finitely many 
superpositions. Theorems 15-17 are due to Beleckii et al. ([4], pp. 
8 1-82). 

Theorem 15. Let x be a simple projective string of length greater than 1 
and let a, be its nonsubordinated word. Let u, < a, < * . . < a, be the 
words of x which are subordinated to a,. Denote by x, (1 S i S n) the set 
of words subordinated to ai; denote by 8 the set of words a,, a, ,  a,, . . . , 
a,. Then, 8, xl,. . . , xnP1 and x, are simple projective strings, whereas 
the string x is a-isomorphic to the superposition between 8 and x,, 
x,, . . . , x,. 

PROOF. Obviously, 8 is a simple projective string. Proposition 16 
implies that xl, x2,. . . , x, are simple projective strings. By Proposition 9, 
the words a,, u2,. . . , a, are pairwise noncomparable; then, by Corollary 
3, the sets xi (1  < i s n) are pairwise disjoint. Denote by 8’ the set ob- 
tained from 8 as x’ is obtained from x in the definition of superposition 
(see Section 5) .  lit is easily seen that 8’ contains a unique word: a,. 
Therefore, the sets O f ,  x,, x2, . . . , x, are pairwise disjoint and, by Proposi- 
tions 3 and 8, each word of x belongs either to 8’ or to one of the strings 
xi (1 s i d n). Thus, the set z (see the definition of superposition) on which 
the superposition between 8 and xl, x,, . . . , x,, is defined, may be settled 
in a 1 : 1 correspondence with x. 

By Proposition 10, two words belonging to different sets xi are 
not comparable [see rule (2) in the definition of superposition]. By 
rule (4) of the definition of superposition, the word a, may be subor- 
dinated to no word of x,, x,, . . . , x,. In view of Proposition 25, if a, < a,, 
any word of xi precedes any word of xj [see rule (2) in the definition of 
superposition]. By Proposition 5, if b is an arbitrary word of x, and a, < a, 
(a, > a,), then b < a, (b  > a,, respectively). [See rules (2) and (4) of the 
definition of superposition.] Thus, the relations d and =$ fulfill in x all 
conditions required by the definition of superposition between 8 and 
x,, x,, . . . , x,. Theorem 15 is proved. 

Theorem 16. Every simple projective string may be obtained from 
elementary strings, by means of finitely many superpositions. 
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PROOF. We proceed by induction with respect to the length of the 
string. If the length of x is less than or equal to 2, then, by Propositions 
11 and 15, our assertion is immediate. Assume the assertion is proved 
for any string of length less than n (n 2 3) and let us prove the validity 
of the assertion for strings of length n. Since n 2 3 ,  we may apply Theorem 
15 to x and represent x as a superposition between 8 and xl, x,, . . . , x,. 
It is easily seen that, in the construction given by the proof of Theorem 
15, the string 13 is elementary, whereas each of the strings xl, x,, . . . , x, 
is of length less than n, since no xi  contains the nonsubordinated word of 
x. By the induction hypothesis, the strings xl, x,, . . . , x, may be repre- 
sented as superpositions of elementary strings; thus, this is also true 
for x. 

We may improve the above result by representing every elementary 
string by  means of strongly elementary strings. Indeed, we have the 
next theorem. 

Theorem 17. Every elementary string may be obtained from strongly 
elementary strings, by means of finitely many operations of left union, 
right union, and central union. 

PROOF. We proceed by induction with respect to the length of the 
string. If the length of x is less than or equal to 2, the assertion is im- 
mediate (see Proposition 15). Assume the validity of the assertion for 
every elementary string of length less than n(n 2 3) and let us prove its 
validity when the length is n. 

By Proposition 12 and Corollaries 1 and 2, the elementary string x 
is formed by one nonsubordinated word a, and n- 1 nonsubordinating 
words a,, a,,. . . , an-l; in view of Proposition 13, we deduce that a, -+ ak 
(1 S k S n - I ) .  

Let us prove that x may be represented as a (left, right, or central) 
union of elementary strings, each of which is of length less than n. Without 
loss of generality, we may admit that a, < a, < - * * < an-,. Three cases 
are possible: (1) u, < al ;  (2) an-, < a,; (3) ak < a, < ak+,, where 0 < k < 
n - 1. In the first case, we consider the strings x1 = aOal and x, = aoa2 . - - 
an-,. It is easily seen that x is a-isomorphic to the left union of x1 and x,. 
In (2) we consider the. strings x1 = aOal * . . an-, and x2 = a,a,-,. It is 
easily seen that x is a-isomorphic to the right union of x, and x,. In (3) 
we consider the strings x1 = aOal * . . ak and x, = a0ak+laki.2 - . 
It is easily seen that x is a-isomorphic to the central union of x1 and x,. 
In the first case, x1 and x, are of length 2 and n-  1 ,  respectively; in (2) 
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x1 and xz are of length n-  1 and 2, respectively; in (3) x1 and x, are of 
lengths k +  1 and n - k, respectively. Thus, in every case we may repre- 
sent the string x as a union of strings whose length is less than the length 
of x. It is sufficient we now refer to our induction hypothesis. 

Corollary 6. Every simple projective string may be obtained from 
strongly elementary strings by means of finitely many operations of 
superposition and left, right, and central union. 

We now give a geometric interpretation of the projectivity condition. 
This interpretation is due in essence to Lecerf and Ihm [35] and concerns 
only simple strings; that is, in view of Theorem 2 it concerns only strings 
whose associated graph is a proper tree. According to this interpreta- 
tion, we shall justify the presence of the word “projective” in describing 
this restriction. 

Let us consider a simple string x and denote by G, the associated 
graph. By Theorem 2, G, is a proper tree. We represent G, in the 
plane as follows. 

Consider a straight line w in the plane and let us represent the center of 
x by a point a: situated above w; a: will be the center of G,. Denote by 
A:  the orthogonal projection of a: on w (see Fig. 3). 

I 

Fig. 3. 

Consider a straight line w1 parallel to o, situated below the point a: 
and above the line w. On o1 we shall represent all vertices a?, a;, . . . , a:, 
of G,, corresponding to words which depend upon the center of x. 
These vertices will be disposed from the left to the right, in their linear 
order in x and such that for every word a for which a < a: (a: < a) the 
corresponding vertex is situated at the left (at the right, respectively) 
with respect to the projection line a:A:. Denote by A:, A & .  . . , A:, the 
orthogonal projections of af, a$, . . . , a&, respectively, on the line w and 
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let us consider the projection line a:& (1 s i G n2; see Fig. 4 for n2 = 5) .  
Consider now a straight line w2 parallel to w ,  situated below the line 

w1 but above the line w. On w2 we shall represent all vertices $a: * . a& 
of G,, corresponding to words which depend upon one of the words 

Fig. 4. 

corresponding to af, a:, . . . , a:,. These vertices will be disposed from the 
left to the right, in their linear order in x and such that, for every word a 
for which a < at, a: < a < a;+,,, or a:+,, < a, the corresponding vertex is 

Fig. 5. 
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situated at the left with respect to the projection line al,A:, at the right 
with respect to the projection line a:A;,  and at the left with respect to the 
projection line or at the right with respect to the projection line 
ai+lAi+l, respectively (1 S i c n, - 1). Denote by A?, A; ,  . . . , A:3 the 
orthogonal projections of a;, a:, . . . , a”,, respectively, on the line w and 
consider the projection lines aiA: (1 =z z < n3; see Fig. 5 for n3 = 7). 

Further, we consider a straight line w3 parallel to o, situated below the 
line w2 but above the line w.  On w3 we shall represent, as in the preceding 
steps, the vertices of G, corresponding to words which depend upon one 
of the words a?, a;, . . . , a&. We continue in the same way until we ex- 
haust all vertices of G,. It is easily seen that the projection points so 
obtained on w keep the linear order of the corresponding words in x. 

We also make the convention that every arc in C ,  is represented by a 
straight line segment. 

We shall say that C, is a proper tree without intersections if in the 
above construction every intersection point between two arcs of G, or 
between an arc and a projection line is a vertex of G,. (By the projection 
line a$4: we mean the corresponding segment.) 

It is easily seen that the defined property does not depend upon the 
position of w and of the other points and lines considered, but only upon x .  

Theorem 18. The simple string x is projective if and only if the cor- 
responding proper tree is without intersections. 

We shall not give here the proof of this theorem, which can easily be 
accomplished by the reader. (A proof of this theorem was given by 
Lecerf and Ihm [35], pp. 11-12, 17-19.) Figures 6 and 7 contain two 

L i v r e  

I I i l  
I I I I  

Un Tt6s Beau Livre 

Fig. 6. 

examples for which Theorem 18 decides, in the first case, the projectivity 
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and, in the second case, the nonprojectivity of a simple string (Example 
14 of [26]). 

vus 

I I I I I 

Nous Les Avons Tous vus 
I I I I 

Fig. 7. 

We close the discussion concerning simple projective strings with 
the following theorem which follows immediately from Theorems 
D and 2. 

Theorem 19. Let x=a1a2 * * * a,. The structured string { x ,  R,} is 
simple if and only if there exists a term ai of x such that any other term 
is subordinated to ai in a unique manner; that is, for j # i there exists 
a unique sequence kl ,  k 2 , .  . . , k, such that i = k l ,  j = k,, and ak, + ak2+ 
* * * + a'f,. 

Some modifications of the geometric criteria of projectivity, which 
lead to a notion more general than that of simple projective string but 
less general than that of simple string, have been proposed by Lynch 
[37] and Hirschberg [26]. The first is concerned particularly with Russian, 
whereas the second one considers primarily French. 

11. Bibliographic Remarks 

Theorems 1-3, 5 and 19, Propositions 1 and 2, and all theorems and 
propositions contained in Sections 7 and 8 are due to Marcus. Some 
of these results have already been published [38, 39, 411. Theorem 4, 
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Propositions 3-10, Corollaries 1 and 2, and all results exposed in Sections 
5 and 10, with the exception of Theorems 18 and 19 are due to Beleckii 
et al. [4]. 

In an implicit manner, the notion of projectivity may be found in 
Harper and Hays [2 11. The program described by these authors generates 
projective strings only, but they explicitly mention the hypothesis of 
compactness. In 1960, Hays introduced dependency grammars ([23]; 
see also [22, 241). The description of these grammars contains a condi- 
tion equivalent to L-projectivity. A survey of dependency grammars 
is given by Hays [25]. At almost the same time as Hays, Lecerf and Ihm 
introduced the hypothesis of projectivity and made a detailed study 
of this notion [27, 3 1-35]. An algebraic analysis of a projectivity criterion 
of Lecerf and Ihm was made by Camion [ 101. The projectivity condition 
is very important in mechanical translation ([31], p. 8; [29]), but its 
origin is of a purely linguistic nature (see, for instance, [57]). A hier- 
archy of projectivity types has been investigated by Sreider [56]. For 
the semantic aspects of dependence and subordination, see Tesnibre 
[57], De Boer [13], and Buydens-Ruvinschii [9]. The idea of the depen- 
dence relation as a function of several variables may be found in 
Reichenbach [50]. Some interesting formal aspects of dependence 
and subordination were investigated by PaduCeva and Sumilina [491, 
Dreizin [ 151, and Iordanskaja [28]. Algorithmic aspects of syntactic 
analysis are studied by Meltuk [42], who also refers to projectivity 
in the study of internal flection in Indo-European and Semitic languages 
[43]. Some aspects of dependence and projectivity arising in the trans- 
lation of an information logic language into Russian are discussed by 
PaduCeva [47]. The same author discusses, in another paper, the relative 
equivalence between description by immediate constituents and descrip- 
tion by dependence and subordination [48]. This problem was previously 
investigated by Lecerf [ 3  I ]  and Lecerf and Leroy [36]; in the terminology 
of these authors, we may speak of “graphes de Chomsky” and “graphes 
de Tesnibre.” Chomsky’s graphs are the geometric representation of 
analysis of immediate constituents, whereas Tesnibre’s graphs are 
the geometric representation of dependence relations occurring in a 
string. Continuity of immediate constituents, in the first representation, 
corresponds to the projectivity in the second one. But, as Lecerf pointed 
out. Chomsky and Tesnikre representations do not give the same in- 
formation; each contains additional information with respect to the other. 
Analogously, continuity of immediate constituents and projectivity 
are not reducible one to the other. They are two aspects of the same 
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syntactic mechanism. A synthesis of these two aspects is given by the 
so-called “modkle des conflits” (Lecerf [3 11). 

Another interesting relation concerns dependency systems viewed 
as generative grammars, on one hand, and phrase-structure systems, 
on the other. Dependency systems are formally defined by Gaifman 
[181. The same author shows that every dependency system has a 
“naturally corresponding” phrase-structure system but not vice versa; 
he gives an effective necessary and sufficient condition for the existence 
of a “naturally corresponding” dependency system for a given phrase- 
structure system and an effective way to construct it when it exists. 
Nevertheless, as Gaifman shows [18], every set of strings defined by 
means of a grammar of one type is also defined by means of a grammar 
of the other type, which can be found effectively. (In this respect see 
also Gross [201.) However, this result implies that there will be cases 
in which the second system will not be “naturally correlated” with 
the first system from a structural point of view. 

Another method for discovering the grammars of phrase-structure 
languages is given by the calculus of parentheses due to Solomonoff [ 5 5 ] .  
Fitialov has shown that to every immediate constituent calculus corres- 
ponds an equivalent Solomonoff calculus, but the converse is not 
true [17]. 

There are many other variants of syntactic analysis. Among the 
most formalized, we recall the description given by Vauquois with 
the aid of syntactic operators [59] and the very original conception 
of BenzCcri [ 5 ,  61. Closely connected to the presentation given in Chapter 
V are the notions and the results of Gladkii [19], continuing the con- 
siderations exposed in Section 1 1, Chapter V. 

Since projective languages, languages defined by dependency systems 
(in the sense of Gaifman), categorial languages (exposed in Chapter III), 
and context-free phrase-structure languages are approximatively pair- 
wise equivalent, it is important to give some extensions of dependency 
theory. As Hays [25 ]  remarks, two major avenues for extension of syn- 
tactic models have been opened in contemporary linguistic theory. One 
is transformation theory, which extends context-free phrase-structure 
grammars by admitting additional kinds of rules (see, in this respect, 111 
and (111. The other is stratification theory, which extends immediate 
constituent grammars by combining them in sequences (see Lamb [301). 
Concerning the link between various levels of language, which is fun- 
damental in stratification theory, see also the interesting papers of Sgall 
[54] and Danes 1121. 
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Many examples of graphs describing dependence relations are col- 
lected by Scheffer [53]. These examples may be useful for illustrating 
various dependence structures. The formal aspects of tree representations 
in linguistics are analyzed by Meyers and Wang [44]. 
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NOTE ADDED IN PROOF 

A model of some simple Russian sentences is given by M. I. Beleckii (A model of Russian, 
describing simple sentences without homogeneity (in Russian), Nautn. Tekh. Inform. 1964 
(71, 37-42). For the bibliography concerning dependency theory, see D. G. Hays, An 
annotated bibliography of publications on dependency theory, RM-4479-PR, RAND 
Corp., Santa Monica, Calif., 196.5. For a new version of [18] see H. Gaifman, Dependency 
systems and phrase-structure systems, Inform. Control 8 (3), 304-337 (196.5). Some links 
between projectivity and graph theory are shown by V. V. Firsov (On isometric immersion 
of a graph in the Boolean cube (in Russian), Kibernerika (Akad. Nauk Ukrainsk. SSR), 
1965 (6), 95-96). For various aspects of formal syntactic analysis see W. S. Cooper (Set 
theory and syntactic description, Mouton, The Hague, 1964), K. Mc Conlogue and R. B. 
Simmons (Analyzing English syntax with a pattern-learning parser, Cornm. Ass. Comp. 
Mach. 8 (1 l), 687-698 (1965)) and L. Uhliiovfi (Some aspects of word order in categonal 
and transformational grammars, Prague Studies Math. Linguistics 1, 159-166 (1  966)). 
Concerning the notion of projectivity see also P. Sgall, Ein mehrstufiges generatives System, 
Kybernetika 2 (2), 181-190 (1966) and J. Kunze, Theoretische Probleme der Automatische 
Ubersetzung,Z. math.Logikund Grundl. derMath. 12 (1/2), 8.5-130(1966). 
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