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Preface

There are two fundamental types of models which are studied in
algebraic linguistics: generative and analytic. Simplifying, we might say
that within the framework of a generative model, the starting point is
a certain grammar, while the object we study is the language generated
by this grammar. An analytic model presents an inverse situation; here
the starting point is a certain language, i.e., a certain collection of sen-
tences, whereas the purpose of the study is to establish the structure of
these sentences, their constitutive elements, and the relations among
them within the framework of sentences.

As shown by the title, the present book is devoted to analytic models.
These models cover to a great extent the area of descriptive linguistics
and therefore present a great interest for linguists.

Special attention has been given to the axiomatic-deductive structure
of analytic models. At the same time we have tried to explain the linguistic
origin of the notions, the linguistic meaning of the theorems and the
manner in which the models studied are used to investigate natural
languages.

Most of the examples belonging to natural languages have a hypothetical
and explanatory character; here we must take into account that the model
is only an approximation of the reality. Hence there exists a certain lack
of fit between a phenomenon and its model.

In view of the close connection between analytic and generative models
and of the fact that some models have a mixed, generative-analytic
character, we have also discussed some questions currently considered
as belonging to generative models. An example of this sort is the calculus
of syntactic types, discussed in the second part of Chapter II1. We have
also given those notions and results concerning generative models which
permit us to understand the links between the two types of models; these
links are pointed out in various paragraphs of the book.

The book is primarily directed to those mathematicians who desire
to become acquainted with the mathematical aspects of linguistic struc-

vii



viii Preface

tures and to those linguists who wish to know (and to use) one of the most
powerful tools for investigating the structure of language: mathematical
modeling. The book can also be useful to all those who are interested in
the problems of linguistic information processing (automatic translation,
informational languages, programming languages, etc.). Thus, the notion
of configuration, dealt with in Chapter V, has already been used in con-
struction of some algorithms of automatic translation (see the correspond-
ing references in Chapter V).

In view of the rapid progress of algebraic linguistics, we made a
definite effort to take into account the most recent contributions in this
field. Of course, we have not presented all analytic models existing in
literature. We hope that the selection we have made enables us to confer
on the book a certain unity of conception and treatment.

A good portion of the book relies on some of the author’s papers, as
specified in the references placed at the end of each chapter. On the other
hand, the book contains many results published here for the first time
(especially in Chapters 11, III, IV, and V).

We are very indebted to Professors Miron Nicolescu, Grigore Moisil,
and Alexandru Rosetti for their support and encouragement in pursuing
the research in the field of mathematical linguistics.

In writing this book we have been stimulated by the proposal made to
us by Richard Bellman in June 1964 to publish in his famous series
“Mathematics in Science and Engineering” an English version of our
previous book “‘Lingvistica matematica” (Editura didactica sj pedagogica,
Bucuresti, 1963). We thought it more appropriate to write an entirely new
book, which would reflect the general status of analytic models and our
own most recent views. We are deeply grateful to Richard Bellman for
the opportunity to publish this book.

Bucharest SoLoMON MARcUS
November, 1966
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Chapter |

Languages and Partitions

1. Languages and Grammars

Let I" be a finite set called the vocabulary. The elements of I' are words.
Consider the free semigroup T generated by I', namely, the set of all
finite strings of words endowed with an associative and noncommutative
binary operation of concatenation. Since we are considering only finite
strings, we shall say strings instead of finite strings. A string of words will
also be called a string over I'. The zero string, denoted by 6, is a string
such that 6x = x6 = x for each string x. Without contrary assumption,
does not belong to T'.

A subset @ of T is a language over I'. The semigroup T is the total or
the universal language over I

A generative grammar of ® is a finite set of rules (called grammatical
rules) specifying all strings of ® (and only these strings) and assigning to
each string of @ a structural description that specifies the elements of
which the stringis constructed, their order, arrangement, interrelations,
and whatever other grammatical information is needed to determine how
the string is used and understood. ([5], p. 285). It is to be noted that
in such a grammar the structural description is made with the aid of
grammatical rules.

Such a point of view is closely related to the theory of formal systems
and to other fundamental chapters of contemporary mathematical logic
(such as Turing machines and recursive functions). But we shall consider
in this book a quite different point of view: that of an analytic grammar.

An analytic grammar of @ considers ® given, and its purpose is to
obtain an intrinsic description of the strings belonging to ®, that is, a
description of the relations between the words and between the substrings
with respect to their position in the strings of ®. Such a point of view is
very closely related to the traditional structural linguistic theory, especially

1



2 I. Languages and Partitions

to the so-called descriptive linguistics developed by Bloomfield [2, 3],
Harris [13], Hockett [15], Wells [38], and others.

To provide a clearer distinction between a generative grammar and an
analytic grammar, let us consider the following example. It is known that
a finite-state language may be generated’in several ways. If an ambiguous
grammar is used, we may detect the so-called constructional homonymy
that arises when a sentence has several representing sequences, that is,
-several different ‘“‘constructions” ([1], pp. 93-94). Note, for instance, the
ambiguous English sentence: They are flying planes, which is really two
different sentences: (1) They (are (flving planes)) and (2) They ((are
flying) planes). The grammatical structures, or the meanings of these two
sentences are different ([5], p. 274); an ambiguous finite-state grammar or
a nondeterministic finite automaton may detect this difference ([1],
pp. 93-94). Such a situation is the basic concern of generative grammar.

Let us now consider another situation. We shall say that two strings
x and y are @ equivalent if, for each pair of strings u, v, we have either
uxv € O, uyp € ¢, or uxv € T—®, uyv € T—d. A fundamental result
of Rabin and Scott ([29], Theorem 1) and a theorem of Bar-Hillel and
Shamir [1] imply that @ is a finite-state language if and only if there are
only finitely many ®-equivalence classes. Such a characterization of the
finite-state languages, which involves only the intrinsic structure of these
languages, is at the basis of an analytic grammar.

The above example shows not only the difference, but also the close
connection between the two types of grammars. Each completes the
description given by the other.

The utility of an analytic study of the languages follows also from
another fact. Since I' is finite, the universal language T is denumerable,
and, consequently, the set of all languages over I"'is not denumerable. On
the other hand, as is noted in [4], the set of all generative grammars over
I' (more precisely, the set of all constituent-structure grammars over I')
is denumerable. Therefore, there exists a nondenumerable set .# of
languages over I', such that, for L € .%, there is no generative grammar
of L. For such languages, the analytic study of their structure is the only
method of grammatical investigation. An analytic study ‘is upplicable to
every language.

.2. Enriching the Structure of a Language

There are many problems concerning a language ® which can be suc-
cessfully studied without enriching the structure of ®, that is, by knowing
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only that ® is a detérmined subset of the free semigroup generated by I
and being able to say, for each string over I', whether it belongs to ®. An
example of such a problem is that of morphologic homonymy. We shall
say that the morphologic homonymy of the word x is not greater than the
morphologic homonymy of the word y, if for each pair of strings u and
v such that uxv € ®, we have uyv € ®. Moreover, if the converse is
not true, that is, if there are two strings # and v such that uyv € ® but
uxv € T— ®, we shall say that the morphologic homonymy of x is less
than the morphologic homonymy of y. Thus, if I' is the French vocabulary
and ® is the set of all well-formed French sentences, the morphologic
homonymy of beau is less than the morphologic homonymy of mince.
Indeed, in each well-formed sentence containing the word beau the re-
placement of beau by mince also gives a well-formed sentence; but there
exists a well-formed sentence containing the word mince, such that the
replacement of mince by beau gives no well-formed sentence (compare
Jje posséede une feuille mince and je posséde une feuille beau). A systematic
development of this idea— which originates with Dobrusin [7, 8] and
Sestier [34]—was given in [21-23]. For further developments, see
[6,24,31,32].

Another problem which may be studied without enriching the basic
structure of the language is that of the morphemic segmentation. If
I" is the set of phonemes of a natural language and & is the set of all
well-formed sequences of phonemes in this language, then, by counting
the possible successors of each initial segment, one can obtain the
morphemic boundaries in the considered sequence. Such a procedure
was discovered by Harris [12].

We have discussed so far two problems of a pure distributional and
syntagmatic character. Other such problems are considered in [24].
But there are many problems which also involve a paradigmatic structure
of the considered language, that is, a partition of I'. Such problems will
be considered in Chapters I through IV. The customary linguistic inter-
pretation of the partition of I' is the decomposition of the set of words
in paradigms, the paradigm of a word being the set of its flectional forms.
For instance, the paradigm of book is {book, books} and the paradigm
of great is {great, greater, greatest}. In fact, the paradigms do not form
a partition of I, since there exist distinct paradigms which are not dis-
joint. Such nonconcordances are unavoidable in all modeling processes.

A triple {I", P, ®}, where I is a finite vocabulary, P is a partition of
I', and @ is a subset of the free semigroup generated by I' will be called
a language with paradigmatic structure. Since we are considering
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especially such languages, we shall say, briefly, that {I, P, ®} is a
language.

The linguistic analysis needed in machine translation requires a richer
structure of the considered languages. Here, a language must be con-
sidered a system {I, P, @, K, ¢}, where I', P and & are the objects
already defined, K is a class of subsets of I' called grammatical categories
(such as the set of words in nominative or the set of words in the past
tense), and ¢ is a function which associates to each word x the intersection
of all grammatical categories containing x. For a further discussion of
this point of view, see [33], pp. 42-43.

3. The Notion of Natural Language

The notion of a language over the vocabulary I' includes both natural
languages and the artificial languages of logic and of computer-programing
theory. The notion of a natural language is much more complicated, since
its structure is very rich. Kalmar has proposed a definition of the concept
of language, especially concerning the natural languages, which was
intended to cover all parts of linguistics [16]. He defines a language as
an 11-tuple {P,R,F,W,C,A,S, My, Ms, Ay, As}, with the symbols
as follows:

P is an arbitrary set called the set of protosemata (in the case of a
spoken language the set of physical sounds used as representatives of
phonemes; in the case of a written language the set of geometrical figures
used as representatives of letters).

R is an equivalence relation defined on the set of occurrences of the
protosemata in the strings of the free semigroup generated by P. The
classes of R equivalence are called semata (phonemes or graphemes,
respectively).

F is a subset of the free semigroup generated by the set of semata
(the elements of F are called word forms).

W is a subset of the power set of F, that is, a set the elements of which
are subsets of F, or a decomposition of the set F into not necessarily
disjoint subsets. {The elements of W, or the subsets of F into which it
has been decomposed, are called words, every word being identified with
the set of all its forms).
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C is a partition of the set W into subsets called word classes or parts
of discourse.

A is an application of the set C onto some set the elements of which
are sets of functions such that if ¢ € C (that is, if ¢ is a word class) and
G is the image of ¢ under application 4, then G is a set of functions f
defined for all elements w of ¢ (that is, for all words w belonging to the
word class ¢) and for each such w, we have f(w) € w [that is, f(w) is
one of the forms of w]. For example, if c¢ is the class of all nouns (suppose
this to be a word class), the elements of the corresponding G are the
functions ‘‘the nominative of ...,” “the accusative of...,” etc.; if ¢ is
the class of all verbs (supposed to be a word class), the elements of the
corresponding G are the functions “the indicative present tense singular
second person of . .. ,” etc. 4 is called the morphologic application.

S is a subset of the free semigroup generated by the set F. The elements
of § are called grammatically correct sentences.

M, is a set called the set of word meanings.

M is a set called the set of sentence meanings.

Ay, is an application of the set W into the power set of My. For any
word w € W, we call the elements of the set onto which.w is mapped by
Ay, the (possible) meanings of w.

Ag is an application of the set § into the power set of M. For any
sentence s € 5, we call the elements of the set onto which s is mapped
by Ag, the (possible) meanings of s.

Tentatively, we can regard the sets My, and M, as arbitrary abstract
sets; however, to have a better model of natural languages, we suppose
them to be sets having some logical structures still to be determined.
Approximately, My corresponds to the set of concepts and M to the set
of propositions in the sense of traditional logic. The sets My, and M are
common for different natural languages, which makes translation from one
to the other possible.

A theory based on this definition needs some structure axioms (the
term “‘structure” being used in a sense similar to that of an algebraic
structure). In such a theory, phonology, morphology, syntax, and seman-
tics will appear as subtheories similar to those of the additive group of a
ring in relation to ring theory. Thus, P, R, and F define the phonetics,
the graphematics, and the phonology; W, C, and 4 define the morphology;
S defines the syntax; M, Mg, Ay, and Ag define the semantics. In such
a theory, a generative grammar may show how to generate the set F
of word forms or the set S of grammatically correct sentences.

The customary nonconcordance between a phenomenon and its
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logical model appears also in the above construction. So, in a natural
language the parts of discourse are not disjoint, and the passage from
physical sounds to phonemes is not simple enough to describe by an
- equivalence relation. See, in this respect, [17, 27, 28, 36].

The sets M, and Mg are ambiguous, for we do not have a clear criterion
for deciding when two word meanings or two sentence meanings can be
regarded as identical. The definition of identity has to be the main part
of the determination of the logical structure of the sets My and M.
For the delicate questions of semantics and the possibility of using the
methods of generative grammars here, see [18, 28, 39]. We also note
the absence, in the above construction, of such a fundamental linguistic
notion as morpheme. Finally, let us remark that, according to some recent
papers [14, 33], the notion of grammatical correctness, attached to the
set §, may be reduced to simpler notions.

By postulating appropriate axioms, the above model can probably be
improved, so as to become more adequate to the nonbanal aspects of
natural languages.

4. Distribution

Let us first consider the most simple notion of a language, given as a
pair {I', ®}. The strings which belong to ® are called marked strings.
In many linguistic problems we are concerning with various partitions of
I', that is, decompositions of I'" into nonvoid mutually disjoint sets.

The most important partition of I" which arises in linguistics is the so-
called partition in distributional classes, defined as follows. Two words
a and b will be considered in the same distributional class if for each
pair of strings x, y, the relation xay € ® implies xby € ®, whereas the
relation xby € ® implies xay € ®.

The notion of distributional class-becomes more intuitive if we intro-
duce the notion of context. A context over I' will be defined as an ordered
pair of strings over I' and will be denoted by (x, y), where x € T and
y € T. A word a is allowed by the context (x, y) if the string xay belongs
to ®. Denote by #(a) the set of all contexts with respect to which a is
allowed. It follows immediately that two words a and b belong to the
same distributional class if and only if .%(a) = & (b), that is, if and only
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if a and b are allowed by the same contexts. This notion has its origin in
descriptive linguistics (see, for instance, [9] and [13]).

If we interpret I' as the English vocabulary and ® as the set of well-
formed English sentences, the words book and chair are in the same
distributional class, whereas book and books are not. If we interpret
I' as the French vocabulary and ® as the set of well-formed French
sentences, the words mince and maigre are in the same distributional
class, whereas grand and mince are not; indeed, the sentence j'ai une
Sfeuille mince is well-formed, whereas j'ai une feuille grand is not. One
of the principal tasks in the study of a language is the establishment
of its distributional classes.

It is easy to see that two different distributional classes are disjoint;
thus these classes define a partition S of I', called the distributional parti-
tion of I'. The first mathematical study of this notion was made in 1958
[19] and will be the point of departure in the following considerations.
A distributional class is called, in [19], a family. We shall use these two
denominations as equivalent.

The properties defined exclusively in terms of contexts and of distribu-
tional classes are the simplest and the most elegant in a linguistic descrip-
tion. We may consider the following situations concerning the reciprocal
distribution of two words « and b: (1) #(a) C & (b) (where C means that
the inclusion is strict); in this case we shall say that ¢ and b are in defective
distribution. If I is the French vocabulary and ® is the set of well-formed
French sentences, then a = grand and b = mince are in defective distribu-
tion. (2) L(a) N L(b) # 0, F(a) — L (b) # 0 # F(b) — F(a); in this case
we shall say that a and b are in equipollent distribution. If I is the English
vocabulary and ® is the set of well-formed English sentences, then a = a
and b = the are in equipollent distribution. (3) £ (a) N #(b) = 0; in this
case we shall say that a and b are in complementary distribution. (4) ¥ (a) =
Z(b); in this case a and b are in identical distribution (that is, they belong
to the same distributional class).

The most frequent type of distribution in a natural language is that of
equipollent distribution. But the three other types are very significant
from the linguistic point of view. Let us consider, for instance, the French
word grand. It is an adjective with values singular and masculine. The
words which belong to S(grand) are also singular, masculine adjectives,
but there are singular, masculine adjectives which do not belong to
S(grand); such adjectives are mince, large, maigre, and others. It is pos-
sible to find a formal procedure which detects all adjectives with the
values singular and masculine? The answer is affirmative and involves
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the consideration of defective distribution. Indeed, let us consider all
adjectives a such that grand and a are in defective distribution. Denote
by & (grand) the set of these adjectives. The union S(grand) U Z(grand)
contains all adjectives with the values singular and masculine for two
reasons. First there exists no word a such that a and grand are in defective
distribution; second, grand and a are in defective distribution if and only
if a is a singular, masculine adjective and a & S(grand) since a must have
a greater morphologic homonymy than grand.

The above considerations may be generalized. Consider, in a natural
language, a word b for which no word a exists such that @ and b are in
defective distribution. Then, the union S(b) U #(b), (where (b)={a; b
and a are in defective distribution}) is exactly the set of words whose set
of values contains those of b.

The complementary distribution is very important in the phonological
descriptions, where two individual sounds which differ only by their
position (such as an initial « and a final @) are in complementary distribu-
tion [17, 36, 37].

5. P-Structures; Derivative of a Partition

A more complex concept considers a language to be a triple {T’, P, ®},
where P is a partition of I" other than into distributional classes. Formally,
we may also admit the possibility that S(x) = P(x) for each x € I', but this
situation is of no linguistic interest.

In a language with paradigmatic structure there are three species of
properties: (1) properties of a purely distributional (syntagmatic) charac-
ter, which involve only the sets I and ® (such properties are, for instance,
those discussed in the preceding section); (2) properties of a purely para-
digmatic character, which involve only the set I" and the partition P (such
properties appear, for instance, in the description of flectional forms in
Latin,; Russian, and other flectional languages; see a model description of
these phenomena in [25] and in Chapter 111 of [24]); (3) properties of a
mixed character, which involve all three components I', P, and ®. We
are concerned in the first five chapters of this book especially with
properties of the third species. Thus we need some preliminary notions
and propositions.

If P is a partition of I', each set of P will be called a cell of P or a P-cell.
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If the partition P is written
= UP is
i=1

then each P; denotes a cell of P and the number of cells is equal to n.
Since the sets P; are mutually disjoint, each word belongs to a single cell.
We denote by P(a) the cell of P containing the word a. It follows that, for
two distinct words a and b, we have either P(a) = P(b) or P(a) N P(b) = 0.

As we have remarked, the customary interpretation of the set P(a) in
a natural language is the consideration of P(a) as the set of flectional forms
of the word a. This situation suggests the introduction of the so-called
unit partition of I', in which each cell is formed by a single word. With the
interpretation just adopted for P, a language whose partition P is the unit
partition is a language without morphology; following traditional termin-
ology used in the classification of natural languages, such a language will
be called an amorphic language (for instance, Chinese). This type of
language will be studied in Chapter II.

Another simple partition of I' is the improper partition, which has a
single cell identical to T.

The starting point of linguistic analysis is the unit partition of I'. Each
process of abstraction involves an equivalence relation which leads to a
partition with fewer cells. This situation makes the following definition
natural.

Let us consider two partitions P and Q of I'. We shall say that P is finer
than Q if P(a) C Q(a) for eacha €T.

The unit partition is finer than every other partition of I', and each
partition of I is finer than the improper partition. If we interpret P(a) as
the set of all flectional forms of a, partition P seems to be finer than the
partition of I' into the parts of discourse. This idea will be expanded in
Chapter II1.

If x,x, ... x, is a string over I, the sequence P(x;)P(x,). . .P(x,) is called
the P-structure of the string x,x,...x,. If P; CT for 1 <i=<s and there
exists a string x,x, . . . x; over I', such that P; = P(x;) for 1 < i < s, then the
sequence PP, ... P, is called a P-structure. This P-structure is marked
if the string x,x, . . . x, may be chosen so it belongs to ®. In other words,
the P-structure P.P,...P, is marked if there exists a marked string
XXy ...xssuchthat P, = P(x;) forl si<s.

The P-structures may be composed by concatenation. This operation
leads to a new P-structure.

Let us consider two P-structures #; = P(x;)P(x,)...P(x,) and &, =
P(y)P(y,). . .P(y,,). We shall say that #; and &, are P-equivalent and we
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shall write #, ~ 2, or P, <> P,, if, for each pair of P-structures %#;, #,,
the P-structures #;%,%, and #;P,%, are either both marked or both
unmarked.

The P-equivalence of two P-structures may be easily illustrated when
P is the unit partition, denoted by E. In this case, the E-structures are
strings over I', and an E-structure is marked if and only if the correspond-
ng string is marked. Thus, the strings f and g are E-equivalent if and
only if, for each pair p, g of strings, the strings pfg and pgq are either
both marked or both unmarked. In other words, two strings f and g are
E-equivalent if and only if they are allowed by the same contexts. Thus,
the classes of E-equivalence define a partition of 7', and it is easy to verify
the following two properties:

If fis a marked string and g is E-equivalent with respect to f, then g is
also a marked string.

Ifxel,yeTl, and x € S(y), then x and y—considered strings —are
E-equivalent and conversely. If the words x and y are E-equivalent, they
belong to the same distributional class.

A string f will be called parasitic (with respect to the considered lan-
guage) if there exist no strings g and 4 such that the string gfh be marked.

A string which is unmarked but not parasitic will be called a semimarked
string.

It is easy to verify the following properties.

If the string f is parasitic, each parasitic string is E-equivalent with
respect to f and each string E-equivalent with respect to f is parasitic.

If the string f is semimarked, each string g, E-equivalent with respect
to f, is also semimarked.

We may now specify in a new manner a notion considered in the first
section. Indeed, the notion of ®-equivalence, introduced in Section 1,
is identical to the notion of E-equivalence in 7. It follows that a language
is a finite-state language if and only if there are only a finite number of
E-equivalence classes in 7. Since the parasitic strings form a single
E-equivalence class, a language is a finite-state language if and only if
there are only a finite number of E-equivalence classes of nonparasitic
strings.

Let us consider two partitions P and Q of I'. We shall say that P is
regularly finer than Q if P is finer than Q, and for each triple of words
x, ¥y, z the inclusions P(x) C Q(z) D P(y) imply the P-equivalence
P(x) <> P(y).

The simplest example of a regularly finer partition is that of the unit
partition E; this partition is regularly finer than the partition S into
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distributional classes. Indeed, we have E(x) = {x}, E(y) = {y}, and the
inclusions {x} C S(z) D {y} imply x € S(z), y € S(z); hence S(x) = S(y)
and x and y are E-equivalent. For each partition P of I, let us consider
the partition P’ whose cells are defined by

Px)= U Py (foreachx €1,
PG) = P

where the union is taken with respect to all words y for which P(y) <> P(x).

By its own definition, the partition P’ is such that P is regularly finer
than P’. The partition P’ is called the derivative of the partition P. Its
linguistic significance will become clearer in the following chapters.

It may be remarked that the partition S into distributional classes is the
derivative of the unit partition E:S = E’. Indeed, for each x € I" the
set S(x) contains all words y that are E-equivalent with respect to x.

It is easy to see that, if P is regularly finer than Q, then Q is finer
than P’; it follows that, if we consider the set Il of partitions of I', ordered
by the relation ““finer than,” the set II(P) of those partitions Q, for
which P is regularly finer than Q, has P’ as a maximal element.

6. P-Domination and Some of Its Properties

In the following, we shall establish some fundamental facts concerning
the derived partitions. We shall use, in a systematic manner, the following
generalization of the relation of P-equivalence between two P-structures:

Let P be a partition of I'. We shall say that P(x) P-dominates P(y), and
we shall write

P(x) = P(y),

if, for each pair of P-structures, &, and %,, such that the P-structure
P.P(x)#, is marked, the P-structure 2, P(y)%, is also marked. It is easy
to see that P(x) <> P(y) if and only if P(x) = P(y) and P(y) —> P(x).

Lemma 1. Let 4 and B be two partitions of I such that 4 is finer than
B. Let xix,...x, be a string such that x; €I for 1 <i=<n. If the A4-

structure
A(x)A(xp)- - -A(xy) (D
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is marked, then the B-structure
B(x)B(x)- * *B(x,) 2

is also marked.
Proor. Since (1) is marked, there exists a marked string y,, ys,..., ¥
with y; €T for 1 =i =<n and such that A(x;)=A4(y;) for 1 <i= n. Since

A is finer than B, we have A(x;) C B(x;); therefore A(y;) C B(x;) and y; €
B(x;) for 1 <i=<n. Thus, B(x;)=B(y,) for 1 <i=n and (2) is marked.

REMARK. Without proof, lemma 1 is givenin [19], p. 205.

Lemma 2. Let 4 and B be two partitions of I" such that A4 is finer than
B. letxel'andy€e ' If, foreach u €1,

A(u) C B(x) 3
implies

Au)—> AW, (4)
then

B(x)— B(). ()

ProoF. Let x;...x,_1xx,;;...X, be a string with x, €T (I<i<p,
i # n) and such that
B(xy): + *B(x,-1)B(xX)B(x;11)" - B{xp) (6)

is marked B-structure. There exists a marked string

V1Yo * ' Yu—1¥u¥nt+1® " " Yo {7
(y; € I for 1 =i = p) whose B-structure is (6); therefore,
B(y;)= B(x;) (I<si<sp,i#n), ®)
B(y,)= B(x). 9)
Since (7) is marked, it follows that the 4-structure
A AG-)AY)AY e - -A(Yp) (10)

is also marked. Since A is finer than B, we have

A(y;) € B(y) (1 <i<p). (1
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In view of (9), it follows that
A(yn) C B(x). (12)

Hence (3) is satisfied for u =y, and, consequently, (4) is also satisfied
foru =y,

A(yn) = AQY). (13)
From (13) and since (10) is a marked A4-structure, it follows that
Ay AQn-)ADAn11) - Ay) (14)

is also a marked A4-structure. From (11) and in view of Lemma 1, we
deduce that

B(y)): * "B(yu-1)B(Y)B(ui1)" * "B(yp)

is a marked B-structure; hence, in view of (8), the B-structure

B(x,): - *B(xn1)B(Y)B(Xy11)" * -B(xp) (15)

is also marked. But (15) is obtained from (6) by replacing B(x) by B(y);
therefore, (5) is proved.
In the same way we obtain the next lemma.

Lemma 2'. Let 4 and B be two partitions of I' such that 4 is finer
than B. Let x&€T and y € T'. If for each u € T,

A(u) C B(y) (3"
implies

A(u) —> A(x), (49
then

B(y) — B(x). (5"

From Lemmas 2 and 2’ we deduce another lemma.

Lemma 3. Let A and B be two partitions of I" such that A is finer than
B.let x&T and y €T. If, for any u € T', the inclusion A(u) C B(x)
implies A(u) — A(y) and, for any v € T, A(v) C B(y) implies A(v) —> A(x),
then

B(x) < B(y). (16)

A corollary follows from Lemma 3.
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Corollary 1. Let A and B be two partitions of I' such that 4 is regul-
arly finer than B. Let x € I" and y € I" such that A(x) <> A(y). Then, we
have (16).

ProoF. Let u € I be such that A(u) C B(x). Since A is finer than B,
it follows that A(x) C B(x) and, since A is regularly finer than B, we have
A(x) <> A(u); therefore, A(u) <> A(y), which implies that A(u)—> A(y).

Now let v € I" such that A(v) C B(y). By changing u to v and x to y
in the above considerations, we deduce that 4(v) —> A(x). Thus, all the
hypotheses of Lemma 3 are satisfied and (16) follows.

RemMark. Corollary 1 was established, in another way, by Kulagina
([19] Lemma 2).

Lemma 4. Let 4 and B be two partitions of I" such that 4 is regularly
finer than B. Let x €I and y € I" be such that

B(x)— B(y) (17)
and let u € I and v € I be such that

A(u) C B(x), (18)

A(v) C B(y). (19)
Then

A(u)— A(v). (20)
ProoFr. Let

A(zy)" + ~AZn-D)AWAZmr1) "~ A (25) (21)

be a marked A-structure. There exists a marked string
Up* " U Uy * " " 1 (22)
whose A-structure is (21); thus
A = A(z) (A<sis<s, i#m), 23)
A(uy) = A(u). 24)
Since the string (22) is marked, the B-structure
B(t): + *B(tm-)B(ty)B(ttsr)- - -Bluy) (25)

is also marked. Since A is finer than B, we have
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A(u;) C B(u,) (a=siss). (26)
From (24) and (26), it follows that
A(u) C Bluy). (27
From (18) and (27), we deduce
B(x) = B(uy,). (28)

From (28) and, since (25) is a marked B-structure, it follows that the
B-structure

B(u,) * *B(um—1)B(x)B(U+1) - -Blus) (29)
is marked. In view of (17), we deduce that the B-structure
B(uy)- * - B(um-1)B(y)B(um+1)" - -Bluy) (30)
is marked. There exists a marked string
Dy Uy U Uy * * * Us
such that
v; € B(uy) (Il=siss,i#*m) 3D
and
v € B(y). (32)
Therefore, the A-structure
A+ AWn-1)AOWAVn1)" - -ADy) (33)
is marked. From (31) and (32), and since A is finer than B, it follows that
Aw) CBu) (I1<i<s,i¥*m (34)
A(vm) C BO). (35)

From (19), (26), (34), and (35), and since A4 is regularly finer than B,
we deduce

Aw) <> Aw) (A =<i=ss,i#*m)), (36)
A@) < A(v,). 37

From (36) and (37) and since the A-structure (33) is marked, it follows
that the A4-structure

Auy) + AUm-)AW)A(Um1) - -Aluy) (38)
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is marked. But in view of (23), the A4-structure (38) may be written

A(zy) -+ -AZy-1)AW)IA(Zpty) - -A(z,). 39)

Since the A4-structure (39) may be obtained from the A4-structure (21) by
replacing A(u) by A(v), relation (20) follows. Lemma 4 is completely
proved.

Changing x by y in hypothesis (17) of Lemma 4, we obtain Lemma 4'.

Lemma 4'. Let 4 and B be two partitions of I" such that A4 is regularly
finer than B. Let x € I" and y € T be such that
B(y)— B(x), (17"

and let #« €T and v €T be such that we have the inclusions (18) and
(19). Then

A) = A(u). (20"
From Lemmas 4 and 4’ two lemmas follow.
Lemma 5. Let 4 and B be two partitions of I" such that 4 is regularly
finer than B. Let x €T and y € I" be such that
B(x) < B(y), (40)

and let u €T and v € " be such that we have the inclusions (18) and
(19). Then
A(u) <> A(v).

7. Comparable Partitions with the Same Derivative
Theorem 1. Let A and B be two partitions of I' such that A4 is finer than

B. We have A’ = B’ if and only if A is regularly finer than B.

PROOF. Let
A:T=U4,; and B:T=UB;
i j

be the considered partitions. We have, for each x € T,
A(x) C B(x). 41)
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Suppose first that 4’ = B’ = P and that P is given by
P: F=LkJCk-

Let
A; C B; D A, 42)

Since P = B’, B is finer than P; hence there exists a cell C, of P, such that
B; C C,. 1t follows that A; C C,, and A; C C,. Since P=A’, we have

Ao Ay 43)

therefore, two cells of 4 contained in the same cell of B are 4-equivalent
and A is regularly finer than B.

Let us now suppose that 4 is regularly finer than B; this means that
(42) implies (43). It will be shown that 4" = B’. In view of (41), the
equality 4’ = B’ is equivalent to the fact that, for each x € I', we have

X(x) =Y(x), (44)
where
Xx= U A4y and Y= U B(@).

APy A(x) B(z)<> B(x)
We shall prove equality (44). Let u € X(x). There exists y € I such that
u € A(y) and A(y) is A-equivalent to A(x). In view of Corollary 1, it
follows that B(y) is B-equivalent to B(x); hence B(y) C Y(x). On the other
hand, (41) implies, for x =y, that u € B(y); therefore, u € Y(x) and

X(x) C Y(x). (45)

Now let v € Y(x). There exists z € I' such that v € B(z) and B(z) is
B-equivalent to B(x). We have B(v) = B(z); hence, in view of (41) (for
x =) it follows that A(v) C B(z). From (41) and using Lemma 5 (with
y =z and u = x), we deduce that 4(x) is A-equivalent to 4A(v) and, con-
sequently, A(v) C X(x) and v € X(x). Therefore,

Y(x) C X(x). (46)
From (45) and (46) it follows (44) and Theorem 1 is proved.

Corollary 2. If D is any partition of I, then D' = D".

ProoF. Since D is regularly finer than D’, we may apply Theorem 1
and obtain D' = (D')' = D".
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REMARK. In another way, Corollary 2 has been established in [19],
p. 206.

8. Partitions with the Same Derivative

In the preceding Section we have given a necessary and sufficient
condition that two comparable partitions of I have the same derivative.
We shall now consider the same problem in the general case when the
partitions are arbitrary.

Theorem 2. Let A and B be two partitions of I'. We have 4’ = B’ if
and only if there exists a partition P of I" such that 4 and B are regularly
finer than P.

ProoF. Let A’ = B’. Partition P = A’ satisfies the desired conditions.
Conversely, consider a partition P satisfying the desired conditions. In
view of Theorem 1, we have 4'= P’ and B'=P’; hence A'=B'.
Theorem 3. Let

A:F=UAi and B : T =UB;

be two arbitrary partitions of I'. We have 4’ = B’ if and only if the follow-
ing condition is satisfied:

If
A;NB; #0 47)

and
A, N B, #0, (48)

then
A< Ay (49)

implies

B;< B, (50)

and (50) implies (49).
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ProoF. First let A'= B’ and put P=A'. If (49) is satisﬁed, there
exists a cell G of P, such that

A; C G D A, (51)
From (47) the existence of a cell H of P follows, such that
B;,CHDA,. (52)
From (51) and (52) we deduce H = G; thus
B;CG. (53)
From (48) follows the existence of a cell L of P, such that
A, CLDB,. (54)
Inclusions (51) and (54) imply L = G; therefore
B, CG. (55)

From (53) and (55) we deduce (50); hence, (50) follows from (49).

Since the hypotheses are symmetric with respect to 4 and B, it follows
also that (50) implies (49).

Now let us suppose that we have (47) and (48) and that (49) is equi-
valent to (50). We shall prove that 4’ = B’.

Let x €I and y € T be such that there exists a cell M of 4’, for which

xXEM, (56)
yE M. (57)
We have
A(x) N B(x) # 0, (58)
A(y) N B(y) # 0. 59)
From (56) and since x € A(x), it follows that
A(x) C M. (60)
From (57) and since y € A(y), it follows that
AQy) C M. (61)
Thus (60) and (61) imply
' A(x) < A®Y). (62)

From (58), (59), and (62) we deduce, in view of the hypothesis, that
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B(x) < B(y),
hence there exists a cell N of B’, such that

XEN and y EN. (63)

We have proved that (56) and (57) imply (63); therefore, if two words
belong to the same cell of A’, they belong to the same cell of B'. Since the
hypotheses are symmetric with respect to 4 and B, it follows that two
words which belong to the same cell of B’ also belong to the same cell of
A'. Thus, M= N and A’ = B’.

From Theorem 3, Corollary 3 follows immediately.

Corollary 3. Let 4 and B be two partitions of I', such that 4 is finer

than B. We have A’ = B’ if and only if the following condition is satisfied:
If

A; C B; (64)
and

Ak g Bls (65)
then

Ao Ay (66)
implies

B; < B, 67)

and (67) implies (66).
Now let us remark that Corollary 1 and Lemma S imply Corollary 4.

Corollary 4. Let A and B be two partitions of I', such that A4 is regularly
finer than B. If we have (64) and (65), then (66) is equivalent to (67).
Corollaries 3 and 4 immediately imply Theorem 1.

9. Conditions That a Partition Be a Derivative

It is obvious that the derivative of a partition P depends not only on T
and P, but also on the set ® of marked strings. Thus, the notion of deriva-
tive -concerns those properties of the language which involve both
paradigmatic and syntagmatic aspects.
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In a language {I', P, ®} the derivative P’ is uniquely determined. On
the other hand, if Q is a partition of I, it is possible to have several
languages {T', P, ®} such that P’ = Q. For instance, if Q =S, there
exist at least two languages {I', P, ®} and {I', P,, ®} such that
P;=P,=23; indeed, in view of Theorem 1, we may take P, = E and
P, = S, whereas if ® is suitably chosen, E # S.

If Q is any given partition of I" and ® is any given set of marked strings,
does there always exist a partition P of I such that P’ = Q (with respect
to ®)? The negative answer to this question follows from a proposition.

Proposition 1. The unit partition is a derivative if and only if each
family is formed by a single word.

Proor. Let us suppose that E is a derivative with respect to ® and
let P be such that P’ = E. It follows that P is finer than E; hence P(x) C
E(x) for each x € T; but E(x) = {x}. Therefore P(x) = {x} foreachx €T
and P = E. This equality implies E' = E. On the other hand, we know that
E' = 8. Thus, S = E, and each family S(x) is formed by the unique word x.

Let us now suppose that S = E. Since we always have E'= 3§, it
follows that E' = E; thus, E is a derivative.

Given a partition P of I, does there always exist a set ® of strings over
I', such that P is a derivative with respect to ®? The affirmative answer
follows from the next proposition.

Proposition 2. Let P be a partition of I'. There exists a set ® of strings
over I', such that P is the derivative of the unit partition of T.

Proor. Let us suppose that P is given by

We shall define the set @ as follows: The string x;x, - - - x, belongs to
@ if and only if p=rn and x; € P, for 1 <i =< n. It is easy to see that for
each x €' we have P(x) = S(x), hence P=S. But it is known that
E' = §; therefore, E' = P.

It would be interesting to solve a problem.

PrOBLEM. Let P be a partition of I' and let ® be a set of strings over
I'. Find a necessary and sufficient condition that P be a derivative with
respect to ®.

We shall say that the partition P of I" is proper if the number of its
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cells is at least equal to 2 (in other words, if P is not the improper partition
of I).

Proposition 3. Let us suppose that the zero string 6 is an element of
I and let ® be a set of strings over the vocabulary I'. A necessary and
sufficient condition that no proper partition of I' be a derivative with
respect to @ is that either ® be void, or each string over I" belongs to ®.

ProoF. Let us suppose that the single partition of I' which is a deriva-
tive with respect to & is the improper partition. We shall show that
® is either void or formed by all strings over I'. Indeed, let & be non-
void and let us admit the existence of a string x=a,4," " a; - - a,
over I, which does not belong to ®. It follows that the E-structure
E(a,)E(a,)- - "E(a;)- - -E(a,) is unmarked. It is known that E' = §; on
the other hand, in view of our assumption, E’ is the improper partition.
It follows that S is the improper partition; that is, for each x we have
S(x)=T. Since ® is not void, there exists a string y=bb,--- b,
belonging to ®. If m < n, then y is obtained from x by replacing a; by
b, when 1 <i<m and g; by 8 when m <i= n. Since all words form a
unique family and since x is unmarked, it follows that y is also un-
marked; but this is false, since y € ®. If n < m, then x is obtained from
y by replacing b; by a; when 1 < i< n and b, by § when n < i< m. Since
y is marked, it follows that x is also marked; but this is false, since x
does not belong to ®. Therefore, in any case the assumption0 C® C T
is contradictory.

Let us now suppose that either ® = 0 or ® = T. It is easy to see that,
in both cases, all words form a single family. Let P be any partition of
I'. Since we have P(x) <> P(y), for each pair of words x, y, it follows
that P’ is the improper partition of I'.

The proof of Proposition 3 suggests the introduction of a new notion,
as follows: A P-structure & will be called perfect if it is marked and if
each string whose P-structure is £ is a marked string ([31], pp. 122-123).

Theorem 4. Consider a language {I', P, ®}. The partition P is finer
than S if and only if each marked P-structure is perfect.

ProoF. Let us first suppose that P is finer than § and let £ = P(x,)P(x,)
-+ -P(x,) a marked P-structure. We shall show that x=xx,---x, is a
marked string. Since & is marked, there exists a marked string y=
YiV2 - Ya, such that P(x;) = P(y;) for 1 <i<n. Since P is finer than §,



10. Mixed Cells 23

it follows that x; € P(y;) C S(v;) for 1 <i=< n. Therefore, x is obtained
from y by replacing each term y; of y by a word belonging to S(y;). Since
y is marked, it follows that x is also marked.

Let us now suppose that each marked P-structure is perfect. We
shall show that P is finer than S. Indeed, let b € P(a). It must be proved
that b € S(a). Let x=a, -+ a;_yaa;, * - - a, be a marked string con-
taining a and let y=a, - --a;—ba;,, - - a, Since b € P(a), y has the
same P-structure & as x; since x is marked, & is marked. Hence £ is
perfect and y is a marked string. Conversely, if y is marked, its P-
structure Z is marked, and thus is perfect; since P(b) = P(a), 2 is
the P-structure of x; thus x is marked. It follows that b € S(a) and
Theorem 4 is proved.

Corollary 5. Each marked S-structure is perfect.
PrOOF. Since S is finer than itself, we may apply Theorem 4.

ReEMARKS. The part of sufficiency in Theorem 4 and Corollary 5 were
given by Revzin [31 pp. 179-180].

Theorem 4 shows that a partition P whose P-structures are all perfect,
has each of its cells contained in a family. But we have already remarked
that the customary interpretation of the partition P is that in which P(x)
is the set of flectional forms of x. Since two different flectional forms of
the same word are not, ordinarily, in the same family, it follows that a
perfect P-structure is not in the spirit of the paradigmatic structure of a
natural language.

10. Mixed Cells; Union and Intersection of Two Partitions

Let us consider a language {I', P, #}. A chain between the words a
and b is a finite sequence of words x;, x5, ..., X;, Xi1q5 - - - » Xn, Such that
x,=a, x,=b and

X (S S(xi+1) U P(Xi+1) fOI‘ 1 = l =pn— 1.

The number n is the length of the chain. We shall consider that for
each word a there exists a chain of length one between a and a.
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Let us denote by R(a) the set of those words b such that there exists
a chain between «¢ and b. Itis easy to see that (1) a € R(a); 2)if b € R(a),
then a € R(b); if b € R(a) and ¢ € R(b), then ¢ € R(a). Thus, the sets
R(a) for a € T define a partition R of I, called the partition in mixed cells.
For each a €I', we have S(a) C R(a) D P(a). Hence the partitions P
and § are finer than R.

Proposition 4. There exists a language {I', P, ®}, where neither P
nor § are regularly finer than R.

ProorF. Let I'={a, b, ¢}, P(a)= P(b)={a, b}, Plc)=1{c}, ®=
{ab, ac}. We have S(a) = {a}, S(b) = S(c) = {b, ¢} and R(a) = R(b) =
R(c)=T. On one hand, S(a) C R(a) D S(b), but S(a) and S(b) are
not S-equivalent, since S’ = § (in view of Corollary 2) and S(b) # S(a).
Thus, S is not regularly finer than R. On the other hand, P(a) C R(a) D
P(c), but P(a) and P(c) are not P-equivalent, since the P-structure
P(a)P(c) is marked, whereas the P-structure P(c)P(c) is unmarked. Thus,
P is not regularly finer than R.

The partition into mixed cells is a particular case of a general operation,
the so-called union of two partitions. If 4 and B are two partitions of
I', we shall say that the finite sequence of words x,, x,,...,x, IS an
AB-chain which connects the words a and b if x,=a, x,=b, and

x; € A(xi44) U B(x;4) for 1<isn—1.

We shall also say that the pair {a, b} is A B-connected.

A subset T, of T is called 4B-connected if for each pair {a, b} of
words in I'; there exists an 4 B-chain which connects a and b. The subset
I’y of T is called saturating AB-connected if T’y is A B-connected, but no
A B-connected subset I', of I' exists such that I'; can be strictly contained
in T',.

Each word « belongs to a saturating 4 B-connected subset of I', namely
to that subset which contains all words b such that the pair {a, b} is
AB-connected. Since the union of several 4AB-connected subsets of T
having a common word is also an 4B-connected subset of T, it follows
that the saturating 4 B-connected subsets of I" are pairwise disjoint; the
corresponding partition of I" is called the union of the partitions A and
B ([11], Section 4).

Now it is easy to see that the mixed cells of I' are the cells of the
partition which is the union of P and S; that is, the union of P and S is R.

Another operation with partitions is the intersection of two partitions,
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defined as follows: If 4 and B are two partitions of I, the intersection of
A and B is the partition whose cells are the intersections between any
cell of A and any cell of B.

It is obvious that the intersection partition of 4 and B is finer than
A and than B, whereas both 4 and B are finer than their union.

Proposition 5. There exists a language {I', P, ®}, where the inter-
section Q of P and § is not regularly finer than P.

ProOOF. Let us consider the same language as in the proof of Proposi-
tion 4. It is easy to see that Q is the unit partition E. We have b € P(a).
Hence E(a) C P(a) D E(b), but E(a) and E(b) are not E-equivalent,
since S(a) # S(b). Thus, E is not regularly finer than P.

The union and the intersection of two partitions are used in the abstract
theory of automata ({11], Section 4, and [10]).

11. Classes and Their Structure

Let us denote by K(a) the set of words b such that at least one of the
following two conditions is fulfilled: (1) P(a) N S(b) # 0; (2) P(b) N
S(a) # 0. The set K(a) is, by definition, the class of a. Since a € P(a) N
S(a), it follows that a € K(a) for each a € I'. Since Condition 2 is ob-
tained from Condition 1 by replacing a by b and b by a, it follows that
b € K(a) implies a € K(b). Thus, the relation p, defined by a p b if and
only if a € K(b), is reflexive and symmetric.

Proposition 6. There exists a language {I', P, ®} where the relation
p 1s not transitive.

ProoF. Let I'={a, b, ¢, d}, P(a)= {a, b}, P(c)={c, d}, ®={ad,
bb, ab, bc, bd, dc, db, dd}. We have S(a) = {a}, S(b) = S(d)= {b, d},
S(c)={c}. Since P(d) N S(c)={c} #0 and S(d) N P(a)= {b} # 0,
it follows that we have ¢ p d and d p a. But we do not have ¢ p a, since
P(a) N S(c) = P(c) N S(a) = 0.

Proposition 7; We always have
S(x) U P(x) C K(x) C R(x).
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Proor. The proof follows directly from the definitions.
Let

Mx= U S, Nx= U PO). (68)

yEP(x) YESHX)

Theorem 5. In any language {I', P, ®} and for each x € I' we have
K(x) = M(x) U N(x).

ProoF. Let u € K(x). If P(x) N S(u) # 0, there is a word v € S(u) N
P(x); hence u € S(v) and v € P(x). Therefore, u € M(x).

If P(u) N S(x) # 0,let w € P(u) N S(x); hence u € P(w) and w € S(x).
Therefore, u € N(x). Thus, we have proved the inclusion

K(x) C M(x) U N(x).

Let us now consider u € M(x) U N(x). If u € M(x), there exists
a word y € P(x) such that u € S(y); hence y € P(x) N S(u). Therefore,
P(x) N S(u) # 0 and u € K(x). If u € N(x), there exists a word y € S(x),
such that # € P(y). Hence y &€ S(x) N P(u), and it follows that
S(x) N P(u) # 0 and u € K(x). We have thus proved the inclusion

M(x) U N(x) C K(x),
and Theorem 5 is established.

For any subset I'; of T', let
S(F1)=l€JFS(X), PITy)= U Px).

x€Ty

Proposition 8. For any x € I', we have

M(x)=S(P(x)),  N(x)=P(S(x)).

Proor. The proof follows immediately from the definitions.
Let us put, foreachx €T,
Hx)= U K@).

K(y)NK(x)#0

Proposition 9. In any language {I', P, ®} we have, for each x €T,
H(x) C R(x).

ProoF. Let z € H(x). There exists y €I’ such that z € K(y) and
K@) N K(x) # 0. Let 1 € K(y) N K(x). In view of Proposition 7 and
since R is a partition of I', we have 1t € K(x) C R(x), y € K(t) C R(t) =
R(x), z € K(y) € R(y) = R(x); thus, Proposition 9 is proved.
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12. Partitions of the Free Semigroup Generated by I'

In various problems we must consider some partitions of the set 7 —the
free semigroup generated by I'. An example of such a partition is that used
in Sections 1 and 5 in connection with the so-called finite-state languages.
Let us recall these facts, using a new terminology and a more systematic
presentation.

The unit partition E of T is, by definition, that partition for which
E(x) = {x} when x € T. Two strings x and y belonging to T are called
E-equivalent with respect to the subset ® of T, ifforanyu € T,v € T, we
have either uxv € ®©, uyv € ®, or uxv € T— P, uyv € T—®. The set
w(x) = {y; x and y are E-equivalent with respect to ®} will be called the
T-distributional class of x or the T-family of x (with respect to ®). A
language {I", ®} will be called a finite-state language if there are only
finitely many 7-distributional classes with respect to ®. This definition
agrees with the customary one, as is shown in [1] and [29].

Let us denote by u the equivalence relation in T, defined by the disjoint
sets u(x). By u we also mean the partition of 7 into the sets w(x).

An equivalence relation r in T is called invariant from the right if, for
anyx € T,y € T, z € T such that xry, we have xzryz; ris called invariant
from the left if, forany x € T,y € T, z € T such that xry, we have zxrzy.
An equivalence relation r in T is called a congruence relation in T if it is
invariant from both the left and the right.

We shall define a binary relation 8 in 7, as follows: x 8 yifforanyz € T
we have either xz € ¢, yz € ®,orxz € T—D,yz € T—D.

Proposition 10. 8 is an equivalence relation in T, invariant from the right.

Proor. Since it is obvious that & is an equivalence relation, let us
show that it is invariant from the right. Givenx € T,y € T, z € T such
thatx 8 y,letu € T suchthat xzu € ®. Since x 8 y, it follows that yzu € &.
Now let w € T such that xzw € T—®. It follows that yzw € T—®.
Hence xz 8 yz and 8 is invariant from the right.

Proposition 11. There exists a language {I', ®} in which § is not in-
variant from the left.

ProoF. Let I'={a, b, c}, ®={ba, ca, aab, ac}. It is easy to see
that b & c; but ab and ac are not §-equivalent, since aab € ®, whereas
aac € T—o.
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We shall define a binary relation \ in T as follows: x A yifforanyz € T
we have eitherzx € ,zy € b,orex € T~ P, zy € T— .

Proposition 12. A is an equivalence relation in T, invariant from the left.

ProOOF. Since it is obvious that A is an equivalence relation, let us
show that it is invariant from the left. Givenx € T,y € T, z € T such
thatx A y,ifu € T and uzx € ®,thenuzy € &.Ifw € Tandwzx € T — @,
then wzy € T— ®. Therefore, zx A zy and X is invariant from the left.

Proposition 13. There exists a language {I', ®} where X is not invariant
from the right.

ProoF. Let I'={a, b, ¢}, ® = {ab, ac, baa, ca}. It is easy to see
that b \ ¢; but ba and ca are not \-equivalent, since baa € ¢, whereas
caae T—o.

Proposition 14. The partition p is finer than the intersection of the
partitions & and A, but there exists a language {I', ®} and two strings
x€ T,y € T suchthat x 8y, x Ay, although x and y are not u-equivalent.

Proor. If x uy, then, for any u € T, v € T, we have either uxv € ¢,
uyp € ®, or uxv € T—®, uyv € T—&. Taking as u the zero string,
we deduce that x §y. Taking as v the zero string, we deduce that x A y.

Now let I'= {a, b, ¢}, ® = {ab, ac, ba, ca, aba}. We have a8 b and
a \ b, but not a u b, since aba € ®, whereas aaa € T — .

Theorem 6. u is a congruence relation in 7.

PrROOF. Since p is an equivalence relation in 7, it remains to show
that u is invariant from both the left and the right. Let x € T, y € T,
z€T,and xpy Let u €T, v €T such that uxzv € ®. Since xu y, it
follows that uyzv € ®. On the other hand, let ¥’ € T, v' € T such that
u'xzv' € T—d. Since x w y, it follows that u’'yzv’ € T— . Hence xz p yz
and w is invariant from the right. In a similar manner, we prove that
w is invariant from the left.

Proposition 15. The relation r for which r(x) = {x} for any x € T is
a congruence relation in 7.

PrROOF. Obvious.



12. Partitions of the Free Semigroup Generatedby I' 29

Theorem 7. Let r be an equivalence relation in T. r is a congruence
relation in T if and only if, foranyx € T,y € T, z € T, w € T such that
xrz and yrw, we have xyrzw.

ProoF. Let r be a congruence relation in 7 and let x€ T,y € T,
z€ T, w € T such that xrz and yrw. Since r is invariant from the right,
we have xyrzy. Since yrw and in view of the invariance of r from the left,
we have zyrzw. Using the transitivity of r, we deduce xyrzw.

Suppose now that for any x€ T, ye T, z€ T, w € T such that
xrz and yrw, we have xyrzw. Let us show that r is invariant both from
the right and from the left. Since r is reflexive, we may take w = y and
deduce xyrzy. Hence r is invariant from the right, Using the reflexivity
of r again, we may take z = x and deduce xyrxw; hence ris invariant from
the left. Theorem 7 is proved.

Given two subsets 4 and B of T, we denote by AB the set of strings
xy, where x € 4 and y € B. Given an equivalence relation r in T, let us
denote, (as done this far) by #(u) the r-equivalence class containing the
string u. From Theorem 7 we shall deduce another characteristic of the
congruence relations.

Theorem 8. An equivalence relation r in T is a congruence relation
in T if and only if for any two strings x € T and y € T, there exists a
string ¥ € T such that r(x)r(y) C r(u).

PrOOF. Let r be a congruence relation in T andlet x€ T and y € T.
If z € r(x) and w € H(y), then, in view of Theorem 7 (necessity of the
condition), we have xyrzw. Hence, by putting u = xy, we have zw € r(u).
Since zw is an arbitrary element of r(x)r(y), the required inclusion follows.

Now suppose that, for any two strings x € T and y € T, there exists
a string ¥ € T such that r(x)r(y) C r(u). This means that, for any z € r(x)
and w € Ky), we have zw € Hu). In particular, we have xy € r(u). Hence
r(xy) = r(u) and zw € r(xy), that is, xyrzw. In view of Theorem 7 (suffi-
ciency of the condition), r is a congruence relation in 7.

Another form of Theorem 8 is now given.

Theorem 8. An equivalence relation r in T is a congruence relation
in T if and only if, for any x € T and y € T, we have r(x)r(y) C r(xy).

A partition P of T is called automatic from the right (from the left)
if, for any cell P; of P and for any x € T, there exists a cell P; of P such
that P;{x} C P;({x}P; C P;). A partition P of T is called invariant from
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the right (from the left) if the corresponding equivalence relation is
invariant from the right (from the left). A partition P of T is called
semigroupal if the corresponding equivalence relation is a congruence
relation.

Theorem 9. A partition of T is semigroupal if and only if it is invariant
both from the left and from the right. A partition of T is invariant from
the right (from the left) if and only if it is automatic from the right (from
the left).

Proor. The first assertion follows immediately from the definitions
and from Theorem 8. Since it is obvious that any partition invariant from
the right (from the left) is automatic from the right (from the left), it
remains to prove the converse of this assertion. Let P be automatic
from the right and let x = a,a, - - - a, be a string of T. Given a cell P(y)
of P, there exists a cell P, of P such that P(y){a,} = P,; then there exists
a cell P, such that P,{as} = P,. Hence P, = P,{a,, a,}. Continuing in this
way, we find, after n steps, some cell P, of P, such that P(y){a;as : - * a,}
= P,; hence P(y){x} = P,. Since x is an arbitrary element of 7, it follows
that P is invariant from the right.

One proceeds in a similar way when P is automatic from the left.

Proposition 16. If A and B are two semigroupal (invariant from the
right, invariant from the left) partitions of T, the intersection of A and
B is also a semigroupal (invariant from the right, invariant from the
left, respectively) partition of T.

Proor. This proof follows immediately from the definitions.

Theorem 10. If A and B are two partitions of 7, invariant from the
right (from the left), their union P is also a partition of T invariant from
the right (from the left).

Proor. If x and y are two strings belonging to the same cell P; of P,
there exists an AB-chain x = x,, x;,...,x, =, that is, x; € A(x;y) U
B(x;,;) when 0 =<i=<n—1. Since A4 and B are invariant from the right,
we have, for any z € T, x;z € A(x;117) U B(x;3,2) when 0 isn—1.
Hence the pair {xz, yz} is AB-connected. Since xz and yz are two arbitrary
elements of P;{z}, it follows that P;{z} is AB-connected. Therefore it is
contained in some cell of P and P is invariant from the right.
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One proceeds similarly when 4 and B are invariant from the left.

Corollary 6. If A and B are two semigroupal partitions of T, their
union P is also a semigroupal partition of 7.

Proor. It is enough to take account of Theorems 9 and 10.

Let P be a partition of T. Denote, as done so far, by P(x) that P-cell
which contains the string x € T. If x,x, - - - x, is a sequence of strings,
then P(x,), P(xs),..., P(x,) is the P-structure of this sequence. Given
a sequence of P-cells Py, P,,..., P,, that is, a P-structure, we shall
‘say that it is marked with respect to ® C T, if there exists a sequence
of strings x;, xs,...,x, belonging to T, such that P, = P(x;), P, =
P(xy),..., P,= P(x,) and the composed string x.x,---x, belongs to
®. If such a sequence of strings does not exist, we shall say that the
sequence (or the P-structure) P.Ps---P, is unmarked (with respect
to d).

Given two P-cells P(x) and P(y) of the partition P of T, we shall say
that P(x) P-dominates P(y) [or that P(y) is P-dominated by P(x)] with
respect to ® C T, if for any two strings ¥ € T and v € T, such that the
P-structure P(u)P(x)P(v) is marked, the P-structure P(u)P(y)P(v) is
also marked.

If P(x) P-dominates P(y) and P(y) P-dominates P(x) with respect to
®, we shall say that P(x) and P(y) are P-equivalent with respect to ®.

Let P be a partition of 7. For any string x € T, denote by P'(x) the
union of all P-cells P(y), such that P(x) and P(y) are P-equivalent with
respect to ®. It is easy to see that the sets P'(x) define a new partition of
T; it is denoted by P’ and called the derivative of P (with respect to ®).

Proposition 17. The partition of T into 7-distributional classes is the
derivative of the unit partition of 7.

ProoFr. The statement follows immediately from the definitions.

Given two partitions A and B of T, we shall say that A is finer than B
if for any string x € T we have A(x) C B(x). A 1s said to be regularly
finer than B if A is finer than B and if, for any x € T and for any y € B(x),
the A-cells A(x) and A(y) are A-equivalent.

Most of the results concerning the partitions of I' remain true when T’
is replaced by T. We give here only some of these results, which will
be used later. Since the corresponding proofs are essentially the same
when I is replaced by T, no proof will be given.
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The following results will be considered with respect to a fixed language
{T, ®}. A and B will always denote partitions of T.

Lemma 1'. If 4 is finer than B, then for any marked A-structure
Axy), ..., A(x,) (where x; € T for 1 <i < n) the B-structure B(x,),...,
B(x,) is also marked.

Lemma 2". Let A be finer than Bandletx € Tandy € T. If 4(u) C B(x)
implies that A(y) is A-dominated by A4(u), then B(x) B-dominates B(y).

Lemma 3'. Let 4 be finerthan Bandlet xe T and ye T. If A(u) C
B(x) implies that A(x) A-dominates A(y) and if A(v) C B(y) implies that
A(v) A-dominates A(x), then B(x) and B(y) are B-equivalent.

Corollary 1'. If A4 is regularly finer than B and if there exist x € T
and y € T such that A(x) and A(y) are A-equivalent, then B(x) and B(y)
are B-equivalent.

Lemma 4". Let A be regularly finer than B. If there exist x € T and
y € T such that B(x) B-dominates B(y) and if u € T and v € T are such
that A(u) C B(x) and A(v) C B(y), then A(u) A-dominates A(v).

Lemma 5. Let 4 be regularly finer than B. If there exist x € T and
y € T such that B(x) and B(y) are B-equivalent andif u € Tandv € T
are such that A(ux) C B(x) and A(v) C B(y), then A(u) and A(v) are A-
equivalerit.

Lemma 6. Let A4 be finer than B. We have A’= B’ if and only if 4 is
regularly finer than B.

Corollary 2'. For any partition 4, we have 4’ = A".

Let P be a partition of T;let ® C T, x € T, and y € T. We shall say
that P(x) and P(y) are P-equivalent from the right with respect to &, if
for any w € T, the P-structures P(x)P(w) and P(y)P(w) are both either
marked or unmarked. Denote, for each x € T, by PL(x) the union of all
P(y) such that P(x) and P(y) are P-equivalent from the right with respect to
®. The corresponding partition P} is called the derivative of P from the
right, with respect to ®. Considering the unit partition E of T, the E;-
cells are called the T-semifamilies with respect to ®. It follows for any
x € T, that, Ej(x) contains exactly those strings y € T for which, for any
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w € T, the strings xw and yw belong either both to ® or both to 7T — ®.

In a similar manner we define, with respect to a given set ® C T,
such facts as “A is regularly finer than B from the right,” “P(x) P-
dominates P(y) from the right,” and others. Lemmas 2", 3', 4", 5', 6,
and Corollaries 1’ and 2’ remain true when the 4-domination (B-domina-
tion, A-equivalence, B-equivalence) is replaced by the A-domination
from the right (B-domination from the right, A-equivalence from the
right, B-equivalence from the right, respectively), “‘regularly finer” is
replaced by “‘regularly finer from the right,” and “derivative” is replaced
by “derivative from the right.” The corresponding results will be denoted
by Lemmas 2}, 3,, 4;, 5/, 6, and Corollaries 1, and 2/, respectively.

In a similar manner we define the corresponding notions “from the
left,” and we obtain corresponding results, denoted by Lemmas 27, 3,
4;, 5;, 6, and Corollaries 1; and 2;.

13. Bibliographic Remarks

The notions of P-structure, regularly finer partition, and derivative of
a partition—studied in Section 5-—were introduced by Kulagina [19].
Without proof, Theorems 1 and 2 (Sections 7 and 8) were given by
Uspenskii [35]. Some notions and results contained in Sections 8 and 9
were previously presented in [20]. The notions of mixed cells, chain, and
the partition R studied in Section 10 were introduced by Revzin [30].
The operations of union and intersection of two partitions and the notions
of automatic partition and semigroupal partition have been defined and
studied by Gluskov [10, 11]. Corollary 6 is proved in Section 4 of [11].
Proposition 16 is an analog of Theorem 10 of [11]. The notion of class
and the corresponding sets K(x) are considered by Kulagina in [19].
The notions of invariance from the right, invariance from the left, and
congruence relation, studied in Section 12, are due to Rabin and Scott
[29]. Theorems 6 and 7 of Section 12 are proved in [29]. Lemmas 1’, 2",
3',4", 5", 6,27 3,4/, 5,,6,, 2% 3,47, 5, 6; and Corollaries 1', 2', 1/,
2,;, 1;, 2; are proved in Chapter 4 of [26].
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NOTE ADDED IN PROOF

An extensive study of the morphologic homonymy, by the method sketched in Sections
2 and 4, may be found in Chapter V of our forthcoming book, “‘Introduction Mathématique
3 la Linguistique Structurale”, Gauthier-Villars, Paris, and Mouton, The Hague. Con-
cerning the same question, see L. Nebesky (Conditional replacement of words, Prague Bull.
Math. Linguistics (3), 3-12 (1965)) and B. H. Mayoh (Simple structures defined on a
transitive and reflective graph, Rev. Roumaine Math. Pures Appl. 11 (1), 43-51 (1966);
Grammatical categories, to appear in the same journal). A more general treatment
of some questions studied in Sections 5-8 was given by M. Novotnyi (On algebraization of
the set-theoretic language models (in Russian), Probl. Kibernetiki 15, 235-244 (1965)). A
notion of quasi congruence, which generalizes the congruence relation studied in Section
12, was introduced by V. Amar and G. Putzolu (On a family of linear grammars, Inform.
Control 7, 283-291 (1964)). A graph theoretical generalization of the results concerning
morphologic homonymy is given by C. Raischi, Asupra unui model algebric al categoriilor
gramaticale, to appear in Studii si cercetdri matematice 18 (1967).



Chapter Il

Linguistic Typology

In this chapter we deal with some restrictions imposed on a language.
These restrictions are of three types. We first have restrictions concerning
only the set ® of marked strings, that is, restrictions of a purely syntag-
matic character. We then have restrictions concerning only the partition
P of T, that is, restrictions of a purely paradigmatic character. Finally,
and most frequently, there are those restrictions which concern both the
set ® and the partition P. Each of these restrictions yields some class of
languages, and we shall investigate the relations between these classes
and their significance as models of various natural languages. The latter
will be accomplished in Section 8 of this chapter and in the next two
chapters.

1. Adequate Languages

A language {I', P, ®} is said to be adequate if for each x € I’ we have
S(x) C P'(x). The simplest example of an adequate language is obtained
when P is the unit partition of T

Theorem 1. There exists a language which is not adequate.

Proor. Let I'={a, b, ¢, d}, P(a)= {a, b}, P(c)={c, d}, ®= {ad,
bd, cd}. We have S(a) = {a, b, c}, S(d) = {d}. We shall show that
P'(a) = P(a); since S(a)—P(a)={a, b, c}—{a, b} ={c} # 0. the
theorem will be established.

It is easy to see that P(c) is not contained in P'(a), since the replacement
of P(c) by P(a) in the marked P-structure P(a)P(c) yields the unmarked
P-structure P(a)P(a). Thus, P'(a) = P(a).

36
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Theorem 2. If {I', P, ®} is adequate, the partition R is finer than the
partition P’.

Proor. For each x €I’ we have, by hypothesis, S(x) C P'(x) and,
in any case, P(x) C P’(x). Let us put R,(x) = S(x) U P(x). It follows that
R (x) C P'(x). If we put, for any set I'; C T,

STp=U S, PT)=U P,

xel, x€T,
Ry =S8T,) U PTY),

then we may define by induction the sets R,(x) = R(R,(x)), ..., Ry 1(x) =
R(R, (x)),....

Let A C P'(x). Since R,(x) C P’(x), it follows that R(4) C P'(x). Hence
R, (x) C P'(x) for each x €T and for each positive integer n. But it is
easy to see that

R@) = U Ry(x);
therefore, R(x) C P’(x) for each x € I" and Theorem 2 is proved.
Theorem 3. If {I', P, ®} is adequate, then R is regularly finer than P’.

Proor. Letx €T,y €T, u € I' suchthat

R(x) C P'(w), (n
R(y) C P'(u). )
It must be shown that
R(x) < R(y). 3)
Let
R(Zl)a svey R(Zi—l)a R(X), R(Zi+1)a e (4)

be a marked R-structure. There exists a marked string
b= Wi Wi WWe T Wy 5)
whose R-structure is precisely (4). It follows that
Rw)=R(z) (A=sjsn, j*1i), (6)
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R(w;) = R(x). @)

On the other hand, we have P(w;) C R(w;) for 1=<j=n; hence the
P-structure

P(wy): - P(wi_))P(w)P(wi,y)- - -P(w,) (8)

is marked, as a consequence of the fact that the string ¢ given by (5) is
marked. From (6) and (7) we deduce

P(w)) C R(z;) (Isj=sn, j#0, 9
P(w;) C R(x). (10)
Using inclusions (1), (2), (9), (10), and in view of Theorem 2, we obtain
Pw) CP(z) D P(zy) (<j=sn j#Ii, (11
P(wy) C P'(1) 2 P(y). (12)
From (11) and (12) we deduce
Pw) < P(z;) (I<sj<snj#i), (13)
P(w;) < P(y). (14)

From (13) and (14) and since the P-structure (8) is marked, it follows that
the P-structure

P(z)) - -P(2i-)PO)P(2i11) - -P(2,)

is marked. Since P(a) C R(a) for each a €T, it follows that the R-
structure R(z;)" * *R(zi-))R(Y)R(z;1) - *R(z,) is marked. But this R-
structure is obtained from (4), by replacing R(x) by R(y). Hence R(x)
R-dominates R(y). In view of the symmetry of hypotheses (1) and (2)
with respect to x and y, it follows that R(y) R-dominates R(x), and relation
(3) is proved.

Theorem 4. If {I', P, ®} is adequate, then R’ = P’.

Proor. Theorem 1, Chapter 1 says: “If the partition Q is finer than
P, then P' = Q' if and only if Q is regularly finer than P.”” Let us take, in
this theorem, P’ for P and R for Q. Since, in view of Theorem 3, R is
regularly finer than P’, it follows that P = R’. But P is regularly finer
than P’; thus, again using Theorem 1, Chapter 1, we obtain P’ = P'.
Hence R' = P’, and Theorem 4 is proved.

The converse of Theorem 2 is true, as is shown by the next theorem.
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Theorem 5. If R is finer than P’, the language {I', P, ®} is adequate.

ProoF. In view of the definition of R, we have S(x) C R(x) for any
x € T. On the other hand, since R is finer than P’, it follows that R(x) C
P’(x). Hence S(x) C P'(x) for any x €T and Theorem 5 is proved.

It follows immediately that the converses of Theorems 3 and 4 are
also true.

Corollary 1. If R is regularly finer than P’, then {I', P, ®} is adequate.

Corollary 2. If P'= R’, then {T, P, ®} is adequate.

A word x is said to be adequate if S(x) C P'(x). A language is said to
be locally adequate if each of its words is adequate. It follows immediately
that a language is adequate if and only if it is locally adequate.

Proposition 1. There exists a language in which no word is adequate.

Proor. Let I'={a, b, ¢,d}, P(a)={a}, Pb)={b}, P(c)= {c, d},
® = {ab, cb, ad, cd}. It is easy to see that S(a) = {q, ¢} and S(b) =
{b, d}. We have P(x)= P'(x) for each x €T. Since S(x) is contained
in P(x) for no x € T, it follows that no word is adequate.

The above example is the simplest possible, since we have another
proposition.

Proposition 2. If I" contains fewer than four words, then for any P and
any @, the language {I', P, ®} possesses at least one word which is
adequate.

Proor. If S is the improper partition of I', then P'(x) =TI for each
x € I' and the considered language is adequate, hence locally adequate.
If S is not the improper partition, there exists a word a € I" such that
S(a) = {a}. Therefore S(a) C P(a) and a is an adequate word.

Lemma 1. If L, P, and Q are paititions of I" such that L is finer than P
and P is finer than Q and if L' = Q’, then L' = P'.

Proor. In view of Theorem 1, Chapter I, Lemma 3 will be proved if we
can show that L is regularly finer than P. To this aim, let x, y, and u be three
words such that L(x) C P(«) D L(y), and let us put H = L' = Q. Since
Q is finer than A and P is finer than Q, it follows that P is finer than H.
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Hence P(u) C H(u) and thus L(x) C H(u) D L(y). Since H = L', L is regu-
larly finer than H. Therefore, L(x) and L(y) are L-equivalent. It follows
that any two L-cells contained in the same P-cell are L-equivalent,
and we have that L is regularly finer than P.

Theorem 6. Let {I', P, ®} be an adequate language. If the classes
K(x) define a partition K of I' , then K' = P’.

ProoF. The partitions P, K, and R fulfill all hypotheses of Lemma 1.
Indeed, P is finer than K, K is finer than R, and, in view of Theorem 4,
P'=R’'. Thus, Lemma 1 implies K’ = P’; Theorem 6 is proved.

2. Homogeneous Languages

A language {I', P, ®} is said to be homogeneous if the relation S(x) N
Py) # 0(x €T, y €T) implies S(y) N P(x) # 0.

A word x is said to be homogeneous if, for any y € P(x) and any
Z € S(x), we have S(y) N P(z) # 0. If each word is homogeneous, the
considered language is said to be locally homogeneous.

Theorem 7. {I', P, ®} is homogeneous if and only if it is locally homo-
geneous.

ProoF. Let us consider {I', P, ®} homogeneous, and let y € P(x)
and z € S(x). It follows that x € P(y) N §(z). Hence P(y) N S(z) # 0.
In view of the homogeneity, we deduce that S(y) N P(z) # 0. There-
fore x is an homogeneous word. But x is arbitrarily chosen in I'; thus,
{T', P, ®} is locally homogeneous.

Let us now suppose that {I', P, ®} is locally homogeneous and let
u €T, v €T such that P(u) N S(v) # 0. There exists w € I" such that
w € P(u) N S(v); hence u € P(w) and v € S(w). In view of the local
homogeneity, w is an homogeneous word. Therefore, S(x) N P(v) # 0,
and the considered language is homogeneous.

Theorem 8. Each homogeneous language is adequate.

ProoF. (1) We shall first establish the following property: If y € S(x)



2. Homogeneous Languages 41

and y’ € P(y), there exists a word x’ € P(x) such that y’ € S(x’). Indeed,
since y € S(x), we have x € S(y). On the other hand, we have y’ € P(y).
In view of the homogeneity and in view of the preceding theorem, the
considered language is locally homogeneous. Hence the word y is homo-
geneous. Thus. P(x) N S(3') # 0. Any word x' € P(x) N S(y') satisfies
the required condition.

(2) Let y € S(x). We shall show that P(x) and P(y) are P-equivalent.
Let

<P, P(Y)P, - - -

be a marked P-structure containing P(y); there exists a marked string

. . vly’vg v v .
such that
LV EPLY EPY),,EP,,....

In view of (1), we deduce the existence of a word x’ € P(x) such that

¥' € S(x'). Hence the string
-v-le,vzvv-

is marked. It follows that the P-structure

e P1P(X)P2 . e
is marked, that is, P(y) P-dominates P(x). To establish that P(x) P-
dominates P(y), it suffices to remark that the result of (1) may be formu-

lated as follows: If x € S(y) and x" € P(x), there exists a word ¥y’ € P(y),
such that x’ € S{y’).

REMARK. It is interesting that the ‘‘local variant” of Theorem 8 is
false. Precisely, we have the next proposition.

Proposition 3. There exists a language {I', P, ®} and a word x €T
such that x is homogeneous, but not adequate.

ProoF. Let us consider the language used in the proof of Theorem 1.
Since we have P'(a) = P(a) and S(a) — P(a) # 0, it follows that the word
a is not adequate. On the other hand, we have S(a) = {q, b, ¢}, P(a) =
{a, b}, P(c)={c, d}, P(b) N S(a)={a, b} # 0, P(c) N S(a) = {c} # 0,
Pc) N Sh)={c} # 0, P(a) N S(by={a, b} # 0. Hence a is homo-
geneous,

Theorem 9. There exists an adequate language which is not homo-
geneous.
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Proor. LetI' ={aq, b, ¢, d}, P(a) = {a, b}, P(c) = {c, d}, & = {ad, bb,
ab, bc, bd, dc, db, dd}. We have S(a) = {a}, S(b)={b, d}, S(c) = {c}.
It follows that P(a) N S(d) = {b} # 0, whereas P(d) N S(a) = {c, d} N
{a} = 0. Hence the considered language is not homogeneous.

Let us show that S(x) C P'(x) for each x €I'. If eitherx=a orx=rc,
the inclusion is obvious, since we always have x € P'(x). Now let x = b.
It is easy to see that b € S(d); it must be shown that P(b) and P(d) are
P-equivalent. Since the length of each marked string is equal to 2, it
follows that each marked P-structure has two terms. But the only
P-structures having two terms are P(b)P(b), P(d)P(d), P(b)P(d), and
P(d)P(b). It is easy to see that all these P-structures are marked; hence
P(b) and P(d) are P-equivalent and Theorem 9 is proved.

Lemma 2. If {I', P, ®} is homogeneous, x ET and y €T, then y €
R(x) if and only if P(x) N S(y) # 0.

Proor. Let us first suppose that y € R(x). There exists a chain x =
X1y Xy .. Xis Xix1s - - . » Xg =¥, that is, we have

X1 € S(x) U P(x) forlsisn—1. (15)
We shall show, by induction, that
Px) N S(x;) # 0 forl <jsn; (16)
the particular case corresponding to j=n is precisely the required
relation.
For j= 1, relation (16) is true, since x; = x; thus x € P(x) N S(x,). Let

us suppose that (16) is true for each j < i. Since the language is homo-
geneous, it follows that

P(x) NSx) #0  forj<i. (17)

In view of (15) we have x,.; € P(x;) or x;y; € S(x;). If x;11 € P(x;), then
P(x;) = P(x;y,) and, in view of (17), for j =i, it follows that P(x;;{) N
S(x) #£ 0. This implies, in view of the homogeneity of the language, that

P(x) N S(x;4,) #= 0. (18)

If x;.; € S(x;), we have S(x;) = S(x;+,).- Hence relation (16) for j = i implies
(18). It follows that the validity of (16) for j < i implies the validity of
(16) for j=i+ 1, and thus, for j = n, we obtain

Px) N S(y) # 0. (19)
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Now suppose that (19) is true. There exists a word z € P(x) N S(y),
that is, we have the chain x, z, y, with x € P(z) and z € S(y). Therefore,
y € R(x).

Lemma 3. If, in any language {T', P, ®}, the relation y € R(x) implies
(19), the language is homogeneous.

PrOOF. Let x and y be such that P(y) N S(x) # 0. There exists a
word z € P(y) N S(x), and we have the chain x, z, y between x and y.
Hence y € R(x). In view of the hypothesis, this implies relation (19),
and the language is homogeneous.

Theorem 10. If {T', P, ®} is homogeneous, K(x) = R(x) for each x €T,
that is, the classes coincide with the mixed cells.

PrROOF. Let x € K(y). It follows that, if P(x) N S(y) # 0, then P(y) N
S(x) # 0. This implies the existence of a word z such that the sequence
x, Z, y is a chain. Hence x € R(y).

Let us now suppose that x € R(y). Since the language is homogeneous,
we have, in view of Lemma 2, P(y) N S(x) # 0. Thus x € K(y).

ReMARK. The hypothesis of homogeneity is used only to establish
that x € R(y) implies x € K(y). The inclusion K(y) C R(y) is true for
each x € I' and for each language.

Corollary 3. If {I', P, ®} is homogeneous, the classes K(x) define a
partition K of I' and we have K' = P’.

Proor. In view of Theorem 8, the language is adequate. We may
apply Theorem 4 and obtain R’ = P’. In view of Theorem 10 and since
the mixed cells define a partition of I, it follows that the classes K(x)
define a partition K of I' and K = R; hence K' = P'.

Theorem 11. The language {T, P, ®} is homogeneous if and only if
M(x) = N(x) for each x € I', where M(x) and N(x) are given by relations
(68) of Chapter 1.

ProoF. Let us first consider {I', P, ®} homogeneous and let u €
M(x). There exists a word ¥y € P(x) such that u € S(y). Hence P(x) N
S(u) # 0. In view of the homogeneity, it follows that P(u) N S(x) # 0.
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Thenlet z € P(w) N S(x). Wehaveu € P(z)and z € S(x). Thus u € N(x),
and M(x) C N(x).

Now let u € N(x). There exists a word y € S(x) such that u € P(y).
Hence S(x) N P(u) # 0. In view of the homogeneity, we deduce that
S(u) N P(x) # 0. Then let z € Su) N P(x). We have u € §(z) and
z € P(x). Hence u € M(x). Thus, N(x) C M(x). We have also proved
that the homogeneity of the language implies M(x) = N(x) for each
xelrl.

Let us now suppose that M(x) = N(x) foreachx € I'. If P(x) N S(y) #= O,
let z € P(x) N S(y). We have x € P(z) and z € S(y). Hence x € N(y) and
x € M(y). This means that there exists a word u € P(y) such that x € S(u).
Hence u € S(x) N P(y). We have also proved that P(x) N S(y) # 0 implies
S) N P(y) # 0, and thus the language is homogeneous.

Corollary 4. If {I', P, ®} is homogeneous, then K(x) = M(x) = N(x)
for each x € I'.

Proor. It follows immediately from Theorem 5 and 11.

Proposition 4. If N(x) C M(x) for each x € I', the language is homo-
geneous.

PrOOF. Let P(x) N S(y) # 0 and z € P(x) N S(¥); hence, x € P(z)
and z € S(). It follows that x € N(y). But N(y) C M(y). Thus x € M(y)
and there exists ¥ € P(y) such that x € S(«). Therefore, P(y) N S(x) #= 0,
and the language is homogeneous.

In the same way we obtain a further proposition.

Proposition 5. If M(x) C N(x) for each x € I', the language is homo-

geneous.
Theorem 5 and propositions 4 and 5 imply a corollary.

Corollary 5. If M(x) = K(x) for each x €T, the language is homo-
geneous. If N(x) = K(x) for each x € I', the language is homogeneous.

3. Various Types of Homogeneous Languages

A language is said to be completely homogeneous if, for eachx € ', we
have S(x) C P(x).
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Proposition 6. If P is the improper partition, then {I', P, ®} is com-
pletely homogeneous.

Proor. Obvious.

Proposition 7. If {I', P, ®} is such that S is the unit partition of I, then
{I’, P, ®} is completely homogeneous.
A word x € I is said to be completely homogeneous if S(x) C P(x).

Proposition 8. In any language {I, P, ®}, each completely homo-
geneous word is homogeneous.

Proor. Let x be completely homogeneous and let y € S(x), z € P(x).
Since S(x) C P(x), we havey € P(x); hence P(y) = P(x)and S(z) N P(y) =
S(z) N P(x) D {z} # 0. Therefore, x is homogeneous.

Proposition 9. If {I', P, &} is completely homogeneous, it is homo-
geneous.

Proor. It suffices to remark that each word is completely homo-
geneous, and therefore homogeneous. Then apply Theorem 7.

Proposition 10. Each completely homogeneous word is adequate.

ProoFr. Obvious.
A language is said to be perfect if for each x € I" we have P(x) C S(x).
In view of Theorem 4, Chapter 1, we have a further proposition.

Proposition 11. A language is perfect if and only if each marked P-
structure is perfect.
The following two propositions are obvious.

Proposition 12. If P is the unit partition of I', then {I', P, ®} is perfect.

Proposition 13. If {I', P, ®} is such that § is the improper partition
of T, then {I', P, ®} is perfect.
A word x is said to be perfect if P(x) C S(x).

Proposition 14. In any language {I', P, ®}, each perfect word is homo-
geneous.
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ProOOF. Let x be perfect and let y € S(x), z € P(x). Since P(x) C
S(x), we have z € S(x). Hence S(z) = S(x) and S(z) N P(y) = Sx) N
P(y) D {y} # 0. Therefore, x is homogeneous.

Proposition 15. FEach perfect language is a homogeneous language.

ProOOF. It suffices to remark that each word is perfect, and therefore
homogeneous. Then apply Theorem 7.

A language {I', P, ®} is said to be simple if it is homogeneous and if
P(x) N S(x) = {x} for each x € . Thus, by definition, any simple lan-
guage is homogeneous. The converse is not true, as is shown by Pro-
position 16.

Proposition 16. There exists a homogeneous language which is not
simple.

ProoF. Let {I', P, ®} be a language such that S(x) C P(x) for each
x €T', whereas S is not the unit partition of I". (An example of such a
language is {T', S, ®}, where I' = {a, b} and ® = {a, b}.) This language
is completely homogeneous and, in view of Proposition 9, it is homo-
geneous. On the other hand, P(x) N S(x) = S(x) and, since § # E, there
exists a word x; such that S(x;) # {x;}.

A word x is said to be simple if for y € P(x) and z € S(x) the set
S(¥) N P(z) contains exactly one word.

A language is said to be locally simple if all its words are simple.

Theorem 12. A language is simple if and only if it is locally simple.

Proor. Let {I', P, ®} be simple and let x €T. Since any simple
language is homogeneous and in view of Theorem 7, it follows that x
is a homogeneous word. Hence for y € P(x) and z € S(x) we have
S(y) N P(z) # 0. To prove that S(y) N P(z) contains exactly one word,
we shall reason by contradiction. Let us admit that there exist two dif-
ferent words x’ and x” such that x’ € S(y) N P(z) and x" € S(y) N P(2).
It follows that P(x') = P(x")= P(z) and S(x')= Sx")= S(y). Hence
P(x) N S&') = Px") N S&") = P(z) N S(y); therefore, x" € P(x') N S(x').
Since x' € P(x') N S(x’), it follows that P(x’) N S(x’) contains more than
one word, in contradiction to the assumption that the considered language
is simple. Thus, {I', P, ®} is locally simple.
Let us now suppose that {I', P, d} is locally simple.



3. Various Types of Homogeneous Languages 47

Since any simple word is homogeneous, it follows that {I", P, ®}
is locally homogeneous and thus,by virtue of Theorem 7, T', P, ®} is
homogeneous. To prove that P(x) N S(x) = {x} for each x € T', it suffices
to take, in the definition of the notion of a simple word, y = z = x and to
remark that x € S(x) N P(x). Therefore, {I', P, ®} is simple.

Since any simple language is homogeneous and any homogeneous
language is adequate, it follows that any simple language is adequate.
The “local variant” of this fact is not true, as it is shown by Theorem 13.

Theorem 13. There exist a language {I', P, ®} and a word x €T’
such that x is simple, but not adequate.

ProoF. Let us consider the language used in the proof of Proposition 1.
As shown in this proof, no word of this language is adequate. On the
other hand, we have S(a) = {a, ¢}, P(a) = {a}, P(c)={c, d}. Hence
Pc) N S(@)={c} #0 and P(a) N S(a)={a} #0. Therefore, a is a
simple word. ;

It is easy to see that there exist simple languages which are neither
completely homogeneous nor perfect, whereas there exist completely
homogeneous and perfect languages which are not simple. Moreover,
we have two stronger propositions, as follows.

Proposition 17. There exists a perfect and completely homogeneous
language in which no word is simple.

Proofr. Let I'={a, b}, P(a)={a, b}, ® = {a, b}. We have S(a)=
{a, b}. Hence P = § and the language is perfect and completely homo-
geneous; but neither a nor b is simple, since P(a) N S(a) = P(b) N S(b) =
{a, b} # {a} and # {b}.

Proposition 18. There exists a simple language in which each word is
neither perfect nor completely homogeneous.

Proor. Let I'={a, b, ¢, d}, P(a)= {a, c}, P(b)=1{b,d}, ®={ac,
bc, ad, bd}. We have S(a) = {a, b}, S(c¢) = {c, d}. Hence, forany x € T’
we have neither P(x) C S(x) nor S(x) C P(x).

Proposition 19. Any amorphic language is simple.

PROOF. A language is amorphic if and only if P= E. Thus, in view
of Propositions 12 and 15, any amorphic language is homogeneous.
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On the other hand, in any amorphic language we have, for eachx €T,
Sx) N P(x) =S(x) N {x} = {x}. Hence any amorphic language is
simple.

A word x is said to be amorphic if P(x) = {x}.

Proposition 20. There exists a simple language in which no word is
amorphic.

ProOF. Let us consider the same language as in the proof of Pro-
position 18. In view of that proposition and since each amorphic word
is perfect, it follows that the considered language is simple, but no
word is amorphic.

A language is said to be purely paradigmatic if S =E. A word x is
said to be purely paradigmatic if S(x) = {x}.

Proposition 21. Any purely paradigmatic language is completely
homogeneous.

ProoF. The proof follows immediately from Proposition 7.

Proposition 22. Any purely paradigmatic language is simple.

ProoF. In view of Propositions 9 and 21, if {I', P, ®} is purely
paradigmatic, it is homogeneous. On the other hand, since we always
have x € P(x) N S(x) and since the language is purely paradigmatic,
it follows that P(x) = {x}. Hence P(x) N S{x) = {x} for any x €T.
Therefore, {I', P, ®} is simple.

It is to be remarked that the “local variant” of Propositions 19 and 22
is not true. Indeed, we have another proposition.

Proposition 23. There exist a language {I', P, ®} and two words x € I
and y € T such that x and y are not simple, but x is purely paradigmatic,
whereas y is perfect.

Proor. Let T'={a, b,c,d}, Pla)={a, b,c}, Pd)={d}, o=
{ab, ac, ad}. We have S(a) = {a}, S(b) = {b, ¢, d}. The word a is purely
paradigmatic, but it is not simple, since P(a) N S(b) = {b, c}. The word
d is perfect, but it is not simple, since S(d) N P(b) = {b, c}.
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4. Completely Adequate Languages

In some languages there exists a stronger property than that of ade-
quacy: For any two words x and y such that x E-dominates y we have
y € P'(x). A language {I', P, ®} in which such a condition is fulfilled
will be called a completely adequate language.

Proposition 24. Any completely adequate language is adequate.

Proor. Itis enough to remark that, if y € S(x), then x E-dominates y.

Proposition 25. There exists an amorphic and purely paradigmatic
language which is not completely adequate.

Proor. let I'={a, b, ¢}, P=E, ®={ab, cb, cc}. It is easy to
see that § = E and a E-dominates c¢. If the language were completely
adequate, we would have ¢ € E'(a). But E' =S and, by hypothesis,
S =E. Thus E' = E. It follows that ¢ € E'(a) implies ¢ € E(a). There-
fore ¢ = a. This contradiction shows that the considered language is not
completely adequate.

Proposition 26. There exists a completely adequate language which is
not homogeneous.

Proor. Let us consider the language used in the proof of Theorem 9.
By Theorem 9, this language is not homogeneous. We shall show that it
is completely adequate. It is easy to see that x E-dominates y only in the
following cases: x=b, y=d; x=a, y=b; x=d, y=b, x=c, y=d,
x=c¢, y=b; x=a; y=d. We have already proved (in the proof of
Theorem 9) that P(b) and P(d) are P-equivalent. In fact, for any two words
x and y, P(x) and P(y) are P-equivalent, since for any string of length
exactly equal to 2 the corresponding P-structure is marked. In particular,
P(x) and P(y) are P-equivalent in each of the six above cases in which
x E-dominates y.

Proposition 27. There exists a homogeneous language which is neither
amorphic nor completely adequate.

Proor. Let I'={a, b, ¢, d, e, f}, ® = {ab, ac, de, fe, ff}, and P=S.
The last equality shows that the considered language is perfect. Hence,
by virtue of Proposition 15, it is homogeneous. We have S(x) = {x} for
x# b and x # ¢ and S(b) = {b, c}. Thus, P(b) = {b, c} ¥ {b} and the
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language is not amorphic. To see that this language is not completely
adequate, let us remark that, on one hand, d E-dominates f and, on the
other hand, P(d) and P(f) are not P-equivalent, since P(d) = {d}, P(f) =
{f}, the P-structure P(f)P(f) is marked, whereas the P-structure P(d)P(f)
is not.

A word x is called completely adequate from the left (from the right) if
for each y such that x E-dominates y (v E-dominates x) we havey € P'(x).
A word x is called completely adequate if it is completely adequate from
both the left and the right. It is easy to see that each word completely
adequate from the left and each word completely adequate from the right
are adequate. A language is said to be locally completely adequate (from
the right) if each word is completely adequate (from the right).

Let us consider a word x such that there is no word y whose morpho-
logic homonymy is less than the morphologic homonymy of x (in the
sense of Chapter I, Section 2). This assertion means that there is no word
y which E-dominates x and such that x does not E-dominate y. We shall
say that such a word x is an initial word. Another presentation of this
notion was given in Section 4, Chapter I. Denote by G(a) the set of words
b such that a E-dominates b. By definition, G(a) is the elementary gram-
matical category generated by a; the same notion was introduced, in
another way, in Section 4, Chapter I, where its linguistic significance was
also explained. We recall that, with the customary interpretation adopted
in a natural language, G(a) is the set of all words whose set of grammatical
values contains those of a. For instance, in printed French beau is an
initial word; G(beau) contains exactly those adjectives whose set of
values contains those of beau: singular, masculine.

An initial word x is said to be strongly adequate if G(x) C P'(x). If
each initial word is strongly adequate, the considered language will be
called a strongly adequate language.

It is obvious that the set G(x) may be defined for any word x, initial or
not; the linguistic significance just explained is true also if x is not an
initial word. Even if x is not an initial word, G(x) contains only words
whose set of grammatical values contains those of x, and all such words.
For instance, in printed French mince is not an initial word; however,
G (mince) contains only adjectives admitting the values singular, mas-
culine, feminine, and all such adjectives [beau does not belong to
G(mince)]. Let us then extend the property of strong adequacy to
any word; a word x—initial or not—is said to be strongly adequate if
G(x) C P'(x). Consequently, a language will be called locally strongly
adequate if each of its words —initial or not —is strongly adequate.
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A family F is said to be initial if there is an initial word a such that
F = S(a). It is easy to see that each word belonging to an initial family
is an initial word.

Lemma 4. In any language, and for any x € I', there exists an initial
family F such that each word of F E-dominates the word x.

Proor. If S(x) is an initial family, we may take F = S(x). If not, there
is a word x; which does not belong to S(x) and which E-dominates x.
If S(x,) is an initial family, we may take F = S(x,). If not, we find a word
x, which is not in S(x;) and which E-dominates x,. Continuing in this way,
we obtain a sequence of words x;, X5, . . . , X,, . . . such that x,, E-dominates
X,—; but is not E-dominated by x,_,. We shall prove that the sequence
{x,} is finite; in this case, if x,, is the last term of the sequence, we may
take F = S(x,). Thus Lemma 4 is proved. In this aim, it is enough to
prove that the terms of {x,} are pairwise distinct. We reason by contra-
diction. If we would have two positive integers p and s, p <, such that
X, = X,, then, since the relation of E-domination is transitive, x, would
E-dominate x, for any positive integer r < s; in particular, x, would E-
dominate x,,,. On the other hand, we know that x,.; E-dominates X,.
It follows that x,.; € S(x,), in contradiction to the definition of the

sequence x,,.

Theorem 14. A language is locally strongly adequate if and only if
it is strongly adequate.

PrOOF. Let us assume that {I', P, ®} is strongly adequate and let
x €T. If x is initial, we have, by hypothesis, G(x) C P'(x). If x is not
initial, then, in view of Lemma 4, there is an initial word y such that
y E-dominates x. In view of the hypothesis, we have G(y) C P'(y).
On the other hand, since y E-dominates x, we have G(x) C G(y). Hence
G(x) C P'(y) and x € P’(y). This implies P'(x) = P'(y) and G(x) C P'(x).
Therefore x is strongly adequate, and the considered language is locally
strongly adequate.

It is immediate that the converse is also true; each locally strongly
adequate language is a strongly adequate language.

Proposition 28. A word x is strongly adequate if and only if it is com-
pletely adequate from the left.

Proor. Obvious.



52 II. Linguistic Typology

Proposition 29. Given a language L, the following three assertions
are pairwise equivalent:

(1) Lislocally completely adequate;

(2) Lis locally strongly adequate;

(3) L is locally completely adequate from the right.

ProOOF. Let us prove that (1) = (2). If y € G(x), then x E-dominates
vy and, in view of (1), y € P'(x). Let us now prove that (2)=(1). If x
E-dominates y, then y € G(x) and, in view of (2), y € P'(x). If y E-
dominates x, then x € G(y) and, in view of (2), x € P'(y); the last relation
implies that y € P'(x). Since it is obvious that (1) = (3), it remains to
prove that (3)=(1). Let us admit (3). If x is E-dominated by y, then,
since x is completely adequate from the right, we have y € P'(x). If x
E-dominates z, then, since z is completely adequate from the right, we
have x € P'(z). Hence z € P'(x). Thus, we have (1).

The local variant of Proposition 29 is not true, as is shown by the next
two propositions.

Proposition 30. There exist a language {I', P, ®} and a word b ET
which is completely adequate from the right, but not strongly adequate.

Proor. LetI'={aq, b, ¢}, P(a) = {a, b}, P(c) = {c}, ® = {ab, ac, cc}.
Since there is no word x # b such that x E-dominates b, it follows
that b is completely adequate from the right. On the other hand, since
b E-dominates ¢, P'(b) = P(b) and since c¢ does not belong to P(b), it
follows that b is not strongly adequate.

Proposition 31. There exist a language {I', P, } and a word c €T
which is strongly adequate, without being completely adequate.

ProOOF. Let us consider the language used in the proof of Proposition
30. Since G(c) = {c}, c is strongly adequate. Since b E-dominates c,
but b does not belong to P'(c) (= P(c) = {c}), we deduce that c is not
completely adequate.

Theorem 15. A language is completely adequate if and only if it is
strongly adequate.

Proor. If a language is completely adequate, it is locally completely
adequate from the left and, in view of Proposition 28, it is locally strongly
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adequate. Thus, by Theorem 14, the language is strongly adequate.
Conversely, if a language is strongly adequate, then, in view of Theorem
14, it is locally strongly adequate and, by Proposition 29, it is locally
completely adequate. Hence it is completely adequate.

ReMARK. In the proof of Lemma 4, as in the proof of Theorem 14,
essential use is made of the fact that the vocabulary I is finite. This
general assumption was used only in very few situations. Theorem 15
also makes use, in an essential manner, of this assumption. As we shall
see in the following, Theorem 15 ceases to be true if this assumption is
removed.

Theorem 16. Let I be a countable infinite set. There exists a strongly
adequate language over I', which is not completely adequate.

Proor. Let I'={x,, x,...,x,,...} with x; # x; when i+ j, and let
P = E. By definition, the set ® will contain all strings of the formx.x, ...,
x,x,, where, denoting by # the number of occurrences of x,, we have
n=1 and p <n+1. We shall prove that {I', P, ®} fulfills the required
conditions.

Let x, €T. If n=1, there is no positive integer p # 1 such that
x, E-dominates x,. Indeed, in the marked string x,x, any replacement
of the first term by x, (with p > 1) yields an unmarked string.

Let us now suppose that n > 1. In this case, any marked string contain-
ing x, is of the form x,x,...xx, where x; is repeated as least n—1
times. For any p < n, the string

XXy ® X1 Xp
[
n—1 times

is marked. Hence x, E-dominates x, for each p < n. Let us now consider
an integer r > n. The string

X1 Xy © " XXy
[N —
n—1 times

is unmarked. Therefore x, E-dominates x, for no integer r > n. It follows
that, for i <j, x;, E-dominates x;, but x; does not E-dominate x;. There-
fore, for each x € I', we have S(x) = {x}, whereas no word x is initial.
The condition of strong adequacy is thus satisfied in a trivial manner.

The language considered is not completely adequate. Indeed, if
i <j, then P(x;) and P(x;) are not P-equivalent, since P = E = § and, as
we have just shown, x; E-dominates x;. Theorem 16 is proved.
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Let us denote by L(x) the set of all words y which E-dominate x and
by i(x) the number of initial families contained in L(x). The linguistic
significance of these objects follows from the fact that i(x) measures
the morphologic homonymy of x. Indeed, each initial family contained in
L(x) generates an elementary grammatical category containing x and,
conversely: Each elementary grammatical category containing x is gener-
ated by an initial family contained in L(x). Let us consider, for instance,
the French adjectives différent and heureux. We have L(différent) =
S(différent), L{heureux) = S(différent) U S(différents). (We are consider-
ing printed French, hence différent # différents). It follows that i(diff-
érent) = 1 and i(heureux) = 2. These values agree with our intuition.
The adjective différent has distinct forms in the masculine singular and
masculine plural, whereas the corresponding forms of heureux are iden-
tical. Another, more significant situation, is that of Rumanian adjectives
Sfrumos, subtire, vechi, and gri. We have L(frumos) = S(frumos), L(sub-
tire) = S(frumos) U S(frumoasa), L(vechi)= S(frumos) U S(frumosi) U
S(frumoase), L(gri) = S(frumos) U S(frumosi) U S(frumoasa) U S(fru-
moase). Hence i(frumos) = 1, i(subtire) = 2, i(vechi) = 3, and i(gri) = 4.

We shall now introduce a notion which is somewhat dual to that of
locally strong adequacy. A word x is said to be perfectly adequate if
L(x) C P'(x). A language is said to be locally perfectly adequate if all
its words are perfectly adequate.

Proposition 32. A locally perfectly adequate language is adequate,
but there is an adequate language which is not locally perfectly adequate.

ProoF. The first assertion follows immediately from the inclusion
S(x) C L(x); the second assertion is proved by the following example: I =
{a, b, ¢, d}, P(a) = {a}, P(b) = {b, c}, P(d) = {d}, ® = {ab, ac, ad, dd}.
We have S = P = P'. Hence S(x) = P’(x) for each x € I', and the language
is adequate. On the other hand, L(d) = {b, ¢, d} and P'(d) = {d}. Hence
d is not perfectly adequate.

A word x is said to be final if there is no word y # x, such that x E-
dominates y, but y does not E-dominate x. The linguistic significance of
this notion is that of a word with maximum morphologic homonymy, such
as ferox in Latin or souris in French. We remark that there exist words
which are both initial and final; the English adjectives in the positive form,
such as great, are such words.

A language is said to be perfectly adequate if all its final words are
perfectly adequate.
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A family F is said to be final if there is a final word a such that F =
S(a). It is easy to see that each word belonging to a final family is a final
word.

Lemma 4. In any language and for any x € I' there exists a final
family F such that x E-dominates each word of F.

ProOF. We may adopt the idea of the proof of Lemma 4, by replacing
“initial”” by ‘‘final” and by changing the sense of all E-dominations.

Theorem 14’. A language is locally perfectly adequate if and only if
it is perfectly adequate.

ProOF. We may adopt the idea of the proof of Theorem 14 by re-
placing ““initial”’ by “final’” and by changing the sense of all E-dominations.
Instead of Lemma 4, we shall use Lemma 4’.

Proposition 28’. A word x is perfectly adequate if and only if it is
completely adequate from the right.

Proor. Obvious.

Proposition 29’. A language is completely adequate if and only if it
is locally perfectly adequate.

Proor. Let {I', P, ®} be completely adequate. If y € L(x), then y
E-dominates x. Hence y € P'(x), L{(x) C P'(x), and the language is locally
perfectly adequate. Conversely, let {I', P, ®} be locally perfectly ade-
quate. If x E-dominates y, then x € L(y). Hence x € P'(y), and the
language is completely adequate.

The local variant of Proposition 29’ is not true. Indeed, we have
Proposition 31’.

Proposition 31'. There exist a language {I', P, ®} and a word b €T
which is perfectly adequate, without being completely adequate.

PrOOF. Let us consider the language used in the proof of Propositions
30 and 31. Since L(b) = {b}, b is perfectly adequate. On the other hand,
since b E-dominates ¢, but ¢ does not belong to P’(b), it follows that b is
not completely adequate.
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Theorem 15’. A language is completely adequate if and only if it is
perfectly adequate.

ProorF. This proof follows immediately from Theorem 14’ and
Proposition 29’.

REMARK. In the proof of Lemma 4’ and, consequently, in the proofs
of Theorems 14’ and 15’, essential use is made of the fact that I' is finite.
As is shown by the next theorem, Theorem 15’ ceases to be true if this
assumption is removed.

Theorem 16’. Let I' be a countable infinite set. There exists a perfectly
adequate language over I which is not completely adequate.

ProofF. LetI'={x,,..., x,,...} with x; # x; wheni # j,and let P=E.
By definition, the set @ will contain all strings of the form x;x; . ..x;x,,
where, denoting by n the number of occurrences of x;, we have n = 1 and
p = n—+ 1. We shall prove that {I', P, ®} fulfills the required conditions.
Indeed, it is easy to see that x,, E-dominates x,,, for each integer m > 1,
whereas x; E-dominates no word x; with { > 1. Hence x, is the only final
word. But L(x;) = {x,;}. Therefore L(x;) C P(x;), and the considered
language is perfectly adequate. On the other hand, if i < j, then x; does not
E-dominate x;. Therefore, P(x;) and P(x;) are not P-equivalent. It follows
that P(x;) = P'(x;) = {x;} for each positive integer i; but x; E-dominates
x; for each j > i, although x; does not belong to P'(x;) for j # i. Hence the
considered language is not completely adequate.

Theorems 14, 14’, 15, 15’ and Propositions 28, 28’, 29, 29’ yield a
further theorem.

Theorem 17. Given a language L = {I', P, ®}, the following conditions
are pairwise equivalent:

(1) L is completely adequate;

(2) L is locally completely adequate from the left;

(3) L is locally completely adequate from the right;

(4) L is locally completely adequate;

(5) L is strongly adequate;

(6) L is-locally strongly adequate;

(7) L is perfectly adequate;

(8) L is locally perfectly adequate.
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5. Other Types of Adequate Languages

A language is said to be well adequate if for any pair of words x,
y, such that x E-dominates y, we have that P(x) P-dominates P(y).
The word x is said to be well adequate from the left (right) if for any
word y such that x E-dominates y (v E-dominates x) P(x) P-dominates
P(y) [P(y) P-dominates P(x)). A language is called locally well adequate
from the left (right) if all its words are well adequate from the left (right).
A language is said to be locally well adequate if it is locally well adequate
from both the left and the right.

Proposition 33. Given a language L = {I', P, ®}, the following condi-
tions are pairwise equivalent:

(1) Lis well adequate;

(2) Lislocally well adequate;

(3) Lis locally well adequate from the left;

(4) Lislocally well adequate from the right.

Proor. Since the implications (1)=>(2), 2)=>(1), (2)=>(3), and
(2)=>(4) are obvious, it remains to prove the implications (3)= (1)
and (4) = (1). Let us suppose that L fulfills (3) and let x and y be two
words such that x E-dominates y. Since x is well adequate from the
left, it follows that P(x) P-dominates P(y). Hence (1) is satisfied. Let us
now suppose that L fulfills (4) and let x and y be two words such that x
E-dominates y. Since y is well adequate from the right, it follows that
P(x) P-dominates P(y) and (1) is satisfied.

The local variant of Proposition 33 is not true, as shown by Proposition
34.

Proposition 34. There exist a language {I', P, ®} and a word c €T
such that ¢ is well adequate from the left, but not from the right.

ProoF. Let T ={a, b, ¢}, ®={ab, ac, cc}, P(a)={a, b}, Plc)=
{c}. Though b E-dominates ¢, P(b) does not P-dominate P(c), since
P(b)P(b) is a marked P-structure, whereas P(c)P(b) is an unmarked
P-structure. Thus c¢ is not well adequate from the right. On the other
hand, since there is no word x # ¢ which is E-dominated by c, it follows
that ¢ is well adequate from the left.
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Proposition 35. Any completely adequate language is well adequate;
any well adequate language is adequate.

Proor. The first assertion is obvious. To establish the second assertion,
let us remark that, if x € S(y), then x E-dominates y and y E-dominates
x. Hence, since the language is well adequate, P(x) P-dominates P(y)
and P(y) P-dominates P(x).

Proposition 36. There exists a well adequate language which is not
completely adequate.

Proor. Let I'={a, b, ¢, d}, ® = {ab, ac, ca, cc, cdd}, P(a) = {a, b},
P(c) = {c}, and P(d) = {d}. Given two distinct words x and y, x E-
dominates y if and only if x = b and y = c. Since P(b) P-dominates P(c),
the language is well adequate. On the other hand, since P(c)P(d)P(d)
is a marked P-structure, whereas P(b)P(d)P(d) is an unmarked one,
it follows that P(c) does not P-dominate P(b). Hence the considered
language is not completely adequate.

Proposition 37. There exists an adequate language which is not well
adequate.

Proor. Let I'={a, b, ¢}, ® = {ab, ac, cc}, P(a) = {a, b}, P(c) = {c}.
Since S(x) = {x} for each x € I', the language is adequate. On the other
hand, since » E-dominates ¢, but P(b) does not P-dominate P(c) (see the
proof of Proposition 34), it follows that the considered language is not
well adequate.

Proposition 38. There exists a well adequate language which is not
homogeneous.

Proor. Let us consider the language used in the proof of Theorem 9.
Since all P-structures of length equal to 2 are marked and since the
length of each marked string is equal to 2, it follows that this language is
well adequate. On the other hand, in view of Theorem 9, this language
is not homogeneous.

Proposition 39. There exists a homogeneous language which is not
well adequate.
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PrOOF. Let us consider the language used in the proof of Proposition
37. We have P(a) N S(b) = {b}, P(b) N S(a) = {a},and P(x) N S(y)=0in
all other cases. Hence, the language is homogeneous. On the other hand,
in view of Proposition 37, this language is not well adequate.

A language is said to be inversely adequate if, for any words x and y
such that x E-dominates y, P(y) P-dominates P(x). It is easy to see that
each inversely adequate language is an adequate language.

6. Various Types of Linguistic Isomorphism

Let us consider two languages L, = {I';, P;, ®,} and L, = {I',, P,, ®,}.
We shall introduce some types of isomorphism between L, and L, as
follows.

L, and L, are paradigmatically isomorphic (P-isomorphic) when there
is a1 : 1 mapping f of I'; onto I',, such that y € P, (x)(x €T, y € I') if
and only if f(y) € P,(f(x)) [in other words, P(f(x)) = f(P,(x))].

L, and L, are syntagmatically isomorphic (®-isomorphic) when there
is a 1:1 mapping g of T'; onto I'; such that aya,---a, € ®, (a; €T,
when 1 si=<n) if and only if g(a,)g(a,): - -g(a,) € &,.

L, and L, are distributionally isomorphic (S-isomorphic) when there
is a 1:1 mapping # of I', onto I',, such that y € Sy(x}x €T}, y €T) if
and only if h(y) € S,(h(x)) [in other words, S.(h(x)) = h(S,;(x)), where
S, and S, are the partitions into families in L,, L,, respectively.

Given a string u=a, - - a, and a mapping f:I', =1, we put f(u)=

Sflay) - - flay).

Proposition 40. If L, and L, are syntagmatically isomorphic, they are
distributionally isomorphic.

Proor. We shall show that y € S\(x) (x €T, y €T)), if and only if
g(y) € Six(g(x)). Let y € S,(x). This means that, for any two strings u
and v, we have either
’ uxy € o, uyv € @, 20)
or
uxv & &, uyv & ®,. (21)
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In view of the ®-isomorphism, (20) implies

gu)glx)gv) € ®,,  gu)g(y)g(v) € @, (20"
whereas (21) implies
g()gx)gv) & ®,,  glu)g(y)g(v) & .. 21"

Since u and v are arbitrary strings over I';, g(u) and g(v) are arbitrary
strings over I',. Hence g(y) € S,(g(x)). Conversely, if the last relation
is true, then, for any strings u, v over I';, we have either (20') or (21°).
Therefore, since L, and L, are ®-isomorphic, we have either (20) or (21).
Thus y € S,(x).

Proposition 41. There exist two languages which are distributionally
isomorphic, but not syntagmatically isomorphic.

Proor. Let @I'y=T,={a, b}, P,=P,=E, &, ={ab, ba}, &,=
{abb, baa}. 1t is easy to see that S, =S§,=E. Hence {I'}, P,, ¥,} and
{I's, P,, ®,} are S-isomorphic; but these languages are not ®-isomorphic,
since any string of @, is of length equal to 2 and any string of ®, is of
length equal to 3.

We shall also define another type of isomorphism, as follows. Two
languages L; and L, are PS-isomorphic when there is a 1 : 1 mapping
¢ of T, onto 'y, such that y € Py(x)(x € I',, y € I') if and only if ¢(y) €
Py(p(x)) and y € S;(x)(x €T}, y €I')) if and only if ¢(y)E Sx(e(x)).

The simplest example of two PS-isomorphic languages {I';, P, ®,}
and {I,, P,, ®,} is obtained when these languages are P-isomorphic,
while P, = S, and P, = §,. Another example is Proposition 42.

Proposition 42. There exist two PS-isomorphic languages {T',, P,, ®,}
and {T, P,, ®,}, such that P, # S, and P, # S,.

Proor. Let TI';={a, b, c}, Pya)={a, b}, ®D,={ab, ac}, I.=
{x, v, 2}, P, (xX)={x, z}, ®={xz,yz}. Define ¢ : Iy =T, as follows:
e@) =2z, ob)y=1x, ¢(c)=y. We have P(p(a)) = ¢(Pi(a)), Ps¢(c)) =
o(Py(c)) and, since S,(b)={b, ¢} and S(x) = {x, y}, it follows that
Sy(p(a)) = o(S,(a)), Sa(e(b)) = ¢(S1(b)). Hence, the considered languages
are PS-isomorphic, although P, # §, and P, # S,.

It is obvious that, if L, and L, are PS-isomorphic, they are both P-
isomorphic and S-isomorphic. The converse is not true, as shown in the
next proposition.
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Proposition 43. There exist two P-isomorphic and S-isomorphic
languages which are not PS-isomorphic.

Proor. Let I ,=T,={a, b, c,d}, P,(b)={b,c,d}=Pyb), &=
{ab, ac, ad}, ®, = {ad, bd, cd}. By taking as f the identical mapping of
I, it follows that L, and L, are P-isomorphic. Since S, = P, and S,(a) =
{a, b, c}, by taking a 1:1 mapping h of I'; onto I's, such that h(a) = d,
we get Sy(h(x)) = h(S,(x)) for each x € T',. Hence L, and L, are S-iso-
morphic. On the other hand, L, and L, are not PS-isomorphic. Indeed, if
a 1: 1 mapping ¢ of ', onto I'; were to exist, such that Py(¢(x)) = ¢(P;(x))
and Sy(¢(x)) = ¢(5,(x)) for any x € I';, we would have, on one hand,
o(a) = a [since Py(a) = P,(a) = {a}], and, on the other hand, ¢(a) = d
{since S;(x) = {x} only when x=a and S,(x) = {x} only when x=d].
This contradiction shows that such a mapping ¢ does not exist. Hence
L, and L, are not PS-isomorphic.

Proposition 44. 1If L, is amorphic, while L, and L, are P-isomorphic,
then L, is also amorphic.

ProoF. Let f:T,— T, be such that P,(f{x))=fP,(x)) for each x € I'}.
Since L, is amorphic, we have P,(x) = {x}. Hence P,(f(x)) = f(x) for
each x € I',. Therefore, L, is amorphic.

Proposition 45. If L, is purely paradigmatic, while L, and L, are §-
isomorphic, then L, is also purely paradigmatic.

Proor. Let h:I,—T, be such that S,(A(x))= h(S,(x)) for each
x €T,. Since L, is purely paradigmatic, we have S,(x) = {x}. Hence
S5(h(x)) = h(x) for each x € I, and therefore L, is purely paradigmatic.

Theorem 18. If L, is homogeneous, while L, and L, are PS-isomorphic,
then L, is also homogeneous.

ProOOF. By hypothesis, there exists a 1:1 mapping ¢ of I'; onto I,
such that Py(p(x)) = @(P1(x)) and S.(p(x)) = ¢(S,(x)) for any x € I,. If
Sa(e(x)) N Py(e(y)) # 0,then, since ¢ is 1 : 1, we have ¢(S1(x)) N @(Pi(¥))=
o(S,(x)) N P,(»)# 0. Hence S,(x) N P,(y) #0. In view of the homo-
geneity of L,, it follows that §,(y) N Py(x) # 0. Thus ¢(S,(y) N P,(x)) # 0.
But, again using the fact that ¢ is 1 : 1, we have ¢(S,(¥) N P,(x)) = «(S,(y))
N @ (P(x)) =8,(e(y)) N Py(e(x)) # 0. Therefore L, is homogeneous.
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Proposition 46. There exist two P-isomorphic and S-isomorphic
languages L, and L, such that L, is homogeneous, but L, is not.

ProoF. Let us consider the languages used in the proof of Proposi-
tion 43. In view of that proposition, these two languages are P-iso-
morphic and S-isomorphic. Since P, = S,, L; is homogeneous. On the
other hand, since P,(a) N S.(d) =0, whereas Py(d) N S,(a) = {b, ¢},
it follows that L, is not homogeneous.

The proof of Proposition 46 yields another.

Proposition 47. There exist two P-isomorphic and S-isomorphic
languages L, and L, such that L, is both completely homogeneous
and perfect, whereas L, is not homogeneous.

Proposition 48. If L, is simple, while L, and L, are PS-isomorphic,
then L, is also simple.

ProOOF. Since L, is simple, it is homogeneous. Hence, in view of
Theorem 18, L, is homogeneous. It remains to prove that, forany x € I';,
we have P,(¢(x)) N Sx(o(x)) = {¢(x)}. Since ¢ is 1:1 and L, is simple, we
have Py(p(x)) N Sy(p(x)) = @(P1(x)) N ¢(51(x)) = @(Pi(x) N §1(x)) = @(x).
Hence L, is simple.

Proposition 49. There exist two P-isomorphic and S-isomorphic lan-
guages L, and L, such that L, is simple but L, is not.

Proor. Let I''={a, b,c,d, e, 1}, Pla)={a, b, ¢}, P(d)y={d, e, I},
®,={ab,db,ae,de,ac,al,dc,dl}, T,={x,y,z,u,v,w}, Py(x)={x,y,2},
Py(u) = {u, v, w}, ®, = {xz, yz, xu, yu, xv, xw, yv, yw}. It is easy to see
that S,(a) = {a, d}, Si(b) = {b, e}, S:(c) = {c, I}, Sx(x) = {x, ¥}, Sx(2) =
{z, u}, Sx(v)={v, w}. If la)=x, ib)=y, flc)=z, fld)=u, fle) =,
fh = w, then Py(fim)) = fAP,(m)) for any m € I';. Hence L, and L, are P-
isomorphic. If A(a) = x, h(b) =z, h(c) = v, h(d) =y, he) = u, h(l) = w,
then S.(h(m)) = h(S,(m)) for any m € I';. Hence L, and L, are S-iso-
morphic. On the other hand, it is easy to see that §,(m) N P,(n) contains
exactly one word for any m € I'}, n € T',. Therefore L, is simple, whereas
So(x) N Py(x) = {x, y}. Hence L, is not simple.

Theorem 19. There exist two PS-isomorphic languages L, and L,
such that L, is adequate, while L, is not.
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Proor. Let I',=T,={a, b, c,d}, Pia)=Pya)={a, b}, Pc)=
Py(c) = {c, d}, ®, = {aa, bb, cc, ab, ba, ac, ca, bc, cb, a, b, ¢, d}, &, =
{ad, bd, cd}. We have S,(a)= Sy(a) = {a, b, c}, S.(d)= S,(d) = {d}.
Hence ¢ may be taken as the identical mapping of I';, and we have
Sa(p(x)) = @(S1(x)), Pxe(x)) = @(P1(x)); L, and L, are PS-isomorphic.
Since all P,-structures of length not greater than 2 are marked, it follows
that Pj(a) = I';. Hence L, is adequate. On the other hand, since Py(a)P(c)
is a marked P,-structure, while Py(a)P,(a) is an unmarked one, it follows
that Pj(a) = P,(a) = {a, b}. Hence S,(a) is not contained in Pj(a) and L,
is not adequate.

Theorem 20. There exist two PS-isomorphic languages L, and L,
such that L, is completely adequate, while L, is not adequate.

Proor. The required languages L, and L, are precisely those used
in the proof of Theorem 19. Indeed, since P; is the improper partition
of I'y, it follows that L, is completely adequate.

Proposition 50. There exist two PS-isomorphic languages L, and L,
such that L, is well adequate, while L, is not adequate.

Proor. The proof of Theorem 20 also yields Proposition 50.

REMarRk. Theorems 19 and 20 and Proposition 50 make the intro-
duction of the following definitions natural.

A language is said to be absolutely adequate (absolutely completely
adequate, absolutely well adequate) if all its PS-isomorphic images are
adequate (completely adequate, well adequate).

A language is said to be absolutely inadequate (absolutely noncom-
pletely adequate, absolutely nonwell adequate), if all its PS-isomorphic
images are inadequate (noncompletely adequate, nonwell adequate).
It would be interesting to see if such languages exist.

It is immediate that any absolutely adequate (absolutely completely
adequate, absolutely well adequate) language is adequate (completely
adequate, well adequate); any absolutely inadequate (absolutely non-
completely adequate, absolutely nonwell adequate) language is inadequate
(noncompletely adequate, nonwell adequate).

Theorem 18 yields a further proposition.

Proposition 51. Any homogeneous language is absolutely adequate.
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It would be interesting to find a necessary and sufficient condition that
an adequate language be absolutely adequate. (Does there exist an
absolutely adequate language which is not homogeneous?)

Propositions 46, 47, and 49 make the following definitions natural.

A language is said to be absolutely homogeneous (absolutely completely
homogeneous, absolutely perfect, absolutely simple) if all its both P- and
S-isomorphic images are homogeneous (completely homogeneous,
perfect, simple).

A language is said to be absolutely nonhomogeneous (absolutely non-
completely homogeneous, absolutely nonperfect, absolutely nonsimple)
if all its both P- and S-isomorphic images are nonhomogeneous (non-
completely homogeneous, nonperfect, nonsimple).

Propositions 12, 19, and 44 yield Proposition 52.

Proposition 52. Any amorphic language is absolutely perfect and
absolutely simple (hence absolutely homogeneous).
Propositions 9, 21, and 45 yield Proposition 53.

Proposition 53. Any purely paradigmatic language is absolutely homo-
geneous and absolutely completely homogeneous.

It would be interesting to find necessary and sufficient conditions that
a language be absolutely homogeneous (absolutely completely homo-
geneous, absolutely perfect, absolutely simple). The same problem arises
for the absolutely nonhomogeneous (absolutely noncompletely homo-
geneous, absolutely nonperfect, absolutely nonsimple) languages.

A language for which P = E and S # E is an absolutely noncompletely
homogeneous language. If P # E and § = E, we obtain an absolutely
nonperfect language.

We may define a new type of isomorphism, stronger than the PS-
isomorphism. Two languages L,= {I';, Py, ®;} and L, = {I,, P,, ®,}
will be called P®-isomorphic if there exists a 1 : 1 mapping i of I'; onto
I., such that P,(yi(x)) = y(P,(x)) for each x € I} and such that the
string Y(x, )P (x,)- - -¥(x,) belongs to @, if and only if the string x;x, " - x,
belongs to ®,(x; €', when 1 <i=<n).

Proposition 40 and the proof of Proposition 41 yield a further
statement.

Proposition 54. If L, and L, are P®-isomorphic, they are PS-isomor-
phic; but there exist two PS-isomorphic languages which are not P®-
isomorphic.
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The P®-isomorphism is sufficiently strong so that it preserves any
property concerning a language and whose definition involves only
the objects I', P, and ®. In particular, we have Proposition 55.

Proposition 55. If L, and L, are P®-isomorphic and L, is adequate
(completely adequate, well adequate), then L, is also adequate (com-
pletely adequate, well adequate).

We may define a type of isomorphism which is weaker than the
P®-isomorphism, but stronger than the PS-isomorphism. Two languages
L,={T,P,®} and L,={I,, Py, ,} will be called PP'S-isomorphic
if there exists a 1: 1 mapping ¥ of I'; onto I';y, such that P,(y(x)) =
y(P1(x)), Pi(y(x)) = v(P{(x)) and S (y(x)) = y(S,(x)) forany x € I',.

Theorem 21. There exist two PP’'S-isomorphic languages which
are not P®-isomorphic.

Proor. Let I'y'=TI,={a,b,c}, P,=P,=E, &, ={ab,ac, aa},
@, = {aab, aac, aaa}. Define y as the identical mapping of I';. Since
S,(a) = Sy(a) = {a} and S,(b) = S.(b) = {b, ¢}, we have S,=S,. But
P,=FE'=S, and P;=E' = §,. Hence P; = P;, and the three equalities
defining the PP’'S-isomorphism are obviously fulfilled. On the other
hand, the considered languages are not ®-isomorphic, since the length
of any string of L, is equal to 2, whereas the length of any string of
L, is equal to 3.

Since the definition of an adequate language uses the partitions P’
and S exclusively, it is natural to define a new type of isomorphism
as follows: Two languages L, and L, will be called P’S-isomorphic if
there exists a 1: 1 mapping w of I, onto I',, such that Py(w(x)) = w(P;(x))
and S,(w(x)) = w(S,(x)). It is obvious that two PP’S-isomorphic languages
are P’S-isomorphic, but the converse is not true, as is shown by Proposi-
tion 56.

Proposition 56. There exist two P'S-isomorphic languages which
are not PP’S-isomorphic.

Proor. Let I',,T,, P,, ®,, and ®, be defined as in the proof of
Theorem 21 and let Py(a) = {a}, Py(b) = {b, c}. Since P,(a) and P,(b)
are not P-equivalent, we have P,= P;. On the other hand, P;=S,,
P =S§,, and S, = §,. Hence P; = P;. Taking for » the identical mapping
of I'y, it is easy to see that L, and L, are P'S-isomorphic. But L, and
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L, are not P-isomorphic, since P, is the unit partition of I'y, whereas
P, #E.
The following proposition is almost obvious.

Proposition 57. If L, and L, are two P’S-isomorphic languages and
L, is adequate, then L, is also adequate.

PrOOF. Since S;(x) C Pj(x), we have o(S;(x)) C o(P;(x)). Since S:(w(x)) =
o(S1(x)) and Pyw(x)) = o(P(x)), it follows that Sx(w(x)) C P,(w(x)). Since
x is arbitrary in T'j, w(x) is arbitrary in I', and Proposition 57 is proved.

Theorem 22. There exist two PP’S-isomorphic languages L; and
L., such that L, is completely adequate, while L, is not.

Proor. LetI,, T, P;, P,, and @, be defined as in the proof of Theorem
21 and let ®, = {b, c, ab, ac, aa}. Given x € I'y and y € I';, x E-domi-
nates y in L, if and only if either x=5b, y=c¢, or x=c, y = b. Since
P,(b) and P,(c) are P-equivalent, it follows that L, is completely adequate.
On the other hand, ¢ E-dominates a in L,, but P,(c¢) and P,(a) are not
P-equivalent, since ¢ does not belong to S,(a). Finally, since P, = P,,
Pi=P}, and §;=S,, L, and L, are PP’S-isomorphic.

Continuing this investigation, one can define a new type of isomor-
phism, which preserves the property of being completely adequate.
Similar problems arise for the well adequate languages and for the
inversely adequate languages.

7. Some Characteristics of Finite-State Languages

Using some partitions of 7 and their derivatives, we shall give several
characteristics of finite-state languages. We recall that a language
{T, ®} is a finite-state language if the number of T-distributional classes
with respect to @ is finite. The notions and results of Section 12, Chapter 1,
will be used. It is to be remarked that a finite-state language involves no
paradigmatic structure, that is, no partition of I'. In exchange, the study
of finite-state languages requires a systematic investigation of some par-
titions of the free semigroup T generated by I'. These partitions were
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studied in Section 12, Chapter I. For simplicity, we shall denote by the
same letter an equivalence relation in T and the corresponding partition
of T in equivalence classes.

Theorem 23. Let L= {I, ®} be a language over I'. The following
propositions are pairwise equivalent:

(1) L is a finite-state language;

(2) There exists a congruence relation P in T, such that L is a union
of P-equivalence classes, whereas the derivative of P is a finite partition;

(3) Given a congruence relation P in 7T, such that L is a union of
P-equivalence classes, the derivative of P is a finite partition.

ProoOF. Let us first show that (1) = (2). Since L is a finite-state language,
the sets w(x) define a finite partition of 7T, each u(x) being a T-distri-
butional class. In view of Theorem 6, Chapter I, u is a congruence relation
in T. In view of Proposition 17, Chapter I, and of Corollary 2’, Chapter I,
the partition in T-distributional classes is its proper derivative. Since for
any x € ® and y € u(x) we have y € ®, it follows that ¢ is a union
of T-distributional classes and (2) is proved by taking P = u.
We shall now prove that (1) = (3). To this aim, we shall show that (1)
" implies P’ = u; since (1) is equivalent to the finiteness of the partition w,
the implication considered will be proved.

Let x and y be such that x € T, y € T, and xPy. Since P is invariant
from the right, we have xwPyw for any w € T. This implies, in view of
the invariance from the left, that zxwPzyw for any z € T. Since L is the
union of some P-equivalence classes and since zxw € L, it follows that
zyw € L. We have thus proved that xPy and zxw € L imply zyw € L. On
the other hand, since P is symmetric, it follows that xPy and zyw € L
imply zxw € L. Therefore, xPy implies xuy and the partition P is finer
than u. Since, in any case, the unit partition E of T is finer than P and
regularly finer than p (see Proposition 17, Chapter I), it follows that E
is regularly finer than P. In view of Lemma 6, Chapter I, and again using
Proposition 17, Chapter I, we find that E' = P’ = u.

Let us assume (2). As we have just proved, P’ = u. Hence w is a finite
partition and (1) is true. Thus, (2) = (1).

Let us assume (3). Since u is a congruence relation in T (see Theorem
6, Chapter I) and L is the union of some p-equivalence classes, we may
take in (2) P = w. Hence (3) => (2), and Theorem 23 is proved.

The following theorem is well-known in automata theory and uses
some notions and results of Section 12, Chapter 1.
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Theorem of Myhill and Rabin-Scott. The following assertions are
pairwise equivalent:

(1) L= {T', ®} is a finite-state language;

(4) The number of 8-equivalence classes is finite;

(5) The number of A-equivalence classes is finite.

All known proofs of this theorem use notions and facts concerning
the generation of a finite-state language and therefore is beyond the object
of the present book. (See [29, 32].) Since assertions (1), (4), and (5)
involve only the distributional structure of the language L, it would be
very interesting to find a direct proof of the above theorem, that is, a
proof which uses no notion and no fact concerning the generation of
L by a finite-state machine.

With the aid of the above theorem of Myhill and Rabin-Scott and using
the notions and results concerning the derivative from the right (from the
left) of a partition of T, we may obtain some new characterizations of
finite state languages. We give here, without proof, a theorem of [29],
p. 123.

Theorem 24. Let L= {I', ®}. The following assertions are pairwise
equivalent:

(1) L is a finite-state language;

(6) There exists an invariant from the right equivalence relation r in
T, such that @ is the union of some r-equivalence classes, while the
derivative from the right of the partition r is a finite partition of T’

(7) [is obtained from (6), by changing “‘right” to “left’];

(8) Given an invariant from the right equivalence relation r in T, such
that @ is the union of some r-equivalence classes, the derivative from
the right of the partition r is a finite partition of T;

(9) [is obtained from (8), by changing “right” to “left’].

Other interesting characterizations of finite-state languages, which do
not involve the manner of their generation, are given by Chomsky and
Miller [7], by Rabin and Scott [32], and by Kleene [21]. These studies
are continued in [1, 8,9, 10]. We shall give without proof, a result of
Kleene, Myhill, and Rabin and Scott [32].

Let us denote by cl(A4) the union 4A° U A* U ---UA*U -, where 4
is a subset of the free semigroup T generated by I', 4° contains only the
zero string, and A=A -4 --- A, with A being repeated n times. Then,
we have a further theorem

Theorem of Kleene, Myhill and Rabin-Scott. The class of finite-state



8. Some Applications to Natural Languages 69

languages over I' is the smallest class 7 of languages (sets of strings)
over I', such that the following three conditions are fulfilled:

(1) if A is a finite language over I, then 4 € 7;

2)ifA€rand BE7,then A UBE 71 and 4B € 7;

(3) if A € 7, then cl(4) € 7.

It would be interesting to find, for this theorem, a proof which does
not involve automata structure.

In conclusion, we shall give some nontrivial examples of finite-state
languages and an example of language which is not a finite-state language.
In this aim, we shall consider some languages introduced by Curry {11].

Let Ty={a, b} and &, = {a, ab, abb, ..., ab" ...}, where b"=
b-b...b, b being repeated n times. The language {I';, ®,} is a model
of the system of positive integers. It may be defined inductively, as
follows: a € ®,; if x € ®,, then xb € ®, (x being a string over I';). It
is easy to see that {I';, ®,} is a finite-state language. Indeed, on one
hand, all marked strings belong to the same T-distributional class; on
the other hand, all semimarked strings also belong to the same T-dis-
tributional class. Since the parasitic strings form a single T-distributional
class, it follows that we have only three T-distributional classes with
respect to @,. Hence {I';, ®,} is a finite-state language.

Let I, = {a, b, ¢} and &, = {ab”caq'"}”mEN, where N is the set of

nonnegative integers. If ¢ is interpreted as the equality relation, each
string of ®, may be interpreted as an assertion, which is true if and only
if n = m. One can prove that {I",, ®,} is also a finite-state language [30].

Let ;= {ab”cab"}neN. This is the set of theorems. It is not a finite-

state language since, for m % n, the strings b™ and b* belong to different
T-distributional classes. Hence we have infinitely many 7-distributional
classes with respect to ®;. Another proof of this fact is given in [30].

Some characterizations of finite-state languages which involve the
manner of their generation are given by Chomsky [8, 9].

8. Some Applications to Natural Languages

We intend to discuss the various types of artificial languages studied
above, in connection with some situations in natural languages. In the
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following, I" will be the vocabulary of a natural language L, P(x) (for
x € T') will be the set of all flectional forms of x, and ® will be the set of
well-formed sentences in L. Sometimes, ® will be only a subset of
well-formed sentences (this fact will be mentioned explicitly).

It is necessary first to anticipate an idea which will be explored in
Chapter 111: In any language, for every word x, the set P'(x) is con-
sidered the set of all words belonging to the same part of speech as x.
According to this interpretation of the derivative partition P’, an ade-
quate language is a language where the following implication is true:
If two words x and y are in identical distribution, then x and y belong
to the same part of speech. We do not know a natural language which
is not adequate. Some examples which seem to contradict this asser-
tion are based on the traditional point of view concerning the parts of
speech. For instance, the Rumanian words un and acest are in identical
distribution, although, according to the traditional grammar, un is an
indefinite article, whereas acest is a demonstrative adjective.

If the property of adequacy is general enough to belong to every
natural language, the property of homogeneity is too restrictive to
be fulfilled by a natural language. But in every natural language there
are some homogeneous words, and we may obtain very large homo-
geneous portions of natural languages if we ignore some words and
restrict the set of marked strings.

We recall first that each amorphic word is a homogeneous word.
The so-called singularia tantum (nouns without plural form) and pluralia
tantum (nouns without singular form) are, in both English and French,
amorphic words, hence homogeneous words. Such examples are the
words water, iron, air, sun, south, physics, politics, news in English,
moeurs in French. Other French amorphic words are such nouns as
bras, noix, nez, souris, whose singular and plural forms coincide.

It is interesting to remark that almost all nonamorphic nouns are,
both in English and French, nonhomogeneous. The English word
book is not homogeneous, since sun € S(book), books € P(book),
and P(sun) N S(books) = 0. Passing to French, the only marked strings
considered will be those of the form noun+- qualifying adjective or
qualifying adjective +noun. The French word mouches is not homo-
geneous, since moeurs € S(mouches), mouche € P(mouches), and
P(moeurs) N S(mouche) = 0. It is easy to see that the existence of
singularia tantum and of pluralia tantum is precisely the reason for
nonhomogeneity of almost all English and French nouns. If we ignore
the singularia tantum and the pluralia tantum, almost all English nouns
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and all French nouns become homogeneous. Let us prove this assertion.

The English word book becomes a homogeneous word. Indeed, we
have P(book) = {book, books}, whereas every word belonging to
S(book) is a singular noun form. Thus, if y € S(book), the plural form
y' of y belongs to S(books). Hence, if z € P(book), then S(z) N P(y) # 0.

Under the same assumption of ignoring the singularia and pluralia
tantum, all French nouns are homogeneous. (We deal throughout with
printed French.) If x = maison, then P(maison) = {maison, maisons}
and S(maison) contains only feminine singular noun forms, without
homonymy of number. If y € P(maison) and z € S(maison), then
S(y) N P(z) contains either the word z (when y = x), or the plural form
of z (when y = maisons). Hence S(y) N P(z) # 0. Therefore, maison is
a homogeneous word. In the same way, we can prove that maisons,
garcon, and garcons are homogeneous words. The other types of
French nouns, such as souris, are amorphic, and hence homogeneous.

A quite different situation arises in Rumanian and in Latin, when the
only marked strings considered are those of the form noun -+ qualifying
adjective or qualifying adjective +noun. Here, the existence of non-
homogeneous nouns is due to the specific structure of grammatical gen-
der. Let us consider the Rumanian noun scaune. We have carti €
S(scaune), scaun € P(scaune), and P(carti) N S(scaun) = 0. Hence
the word scaune is not homogeneous. In the same way we may prove
that all plural forms of neuter or feminine nouns and all singular forms
of neuter or masculine nouns are nonhomogeneous words. This non-
homogeneity is due to the coincidence, in the singular, between mas-
culine and neuter noun forms, and in the plural, between feminine and
neuter noun forms. If we decompose every paradigm of a neuter noun
into two paradigms, one containing all singular forms, the other con-
taining all plural forms, the above proof of nonhomogeneity fails and
the neuter nouns, such as scaun and scaune, become homogeneous;
but the nonhomogeneity of several words persists, owing to the existence
of singularia and pluralia tantum. Indeed, we have aur € S(pom),
pomi € P(pom), and P(aur) 0V S(pomi)= 0, since aur is singulara
tantum. Therefore “pom” is nonhomogeneous. We also have icre €
S(carti), carte € P(carti), and P(icre) N S(carte) =0, since icre is
plurale tantum. Therefore carti is nonhomogeneous. A removal of
this nonhomogeneity is obtained if we decompose every noun para-
digm into two disjoint new paradigms, one singular, the other plural.

The only Rumanian nouns whose homogeneity is assured even with-
out decomposing the noun paradigms are such words as ochi, arici,
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invatatoare, nume, which present homonymy between singular and
plural forms.

It is scarcely probable that a natural language could be entirely homo-
geneous. There are degrees of nonhomogeneity and Revzin shows
[33, 34, pp. 88-89] that Russian is more nonhomogeneous than Polish
and Polish more than Czech. In general, the nonhomogeneity of nouns
in Slavic languages is very great [33]. The Russian nouns are non-
homogeneous, as is proved by the example P(stul) N S(lampy) = {stulja},
S(stul) N P(lampy) =0 [33]. This nonhomogeneity is because (Kulagina
[22], p. 214) the plural forms of Russian adjectives are the same for all
genders; this implies that all Russian plural noun forms of a determined
case belong to the same distributional class, whereas the Russian sin-
gular noun forms of a determined case are distributed in several families,
each family containing only noun forms of a determined gender. The .
nonhomogeneity of Czech nouns is proved by the example P(stul) N
S(tuzky) = {stoly}, P(tuzky} N S(stii)=0. Other examples in Czech
may be found in [18] and [31]. Extensive remarks concerning various
distinctions between the Slavic languages are made in [34], pp. 88-89
and in [33] using nonhomogeneous words.

It is easy to see that all homogeneous words we have considered
above are simple words. Indeed, the condition S(x) N P(x) = {x} is
always fulfilled when x is an English, French, or Rumanian noun and if
we ignore stylistic or parallel variants. But there are other paradigms,
for instance, verb paradigms, which do not always fulfill this condition.
In Rumanian, we have mergeai € S(mergi) N P(mergi). Hence most
verb forms are not simple. In [34], p. 87, is given the example of the
nonsimple German words sagt and sprach. Indeed, we have sagte €
P(sagt) N S(sagt) and spricht € S(sprach) N P(sprach). An interesting
example of nonsimplicity occurs in Estonian [33, 34, p. 86].

Although, as shown by Propositions 24 and 27, the property of com-
plete adequacy is effectively stronger than adequacy, it is hard to find
an adequate word in a natural language which is not completely adequate;
since the words of a natural language are adequate, it follows that a
natural language is completely adequate.

There are some situations which seem to contradict the complete
adequacy of natural languages. Such a situation concerns the relation
between nouns and pronouns. It is known that a noun x may be replaced
by a corresponding pronoun y. Hence it seems that x E-dominates ¥,
although the noun and the pronoun are different parts of speech. But in
fact, a noun may be replaced by a pronoun only in certain contexts,
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and thus a noun does not E-dominate a pronoun. For instance, let us
consider the well-formed Russian strings colovek rabotaet and harosii
colovek. The replacement of colovek by on in the first string yields a
well-formed string, but the same replacement in the second string does
not yield a well-formed one. Consider then the well-formed French strings
Jean mange and c’est pour Jean ce livre. The replacement of Jean by
il in the first string yields a well-formed string; the same replacement
in the second string does not yield a well-formed one.

A similar situation arises when a noun and a corresponding pro-
noun present different types of morphologic homonymy. For instance,
the Rumanian noun form numele is both a singular and a plural form,
whereas the corresponding pronouns (el and ele) are different. Thus, if
we consider the well-formed Rumanian strings numele este frumos
and numele sint frumoase, we remark that the replacement of numele
by el in the first string yields a well-formed Rumanian string. The same
replacement in the second string does not yield a well-formed one.
This situation will be studied from another point of view in the following
chapter.

Very significant from the standpoint of natural languages is Theorem 17,
which asserts, among other things, that a language is completely adequate
if and only if it is strongly adequate. It is not hard to see what constitutes
the strong adequacy of a natural language. We have already seen that the
elementary grammatical category G(x) generated by an initial word x
contains exactly those words y such that every grammatical value of x
is also a grammatical value of y. But these ‘“‘grammatical values” are
nothing more than the morphemes, in the sense of glossematic acceptance
of this term. (See, in this respect, the fundamental works of Hjelmslev
[15-17]). An elementary grammatical category is the projection, in the
plane of expression, of a certain saturated combination of morphemes
(such a combination is called sometimes a grammatem). It is natural to
expect that all words which are projections of the same type of mor-
phemic combination belong to the same part of speech.

It should be remarked, however, that contrary to appearances, one
can have some noncompletely adequate portions of a natural language.
Indeed, the complete adequacy of a word involves a complex net of
relations concerning the entire respective language. If we diminish this
complexity, the complete adequacy may be removed. Consider, for
instance, the following portion of French: I' = {je, chante, chantais,
parler, marcher, vite}, P(je)={je}, P(chante)= {chante, chantais},
P(parler)={parler}, P(marcher)={marcher}, P(vite)={vite}, &=
{je chante, je chantais, parler vite, marcher vite, marcher marcher}.
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It is easily seen that this language is Pd-isomorphic to the language
used in the proof of Proposition 27. Hence, by virtue of Propositions 27
and 55, it follows that this portion of French is not completely adequate.
A similar noncompletely adequate portion may be detected in Rumanian,
if we take TI'={eu, merg, mergeam, omul, repede, alearga}, P(x)=
{x} if x&T and x## merg, mergeam, P(merg)={merg, mergeamy},
® = {eu merg, eu mergeam, omul alearga, repede alearga, repede
repede}.

The adequacy may also be removed when we consider only a portion
of a natural language. Consider, for instance, the following portion of
Latin: TI'={vis, domus, res, rei}, P(vis)={vis}, P(domus)={domus},
P(res)={res, rei}, ®={vis domus, res domus, vis rei, res rei}. It is
easy to see that this language is Pd-isomorphic to the language used
in the proof of Proposition 1. Hence, by virtue of Propositions 1 and 55,
it follows that this portion of Latin contains no adequate word. A similar
nonadequate portion may be detected in Rumanian, by taking I'=
{casa, pamintului, omul, omului}, P(casa)={casa}, P(pamintului)=
{pamintului}, P(omul)= {omul, omului}, ® = {casa pamintului, omul
pamintului, casa omului, omul omului}. Since such small portions
permit us to isolate some phenomena and to study them in a pure
form, the types of formal languages studied in this chapter may be
of considerable utility.

Since, in view of Proposition 35, every completely adequate lan-
guage i1s well adequate, it follows that any natural language is well
adequate. But it is not hard to find small well adequate portions of
a natural language, which are not completely adequate. Consider for
instance the following fragment of Latin: I' = {rei, rerum, diei, civis},
P(rei) = {rei, rerum}, P(diei) = {diei}, P(civis) = {civis}, ® = {rei rerum,
rei diei, diei rei, diei diei, diei civis civis}. This fragment, which may be
useful in the study of the genitive case, is Pd-isomorphic to the language
used in the proof of Proposition 36. Hence, in view of Propositions
36 and 55, it is well adequate, but not completely adequate.

If, from the Latin fragment just considered, we retain the subfragment
T = {rei, rerum, diei}, P(rei)= {rei, rerum}, P(diei)= {diei}, ® = {rei
rerum, rei diei, diei diei}, we get a P®-isomorphic image of the language
used in the proof of Proposition 37. Hence, in view of Propositions
37 and 55, it follows that this Latin subfragment is adequate, but not
well adequate.

Very significant from the standpoint of a natural language are the
finite-state languages. Every finite fragment of a natural language is
a finite-state language. Indeed, we have a theorem.
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Theorem 25. If @ is a finite set of strings over I, then {I', ®} is a finite-
state language.

Proor. Since @ is finite, it follows that there are only finitely many
semimarked strings with respect to ®. Therefore, there are only finitely
many T-distributional classes with respect to ®, each of which con-
tains at least one marked or semimarked string. Since all parasitic
strings with respect to @ belong, obviously, to the same T-distributional
class, it follows that {I', ®} is a finite-state language.

Chomsky discussed ([6], Section 2) some possibilities of describing
a natural language with the aid of an infinite sequence of finite-state
grammars. Its description involves finite-state Markov processes. On
the other hand, Ceitin proposed a notion of convergence of a sequence
of models to a given object [5]. Let &, D,,..., D,,...be a sequence
of languages over I' and let ® be a language over I'. We shall say that
{®,}(1 = n <) converges to ® if the following two conditions are
fulfilled:

He=U o
Isn<w

(2) given a string x € &, there exists a positive integer n, such that,
if n>n,, then x € P,.

We shall say that @, is an n-approximation of .

Theorem 26. Given a language ® over I', there exists a sequence
{®,}(1 < n < ») of finite-state languages over I', which converges to ®.

ProOF. We may define ®, as the set of those strings of ® whose
length is not greater than n. It follows that ®,, is a finite language. Hence,
in view of Theorem 25 it is a finite-state language. Conditions (1) and (2)
are obviously fulfilled.

Starting with a finite fragment of a natural language, we easily get
infinite fragments which are finite-state languages. One method is
use of the so-called coordination rapports, formed by simple concate-
nation or by such words as and. The coordination rapports preserve
the finite-state language structure. The exact meaning of this assertion
is given by the next two theorems.

Proposition 58. If {I', &,} and {I', ®,} are finite-state languages, then
{T', &, d,} is a finite-state language.
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Proor. It follows immediately from the theorem of Kleene, Myhill,
and Rabin-Scott (Section 2; see also [21, 32]).

Theorem 27. Let {I', ®} be a finite-state language and let a be a fixed
word in I'. Denote by @, the smallest subset of T satisfying the following
properties:

(1) ®C P

2) ifx€ &, andy € &, thenxay € P,.

Then {T’, ®,} is a finite-state language.

ProOF. Itis easy to see that ®; contains exactly those strings having the
form x;axy...X;1aX;...,X,_1ax,, where n=1 and x;, € ® when 1=
i <n. It follows that ®, is a 7-distributional class with respect to ®;.
As far as the semimarked strings with respect to @, are concerned,
they form at most three 7T-distributional classes, as follows: The first
class contains all semimarked strings which have a as the first term
but not as last term. The second class contains all semimarked strings
which have a as last term but not as first term. The third class contains
all semimarked strings which have a as both first and last term. Since
all parasitic strings belong to the same T-distributional class, the number
of T-distributional classes with respect to @, is at most equal to 5, and
so @, is a finite-state language.

REMARKS. Theorem 27 was proved in another way, ([29], p. 203).
It is interesting to remark that even if @ is finite, but nonempty, the
corresponding set &, is always an infinite language.

Starting with a finite fragment ® of English and using the conjunction
a = and, the corresponding fragment ®; of English, obtained by Theorem
27, is a finite-state language. A similar result holds when we consider
a finite collection of conjunctions such as and and or in English, i and
ili in Russian, und and oder in German, et and ou in French. Indeed, it
is not difficult to prove the following generalization of Theorem 27.

Theorem 27’. Let {I', ®} be a finite-state language and let a,, a,, . . . ,a;
be p distinct fixed words in T'. Denote by @, the smallest subset of T
satisfying the following properties:

(D) PC P

(2) if x € ®, and y € ®,, then xa,y € &, xa,y € ¥y,..., xa,y € D,

Then {T", ®,} is a finite-state language.

Other syntactic constructions, such as conditional subordination,
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do not preserve the finite-state language structure. The exact meaning
of this assertion is given by Theorem 28.

Theorem 28. Let {I', ®} be a finite-state language and let a and b be
two distinct fixed words in I'. Denote by ®, the smallest subset of
T satisfying the following properties:

(1) & C 5

(2) if x€ ®, and y € &,, then axby € ®,. Then {I', ®,} is not a
finite-state language.
ProoF. It is easy to see that &, contains all strings which have the
form a"x(by)", where x and y are arbitrary elements in ® and »n is any
nonnegative integer. Let us admit that {T', ®,} is a finite-state lan-
guage. Then there exists an infinite sequence P, <P, <. -- <P < -
of positive integers, such that the strings (by)™, (by)™, ..., (by)’s,...
belong to the same T-distributional class with respect to ®,. It follows
that all strings of the form a”x(by)’s(s = 1, 2,...) belong to ®,; this is
a contradiction and so Theorem 28 is proved.

REMARKS. Theorem 28 was given in [29], pp. 204-205. It must be
remarked that &, is always infinite, even if ® is a finite (nonempty)
language. If @ is a finite fragment of English and if @ = if and b = then,
then @, is the infinite fragment of English obtained from ® by conditional
subordination.

Other related questions are discussed in {1] and [29].

Of great interest from the standpoint of a natural language is the fact
that all Boolean operations preserve the finite-state language structure.
Indeed, we have a further theorem.

Theorem 29. The class 7 of the finite-state languages over a fixed
vocabulary I' is a Boolean algebra.
Proor. Let ® C 7. It is obvious that the T-distributional classes
with respect to ® are identical to the T-distributional classes with
respect to T—®. This implies that for any finite-state language ®,
the complementary language T —® is also a finite-state language.
Consider now two finite-state languages @, and ®,. We shall show
that @, N &, is a finite-state language. Denote by C,, C,,...,C,, the
T-distributional classes with respect to ®, and by C{, Cj,..., C}, the
T-distributional classes with respect to ®,. Let x € C; N C) and
YyEC,NC;(1=<i<n, |1=<j=<n,). Given two strings u and v such that
uxv € ®, N ®,, we have uyv € ®d; (since x and y belong to C;) and
uyv € ®, (since x and y belong to C}). Hence uyv € &, N &,. Con-
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versely, it is easily seen that uyv € &, N &, implies uxv € &, N P,.
It follows that each intersection set C; N C; is contained in a T-dis-
tributional class with respect to ®, N ®,. Since the number of these
intersection sets is at most equal to r,n, (and thus finite), we see that
@, N &, is a finite-state language.

Since &, — 0, =, N (T—Ddy)and P, U &,=T —[(T—d,) N (T —D,)],
it follows that 7 is a Boolean algebra.

ReMARk. Theorem 29 was proved in another way [32].

Passing to various types of linguistic isomorphism, we can remark
that we have already used the P®d-isomorphism in the illustration of
complete or noncomplete adequate languages and of well or non-
well adequate languages. The importance of various types of linguis-
tic isomorphism is given by such results as Proposition 44, Theorem
18, Propositions 45, 48, 55, and 57, which permit us to detect the
type of a language when we know its type of isomorphic image. For in-
stance, most English noun paradigms are P-isomorphic to the correspond-
ing French noun paradigms; if T',={book, books, teacher, teachers},
T, = {livre, livres, professeur, professeurs}, P(book)= {book, books},
P.,(teachers) = {teacher, teachers}, P,(livre) = {livre, livres}, P,(profes-
seury={professeur, professeurs}, and f: ', =T, is such that for x € T',,
f(x) is the French translation of x, then P,(f(x)) = f(P,(x))foreachx € T,.

Other illustrations of the various types of linguistic isomorphism
will be discussed in the next two chapters.

9. Bibliographic Remarks

The traditional linguistic typology, discussed in many papers (see,
for instance, [2, 3, 12, 13, 24, 35] and, especially, [36]) may be cor-
related with the above considerations, although they are based on the
morphemic structure of words. For instance, homogeneity and strong
adequacy are, in some ways, approximations of the so-called agglu-
tinative languages (such as Hungarian) whereas the amorphic languages
are approximations of the corresponding amorphic languages in the
traditional linguistic typology.

The notions of adequate language and that of homogeneous language
were introduced by Uspenskii [37]. Theorems 1, 4, 8, and 10 are given,
without proof, in [37]. The notion of simple language was introduced
by Kulagina [22]. Corollary 3 is a generalization of a theorem of [22],
where the same result is given for simple languages. Theorems 1, 4, 8 and
10 are proved, in another way, by Revzin [34]. Some of the results con-
tained in this chapter were previously proved {26-28]. For French illus-



References 79

trations of various questions discussed above the work of Braffort may be
used [4]; for Hungarian iflustrations, those of Kiefer [19, 20]. Finite-state
languages are the first step in the so-called Chomsky hierarchy; see,

in

this respect, the very clear synthetic expositions of Gross {14] and

Kurki-Suonio [23]. Some notions and results of the first two chapters
are discussed, using the algebra of binary relations, by Lenskoi [25].
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Chapter 1l

Parts of Speech and Syntactic Types

1. Introduction

The notion of part of speech is fundamental to linguistics and many
authors have tried to give a rigorous description of it. Such great lin-
guists as Brondal, Hjelmslev [22], Kurylowicz [28], and Harris [17]
have explored this problem and the contemporary models of the part
of speech use essentially the results of their investigations. Applied
linguists are very interested in an adequate decomposition of the vocab-
ulary into parts of speech (see, for instance, the paper of Ruvinskii [43]).
The difficulties in this area arise from the very complex character of
this notion, which is a mixture of semantic, morphologic, and syntactic
factors. The proportion in which each of these factors occurs in the
structure of the parts of speech depends on the language considered.
For instance, the parts of speech in English are dominated by syntactic
factors, whereas in Slavic languages, in Latin, and in Rumanian, the
morphologic (paradigmatic) aspects of the parts of speech are essential.
This is perhaps one of the reasons for the great variety of logical models
proposed for the notion of parts of speech. We shall present in this
chapter two points of view concerning the logical description of the
parts of speech. The first point of view, having its starting point in the
preceding chapters, has been developed by Kulagina [27], Uspenskii
[46], Revzin [40, 41], and Marcus [33] and concerns especially flec-
tional languages. The second has its origin in mathematical logic, in
the work of Lesniewski [32] and Ajdukiewicz [1]; it has been developed
by Bar-Hillel {3], Lambek [29-31], Bar-Hillel et al. [6], and Chomsky
[11] and concerns especially the syntactic aspects of the parts of speech.

2. Parts of Speech as Cells of the Derivative Partition P’

Let us consider a language {I', P, ®} and let us interpret I' as the
vocabulary of a natural language L, P(x) (for x € I') as the set of all
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inflected forms of x, and & as the set of all well-formed sentences in
L. Such an interpretation does not correspond to the real situation in
a natural language, since the condition that P be a partition of I" is not
fulfilled. For instance, the English word excuse belongs to P(excuses),
but also to P(excused). We may avoid this difficulty by considering the
union P(excuse) U P(excused) as a single cell of P, but such an interpre-
tation ignores the linguistic nature of the word excuse which is both
a noun and a verb. In other languages, such as Rumanian, Russian, or
Latin, the existence of two distinct sets P(x;) and P(x,) with a nonvoid
intersection is less frequent than in English. We shall ignore, in the
following, this possibility; two homonymous forms such as free (ad-
jective) and free (verb) will be considered distinct and their corresponding
P-cells disjoint.

It should be remarked that the partial homonymy of two words is
possible even if these words belong to the same part of speech. Con-
sider, for instance, the Rumanian words cap (chief) with the plural
form capi, cap (head) with the plural form capete, and cap (cape) with
the plural form capuri. Each of these words is a noun and we have
three mutually distinct P-cells: P(capi), P(capete), P(capuri) such
that cap € P(capi) N P(capete) N P(capuri). But such a situation
will remain outside the model presented further on.

With the interpretation considered above, the cells of the derivative
partition P’ will be adopted as a model of first approximation of the
parts of speech in L. The adequacy of this model depends upon the
nature of L; in this respect, we shall consider the linguistic typology
investigated in the preceding chapter. In any case, it must be remarked
that in such a model two distinct parts of speech are always disjoint.
Although this condition is not fulfilled in a natural language, we may
find large enough portions where the absence of homonymy makes
it possible that two distinct parts of speech are always disjoint.

We begin by discussing a short fragment of French, which will enable
us to explain the model adopted.

Let us put I' = P(un) U P(professeur) U P(maison) U P(grand) U
P(petit) U P(vieux) U P(écrit) U P(arrive) [where P(un) = {un, une, le,
la, les, des}, P(professeur) = {professeur, professeurs}, P(maison)=
{maison, maisons}, P(grand) = {grand, grande, grands, grandes},
P(petit) = {petit, petits, petite, petites}, P(vieux) = {vieux, vieille,
vieilles}, P(écrit)= {écrit, écrivent, écrivait, éCrivaient, écrira, écriront},
P(arrive) = {arrive, arrivent, arrivait, arrivaient, arrivera, arriveront}]
and ®, = {un professeur arrive, le professeur arrive, un professeur
arrivait, le professeur arrivait, un professeur arrivera, le professeur
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arrivera, une maison arrive, la maison arrive, une maison arrivait, la
maison arrivait, une maison arrivera, la maison arrivera, un grand
professeur arrive, un petit professeur arrive, un vieux professeur arrive,
le grand professeur arrive, le petit professeur arrive, le vieux professeur
arrive, un grand professeur arrivait, un petit professeur arrivait, un
vieux professeur arrivait, le grand professeur arrivait, le petit profes-
seur arrivait, le vieux professeur arrivait, un grand professeur arrivera,
un petit professeur arrivera, un vieux professeur arrivera, le grand
professeur arrivera, le petit professeur arrivera, le vieux professeur
arrivera, une grande maison arrive, une petite maison arrive, une
vieille maison arrive, la grande maison arrive, la petite maison arrive,
la vieille maison arrive, une grande maison arrivait, une petite maison
arrivait, une vieille maison arrivait, la grande maison arrivait, la petite
maison arrivait, la vieille maison arrivait, une grande maison arrivera,
une petite maison arrivera, une vieille maison arrivera, la grande maison
arrivera, la petite maison arrivera, la vieille maison arrivera}.

Let us denote by &, the set of strings obtained from the strings of
@, by replacing the various forms of the verb arrive by the correspond-
ing forms of the verb écrit. Let us denote by &, and by ®, the sets
of strings obtained from the strings of ®; and ®, respectively, by re-
placing every form of singular by the corresponding form of plural
(un and une by des, le and la by les, professeur by professeurs, grand
by grands, arrive by arrivent, etc.) Finally, put =&, U &, U d; U D,.
It is easy to see that @ contains only such strings as are grammatically
correct French sentences over the vocabulary I'. A sentence such as
une maison arrive, which seems to be incorrect, is doubtful from a
semantic standpoint, but perfectly correct from a grammatical one.
Conversely, we may have a grammatically incorrect sentence, which
is semantically clear. The Rumanian sentence oamenii este destepti
fulfills these conditions.

3. Grammaticality

In fact, the problem of grammaticality is more complex and many
authors have tried to reduce this notion to a simpler one (see, for in-
stance, Revzin [42]). Other authors, such as Chomsky [8], have intro-
duced the concept of degree of grammaticalness [10, 11]. Instead of
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partitioning the free semigroup 7 generated by I into the two subsets
@ (well-formed sentences) and T—® (nongrammatical strings), one
defines a set ®* of perfectly well-formed sentences and all strings in
T are partially ordered in terms of degree of grammaticalness. Strings
not in ®* can still often be understood, in terms of the structural des-
criptions assigned to these strings. A string x of T—®* can be under-
stood by imposing on it an interpretation, guided by its analogies to
sentences of ®*; x is called a deviant sentence, and the measure of
this deviation from grammatical regularities gives the degree of gram-
maticalness of x. A detailed discussion of these and other related
questions may be found in some papers by Ziff [49, 50], Katz [26],
Jakobson [24], Hill [19], and Putnam [39]. But the most rigorous attempt
to give a precise description of the various degrees of grammaticalness
has been made by Miller and Chomsky ([37], pp. 443-449). We shall
not broach here the details of these points of view, since the notion
of grammaticalness will not be used in this chapter. But it should be
remarked that some authors do not agree with the above interpretation
of the marked strings. For instance, Gross ([16], p. 35) considers the
French sentence /e loup mange le probléme is not grammatically correct,
since one of the rules of the French grammar says that an abstract word
cannot be a direct object of a verb such as mange. Hence, for Gross,
the French sentences une maison arrive and une maison écrit are
probably grammatically noncorrect sentences, in-contrast to our above
assumption.

4. Linguistic Explanation of the Model of Part of Speech

Let us now return to the fragment of French considered. It is easy
to see that for each a € T" the P-cell P(a) contains only flectional forms
of a. For some words a, P(a) does not contain all flectional forms of
a, but only those which occur in the sentences of ®.

There is a general simple property fulfilled in every natural language:
If two words a and b belong to the same paradigm [that is: if b € P(a)],
they belong to the same part of speech. According to this rule, a rigorous
definition of the parts of speech should regard every part of speech as
the union of some P-cells. The problem is now the following: Given
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two words a and b, under which conditions may we consider that P(a)
and P(b) are contained in the same part of speech? The answer given
by Kulagina [27] says: if and only if P(a) and P(b) are P-equivalent,
that is, if and only if b € P'(a). (See, for these notions and notations,
Section 1.5.).

Let us verify, on the above fragment of French, the legitimacy of
this convention. We shall show that maison € P'(professeur), petit
€ P’(grand), vieux € P’(grand), and écrit € P'(arrive).

Let us put £#,,=P(un), #,,= P(un) P(grand), P,s= P(un) P(petit),
Py=P(un) P(vieux), Py, = P(arrive), and P, = P(écrir). It is easy to
see that every marked P-structure containing the P-cell P(professeur)
has one of the forms £ ,; P(professeur) %y;, where | <j<s4and1<j<?2.
We shall show that the P-structures obtained from #,; P(maison) P,;
(1=<i=4, 1=<j=<2) are all marked. We have: une € P(un), maison €
P(maison), arrive € P(arrive), and une maison arrive is a marked
string. Hence #,, P(maison) %,, is marked; grande € P(grand) and
une grande maison arrive is a marked string. Thus #,, P(maison) %#,,
is marked; petite € P(petit) and une petite maison arrive is a marked
string. Hence %5 P(maison) %,, is marked; vieille € P(vieux) and
une vieille maison arrive is a marked string. Thus %,,P(maison) %,
is marked; since all the above strings remain marked when arrive is
replaced by écrit, it follows that #,;P(maison)%,, is a marked P-structure
for every i such that 1 < i< 4. Since all marked P-structures containing
P(maison) are of the form P P(maison) Py (1 si<4, 1sj<2), it
follows that P(professeur) and P(maison) are P-equivalent. It follows
immediately that P'(professeur)= P(professeur) U P(maison).

Let us put #3, = P(professeur) P(arrive), P, = P(professeur) P(écrit),
Pss = P(maison) P(arrive), %3, = P(maison) P(écrit). It is easy to
see that every marked P-structure containing the P-cell P(grand) has
one of the forms %,, P(grand) P;; (1 <i=<4). Since #,, P(petit) Ps;
is a marked P-structure for every i such that 1 <i =4 and since every
marked P-structure containing P(petit) has one of these forms, it follows
that P(petit) and P(grand) are P-equivalent. Similarly, we may see that
P(vieux) and P(grand) are P-equivalent. It follows immediately that
P'(grand) = P(grand) U P(petit) U P(vieux).

Let us put 2, = P(un)P(grand)P(professeur), %,, = P(un)P(petit)
P(professeur), P,;= P(un)P(vieux)P(professeur), P,,=P(un)P(grand)
P(maison), = P(un)P(petit)P(maison), ;= P(un)P(vieux)P(maison).
It is easy to see that every marked P-structure containing the P-cell
P(arrive) has one of the forms Z,P(arrive) (1 <i =< 6). Since Z,;P(écrit)
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is a marked P-structure for 1 </ < 6 and since every marked P-structure
containing P(écrit) has one of these forms, it follows that P(arrive) and
P(écrit) are P-equivalent. It is easy to see that P'(arrive) = P(arrive) U
P(écrit).

P'(un) [= P(un)] is the part of speech called article; P'(grand) is the
part of speech called adjective; P’'(professeur) is the part of speech
called noun; P’(arrive) is the part of speech called verb.

It is now clear that the parts of speech have no absolute character;
they depend upon the set @ of marked strings (that is, they depend
upon the syntax of the language) and upon the partition P(that is, upon
the morphology of the language). The parts of speech of a natural lan-
guage are a function of P and ®, since we never take into account all
possible sentences and paradigms of a natural language. In every con-
crete problem we consider a fragment complex enough to give a good
approximation of the natural language and simple enough to permit
a systematic and detailed investigation.

Let us consider another example, concerning Rumanian. If we in-
tend to define only two parts of speech, the noun and the adjective,
we may use the following language {I', P, ®}. I' = P(casa) U P(pom)
U P(film) U P(frumos) U P(mare) U P(nou), where P(casa)= {casa,
casei, casa, casele, caselor, case}, P(pom) = {pom, pomului, pomul,
pomi, pomilor, pomii},  P(film)= {film, filme, filmului, filmele, filmelor,
Silmul}, P(frumos)= {frumos, frumoasa, frumosi, frumoase}, P(mare)=
{mare, mari}, P(nou)= {nou, noua, noi}. The set ® will contain, by
definition, all well-formed Rumanian strings of length equal to 2, on
the vocabulary I'. [Any string of the form aa (a € T') will be considered
unmarked.]

We may show that P'(casa)= P(casa) U P(pom) U P(film) and
P'(frumos) = P(frumos) U P(mare) U P(nou) [P'(casa) will define the
noun, whereas P’(frumos) will define the adjective]. Let us first show
that P(casa) and P(pom) are P-equivalent. The P-structure P(casd)
P(frumos) is marked, since casa frumoasa is a well-formed string.
The P-structure P(pom)P(casa) is marked, since pomul casei is a well-
formed string. But every marked P-structure containing the P-cell
P(casa) has one of the forms P(x) P(casa) and P(casa) P(x), where
x € P(frumos) U P(mare) U P(nou) U P(casa) U P(pom) U P(film). On
the other hand, each of the P-structures P(x)P(pom) and P(pom)P(x)
is marked. Conversely, each marked P-structure containing the P-cell
P(pom) has one of the forms P(x)P(pom), P(pom)P(x); therefore, P(casa)
and P(pom) are P-equivalent.
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In a similar manner one can prove that P(casa) and P(film) are P-
equivalent; P(frumos), P(mare), and P(nou) are also P-equivalent.

Let us show that P(casa) and P(frumos) are not P-equivalent. Indeed,
if we consider the marked P-structure P(casa)P(frumos) and if we
replace P(casa) by P(frumos), we obtain the unmarked P-structure
P(frumos)P(frumos).

It should be remarked that P'(casa) contains nouns of different genders,
whereas P’'(frumos) contains adjectives of different types from the
standpoint of their morphologic homonymy.

To make the structure of the parts of speech clearer and more flexi-
ble, we shall sometimes consider the part of speech of a word a not
the union of all P-cells P-equivalent to P(a), but the set of all P-cells
P-equivalent to P(a). We shall use these two acceptations alternatively,
without specification.

We may now explain the profound reason for the above definition
of parts of speech. Let us consider a language L= {I', P, ®}. To this
language we may associate another one, namely, the language P(L) =
{I'y, Py, ®,}, where T'; is the set of all P-cells in L, P, is the partition
of I'; into P-equivalence classes (with respect to L), and @, is the set
of all marked P-structures (with respect to L). The language P(L) will
be called the P-abstraction of L. This level of abstraction is precisely
the level at which the logical structure of the parts of speech may be
understood, since they are nothing more than the distributional classes
in P(L). Indeed, the P’-cells of L are precisely the distributional classes
of P(L). In this manner, all results concerning distributional classes
may be used in the investigation of the parts of speech.

Given a language L = {I', P, ®}, we may consider the P-abstraction
of its P-abstraction. If P(L) = {I'y, P,, ®,}, then P(P(L)) = {T'y, P,, ®,},
where T, is the set of P,-cells [with respect to P(L)], P, is the partition
of T, into P;-equivalence classes [with respect to P(L)], and ®, is the
set of marked P;-structures [with respect to P(L)]. It is easy to see that
every P;-cell in P(L) is a P’-cell in L and, conversely, every P’-cell in
L is a Py-cell in P(L). Further, every P,-cell in P(P(L)) is a P;-cell in
P(L). Hence it is a P"-cell in L. Conversely, every P"-cell in L is a P’;-cell
in P(L). Hence it is a P,-cell in P(P(L)). In view of Corollary 2, Chapter I,
we have, in L, P' = P”. Therefore two distinct P,-cells are never equivalent
in P(L). Since I', is precisely the set of P’-equivalence classes in L, it fol-
lows that P, is the unit partition of I',. The paradigmatic structure of
P(P(L)) is thus trivial. It may be ignored, and we get P(P(L)) = {I'5, ®,},
that is P(P(L)) is a language whose words are the parts of speech in L,
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whereas the marked strings are those sequences of parts of speech which
are possible in L.

In some sense, the P-abstraction of the P-abstraction of a language is
its maximum degree of abstraction. Indeed, if we intend to form the lan-
guage P(P(P(L))) = {I'3, P;, ®;}, we find that I'; =T, (since P, is the
unit partition of I',), ®;= ®,, and P, = P,; thus P(P(P(L))) = P(P(L)).

Given a part of speech £, it is interesting to find a class € of contexts
which fulfills the following conditions: (1) for each word a € & there
is a context (x, y) € €, such that xay € ®; (2) given a word b which
is not in &, there is no context (i, v) € € such that ubv € ®. The class
% is said to be a diagnostic class of 2. This notion owes its origin to
Harris [17].

It stands to reason that the most interesting diagnostic classes of
Z are those containing the minimum number of contexts. If there is
a diagnostic class € of & containing a single context (x, y), then (x, y)
is said to be a diagnostic context of . The existence of diagnostic
contexts is possible particularly in a language with a reduced flection,
such as English. In other languages, with more complex morphology,
most diagnostic classes contain several contexts.

Determining the diagnostic classes is a very important task of struc-
tural linguistics, since the diagnostic classes of & permit us to isolate
# and to study it intrinsically.

5. Parts of Speech in Adequate and in Homogeneous Languages

In the above discussions we have made no assumption as to the
nature of the language under consideration. But there is a general hy-
pothesis, due to Uspenskii {46], which says that each natural language
is adequate. This is not true for the artificial languages, as shown by
Theorem 1, Chapter I1. Itis important to determine what new informations
we may get concerning the parts of speech, if the language considered
is adequate.

Let us first recall Theorem 4, Chapter I1. If {I', P, ®} is adequate, then
R’ = P’. This theorem yields a new way of determining the parts of speech.
Given a word a € I', its part of speech is identical to R'(a). A third
possibility of determining the parts of speech in an adequate language
is given by Theorem 6, Chapter I1. If, in such a language, the classes K(x)
define a partition of I', then K' = P'. Hence the part of speech of a word a
is identical to K'(q). In this connection, it is interesting to establish



5. Parts of Speech in Languages 89

whether the assumption that the classes K(x) form a partition is not
redundant. The answer is negative, as it is shown by Proposition 1.

Proposition 1. There exists an adequate language whose classes do
not form a partition of I'.

Proor. Let us consider the language L used in the proof of Theorem
9, Chapter I1. In view of this theorem, L is adequate. On the other hand,
using the notation introduced in Section 11, Chapter I, we have M(a)=
S(@) U Sh)={a,b,d}, N(a)=P(a)= {a,b}, M®b)=S(a) U Sh)=
{a,b,d}, N(b)=P(b) U P(d) = {a, b, ¢, d}. Hence K(a)= {a, b,d} and
K(b) = {a, b, ¢, d} and the classes do not form a partition of I. -

It is known (see Theorem 8, Chapter II) that each homogeneous
language is adequate. But Corollary 3, Chapter 11, asserts that in every
homogeneous language the classes form a partition of I'. Does this
last property characterize the homogeneous languages among the
adequate languages? The answer is negative, as shown by the following
result of Zelinka [48].

Theorem 1. There exists an adequate nonhomogeneous language,
whose classes form a partition of T

Proor. Let ['={aq, by, by, c1, s, d}, Pla)={a, by, ¢1}, P(by)=
{bs, s}, P(d)={d}, ® = {aa, bic,, bics, bycy, bycy, d}. It is easy to
see that S(a) = {a}, S(b) = {b., bs}, S(c)) = {c1, ¢z}, S(d)= {d}. We
have the following marked P-structures: P(a)P(b,), P(b;)P(a), P(a)P(a),
P(b,)P(b,), and P(d). Since P(a)= P(b,) = P(c,) and P(b,) = P(c,), it
follows that, for any x € I' such that x # d, P(x) is P-equivalent to
P(a), that is, P'(a) = P'(b,) = P'(bs) = P'(c,) = P'(c;) = {a, by, b3, ¢, 2}
and P'(d) = {d}. We have, for every x € I', S(x) C P'(x), and the con-
sidered language is adequate. But it is not homogeneous, since
P(a) N S(b,) = {b,} # 0, whereas P(b,) N S(a) = 0.

In view of Theorem 5, Chapter 1, we have,foranyx € I, K(x) = M(x) U
N(x). By means of this formula, we get K(a) = K(b,) =K(b,) = K(c,) =
K(c;)= {a, by, by, c1, ¢5,} and K(d)= {d}. Hence the classes form
a partition of T.

Theorem 1 and Theorem 6, Chapter 11, show that there exist adequate
nonhomogeneous languages whose parts of speech may be obtained in
three ways: as P’-cells, as R'-cells, and as K’-cells. This fact is very
important, since many fragments of natural languages are adequate
but not homogeneous (see, in this respect, Section 8, Chapter II).
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Thus, let us consider the fragment of the Russian vocabulary consisting
of all Russian nouns and adjectives. For every noun a, P(a) will be the
set of forms obtained from a by changing the case and/or the number;
for every adjective b, P(b) will be the set of forms obtained from b by
changing the gender, the number and/or the case. If I is the set of all
noun forms and adjective forms and @ is the set of all noun syntagms
of the form adjective + noun, the language {I', P, ®} is adequate, but
not homogeneous. (See Kulagina [27], p. 214.)
Concerning the partition into classes, we have a Theorem.

Theorem 2. There exists a nonadequate language whose classes form
a partition of I'.

Proor. Let TI'={a, by, by, ¢y, 2},  P@)={a}, P(by)={by, bs},
P(c))={ci, 2}, P ={bsa,b:b,,bybs,ac,,bic,,c1a,¢1¢5,abs,c1b:}.  We
have a € S(b,). On the other hand, by comparing the marked P-structure
P(b,)P(a) and the unmarked P-structure P(a)P(a), we deduce that P(a) and
P(b,) are not P-equivalent. Therefore, the language considered is not
adequate. (See Revzin, {41], p. 175.) By means of the formula K(x) =
M(x) U N(x) (for every x € I'; see Theorem 5, Chapter I) we get M(a) =
{a, by}, N(a)={a, by, by}, M(b) = {a, by, bs}, N(by)={a, by, b.},
M(by)={a, by, by}, N(by)={by, by}, Ml(c;)=N(c;)=M(cs)=N(c.)=
{c1, c2}.  Hence K(a)=K(b))=K(b;)={a, by, by}, K(c))=K(cy)=
{c;, ¢} and Theorem 2 is completely proved.

The most advantageous conditions concerning the analysis of the parts
of speech are offered by the homogeneous languages. Indeed, in view of
Theorem 10, Chapter 11, in every homogeneous language the classes co-
incide with the mixed cells, that is K(x) = R(x) for any x € I'. Since
we have (in any adequate language) R'(x) = P'(x) for each x €T, it
follows that, in homogeneous language, K'(x) = R'(x) = P'(x) for any
x € T. On the other hand, the classes of a homogeneous language may
be easily determined by means of Corollary 4, Chapter 11, which asserts
that, in such languages, K(x)= M(x) = N(x) forany x € T’.

To illustrate the above situation, let us consider the fragment of
French vocabulary consisting of all French nouns and adjectives (see
Kulagina [27], p. 213, Braffort [7], pp. 69-71, and Revzin [40]). We
shall ignore any homonymic form such as cas, mince, etc. For any
noun a, P(a) will be formed by two elements: the singular and the plural
forms. For any adjective b, P(b) will be formed by four elements, namely,
the forms of singular masculine, singular feminine, plural masculine, and
plural feminine. The set ® will be formed by all well-formed noun
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syntagms of the type adjective+ noun or noun- adjective. We have
four families of nouns (S, = the family of masculine singular noun
forms, S, = the family of masculine plural noun forms, S; = the family
of feminine singular noun forms, S, = the family of feminine plural
noun forms) and four families of adjectives (S; = the family of mas-
culine singular adjective forms, S¢= the family of masculine plural
adjective forms, S; = the family of feminine singular adjective forms,
Sg¢ = the family of feminine plural adjective forms.

If a is a noun and b is an adjective, then P(a) N S(b) = P(b) N S(a) = 0.
If a and b are either both nouns or both adjectives, each of the sets
P(a) N S(b) and P(b) N S(a) contains exactly one element; if a and b
are both adjectives, then P(a) N S(b) contains the flectional form of
a which has the same gender and the same number as b [and similarly
for P(b) N S(a)]. If a and b are both nouns, we distinguish two pos-
sibilities. If a and b are of the same gender, then P(a) N S(b) contains
the flectional form of a which has the same number as b [and similarly
for P(b) N S(a)]. If a and b are of different gender, then P(a) N S(b)=
P(b) N S(a) = 0. It follows that in any case the sets P(a) N S(b) and
P(b) N S(a) are either both void or both nonvoid. Hence the considered
fragment of French is homogeneous. In view of Corollary 4, Chapter II,
we have, for any word a,

K(a)= U {S(b); b € P(a)}.

If a is a noun, then K(a) will contain all noun forms of the same gender
as a since, in this case, P(a) contains only nouns of the same gender as
a. We thus get two classes of nouns: one formed by masculine nouns,
the other by feminine nouns. If a is an adjective, then K(a) will contain
all adjective forms, since, in this case, P(a) contains adjectives of both
genders and both numbers.

In view of Theorem 10, Chapter 11, we may get the parts of speech by
taking the derivative partition K’. If a and b are two nouns of different
genders and if ¢ is an adjective, the K-structures K(a)K(c) and K(b)K(c)
are both marked, whereas the K-structures K(c)K(a) and K(c)K(b) are
also both marked {[since K(c) contains adjectives of both genders]. It
follows that K(a) and K(b) are K-equivalent. Therefore K'(a) D K(a) U
K(b), that is, K'(a) contains all nouns. If a is a noun and c is an adjective,
then K(a) contains all nouns. If ¢ is a noun and ¢ is an adjective, then
K(a) and K(c¢) are not K-equivalent, since the K-structure K(a)K(c)
is marked, whereas the K-structure K(c)K(c) is not. It follows that
K'(a) = K(a) U K(b). For any adjective ¢, K'(c) = K(c) = the set of
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all adjectives. Therefore, the parts of speech obtained by means of
the above model coincide with the traditional ones. But for other choices
of I' and ® some differences may arise, especially concerning pronouns,
articles, numerals, adverbs, and some types of adjectives. For instance,
the Rumanian words un and acest belong to the same P’-cell for most
choices of ®, although, in the customary Rumanian grammars, un is
considered an article, whereas acest is considered a demonstrative
adjective. Another example: If the expression il est trés mort is not
considered a well-formed French sentence, mort does not belong to
the same P’-cell as beau.

Given two languages L, = {I';, P,, ®,} and L, = {I';, P,, ®,}, we shall
say that they are P’-isomorphic, if there is a 1:1 mapping ¢ of I'; onto
Iy, such that y € Pj(x) in L, if and only if ¢(y) € Py(¢(x)) in L,. Since
the parts of speech of a language are precisely its P’-cells, it follows
that the P’-isomorphism preserves the parts of speech.

In Section 6, Chapter II, were defined various types of linguistic
isomorphism. It is immediately apparent that two Pd-isomorphic
languages, two PP’'S-isomorphic languages, and two P’S-isomorphic
languages are P’-isomorphic, but the converse is not true. It may be
also seen that the P’-isomorphism is not comparable to the PS-
isomorphism.

6. Syntactic Types

The starting point in the problem of syntactic types is described
clearly by Lambek ([31], p. 166), using the following analogy: In
classical physics it was possible to decide whether an equation was
“grammatically correct” by comparing the dimensions of the two
sides of the equation. One may ask whether it is similarly possible
to assign grammatical types to the words of a natural language in such
a way that the grammatical correctness of a sentence can be determined
by computation with these types. Such possibilities already exist in
certain artificial languages (for example, propositional calculus), where
there are rules which distinguish between well-formed and non well-
formed formulas.

Let us first consider one simple example (see Bar-Hillel [3] or [5],
p. 62). The English string poor John sleeps would be analyzed, ac-
cording to a customary method, in the following way: poor is an adjec-
tive (4), John is a noun (N), sleep is a verb (V), -s is a morpheme added
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to a verb to form a verbal phrase (Vv). Since poor John is a noun phrase
and sleeps is a verb, we may say that 4N (the juxtaposition means
concatenation) gives a N and V(Vv) gives a V. According to the notation
to be proposed and explained in the following, John will belong to the
type n, poor to n / n, sleeps to n\ s, where n is to be interpreted,
approximately, as the category of namelike strings, n ~ n as the cate-
gory of those strings that with an n to their right form a string belonging
to the same category n, and n \ s as the category of those strings that
with an n to their left form a string belonging to the category of sen-
tences. That the string poor John sleeps is a sentence can now be
tested mechanically, without recourse to any syntactic statements,
by using something like ordinary multiplication of fractions on the
index sequence corresponding to the given string (n ~ n)n(n \ s). In
the subsequence (n / n)n we may simplify to the right and obtain n;
the whole sequence becomes n(n \ s); we may simplify to the left
and we get the type s, that is, poor John sleeps is a well-formed English
sentence (sometimes we shall say sentence instead of well-formed
sentence).

Let us now proceed to sketch the general method following Lambek
[29]. We consider a vocabulary V. We begin by assigning certain primi-
tive types to some words and some strings on V. From these primi-
tive types compound types are built up by three formal operations:
multiplication, left division, and right division, denoted by simple
juxtaposition, by \ and by ., respectively. We write X — x to indicate
that the string X has type x. The defined compound types have the
following significance: If X—x and Y —y, then XY —>xy; if XY—>z2
and Y—y, then X —z / y (read 7z over y); if XY — z and X — x, then
Y — x \ z (read x under 7). In other words, an expression of type x ./ y,
when followed by an expression of type y, produces an expression
of type x, as does an expression of type y \\ x when preceded by an
expression of type y.

If any expression of type x is also of type y, we shall write x —y.
The definition of left division and of right division implies that

x/y)y—=x and ¥y \ x)—>x. ¢))

Among the primitive types there always exists the type s ascribed
to all sentences (that is, marked strings) and only to sentences. Now,
if we could say whether a given string « is a marked one, then we could
compute the types ascribed to the terms of o and we verify whether
the compound type is precisely s.
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Sometimes, when we are dealing with fragments of natural languages,
we consider only two primitive types: s, the type of sentences, and n,
the type of names; but in more complex situations we must consider
a greater number of primitive types. For instance, we sometimes intro-
duce the primitive type i, of intransitive infinitive. For the sake of
simplicity, we here restrict type s so it is ascribed only to complete
declarative sentences (that is, we rule out requests and questions, as
well as most replies, which are usually incomplete). By a name we
understand primarily a proper name, but we shall also assign type n
to all expressions which can occur in any context in which all proper
names can occur. Thus type n is ascribed to the so-called class nouns

milk, rice, ..., which can occur without an article, and to compound
expressions such as poor John or fresh milk. We do not need to assign
type n to the so-called count nouns king, chair,..., which require

an article, nor to the pronoun he, as it cannot replace John in poor
John works.

To better understand the linguistic significance of the above syn-
tactic types, we shall illustrate the assignment of types to English
words by considering a number of sample sentences (Lambek [29],
p. 156-157). Each word type is indicated in parenthesis.

John (n) works (n \ s). 1)

This remains a sentence if John is replaced by any other name. Hence
works is type n \ s.

[poor(n / n)John (n)l works (n \\ s). 2)

Here poor John takes the place of the name in (1); in fact poor John
can occur in any context in which all names can occur; hence it is type
n. Moreover, so are poor Tom, poor Jane,. .., thus poor is type n / n.

[John (n) works (n \\ s)] here (s \\ s). 3)

The word here transforms (1), or any other sentence, into a new sen-
tence; hence it is type s \ s.

John (n) [never ((n \\ s) / (n \\ 5)) works (n \ s)]. 4)

Since John can be replaced by any name, never works is type n \ s;
therefore, never is (n \ 5) / (n \ s).

[John (n) works (n \ s)] [for ((s \ s5) / n)Jane (n)). 5
This indicates that for Jane should be the same type as here in (3),
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namely, s \ s, and, since Jane can be replaced by any other name,
Jor is type (s \ §) / n.

John (n) works (n \ 5)] land ((s \ 5) / 5) {Jane (n) rests (n \\ 5)}] (6)

This illustrates how and can join two arbitrary sentences to form a
new sentence; its type is therefore (s \ s) / s.

John (n) [likes ((n\ s) / n) Jane (n)]. 7

Here likes Jane is the same type as works in (1); hence likes is type

(n\s)/ n
Example (7) raises an important question. Let us group the sentence

[John (n) likes (n \\ (s / n))] Jane (n). (7"

Here John likes is type s / n. Hence likes must be the new type
n\ (s / n). We would regard the two types of likes in (7) and (7')
in some sense equivalent. Abstracting from this particular situation,
we write symbolically

xN\Ny/z2x\ /2. (I1)

We may write x \ y / z for either side of this equivalence. Further
examples of this convention are afforded by the types of never, for,
and and (see Table 1). To avoid multiplication of parentheses, we
may also abbreviate (x /' y) /z as x /y ./ z and, symmetrically,
ZN\ (¥ \x) as z\ y \ x. However, parentheses must not be omitted
in such compounds as x /(. 2),@\y)\x, {(x/y)\z and
2/ (y\ x).

TABLE 1

Word Type Part of speech
) Works n\s Intransitive verb
2) Poor n/n Adjective
3) Here sN\'s Adverb
4) Never n\ s/ (n\s) Adverb
(5) For s\s/ n Preposition
(6) And s\s/s Conjunction
(N . Likes n\s/n Transitive verb

The syntactic types correspond approximately to the traditional
parts of speech. Thus, in (1) works is an intransitive verb, in (2) poor
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is an adjective, in (3) here is an adverb, in (4) never is an adverb, in
(5) for is a preposition, in (6) and is a conjunction, in (7) likes is a
transitive verb.

In this manner we can build up a list of types for a gradually increasing
portion of the English vocabulary. To distinguish between different
forms such as works and work, usually represented by a single diction-
ary entry, it is necessary to allow for more than two primitive types.
Thus we might assign the type n* to all plural nouns, such as men, or
chairs. In contrast to examples (1), (2), (5), and (7) we then have men
(n*) work (n* \ s), poor (n* / n*) men (n*) work (n* \ s), John (n)
works (n\ s) for (s \ s / n*) men (n*), John (n) likes (n \ s / n*)
girls (n*), men (n*) like (n* \ s / n) Jane (n). This assignment dis-
tinguishes between the forms work and works, like and likes, but it
introduces a multiplicity of types for poor, for, like, and likes.

A more thorough analysis of the English verb phrase would compel
us to introduce further primitive types for the infinitive and the two
kinds of participles of intransitive verb. That analysis will be made
in the next section.

Suppose we have before us a string of words whose types are given.
Then we can compute the type of the entire expression, provided its
so-called phrase structure has been made visible by some device (such
as brackets). Consider for example John (n) [likes (n \ s / n) {fresh
(n ~ n) milk (n)}]. The corresponding computation can be written
as n{(n \ s / n)(n / ) —>n((n\s / nn)—> nn\ s)—s.

In formal languages, this process offers an effective test of whether
a given string of symbols is a well-formed formula. For in these lan-
guages, each word (usually consisting of a single sign) has just one
preassigned type, and the use of brackets is obligatory.

Suppose we now wish to compute the type of a string of English words,
which are taken from a given type list. We cannot proceed quite as
directly as in the formal systems, for two reasons. First, brackets do
not usually occur in English texts (unless we regard punctuation as
an attempt to indicate grouping). Two ways of inserting brackets into
an expression may lead to essentially different syntactic resolutions.
Second, English words usually possess more than one type. For instance,
the adverbial expression today is type s / s or s \\ 5, depending on whether
it precedes or follows the modified sentence. The word sound may be a
noun, an adjective, or a verb, either transitive or intransitive, depending
on the context.
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A mechanical procedure for analyzing English sentences would
consist of four steps:

(1) Insert brackets in all admissible ways.

(2) To each word, assign all types permitted by a given type list.

(3) For each grouping and type assignment, compute the type of the
total expression.

(4) Select that method of grouping and that type assignment which
yields the desired type s.

To realize step (3), we must introduce some new rules of computa-
tion. For instance, example (4) suggests the rule s \ s—(n \ s) \
(n\ s).

Other rules are suggested by the following discussion concerning
English pronouns.

He(s / (n\ s))works(n \'s), he(s/ (n\ s)likes(n\s / n)

Jane (n). &)
Since he transforms such expressions as works or likes Jane of type n \ s
into sentences, we assign to it type s / (n \ s). At any rate, assignment
of type s / (n \'s) to he is valid, irrespective of whether we regard
pronouns as names. In fact, by the same argument, the name John also
is type s / (n \ s). To discuss this point, let us analyze the sentence

He (s / (n\ ) likes (n \s / n) him ((s / n) \ s). (%)

The sequence of types (s / (n \ s)) (n \ s /n) ((s / n) \\ s) cannot be
simplified any further by rules (I) and (1I), and we introduce two new
rules: -

x/ Wy /D—=>x/z, xNyYOy\Nz—=>x\z (11D)

We may then assign type (s / n N\ s)) (n\s/ n)—s / nto he likes
and type (n\ s/ n)((s /~n) \s)—>n\s to likes him, permitting
two equivalent resolutions: [he likes] (s / n) him ((s / n) \ s): he
(s /7 (n\s)) [likes him] (n\'s). Rules (III) also allow alternative, al-
though equivalent, resolutions of expressions considered earlier;
for example, sentence (5) can now also be grouped John [works {for
Jane}], where the predicate has type ((n \ s)((s \ s / mn)—>(n\ )
(s\s)—n\s.

We saw, in the discussion of (8), that the name John is the same type
as the pronoun him. We symbolize the situation by writing n—s /
(n\s), n—>(s / n) \ s, and, more generally,

x>y /@Ny), x=>@/0)\x (Iv)
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These new rules may actually be required for computations. Suppose
that from sample sentences such as books by him bore, we arrived at
the type n* \ n* / n’ for by, where n’ is short for (s / n) \. 5. The
phrase books by John then requires the computation n*(n* \ n* / n')n
— (n* / n)n— (n* / n')n’ —> n*, which utilizes rules (I), (IV), and
(I) in that order.

All the considerations of Section 6 are, essentially, those of Lambek
[29].

7. Analysis of the English Verb Phrase

In this Section we shall use the method of syntactic types to examine
the structure of the English verb phrase. All these considerations are
due to Lambek [30].

We shall consider a fragment of English containing the names Jokn
and Jane, the verbs must, work, call, have, be, the adverb today, the
conjunctions but and while and a few other words of the same types.
We also admit inflected forms such as works, worked, or working.
We shall attempt to decide which sequences of these words are sen-
tences and which are not. However, we may as well admit that some
sentences will escape our net, because certain constructions, for example,
the gerund, will not be considered here.

We adopt the following primitive types: s (complete declarative
sentence), n (name), { (infinitive of intransitive verb), p (present par-
ticiple of intransitive verb), g (past participle of intransitive verb). We
shall regard the assignment of types to certain English words to have
been successful provided (1) every sentence consisting of these words
is type s and (2) only sentences are type s. It is hoped that the assign-
ments of the present Section will conform with (2), but we cannot
satisfy (1) as long as we omit some possible constructions from considera-
tion, for example, While calling Jane, John is working today.

A number of key sentences will illustrate our choice of types: John
(n) works (n \ s); John (n) must (n \\ s / i) work (i); John (n) is (n \
s / p) working (p); John (n) has (n \ s / q) worked (q). The choice
of type for must, is, and has is determined by the desire to assure that
must work, is working, and has worked are all the same type n \ s as
works.

Consider the sentences: John (n) must (n \\ s / i) be (i / p) working
(p); John (n) must (n\.s /i) have (i / q) worked (q); John (n) has
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(n\\s / q) been (q / p) working (p). Here, be working and have worked
should be the same type i as work, whereas been working should be the
same type g as worked.

Finally, we consider a number of sentences containing different
forms of the transitive verb call: John (n) calls (n \\ s / n) Jane (n);
John (n) (must (n . s /i) call (i / n) Jane (n); John (n) is (n \ s / p)
calling (p ~ n) Jane (n); John (n) has (n \\ s / q) called (q / n) Jane
(n); Jane (n) is (n \\ s / (q / n)) called (q ~ n) (by John). The resulting
types are embodied in Table 2.

TABLE 2
Modal Intransitive  Transitive  Auxiliary Progressive  Positive
auxiliary auxiliary auxiliary
Infinitive Work Call Have Be Be
i i/ n i/q i/ p iz (q/n
Present Working Calling Being
Participle p p/n p/(q/ n
Past Worked Called Been Been
participle q q/n a/p q/G/n
Third Must Works Calls Has Is Is
person n\s/i n\s n\s/n n\s/q n\s/p
singular n\s/(@q/n

To illustrate calculations based on Table 2, let us consider the string
John (n) must (n \\s /i) have (i / q) been (q / p) calling (p / n)
Jane (n). We haven(n\s /i)—>s/i,0/q9(q/p)—i/p,(p ./ nn
—p, (i / pp—1i, (s Di—s. Hence the considered string is a sen-
tence. The string John (n) is (n\.s ./ p) being (p / (q / n)) called
(@ / n) is also a sentence, since we have n(n\ s ./ p)—s ./ p,
p/(q/ nXq ./ n)—>p, and (s / p)p—s.

Table 2 is not complete. Principal omissions are the following: doubly
transitive verbs such as give, or appoint; verbs which relate nouns
and adjectives, as in the lunch tastes good; first person forms such
as am; plural forms of the verb such as are.

Table 2 is more extensive than it looks, since many entries are merely
representative samples. Thus work represents all intransitive verbs,
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calls represents all transitive verbs, and must represents all modal
auxiliaries such as will, shall, can, may, would, should, could, might.
Furthermore, the passive auxiliary be may often be replaced by get,
and the progressive auxiliary be seems to represent a large class of
verbs, including at first sight start, begin, keep, continue, stop and
finish.

Some of the forms appearing in the table can also be different types.
Thus call may be a noun, and have and be may also appear as main
verbs, as in John must have lunch and John must be good.

The gaps in the first column of Table 2 are because must has no
infinitive and the conceivable forms musting (p / i) and musted (q / i)
do not exist. The gaps in the second and third columns of Table 2 exist
because the auxiliary /save has no present and no past participle and
the active auxiliary be has no present participle. This is not quite correct
if we consider having in having worked, John rested as a participle.
However, the main verb have and the passive auxiliary be (as well
as the main verb be) has a present participle, as is attested by the sen-
tences: John is having lunch; John has had lunch; John is being called.
The corresponding types are having (p / n), had (q / n), being
p/ (q/ n).

One can interpret Table 2 as a kind of multjplication table, as shown
in Table 3. The entries of Table 3 are in fact obtained by multiplication
according to rules (I) and (111). For example, (p / )i = p by (I), and
(g 7 D/ p)—q 7 p by ().

TABLE 3
i/ i i/ n i/ q i/ p i/ (q/ n
i/ i/ i i/ n i/ q i/ p i/ g/ n
p/i p/i p p/n p/q p/p p/(q/ n)
q/i q/i q q./n q/4q q/p q/(q/ n
nN\s/i | nNs/i nAN\Ns n\s/n n\s/q n\s/p na\s/(q/ n

Suppose we assign to calling and been the full types (p / i)i and
(g / D / p) of Table 3, rather than the contracted types p and g / p.
Then calling is treated as though it consisted of two parts which carry
the types p /i and i in this order (compare with to call). Similarly,
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works would be treated like the composite does work. If we assign
compound types to verb forms in this manner, we are led to a new
way of looking at adverbs. Although the old assignment suggests
[John (n) works (n \ s)] today (s \ s), where n(n \. s) = s, s(s \ s)— s,
the new assignment allows the more intimate construction John (n)
[works ((n\. s / Di) today (i\ i), where i(i\i)—i, (n\ s /0i
— n\s. Therefore, (n\s/dNEN)—n\s and nr\s)—s. The
new assignment also permits us to distinguish between the types of
coordinate and subordinate conjunctions, as in the sentences [John
works] (s) and (s \s /s) [Jane sleeps] (s) and John (n) works
((n s/ D) while (i \ i/ s) [Jane sleeps] (s).

8. The Associative Syntactic Calculus

Consider a vocabulary I' and a set of elements called primitive types.
Let us suppose that, to certain strings over [', there have been assigned
certain primitive types. Let us define a set 9 of elements called types,
defined as follows: All primitive types are types; if x and y are types,
then xy, x \ y, and x / y are also types (the considered operations have
already been explained in Section 6). The following theorem is now
valid.

Theorem 3. We have the following rules:
(N x—x
(2) (xy)z— x(y2);
(2") x(yz) = (xy)z;
3) ifxy—>z,thenx—z /y;
3") ifxy—z,theny—x \ z;
(4) ifx—z ./ y, thenxy—z;
4" ify—x \ z,thenxy— z;
(5) ifx—>yandy— z,thenx—z.

Proor. Rules (1) and (5) hold trivially. To prove (2) and (2'), let A
be a string of type x, B a string of type y, and C a string of type z. Then
(AB)C is type (xy)z. On the other hand, BC is of type yz. Hence A(BC)
is of type x(yz). Since (A4B)C and A(BC) are the same string, (2) and
(2") follow. Rules (3’) and (4') are symmetric duals of (3) and (4). There-
fore, it suffices to prove the latter.

Assume xy—> z and let the string 4 be type x. Then for any string B
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of type vy, AB is type z; hence A4 is type z /' y. Thus x—>z / y. Con-
versely, assume x—z / y and let 4, B, be types x, y, respectively;
then AB is type z. Thus xy— z and Theorem 3 is proved.

In view of rules (2) and (2'), the syntactic calculus developed here
is called the associative syntactic calculus. It may be viewed abstractly
as a formal language or as a deductive system ([29], p. 163). Another
set of rules which are valid in the associative syntactic calculus are

given by Theorem 4.

Theorem 4.
6 x—=>@x)/y;
(6) y—=x\ (xy)
N @/ yy—>z;
(7)) x(x\ 2)—z;
@ y=G@/ Nz
@®) x—=z/(x\2;
9 N/ ze2x\0./2;
(10) (= / y)z=2x(zy);
(10) zN O \Nx=202) \ x;
(11) if x—x" and y—y', then xy—>x'y’;
(12) if x—x" and y—y', then x / y' = x' / y;
(12" if x—x" and y—y', then y N\ x—>y \ x';
a3) @/ Wy ./ x)—=>z/ x
13) NNy \z
14) z/y=>@/ 0/ ./ x;
(14 xNz—=>O N\ )\ \ 2.

Proor. (6) follows from xy— xy by (3); (6') follows from xy— xy
by (3"); (7) follows from z /' y—z ./ y by (4); (7') follows from x \ z—
x \\ z by (4"); (8) follows from (7) by (3') and (8') follows from (7') by
3).

Let us prove the first implication of (9). Denote by ¢ the expression
(x \'y) / z. We then have, in view of (4), rzz— x \ y. This implies, in
view of (4'), x(tz) —y. Since, in view of (2), we have (xf)z = x(fz),
it follows, by (5), that (x/)z — y. We may apply (3) and obtain xt >y / z.
Finally, in view of (3'), it follows that t > x \ (y ./ 2).

To prove the second implication of (9), let us put u=x \ (y / 2).
In view of (4'), we have xu—y / z and, by (4), we obtain (xu)z —=y.
Since (2') implies x(uz) = (xu)z, it follows, by (5), that x(uz)—y. In
view of (3'), we have uz— x \. y. Hence, by 3), u > (x \ y)} / z

Let us prove (10). Denote by ¢ the expression (x /' y) / z and by u
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the expression x / (zy). In view of (4), tz— x / y and, further, (tz7)y —
x. By @), t(zy)— (tz)y. Hence, by (5), t(zy)— x. Finally, in view of
(3), t— x,(zy). To prove the other implication of (10), we remark
that, in view of (4), u(zy)— x. Since, by (2), we have (uz)y — u(zy);
it follows, by (5), that (uz)y — x. This implies, in view of 3), uz—>x /'y
and, further, u— (x / y) / z.

(10 may be proved in the same way as (10), but by using (3’) and
(4') instead of (3) and (4), respectively.

Let us prove (11). Since x'y— x'y, we have, in view of (3), x' —
(x'y) / y and, since x— x’, it follows, by (5), that x— (x'y) / y. This
implies, in view of (4), xy — x’y. On the other hand, from x'y' — x'y’
it follows, in view of (3’), that y' — x’ \ (x’y’). Since y — y', we deduce,
by (5), that y—x' \ (x'y’) and, by (4’) we obtain x'y = x'y’. Since we
also have xy — x'y, it follows, in view of (5), that xy — x'y".

Let us prove (12). We have, by (1), x / ¥y’ — x / y'. Hence, in view of
(4), (x / y")y'— x. This implies, by (3’), that y' = (x / y') \ x. Since
we also have y— y', it follows, by (5), that y— (x ./ y’) \ x and further,
by (4'), we get (x / y')y — x. This implies, in view of (3), that x / y' —
x / y. On the other hand, since, by (1), we have x / y — x / y, it follows,
by (4), (x / y)y — x. Hence, in view of (5) and of the fact that x — x’,
we get (x / y)y— x’. This implies, in view of (4), that x / y—=>x' / y.
Since we have already proved that x / y'—x / y, it follows, by (5),
that x / y' —x' / y.

In a similar way, but using (4') instead of (4), (3) instead of (3'),
(4) instead of (4'), and (3') instead of (3), one can prove (12’).

Let us prove (13). Since, in view of (8), we have y—(z / y) \ 2,
it follows, by (12), that y /' x— ({(z / ¥) \ 2) / x. On the other hand,
in view of (9), we have (z /y) \2) / x—=>(z /7 y) \ (z 7 x). Hence,
by (5), y/x—>(z/y)\ (z./ x). This implies, in view of (4'), that
@/ Ny / x)=>z/ x

In a similar way, but using (8’) instead of (8), (12’) instead of (12),
and (4) instead of (4'), one can prove (13').

Finally, let us remark that (14) follows from (13) by (3) and (14')
follows from (13’) by (3'). Theorem 4 is thus completely proved.

REMARK. Many plausible rules are in fact false. For example, the
following are not valid: (x /y) /z—=>x/( /2, x/yY\z1—
x/ (N2, xy—=yx, z—(z ./ y)y ((30], p. 84).

The syntactic rules (7) (79, (9), (13) (13’) and (8) (8') coincide with
rules (1), (I1), (111), and (IV), respectively. Theorems 3 and 4 are due to
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Lambek ([29], pp. 163-164), but some details of Theorem 4 are due to
Geanau (personal communication). Theorems 3 and 4 have been used by
Ionescu to establish the syntactic types of Rumanian [23].

Hiz remarks that Lambek’s syntactic calculus is based on the as-
sumption that a modifier of an expression occurs adjacent to the
expression it modifies. An expression acts on another expression from
the left, or from the right, but always in a juxtaposition. This is a proper
grammatical analysis for languages in which concatenation plays a
fundamental grammatical role (as it does in English). But there are
nonconcatenative languages (Latin). In a Latin sentence, a masculine
noun can be modified by an adjective in the masculine form at nearly
any point of the sentence, provided that other nouns in the sentence
are feminine or neuter ([21], p. 265). These remarks agree with those
of Chomsky, who believes that only a small number of basic sentences
in a language should be analyzed by Lambek’s method and that other
sentences may be obtained from them by certain transformations (see
the footnote of [30] p. 85). On the other hand, Ionescu claims that
Lambek’s syntactic calculus is also applicable to languages—such
as Rumanian—in which concatenation does not play a fundamental
grammatical role, provided the order of words in the sentences is
precise [23].

9. Nonassociative Syntactic Calculus

As Lambek remarks ([31]1, p. 167), unless elaborate precautions
are taken, the most natural assignments of types to English words
tempt one to admit many pseudo-sentences as grammatical: John is
poor sad; John likes poor him; Who works and John rests? However,
these pseudo-sentences could be systematically ascribed to one cause,
namely, the fact that types had been assigned to unstructured strings
of words. Suppose we assign types not to strings, but to phrases, that
is, bracketed strings of words (or perhaps morphemes).

Let us consider a set of strings called atomic phrases and let us
adopt the following recursive definition of phrases (juxtaposition
denotes concatenation and parentheses denote themselves; brackets
on the outside of a complete phrase may be omitted). All atomic phrases
are phrases: If 4 and B are phrases, so is {(4B).

Types are introduced by a similar recursive definition. We shall
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consider a finite set of elements called primitive types. All primitive
types are types. Three binary operations with types are defined, such
that, if x and y are types, so are (xy), (x / y), and (x \ y).

Types are assigned to phrases in accordance with the following
rules: If A is type a and B is type b, then (AB) is type (ab); if (AB) is
type ¢ for all B of type b, then A is type (¢ / b); if (AB) is type ¢ for
all 4 of type a, then Bis type (a \ ¢)[31].

Theorem 5. In a nonassociative syntactic calculus we have the
following rules [31]:

(1) x—>x

3) f xy—>z,thenx—>z /y;

(3') if xy—>z, then y—>x \ z;

@) if x—>z/y, then xy—z;

@) if y—>x\ z, then xy— z;

(5) if x—>y and y— z, then x— z.
The following rules fail to hold:

2y (yz—>x(yz);

(27) x(yz)— (xy)z;

9 Ny z2x\0 /2

A3 x /o /2)—=>x /2

(15 x/y)/ z2x/(2y).

Proor. (1), (3), (3"), (4), (4'), and (5) may be proved as in Theorem 3.
Now let 4, B, and C be phrases of types a, b, and c, respectively. The
phrase (AB)C is type (ab)c, and the phrase A(BC) is type a(bc). But
(AB)C and A(BC) are different syntactic constructions; hence (2) and
(2") fail to hold. For similar reasons, (9), (13), and (15) [which are
consequences of the associative laws (2) and (2')] also fail to hold.

Theorem 5 permits us to present the nonassociative syntactic cal-
culus as a deductive system, as follows. First we consider a set of
elements called variables. Then we recursively define another set
whose elements are called rerms: All variables are terms; if x and
y are terms, so are (xy), (x \ y), and (x / y). We introduce a single
formula: x— y (where x and y are terms) and a single axiom scheme:
x— x. Theorem 5 suggests the rules of inferences (3), (3"), (4), (4",
and (5).

The syntactic calculus permits us to transfer some grammatical
rules from the grammar to the dictionary. This fact may be illustrated
by the sentence John must work. A phrase-structure analysis of this
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sentence is: John (n) [must (m) work ()], mi~> v, nv—>s. This analysis
presumes that we are given a dictionary with the type assignments
John— n, must— m, work— i, and a list containing two grammatical
rules: mi— v and nv—>s. By the syntactic calculus, the last two rules
become m—v /i and v—>n\ s. Thus, we get the single rule
m—(n\ s) ./ i. We may now revise the dictionary thus: John— n,
must—>(n \ s) / i, work—>i. We may then analyze the same sentence
as follows: John (n) [must (n\\5) /) work @}, (n\ s) / D)—
n\s,n(n\ s)—>s.

Suppose we have replaced all grammatical rules of a language by
suitable type assignments in the dictionary. It is then possible to parse
a given string of words in mechanical fashion: We turn the string into
a phrase X by bracketing and write under each word one of the types
assigned to it by the dictionary. Let x be the compound type of the
whole phrase. If we have x— s, X is a statement. If x— i, X may be
one kind of request, and so on. This process is repeated for all bracketings
and type assignments.

It is interesting to know for Wthh languages it is possible to replace
all grammatical rules by type assignments in the dictionary. Many
formal languages of mathematical logic (see [29], pp. 159-160) admit
this possibility. But we shall concern ourselves here with other important
languages, those generated by the so-called phrase-structure grammars,
due to Chomsky [9]. For our purpose it will be convenient to think
of a phrase-structure grammar as follows: The dictionary assigns to
each atomic phrase a finite number of primitive types, whereas the
grammar consists of a finite number of rules of the form p;p;— py,
where the p; are primitive types. The set of all sentences in a phrase-
structure grammar is called a phrase-structure language. These cor-
respond to what is called by Chomsky [9] a type-2 grammar (a type-2
language, respectively). There are some phrase-structure grammars
for which the elimination of grammatical rules in favor of dictionary
entries can be carried out, without making the dictionary infinite. In
this respect, we shall consider the language L,, defined by Chomsky
(91, p. 151). The sentences of this language are all strings of the form
XX*, where X is a string over the vocabulary {4, H}, whereas X* is
the mirror image of X. Itis easy to see that L, is defined by the dictionary:
A—a, s/ a, s/ a)y/s, H>h, s/ h, {s/h)/s. On the other
hand, L, is a phrase-structure language (more precisely, L, is a type-2
language which is not a finite-state language; see, for instance, [9]
and [34], p. 75 and pp. 166-167).
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We shall now give some examples taken from English concerning
elimination of grammatical rules in favor of dictionary entries [31].

In a previous section it was suggested that the pronoun he be given
the type s / (n \ s). This means that ke, when followed by any phrase
of type ns (for example, must work) yields a phrase of type s. In other
words, the type assignment he —>s / (n \ s) is equivalent to the trans-
formation rule “if nX — s, then he X —s.” Such a rule may indeed be
implied by the totality of rules and type assignments of a phrase-structure
grammar, but it is not one of these rules; it would not do to enter he —
n into the dictionary, for then the nonsentence John must like he would
be type s. We have here a transformation rule which can be conveniently
replaced by a type assignment in the dictionary.

A similar example is the rule “if nX— s, then who X — (7)”, where
(?) is the type assigned to well-formed questions. This is equivalent to
the dictionary entry who — (?) / (n \ s).

The transformation rule ““if n(must i)—s, then (must n)i— (7)”
could be handled by supplementing the original dictionary entry must
—(n\ s) /i by the further assignment must— ((?) /i) / n. This
would not allow us to derive the sentence must he work? Let h =35 /
(n \\ s) be the type of he considered above; then we want the type assign-
ment must— ((?) / i) / a. It is sufficient for the dictionary to carry
this last assignment, since ((?) /i) / A—>((?) /i) / n is a derivable
formula in the syntactic calculus. Instead of proving this rule, let us
parse the sentence must John work? using must — ((?) / i) / /4 and
the provable formula n—n=s /(n\ s). Thus [must (?) /i) / ”)
John (W) work (D), (D) /D) / wWa—= (N /i, (D) / Di— (D).

10. Categorial Grammars

Another kind of syntactic calculus has been investigated by Bar-Hillel
([5], pp. 99-115) and Bar-Hillel et al. [6]. An improved version was
given by Bar-Hillel ([4], [5], pp. 185-218 and, especially, pp. 188~
189). The standpoint of these authors is very similar to that of Lambek
and is formulated by Bar-Hillel ([5], pp. 187-188). The grammar is
meant to be a device by which the syntactic structure, and in particular
the sentence analysis of a given string could be determined. This deter-
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mination must depend exclusively on the shape and order of the elements.
This is achieved by assuming that each of the finitely many elements
of the given natural language had finitely many syntactic functions, by
developing a suitable notation for these syntactic functions (or categories,
as they are called [2, 6, 32]), and by designing an algorithm operating
on this notation. It is assumed, in such an investigation, that every sen-
tence can be parsed, according to finitely many rules, into two or more
contiguous constituents, either of which is already a final constituent
or else can itself be parsed into two or more immediate constituents.
This parsing is not necessarily supposed to be unique. Syntactically
ambiguous sentences allow for two or more different parsings.

Following Ajdukiewicz [1], the combination of constituents is re-
garded as the result of the operation of one of the constituents (the
governor) upon the others. To each word are assigned finitely many
fundamental categories. We can also define a set of rules operating
upon these categories, so-called cancellation rules.

Let us now give the exact definition of some grammars of the above
type. A bidirectional categorial grammar is a quintuple (I', C, 3, R,
), where I' is a finite set of elements (the vocabulary), C is the closure
of a finite set of fundamental categories, say s, . . . , {s,, under the opera-
tions of right and left diagonalization [that is, whenever a and 8 are
categories, (a ~ 8) and (a \ B) are categories], X is a distinguished
category of C (the category of sentences), R is the set of the two can-
cellation rules (¢; / ¢;)¢; — ¢; and @i(@; \ @;) = ¢;, and f is a function
from I' to finite subsets of C (the assignment function).

We say that a category sequence a directly cancels to B, if B results
from «, by one application of one of the cancellation rules. We say that
a cancels to B if B results from « by finitely many applications of these
rules; more exactly, if there exist category sequences vy, ¥s,. .., Va
such that o = v;, 8 = 7y,, and v; directly cancels to v;.,, fori=1,...,
n—1. -

A string x over I' is defined as a sentence if, and only if, at least one
of the category sequences assigned to x by f cancels to 3. The set of all
sentences is then the language determined by the given bidirectional
categorial grammar. Such a language is called a bidirectional categorial
language.

The functioning of such a grammar can be clarified by an example
(Chomsky [11], p. 412; we shall take 3 = 5). Suppose that our grammar
contains the fundamental categories n and s, the vocabulary I' = {John,
Mary, loves, died, is, old, very} and let us define the function f as follows:
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fUohn) = f(Mary) = {n}; f(died)={n \ s}; f(loves)={(n\s)/ n};
flldy=A{n/ n}; fery)y={(n/n/(n/n}; flsy={n\s)/
(n ~ n)}. Thus intransitive verbs (such as died) are regarded as operators
that convert nouns appearing to their left to sentences; transitive verbs
(loves) are regarded as operators that convert nouns appearing to their
right to intransitive verbs; adjectives are regarded as operators that
convert nouns appearing to their right to nouns; very is regarded as an
operator that converts an adjective appearing to its right to an adjective;
is is regarded as an operator that converts an adjective appearing to
its right to an intransitive verb. Such strings as the following resolve to s.
Therefore, they are sentences in the considered bidirectional categorial
grammar: John (n) died (n \ s), n(n \ s) = s;John (n) loves (n \\ 5) / n)
Mary (n), (n \s) / nyn—>n\ s, n(n \ s)—>s; John (n) is (n \ s) /
(n/n) very (n/n)/(n/n) old (n/n), (n/n/(n/n)
(n/n—>n/n((n\s)/ (n/ m)n\n)—>n\s,nn\s)—s.

If instead of C we consider the closure of a finite set of fundamental
categories under the operation of right (left) diagonalization, I, 2, R,
and f remaining unchanged, we obtain the definition of a right (left)
categorial grammar. A language determined by a right (left) categorial
grammar is a right (left) categorial language. A right categorial gram-
mar (language) and a left categorial grammar (language) are called
unidirectional categorial grammars (languages). Ajdukiewicz considered
only this last form, since he was primarily concerned with systems
using Polish parenthesis —free notation, in which functors precede
arguments.

If in the definition of a left (right) categorial grammar, we replace
C by a set containing precisely the (finitely many) fundamental cate-
gories ; and the categories (¥; \ ¥;) and (U; \ (Y; \ Uy)) [or, alter-
natively, (¥; / ¥;) and (s / (; / Yn)], we get a restricted left (right)
categorial grammar. The language determined by such a grammar is
arestricted left (right) categorial language.

We may now define a restricted unidirectional categorial grammar as
a grammar which is a restricted left categorial grammar or a restricted
right categorial grammar. We may also define a restricted bidirectional
categorial grammar as a quintuple (I',C*,3%,R,f), where I', 2,
R, and f have the same significance as in the preceding definitions,
whereas C* is the set of all categories of the form s, ({¥; \ ¥;), ({5 \
W \ ), Wi /), (; ~ (; / ¥i)). The language determined by such
a grammar is called a restricted bidirectional categorial language.

It follows immediately from the definitions that every unidirectional
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(restricted unidirectional) categorial language is a bidirectional (re-
stricted bidirectional) categorial language. On the other hand, it is easy
to see that every restricted bidirectional categorial language is a bi-
directional categorial language. But Bar-Hillel et al. have proved the
surprising result that the converse of each of the above statements is
also true, that is, we have Theorem 6.

Theorem 6. FEvery bidirectional categorial language is an unidirec-
tional categorial language and even a restricted unidirectional cate-
gorial language ([61,[5], pp- 106-114, 189).

The proof of this theorem is indirect. It is proved, in fact, that every
bidirectional categorial language, every unidirectional categorial lan-
guage, and every restricted unidirectional categorial language are
type-2 languages in the sense of Chomsky [9] and, conversely, every
type-2 language is a restricted unidirectional categorial language.
Since the proof of the second part of this theorem is very long ([5],
pp. 107-114), we shall only give the first part. But first let us give the
suitable form of the definition of a type-2 language ([5], pp. 104-105).

A simple phrase-structure system is an ordered couple (I', P), where
I' is a finite vocabulary and P is a finite set of productions of the form
X—x(x # X € I"and x is not the empty string). A stringy directly generates
a string z(y = z) if y has the form X X, X, ... X,—.X, (n=0) and z can
be given the form xgx;x,...x,_,x, such that, for all i, either X;=x;
(in which case X; is said to be carried over) or X;— x;, in which case
X, is said to be rewritten. A string x generates y (x =>y) if there exists
a sequence of strings zo, 2y,-..., z, such that x =z, y=1z, and z,_, > z
(I=sisr).

A context-free grammar (or a type-2 grammar) is an ordered qua-
druple G={(",P, T, S), where (I', P) is a simple phrase-structure
system, T (the terminal vocabulary) is a subset of I', none of whose
elements occur on the left side of a production, and S is a distinguished
element of I'— T (the initial symbol). A string x is a sentence of G if
x is a string over T (a terminal string) and S => x in the simple phrase-
structure system (I', P). We shall denote by L(G) the set of all sentences
of G.

A language L over a vocabulary T is a type-2 language if there exists
a context-free grammar G such that L = L(G). (A context-free grammar
can be viewed as a combinatorial system as defined, for example, by
Davis [14], with § an axiom and P the set of productions. It is, more
specifically, a rather special kind of semi-Thue system, since in a general
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semi-Thue system the productions have the form x; —> x,, whereas in
a simple phrase-structure system the formis X — x).

Theorem 7. For any bidirectional categorial grammar H=(I',C, X,
R, f) it is possible to construct a context-free grammar G, such that
L(G) is precisely the language determined by H.

ProOOF. Let 4 be the union of all category sets assigned by f to the
elements of I'. Since I' is finite and AX) is finite for every X € T, it
follows that & is a finite set of categories.

Let us now define inductively the set €y as follows: If ¢ € €, then
¢ € Gr; if (¢ \ ) € Gr,_then ¢ and ¥ belong to %r; if (¢ / ) € &,
then ¢ and ¢ belong to €. Let V=T U % and let P consist of the
following productions: ¢ —=> (¢ /YW, if (¢ /) E Cr; 0= YWY \ @)
if W\ @) E% o—X, if ¢ €A(X) (for every X €T). P is clearly
finite and G = (V, P, T, %) is the required context-free grammar. (V
is the vocabulary, P the set of productions, I" the terminal vocabulary
of G, and 3 the initial symbol of G.) Indeed, L(G) is precisely the
language determined by H.

It would be interesting to find a direct proof of Theorem 6, that is,
a proof that uses neither Theorem 7 nor its converse. In fact, such a
direct proof of Theorem 6 does not use the notions of context-free
grammar and type-2 language.

The syntactic calculus developed by Lambek and exposed in the
previous sections differs in several respects from the various types of
categorial grammars; in particular, Lambek’s calculus allows a greater
degree of flexibility in category (type) assignment. Thus his rules of
resolution assert that a category « is at the same time a category of
the form 8 / (« \ B), so that, in this and other ways, it is possible to
increase the complexity and length of the sequence of category symbols
associated with a string by application of rules of resolution. It is not
known how Lambek’s system is related to bidirectional categorial gram-
mars (unidirectional categorial grammars or context-free grammars),
although one would expect to find that the relation is quite close; perhaps
every type-2 language may be obtained by a Lambek system and,
conversely, every language formed by the sentences of a Lambek
system is of type 2 (see Chomsky [11], p. 413).

Similar approaches to those described in Section 6-11 are discussed
by Hiz [20], Wundheiler and Wundheiler [47], Suszko [44], Curry and
Feys {13], and Curry [12]. In the last paper, the syntactic calculus is
regarded from the standpoint of functors; thus n / s would mean a
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functor forming a noun from a sentential argument on its right, whereas
n \. s would mean a functor forming a sentence from a nominal argu-
ment on the left.

A more formalized description of categorial grammars is given by
Mitchell [38]. Some generalizations of the above systems are given by
Matthews [35, 36]. For the linguistic origin of the syntactic calculus see,
among others, Fries [15] and Harwood {18]. A specific approach to the
problem of parts of speech may be found in Saumjan and Soboleva [45].

Lambek begins his paper [29] with the following words written by
Otto Jespersen in 1924 {25]: “The definitions (of the parts of speech)
are very far from having attained the degree of exactitude found in
Euclidean geometry.” The models investigated in the present chapter
are an attempt to diminish the discrepancy between the traditional
concept of part of speech, on one hand, and mathematical rigor, on
the other.
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appl. and Bulletin math. de la Société de math. de la R. §. Roumanie.



Chapter IV

Grammatical Gender

1. Introduction

Grammatical gender is one of the most interesting problems of the
theory of grammar. It has been studied from several points of view,
such as the relation between the gender of a noun and its semantic con-
tent (Lohmann [23]); the relation between the gender of a noun and
its ending (Melcuk [30]); the gender, in the light of the correspondence
between content and expression (Jakobson [17], Hjelmslev [14],
Vasiliu [49]); the syntactic and contextual aspects of the grammatical
gender (Diaconescu [6], Zaliznjak [50], Karpinskaja [20]); the study
of the gender from the standpoint of its origin and evolution (that is,
diachronic aspects; Graur [10, 11], Rosetti [42-44], Fodor [7));
synchronic aspects (Revzin [37-39]; Marcus [25, 27]).

Some of these points of view are, of course, closely connected; others,
on the contrary, are very different. But almost all authors agree at present
that the semantic criteria are not sufficient for understanding the complex
nature of the grammatical gender. We must make use of all related
facts concerning this category. In this respect, Hjelmslev writes [15]:
On est souvent méme amené i admettre la supériorité des définitions
sémantiques ou par substance, qui prétent souvent a I’équivoque et
restent fuyantes et difficilement maniables. On ne saurait citer a cet
égard un meilleur exemple que celui du genre grammatical: ici la défi-
nition sémantique parait insuffisante ou méme impossible, et ce n’est
que la définition fonctionnelle, déterminant le genre comme un indice
de concordance, qui fournit un point de vue solide et véridique.

Indeed, if we recognize that the grammatical gender is other than the
natural one (that is, the sex), we must be consistent and recognize that
the form and not the substance will be decisive in the problem we are
considering.

115
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We present in this chapter some mathematical models of grammatical
gender. The mathematical starting points of these models are some
notions and results investigated in the preceding chapters (especially
the notions of mixed cells, chains —due to Revzin—and the correspond-
ing results), whereas the linguistic one is the passing from the natural to
the grammatical gender. As we shall see, all proposed models involve
both morphologic and syntactic aspects, by means of the partitions
P and S of the vocabulary T'.

The analysis we develop has a purely synchronic character, but we
hope that it may be useful for a better understanding and a more syste-
matic presentation of the evolution of the structure of grammatical
gender in any natural language. We intend also to discuss some very
controversial problems such as the neuter gender, the ambiguous gender,
the animate and the inanimate, personal genders, and others.

2. From the Natural to the Grammatical Gender

We begin by an attempt to explain, in an intuitive and practical fashion,
the formal nature of the relation between natural and grammatical gender.
This explanation will anticipate the mathematical models constructed
in the next section.

Given a natural language, we shall take, as starting point, two nouns
¢ and m representing the prototype of the natural gender (such as man
and woman in English). In certain languages, even this operation, so
simple at first sight, claims attention: In German, for instance, the noun
Weib (woman) cannot be taken as the starting point in such a construc-
tion, since its grammatical gender is other than its natural one (the first
is neuter, whereas the second is feminine). The problem we are concerned
with is to characterize the masculine grammatical gender as well as the
feminine so as to reveal clearly the mechanism, the operations by which
these are obtained from the respective natural genders. It thus follows
that every grammatically masculine noun should be in a formal well-
determined relation with the noun ¢ and that every grammatically fem-
inine noun should be in a similar relation with the noun 7. To obtain such
a relation, we shall resort to a concept introduced by Revzin and studied
in Section 10, Chapter I, namely, the concept of chain. Though it has
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already been defined, we shall explain it through some linguistic examples
and recall some simple facts.

Each word is naturally associated with two sets of words: the set of
its flectional forms and the set of the words occurring in the very same
contexts with the given word. The first of these sets is the paradigm of
the word, whereas the second is the class of distribution of the given
word. For instance, the paradigm of the word house is {house, houses},
whereas the class of distribution is {house, table, book,...}. The
flectional forms of each word are considered known and well-deter-
mined; therefore, the paradigms are also considered known. As far as
the classes of distribution are concerned, they depend upon the set of
sentences we have in view. It is desirable to consider, as a sentence,
every grammatically well-constructed sequence of words. But this is a
difficult task; as long as no contrary statement is made, the set of sen-
tences will consist, in all following examples, only of syntagms of the type
noun + qualitative adjective in the positive degree or qualitative ad-
Jjective in the positive degree + noun.

Let us now consider the following four sequences of Latin words:
(1) dies, diem, rem; (2) lupi, lupus, urceolus, urceolorum, librorum,
libros; (3) vir, viro, puero; (4) mulierem, aestatem, aestates, instruc-
tiones. A common trait of all these sequences of words is the fact that,
in each, two consecutive words are either in the same paradigm (that
is, they are flectional forms of the same word) or in the same class of
distribution (in other words, they appear in the same contexts). Thus,
lupi and lupus are in the same paradigm, urceolorum and librorum are
in the same class of distribution, etc. Such a sequence of words illustrates
the notion of chain (Section 10, Chapter I) when P is the partition into
paradigms, whereas S is the partition in families of the Latin vocabulary.
We recall that the number of terms in a chain is called the length of the
chain. Thus, chains (1) and (3) are of length equal to 3, chain (4) is of
length 4, whereas chain (2) is of length 6. Chains (1), (2), (3), and (4)
allow us to assert that the words dies and rem may be linked by a chain of
length equal to 3; lupi and libros may be linked by a chain of length 6, etc.

The using of chains in defining the grammatical genders appears
very natural, and indeed, the notion of chain is but a joining of the two
fundamental grammatical aspects, the paradigmatic and the syntagmatic
one. It is particularly such a joining that is needed in a theory of the
gender, because (intuitively speaking) it does not necessarily follow
from the fact that two nouns belong to the same gender, that they should
belong to the same paradigm or to the same class of distribution. The
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interconnection alone of the paradigms with the distribution classes can be
fruitful in such a problem. Otherwise, in some characterizations of the
parts of speech we also use a special type of interconnection of the para-
digms and distribution classes: the partition R’. We recall, in this respect,
Theorem 4, Chapter I1.

The notions of chain and chain length enable us to characterize
the masculine and the feminine grammatical gender to be able to pass
over from the natural to the grammatical gender. The rules we shall
give are but a drawing out of the “formal carcass’ of a great number of
particular facts noticed in the English, French, Italian, Spanish, Ruman-
ian, Russian, and German languages. All these facts will be explained
as illustrations of the following rules.

A noun belongs to the masculine grammatical gender if any word
of its paradigm may be joined to any word of the paradigm of & by
a chain whose length is at most equal to 3. It follows immediately
(as a tautological statement) that ¢ is of the masculine grammatical
gender.

A noun is of the feminine grammatical gender if any word of its para-
digm may be joined with any form of m by a chain whose length is at
most equal to 3. It follows immediately that 7 is of the feminine gram-
matical gender.

A noun is in the neuter if it is neither of the masculine nor of the
Jeminine grammatical gender.

A noun is a double gender if it is both masculine and feminine.

By replacing, in the above rules, the nouns ¢ and n by suitable cor-
responding nouns, we may apply these rules to characterize the gram-
matical genders of a great number of natural languages. The grammatical
category of the gender of nouns is considered not degenerate in a lan-
guage, if there is in that language at least one masculine noun which
should not be feminine, and at least one feminine noun which should
not be masculine.

3. Grammatical Genders in Natural Languages

Let us illustrate the above rules and procedures in several natural
languages.
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EnGLisH. The form of an English adjective changes only in function
of its degree of comparison. It follows that, given two English nouns
¢' and x, there exists a chain of length not greater than 3, which joins
¢ and x. Indeed, the paradigm of x contains a word x’ which is in the same
distribution class as &', and we have the chain &', x’, x. Forinstance, if ¢’ =
book and x = teachers, then x' = teacher. If x belongs to the distri-
butional class of ¢’, we have the chain ¢, x; for instance, &' = book,
x = teacher.

It follows that any English noun may be joined with man by a chain
whose length is not greater than 3; the same is true if we replace man by
woman. Therefore, any English noun is a double gender; the grammatical
gender of English nouns is degenerate.

FrRENCH. Let &= homme, m=femme. The nouns colins, cahier,
murs, etc., are masculine, since we have the chains (a) colins, colin,
homme, (b) colins, hommes, (c) colin, homme, hommes, (d) cahier,
homme, (e) cahiers, hommes, homme, (f) cahier, homme, hommes, (g)
murs, mur, homme, (h) murs, hommes, () mur, homme, hommes;
the nouns plumes, pluie, feuille, etc., are feminine, since each form of
their paradigms may be joined with any form of femme by a chain of
a length not greater than 3; we have the chains plumes, plume, femme;
pluie, femme, femmes; feuille, femme, etc. The nouns cas, tas, tapis,
nez, voix, etc., whose singular form coincides with the plural, are neuter,
since there exists no form of homme and no form of femme which belong
to the distributional class of cas (we have petit cas, petits cas, but
neither petit hommes, nor petits homme) and no form of homme and no
form of femme which belongs to the distributional class of voix (we
have belle voix, belles voix, but neither belle femmes, nor belles femme;
we have homme beau, hommes beaux, but neither voix beau nor voix
beaux). The nouns camarade, éléve, enfant, etc, which may be preceded
both by a masculine adjective and by a feminine adjective, are neuter
since no form of homme and no form of femme belong to the distributional
class of such a word. Indeed, we have bon éléve, bonne éléve, but neither
bon femme, nor bonne homme; we have bons éléves, bonnes éléves,
but neither bons femmes, nor bonnes hommes, etc.

Since there are French nouns which are masculine but not feminine
(cahier, mur, soleil, etc. and those which are feminine but not mas-
culine (plume, pluie, feuille, etc.), we deduce that the grammatical
gender of French nouns is not degenerate.

ITALIAN. Let us consider as prototypes of the natural genders the
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noun fratello (masculine) and donna (feminine). The noun frutto is
masculine since each of its forms may be joined to any one of the forms
of fratello by a chain whose length is not greater than 3. For similar
reasons, castagno, bordone, giro, etc., are masculine. The noun boccola
is feminine, since each of its forms may be joined to any one of the forms
of donna by a chain of length not greater than 3. For similar reasons,
confezione, maremma, roba, etc., are feminine. Since giro is masculine
without being feminine, whereas roba is feminine without being mas-
culine, it follows that the grammatical gender of Italian nouns is not
degenerate.

The nouns nipote, consorte, cantante, giovane, paciente, etc., which
may be preceded both by a masculine and by a feminine adjective,
are neuter since no form of fratello and no form of donna belong to the
distributional class of such a word. Indeed, we have buono giovane,
buona giovane, but neither buono donna nor buona fratello, etc. '

SpaNisH. Let us consider as prototypes of the natural genders the
noun padre (masculine) and madre (feminine). The noun libro is mas-
culine, since we have the chains libro, padre; libro, padre, padres;
libros, padres; libros, padres, padre. The noun casa is feminine since
we have the chains casa, madre; casa, casas, madres; casas, madres,
madre. Since libro is masculine without being feminine, whereas casa
is feminine without being masculine, it follows that the grammatical
gender of Spanish nouns is not degenerate.

LaTIN. Let ¢ = vir, n = mulier. The noun puer is masculine, since
each of its forms may be joined to each of the forms of vir by a chain
whose length is not greater than 3. Since vir and puer each have seven
distinct flectional forms, we obtain 49 chains (puero, puer, vir; pueri,
viri, virum, pueros, pueris, viris, etc.).

The noun aestas is feminine, since each of its forms may be joined
to each of the forms of mulier by a chain whose length is not greater
than 3. Since each of the nouns aestas and mulier has eight distinct
flectional forms, we obtain 64 chains (aestas, mulier; aestatis, aestati,
mulieri; aestate, muliere, mulieribus, etc.).

The noun tempus is neither masculine nor feminine. Thus it is neuter.

It seems that our rules agree with the traditional genders of Latin
nouns. But let us consider the noun capra. The shortest chain which
joins the forms caprae and mulieris has length 4: caprae, capra, mulier,
mulieris. Therefore, despite common intuition and traditional grammar,
capra is not a feminine noun.
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This example shows that the rules are not suitable for detecting the
grammatical genders of Latin nouns in their customary form.

RUMANIAN. Let & = barbat, n = femeie. To verify that pom is mas-
culine, we must prove that any word of its paradigm may be joined to
any word of the paradigm of barbar by a chain having length less than
or equal to 3. Since each paradigm has 7 words, the proof requires the
building up of 49 chains. We note some of them, leaving the others to
the reader: pom, barbat; pomi, barbati, barbatul; pomule, pomului,
barbatului, etc. It follows that pom is of the masculine grammatical
gender. In a similar way, we deduce that par, copil, stilp, etc., are
also masculine.

The noun masa is of the feminine grammatical gender, since each of
its flectional forms belongs to the distributional class of some form of
femeie. We have, for instance, the chains masa, mesei, femeii; mesele,
femeile, femeilor, etc.

Pom and femeie cannot be joined by a chain whose length is less
than 4, since no word of the paradigm of pom is in the same distribution
class with femeie and no word of the paradigm of femeie enters the
distribution class of pom. Therefore, pom is not feminine. It may be
shown in a similar way that masa cannot be joined with barbat through
a chain whose length is less than 4. Hence masa is not masculine. Thus,
we have proved that in Rumanian the grammatical gender of nouns
is not degenerate.

We now remark that the above reasoning may be applied to any mas-
culine and to any feminine noun; hence we deduce that Rumanian has
no double gender nouns.

Let us consider the noun scaun. This is not a masculine noun, since
scaune and barbati can be joined only by a chain of length 4: scaune,
scaun, barbat, barbati. On the other hand, scaun is not a feminine noun
either, since scaun and femeie can be joined only by a chain having a
length of 4: scaun, scaune, femei, femeie. 1t follows that scaun is a
neuter noun.

RussiaN. Let £ = muzcéina and m = Zend¢ina. The noun stol has the
masculine grammatical gender, since any form x’ of stol belongs to the
distribution class of some form of £ For instance, stoly belongs to the
distribution class of muZzdiny, etc. The noun kniga has the feminine gram-
matical gender, since each of its forms belongs to the distribution class
of some form of n. There exist no Russian double-gender nouns, since
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the adjectives have, in the singular, different masculine and feminine
forms, whereas there exist nouns (such as stol) which are masculine
but not feminine and those (such as kniga) which are feminine but not
masculine.

The noun okno is neither masculine nor feminine, since it belongs to
no distribution class of form ¢ or of form ». Therefore, okno is a neuter
noun. The existence of neuter Russian nouns is because the adjectives
that can be used with okno are not the same as the adjectives for &
or 7.

GERMAN. Let ¢=Vater and m=Mutter. The noun Titel has the
masculine gender, since we have the following chains: Titel, Vater;
Titel, Titels, Vaters; Titel, Titeln, Vitern; Titel, Vater, Viiter; Titels,
Vaters, Vater; Titels, Vaters, Viter, Titels, Vaters, Vitern;, Titeln,
Vitern, Vater; Titeln, Vitern, Viiter; Titeln, Viitern, Vaters. The noun
G abel has the feminine gender, since we have the chains Gabel, Mutter;
Gabel, Mutter, Muttern; Gabeln, Muttern; Gabeln, Muttern, Mutter.
The noun Fenster is neither masculine nor feminine; therefore there
exist neuter German nouns. But let us consider the word Knabe. It
is known as a masculine German noun. However, the shortest chain
between Knabe and Vater has length 4. Indeed, Knabe and Vater do
not belong to the same distribution class, since we may say guten
Vater but not guten Knabe. Since Knaben and Vitern have the same
distribution (guten Knaben, guten Vitern), we obtain the chain Knabe,
Knaben, Viitern, Vater, the shortest chain between Knabe and Vater.
It follows that our rules are inadequate for some German nouns.

In conclusion we make the following remarks:

(1) The rules considered permit us, in general, to detect the gram-
matical genders of English, French, Italian, Spanish, Rumanian, and
Russian. Some minor discrepancies, such as the fact that in French
the nouns cas, tas, tapis, etc., belong to the neuter gender, result from
the level of grammaticality we have adopted (adjective + noun, noun-
adjective). If we modify the set of marked strings correspondingly,
such discrepancies disappear.

(2) The rules considered are not sufficiently adequate for Latin
and German. One must seek other rules to detect in a better way the
grammatical genders of these languages and, perhaps, of others.

(3) In view of the procedure adopted, a language cannot have more
than four genders, whereas its fundamental genders are always the
masculine and feminine. But there are situations which do not fall
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into this scheme. A deeper analysis of a natural language may reveal
the so-called personal genders, whereas in some languages (such as
Swedish, where the fundamental genders are the common and the
neuter gender) there is a fundamental distinction other than masculine-
feminine.

(4) The grammatical genders have no absolute character. They are
relative by a certain choice of the paradigms and sentences (marked
strings). If we take, for instance, only isolated words in the function
of the sentences, all the words will form but a single class of distribution
so that, taking two words at random, we might join them by a chain of
length equal to 2. In particular, all nouns will be both masculine and
feminine, and therefore the grammatical gender will be degenerate. This
remark reveals the essential contextual, syntagmatic character of
grammatical gender.

Certain changes in the choice of the paradigms can also upset some
of the conclusions obtained above. Thus, if by the paradigm of the
Rumanian noun scaun we mean the totality of its flectional forms in
the singular, and if by the paradigm of the noun scaune we understand
all its flectional forms in the plural, then scaun is of the masculine
gender, whereas scaune is feminine. Indeed, each of the words scaun,
scaunul, scaunului, scaunule may be joined with any word of the
paradigm of barbat by a chain having at the most a length of 3. Each
of the words scaune, scaunelor, scaunele may be joined with any word
of the paradigm of femeie by a chain having, at most, a length equal to 3.

If we reorganize all the paradigms of the neuter Rumanian nouns
as we have done above with the paradigm of scaun, and divide them
into two paradigms, one singular and one plural, the neuter gender
ceases to exist in Rumanian. Such a conclusion agrees with that of
some others: Bujor[3], Gabinskii[9], Hotejsi[16].

Another reorganization of the paradigms which seems in a certain
way natural, is the following: Let us put together the paradigms P(x)
and P(y) of the nouns x and y obtained, one from another, by means
of an inflection denoting the gender: in French P(cousin) with P(cousine),
P(époux) with P(épouse), P(loup) with P(louve). etc.; in Italian, P(eroe)
with P(eroina), P(re) with P(regina), P(signore) with P(signora), etc.;
in Rumanian, P(profesor) with P(profesoari), P(elev) with P(elevad),
etc. By such an operation, all the nouns mentioned become double-
gender nouns. If we consider, for instance, the French noun cousin,
we see that it is masculine, because any word from P(homme) is in
the same distribution class as a certain word from P(cousin). 1t is also
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a feminine noun, because any flectional form of femme is in the same
distribution class with a certain word from the former paradigm of
cousine, P(cousine), and thus from the present enlarged paradigm
P(cousin) U P(cousine). Therefore, cousin has a double gender.
In the same way one can show that eroe, re, and signore become
double-gender nouns in Italian, whereas profesor and elev become double-
gender nouns in Rumanian. This is the way the existence of the double-
gender nouns is obtained, as well as that of the four distinct genders,
for the nouns in Rumanian. A similar idea, but in a different way, has
been expressed by Moisil[3 1]. For the double-gender nouns in Rumanian,
see also Patrut [34]. The legitimacy of such operations of reorganizing the
paradigms must be justified either by practical necessities, such as the
making up of algorithms for translating from one language into
another[31], or by a more lucid understanding-of the logical structure
of the paradigms. (A logical pattern of the notion of paradigm has been
studied by Marcus{26].)

All the above facts require a general treatment, more formalized
and more supple, for us to detect a greater part of the complexity of the
grammatical gender. This task will be accomplished in the following
sections.

4. Mathematical Models of Grammatical Gender

Let {T', P, ®} be an arbitrary language. We shall say that two words
a €T and b €T belong to the same gender, and we shall write ay b
if, for any @’ € P(a) and any b’ € P(b), at least one of the following
two conditions is fulfilled: P(a) N S(b’) # 0; P(b) N S(a’) # 0. We shall
say that a and b belong to the same restricted gender and we shall write
apb if, for any a’ € P(a) and any b’ € P(b), we have P(a) N S(b') #
0 P(b) N Sa'). :

Proposition 1. The relation vy is reflexive and symmetric, but not tran-
sitive in I".

ProoF. If b=a, we have, for a’ € P(a), a’ € P(b) N S(a’). Hence,
P(b) N S(a’) # 0 and a vy a, that is, vy is reflexive.

Since the definition of vy is symmetric with respect to a and b, it follows
that v is symmetric: ayb=> by a.
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To prove that vy is not transitive, let us consider the language used
in the proof of Proposition 1, of Chapter 1I. We have I' = {a, b, c, d},
P(a)= {a}, Pb)={b}, P(c)={c,d}, ® = {ab, ch, ad, cd}. Hence
S(a) = {a, ¢} and S(b) = {b, d}. We have ay c; indeed, P(a) N S(c) =
{a} N{a,c}={a} #0 and P(c) N S@)={c, d} N{a, c}={c}#0.
We have cvyb; indeed, P(c) N S(b)={c,d} N {b, d} ={d} #0 and
Pb)y N S(d)y={b} N {b, d} = {b} # 0. On the other hand, we do not
have a y b, since P(a) N S(b) = P(b) N S(a) = 0.

REMARKS. Two words may belong to the same gender, although they
do not belong to the same part of speech. Indeed, as was shown in the
proof of the Proposition 1, Chapter 11, we have in the above language
P = P’ 1t follows that a and ¢ do not belong to the same part of speech.
But they belong to the same gender, as was shown in the proof of Proposi-
tion 1.

This fact introduces a discrepancy between the grammatical gender
and its mathematical model, because the gender concerns a well-deter-
mined part of speech.* For instance, the grammatical gender of the
adjective is quite different than the grammatical gender of nouns; our
models concern only nouns, which is revealed by the next proposition.

Proposition 2. Given a language {I, P, ®}, if b € P(a), then avyb.

PrOOF. We have, for any a' € P(a) and for any b’ € P(b), b' € P(a) N
S(b") and a’ € P(b) N S(a’), since P(a) = P(b). Therefore P(a) N S(b') #
0 # P(b) N S(a’).

REMARK. Since two different forms of an adjective may have different
genders, it follows from Proposition 2 that the model considered does
not concern adjectives.

Proposition 3. There exist a language {T", P, ®} and two words x € I,
y € T such that y € S(x), but we do not have xvyy.

Proor. Let us consider the following language. I' = {a, b, ¢, d},
P(a) = {a, ¢}, P(b)={b,d}, ®={ac, bc, cd}. We have S(a)={a,
b}, S(c) = {c}, S(d) = {d}. But a and b do not belong to the same gender,
since d € P(b), ¢ € P(a), but P(a) N S(d)=P(b) N S(c)=0.

REMARK. An illustration of Proposition 3 may be found in Rumanian.
The nouns scaun and pom belong to the same class of distribution,
although the first is a neuter noun, whereas the second is masculine.
The nouns caiete and scaune belong to the same distribution class,

*This discrepancy will be removed by Proposition 8.
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although the first is a feminine noun, whereas the second is neuter.

Proposition 4. Given a language {I', P, ®}, if apb, then ayb, but
the converse is not true.

Proor. The implication apb=>avyb follows from the definitions.
On the other hand, in the language considered in the proof of Proposition 1
we have avyc, but not apc, since d € P(c) and P(a) N S(d) = {a} N
{b, d} = 0.

Proposition 5. If b € P(a), then ap b.
Proor. The proof follows immediately from the proof of Proposition 2.

Proposition 6. We have a+v b if and only if, for any a’ € P(a) and any
b’ € P(b), there exists a chain which joins &' and b’ and whose length
is not greater than 3.

Proor. let avyb, a' € P(a), and b' € P(b). If P(a) N S(b')# 0,
there exists a word a; € P(a) N S(b'). Hence a, € P(a’) N S(b’'), and
we have the chain a’, ay, b'. If P(b) N S(a’) # 0, there exists a word
b, € P(b) N S(a’). Hence b, € P(b') N S(a’) and we have the chain
a', b, b'.

Conversely, let us suppose that, for any a’ € P(a) and any b’ € P(b),
there exists a chain which joins a’ and b’ and whose length is not greater
than 3. If the length is equal to 1, we have a’ = b. Hence a = b and, in
view of Proposition 1, it follows that ay b. If the length is equal to 2,
we have b' € P(a’) or b’ € S(a’). If b’ € P(a'), then b’ € P(a)—since
P(a’) = P(a)—and it follows that P(a) N S(b') # 0. Hence avyb. If
b’ € S(a’), then b’ € P(b) N S(a’). Hence P(b) N S(a') # 0 and awyb.
If the length is 3, the chain has the form a’, ¢, b’, where ¢ € P(a’),
b’ € S(c), or c € S(a"), b’ € P(c). In the first case, we have ¢ € P(a’) N
S(bY=Pa) N SKb') # 0. Hence avyb; in the second case we have
c € P(b") N S(a’)= P(b) N S(a’) # 0. Hence avyb.

Let us denote by G(a) the set of all words having the same gender
as a. Let us recall that R(a) denotes the set of all words which may be
joined with a by a chain (see Section 10, Chapter I). We then have a
further proposition.

Proposition 7. In any language {I', P, ®} and for any a € I' we have
G(a) C R(a).



4, Mathematical Models of Grammatical Gender 127

Proor. The Proposition follows immediately from Proposition 6.

We remarked, after the proof of Proposition 1, that two words belong-
ing to the same gender may belong, in our model, to different parts of
speech. But, in view of Proposition 1, Chapter II, the language used
in the proof of Proposition 1 is not adequate, whereas the natural lan-
guages are adequate. We may ask whether this situation is still possible
in an adequate language. If the answer is negative, the discrepancy we
mentioned after the proof of Proposition 1 is considerably diminished.
This is precisely the case, since we have Proposition 8.

Proposition 8. In an adequate language, two words belonging to the
same gender belong to the same part of speech.

Proor. Let {I', P, ®} be an adequate language and let a € T'. In view
of Proposition 7, we have G(a) C R(a). On the other hand, since
the language is adequate, we may apply Theorem 2, Chapter 11, and
deduce that R is finer than P’, that is, we have, for any a € T, that
R(a) C P'(a). It follows that G(a) C P’(a); but P’ (a) is precisely the
part of speech of a. Thus Proposition 8 is proved.

We may ask whether the relation y may still be nontransitive in an
adequate language.

Proposition 9. There exists an adequate language {I', P, ®} such
that vy is not transitive in I.

Proor. Let T'={a,b,c,d e f g, i k I, m n p,r}, Pla={a,c, e, n},
Pb)=1{b, d, f, k} P(g)={g i}, P)={l, m}, P(p)={p, r}, ®={ab,
cd, ef, gb, rb, ik, ld, mk, nk, pf}. We have S(a) = {a, g, r}, S(b) = {b},
S(e)={c, I}, S(d)={d}, S(e) = {e, p}, S(N={f}, S() ={i, m, n},Sk) =
{k}. We have the following marked P-structures: P(a)P(b), P(g)P(b),
P(HP(b), and P(p)P(b). All other P-structures are unmarked. It follows
immediately that P’(a)=P(a) U P(g) U P() U P(p)={a,c, e, n p,r,
g. i, l,m}, PP(b)=P(b)={b, d, f, k}, and S(xj) C P'(x) for every x € T.
Therefore, the language is adequate.

To show that y is not transitive in I', we shall prove that rya and
avyl, but we donot have ryl. Let ¥ € P(r). If ¥ = r, then P(a) N S(') =
P@)NSE)=1{a} #0. If r=p, then P) N SF)=P@a N Sp) =
{a} # 0. It follows that rya. Let I' € P()). If I’ = [, then P(a) N S(!') =
P@NSOH={c}#0. If I'=m, then P(a) N S(I')= P(a) N S(m) =
{n} # 0 and we have a vyl But we do not have #+y [, since P(r) N S()) =
PN Sm=PHNSp) =PlNSE=0.

ReMARK. To illustrate Proposition 9, we may consider the following
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fragment of Rumanian: a = profesor, b = frumos, ¢ = profesoard, d =
frumoasa, e = profesori, f = frumosi, g = scaun, i = scaune,k = frumoase,
| = carte, m = carti, n = profesoare; P and ® are defined as in the proof
of Proposition 9. Thus, we obtain all types of Rumanian noun syntagms
having the noun first and the adjective second.

Proposition 9 shows the necessity of introducing a new notion, which
generalizes that of double gender, considered in Sections 2 and 3. Given
a subset 4 of I', we shall say that

NGw)

x€EA
is the archigender induced by A. Every gender is an archigender, since
we may take 4 = {x}. Thus, the double gender is the archigender in-
duced by the set 4 = {a, b}, where a is a masculine noun, whereas b
is feminine. The term archigender, used in a similar way by Diaconescu
[6], follows from the well-known similar term archiphonem. See, for
instance, Martinet [29].

Let us consider a set 4 C I' containing at least two words x and y
for which G(x) # G(y). If the archigender induced by A is nonvoid,
it is called a proper archigender.

Given a word x, we shall define the order of gender multiplicity of x
as the greatest number n such that there exist n words a;, a,,. .., a,
for which the following two conditions are fulfilled:

(WHhiflsisn,1<j<n, and i # j, then a; and a; do not belong to
the same gender;

(2) x belongs to every G(a;) (1 <i=<n). If n> 1, we shall say that x
has a multiple gender.

The structure of genders may be better understood with the aid of
some topological notions.

Recall that a ropology for a nonvoid set X is a class I of subsets of
X such that: (1) O and X are members of 7, (2) the intersection of each
finite subfamily of 9 is a member of 9 and (3) the union of each sub-
family of 9 is a member of 9. The ordered pair (X, 9) is said to be a
topological space.

We may define for the set I' of words the following topology: A subset
A of T belongs to  if for every x € A we have G(x) CA. It is easy
to see that the conditions (1), (2), and (3) are fulfilled. But this topology
has a property which is stronger than (2): The intersection of each
subfamily of 7 is a member of 7. Hartnett called such a topology
a total topology[13]. A topological space (X, 9) for which 7 is a total
topology is said to be a toral space.
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The members of a topology are said to be open sets, whose comple-
ments are then closed sets. Therefore, a total topology has the pro-
perty that the intersection of an arbitrary collection of open sets is
an open set.

We say that a topological space (X, ) has the smallest open set
property if, for each x € X, there exists a unique member H(x) of
such that x € H(x) and H(x) C H for each open set H such that x € H.
Hartnett has obtained the following result[13].

Proposition 10. Let (X, ) be a topological space. Then (X, J) is a
total space if and only if (X, ) has the smallest open set property.

Proor. If (X, 9) is a total space and x € X, let H(x) be the inter-
section of all the open sets to which x belongs. Clearly, H(x) satisfies
the definition above, and so the space is total.

Conversely, suppose that (X, J) has the smallest open set property.
If {H;;i € I} is a family of open sets indexed by I, H=[{H;i € I}
and x € H, then x € H; for each i. But each H; is an open set and
so {x} C H(x) C H;, where H(x) is the smallest open set to which x
belongs. Hence, H(x) C ({H;; i € I} for each x € H and, therefore,

H=U{{x};x€ H} CU{H(x);x € H}
CM{H;i€Il}=H.

Hence H is an open set and 7 is a total topology.

It is interesting to establish the linguistic significance of the sets
H(x) in the total space ([, ). In this aim, let us put G,(x)=U{G();
YyEGW}, Gy)=U{GH);y€E€ G ®)},...,G0)=U{G®);y € Gy
0} ..., Go(x)=UG,(x). Tt is easy to see that G,(x) C G, (x) for
n=1,2,....

Proposition 11. In the total space (I, ) we have H(x) = G.(x) for
each x €T

Proor. Let y € G.(x). There exists an integer n such that y € G ,(x).
Hence G(y) C G,41(x) T G(x). Therefore G.(x) is an open set. Since
x € G, (x) and H(x) is the intersection of all the open sets to which x
belongs, it follows that H(x) C G.(x). On the other hand, there exists
a finite sequence of words xy,Xs,...,x,, such that x, € G (x),
X € G(xy),...,x, € G(x,—,) and x,=y. Since H(x) is open, we have
G(x)C H(x) for 1<i=<n. Therefore y € H(x) and G.(x) C H(x).

Corollary 1. Given two words x and y, we have either H(x) = H(y),
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or H(x) N H(y) =0 [that is, the relation b € H(a) is an equivalence
relation].

Proor. The proof follows immediately from Proposition 11.

Corollary 2. A language possesses no proper archigender if and only
if G(x)= H(x) for each word x.

Proor. Let us suppose that no proper archigender exists. Given
two words x and y such that y € G(x), we have G(x) N G(y) # 0 (in
view of Proposition 1). Hence G(y) = G(x). It follows that G,(x) = G(x).
Therefore G (x) = G(x) for n=1, 2,...and, in view of Proposition 11,
H(x) = G(x).

Conversely, if H(x) = G(x) for each x € I', then, by Corollary 1, the
relation y is an equivalence relation in . Hence G(x) N G(y) # 0
implies G(x) = G(y) and no proper archigender exists.

Corollary 3. We have G(x)= H(x) for every x € I' if and only if no
word has a multiple gender.

Proor. It is enough to remark that a word has a multiple gender
if and only if it belongs to a proper archigender and to take into account
Corollary 2.

A base % for a topology for a set is a subfamily of the topology such
that each open set is the union of members of %. The family of all bases
for a total space has the following property[13].

Proposition 12. Let (X,9 ) be a total space. For each x € X, let
H(x) be the smallest open set such that x € H(x) and let %, = {H(x);
x € X}. Then for any base # of  we have %, C % (that is, %, is
a minimal base for 9).

Proor. If H is an open set and y € H, then {y} C H(y) C H and
so H=U{{y};y€ H} C U{H(y);y € H} C H. Therefore, %, is
a base. To show that %, is a minimal base, let % be an arbitrary base
for the total topology. For each x € X, H(x) is open, H(x)=U {B;;
B; € #}, and so x € B; C H(x) for some B; € #. But then B; = H(x)
because H(x) is the smallest open set to which x belongs. Hence
H(x) € #foreachx € Xand %, C &.

We now may characterize some types of isomorphism concerning
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the structure of grammatical gender. We say that two languages
{T'y, P, ®,} and {T,, P,, ®,} are isomorphic with respect to the gender
if there exists a 1: 1 mapping f of I'; onto T',, such that for any x € T,
we have fiG(x)) = G(fx)). We say that {I';, P,, ®;} and {I,, P,, ®,}
are isomorphic in the broad sense with respect to the gender, if there
exists a 1:1 mapping g of I', onto Ty, such that, for any x €I'; we
have g(H(x)) = H(g(x)).

Let us recall two well-known notions.

Given two topological spaces (X, 7)) and (Y, #), a mapping ¢ of X
into Y is said to be continuous if for any open subset K of Y the set
¢ Y(K)={x; ¢(x) € K} is open in (X, J). Moreover, if ¢ is 1:1 and
onto and its inverse ¢! is also continuous, then ¢ is said to be a homeo-
morphism between (X, 9) and (Y, #). Two topological spaces are
called homeomorphic if there is a homeomorphism between them.

Proposition 13. Let (X, .9) and (Y, %) be total spaces, let a € X, and
let ¢ : X — Y. ¢ is continuous if and only if ¢(H(a)) C H(e(a)) for each
a € X; ¢ is a homeomorphism if and only if ¢ is 1 : 1, onto, and ¢(H(a)) =
H(p(a)) for each a € X[13].

Proor. The first assertion follows from the fact that continuity can be
described in terms of the bases for the topologies and Proposition 10.
Let us prove the second assertion. If ¢ is a homeomorphism, then ¢
and ¢! are continuous and so, for each a € X, ¢(H(a)) C H(¢(a)) and
¢ W(H(e(a)) € H(¢ ™ ¢(a))) = H(a). From the latter inclusion, we
have ¢(¢™' (H(¢(a))))= H(p(a)) C ¢(H(a)), and hence ¢(H(a))= H(¢(a)).
On the other hand, if ¢(H(a))= H(p(a)) for each a € X, ¢ is 1:1 and
onto, then ¢ is continuous because ¢(H(a)) C H(¢(a)). But ¢! is con-
tinuous at each b € Y because b=¢(a) for a unique a € X, ¢ Y (H(b))=
¢ (H(p(@) = ¢ (¢(H(a))) = H(a)= H(¢~'(b)), and therefore ¢~ *(H(b)) C
H(e™'(b)).
From Proposition 13 follows Proposition 14.

Proposition 14. Given two languages L,={T', P,, ®,} and L,=
{T,, P,, ®,}, the corresponding total spaces (I';, 9,) and (I'y, 7,) are
homeomorphic if and only if L, and L, are isomorphic in the wide sense
with respect to the gender.

In Section 6, Chapter II, we defined the notion of PS-isomorphism.
Since the genders of a language are completely determined by the
partitions P and S, Proposition 15 follows.



132 IV. Grammatical Gender

Proposition 15. If two languages are PS-isomorphic, they are iso-
morphic with respect to the gender.

It would be interesting to establish whether the converse of Proposi-
tion 15 is also true.

Proposition 16. There exist two P-isomorphic and S-isomorphic lan-
guages, which are not isomorphic with respect to the gender.

ProOOF. Let us consider the languages used in the proof of Proposition
43, Chapter II: Ty,=T,={a,b,c,d}, P(b)={b,c, d}=P,b), &;=
{ab, ac, ad}, ®, = {ad, bd, cd}. It is easy to see that S, = P, and S,(a) =
{a, b, c}. Since P,(a) = §,(a) = {a}, it follows that G,(a) = {a}. In view
of Proposition 2, we have {b, ¢, d} C G,(b) N G,(c) N G,(d). Since
Py(a) N S,(b')= Py(b) N S,(a’)=0 for any b’ € P,(b) and @' € P,(a);
Pi(a) N Sy(c") = Py(c) N Si(a’)=0 for any ¢’ € P,(c) and a’ € P,(a),
and P,(a) N §,(d")=P(d) N Sy(a’)=0 for any d’ € Py(d) and a’ € P,(a),
itfollows that G(b) = G (c)= G (d) = {b, ¢, d}. Onthe other hand, we have
Py(c) N Sy(a)=1{b, c} #0 and Py(d) N Sy(a@)=1{b, c} #0, Ps(a) N
So(d)y=Py(b) N Sy(a)=0; in view of Proposition 2, it follows that
Gya)=1{a, c, d}y, Gob)=1bh, ¢, d}, Gy(c)={a, b, ¢, d}, and G,(d) =
{a, b, ¢, d}. Since G,(x) contains at most three words for any x € I';,
whereas G,(y) contains four words for some y € T',, it follows that the
languages considered are not isomorphic with respect to the gender.
On the other hand, in view of Proposition 43, Chapter II, these languages
are both P- and S-isomorphic.

Propesition 17. If two languages are isomorphic with respect to the
gender, they are isomorphic in the broad sense with respect to gender.

PrOOF. Let us suppose that L, and L, are isomorphic with respect
to the gender, that is, there exists a 1:1 mapping f of I'; onto I', such
that f(G(x)) = G(f(x)). Let y € H(x). In view of Proposition 11, there
exists a finite sequence X, Xs,..., X;--., X, such that x; € G(x;—)
2<=<i=sn), x,=x and x,=y. Since f(G)) = G(f(u)) for any u €T},
it follows that Ax;) € G(fx;_)) (2 <i=n). Hence, using Proposition
11 again, we get f(y) € H(f(x)) and f(H(x)) C H(f(x)). In a similar
way one proves that H(f(x)) C AH(x)).

Proposition 18. There exist two languages which are isomorphic
in the broad sense with respect to the gender, but not isomorphic with
respect to the gender. .
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Proor. Let TI';={a, b,c,d e f g h i,j}, Pia)={a, b, c,d, e},
Pl(f) = {.f}s Pl(g) = {g’ hr i’j}a (I)l = {ag’ bg’ Ch: dlr ej’fj}s FZ =
{aliblic,7 d,s e,7.f'7 g,’ h,7 i,’jl}7 Pz(a,)z{a,scl}7 Pz(b’)z{b” dl}:
Pye'y=A{e', f'}, Py(g)={g', h',i",j'}, ®.={a'g’,b'g’, ', d'i', €],
f'h'}. We have Si(a) = {a, b}, Si(c)={c}, Si(e) = {e, f}, Si(g) = {g},
Siy={n}, S={i}, S:(N=1U}, Sia)={a',b'}, SxAc)={c'.f},
Sx(dy={d'}, Sie')={e'}, SAg")={g'}, S(n)y={N}, S(i")={i"},
S:(jy={j'}. It is easy to see that G(a)={a, b, ¢, d, e, f}, G(g)=
{g, h, i, j} (we make use of Proposition 2), G(a’)={a’, c'}, G(b') =
{b',d'}, Gley={e',f}, Gg)={g, n,i,j'}, H(a)=H(b)= H(c)=
H(d) = H(e) = H(f) = {a, b, ¢, d, e, f}, H(g)= H(h)= H(i) = H(j) =
{g, h i, j}, Ha')=H(®b')=H(c)=H(d')=H(e')=H(f)={a', b', ¢,
d,e'.f'y, HE)Y=HW)=H({")y=H({)={g',n,i',j’}. Let us
define ¢ as follows: ¢(x) =x', where x=a, b,c, d, e, f, g, h,i,]. We
have o(H(x)) = H(¢(x)) for every x € I';. Hence the languages con-
sidered are isomorphic in the broad sense with respect to the gender,
since G(a) contains six words, whereas G(x') contains at most four words,
for any x’ € T,.

REMARK. The languages considered in the proof of Proposition 18
become fragments formed by nominal syntagms of Latin and Rumanian,
respectively, if we take a=vir, b=viri, c=viro, d=virum, e=viris,
f=generis, g=fortis, h=forti, i=fortem, j=fortibus, a'=scaun,
b'=pom, c'=scaune, d'=pomi, e =carte, ' =carti, g' =frumos,
h' = frumoase, i' = frumosi, j' = frumoasa.

5. Grammatical Genders in Homogeneous Languages

The grammatical genders of a homogeneous language present some
important particulars.

Proposition 19. If {I', P, #} is a homogeneous language, then 7y is
transitive in I

PROOF. Let a €T, bET, and ¢ €T such that ayb and byc. We
shall show that ayc. Let a’ € P(a) and ¢’ € P(c). Since a y b, we have
at least one of the relations (1) P(a) N S(b) # 0 or (2) P(b) N S(a’) # 0.
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Since by c, we have at least one of the relations (3) P(c) N S(b) # 0;
(4) P(b) N S(c") # 0. If we have (1) and (3), then b € R(a) and ¢ € R(b).
Hence, because R is a partition of I', ¢ € R(a). If we have (1) and (4),
we deduce from (1) that » € R(a), whereas (4) implies, in view of the homo-
geneity, that P(c’) N S(b) # 0. But P(c’') = P(c). Hence P(c) N S(b) # 0
and ¢ € R(b); therefore, ¢ € R(a). If we have (2) and (3), we deduce
from (2), in view of the homogeneity, that S(b) N P(a’) # 0; but P(a')=
P(a). Hence P(a) N S(b) # 0 and b € R(a). On the other hand, (3)
implies ¢ € R(b); therefore, ¢ € R(a). If we have (2) and (4), we deduce,
in view of the homogeneity, that S(b) N P(a’) # 0 # S(b) N P(c").
Hence, since P(a’) = P(a) and P(c') = P(c), b € R(a), ¢ € R(b), and,
therefore, ¢ € R(a). We have thus proved that ay b and by c imply
¢ € R(a). But in view of Theorem 10, Chapter I1, we have for each
word x of a homogeneous language, K(x) = R(x). Hence ¢ € K(a). It
follows that we have at least one of the relations P(c) N S(a)#0,
P(a) N S(c) # 0. But in each of these cases we have ¢ € G(a). Hence
ayc.

Proposition 20. In any homogeneous language, y is an equivalence
relation in T

PRrOOF. The proof follows from Propositions 1 and 19.

Proposition 21. In any homogeneous language we have G(x) = H(x)
for each word x.

ProoOF. Let x, € G(x). In view of Proposition 20, we have G(x;) =
G(x). Hence G,(x) = G(x). It follows, by induction, that G,(x) = G(x)
for every word x and every positive integer n. Therefore G.(x) = G(x).
By Proposition 11, we deduce H(x) = G(x) for each word x.

Proposition 22. In a homogeneous language there exists no proper
archigender.

Proor. The proof follows from Proposition 21 and Corollary 2.

Proposition 23. In a homogeneous language no word has a muitiple
gender.

Proor. This proof follows from Proposition 21 and Corollary 3.
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Proposition 24. If two words in a homogeneous language have the
same gender, they belong to the same part of speech.

Proor. This follows from Theorem 8, Chapter 11, and Proposition 8.

Proposition 25. If {T', P, ®} is homogeneous, the associated total space
(T, 9) has the following property: For each x € I', G(x) is the smallest
open set to which x belongs.

ProOF. The proof follows from Propositions 10 and 21.

REMARKS. The total topology of a homogeneous language is the top-
ology of an equivalence relation, in the sense that each open set is a
union of y-equivalence classes, that is, a union of genders. Conversely,
every union of genders is an open set, in view of Proposition 25. Since
the complement of a union of y-equivalence classes is also a union
of y-equivalence classes, it follows that every closed set is open, and
conversely. A systematic investigation of the topology induced by an
equivalence relation has been made by Tondeur [48]. Some properties of
total topologies have been given by Marcus [24] (see also the corrections
indicated in [28]).

The results just obtained enable us to reconsider some facts concern-
ing grammatical genders in natural languages. In Section 2 we found
that every English noun has a double gender. But in fact no English noun
has a multiple gender in the sense of our definition, because the mascu-
line and feminine genders are not distinct in English. On the other hand,
in Section 8, Chapter I1, we established that all English nouns which are
neither singularia tantum nor pluralia tantum are nonhomogeneous.
This situation suggests that the converse of Proposition 23 is not true.
In fact, all English nouns belong to the same grammatical gender.

We remarked in Section 2 that some choice of paradigms yields the
existence of the nouns having double gender in French, Rumanian, and
other languages. In the light of the last results, we may explain the
reason for this situation.

Let us ignore the singularia tantum and the pluralia tantum. In this
case, as we remarked in Section 8, Chapter 11, the French nouns become
homogeneous and, in view of Proposition 23, the existence of nouns
having a multiple gender is not possible. However, let us consider,
in contrast to the customary situation, that bergére is an inflected form
of berger. Hence P(berger)= {berger, bergeére, bergers, bergeéres}.
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Berger and maison are of the same gender, since we have the chains
bergére, maison; bergéres, maisons. Hence berger and bergers may
be joined with any form of maison by a chain of length not greater
than 3. For similar reasons, we find that berger and crayon have the same
gender. Since maison and crayon do not have the same gender (there
exists no chain joining crayon and maison), it follows that berger has a
multiple gender. But this situation—which seems to contradict Propo-
sition 23 —becomes possible because the reorganizing of some paradigms
requires the sacrifice of the homogeneity, even in the absence of sin-
gularia tantum and pluralia tantum. Indeed, we shall show that, with
the new paradigms, the fragment of French noun syntagms is not homo-
geneous. We have P(berger) N S(feuille) = {bergére} # 0, whereas
P(feuille) N S(berger) = 0.

A similar situation occurs in Italian and in Spanish, but a quite dif-
ferent one occurs in Rumanian. As we established in Section 8, Chapter
II, most Rumanian nouns are not homogeneous and, as is easy to see,
the nonhomogeneity persists when we reorganize some paradigms
following the above procedure.

Let us return to the results just proved. Propositions 19-23 show the
simplicity of the structure of genders in homogeneous languages. It is
known that the genders in Slavic languages have a more complex struc-
ture than in the Western romance languages. Propositions 22 and 23
enable us to understand the formal nature of this difference. Moreover,
we may ask whether this simplicity is characteristic for homogeneous
languages, for instance, if the converse of Proposition 20 is true. The
answer is negative, as shown in the next proposition.

Proposition 26. There exists an adequate nonhomogeneous language
in which vy is an equivalence relation.

PrOOF. Let us consider the language used in the proof of Theorem 1,
Chapter I1I: T'= {a, by, b, 1, s, d}, P(a) ={a, by, c1}, P(b,) ={b,, c»},
P(d) = {d}, ® = {aa, bicy, b;cs, bsCy, bscy, d}. As shown by Theorem 1,
Chapter 111, this language is adequate and nonhomogeneous. We have
S(a)={a}, S(by)={by, b}, S(c)={cy, 2}, S(d)={d}. Since P(a) N
S(by) # 0 # P(a) N S(c,), a and b, have the same gender; since P(a) =
P(b,) = P(c,), we have also b, y b, and ¢, y b,. Since P(a) N S(b,) # 0 #
P(a) N S(cy), we have ayc,. In a similar way, we find that b, y ¢, and
¢,y ¢ Since G(d)={d} and in view of Proposition 2, we have G(a)=
G(b)=G(c))=Gby)=G(c)={a, by, c1, by, c;} and y is an equivalence
relation in T
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REMARK. By comparing the proof of Theorem 1, Chapter III, with
the proof of Proposition 26, we find that K(x) = G(x) for each x € T.
It would be interesting to establish whether in each adequate language
whose genders form a partition of I', the above equality holds. In any
case we have a further proposition.

Proposition 27. If, in an adequate language, ¥ is an equivalence relation
in T, the corresponding partition G of I" fulfills the equalities P’ = G’ =R’.

ProOF. We have, in view of Propositions 2 and 7, P(x) C G(x) C R(x)
for each x € T'. On the other hand, since the language is adequate, we
may apply Theorem 4, Chapter II and deduce that P'=R’. Then, by
Lemma 1, Chapter I, G' = P’.

Proposition 28. If, in an adequate language, vy is an equivalence relation
in I' and the classes form a partition of I', then G'(x) = K'(x) for every
x€eT.

ProOF. We have, by Proposition 7, Chapter I, P(x) C K(x) C R(x)
for each x €I'. Since the language is adequate, we have, in view of
Theorem 4, Chapter II, that P’ = R’. Since the classes define a partition
of I', we deduce from Lemma 1, Chapter 11, that P’ = K' = R’. In view
of Proposition 27, we have K' = G'.

We shall now give a result which makes the structure of the gram-
matical genders in homogeneous languages quite precise.

Propesition 29. In a homogeneous language the genders coincide
with the classes, that is, we have G(x) = K(x) for each word x.

Proor. In view of Proposition 7 we have G(x) C R(x) for every word
x. On the other hand, since the language is homogeneous, we have, by
Theorem 10, Chapter II, that K(x)= R(x) for any x € I'. Thus, Proposi-
tion 29 will be proved if we show that K(x) C G{x) for each x € I'. Let
y € K(x). We have at least one of the inequalities P(x) N S(y) # 0 or
P(y) N S(x) #0. Let x' € P(x) and y' € P(y). If P(x) N S(y) # 0, then,
since P(x)=P(x'), P(x') N S(y)# 0 and, in view of the homogeneity,
P(y) N S(x")# 0. If P(y) N S(x) # 0, since P(y)=P('), P(y') N S(x) # 0,
and in view of the homogeneity, we have P(x) N S(y’')# 0. Hence
vy € G(x) and Proposition 29 is proved.
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REMARK. Since, in view of Theorem 10, Chapter II, in any homo-
geneous language, the classes form a partition of I, it follows from Pro-
position 29 that the genders of a homogeneous language form a partition
of I'. Thus, Proposition 29 is an improvement of Proposition 20.

The converse of Proposition 29 is not true, as shown by the language
used in the proof of Proposition 26. The same language shows the exis-
tence of a nonhomogeneous language in which K(x) = G(x) = R(x)
for any x € T.

An illustration of Proposition 29 is given by French nouns, if we ignore
the singularia and pluralia tantum. Thus we get a homogeneous language
in which the nouns form two classes: one contains all masculine nouns,
the other all feminine nouns.

Another peculiarity of homogeneous languages is given by Proposi-
tion 30.

Proposition 30. In any homogeneous language we have S(x) C G(x)
for any x €T.

Proor. In view of Proposition 7, Chapter I, we always have S(x) C
K(x) for any x €T. Then, by Proposition 29 and since the language is
homogeneous, S(x) C G(x).

REMARK. Proposition 30 shows an important difference between
nonhomogeneous and homogeneous languages. Indeed, by Proposi-
tion 3, there exists a nonhomogeneous language in which two words
belong to the same gender, although they are not in the same family.

Proposition 31. There exist adequate nonhomogeneous languages,
in which the coincidence between the genders and the classes is no
longer valid.

PrOOF. Indeed, let us consider the language used in the proof of
Theorem 9, Chapter 11. We have I' = {a, b, ¢, d}, P(a) = {a, b}, P(c) =
{c, d}, ®={ad, bb, ab, bc, bd, dc, db, dd}, S(a)={a}, S(b)={b, d},
S(c)={c}. In view of Theorem 9, Chapter II, this language is adequate
and nonhomogeneous. On the other hand, it is easy to see that G(b)=
{a, b}, K(b)={a, b, ¢, d}. Hence G(b) # K(b).

Proposition 32. In any homogeneous language, the restricted genders
coincide with the genders; that is, we have y=p.

Proor. Leta €T, b €T. Since ap b implies ay b, it remains to prove
that the converse holds. But, in view of Proposition 29, ay b implies
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b € K(a). Therefore we have at least one of the relations P(a) N S(b) # 0
or P(b) N S(a) # 0. But, by virtue of the homogeneity, both these relations
are true. Hence, for any a' € P(a) and b’ € P(b), we have P(a) N S(b') #
0 # P(b) N S(a’); therefore, ap b.

It would be interesting to find the particular characteristics of the
genders in other types of languages studied in Chapter 11.

6. Categories in the Sense of Revzin

As we remarked at the end of Section 2, Chapter 1, Revzin has defined
a language as a system {TI', P, ®, 7", ¢}, where I', P, and ® maintain their
customary acception, whereas 7" is a collection of subsets of I', called
categories, and ¢ is a function which associates to each word x the
intersection of all categories containing x; ¢(x) is called the elementary
category of x ([38], p. 42-43). We may take 7" large enough to contain
such important sets of words as the parts of speech and the grammatical
genders of the considered language.

Following Revzin, a category V € 7" is said to be paradigmatic
if, for any x € V, we have P(x) C V: the category V is said to be syn-
tagmatic if for any x € V we have S(x) C V ({38, 39)).

It is obvious that the parts of speech are paradigmatic categories.
In order that every part of speech of a language L be a syntagmatic
category, it is necessary and sufficient that L be adequate.

We recall that the word a dominates the word b if for any pair of
strings x and y such that xay € ®, we have xby € ®. If any word of
a set A dominates any word of a set B, we say that 4 dominates B
and we write A —> B. If no word ¢ exists such that c—> A4, and c & A4,
we say that A is an initial set. Let us denote by A4, the set of all words
b such that A—>b. The set ¥(d)=A U A, is called a grammatical
category; it is the grammatical category generated by A. If A is a family,
then ¥(A4) is called an elementary grammatical category.

It is easy to see that, in general, a grammatical category is neither
paradigmatic nor syntagmatic, whereas an elementary grammatical
category is always syntagmatic. Since most grammatical categories
which occur in linguistics are unions of elementary grammatical cate-
gories, it follows that most customary grammatical categories are
syntagmatic.
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As it was shown by Propositions 2 and 3, the grammatical genders
are paradigmatic, but not always syntagmatic categories. Moreover,
in view of Proposition 30, we deduce that the grammatical genders
of any homogeneous language are both paradigmatic and syntagmatic.

Proposition 33. (Revzin [38] and [39], Theorem 3). If V' is both para-
digmatic and syntagmatic, for any word x € V we have R(x) C V.

PrOOF. Letx € V and y € R(x). There exists a chain x = x;, Xa, . . . , X;,
X1 .-, Xp=Yy, that is, x;3 € P(x;) U S(x;) for 1<i<n—1. Since
V is both paradigmatic and syntagmatic, and x € V, it follows that
x, € V. Hence P(x;) U S(x;) C V. This implies x; € V. Continuing
in this way, we obtain x, € V, that is, y € V.

REMARK. Since in any homogeneous language the grammatical genders
are both paradigmatic and syntagmatic, it follows that in such a language
we always have R(x) C G(x) for any x € I'. Since G(x) C R(x) in any
case, we deduce that G(x) = R(x) for each x € I'. In another way, this
result was obtained in Proposition 29; indeed, in a homogeneous language
we have K(x) = R(x) for any x € I' (Theorem 10, Chapter 1I).

Following Revzin, a category V is P-uniformly distributed if, for
any pair of words x and y such that y € R(x) and P(x) N V # 0, we
have P(y) N V#0. V is S-uniformly distributed if from y € R(x) and
S(x) N V#0 it follows that S(y) NV # 0.

Proposition 34. If {I', P, ®} is homogeneous, the grammatical genders
are both P-uniformly and S-uniformly distributed.

PrROOF. Let y € R(x) and P(x) N G(u) # 0. In view of the remark
following Proposition 33, we have R(x) = G(x). Hence, by Proposition
20, G(y) = G(x). Since, by Proposition 2, P(x) C G(x), it follows, in
view of Proposition 20, that G(u) = G(y); but P(y) € G(y). Hence
P(y) N G(u) = P(y) N G(y) = P(y) # 0. Therefore G(u) is a paradigmatic
category.

Suppose now that y € R(x) and S(x) N G(u) # 0. We have, by Pro-
position 30, S(x) C G(x). Hence, by virtue of the homogeneity, G(x) =
Gy)=Gw) and SO)NGw =Sy NGy =Sy #0. Therefore
G(u) is a syntagmatic category.

Proposition 34 is a particular case of a more general result, due to
Revzin ([38] and [39], Theorem 5).
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Proposition 35. If {I', P, ®} is homogeneous, every syntagmatic
category is P-uniformly distributed, whereas every paradigmatic
category is S-uniformly distributed.

PROOF. Let V be a syntagmatic category, that is, x € V implies
Sx)CV. Let yE R(x) and Px) N V#0. Let z € P(x) N V. Since
P(x) C K(x) = R(x) (Theorem 10, Chapter II), we have z € K(x) and
y € K(x). Hence z € K(y). Therefore, in view of the homogeneity,
S@QNPHY#0#PZ) NSy). Let u € S N P(). Since z €V and
V' is syntagmatic, we have S(z) CV. Hence u € V. Therefore
u € P(y) N V+#0 and V is P-uniformly distributed.

To prove the second part of Proposition 35, we proceed in a similar
fashion, replacing P by S and S by P.

The coincidence between genders and classes in homogeneous
languages receives new support by virtue of Proposition 36.

Proposition 36 (Revzin [38] and [39], Theorem 4). Let V, and V,
be two distinct categories contained in some R-cell R(x), where x €T
and {I', P, ®} is an arbitrary language. If both V, and V, are para-
digmatic, at least one is not P-uniformly distributed. If both V', and
V, are syntagmatic, at least one is not S-uniformly distributed.

PrROOF. Let us admit that both V, and V, are P-uniformly distributed.
We shall show that V, = V,.

Given y € V,, let x be such that P(x) N V,;# 0. Since V, C R(x),
we have y € R(x) and, since V, is P-uniformly distributed, it follows
that P(y) NV, 0. But V, is paradigmatic. Therefore P(y) C V,, and
thus y € V, and V, C V,. In a similar way, but replacing V, by V, and
V, by V,, we obtain V, C V,.

The second part of Proposition 36 may be obtained by replacing
P by S in the proof above.

RemMark. If {T', P, ®} is homogeneous, x €T, and G(u#) and G(v)
are two genders such that G(x) U G(v) C R(x). Then, in view of Pro-
position 36 and since G(u#) and G(v) are both paradigmatic and syntag-
matic, it follows that either G(u) = G(v) or G(u)# G(v) and neither
G(u) nor G(v) are P-uniformly distributed and neither G(u) nor G(v)
are S-uniformly distributed. The second possibility contradicts Pro-
position 34. Hence G(u) = G(v) = R(x). This result agrees with Proposi-
tion 29, since K(x) = R(x).
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7. Subparadigms and Subfamilies

Given a language {I', P, ®} and a word x € I', we shall define the
subparadigm Ps(x) of x, as the set of words y which fulfill the following
three conditions: (1) y € P(x); (2) if x’ € S(x), then P(x’) N S(y) #0;
3) if y' € S(y), then P(y') N S(x) # 0. We shall also define the subfamily
Ss(x) of x as the set of words z which fulfill the following three conditions:
(@ y € S(x); (b) if x; € P(x), then S(x;) N P(z) #0; (¢) if z, € P(2),
then S(z;) N P(x) # 0. These notions were introduced by Revzin ([38],
p. 45).

Propesition 37, The relations y € Ps(x) and z € Ss(x) are equivalence
relations in T

PrROOF. We have x € P(x), x' € P(x') N S(x) for each x' € S(x),
and y’ € P(y') N S(x) for each ¥y’ € S(x). Hence x € Ps(x). The defini-
tion of y € Ps(x) is symmetric with respect to x and y. Hence y € Ps(x)
imphes x € Ps(y). To prove the transitivity, let y € Ps(x) and z € Ps(y).
We have y € P(x) and z € P(y). Hence z € P(x). If x’ € S(x), then
Px) N S(y)#0. Let u € P(x') N S(y). Since u € S(y), we have
P(u) N 8(z) # 0. But P(u) = P(x’). Hence P(x') N 8(z) # 0. If 2’ € S(2),
then P(z') N S(y)#0. Let v € P(Z') N S(y). Since v € S(y), we have
P(v) N S(x) #0. But P()= P(z’). Therefore, P(z’) N S(x)* 0 and
the relation considered is transitive.

In a similar way (by replacing P by § and § by P) one can prove
that z € Ss(x) is also an equivalence relation.

Proposition 38. There exist a nonadequate language {I', P, ®} and
a word x € I' such that P(x) # Ps(x) = Ss(x) # S(x).

Proor. Let I'={a, b, c, d}, P(a)={a}, PB)={b}, P(c)=/{c, d},
® = {ab, cb, ad, cd}. We have S(a)={a, ¢}, Sb)={b, d}. Since
c € P(d), a€ S(c), but P(a) N S(d)=0, it follows that Ps(c)={c}.
Hence Ps(c)# P(c). Since c¢ € S(a), d € P(c), but S(d) N P(a)=0,
it follows that Ss(c) = {c}. Hence Ss(c) # S(c). The word x = ¢ fulfills
the required conditions. On the other hand, in view of the proof of
Proposition 1, Chapter II, the language considered is not adequate.

Proposition 39. There exist an adequate language {I', P, ®} and a
word x € I such that P(x) #* Ps(x) = Ss(x) #= S(x).
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Proor. Let I'={a, b, ¢, d}, P(a)= {a, b}, P(c)={c, d}, ®={ad,
bb, ab, bc, bd, dc, db, dd}. We have S(a) = {a}, S(b) = {b, d}, S(c)=
{c}. Since b € P(a), d € S(b) and P(d) N S(a) =0, we have Ps(b) =
{b}. Hence Ps(b) # P(b). Since b € S(d), a € P(b), and S(a) N P(d)=0,
we have Ss(b) = {b}. Hence Ss(b) # S(b). The word x = a fulfills the
required conditions. On the other hand, in view of the proof of Theorem 9,
Chapter I1, the language considered is adequate.

The linguistic significance of the subparadigms may be illustrated by
the following example. Consider the Rumanian neuter nouns, such
as scaun. The paradigms of these nouns have the specific property
that each inflected form of the singular belongs to the family of some
masculine noun, whereas each inflected form of the plural belongs
to the family of some feminine noun. For instance, we have P(scaun) =
P.(scaun) U Py(scaun), where P,(scaun)= {scaun, scaunului, scaunule,
scaunul}, Py(scaun) = {scaune, scaunele, scaunelor}. FEach element
of P,(scaun) belongs to the singular, whereas each element of P,(scaun)
belongs to the plural. We have scaun € S(pom), scaunului € S(pomului),
scaunule € S{pomule), scaunul € S(pomul), whereas pom, pomului,
pomule, and pomul belong to the masculine grammatical gender and
belong to the same gender in the sense of the definition givenin Section 4.
We have also scaune € S(carti), scaunele € S(cartile), scaunelor €
S(cartilor), whereas carti, cartile, and cartilor belong to the feminine
grammatical gender and belong to the same gender in the sense of the
definition given in Section 4. On the other hand, scaun and pom do
not belong to the same gender, and the same is true for scaune and
carti. However, if we consider P,(scaun) and P,(scaun) as two distinct
paradigms and we adopt this convention for all neuter Rumanian nouns,
scaun is the same gender as pom, whereas scaune is the same gender
as cartl; the Rumanian neuter no longer exists.

The differences between P (scaun) and P.(scaun) may be detected
with the aid of subparadigms. Indeed, it is easy to see that Ps(scaun) =
P,(scaun), whereas Ps(scaune)= Py(scaun). That scaune does not
belong to Ps(scaun) results from the relations scaune € P(scaun),
carti € S(scaune), P(carti) N S(scaun)=0.

There are Rumanian nouns which belong to the same family, al-
though they do not have the same gender. For instance, scaun € S(pom),
scaune € S(carti) but scaun and pom, scaune and carti do not have
the same gender. We may detect this peculiarity with the aid of the
subfamilies. Indeed, two Rumanian nouns which belong to the same
family have the same gender if and only if they belong to the same sub-
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family. For the sake of illustration, let us prove that scaun does not
belong to Ss(pom). We have pomi € P(pom),but S(pomi) N P(scaun)=0.

The linguistic significance of subparadigms and subfamilies, partic-
ularly concerning Slavic languages, are discussed by Revzin [38, 39].

It is not accidental that all linguistic illustrations of subparadigms and
subfamilies are taken from languages such as Rumanian and Russian,
in which, as we have already proved, most nouns are not homogeneous
words (see, for instance, Section 8, Chapter 1I). Indeed, we have Pro-
position 40.

Proposition 40. If the language {I', P, ®} is homogeneous, the sub-
paradigms coincide with the paradigms, whereas the subfamilies coincide
with the families.

ProoF. Since in any case Ps(x) C P(x) for each x €T, let us prove
that P(x) C Ps(x). Lety € P(x) andy’ € S(y). We havey € P(x) N S(y) =
P(x) N S(y') # 0. Hence, in view of the homogeneity, P(y") N S(x) # 0.
Now let x’ € S(x). We have x € P(y) N S(x) = P(y) N S(x") # 0. Thus,
in view of the homogeneity, P(x') N S(y) # 0; therefore, y € Ps(x).

In the same way, but replacing P by § and S by P, we prove that
Ss(x) = S).

Given two words x and y such that y € S(x), we cannot deduce that
x and y belong to the same categories. In a nonadequate language, x
and y may belong to different parts of speech, whereas in a nonhomo-
geneous language x and y may have different genders. It is interesting
to decompose S(x) into subsets S, S,,..., S, such that, for y € §,,
z € §;(1 <i=<n),yand z belong to the same categories. If, for each word
x, the subfamilies of S(x) vield such a decomposition, we shall say that
the language considered is S-regular (Revzin [38], p. 45). The S-regu-
larity and the homogeneity are very close properties. Indeed, if we
consider as categories only the grammatical categories (in the sense
defined in the first part of this section), the parts of speech and the
genders, then, in view of Theorem 10, Chapter 11, and of Propositions
2 and 40, this Chapter, any homogeneous language is S-regular. As a
matter of fact, it would be interesting to see whether there exists a
part of speech or a gender in a homogeneous language, which is not
a grammatical category.

Another interesting problem is to investigate the notions introduced
in Chapter 11, when S(x) is replaced by Ss(x), whereas P(x) is replaced
by Ps(x).
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8. A Measure of the Difference hetween Genders

We shall now study the problem of finding a measure of the difference
between two given genders. To this aim, we shall introduce the notion
of distance between two genders G(x) and G(y), defined as the smallest
number n having the property that any word of G(x) may be joined with
any word of G(y) by a chain of a length smaller than, or equal to n+ 1.
In case there is no natural number having this property, we shall say
that the distance between G(u) and G(y) is infinite.

Let us denote by &(x, y) the distance between G (x) and G(y). Itis easy
to see that 8(x, y) = 0; 8(x, y) = 8(y, x); 8(x, y) = 8(x, 2) + 8(z, y) for any
word z. Thus, 8(x, y) fulfills almost all the properties of a distance. It
is useful especially whenever the genders are pairwise disjoint (as in
most of the following examples).

To establish the distances between genders in various natural lan-
guages, we shall reconsider the results of Section 3 in the light of the
definitions given in Section 4. We do not claim completeness; we intend
only to illustrate the notion of distance and its linguistic significance.

ENcLIsH. We have, for two arbitrary nouns x and y, G(x) = G(y)
and 8(x, y) = 2.

FrencH. Let us consider the following six genders: G(crayon) (first
masculine), G(arbre) (second masculine), G(maison), (feminine), G(cas)
(first neuter), G(voix) (second neuter), G(enfant) (third neuter), and
G(camarade) (fourth neuter). Since the strings bel arbre and bels arbres
are correct, whereas the strings bel crayon, bels crayons are not, we have
d(crayon, arbre) = . Since the strings beau crayon and beaux crayons
are correct, whereas beau maison and beaux maisons are not, it follows
that 8(crayon, maison) = . Since the strings nouveau cas and nouveaux
cas are correct, whereas the strings nouveaux crayon and nouveau
crayons are not, we have &(crayon, cas) = . Since beau voix and
beaux voix are not correct strings, it follows that 8(crayon, voix) = .
Since the correct strings belle enfant and belles enfants are no longer
correct when we replace enfant by crayon and enfants by crayons, we
have 8(crayon, enfant) = . Since the correct strings belle maison and
belles maisons become incorrect when we replace maison by arbre and
maisons by arbres, it follows that 8(arbre, maison) = c. Since the strings
bel arbre, bels arbres are correct, whereas bel cas and bels cas are not,
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we have 8(arbre, cas) = . Since bel voix, bels voix are not correct, it
follows &(arbre, voix) = . Since the strings belle enfant and belles
enfants are correct, whereas belle arbre, belles arbres are not, we have
8(arbre, enfant)=o. Since grande voix and . grandes voix are correct
strings, whereas grande maisons and grandes maison are not, it follows
that 8(maison, voix) = ». Since the strings bel enfant and bels enfants
are correct, whereas bel maison and bels maisons are not, we have
8(maison, enfant) = . In the same way we find &(maison, cas) = w«,
8(cas, voix) = = and 8(voix, enfant) = . Since the strings beau cama-
rade, beaux camarades, belle camarade, and belles camarades are all cor-
rect, whereas beaux camarade, beau camarades, belles camarade, belle
camarades, bel camarade, and bels camarades are not, it follows that
d(crayon, camarade)= &(arbre, camarade)=8(maison, camarade)=
d(cas, camarade) = d(voix, camarade) = 8(enfant, camarade) = .
It is easy to see that two different genders are always disjoint.

ITaLIAN. Let us consider the following three genders: G(fratello)
(masculine), G(bocolla) (feminine), G(giovane) (neuter). Since the
strings buono fratello and buoni fratelli are correct, whereas the strings
buono bocolla and buoni bocolle are not, we have 8(fratello, bocolla) =
. Since buona giovane and buone giovani are correct strings, whereas
buona fratello and buone fratelli are not, we have 8(fratello, giovane) = =,
Since buono giovane and buoni giovani are correct strings, whereas
buono bocolla and buoni bocolle are not, it follows that 8(bocolla, gio-
vane) = «, It is easy to see that two distinct genders are always disjoint.

SpanisH. Let us consider the genders G(padre) and G(madre). For
similar reasons we find 8(padre, madre) = x,

RUMANIAN. Let us consider the following six genders: G(pom) (mas-
culine), G(carte) (feminine), G(scaun) (first neuter), G(ochi) (second
neuter), G(invatatoare) (third neuter), and G(nume) (fourth neuter).

The shortest chain between pomi and carte is of a length equal to 6:
pomi-pom~scaun-scaune—carti-carte. Since any word of P(pom) may
be joined with any word of P(carte) by a chain of length not greater than
6, it follows that 8(pom, carte) = 5. The shortest chain between pomi
and scaune is equal to 4: pomi-pom-scaun-scaune. Since any word
of P(pom) may be joined with any word of P(scaun) by a chain of length
not greater than 4, we have 8(pom, scaun) = 3.

The shortest chain between pom and ochi is of length 4: pom-pomului-
ochiului-ochi. Since any word of P(pom) may be joined with any word
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of P(ochi) by a chain of length not greater than 4, we have 8(pom, ochi) =
3. The shortest chain between pomi and invdtatoare is of length 6:
pomi—pom—scaun—scaunelor—invatatoarelor—invatatoare. Since any word
of P(pom) may be joined with any word of P(invatatoare) by a chain no
longer than 6, it follows that 8(pom, invatatoare) = 5. Since for any x €
P(pom) and any y € P(nume) we have the chain x—pomului—numelui-y,
it follows that 8(pom, nume) = 3.

For each x € P(carte) and each y € P(scaun) we have the chain x—
carti-scaune-y. Hence &(carte, scaun) = 3. For each x € P(carte) and
y € P(ochi) we have the chain x—carti-scaune-scaunului-ochiului-y;
hence &(carte, ochi) = 5. For each x € P(carte) and y € P(invatatoare)
we have the chain x—cartii-invatatoarei-y. Hence 8(carte, invatatoare) =
3. For each x € P(carte) and y € P(nume) we have the chain x—cartilor-
numelor-y. Hence &(carte, nume) = 3.

In the same way we find that 8(scaun, ochi)=3, &(scaun, invata-
toare) =3, d(scaun, nume) =73, 8(ochi, invatatoare)=35,  8(ochi,
nume) = 3, 8(invatatoare, nume) = 3. Moreover, it is easy to see that
two distinct genders are always disjoint.

Russian. Let us consider the genders G(stol) (masculine), G(kniga)
(feminine), and G(okno) (neuter). We use the following remark: A
plural form of a Russian adjective is the same for all genders. It fol-
lows that two plural noun forms having the same case are in the same
family. If x € G(stol), y € G(kniga), and z € G(okno) and x', y', 7' are
the corresponding forms of nominative plural, we have the chains
x—x'—y'—y; x—x'—z7'—z; y—y'—z'—z. Hence 8(stol, kniga) = 8(stol, okno) =
S8(kniga, okno) = 3.

GERMAN. Let us consider the genders G(Titel) (masculine), G(Gabel)
(feminine), G (Fenster) (neuter). For reasons similar to those concern-
ing Russian we find 8(Titel, Gabel) = 8(Titel, Fenster)= 6(Gabel,
Fenster) = 3.

LATIN. Let us consider the genders G(puer) (masculine), G(aestas)
(feminine) and G(tempus) (neuter). We use the following remark: A
dative plural form of a Latin adjective is the same for all genders. It
follows that two dative plural noun forms belong to the same family.
If x € G(puer), y € G(aestas), and z € G(tempus), we have the chains
x—pueris—aestatibus—y;, x—pueris—temporibus—z; y—aestatibus—tempor-
ibus—z. It follows that &(puer, aestas) = 8(aestas, tempus) = 8(puer,
tempus) = 3.
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We notice that the distance between masculine and feminine is maxi-
mum in French, Italian, and Spanish (being equal to ©) and minimum
in Russian, German, and Latin (where it is equal to 3). Rumanian is,
in this respect, intermediate. Unlike Russian, German, and Latin (where
the three genders exhibit, in their reciprocal relations, identically strong
oppositions —based on the constant value of all the distances), in Ruman-
ian some of the neuter genders are obviously inferior compared to the
masculine and the feminine. For instance, the distance between mas-
culine and feminine is equal to 5, whereas that between masculine and
first neuter is equal to 3.

The conditions under which we have settled the existence of the
neuter in Rumanian and the conditions under which we have settled
its disappearance (see Sections 3 and 7) define a specific position
in this much argued problem of the neuter [1-5, 10, 11, 17, 18, 35,
37, 41-44, 47, 49]. In any event the neuter, under the condition that
it exists in Rumanian, is fundamentally different from both the Latin
and the Russian neuter, through its relatively weaker opposition in rela-
tion to the masculine and the feminine. It is of interest that the diachronic
analysis of Rumanian neuter leads to the conclusion that it continues
neither the Latin neuter nor the Slavic one (see in this respect the paper
of Rosetti [43]). The Rumanian neuter corresponds to neither the Slavic
nor the Latin neuter, neither in form nor in semantic content. In sum and
substance, as Rosetti [43] and Jakobson [18] have already mentioned,
the first Rumanian neuter is an appanage of the inanimate alone, which
does not exclude, of course, the existence of some masculine or feminine
inanimate.

As far as French neuter is concerned, as well the second, the third
and fourth Rumanian neuter, they are exclusively a result of some pheno-
mena of morphologic homonvmy. Hence they are, in some sense, secon-
dary genders.

9. Personal Genders in Rumanian

Until now we have adopted as marked (correct) strings only those of
the form noun+ qualifying adjective in the positive degree or qualifying
adjective in the positive degree+ noun. But as soon as we take other
sentences into consideration, we feel the need of detecting more shades
of difference in grammatical genders.
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Let us consider the Rumanian language. To understand in a better
fashion the discussion we made, we shall also give here the English
translation of all Rumanian strings we use.

If we enlarge sufficiently the set of sentences (marked strings) so
that they also contain sentences of the type cheama pe baiat (call the boy)
or dau lui Ion o carte (I give John a book), we observe, in relation to
the above definition, that each of the words pom (tree), baiat (boy),
and Ion (John) has its own characteristic gender. Indeed, if we admit
the sentence cheama pe baiat (call the boy), we can never accept the
sentence cheama pe pom (call the tree); it follows that baiat (boy)and
pom (tree) are not in the same distribution class as they were when
we considered a more restricted set of sentences. Hence it still follows
that baiat (boy) and pom (tree) can no longer be joined by anything
except a chain having a length of 4: baiat (boy), baiatului (of (to) the
boy), pomului (of (t0) the tree), pom (tree); therefore, baiat (boy) and pom
(tree) are not of the same gender.

If we admit the sentence dau Ilui lon o carte (I give John a book),
but do not agree to sentences such as dau lui pom o carte, (pom = tree)
or dau lui baiat o carte* (baiat=Dboy), it follows that Ion is neither in the
same distribution class with pom nor with baiat. Since the paradigm of
lon is cut down to this single word [we are leaving aside the form Ioane
(John) in the vocative], it follows that there is no chain, however long,
that could join Ion to baiat or Ion to pom. Thus, the grammatical gender
of fon differs both from the grammatical gender of baiat and from that
of pom. This conclusion is still valid even if we take into consideration
the form Ioane (John, in the vocative). The only new factor in such a
case is the possibility of joining fon with baiat and with pom by a chain
having a length equal to 4.

The grammatical gender of pom (tree) will be called nonpersonal
masculine gender. The grammatical gender of Ion will be named personal
masculine gender of proper nouns, whereas the grammatical gender of
baiat (boy) will be called abstract personal masculine gender.

A similar analysis may be carried out for words such as masa (table),
Maria and fata (girl). The outcome is that fata and masa are not in
the same distribution class, because we do admit the sentence cheama
pe fata (call the girl) and reject the sentence cheamda pe masa (call
the table). Fata and masa may be joined only by a chain of a length
equal to 4: fata, fetei [of (to) the girl], mesei [of (to) the table], masa.
Therefore fata and masa are not of the same gender. In a similar manner

*Nothing in English corresponds to the incorrectness of the two sentences.
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it may be proved that Maria and masa are not of the same gender
either; they may be joined only by a chain of a length equal to 4: Maria,
Mariei (Mary’s or to Mary), mesei [of (to) the table], masa. We notice
here a difference from the situation of the masculine nouns. If Jon
and pom cannot be joined by any chain, Maria and masa can be joined
by a chain.

The question of whether Maria and fata are of the same gender
must now be settled. The answer to this question is different from
the one given to the analogous situation for the masculine, because,
if we do admit the sentence dau lui lon o carte (1 give John a book),
we reject the sentence dau lui Maria o carte (Mary is a feminine proper
name).

But if we take into consideration sentences of the type Maria cea
silitoare (Mary the diligent) we notice that Maria does not belong
to the same class of distribution with fata because the sentence fata
cea silitoare (girl the diligent) is not admitted. The smallest chain uniting
Maria with fata is, in this case, a chain of a length equal to 4: Maria,
Mariei (Mary’s or to Mary), fetei (the girl’s or to the girl), fata (girl);
therefore Maria and fata are not of the same gender.

Let us consider now a feminine proper noun to which the article
lui may be added, for instance, Mimi. For such a word, we apply the
same reasoning as for the word Jon. The result is that Mimi belongs
to a different gender from that of fata (girl) as well as from that of casa
(house). At the same time, we notice that there is no chain to join Mimi
with Maria, which means that these two nouns also have different
genders.

As far as the neuter genders are concerned, it is not difficult to see
that their existence has not been affected by the fact that the set of
sentences has been enriched.

In conclusion, we have obtained the following grammatical genders
of Rumanian nouns, with respect to the set of enriched sentences as
shown above:

(1) the nonpersonal masculine gender [pom (tree), stilp (pillar),
etc.];

(2) the first personal masculine gender or the abstract personal
masculine gender [baiat (boy), copil (child), etc.];

(3) the second personal masculine gender or the personal masculine
gender of proper nouns (Ion, Gheorghe, Vasile, etc.);

(4) the nonpersonal feminine gender [casa (house), carte (book),
ploaie (rain), etc.];
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(5) the first nonpersonal feminine gender or the abstract personal
feminine gender [fata (girl), copila (little girl), femeie (woman), etc.];

(6) the second personal feminine gender or the personal feminine
gender of proper nouns (Maria, Sanda, etc.);

(7) the third personal feminine gender or the personal semifeminine
gender of proper nouns (Mimi, Jeni, etc.);

(8) the neuter genders [scaun (chair), caiet (exercise book), etc.].

We are not yet sure that we have thus exhausted the Rumanian
genders. The analysis of names of towns, of countries, of generic names
of animals, and of other categories of words, as well as the enriching
of the set of sentences, might reveal new grammatical genders. How-
ever, we shall not investigate this problem now.

The problem of determining the reciprocal distance between the
above genders of the Rumanian language seems quite natural. We
shall record here some of these distances; using the code MN = non-
personal masculine, I MP = first person masculine, Il MP = second
person masculine, FN = nonpersonal feminine, [ FP = first person
feminine, II FP =second person feminine, I/l FP = third person
feminine, N = first neuter. We obtain the results contained in Table 4
(filling in the empty spaces may form the object of another investigation).

TABLE 4
MN I MP IIMP FN IFP I FP IHTFP

MN 2 3 oo 5
1 MP 3 2 e
1T MP 00 o 2
FN 5 2 3 3 co
I1FP 4 2 B
11 FP 4 2 0
11 FP 00 @ o0 2

It is worthwhile to observe that the opposition between the nonpersonal
masculine and the first person masculine is weaker than the opposition
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between the first person masculine and the second person masculine.
The first person masculine is nearer to the nonpersonal masculine than
to the second person masculine. Likewise, the opposition between
the third person feminine and any other feminine gender is stronger
than the opposition between the nonpersonal feminine and any of the
two first person feminine genders.

As shown above, the widely accepted current thesis, according to
which Rumanian has only one masculine and one feminine gender, cor-
responds in fact to a relatively low level of grammaticalness, namely,
to the one supplied by the syntagms consisting of a noun and an adjective
in the positive degree. As soon as we move to a higher level of gram-
maticalness in the Rumanian language the number of masculine and
feminine genders increases considerably.

We might raise the problem of the necessity of passing at first through
lower levels of grammaticalness; might it not be possible to consider
the entire grammaticalness at once? The answer is negative. In truth,
the actual idea of such a consideration is an illusion. We can keep in
mind a higher grammaticalness compared to a preceding stage of the
investigation, but something will always escape our endeavor, because
grammaticalness is inexhaustible. Besides (and, perhaps, this is the most
important fact) this gradual passing from one level of grammaticalness
to another superior one, enables us to identify certain simple, but essen-
tial, connections which could not be detected otherwise. Thus, at the
level of the syntagms noun+ adjective we could detect the mechanism
of the passing from the natural gender to the grammatical one, a mechan-
ism which no longer appears at superior levels of grammaticalness,
because, for example, barbat (man) and pom (tree) cease, under such
conditions, to be of the same gender.

As we have seen above, the personal genders occur, in Rumanian,
at a superior level of grammaticalness. These genders arise within the
genders already detected at an inferior level of grammaticalness; two
personal genders arise within the masculine and another three genders
within the feminine. This situation tallies roughly with the results of
the diachronic analysis [43]; yet, some details differ. We do observe,
at the same time, that the passing on to a superior level of grammatical-
ness does not cancel the results of the analysis done at an inferior level,
but enlarges them, also adding a more subtle description.

Concerning personal genders in Rumanian, see also Chitimia [4], Graur
[10, 11], Hjelmslev [14], Nandrig [32], Niculescu [33], Racovita [36],
Rosetti [42], Seidel [46]. Concerning genders in Slavic languages see
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see [40].

—

H oW

11.
12.

13.
14.

15.

16.

17.

18.
19.

20.
21.
22.
23.
24.

25.

REFERENCES

C. Bazell, Has Rumanian a third gender? Cashiers Sextil Puscariu 1, 77-85 (1952).
G. Bonfante, Esiste il neutro in italiano? Quaderni dell’Istituto di glottologia, Bologna
6, 103-109 (1961-1962).

. I. I. Bujor, Genul substantivelor in limba roména. Limba Romdna 4, 51-64 (1955).
. L. C. Chitimia, Genul personal in limbile polona si roméand, Romanoslavica 3, 31-41

(1958).

- L. Coteanu, Despre pluralul substantivelor neutre in roméneste. Limba si Literatura

1,103-117 (1955).

. P. Diaconescu, Le nombre et le genre du substantif roumain. (Analyse contextuelle).

Rev. Roumaine Linguistique 9,(2) 171-193 (1964).

. 1. Fodor, The origin of grammatical gender. Lingua 8 (1-2) (1959).
. I. Fodor, La typologie des langues slaves et le genre grammatical, in “Slavjanska

Filologija”. Vol. 3, Sofia, 1963.

. M. A. Gabinskii, Autochtonous elements in Moldavian (in Russian). Vopr. Jazykoz-

nanija 1956, 85-93.

. A. Graur, Contributions a I’étude du genre personnel en roumain. Bull. Linguistique

13, 97-105 (1945).

A. Graur, “Studii de lingvistica generald.” Editura Academiei R.P.R., Bucuresti, 1960.
G. L. Hall and I. S. Clair-Sobell, Animate gender in Slavonic and Romance languages.
Lingua 4, 194-201 (1954).

W. E. Hartnett, Total topological spaces (in press).

L. Hjelmslev, Animé et inanimé, personnel et non-personnel. Trav. Inst. Linguistique
Paris 1, 155-199 (1956).

L. Hjelmslev, Essais linguistiques. Trav. Cercle linguistique Copenhague 12, 142~143
(1959).

V. Horejsi, Problema substantivelor asa zise ‘“neutre” in limba roménd, in lumina
legéturilor cu alte limbi. Studii Cercetari Linguvistice 8 (4), 415-429 (1957).

R. Jakobson, Zur Struktur des russischen Verbums, in “Charisteria G. Mathesio. ..
oblata.” Prague, 1932, pp. 74-79.

R. Jakobson, On the Rumanian neuter. Cercetari Lingvistice. 3, 237-238 (1958).
R. Jakobson, The gender pattern of Russian, “Omagiu lui Al Graur cu prilejul imp-
linirii a 60 de ani.” Studii Cercetari Lingvistice 11 (3), 541-543 (1960).

0. G. Karpinskaja, Typology of genders in Slavonic languages (in Russian). Vopr.
Jazykoznanija 13 (6), 61-76 (1964).

J. Kurylowicz, “Esquisses Linguistiques.” Wroclaw-Krakow, 1960, pp. 160-163.
J. Kurylowicz, Personal and animate genders in Slavic. Lingua 11, 249-255 (1962).
J. Lohmann, “Genus und Sexus.”” Gottingen, 1930.

S. Marcus, Structures linguistiques et structures topologiques. Rev. Math. Pures
Appl. 6 (3), 501-506 (1961).

S. Marcus, Le genre grammatical et son modéle logique. Cahiers Linguistique Théor.
Appl. 1, 103-122 (1962).



154 IV. Grammatical Gender

26

27.

28.

29.

30.

31.

32.

33.

34,

35.
36.

37.
38.

39.
40.
41.
42.

43.

44,

45.
46.
47.

48.

49.

50.

. S. Marcus, Aspectul logic al opozititlor lingvistice, 1. Opozitii ordonate, paradigme,
moifeme §i quasi-morfeme. Studii Cercetari Matematice 13 (4), 539-551 (1962).
S. Marcus, A synchronic analysis of the grammatical gender. Rev. Linguistique 8,
(1), 99-111 (1963).

S. Marcus, Modeéles mathématiques pour la catégorie grammaticale du cas. Rew.
Math. Pures Appl. 8 (4), 585-610 (1963).

A. Martinet, Neutralisation et archiphonéme. Trav. Cercle Linguistique Prague
6,(1936).

I. A. Melcuk, Statistics and dependence of French nouns gender on its ending (in
Russian). Vopr. Statistiki Re¢ 1958, 112-130.

Gr. C. Moisil, Problémes posés par la traduction automatique. La déclinaison en
roumain écrit. Cahiers Linguistique Théor. Appl. 1, 123-134 (1962).

O. Nandris, Le genre, ses réalisations et le genre personnel en roumain. Rev. Lin-
guistique Romane 25, 47-74 (1961).

A. Niculescu, “Sur P'objet direct prépositionnel dans les langues romanes.” Recueil
Lisbonne, Editura Academiei R.P.R., Bucuresti, 1959, pp. 167-185.

I. Patrut, “Sur le genre ‘neutre’ en roumain.” Mélanges Oslo, Editura Academiet
R.P.R., Bucuresti, 1957, pp. 291-301.

S. Puscariu, “Limba Romind,” Vol. 1. Bucuresti, 1940, pp. 135~136.

C. Racovitd, Sur le genre personnel en roumain. Bull. Linguistique 8 (1), 154-158
(1940),

I. I. Revzin, “Language Models” (in Russian). [zd. Akad. Nauk SSSR, Moskow, 1962.
1. I. Revzin, Some problems concerning the theory of language models (in Russian).
Naucn. Tekhn. Inform. 1964 (8), 42-46.

I. 1. Revzin, Marked strings, algebra of fragments, categories (in Russian). (In press).
G. Rohlfs, “Historische Grammatik der italienischen Sprache.” Berna, 1949.

A. Rosetti, Neutrul in roména. Studii Cercetari Lingvistice 1, 233-234 (1950).

A. Rosetti, Despre genul neutru si genul personal in limba roména. Studii Cercetari
Lingvistice 8, 407-413 (1957). ]

A. Rosetti, Remarques sur la catégorie du genre en roumain. Studia Linguistica 13,
133-136 (1959).

A. Rosetti, Contributii la studiul neutrulut in limba roména. Studii Cercetari Ling-
vistice 14 (4), 433-438 (1963).

A. M. Schenker, Gender categories in Polish. Language 31 (3), (1955).

E. Seidel, Gibt es ein Genus personale? Bull. Linguistique 16, 5-93 (1948).

K. Togeby, Le neutre en roumain et en albanais. Cahiers Sextil Puscariu 2 (2), 121-131
(1953).

P. Tondeur, Ein Beispiel zur allgemeinen Topologie: die Topologie einer Aquival-
enzrelation. Ann. Acad. Sci. Fennicae, Ser. A, I. Math. 344, 1-7 (1964).

E. Vasiliu, Observatii asupra categoriei genului in limba romani. Studii Cercetari Ling-
vistice 11 (3), 463-464 (1960).

A. A. Zaliznjak, On the grammatical categories of gender and animateness in modern
Russian (in Russian). Vopr. Jazykoznanija 13 (4), 25-40 (1564).



References 155
NOTE ADDED IN PROOF

A new mathematical model of grammatical genders is studied by 1. I. Revzin (Applying
a set-theoretical model to a language with grammatical homonymity (in Russian), Naucn.
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Chapter V

Configurations

1. Introduction

In this chapter we intend to make a systematic investigation of one of
the basic notions of any syntactic description—the notion of syntactic
dependence. To this aim, we concentrate on the theory of syntactic con-
figurations, initiated by Ljapunov and Kulagina [26]. There are many
notions in literature which express the fact that some groups of words
(or morphemes) may behave, in some contexts, as a single word. Thus,
we recall the notions of syntagm (see, for instance, Mikus [29]), constit-
uent (Bloomfield [4, 5], Pike [37], Wells [45)), construction (Gleason
[17]). A configuration is none of these, but it has something in common
with each of them. It permits us to detect, by a recursive procedure,
various degrees of syntactic dependence. (For the signification of re-
cursive definitions in empirical sciences see Bar-Hillel [1].) Consider,
for instance, the well-formed German string ein sehr alter Mann. The
dependence of sehr upon alter may be recognized from the possibility
of removing the word seir and the impossibility of removing the word
alter, without affecting the correctness of the sentence. (The string
ein alter Mann is correct, whereas the string ein sehr Mann is not.)
The group of words sehr alter behaves as the single word alter, that is,
sehr alter and alter have (approximatively) the same distribution. But
we intuitively agree that we also have another dependence: alter depends
upon Mann. Nevertheless, this dependence may not be detected in the
same way, since neither alter nor Mann may be removed without affect-
ing the correctness of the sentence. But as soon as we replace the group
sehr alter by the “resultant” of this group, alter, we obtain a sentence
where the dependence of alter upon Mann may be detected as the depen-
dence of sesr upon alter in the first sentence. Indeed, in the well-formed
string ein alter Mann the group alter Mann behaves as the single word
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Mann. 1t follows that the dependence of alter upon Mann is of another
degree than the dependence of sehr upon alter. Precisely such distinc-
tions will be the object of our study in this chapter. We shall define
syntactic configurations of various orders, and we shall then apply them
in the classification of dependence relations.

2. P-Configurations and P-Structures of Order n

Let us consider a language {I', P, ®}. We recall that a P-structure is
a finite sequence P,, P,,..., P, of P-cells; n is the length of the P-
structure. The P-structure is marked if there exists a marked string
a,a; . . . a, over I' such that P(a;) = P; (1 <i < n).

Every P-structure will be considered in the present chapter as a P-
structure of rank zero. The set of all P-structures will be denoted by
Zo We consider also the empty P-structure, whose length is equal to 0.

Let us consider a P-structure & which fulfills the two conditions (1)
the length of & is not less than 2 and (2) there exists a word a € T such
that & and P(a) are P-equivalent, that is, given two P-structures &, and
&P,, the P-structures #,2%, and &, P(a) &, are either both marked or
both unmarked. Then we shall say that & is a P-configuration of the
first rank. The P-cell P(a) will be called a resultant of 2.

Let & be a P-structure such that no P-structures %, and %, exist for
which 2, # 2, is a marked P-structure. We shall say that & is a parasitic
P-structure. Moreover, & may be both a parasitic P-structure and a P-
configuration of the first rank. In such a situation, we shall say that &#
is a parasitic P-configuration of the first rank.

Let .¥ be a subset of ¥,. We shall say that two P-structures &, and &,
are P-equivalent with respect to & if for any pair of P-structures %
and #,, such that #,2,2, and #;,%,%?, belong to &, the P-structures
P,P.P, and P;P,P, are either both marked or both unmarked.

Let & be a P-structure which fulfills the following condition. If £,
and &, are P-structures for which #,2%, € ¥, then # PP, is an
unmarked P-structure. In this case, we shall say that the P-structure &
is parasitic with respect to .

The following proposition is obvious.

Proposition 1. If .’ and %"’ are two subsets of .#, such that &' C &%’
and if the P-structures %, and &, are P-equivalent with respect to %',
then &, and %, are also P-equivalent with respect to %"’
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Given two P-structures & and #,, we shall say that & contains P,
if there exist two P-structures %, and #; such that # = &, #, P5. (#, or
#, may be the empty P-structure).

We shall say that a P-structure # is a P-structure of the first rank if
2 contains no P-configuration of the first rank. The set of all P-structures
of the first rank will be denoted by %,.

Let us consider a P-structure & which fulfills the following two con-
ditions: (1) the length of # is not less than 2; (2) there exists a word
a € I' such that £ and P(a) are P-equivalent with respect to ;. Then we
shall say that £ is a P-configuration of the second rank. The P-cell
P(a) will be called a resultant of 2.

If # is both a P-configuration of the second rank and a parasitic
P-structure with respect to %;, we shall say that £ is a parasitic P-
configuration of the second rank.

We shall say that a P-structure £ is a P-structure of the second rank if
# contains no P-configuration of the second rank. The set of all P-
structures of the second rank will be denoted by .%,.

Let us admit that we have defined, for every positive integer p < n,
the P-configurations and the P-structures of rank p; let us denote by
%, the set of all P-structures of rank p. We shall say that the P-structure
P is a P-configuration of rank n if the following two conditions are
fulfilled: (1) the length of & is not less than 2; (2) there exists a word
a € T such that 2 and P(a) are P-equivalent with respect to ,_,. The
P-cell P(a) will be called a resultant of Z.

If 2 is both a P-configuration of rank n and a parasitic P-structure
with respect to .%,_,, we shall say that 2 is a parasitic P-configuration
of rank n.

We shall say that a P-structure 2 is a P-structure of rank n if 2 contains
no P-configuration of rank n. The set of all P-structures of rank » will
be denoted by &,

Let us denote by %, the set of all P-configurations of rank .

Theorem 1. We have ¥, 2 %1 D - D %y D Furr D - and €, C
€ C - C %, C €1 C . Moreover, if Z € €, and # admits the
resultant P(a), then P(a) is also a resultant of £ concetved as an element
of € 1.

ProOF. Since %, is the set of all P-structures, the inclusion ., D %,
is obvious. Then, in view of Proposition 1, we have %, C &,, and any
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resultant of #Z € &, is also a resultant of & conceived as an element
of ..

Let us admit that ¥, , D .%, and ¥, C €., for every positive integer
p < n. Let & be a P-structure of rank n. & contains no P-configuration
of rank » and, since %,—; C %,, & contains no P-configuration of rank
n— 1. It follows that ¥, C %,_;. Then, in view of Proposition 1, we have
%, C %ns1 and any resultant of # € %, is also a resultant of # conceived
as an element of €,.;. Theorem 1 is proved.

Theorem 1 makes the following definitions natural.

A P-structure & is said to be of finite order if there exists an integer
n (obviously unique) such that # € &, —%,,,. The number n is the order
of ?. If no such n exists, then £ is said to be of infinite order. Let us
denote by ., the set of all P-structures of infinite order.

A P-structure £ is said to be a P-configuration of order n if we have
PEEC,—Cny (We put €,=0.) It is easy to see that the rank of a P-
structure & is less than or equal to the order of &, whereas the rank
of a P-configuration & is greater than or equal to the order of . More-
over, if # is a P-structure of order n, then & is a P-structure of rank &
for every k < n; if # is a P-configuration of order »n, then £ is a P-con-
figuration of rank i for every i = n. Therefore, the order of a P-structure
is its maximum rank, whereas the order of a P-configuration is its mini-
mum rank.

A P-structure & is said to be a P-configuration of infinite order if
the two conditions are fulfilled (1) the length of & is not less than 2 and
(2) there exists a word a € I" such that Z and P(a) are P-equivalent with
respect to .%,. The P-cell P(a) is a resultant of #. We shall denote by
€. the set of all P-configurations of infinite order. We may now develop
a transfinite classification of the P-structures and P-configurations of a
given language, but we do not insist on this idea.

Proposition 2. We have ¥, C %, for every integer n=0 and ¢, C %
for every positive integer n.

Proor. If # € ¥,, then # € ¥,—%,,; holds for no integer n= 0.
Since, in any case, & € %, it follows, in view of Theorem 1, that

P NSy,
n=1
and the first inclusion is proved. From ¥, C .%, (n = 0) and in view of
Proposition 1, the second inclusion immediately follows.
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3. The P-Configuration and the P-Structure Types of Language

Theorem 2. For every positive integer n, the equality €, =%, implies
Fuw=Fus1, Wwhereas the equality &, =%, implies €,=%,.,.

PrOOF. Let €,=%,.;. In view of Theorem 1 we have, in any case,
Foi1 C Sy It remains to prove the other inclusion. Let # € .¥,; &
contains no P-configuration of rank n. Hénce, since €,=%,.,, % contains
no P-configuration of rank n+ 1. Therefore # € ¥,,, and %, C 1.

Now let %,_,=%,. In view of Theorem 1 we have, in any case,
% C €pns1- It remains to prove the other inclusion. Let # € €,,.,. There
exists a word a € T such that & and P(a) are P-equivalent with respect
to ¥, Since ¥,=.%,_,, it follows that & and P(a) are P-equivalent
with respect to .%,_;; on the other hand, the length of £ is not less than
2, because # € %,,,. It follows that Z € ¥, and %,,; C ¢,. Theorem
2 is so proved.

Corollary 1. If there exists an integer n such that €, = %,.,, then
%,=%,, for any m > n. If there exists an integer n such that ¥, =%,.1,
then ¥, =.%,, for any m > n.

Proor. In view of Theorem 2, €,=%,,; implies %,=%p+1, Which
implies €,.,1 =%, wWhich implies %, ;= %52, Which implies €,..=
%,H.g etc.

Corollary 2. If the language {I', P, ®} has no P-configuration of order
n, it has no P-configuration of order m > n. The same is true for the
P-structures.

Proor. If no P-configuration of order n exists, then ¢,—%,_,=0.
Hence, in view of Theorem 1, ¥,_, =%, and, by Corollary 1, €,,=€m_1
for every integer m = n. Therefore, €, —%,1.=0 for m=n and no
P-configuration of order m exists. A similar proof holds for the P-
structures.

Corollary 2 makes the following definitions natural.

Let us suppose the existence of an integer N which fulfills the follow-
ing conditions: (1) there exists a P-configuration of order N; (2) there
exists no P-configuration of order N+ 1. In this case, we shall say that
the considered language has a finite, positive P-configuration. By
definition, the P-configuration is equal to N. If €, = 0, we shall say
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that the P-configuration is equal to 0. If no such integer N exists, and
if €, # 0, we shall say that the P-configuration is infinite.

The P-configuration of a language L is a measure of the complexity
of the dependence relations which exist in L. Unfortunately, we know
nothing about the P-configuration of the natural languages. This seems
to be a difficult problem.

Let us suppose the existence of an integer M which fulfills the follow-
ing conditions: (1) there exists a P-structure of order M; (2) there exists
no P-structure of order M + 1. In this case, we shall say that the con-
sidered language has a finite nonnegative P-structure type. By defini-
tion, the P-structure type is equal to M. If ¥y = %, we shall say that
the P-structure type is equal to —1. If no such integer M exists and
if #,# %,, we shall say that the P-structure type is infinite.

In the general case, denote by M the P-structure of a language L
and by N its P-configuration. We always have —1 S M <o, ( S N < o,

Proposition 3. If ¢,=0, then ¥,=0 and ¥,=%, for every positive
integer n.

Proor. If ;=0 and # € .%,, then & contains no P-configuration
of the first rank. Hence & € .%, and .¥, C %,. Since, in view of Theorem
1, we have in any case %, C .%,, it follows that ., =.%,. Now, by
Corollary 1, &,=%, for every n. In view of Theorem 2, the last equality
implies that €,=%, for every n and, since ¥, = 0, €, = 0 for every n.

Proposition 4. If ¥, =.%,, then ¥,=0 for every positive integer n.

Proor. In view of Proposition 3, it is enough to show that €, =0.
Let us admit that €, # 0 and let # € %,. There exist in any case some
P-structures which do not contain & (for instance, every P-structure
whose length is equal to 1), therefore ¥,—.%, ¥ 0. But this fact con-
tradicts the assumption that %, =.,. It follows that ¥,=0 and Pro-
position 4 is proved.

Propositions 3 and 4 yield Proposition 5.

Proposition 5. The P-configuration of a language L is equal to zero
if and only if the P-structure type of L is equal to —1.

We shall say that L is of finite P-structure type if M < ; L is of finite
P-configuration if N < oo,

In the general case, the P-configurational type and the P-structure
type are related by Theorem 3.
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Theorem 3. Let M be the P-structure type of a language L and let
N be its P-configurational type. M and N are either both finite or both
infinite, If M and N are finite, then N=M+ 1.

ProorF. Theorem 3 will be deduced from the following two proposi-
tions: (1) If N is finite, then N=M+1; (2) if M is finite, then N is
finite.

Let us prove (1). If N=0, in view of Proposition 5, M =—1. Hence
N=M+1. If N=1, we have %, # 0 and ¥,—%,=0. The first relation
implies &, —.%, %0 and M = 0. In view of Theorem 1, the second
relation implies %, =%, and, by Theorem 2, we obtain %, =.%, and
S1—F,=0. Therefore M < 1. Thus, M=0 and N=M+1. If N> 1,
we have €y— %y # 0 and €y —%n= 0. In view of Theorem 2, the
first relation implies ¥ y_, # S y_o. Hence Fy_; — Fn-o 7 0and M = N —1.
In view of Theorem 1, the second relation is equivalent to €y = €y+1-
By Theorem 2, we obtain ¥y = .%y,,. Therefore ¥y — %y, = 0 and,
in view of Corollary 2, M < N. It follows that N=M+41 and (1) is
proved.

Let us prove (2). If M =—1, in view of Proposition 5, N=0. Hence
N=M+ 1. If M is finite and nonnegative, we have %y — s 7 0
and Sy — FLue = 0. In view of Theorem 1, the second relation is
equivalent to %y = Pyrs. By Theorem 2, we obtain @pee = Cuys.
Therefore €y.5—%u2.=0 and, in view of Corollary 2, N <M+ 2.
Since M is finite, it follows that N is finite. Theorem 3 is proved.

Let us denote by .¥% the set of all P-structures of order n and by €}
the set of all P-configurations of order n. We always have &} N &%=
€FNEr=0for m#n. If ¥,=0, then &¥,=5% U % U ---for each
integer n=0 and ¥,=%% U %% U - - - U &5 for each positive integer n.
Hence €,=%,.. U €%. On the other hand, let us denote by %, the
set of P-structures of infinite order and by % ., the set of P-configurations
of infinite order. It is easy to see that *,=0 implies ¥,=0.

4. Examples of E-Configurations

To illustrate these notions and facts, we present several examples.

ExaMPLE 1. Let us consider the following language. I'={a, b}, P=E
(the wunit partition), ®={a?...,a?",...,b% b* ..., b*,...}. For
every integer n> 1, the string b*"! 1s an E-configuration of the first
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rank, having as resultant the word b. Indeed, if x and y are two strings
over I', we have xb* 'y € ® if and only x=»b", y=5?, and m+p is an
odd positive integer. Under the same conditions we have xby € ®. Hence
b*1 and b are E-equivalent with respect to &%,

The strings of the form a" are not E-configurations of the first rank.
Indeed, if n is odd, neither a nor » may be resultants of a”, since a
and b do not belong to ®; if n is even, neither a nor b may be resultants
of a, since a? and ab do not belong to ®. No string of the form »?* may
be an E-configuration of the first rank, since a and b do not belong to
®. No string containing both ¢ and b may be an E-configuration of the
first rank, since there exist (infinitely many) marked strings containing
a and (infinitely many) marked strings containing b, whereas no marked
string exists containing both a and b. Thus, there exists no parasitic
E-configuration of the first rank and we have €, ={b3, b5, ..., b**,. . .}.
The set ¥, may be obtained by replacing in all strings every E-con-
figuration of the first rank by its resultant.

It follows that ., is formed by the strings over I' that do not contain
a substring of the form b*(n > 2).

Since there exists no pair of strings # and v, such that ub™ € &,
(n>?2), it follows that b" is a parasitic E-configuration of the second
rank, having resultants ¢ and b, for any n>2. We have no other E-
configuration of the second rank. It follows that €, C %,, but every
E-configuration of the second rank is parasitic.

This example shows that the same P-structure may be a nonparasitic
P-configuration of the first rank, but a parasitic P-configuration of the
second rank.

It is easy to see that ¥, =.,. In view of Theorems 1 and 2, we have
€,=%, for n=2 and .¥,=.%, for every positive integer n. Thus, all the
E-configurations of the form b (n = 1) are of the first order, whereas
those of the form b*(n > 1) are second order. The E-configuration
of the considered language is equal to 2. In view of Theorem 3, the
E-structure type is 1.

ExaMmpLE 2. Let us consider the language {I', P, ®}, where I' = {a},
P=E, and ®={av,...,a%,...}, where 1 =¢qy,qs,..., qu ...15 the
sequence of prime numbers. We shall show that this language has no
E-configuration of the first rank. (Thus in view of Proposition 3, it has
no E-configuration of rank #, for any positive integer n.) Let us admit the
existence of an E-configuration of the first rank; it necessarily has the
form a® and its resultant is a.
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Let g be a prime number. Since a” has the resultant a, it follows that

—1 2(p— —
aq’ aqﬂp )’ aq+ (D 1)’ cee, aq+n(p 1)’ L

are marked strings. Hence the numbers g, g+ (@—1), q+2(p—1),...,
g+n(p—1),... are prime. But these numbers form an infinite arithmetic
progression. A theorem of Erdos asserts that, for each positive integer
n, there exist two consecutive prime numbers whose difference is
greater than n[12]. This theorem makes the existence of the above
infinite sequence of prime numbers as an arithmetic progression im-
possible. Thus, the language considered has no E-configuration. The E-
configuration is equal to zero, whereas the E-structure type is —I1.

It is shown [27] that the language considered is not a finite-state
language.

ExaMPLE 3. Let us consider the language of Kleene ([25], p. 40):
I'={a},P=E, ®={a”}(1<n<x). Let us admit that g” is an E-
configuration of the first rank. Since the resultant may not be other
than a, it follows that

a, a1+(p 1)’ al* (p )’ e, aH—n(p 1)’ L.

are marked strings. Hence the numbers 1, 1+(p—1), 14+2(p—1),...,
1+n(p—1),... are perfect squares. But these numbers form an infinite
arithmetic progression, and no infinite arithmetic progression exists
whose terms are perfect squares. Indeed, the difference of two consecu-
tive perfect squares is n2—(n—1)2=2n— 1. Hence it tends to © when
n— . It follows that the language of Kleene has no E-configuration.

Kleene has shown that this language is not a finite-state language [25].
Gladkii has proved (unpublished paper) that the language of Kleene may
be generated by a context-sensitive grammar in the sense of Chomsky
[9], but not by a context-free grammar (see also Bar-Hillel et al. [2]).
As Gladkii has shown, all these conclusions hold for the language
discussed in Example 2.

ExAMPLE 4. Let us consider the following language of Curry ([11],
p. 57): ' ={a, b}, P=E, ® = {ab"}, where 0 < n < » (b° is the empty
string). There exists no parasitic E-configuration of order 1. Every string
of the form b*, where n = 2, is an E-configuration of the first rank, whose
resultant is b. Every string of the form ab® (0 < n < «), that is, every
marked string is an E-configuration of first order, whose resultant is a.
All the E-configurations of the first rank are parasitic E-configurations
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of the second rank. Every nonempty string over I', other than a and b
that contains no string of the form b* (n = 2) and no string of the form
ab™ (n=1) is a parasitic E-configuration of order 2, with resultant b.
It follows that ., =.%,. In view of Theorems 1 and 2, we have ¥,= %,
for n=1 and €, =%, for n = 2. Every E-configuration of the first rank
is of order 1. The E-configuration is equal to 2, whereas the E-structure
is 1 (see Theorem 3).

The language considered, which will be designed by L,, is the first
step of a model concerning the mathematical language ([11]; see also
Section 7, Chapter I1). The second step is given by the language L,:
I'={a, b, c}, P=E, ® = {ab*cab™}, where m and n are arbitrary non-
negative integers, b° being the empty string. It is easy to see that L,
has the same E-configurations as L,. As shown in [11], L, is a model
of the set of mathematical (true or not) propositions. L, is a finite-state
language [28]. The third step is given by the language L,: I' = {q, b, c},
P=E, &= {ab"cab™}, where n takes the values of all nonnegative in-
tegers. In contrast to L, and L,, L; has no E-configuration of the first
rank. Hence, in view of Proposition 3, L; has no E-configuration of rank
n=1. L; may be considered a model of the set of theorems [11]. As
was shown in Section 7, Chapter 11, L; is not a finite-state language;
but it is a context-free language [28] (for the notion of a context-free
language see also Section 10, Chapter I1I).

ExampLE 5. Let I'={a,b,c}, P=E, ®= {ab,c}. The unique E-
configuration of the first rank is ab, and its resultant is ¢. This example
shows that a P-configuration does not always contain its resultant.

ExamMPLE 6. Let I'={a,b,c,d}, P=E, ® = {ab,c,d}. The unique
E-configuration of the first rank is ab and it admits two resultants ¢ and d.

Examples 5 and 6 describe a fragment of English. Thus, we may put
a = very, b = large, c= great, d = short. 1t follows that a syntagm of the
form adverb+ adjective may have as resultant an adjective other than
that contained in the syntagm.

ExampPLE 7. Let I'={a,b,c¢}, P=E, ®={c, ch,cab,ca,...,
ca™b,...}. For every n=2, a" is an E-configuration of order 1, with
resultant a. For every positive integer n, the strings a"b and ca® are E-
configurations of the first order having the resultants b and ¢, respectively.
We obtain %, =%,, and every E-configuration of order 2 is parasitic.

In view of Theorems 1 and 2, we have €, = %, for n = 2 and %, = %,
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for every n=1. The E-configuration is equal to 2, whereas the E-
structure type is 1.

Example 7 describes a short fragment of French syntax, namely,
that concerning the strings of the forms noun, noun + adjective, noun +
adverbs + adjective (such as homme, homme grand, homme trés grand,
homme trés trés grand,. .., homme (trés)" grand,...). The strings of
the form (adverb)*+ adjective are E-configurations of the first order,
having the adjective as resultant.

Example 7 also describes a similar fragment of the Rumanian syntax
(om, om mare, om foarte mare,..., om (foarte)® mare,...). Thus,
there is an isomorphism between French and Rumanian, concerning
the dependence structure of noun phrases.

ExampLE 8. Let I'={a,b,c,d,e,f}, P=E, ®={cd, cdf, cde™,
a*bed, a*bede™f}, where 0 < m < wand 0 < n < . We have the following
E-configurations of the first order: a® with resultant a for every n = 2;
e™ with the resultant e for every m = 2; a"b with the resultant b for every
n = 1; e™f with the resultant f for every m = 1. We obtain & N &, =
{cd, cdf, bcd, bcdf}. We have no nonparasitic E-configuration of the
second order.

The above example becomes a fragment of English if we take a =
very, b = little, c = boys, d = look, e = many, f = pictures.

ExaMpLE 9. Let I'={a, b,c,d, e, f}, P=E and ®={ab"c™de’f},
where m, n, p, and g are integers such that m =0, n=0,p=0, g=0,
and the implications n>0=>m>0 and p>0=>¢g >0 are valid. We
have the following E-configurations of the first order: b*(n = 2) with the
resultant b; c™(m = 2) with the resultant c; e?(p = 2) with the resultant
e; f%q = 2) with the resultant f; b*c™(n =1, m = 1) with the resultant
c; e’fAp =1, g = 1) with the resultant f. We have ® N ¥, = {ad, acdf,
adf, acd}, and no nonparasitic E-configuration of order 2 exists.

The above example becomes a fragment of Rumanian syntax if we
take a = elevul, b = foarte, ¢ = silitor, d = studiazi, e = multe, f = carti.

Examples 7 and 8 show the possibility that an E-configuration of the
first order contains another first-order E-configuration. In Example 7,
a™ is contained in ca® and in a"b. In Example 8, a" is contained in a"b,
whereas e™ is contained in e"Y.

ExampLE 10 (Kulagina [26], p. 211). Let I'={a, b,c,d}, P=E,
® = {ab"cd, dd, bc™}, where m=0 and n= 0. For every n=1, ab" is
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an E-configuration of the first order, with resultant a. We have %, =
{ab, ab?,...,ab" ...} and ® N ¥, ={acd, dd, bc™}(m = 0). For every
m=1, bc™ is an E-configuration of order 2, with resultant b, and we
have ® N F,={acd, dd, b}. We have two E-configurations of order 3
(with resultant b): acd and dd.

ExamrLe 11. Let I'={a, b, ¢, d, e}, P=E, &= {ab™cde, bc*de,
cdPe, de"}, where m=0, n=0,p=0, and r=0. For every m=1,
ab™ is an E-configuration of order 1, with resultant a, and no other E-
configuration of order 1 exists. We have ® N .%;={acde, bc*de, cd®e,
de’}, where n=0,p = 0,r= 0. For every n = 1, bc*is an E-configuration
of order 2, with resultant b and no other E-configuration of order 2 exists.
Further, we find that cd? is an E-configuration of order 3, with resultant
¢, for any p = 1 and de” is an E-configuration of order 4, with resultant
d, for any r=1. Since ® N %,= {acde, bde, ce, d}, we have three E-
configurations of order 5 (with resultant d): acde, bde, and ce.

Example 11 shows how we can obtain, for every positive integer
n, a language which admits nonparasitic £-configurations of order n.

It is not difficult to explain the significance of Examples 9 and 10
from the standpoint of dependence structure. For instance, in Example
10, b is dependent on a, c on b, d on ¢, and e on d. But these four depen-
dencies are of different degrees, which implies the different orders of the
corresponding E-configurations.

ExaMpLE 12 (Revzin [40], pp. 124-125). This example concerns
the Russian language. Every marked S-structure of the form S(a)S(b),
where a is an adverb and b is an adjective (for instance, a=vesma,
b= malenkaja) is an S-configuration of the first order with resultant S(b),
if we neglect Russian strings, such as vesma i vesma or vesma vesma i
vesma. A marked S-structure of the form S(b)S(c), where b is an adjec-
tive and ¢ is a noun, is an S-configuration of the second rank, with resultant
S(c); but S(b)S(c) may not be replaced by S(c¢) in such marked S-struc-
tures as S(a)S(b)S(c) (for instance a=vesma, b= malenkaja, c=
devocka). It is easy to see that no word x exists such that S(b)S(c) and
S(x) are S-equivalent with respect to .#,. It follows that S(b)S(c) is not
an S-configuration of the first rank. Hence it is of order 2. There also
exist S-configurations of the second order, formed by verbs, such as
S(dolgo)S(laskala), whose resultant is S(laskala). If d is a transitive verb
and e is its direct complement (for instance, d=laskala, e= kosku),
and f is an intransitive verb (for instance, f= stojala), then S(laskala)
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S(kosku), and S(stojala) are S-equivalent with respect to .%,. Hence
S(laskala) S(kosku) is an S-configuration of the third rank, with resultant
S(stojala); it is easy to see that this S-configuration is third order.

5. Removal of Parasitic Elements

Now let us remark on the above examples. Examples 1 and 4 show
that the parasitic P-configurations may cause an increase in the P-con-
figuration of a language. In both these examples, the E-configuration
type is equal to 2, but all E-configurations of order 2 are parasitic. It
is natural then to introduce the following definitions.

A language L has a finite effective P-configurational type if there
exists an integer N, which fulfills the following conditions: (1) there
exists a nonparasitic P-configuration of order N;; (2) every P-configura-
tion of order N,+ 1 is parasitic. N; is the effective P-configuration
of L (f every P-configuration of order 1 is parasitic, then, by definition,
we put N,=0). If no such integer exists, we say that L has an infinite
effective P-configuration and we put N,=o. Thus, in Examples 1
and 4 we have N;=1, whereas N=2. In Examples 2 and 3 we have
N,=N=0. In Examples 5 and 6, N,=N=1. In Example 7, N,=1
and N=2. In Examples 8 and 9, N;=1 and in Example 10, N,=3.
In Example 11, N,=5.

Consider a language {I', P, ®} and a word a € I'. The word a is
said to be parasitic, if a is contained in no marked string (that is, if
x=uav, then x does not belong to ®).

Proposition 6. We always have N, < N. If no parasitic word exists
and if N,=0, then N=0.

Proor. Since the inequality is obvious, let us prove the second asser-
tion. Suppose N;=0 and let & be a P-configuration of order 1 and P(a)
a resultant of #. Thus, # and P(a) are P-equivalent. Since « is not para-
sitic, there exists a marked string containing a: a,d, - * * dy_1Adyyq * * * dy.
Hence the P-structure P(a,): - -P(a,_ )P(@)P(a,,,)- - -P(a,) is marked.
Since & and P(a) are P-equivalent, the P-structure P(a,)- - -P(a,_ )%
P(ayy,)- - -P(a,) is also marked. Hence & is not parasitic. But this fact
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contradicts the assumption that N,=0. Therefore no P-configuration
(parasitic or not) of order 1 exists and N=0.

It is to be expected that the difference N — N, may not exceed any
integer. In this respect, it would be interesting to find the smallest
integer n (if it exists) such that N— N, < n in every language.

In an obvious manner, we may define the effective P-structure type
M, of a language. We always have M, << M. It is interesting to establish
whether Theorem 3 remains true if M and N are replaced by M, and
N,, respectively.

6. Semiregular P-Configurations

The examples considered show that the most interesting P-configura-
tions # are those which fulfill the following two conditions: (1) the
length of £ is exactly 2; (2) there exists a resultant of & which is con-
tained in &. If & fulfills condition (1), it is called a minimal P-configura-
tion. If 2 fulfills condition (2), it is a semiregular P-configuration.

Among the languages considered in the above examples, only those
of Examples 5 and 6 are finite languages. On the other hand, only in
Examples 5 and 6 is there no semiregular E-configuration of the first
order. These facts are explained by Theorem 4.

Theorem 4. Let L be a language containing no parasitic word. If L
admits at least one semiregular P-configuration of order 1, then L is
infinite.

ProOF. Let 2 be a semiregular P-configuration and let g; € I' such
that P(a;) is a resultant of & contained in #. Thus, there exist two P-
structures &, and &, such that Z=2, P(a;) #,. Since q; is not parasitic,
there exist two P-structures #; and #,, such that #;P(a;,)?, is a marked
P-structure. But £ and P(a;) are P-equivalent. Therefore the P-structure
P PP, =P, P Pla)P-P, is also marked. Further, again using the
P-equivalence of & and P(a;), we deduce that the P-structure &,=
PP Pla;)(P,)"P, is marked for every positive integer n. If we denote
by pi, P, P2, P4, and p, the lengths of the P-structures &, %y, Py, P4,
and £,, respectively, we have p,=n(p,+p,)+p;+p,+ 1. Since the
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length of 2 may not be less than 2, it follows that p;+ p, = 1. Hence

lim p, = .

n—ow
Since every %, is a marked P-structure, there exists, for any positive
integer n, a marked string of length p,. Hence L is infinite.

Proposition 7. If the language L contains no parasitic word, then L
admits no parasitic P-configuration of order 1.

ProoF. Let 2 be a P-configuration of order 1 and let P(a) be aresultant
of 2. Since a is not parasitic, the existence of two P-structures #; and
#, such that Z,P(a)?, is a marked P-structure follows. In view of the
P-equivalence of 2 and P(a), the P-structure #; %%, is marked. Hence

2 is not parasitic.

REMARKS. Proposition 7 shows that all P-configurations occurring
in Theorem 4 are nonparasitic. Moreover, Theorem 4 is a new confir-
mation of a general hypothesis adopted in algebraic linguistics. Every
natural language is an infinite language. Indeed, the assumptions of
Theorem 4 are fulfilled by every natural language; for every word
a of a natural language L, there exists a sentence of L containing a,
and every natural language admits semiregular configurations of order 1.
For instance, in English an E-configuration of the form secondary
adverb + adverb (such as very clearly) is of order 1 and semiregular,
since it admits the resultant adverb.

Theorem 4 does not remain true if we remove the assumption that
L contains no parasitic word. Indeed, we have another proposition.

Proposition 8. There exists a finite language which admits a semi-
regular E-configuration of order 1.

Proor. Let I'={a, b} and ® = {aa}. The string ab is an E-con-
figuration of order 1, with resultant b. Hence it is semiregular.

We also have Proposition 9.

Proposition 9. In a finite language, every semiregular P-configuration
of order 1 is parasitic.

Proor. Let & be a semiregular P-configuration of order 1 and let
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P(a) be a resultant of £ contained in . Thus, there exist two P-struc-
tures &, and %, such that # = 2#,P(a)%?,. If & is nonparasitic, we may
find two P-structures %, and %, such that 2,2 ,P(a)%,%, is a marked
P-structure. We may replace successively P(a) by #:P(a)?, and obtain
infinitely many marked P-structures containing P(a): #3(Z,)"P(a)(P.)"P,
(1 < n< ). As in the proof of Theorem 4, we deduce the existence
of infinitely many marked strings containing the word a. This fact
contradicts the assumption that the language is finite. Hence, £ is
parasitic.

The above examples suggest that, in any language without parasitic
words, the existence of semiregular P-configurations of order n implies the
existence of semiregular P-configurations of order p, for every positive
integer p < n. But the validity of this conjecture requires an ulterior
investigation.

To obtain a better approximation of the situations occurring in
natural languages, we shall consider a particular case of semiregular
configurations.

A P-configuration & of rank k is said to be firnally regular if the follow-
ing conditions are fulfilled: (1) the last term of & is a resultant of &;
(2) no other term of £ is a resultant of #. More precisely, if = P(a,)
P(a,). . .P(a,), then # and P(a,) are P-equivalent with respect to %4,
but & and P(a;) (1 <i< n) are not P-equivalent with respect to .%;_,.
# is said to be initially regular if the first term of £ is a resultant of
2, but no other term of £ is a resultant of Z. It is obvious that, if # is
finally (initially) regular of rank k, then & is not initially (finally) regular
of rank k. & is said to be a regular P-configuration of rank k if it is
either initially or finally regular of rank k.

1t is obvious that any regular P-configuration of rank £ is also a semi-
regular P-configuration of rank k; but the converse is not true, as is
shown by the next proposition.

Proposition 10. There exist a language L and a semiregular E-con-
figuration £ of rank 1 in L, which is not regular in L.

Proor. Let I'=={a, b, ¢}, ® = {ab"c, b}, where n= 1. It is obvious
that ab®c is an E-configuration of rank 1, with resultant 5. Hence it
is semiregular, but not regular, since neither a nor ¢ are resultants
of ab®c. Proposition 10 is proved.
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7. Normal P-Configurations, Dependencies, and Constituents

A P-configuration £ is said to be initially normal if it is minimal
and initially regular. & is said to be finally normal if it is minimal and
finally regular. & is said to be normal if it is minimal and regular.

The most frequent configurations encountered in natural languages
are normal. The establishment of the order of a configuration in a natural
language is a difficult task, because it involves a large quantity of strings
and requires many explanations concerning the marked strings. We
shall enumerate some normal configurations in various natural languages,
without specifying their order. Afterwards, for the sake of illustration
and without claim of completeness and exactness, we shall indicate
the (plausible) relative order of some normal E-configurations in natural
languages.

Initially normal E-configurations: cartea elevului (noun in nomina-
tive + noun in genitive), om mare (noun- qualitative adjective), citesc
carti (transitive verb-+direct object) in Rumanian; enfant obéissant
(noun+ qualitative adjective), écrire lentement (verb- adverb) in
French; civis carus (noun-+ qualitative adjective), pater noster (noun-+
pronominal adjective), liber civium (nominative noun- genitive noun),
gloria horum (noun-+ possessive adjective), imitatur patrem (transitive
verb+direct object) in Latin; palabras nuevas (noun-+ qualitative ad-
Jective), expresado anteriormente (verb in participle + adverb), dices
nada (transitive verb-+direct object) in Spanish; rechnest gut (verb-+
adverb) in German; fetch me (verb-+indirect object), go today (verb+
adverb) in English; citaet knigu (transitive verb-+direct object) in
Russian.

Finally normal E-configurations: foarte frumos (adverb -+ qualitative
adjective), frumoasa carte (qualitative adjective+ noun), trei pomi
(cardinal numeral+ noun) in Rumanian; trés joli (adverb+ qualitative
adjective), merveilleux destin (qualitative adjective + noun), mon livre
(possessive adjective + noun), ces fruits (demonstrative adjective +
noun) in French; vestra domus (possessive adjective+ noun), hoc
praemium (demonstrative adjective+ noun), tres partes (cardinal
numeral+ noun) in Latin; algunas horas (numeral+ noun), nuevas
ramas (qualitative adjective-+noun) in Spanish; sehr gut (adverb+
qualitative adjective), unsere Wohnung (possessive adjective+ noun),
schones Girtchen (qualitative adjective + noun), viele Blumen (indefinite
adjective + noun) in German; my friend (possessive adjective+ noun),
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very large (adverb+ qualitative adjective), great house (qualitative
adjective + noun), many boys (indefinite adjective+ noun), almost
surrounded (adverb + passive participle) in English; ocen bolsoi (adverb—+
qualitative adjective), bolsoi dom (qualitative adjective+ noun) in
Russian.

First let us remark that in every language the order of a normal E-
configuration of the form adverb+ qualitative adjective is less than
the order of a normal E-configuration of the form qualitative adjective +
noun. Indeed, the last configuration may be replaced by its resultant
noun only after replacing the former with its resultant gualitative ad-
Jjective. In the same way we find that the order of a normal E-configuration
of the form secondary adverb -+ adverb is less than the order of a normal
E-configuration of the form adverb+ qualitative adjective, whereas
the order of a normal E-configuration of the form noun -+ qualitative
adjective is less than the order of a normal E-configuration of the form
transitive verb—+ direct object. For instance, in the Rumanian string
mult prea frumoasa (secondary adverb+ adverb+ adjective) we first
replace the normal E-configuration mult prea by its resultant prea,
and only after this we may replace the normal E-configuration prea
frumoasa by its resultant frumoasa. In the Rumanian string citesc
carti frumoase (transitive verb—+ noun+ qualitative adjective) we must
first replace the normal E-configuration carti frumoase by carti, and only
after this we may replace citesc carti by citesc. So we have at least
four different orders of E-configurations in most languages: secondary
adverb+ adverb, adverb+ qualitative adjective, qualitative adjective +
noun or noun—+ qualitative adjective, and transitive verb + direct object.
This situation suggests that the effective E-configuration of a natural
language is in any case greater than 4.

Normal E-configurations enable us to define a hierarchy of syntactic
dependences, as follows. If ab is an initially (finally) normal E-con-
figuration of order n, we shall say that b depends upon a from the right
(from the left), and the order of this dependence is equal to n. In the
first case, a is said to be the nucleus and b is said to be the satellite of
a, whereas in the second case these functions are inverted. This termi-
nology is very close to that of Pike [37] and of Pittman [38]. We may
also say that a is the center of the initially normal E-configuration ab,
whereas b is its adjunct. Thus, in a normal E-configuration of order n
we have a nucleus or a center of order n and a satellite or an adjunct
of order n. For other aspects concerning these notions see Revzin
[39-41].
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In descriptive linguistics, two notions play an important part in every
syntactic description: the notions of constituent and immediate con-
stituent. These notions are very closely related to E-configurations
of different orders. An attempt to formalize the classical analysis in
immediate constituents was given by Revzin [41, 42].

Let x=aya,...a, be a string over I' and let us consider a language
{T', ®}. We define the constituents of x as follows: (1) g; is a constituent
of x for every positive integer i < n; (2) if there exists a constituent z
of x such that the strings y and z are E-equivalent (that is, for every
pair of strings u and v the strings uyv and uzv are either both in & or
both in the complement of ®), then y is a constituent of x. By rule (1)
we always obtain finitely many constituents (n constituents), whereas
rule (2) may introduce infinitely many constituents.

Let us consider the Rumanian string Elevul silitor invata foarte bine.
By (1) we obtain the constituents elevul, silitor, invata, foarte, and
bine. By (2) we obtain a very large number of constituents but we shall
specify only the constituents contained in the given string. Thus we
find the constituents foarte bine (E-equivalent to bine), elevul silitor
(E-equivalent to elevul), and invata foarte bine (E-equivalent to invata).
In the Russian string bol3aja vorona vzletela na vysokii kust, Revzin
finds the following constituents of length not less than 2 and contained
in the given string [41]: bolsaja vorona (E-equivalent to vorona), vysokii
kust (E-equivalent to kust), and vzletela na vysokii kust (E-equivalent
to vzletela).

It is easy to see that a constituent of length = 2 of the string x=
a,a, . ..a, is nothing but an E-configuration of rank 1, which admits
at least one of the words g; (1 =i =< n) as resultant.

The above examples show the necessity of making a distinction
between constituents of x contained in x (these constituents are said
to be proper) and constituents of x not contained in x (said to be im-
proper). In the above examples, all the specified constituents are proper,
but copilul is an improper constituent of the Rumanian string considered,
because copilul € S(elevul). 1t is immediately seen that every string
admits only finitely many proper constituents.

The notion of proper constituent enables us to define another important
notion of descriptive linguistics, that of an immediate constituent.

A constituent y of the string x is said to be an immediate constituent
of x if it is a proper constituent of x and if y is contained in no proper
constituent of x other than y. In other words, an immediate constituent
has a maximal character. Thus, the above Rumanian string admits two
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immediate constituents: y = elevul silitor and z = invata foarte bine;
y admits two immediate constituents: elevul and silitor, whereas z admits
the immediate constituents fnvatd and u = foarte bine;, u admits two
immediate constituents foarte and bine. The above Russian string admits
two immediate constituents, v = bolsaja vorona and w = vzletela na
vysokii kust; v is obviously formed by two immediate constituents, where-
as w contains two immediate constituents vzletela and N = na vysokii
kust; A has two immediate constituents na and vysokii kust.

Other aspects of the analysis of immediate constituents and some
details concerning immediate constituents in finite-state languages
have been investigated by Marcus ([27], pp. 215-219).

Let us remark that the notion of immediate constituent was tacitly
considered in Sections 6~9, Chapter IT1. The theory of configurations of
various orders is a considerable improvement of the above description
of constituents.

8. P-Configurations, P-Structures, and Regularly
Finer Partitions

In a customary syntactic analysis we often deal with sequences of
words or morphemes, although our interest and the conclusions we
derive concern sequences of some classes of words or morphemes
(such as distributional classes or parts of speech). In this respect, Ex-
ample 12 of Section 4 and the various examples of normal E£-configura-
tions given in Section 7 are very significant. The analysis carried out in
Example 12 concerns the Russian string malenkaja devocka dolgo
laskala kosku. But we have tacitly transferred the result of our analysis
to the S-structure of this string, that is, to the sequence of distribution
classes to which malenkaja, devocka, dolgo, laskala, and koSku belong.
A similar tacit and unexplained transfer was made in Section 7. Thus,
we state that enfant obéissant, om mare, civis carus, palabras nuevas
are initially nomal E-configurations in French, Rumanian, Latin, and
Spanish, respectively, but we show in parentheses that the associated
parts of speech (noun and qualitative adjective) form a sequence with
a similar property, that is, the P'-structures P’ (enfant) P' (obéissant),
P’ (om) P' (mare), P’ (civis) P’ (carus), P’ (palabras) P’ (nuevas) are
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initially normal P’-configurations. Similarly the initially normal E-confi-
gurations foarte frumos, trés joli, sehr gut, very large, ocen bolsoi yield
(in Rumanian, French, German, English, and Russian, respectively) the
initially normal P’-configuration adverb + qualitative adjective.

It is the purpose in this section to investigate the legitimacy and the
limits of the above procedure. We shall show that the dependence struc-
ture of a string ayd, ... a;...a, is isomorphic to the dependence struc-
ture of S(a,)S(ay)...S(a)...S(a,), whereas the dependence structure
of P(a,)P(a,). . .P(a;). . .P(a,) is isomorphic to the dependence structure of
P'(a))P'(ay). . .P'(a)...P'(a,). The exact meaning of these assertions
will be explained later.

In the following we shall frequently use the notion of regularly finer
partition, introduced in Section 5, Chapter I. To avoid overloading
notation, we shall denote by P(x) and Q(x) the P-structure and the Q-
structure of x, where x is an arbitrary string over I'.

Let us consider a language {I', ®} and two partitions P and Q of I'.
We then have Proposition 11.

Proposition 11. If P is regularly finer than Q and if x and y are two strings
for which Q(x) = Q(y), then P(x) and P(y) are P-equivalent.

ProOF. Let x=aa,...a, and y=bb,...b, Since Qx)=Q(y),
we have n = m and Q(a;) = Q(b;) for 1 < i< n. Since P is finer than Q,
it follows that P(a;) C Q(a;) and P(b;) C Q(b,). Hence P(a;) C Q(a;) D
P(b;) for 1 <i=<n. Since P is regularly finer than Q, we deduce that
P(a;) and P(b;) are P-equivalent for 1 < i< n. Hence P(x) and P(y) are
P-equivalent.

Proposition 12. If P is regularly finer than Q and if x is a string for which
P(x) is an unmarked P-structure, then Q(x) is an unmarked Q-structure.

Proor. Let us admit the existence of a marked string y such that
Q@) = Q(x). In view of Proposition 11, it follows that P(x) and P(y)
are P-equivalent. Since P(x) is unmarked, P(y) is also unmarked. On the
other hand, since y is marked, P(y) is marked. This contradiction proves
that Q(x) is an unmarked Q-structure.

Theorem 5 (Kulagina [26]). If P is regularly finer than Q and if x is
a string over I, such that P(x) is a P-configuration of rank 1, with resul-
tant P(a), then Q(x) is a Q-configuration of rank 1 with resultant Q(a).
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ProoF. Since the length of P(x) is not less than 2 and Q(x) has the same
length as P(x), it follows that the length of Q(x) is not less than 2. It
remains to prove that Q(x) and Q(a) are Q-equivalent. Let x, and x, be
two strings such that Q(x,)Q(x)Q(x,) is a marked Q-structure. In view of
Proposition 12, it follows that P(x,)P(x)P(x,) is a marked P-structure.
Since P(x) is a P-configuration of rank 1, with resultant P(a), it follows
that P(x,)P(a)P(x,;) is a marked P-structure. Since P is finer than Q,
it follows by Lemma 1, Chapter I, Section 6, that Q(x,)0(a)Q(x,) is a
marked Q-structure. We have thus proved that Q(x) Q-dominates Q(a).

Conversely, if Q(x,)Q(a)Q(x,) is a marked Q-structure, there exists a
marked string y such that Q(v) = Q(x;)Q(a)Q(x,). Hence, in view of Pro-
position 11 and since P is regularly finer than Q, P(y) and P(x,)P(a)P(x,)
are P-equivalent. Since vy is marked, it follows that P(x,)P(a)P(x,) is
a marked P-structure; but P(a) and P(x) are P-equivalent. Therefore
P(x)P(x)P(x,) is a marked P-structure. Hence, by Lemma 1, Chapter 1,
Section 6, Q(x)Q(x)Q(x,) is a marked Q-structure. We have therefore
proved that Q(a) Q-dominates Q(x); thus Q(x) and Q(a) are Q-equivalent
and Theorem 5 is proved.

Theorem 6 (Kulagina [26]). If P is regularly finer than Q and if x is
a string over I" such that Q(x) is a Q-configuration of rank 1, with resultant
Q(a), then P(x) is a P-configuration of rank 1, with resultant P(a).

Proor. Obviously, the length of P(x) is equal to the length of OQ(x).
Hence it is not less than 2.

Let x; and x, be two strings for which P(x,)P(x)P(x,) is a marked
P-structure. In view of Lemma 1, Chapter I, Q(x,)Q(x)QO(x;) is a marked
Q-structure. But Q(x) and Q(a) are Q-equivalent. Hence Q(x;)Q(a)Q(x,)
is a marked Q-structure. Now we may apply Proposition 12, Chapter V,
and deduce that P(x,)P(a)P(x,) is a marked P-structure. Hence P(x)
P-dominates P(a).

Let x; and x, be two strings for which the P-structure P(x;)P(a)P(x,)
is marked. In view of Lemma 1, Chapter I, Q(x,)Q(a)Q(x,) is a marked
Q-structure. Since Q(a) and Q(x) are Q-equivalent, it follows that
O(x)Q(x)Q(x,) is marked; there exists a marked string y such that
O(x)0(x)Q(x,)=QO(y). Hence, in view of Proposition 11, P(y) and
P(x))P(x)P(x,) are P-equivalent. But P(y) is a marked P-structure.
Therefore P(x;)P(x)P(x,) is also marked and P(a) P-dominates P(x).

Proposition 13. Let P be regularly finer than Q and let x be any string
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over I'. P(x) is a P-structure of rank 1 if and only if Q(x) is a Q-structure
of rank 1.

Proor. Let P(x) be a P-structure of rank 1 and let us admit that Q(x)
contains a Q-configuration Q(x,) of rank 1. Hence there exist two strings x,
and x; such that Q(x)=Q(x;) Q(x,)Q(x3). This implies P(x)=P(x,)P(x;)P(x;)
and, by Theorem 6, P(x,) is a P-configuration of rank 1; thus, we obtain
the absurd conclusion that P(x) is not a P-structure of rank 1. It follows
that Q(x) contains no Q-configuration of rank 1. Hence it is a Q-structure
of rank 1.

Conversely, let Q(x) be a O-structure of rank 1 and let us admit that
P(x) contains a P-configuration P(x,) of rank 1. We have, for some
strings x, and x;, P(x)= P(x,)P(x;)P(x;). Hence Q(x)= Q(x,)Q(x)O(x,).
By Theorem 5, Q(x,) is a Q-configuration of rank 1 contained in Q(x);
but this fact contradicts the assumption that Q(x) is a Q-structure of
rank 1. Therefore, P(x) is a P-structure of rank 1.

Theorem 7 (Kulagina [26]). Let P be regularly finer than Q and let
x be a string over I'. Then P(x) is a P-configuration of rank n (n=1)
with resultant P(a) if and only if Q(x) is a Q-configuration of rank #,
with resultant Q(a). Moreover, if y is a string over I', then P(y) is a
P-structure of rank # if and only if Q(y) is a Q-structure of rank n (n = 1).

PrOOF. We proceed by induction. For n=1, Theorem 7 follows from
Theorems 5 and 6 and Proposition 13. Let us admit that Theorem 7
is true for any positive integer p < n and let us prove Theorem 7 for
p=n. Let P(x) be a P-configuration of rank n with resultant P(a). We
shall show that Q(x) is a Q-configuration of rank » with resultant Q(a).
Since the length A of Q(x) is equal to the length of P(x), which is not
less than 2, it follows that A = 2. It remains to prove that Q(x) and Q(a)
are (Q-equivalent with respect to .%,-,(Q) (equal the set of Q-structures
of rank n—1). Consider two strings x; and x, such that the Q-structures

O(x)Q()O(x,) (1)
O(x)Q(a)Q(x,) )

are of rank n— 1. Since the theorem is supposed true for p < n, it follows
that the P-structures

P(x)P(x)P(x) (3)
P(x,)P(a)P(x,) 4)
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are of rank n— 1; moreover, if (1) is marked, then, by Proposition 12,
(3) is also marked and, since P(x) and P(a) are P-equivalent with respect
to %,_.(P) (equal the set of P-structures of rank n—1), (4) is marked.
This implies, by Lemma 1, Chapter I, that (2) is marked. Conversely,
if (2) is marked, then, by Proposition 12, (4) is also marked and, since
P(x) and P(a) are P-equivalent with respect to ., ,(P), (3) is marked.
This implies, by Lemma 1, Chapter I, that (1) is marked. Hence QO(x)
is a Q-configuration of rank n, with resultant Q(a).

Let us now suppose that Q(x) is a Q-configuration of rank n, with
resultant Q(a). If (3) is marked, then in view of Lemma 1, Chapter I,
(1) is marked and (2) is also marked, because Q(x) and Q(a) are Q-
equivalent with respect to .%,-,(Q). By Proposition 12, it follows that
(4) is marked. Conversely, if (4) is marked, then, by Lemma 1, Chapter I,
(2) is marked, and (1) is also marked, because Q(x) and Q(a) are Q-equiv-
alent with respect to .%,—(Q). In view of Proposition 12, it follows that
(3) is marked. Hence P(x) is a P-configuration of rank 7, with resultant
P(a).

We shall now prove the last part of Theorem 7. Let y be a string over
I" and suppose that P(y) is a P-structure of rank n. If Q(y) contains a Q-
structure Q(y,) of rank n, we find two strings v, and y; such that Q(y) =
Q0(2)Q(y)Q(ys). Hence P(y) = P(y))P(y)P(ys). Since Q(y,) is a Q-
configuration of rank n, P(y,) is a P-configuration of rank » (as we have
just proved), in contradiction to the assumption that P(y) contains no
P-configuration of rank n. It follows that Q(y) contains no Q-configura-
tion of rank n. Hence it is a Q-structure of rank n. In the same way one
proves that P(y) is a P-structure of rank # if Q(y) is a Q-structure of rank
n. Theorem 7 is proved.

It is natural to ask whether Theorem 7 remains true if we replace the
rank by the order. The answer is affirmative, as follows.

Corollary 3. Let P be regularly finer than Q and let x and y be two strings
over I'. Then P(x) is a P-configuration of order n with resultant P(a)
if and only if Q(x) is a Q-configuration of order n, with resultant Q(a).
P(y) is a P-structure of order n if and only if Q(y) is a Q-structure of
order n.

ProoF. Let P(x) be a P-configuration of order n with resultant P(a).
On one hand, P(x) is of rank n. Hence, in view of Theorem 7, Q(x} is a
Q-configuration of rank n, with resultant Q(a). On the other hand, P(x)
is of no rank less than n; using Theorem 7 again, it follows that Q(x)
is of no rank less than n. Hence it is a Q-configuration of order n with
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resultant Q(a). Conversely, if Q(x) is of order n, with resultant Q(a),
P(x) is of order n, with resultant P(a).

Consider now a P-structure P(y) of order n. On one hand, P(y) is of
rank n. Thus, in view of Theorem 7, Q(y) is also of rank n. On the other
hand, P(y) has no rank greater than #; again using Theorem 7, it follows
that Q(y) has no rank greater than n. Hence it is a Q-structure of order n.
In the same way one can prove that, if Q(y) is of order n, then P(y) is
also of order n.

Corollary 4. Let P be regularly finer than Q. Then the P-configurational
type N(P) of L,={I', P, ®} is equal to the Q-configurational type N(Q) of
L,={T', Q, ®}, whereas the P-structure type M(P) of L, is equal to the Q-
structure type M(Q) of L,.

ProoF. The proof follows immediately from Corollary 3.

Proposition 14. Let P be regularly finer than Q and let x be a string
over I'. Then, P(x) is a parasitic P-configuration of rank » if and only if
Q(x) is a parasitic Q-configuration of rank n.

PrROOF. Let y and z be two strings over I'. In view of Theorem 7, we
have P(yxz) € &,+(P)if and only if Q(yxz) € .¥,_1(Q) and P(x) € €,_(P)
if and only if Q(x) € ¢,_(Q). Moreover, from Lemma 1, Chapter 1,
and Proposition 12, we deduce that P(yxz) is a marked P-structure if
and only if Q(yxz) is a marked Q-structure. Proposition 14 follows
immediately.

Proor. The proof follows immediately from Corollary 4 and Proposi-
tion 14.

Proposition 15. Let P be regularly finer than Q and let us adopt the nota-
tion of Corollary 4 Then, the effective P-configuration N,(P) of L, is
equal to the effective Q-configuration N,(Q) of L., whereas the effective
P-structure M,(P) of L, is equal to the effective Q-structure M(Q) of L,.

Proposition 16. Let P be regularly finer than Q and let x be a string over
I". Then, P(x) is a semiregular (initially regular, finally regular, minimal,
initially normal, finally normal) P-configuration of order # if and only if
Q(x) is a semiregular (initially regular, finally regular, minimal, initially
normal, finally normal, respectively) Q-configuration of order n.

ProOF. Let x=aya,...a,. P(x), as P-configuration of rank n, admits
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the resultant P(a;) (1 <i<m) if and only if Q(x), as Q-configuration of
rank n, admits the resultant Q(a;) (see Theorem 7). Therefore, P(x)
is semiregular (initially regular, finally regular) if and only if Q(x) is semi-
regular (initially regular, finally regular, respectively). The other asser-
tions of Proposition 16 follow immediately from the fact that P(x)
and Q(x) have the same length (equal to m) and by taking Corollary 3
into account.

Theorem 7, Corollaries 3 and 4, and Propositions 14-16 show that
the most important properties concerning configurations and structures
are invariant with respect to partitions one of which is regularly finer
than' others. This fact is very important from both a theoretical and
practical point of view. Indeed, we know that every partition P is regul-
arly finer than its derivative partition P’ and we always have E'= 3§
(Section 5, Chapter I). We also have R’ =P’ in every adequate language
(Theorem 4, Chapter 1) and R'=K'=M'=N'=G’' =P’ in every
homogeneous language (see Theorem 10, Corollaries 3 and 4, Chapter 11,
and Proposition 29, Chapter 1V). Thus, the dependence structure of a
customary string a;d, . . . a, over I' is the same as the dependence struc-
ture of the corresponding sequence of distributional classes S(a;)S(as). . .
S(a,), whereas the dependence structure of the sequence of paradigms
P(a,)P(a,). . .P(a,) is the same as the dependence structure of the corres-
ponding sequence of parts of speech P'(a,)P'(ay). . .P'(a,). It follows that
Examples 1-11 investigated in Section 4 and concerning E-configurations
and E-structures, are also valid with respect to the corresponding S-
configurations and S-structures. The examples of normal E-configurations
ab given in Section 7 remain valid if the word « is replaced by a word
a’ € P(a), whereas b is replaced by a suitable word b" € P(b). (For
instance, in French, if a = mon, b = livre, and a’ = mes, then b’ = livres.)
Thus Proposition 16 enables us to transfer the corresponding examples
and results to P’-configurations and so we obtain normal configurations
whose terms are parts of speech.

We may ask whether Theorem 7, Corollaries 3 and 4, and Propositions
13-16 remain true when P is merely finer (but not regularly finer) than
Q. In this respect, we shall consider several examples due to Kulagina
([26], pp. 211-222).

Proposition 17. There exist a language L={I', ®}, two partitions
P and Q of I', P finer than Q, and two words « and b such that P(a)P(b)
is a P-configuration of rank 1 in L, whereas Q(a)Q(b) is not a Q-con-
figuration of rank 1 in L.
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Proofr. Let I'={a, b, ¢, d} and ®={dbcc, ab™cd} (n = 0). As before,
b° means the zero string. Let P=FE and Q(a)=/{a, d}, Q(b)={b},
O(c)={c}. Obviously, E (the unit partition) is finer than Q. As before
we shall denote by x both the element x and the E-cell of x. The E-
structure ab is an E-configuration of rank 1 with resultant a. Indeed,
by replacing ab by a in ab™cd (n > 0), we also get a marked E-structure;
the same is true when we replace a by ab. On the other hand, Q(a)Q(b)
is not a Q-configuration of rank 1. Indeed, Q(a)Q(b) is contained in
the marked Q-structure Q(a)Q(b)Q(c)Q(c) (this is the Q-structure of
the marked string dbcc), whereas none of the Q-structures Q(a)Q(c)Q(c),
Ob)0(c)Q(c), and O(c)Q(c)O(c) is marked. Hence none of the Q-cells
Q(a), Q(b), and Q(c) may be a resultant of Q(a)Q(b). It follows that
O(a)Q(b) is not a OQ-configuration of rank 1.

Proposition 18. There exist a language L= {I', ®}, two partitions
P and Q of T', P finer than Q, and two words a and b such that Q(a)Q(b)
is a Q-configuration of rank 1 in L, but P(a)P(b) is not a P-configura-
tion of rank 1 in L.

ProoF. Let I', P, and Q be defined as in the proof of Proposition
17 and let ®={dc, ab"c} (n=1). Since each Q-structure of the
form (Q(a)Q(h))"O(c) (n=0) is marked, it follows that Q(a)Q(b) is
a Q-configuration of rank 1, with resultant Q(a). [(Q(b))° means the
zero QO-structure.] On the other hand, we shall show that P(a)P(b) is
not a P-configuration of rank 1. Indeed, if we replace P(a)P(b) by P(a),
P(b), or P(c) in the marked P-structure P(a)P(b)P(c), we get the un-
marked P-structure P(a)P(c), P(b)P(c), or P(c)P(c), respectively; if
we replace P(a)P(b) by P(d) in the marked P-structure P(a)P(b)P(b)P(c),
we get the unmarked P-structure P(d)P(b)P(c). Hence, none of the
P-cells P(a), P(b), P(¢), and P(d) may be a resultant of = P(a)P(b).
Therefore & is not a P-configuration of rank 1 in L.

Proposition 19. There exist a language L={I', ®}, two partitions
P and Q of I', P finer than Q, and two words b and ¢ such that P(b)P(c)
is a P-configuration of order 2, with resultant P(b), whereas Q(b)Q(c) is
a Q-configuration of order 1, with resultant Q(b) in L.

ProofF. letI'={a,b,c,d}, P=E, Q(a)={a, d}, Q) =1{b, ¢} and
® = {ab"cd, dd, bc™} (m =0, n = 0). Since the strings ab”cd and ab" 'cd
are both marked for n > 0, it follows that ab is a P-structure of rank 1,
with resultant a. The marked P-structures of rank 1 are acd, dd, and bc™
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(m=0). It is easily seen that bc is a P-configuration of order 2, with
resultant b; indeed, the P-structures of rank 1 bc™ and bc™ ! are both
marked for m > 0, and so bc is a P-configuration of rank 2, with resultant
b, whereas the replacement of bc by b in the marked P-structure ab*cd
yields the unmarked P-structure ab"d. Hence bc is not a P-configuration
of rank 1, with resultant b. However, Q(b)O(c) is a Q-configuration of
order 1, with resultant Q(b), since we have the marked Q-structures
Q(a)Q(b))"Q(a) and (Q(b)* (n=0) and the replacement of Q(b)Q(c)
[=0®B)0(b)] by Q) or of Q(b) by O(b)O(c) transforms a marked
Q-structure into a marked one and an unmarked Q-structure into an
unmarked one.

Proposition 20. There exist a language L={I", ®}, two partitions P
and Q of I', P finer than Q, and two words ¢ and d such that P(d)P(c)
is a P-configuration of order 1, with resultant ‘P(d), whereas Q(d)Q(c)
is a Q-configuration of order 2, with resultant Q(d) in L.

Proor. Let I'={a, b, ¢, d}, P=E, Q@)=0(d={a, d}, Q(b)={b},
Qcy={c}, ®={ba"c, dc™} (m=0,n=0). The P-structure dc is a
P-configuration of order 1, with resultant d, because the P-structures
dc™ and dc™ ' are both marked for m > 0. However, the Q-structure
Q(d)Q(c) is not a Q-configuration of rank 1, with resultant Q(d),
because the replacement of Q(d)Q(c) by Q(d) in the marked Q-structure
QBUQ@N"O(c) (n > 0) yields the unmarked Q-structure Q(b)}Q(d))".
But Q(d)Q(c) is a O-configuration of rank 2, with resultant Q(d). Indeed,
Q(b)Q(a) is a Q-configuration of rark 1, with resultant Q(b), and we
obtain the following Q-structures of rank 1: @Q(»)Q(c) and Q(d)(Q(c)™
(m=0). It remains to remark that the replacement of Q(d)Q(c) by
Q(d) or of OQ(d) by O(d)QO(c) in the marked Q-structure Q(d}Q{(c))™
also yields a marked Q-structure.

Propositions 17-20 show that Theorem 7, Corollaries 3 and 4, and
Proposition 13 do not remain true when P is finer, but not regularly
finer, than Q.

9. Configurations in the Sense of Gladkii

Gladkii has introduced an important restriction in the definition
of configurations of order higher than 1 [13]. We shall deal with E-con-
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figurations only; thus, we may adopt a simpler terminology and say
configuration instead of E-configuration.

A string x over I is a Gladkii configuration of rank 1, with resultant
a €T, in the language L={TI", ®}, if and only if x is a customary con-
figuration (that is, in the sense of Section 2) of rank 1, with resultant
ain L.

We recall that a string « is said to be contained in the string v if there
exist two strings s and ¢ such that v=sut. Given two strings x and y,
we shall say that y meets x (or that x meets y) if there exists a nonvoid
string z which is contained both in x and in y.

Let n be a positive integer greater than 1, and suppose we have defined,
for every i <n (i= 1), the Gladkii configurations of rank i. A string
x over I' is a Gladkii configuration of rank n in L if the following two
conditions are fulfilled: (1) the length of x is not less than 2; (2) there
exists a word « (called a resultant of x) such that, for every pair of
strings y and z, we have: (a) if yaz € ®, then yxz € ®; (b) if yxz belongs
to ® and contains no Gladkii configuration of rank less than #, which
meets x but is not contained in x, then yaz € ®.

Proposition 21 follows immediately.

Proposition 21. Every Gladkii configuration of rank n is of any rank
greater than n.

The relation between the Gladkii configurations and the customary
ones is given by Theorem 8.

Theorem 8. Every Gladkii configuration of rank s, with resultant
a, 1s a configuration of rank n, with resultant a, but the converse is not
true. There exist a language L= {I', ®} and a configuration of rank 2
in L which is not a Gladkii configuration in L.

Proor. The first part of Theorem & follows from the remark: The
definition of configurations of rank #» may be obtained from the definition
of Gladkii configurations of rank » by replacing condition (2) by the
next condition: (3) there exists a word a € I' (called a resultant of
x) such that for every pair of strings y and z, for which yxz and yaz
contain no configuration of rank less than n, the strings yxz and yaz are
either both marked or both unmarked. Indeed, it is easily seen that
(2) implies (3).

To prove the second part of Theorem 8, let us consider the language
L defined as follows. I'={a, b, ¢, d, ¢, f, g}, ®={aec, gc, aef, gf, ec,
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bdc, ab, db}. The unique configuration of rank 1 is ae, with resultant
g. The marked strings which do not contain ae are gc, gf, ec, bdc, ab, db.
It follows that bd is a configuration of rank 2 (with resultant e¢). But
bd is not a Gladkii configuration in L, since there is no word a € T such
that the replacement of « in any marked string also yields a marked
string. In particular, bd is not a Gladkii configuration with resultant
e, since gec is marked, but gbdc is not. Theorem 8 is proved.

Although Gladkii configurations are a special kind of configurations,
most configurations encountered in natural languages are Gladkii
configurations. For instance, Russian configurations wvysokii dom
(qualitative adjective+noun) and rovyi dom (qualitative adjective+
noun) are Gladkii configurations of the same rank and with the same
resultant (dom), but ocen vysokii (adverb-+ qualitative adjective) is a.
Gladkii configuration with resultant vysokii and whose rank is less
than the rank of the former, because in the marked string na uglu stoit
ocen vysokii dom the replacement of vysokii dom by dom yields an un-
marked string. But in the same string the replacement of dom by novyi
dom yields a marked string, although the first string contains the Gladkii
configuration of a lower rank ocen vysokii.

A Gladkii configuration x is said to be of order n if it is of rank n,
but not of rank n— 1. If no such integer n exists, we say that x is of
infinite order. We may also define the Gladkii configurational type G
of a language L by the following two properties: There exists in L a
Gladkil configuration of order G; there exists in L no Gladkii configura-
tion of order G —1. In view of Proposition 21, most of the results
established for customary configurations and concerning ranks, orders,
configurational types, remain true for Gladkil configurations.

If there exists an integer » such that the string x is a Gladkii configura-
tion of rank n, we say that x is a Gladkii configuration; we recall that
x is not parasitic if it is contained in at least one marked string.

In establishing Gladkii configurations of a natural language, the
following result may be useful.

Proposition 22. Let L={I", ®} and let a be a nonparasitic word in
L. Then every Gladkii configuration of L, with resultant «, is not parasitic.

PROOF. Since a is not parasitic, we find two strings # and v, such
that uav € ®. Therefore, uxv € ® and x is not parasitic.

The Gladkii configuration x is said to be simple of rank n if it contains
no Gladkii configuration of rank » other than x. For instance, the English
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string very great countries is not a simple Gladkii configuration of rank
3, although it is a Gladkii configuration of rank 3. In exchange, great
countries 1s a simple Gladkii configuration of rank 3. (Configurations of
the form secondary adverb~+ adverb are of rank 1; those of the form
adverb+ qualitative adjective are of rank 2; those of the form qualitative
adjective + noun are of rank 3.)

The notions of minimal, semiregular, regular, or normal configuration
may be transposed to Gladkii configurations. Obviously, every minimal
Gladkii configuration of rank # is simple of rank n.

Unless a contrary assumption is made, all configurations considered
in Sections 9 and 10 are Gladkii configurations.

Given a language L = {I', ®}, we shall denote by .# a set of ordered
pairs of the form {x, a), where x is a configuration in L and a is a re-
sultant of x. We shall suppose that .# fulfills the following condition:
If a and b are two resultants of x and (x, a) € #, then {(x, b) € 4.

If x runs over the set of all configurations (the set of all simple con-
figurations, the set of all configurations of rank », the set of simple
configurations of rank n) of L, then .# will be denoted by K(L)YII(L),
K, (L), TI,(L), respectively). Further, we denote by B(L)(B,(L)) the set
of all strings of L which contain no configuration (configuration of rank
n, respectively) of L. Strings belonging to B(L) are said to be irreducible.

The ordered pair (B(L), K(L)) is said to be the complete configura-
tional characteristic of L, whereas {(B(L), II(L)) is said to be the reduced
configurational characteristic of L. It is natural to ask whether a language
is completely determined by its configurational characteristics. Proposi-
tions 23 and 24 and Theorems 9 and 10 will give an affirmative answer.

Proposition 23. Let L, ={I, ®,} and L,= {T, ®,;}. If B(L,) C B(L,)
and II(L,) C K(L,), then ®; C ®,.

Proor. If &, contains strings of length 1, all these strings belong to
B(L,); but B(L,) C B(L,;) C P,.

Let us suppose that every string of ®,, whose length is less than or
equal to n, belongs to ®,. Let x=a4a;...a,+, be a string of length
n+1, x€d,. If x € B(L,)), we proceed as for n= 1. Suppose that x
does not belong to B(L,). Denote by r the smallest rank of a configura-
tion of L,, contained in x. Then, x contains a simple configuration of
rank r. Hence there exist two integers i,j (1<i<j=sn-+1) and a
word a €I, such that {awa,...a;,a) €EII(L,) CII(L,). Let y=
a;...Q;10d;4, - . . Ayyy. Since x contains no configuration of rank less
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than r, we have y € ®,; therefore, by our induction hypothesis, y € ®,.
But {(a;...a;,a) € K(L,). Hence x € ®,.

Proposition 24. Let L,={I', ®,}, L,={I, ®,}. Let s be a positive
integer. If B(L,) C B{(L,) and [I(L,) C K(L,), then ®; C &,.

ProOOF. We proceed as in the proof of Proposition 23, by taking into
account that r < s implies K{L) C K (L).

Theorem 9. let L,={I, &}, L,={T, ®,}. If B(L,)= B(L,) and
K(L,) = K(L,) or if B(L;)= B(L,) and II(L,) =TI(L,), then ®, = d,.

PROOF. We obviously have II(L) C K(L) for any language L; hence
Theorem 9 follows immediately from Proposition 23.

Theorem 10. Let L, = {I', &;}, L,={T, ®,} and let s be a positive
integer. If By(L,) = By(L,) and KL, =KJ(L,) or if ByL,) = By(L,)
and I (L,) = II4(L,), then ®, = O,

Proor. We obviously have II(L) C K (L) for any language L. Thus
Theorem 10 follows immediately from Proposition 24.

The notions and facts concerning configurations may be easily trans-
posed from strings to S-structures. (We recall that S is the partition of
I' into families.) It is enough to replace words, strings, and marked strings
by families, S-structures, and marked S-structures, respectively. (We re-
call that, in view of Corollary 6, Chapter I, each marked S-structure
is perfect, that is, every corresponding string is marked.) In the same
way one can define simple S-configurations and the sets B%(L), K5(L),
IIS(L), B3(L), K5(L), TI3(L) corresponding to the notion of simple con-
figurations and to the sets B(L), K(L), II(L), B,(L), K,(L), and II, (L),
respectively.

Proposition 25.. Let L={I',®} and a €T; let x=aya,...a, be a
string over I'. Then the S-structure S(a,)S(a,). . .S(a,) is an S-configura-
tion of rank m, with resultant S(a) in L if and only if x is a configuration
of rank m with resultant a in L.

PrROOF. Since the unit partition E is regularly finer than S and since
Theorem 7 is also valid after replacing customary configurations by
Gladkii configurations, Proposition 25 follows immediately from
Theorem 7.
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Proposition 26. Let L, = {I', ®,} and L, = {I', ®,}. Suppose that (1)
for every S-structure & € BS(L,) there exists an S-structure & € BS(L,)
such that Z is contained in 2'; (2) for every pair (W, w) € IIS(L,) there
exists a pair (W', w') € K5(L,) such that W is contained in W’ and w
is contained in w'. Then, ®, C ®,.

Proor. This follows from Proposition 23 and 25.

Proposition 27. Let 1 be a positive integer and let L, = {I', ®,} and
L, = {I', ®,} satisfying the following conditions: (1) for every S-structure
2 € Bj(L,) there exists an S-structure & € Bj(L,) such that # is con-
tained in #'; (2) for every pair (W, w) € 1I5(L,) there exists a pair
(W', w') € K3(L,), such that W is contained in W’ and w is contained
in w’. Then, ®, C ®..

Proor. The proof follows from Propositions 24 and 25.

Propositions 26 and 27 show that Theorems 9 and 10 remains true
when we replace A(L;) and A, (L)) (i=1,2; A= B, K, 1I) by A5(L;) and
AS(L;), respectively. The theorems thus obtained will be called Theorem
9§ and 108, respectively.

The following example shows that Propositions 23, 24, 26, and 27
and Theorems 9, 10, ‘S6 and 10§ become erroneous if we replace
Gladkii configurations by customary configurations. Let I'= {a, b, c,
d,e f, g}, & ={aec, gc, aef, gf, ec, bdc, ab, db} and &, =d, U
{abd}. The unique Gladkii configuration of L, is ae (of rank 1, with
resultant g) and the same is true for L,. Thus, B(L,}= B(L,) U {abd}.
From the standpoint of customary configurations, L, and L, also have
configuration bd (of rank 2, with resultant e). Since for any word a we
have S(a) = {a} in L, as well as in L,, it follows that from the stand-
point of customary configurations we have AS(L,)=A(L,) =A(L,) =
AS(L,), where A =B, K, II.

10. Gladkii Configurations and Generative Grammars

Culik observes that one of the main aims of mathematics is to charac-
terize infinite classes by a structure using finite classes only ([10],
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p. 14). Faithful to this principle, Gladkii introduces the following defini-
tion: A language L = {I', ®} is said to be of finite type if both the sets
B(L) and II(L) are finite[13].

If Gladkii configurations are replaced by customary configurations,
then B(L) = ¥ .(L). On the other hand, if the E-configuration of L is in-
finite, there are, for every positive integer n, E-configurations of order n.
Hence there exists, for each positive integer n, a simple E-configuration
of order n and II(L) is thus an infinite set. We have therefore proved
the next proposition.

Proposition 28. If we concern ourselves with the customary configura-
tions, every language L of finite type is of finite E-configuration, and
F (L) is finite.

Languages of finite type are an interesting approximation to natural
languages, where, in any case, there are infinitely many configurations.
For instance, in most European languages there are, for any positive
integer n, configurations of the forms: transitive verb - n direct objects,
n qualitative adjectives+noun, n adverbs+ qualitative adjective, etc.

To avoid insignificant results, we shall explicitly state an assumption
tacitly adopted more often then not. We shall suppose that the vocabulary
I contains no parasitic word, that is, for any a € I there exist two strings
u and v over I such that uav € ®.

Languages of finite type are closely related to some kinds of languages
obtained in generative grammars. We wish particularly to point out the
relations between languages of finite type, on one hand, and context-
free languages and finite-state languages on the other. Although these
notions were already defined (see Section 1, Chapter I; Section 7,
Chapter II; Section 10, Chapter 11I), we shall give new definitions,
more suitable to our present purposes, but equivalent to the previously
definitions. (For this equivalence see Chomsky [9].)

Let I' and I';, be two mutually disjoint nonempty sets. I' is the basic
vocabulary, whereas T, is the auxiliary vocabulary. Choose an element s
of I',. A generative grammar over ' U I'y is a finite set of rules of the form
x—y, where x and y are strings over I' U I'}, whereas the symbol—
does not belong to I' U I'y. If there exist four strings u, v, z,, and z,
over I' U I';, such that u = z;xz, and v = z;yz, (where x—y), we shall
say that v is obtained from u by the rule x—y. A finite sequence x,,
Xy, ..., x,of strings over I' U I’y is a derivation of x, from x, in the genera-
tive grammar 4, if for 1 <i=<n the string x; is obtained from x;_, by
a rule of & (this rule is said to be the ith rule of the considered derivation).
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If there is a derivation of x, from x, in ¥, we shall say that x,, is derived
Jrom x, in 4. The set of all strings over I', which are derived from s
in ¢, is a language over T'; it is the language generated by ¥ and is
denoted by L(¥).

A generative grammar is said to be a context-free grammar if, in every
one of its rules x—y, the string x is an element of I';. A context-free
grammar is a finite-state grammar if and only if, in every one of its rules
x—y, we have eithery € I', or y=ab, where a € Tand b € T, [8,9].
The language generated by a context-free grammar is said to be a con-
text-free language, whereas the language generated by a finite-state
grammar is a finite-state language.

Theorem 11. If the language L = {I', ®} is of finite type, then ® is
a context-free language.

PRrROOF. Let y be the set of distribution classes of L. Consider a symbol
s which does not belong to I U y and put I'; = y U {s}. We shall define
a generative grammar ¢ over I' U I';, by the following rules: (1) s— b,
where b € B5(L); (2) ty,—>t, where (2, t,) € II(L); (3) A—a, where
A€ yand a€A.

We shall show that ® = L(¥9).

(1) Let x € L(¥%). Obviously, in each derivation of x from s, the
first rule (and only this rule) has form (1). It is easily seen that there
exists a derivation x,, X;,. .., X, (xo=s, x,=x, n = 2) such that for some
i (1 <i=<n), all rules from the (i+ 1)th to the nth rule inclusively have
form (3); moreover, if i =2, all rules from the second to the ith rule
inclusively have form (2). For every k& (1 <k <), x, is an S-structure
in L. Obviously, x=x, € x;. Therefore, to prove that x € ®, it is enough
to establish that x; is a marked S-structure in L. But this is true for
every S-structure x;, x,, ..., x; Indeed, (a) x; is obtained from x,=s
by one rule of form (1); hence x; € BS(L) and, consequently, x; is a
marked S-structure in L; (b) if 1 < k < i and if x,, is a marked S-structure
in L, then x., is also a marked S-structure in L, since it is obtained
from x, by introducing some S-configuration instead of its resultant. Thus,
L(®) C @.

(2) Let x be a marked S-structure in L. We shall show that x is derived
from s in 4. We proceed by induction with respect to the length of x.

If the length x is 1, then x € BS(L). Hence x is obtained from s by a
rule of form (1).

Let us admit that every marked S-structure of length less than or
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equal to # is derived from s in ¢. Consider a marked S-structure x of
length n+ 1. If x € BS(L), we proceed as for n=1. If x does not belong
to BS(L), let r be the smallest rank of an S-configuration of L, contained
in x. Then, x contains a simple S-configuration of rank r in L. Therefore,
if x=x1° " Xp1 (X4,..., X041 € ), there exist two integers i and j
(I1=<i<j=n+1), and a family x, € v, such that (x; - - - x;, xo) € II5(L).
The S-structure y=ux; « - - X;j_1XoXje1 * * * Xpeq 1S marked in L. In view
of our induction hypothesis, y is derived from s in 4. But x is obtained
from y by a rule of form (2): xo— x; - * - x;.

Now let z € ®. Denote by x the S-structure of z. Since z€ ®, xis a
marked S-structure in L. Hence, in view of the result just obtained, x
is derived from s in ¢. On the other hand, z may be obtained from x,
by a rule of form (3). Therefore, z € L(¥) and ® C L(¥),and Theorem 11
is proved.

The converse of Theorem 11 is not true, as now shown.

Theorem 12. There exists a finite-state language ® over I', such that
L={T, ®} is not of finite type.

PrOOF. Let I'"={a, b}, ®' ={bab, a, a?, a?,...}. If we put I'1={s, 4,
D, H} and 9'={s—aH, H—aH, H—a, s—>a, s—>bA, A— aD,
D— b}, then ®'=1(¥9'). Moreover, K(L)=0 and B(L')=®' (where
L'={I", ®'}).

Let T"={c,d, e, f, g}, D" ={fg, cd?eg, cd’eg,...}. If we put
I'={s,C,F,E,G} and 9" ={s—>fG, s—>cC, C—>dF, F—dF,
F—dE, E—eG, G— g}, then ®''=L(¥"’). Obviously, every string
of the form cd® (n=2,3,...) is a simple configuration of order 1 in

"={T"", ®'' }(with resultant f); B(L'")={fg}.

Now let us put '=I" UT"" and ®=&' U ®’’. The language ® is
a finite-state language over I" but L= {I", ®} is not of finite type, since both
the sets B(L) and II(L) are infinite. Theorem 12 is proved.

It is natural to ask whether Theorem 11 may be improved by replacing
the words “context-free language” by “finite-state language”. The
answer is negative, as shown now.

Proposition 29. There exists a language L={I', ®} of finite type,
such that ® is not a finite-state language over I'.

Proofr. Let I'={a, b}, ®=1{b, aba, a*ba?, a®ba®,...}. The unique
simple configuration in L is aba (of rank 1, with resultant b); B(L)={b}.
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Therefore, L is of finite type. On the other hand, we shall show that ®is not
a finite-state language. Indeed, for m # n, the strings ™ and a” are not
E-equivalent, since the string a™ba™ does not belong to ®. Thus, there
exist infinitely many T-distribution classes with respect to ®.

Theorem 12 and Proposition 29 make the following problem natural:
Determine a class of languages which are both finite-state languages
and languages of finite type. In this aim, we shall use a new type of
grammar [13].

Let ¥ be a finite-state grammar. leta€l, bel,, cel,,dET,,
e €T, f€T,. We suppose that ¢ fulfills the following two conditions:
(1) If b—~>a and ¢— ad are rules in ¢4, then b=c¢; (2) if ¢ — ad and
e — af are rules in ¢, then ¢ = ¢. We shall say of such a grammar ¥ that
it is a finite-state grammar without homonymy. If we interpret the
elements of I' as words (or morphemes) and the elements of I'y as gram-
matical categories, each of the rules b—>a, b—ac (a€T, beET,,
¢ €T, says that word a belongs to category b. If all rules occurring
in ¢ and containing the word « contain homogeneous grammatical
categories (masculine and feminine are homogeneous; also, nominative
and genitive, singular and plural, etc.; masculine and genitive are not
homogeneous; also, singular and present, nominative and plural, etc.),
then, in a grammar without homonymy, no word can belong to two
homogeneous grammatical categories. This is precisely the meaning of
grammatical homonymy in the customary grammar. Thus, the gram-
matical homonymy of the French adjective maigre is that it belongs
to two homogeneous grammatical categories, the masculine and the
feminine, whereas the grammatical homonymy of the Rumanian adjective
cumsecade 1s that it belongs to two pairs of homogeneous grammatical
categories: masculine-feminine and singular-plural.

A language which may be generated by a finite-state grammar without
homonymy is said to be a finite-state language without homonymy.
We give here without proof the following result due to Gladkii ({13],
p. 257).

Theorem 13. Let @ be a language over I'. If @ is a finite-state language
without homonymy, then {I', ®} is of finite type.

The problem of finding the configurations of a finite-state language has
been completely solved by Gladkii [15]. Indeed, we have another
theorem.

Theorem 14. If ® is a finite-state language over I, then, for every b € r
and every positive integer n, the set K, (b, L) of the configurations of
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rank n and having the resultant » in L = {I", ®}, is also a finite-state
language. Starting from the finite-state grammar which generates @,
from the word b and from the number n, we may effectively find a
finite-state grammar which generates the language K, (b, L).

11. Quasi-Configurations and Syntagms

Configurational analysis is quite adequate for the description of the
so-called connected or continuous constituents of a string x, that is, of
constituents which are substrings of x. But there are also discontinuous
constituents such as the German string das Buch in das gute Buch. On
the other hand, we have concerned ourselves until now only with depen-
dence relations; but there are also coordination relations, which remain
outside the configurational analysis.

This section concerns itself precisely with these two problems which
have not been previously discussed. To investigate discontinuous con-
stituents, the notion of quasi-configuration will be introduced. Then,
with the aid of quasi-configurations, two types of syntagms will be
analyzed: dependence syntagms and coordination syntagms. All notions
and results given in this section (as well as those given in Sections 9
and 10) are due to Gladkii [14].

Two words a and b are said to be related if (1) for every pair of strings
z; and z, and every positive integer m, the string z,az, is a configuration of
rank m with resultant a if and only if z,bz, is a configuration of rank m
with resultant b; (2) there exists at least one configuration of the form
Z1a2s, With resultant a.

In Russian, transitive verbs are related to the corresponding non-
transitive forms. Thus, the configuration horoso moet corresponds
to the configuration Aoroso rabotaet.

The following proposition is obvious.

Proposition 30. If b € S(a), then a and b are related.

The configuration x is said to be decomposable if for any resultant
a of x there exists a word b related to a, such that x = x,bx, (that is, b
is contained in x); b is said to be a kernel of the configuration x, a is
called a principal resultant of x, and the string x,x, is said to be an attribute

of x.
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In Russian, ocen vysokii, vysokii dom, méju ruki are decomposable
configurations. In German, the configuration der Tisch (with resultant
er) is not decomposable.

The string x is said to be a quasi-configuration of rank m if x admits
a representation of the form x=xgy,x;y,x,, where: the length of y=
Y1y, is greater than 1; at least one of the strings x,, x;, X, is not the zero
string; given two strings z; and z,, the following two conditions are ful-
filled: if z,yz, € ® then z;xz, € ®; if z= z,xz, € ®, and if every configura-
tion of rank less than m, contained in z and which meets x, is contained
in x, then z,yz, € ®. The string y is said to be the kernel of the quasi-
configuration x, whereas the string x,x,x, is called an attribute of x.

In Russian, za bolsim stolom is a quasi-configuration with the kernel
za stolom. In German, das gute Buch is a quasi-configuration with the
kernel das Buch; geht schnell voruber is a quasi-configuration with the
kernel geht voFuber.

We recall that a string of @ is said to be irreducible if it contains
no configuration. A string (belonging or not belonging to ®) in which a
certain permutation of the terms yields an irreducible string is said
to be a source string. Obviously, every irreducible string is a source
string but the converse is not true. A word is said to be a source word if
it is contained in at least one irreducible string, but it is not the attribute
of a decomposable configuration or quasi-configuration.

In Russian, celovek idet is a source string, whereas idet is a source
word.

Given a string x=a,a; - - * a,, every string of the form aya;, - - - a;,
(1si,<---<i,=<n)is said to be a part of the string x. A connected
part of x, that is, a part of the forma;a;,, - - - a;4, (1 <j<n,0<p=n—))
is said to be a substring of x. It is obvious that a string y is a substring of
x if and only if it is contained in x. A part of x other than x is said to be a
proper part of x.

A string u is said to be of degree m if it contains no configuration of
rank less than m or equal to m and no quasi-configuration of rank less
than m or equal to m.

Two strings x and y are said to be m-equivalent if, for any pair of
strings z, and z, such that the strings u = z,xz, and v = z,yz, are of degree
m, u and v are E-equivalent.

If x and y are parts of the string w and if x and y are m-equivalent
for any positive integer m such that w contains no configuration of rank
less than or equal to m, we shall say that x and y are w-equivalent; if
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w contains at least one configuration of rank 1, we define the w-equiva-
lence between x and y as the E-equivalence between x and y.

Let x be a decomposable configuration or a quasi-configuration; x
is said to be a dependence syntagm if the following five conditions are
fulfilled: (a) its attribute has a unique component that is, if x is a de-
composable configuration, only one of the strings x; and x, is not the zero
string; if x is a quasi-configuration, only one of the strings x,, x;, and
x, is not the zero string; (b) its kernel and its attribute are uniquely
determined; (c) no substring of its kernel and no substring of its at-
tribute is a decomposable configuration or a quasi-configuration; (d)
no substring of its attribute is a source string; (e) if y and z are two
disjoint parts of x, then y and z are neither x-equivalent nor source strings.

Every principal resultant of a decomposable configuration which is
a dependence syntagm and every kernel of a quasi-configuration which is
a dependence syntagm are said to be substitutes of the corresponding
dependence syntagms.

A dependence syntagm x is said to be of the first species if its attribute
contains no source string and no source word; x is said to be of second
species, if it is not of the first species.

Russian dependence syntagms of the first species: ocen vysokii,
v vysokom dome; maoju ruki; of the second species: dom, v kotorom ja
Zivu;, o teoreme, kororaja dokazana; znal, ¢to on matematik; rasskazu,
esli sumeju. The following strings are not dependence syntagms: vysokit
novyi [condition (b) is not fulfilled]; ocen horo$aja kniga [condition () is
not fulfilled]; ja priehal véera [condition (d) is not fulfilled); procel
gazetu i Zurnal [condition (e) is not fulfilled]. German dependence
syntagms of the first species: das gute Buch; sehr gutes Buch; geht
schnell voriiber.

Let x be the attribute of a dependence syntagm of the second species.
Suppose that

X =YoXi¥1 " " XnYn (n=1), (5

where (a) none of the strings x,, x., ..., x, is the zero string; (b) the string
X=xx; ' -+ x, may be obtained from some string belonging to @, by a
suitable permutation of its terms; (c) representation (5) is maximum,
that is, if

X= YoXiyic  XpYp (6)

and if every x; is contained in some x}, then (6) does not fulfill conditions
(a) and (b). In this case, we shall say that X is a principal part of x,
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whereas the string yo* y; = - - - =y, (where the asterisk is a separating
sign) is said to be an auxiliary part of x.

Let us consider an attribute x of a dependence syntagm of the second
species. Suppose that x does not admit a representation (5) fulfilling con-
ditions (a) and (b), that is, no substring of x is a source string. Then we
find a source word a such that x = z,az,. In this case, we shall say that
a is a principal part of x, whereas z, x 2z, is said to be an auxiliary part of x.

In the above Russian examples of dependence syntagms of the second
species, the principal parts and the auxiliary parts of the corresponding
attributes are, respectively, the following: (1) ja Zivu and v kotorom * 6,
(2) dokazana and kotoraja = 9; (3) on matematik and cto «0; and (4)
sumeju and esli = 0, where 6 is the zero string.

Kernels and principal resultants of dependence syntagms as well
as attributes of dependence syntagms of the first species are said to be
elements of the first species. Principal parts of attributes of dependence
syntagms of the second species and strings x € ® admitting no pair of
disjoint x-equivalent parts and containing no dependence syntagm are
said to be elements of the second species.

The string xis said to be a coordination syntagm of species j(j =1, 2),
if the following conditions are fulfilled: (a) x is a configuration or a quasi-
configuration; (b) we have x=y.x,y;, * - * Xy (k = 2), where: x,,..., x;
are elements of species j; xy,..., x; are pairwise x-equivalent; if x is
a quasi-configuration or a decomposable configuration with kernel x;,
then the same is true for every x, (I < h=<k); if x = zyx'z,, where x’

is an element of species j, then we have, for any i=1,2,... k x' =
Xiy 3= Yo * " Xi—1Yi-15 L2 = YiXit1 " * " Vi
The strings x,, . . . , X, are said to be terms of the coordination syntagm

x, whereas the sequence of strings y, # y; * - - - * y,, (where the asterisk
is a separating sign) is an auxiliary part of x.

The notion of a substitute of a coordination syntagm is defined as
follows: (1) If x is a nondecomposable configuration, every resultant of
x is a substitute of x; (2) If x is a decomposable configuration, every prin-
cipal resultant of x is a substitute of x; (3) If x is a quasi-configuration,
every kernel of x having a minimum length is a substitute of x.

Coordination syntagms in Russian: Ivanov, Petrov i Sidorov is a
coordination syntagm of species 1, with the auxiliary part 0 %, x i x 6.
(We are concerned with written Russian; signs of punctuation are con-
sidered words; however, periods at the ends of the strings are omitted.)
This syntagm is a nondecomposable configuration (for instance, with
resultant Jvanovy). Ne tolko Ivanov, no i Petrov is a coordination syntagm
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of species 1, with the auxiliary part ne tolko, no i x 0. This syntagm is a
decomposable configuration. Ivanov matematik, a Petrov fizik and esli
Ivanov prisel, to Petrov ne prisel are coordination syntagms of species 2,
with the auxiliary parts 0*, a=0 and esli =, to « 0, respectively. Both
these syntagms are quasi-configurations.

Given an element x of species 2, we shall say that the representation
X =12,..., 218 a canon representation of x if (a) every z; is an element of
species 1; (b) for any representation x=z; - - - z; fulfilling condition (a),
every zj is a substring of some z;.

Obviously, an element of species 2 may have no more than one canon
representation.

12. Final Remarks

Very interesting notions and facts concerning Gladkii configurations
are discussed by Paduceva [35]. Gladkii configurations are also used
in [16]. Another notion of configuration is used by Molosnaja in her
algorithm of translation from English into Russian [30]; see also [31].
The determination of configurations in Russian sentences was made by
Ceitin and Zasorina [7]. For various aspects concerning the analysis
into immediate constituents see also Haugen [22], Hockett [23], and
Nida [34]. The notion of rank (of a constituent or of a configuration)
has its origin in Jespersen [24] and was used by De Groot [18, 19]
and by Harris [21]. Some illustrations of configurations in the Czech
language is given by Nebesky and Sgall ([33], pp. 97-98). A definition of
the dependence relation, without using the notion of configuration, was
given by Nebesky [32] and improved by Revzin [43]. This point of
view will be discussed in the next chapter, together with the notion of
subordination. Interesting notions and facts related to configurations,
such as the norm of an S-structure and the notion of sentence are dis-
cussed by Revzin [39, 40]. For the notion of syntagm see also Stati
[44]. A new model of grammatical description, which improves in some
respects the model of immediate constituents, was given by Parker-
Rhodes and members of the Cambridge language research unit [36].
A classification of syntactic relations is given by Bloch and Trager [3].
For some logical aspects of syntax see Carnap [6]. Some ideas closely
related to that of configuration are developed by Harris [20].
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Chapter VI

Subordination and Projectivity

1. Introduction

In the preceding chapter, we analyzed in a constructive and recursive
way the dependence relations occurring in a string, and we introduced
a hierarchy of dependencies, the order of a dependence relation being
the order of the corresponding configuration. In the present chapter, we
continue the study of syntactic relations, but from another point of view.
The dependence structure of a string will be considered either as given
(Sections 3, 7, and 8) or as a derived notion, the main notion being
that of subordination (Sections 4 and 5). In the first case, we shall
obtain the subordination relation as the transitive closure of the depen-
dence relation. In the second we shall insist on an axiomatic treatment
of ‘syntactic relations and various modes of representing a structured
string by means of strings of a rudimentary structure. In both cases,
we shall investigate various types of restrictions concerning the depen-
dence and the subordination relations in a string. In this respect, the
main properties we shall deal with will be the property of simplicity
of a string (Sections 3-5) and the projectivity property (Sections 7-10).

2. Some Notions and Results concerning Graph Theory

The main mathematical tool we use in Sections 3 and 4 of this chapter
is graph theory, and we give without proof some results which will be
used subsequently. All these notions and results may be found in books
and monographs concerning graph theory: Berge [7], Berge and Ghouila-
Houri [8], Ore [46]. We wish to point out that we make particular use
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2. Some Notions and Results concerning Graph Theory 201

of the variant of [8], which differs in some respects from that of [7]
(for instance, in the definition of a chain or a cycle) However, theorems of
[7] remain valid with the definitions of [8].

When two sets V, and V, are given, one can form the set of all ordered
pairs (v,, v2), v; € V), v, € V,. This set is called the product space
and denoted by V, X V,.

Let V' be a set and let U b a subset of V' X V. The couple G = (V, U)
is called a graph. V is the vertex set of G. The elements of V are said
to be vertices, whereas the elements of U are called arcs. Thus, an arc
is an ordered pair o= (a, b) of vertices; a is called the initial vertex
of «, and b is its terminal vertex. a and b are the end points of «; the
arc « starts in a and arrives in b. An arc {(a, b) such that a=b is called
a loop.

A graph is said to be finite if its vertex set is finite. The cardinal
number of V is called the order of G.

A subgraph (V,, U;) of G is a graph such that V, C V and U, contains
precisely the arcs in G whose end points are in V,. A partial graph
(V,, Uy) of G is a graph for which Vo=V and U, C U. A partial sub-
graph of G is a partial graph of a subgraph of G.

Two arcs are said to be adjacent if they have a common end point.
Two distinct vertices are said to be adjacent if they are the end points
of an arc.

A finite path in a graph is a finite sequence of arcs such that the
terminal vertex of each arc coincides with the initial vertex of the next
arc. The length l(u) of a path w=1(u;, u,, ..., u;) is the number of its
terms; here, I(w) =k. The initial extremity of a finite path is the initial
vertex of its first arc, whereas the terminal extremity of a path is the
terminal vertex of its last arc. Given a path p having a and b as its initial
and terminal extremities, respectively, we say that p starts in a and
arrives in b; p is a path between a and b.

A graph G = (V, U) is said to be symmetric if (a, b) € U implies
(b, a) € U. G is said to be antisymmetric if (a, b) € U implies
(b, a) & U. G is said to be complete if (a, b) € U implies (b, a) € U.
G is strongly connected if for any two distinct vertices a and b there
exists a path between a and b.

The notions just defined depend in actuality upon the orientation
of arcs. We also have some nonoriented notions, as follows.

An edge is a (nonordered) couple of adjacent vertices. A finite chain
is a finite sequence of arcs uw=(uy, s, ..., U, Upsy,. .-, Hy) such that
each of its intermediate arcs u, is adjacent to u;_, by one of its end points



202 V1. Subordination and Projectivity

and adjacent to u,,, by the other. Thus, every finite path is a finite
chain, but the converse is not true.

In the following we shall use path (chain) instead of finite path (finite
chain).

Let u,={ay, by), u,= (aq b,). Let us denote by c¢, the end point
(if it exists) of u, which is not an end point of u,; if such an end point
does not exist (for instance, u, may be a loop), we put ¢,=a,. Let us
denote by c, the end point (if it exists) of u, which is not an end point
of u, ,; if such an end point does not exist, we put c¢,= b,. The vertices
¢, and ¢, are called the initial extremity and the terminal extremity of
the considered chain u. We say that u starts in ¢, and arrives in ¢, or
that w connects ¢, and c,.

A graph is said to be connected if for any two distinct vertices a
and b there exists a chain which starts in 4 and arrives in b. Every
strongly connected graph is connected, but the converse is not true.

Given a vertex a, the set formed by a and by all vertices which may
be connected with a by a chain is called a connected component, the
connected component of a. A graph is connected if and only if it has
a unique connected component.

A cycle of a graph is a chain fulfilling the following two conditions:
(1) no arc occurs twice in the chain; (2) the initial extremity of the
chain coincides with its terminal extremity.

A cycle w=(uy, u,, ..., u,) is said to be a circuit if the terminal vertex
of each arc u,, (1 < k < ¢q) is the initial vertex of u;.,, whereas the terminal
vertex of u, is the initial vertex of u;.

A tree is a connected graph without cycles and having at least two
vertices.

Theorem A ([8], p. 131). Let G= (V,U) be a graph of order n = 2.
The following propositions are pairwise equivalent:

(1) G is connected and without cycles (that is, G is a tree);

(2) G has no cycle and admits n— 1 arcs;

(3) G isconnected and admits n— 1 arcs;

(4) G has no cycle, but if we add an arc, we obtain a (unique) cycle;

(5) G is connected, but it becomes nonconnected if we remove an
(arbitrary) arc;

(6) given two vertices a and b of G, there exists a (unique) chain
starting in ¢ and arriving in b.

A suspended vertex of a graph is a vertex which is the endpoint of
a unique arc.
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Theorem B ([8], p. 132). A tree admits at least two suspended vertices.

Theorem C ([8], p. 132). A graph G contains a partial graph which
is a tree if and only if G is connected. (The proof of this theorem gives
a simple algorithm for obtaining a tree in a connected graph.)

A center of a graph is a vertex a such that for any other vertex b
there exists a path starting in a and arriving in b. There exist graphs
which admit no center.

A graph is quasi-strongly connected if for any two vertices a and b
there exists a vertex ¢, a path between ¢ and a and a path between ¢
and b. It follows that any strongly connected graph is quasi-strongly
connected (since we may take ¢ = a) but the converse is not true. Every
quasi-strongly connected graph is connected.

A proper tree (for the French arborescence) is a tree endowed with a
center.

Theorem D (Roy [52]; see also [8], p. 135). Let G be a graph of order
n>1; each of the following conditions is both necessary and sufficient
that G be a proper tree:

(1) G is quasi-strongly connected and without cycles;

2) G is quasi-strongly connected and admits n—1 arcs;

(3) G is a tree with a center a;

(4) There exists a vertex a such that for any other vertex b there exists
a unique path starting in a and arriving in b;

(5) G is quasi-strongly connected, but it becomes nonquasi-strongly
connected if we remove an arbitrary arc.

Theorem E ([8], p. 137). A graph G admits a partial graph which is a
proper tree if and only if G is quasi-strongly connected.

3. Simple Strings and Proper Trees

The automatic syntactic analysis is frequently made within the frame-
work of a geometric representation. In this respect, graph theory and
especially the theory of trees is of great utility. We shall first define the
notion of a structured string. Then we shall associate a certain graph
to each structured string.
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Consider a language L= {I', ®} and let x € &, x = aa,...a, We
associate to the string x a binary relation R, defined in the set 4/, =
{1, 2,..., n}, that is, a subset of the cartesian product 4", X 4 ,. (We
recall that the cartesian product 4 X B of two sets 4 and B is the set of
all ordered pairs (a, b), with a € 4 and b € B.) R, is said to be a de-
pendence relation. We may obtain this relation in a constructive manner,
with the aid of configurations of various orders, as in Chapter V. But
the dependence structure of a string is often considered given.

If (i,j) € R,, we shall also write @;R.a;. In fact, by a; (I <i<n)
we mean the ordered pair (qa;, {). Thus a; # a; if and only if { # j, and we
may consider that R, is defined in the set {a,, a,,..., a,}. If a;R a;,
we shall say that a; depends upon a; (with respect to the string x and the
language L). The ordered pair {x, R,) is said to be a structured string;
it is a structured string associated with x.

Given a binary relation p defined in the set 4, we define in A4 the
binary relation p as {a, b) € p if and only if there exists a finite sequence
a, as, . .., a,of elements of A, such that a, == a, a, = b,and (a;, a;1,) €E p
for any i, 1 =< i =< 1. p is called the transitive closure of p. 1t is obvious
that p is a transitive relation in 4.

Let us consider the transitive closure R, of R, in A ,. If a;R.a;, we
shall say that a, is subordinate to a; (with respect to x). R, is said to be a
subordination relation; it is the subordination relation induced by R.,.

We say that the structured string {x, R} is simple if the following
three conditions are fulfilled: (a) there exists a term a; of x which depends
upon no term of x; (b) for any j# i (1 <j =< n) there exists an integer
(1 < k < n), uniquely determined, such that a; depends upon ay; (c) for
any integer m # i(1 < m < n), a,, is subordinate to a;. It follows immed-
iately that the term a; occurring in conditions (a) and (c) is uniquely
determined; by definition, a; (or i) is the center of the considered simple
structured string. On the other hand, it is easily seen that we always have
k # j in condition (b).

For the sake of simplicity, we shall often say a simple string instead
of a simple structured string; but it is tacitly assumed that every simple
string is also a structured string.

Various notions very closely related to the notion of simple string may
be found in Hays [22-25], Lecerf [35], Fitialov [16], Gaifman [18],
and others. Condition (b) owes its origin to Tesniére [57].

The notion of a simple string is a model of first approximation of the
classical syntactic notion of sentence. The center of a simple string cor-
responds to the predicative element of a sentence.
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Let {x, R,} be a structured string, x = a,a, " - - a,. We associate
with this string a graph G, defined as follows. The vertices of G are the
elements of /7, (that is, the integers 1, 2,..., n). The ordered pair
(i, j) is an arc of G, if and only if (i, j} € R,. It follows that the order of
G, is equal to the length of x. Since by a; we mean in fact the ordered
pair (a; i}, we may equally consider that the vertices of G, are a;,
Az, . .., dy.

Theorem 1. Let G be a finite graph of order greater than 1. G is a proper
tree of center « if and only if the following three conditions are fulfilled:

(1) every vertex other than « is the terminal vertex of an arc, but of a
single arc;

(2) no arc has its terminal vertex in «;

(3) G has no circuit.

ProOF. Let G be a proper tree of center « and let us verify conditions
(1, 2), and (3). By Theorem D, for every vertex 8 # a there will exist an
arc having 8 as terminal vertex. This arc is unique, because if there were
two such arcs, then the existence of the center would imply the existence
of a cycle, in contradiction to the assumption that G is a proper tree. Thus,
condition (1) is fulfilled. If there were an arc (v, a), then, since « is
the center of G (and thus a path exists starting in « and arriving in ),
there would exist a circuit passing through o and y. But any circuit is
a cycle; we again obtain a contradiction with the assumption that G is
a proper tree; thus condition (2) is fulfilled. Since every circuit is a cycle
and because G, being a proper tree, contains no cycle, condition (3)
is also fulfilled.

Now suppose that the finite graph G (of order > 1) contains no circuit,
but G has a vertex « satisfying conditions (1 and 2). We shall show that
G is a proper tree of center a. In view of the hypotheses, there exists
for every vertex 8 # a a path starting in « and arriving in 8; thus, by
theorem D, « is a unique center of G and G is a proper tree (another way:
by (1) and since G has no circuit, G has no cycle. Hence in view of
Theorem A, G is a tree. But a tree having a center is a proper tree.) and
thus Theorem 1 is proved.

REMARK. Theorem 1 establishes the equivalence, for finite graphs,
between two definitions of the notion of a proper tree: that of [7] (Chap.
16) and that of [8] (p. 135). The first of these definitions is given for finite
graphs only, whereas the second does not introduce such a restriction.
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It should be observed that this equivalence holds and is interesting only
if both the definitions consider the notion of cycle in the sense of Berge
and Ghouila-Houri ([8], p. 122); as we have already remarked, this is
not the case in [7].

Theorem 2. A structured string {x, R,} is simple if and only if the graph
G, associated with {x, R,} is a proper tree. The center of {x, R,} is
precisely the center of G .

ProoF. Let x=aa,---a, Assume that {x, R,} is a simple string,
with center a;. To prove that G, is a proper tree with center g;, it is enough
to show that conditions (1), (2), and (3) of Theorem 1 are fulfilled with o=
a; and to take into account Theorem 1. In view of (a) (see the definition
of a simple string), no arc of G, arrives in ;. Hence G, satisfies condition
(2). In view of (b), condition (1) is also fulfilled. To prove (3), we shall
establish a stronger result: G, contains no cycle. This property is a
consequence of another, that: GG is a tree. To prove that G, is a tree, it
is enough to show that G is connected and has #— 1 arcs (Theorem A).
The connectedness of G, follows from property (c) of a simple string,
that is, from the fact that for any two integers j, k (1 <j, k< n) there
exists a chain between g; and g, (indeed, we have a chain between g;
and a; and another chain between ¢; and a;). On the other hand, since G,
has n vertices and by taking into account properties (a) and (b) of a simple
string, it follows that G, has n—1 arcs.

Now suppose that G, is a proper tree with center ;. We shall show that
{x, R.} is a simple string, with center a;. Properties (a) and (b) follow from
conditions (1) and (2), fulfilled by every proper tree (see Theorem 1).
To establish (c), let ¢; be a term of x (j 7 {). In view of (1), there exists
an integer j; such that we may find in G, an arc starting in g;, and arriving
in a;. If j; 5 i, then, in view of (1), there exists an integer j, such that we
may find in G, an arc starting in g;, and arriving in g;,. Continuing in this
way, we find a finite sequence j;, j,, . . . , j, = i of positive integers such that,
for 1 <k = s5—1, there exists in G, an arc starting in a;, ., and arriving in
a;,. The existence of an integer s such that j, =1 is assured; indeed, if
if there were no such integer, then by properties (1) and (2) of a proper
tree and since G, is finite, G, would have a circuit, in contradiction to
property (3) of proper trees (see Theorem 1). Thus, there exists in
G, a path starting in g; and arriving in a;. This implies that «; is subor-
dinate to a; (with respect to x). Property (c) is fulfilled and Theorem 2 is
proved.
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Theorem 2 enables us to use all results concerning proper trees in
the investigation of simple strings.

Two structured strings may be compared from the standpoint of their
dependence and subordination. To this aim, we introduce two types of
syntactic isomorphism.

Two structured strings {x, R,} and {y, R,} where x=a.a," - - 4,
y=bbs - +b,, are said to be 8-isomorphic if the following two condi-
tions are fulfilled: (1) x and y have the same length (m=n); (2) we
have a;R.a; if and only if b;Rb;. If condition (2) is replaced by condi-
tion (3) {(3) we have aRxaj if and only if b;R +b;l, then we say that the
considered structured strings are o-isomorphic. The &-isomorphism is
called the dependence isomorphism, whereas the o-isomorphism is
called the subordination isomorphism. These two types of syntactic
isomorphism are related by a theorem.

Theorem 3. If two structured strings are 8-isomorphic, they are also
o-isomorphic, but the converse is not true.

Proor. Let x=a,as,...,ay, y=bby,...,b,. The first part of
Theorem 3 follows immediately from the fact that, if a; depends upon
a; (with respect to x), then a; is subordinate to g; (with respect to x) and
the same is true for y. It is also necessary to take into account the trans-
itivity of subordination relations. To prove the second part of Theorem
3, let x = a,aza3, y = bibyby, R, = {{ay, a5),{as, az) }, R, = {(by, bs), {bs,
by), {(b,, by)}. The structured strings {x, R} and {y, R,} are o-isomorphic,
since we have R, = {(a,, a,), {as, a3), {a;, a;)}, and R, = R,. But they
are not &-isomorphic, since {b,, b;) € R,, whereas {(a,, a;) does not
belong to R,. This example also yields a proposition.

Proposition 1. There exist two o-isomorphic structured strings such
that one of them is a simple string but the other is not.
On the other hand, the following proposition is obvious.

Proposition 2. If two structured strings are 8-isomorphic and if one
of them is simple, the other is also simple.

Proposition 1 admits a significant illustration in Rumanian. Let us
consider the following Rumanian strings: x = zgomotosii copii vin
and y = zgomotosi copiii vin. These two strings present the dependencies
R, = {{copii, zgomotosii), {(vin, copii)}, R, = {{copiii, zgomotosi), (vin,
zgomotosi), {vin, copiii)}. Hence x and y are o-isomorphic, but not 8-
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isomorphic. x is a simple string, its center being vin. Copii depends
upon vin, and thus is subordinated to vin; zgomotosii is also subordinated
to vin, by means of two dependencies. On the other hand, y is not a simpie
string since condition (b) of the definition of a simple string is not ful-
filled; there exists a term of y(zgomotosi) other than the center vin,
which depends upon two terms of x, copiii and vin. This fact has an
interesting grammatical significance. The string x has the P’-structure
adjective + noun -+ verb, whereas in the string y the first term is both an
adjective (it depends upon copiii) and an adverb (it depends upon vin).
Such phenomena often have stylistic value; they are often encountered
in belletristic texts (see Marcus [40]).

4. An Axiomatic Description of Simple Strings

In the preceding section, the subordination relation was defined as
the transitive closure of a dependence relation. There is another way,
due to Beleckii et al. [4], who define the subordination relation by
means of a system of axioms; then, as a derived notion, we obtain the
dependence relation.

We consider given a set of elements called words and two binary re-
lations defined in this set: (1) the word a precedes the word b (a < b)
and (2) the word b is subordinated to the word a (a=b). The coin-
cidence of two words a and b is denoted by a = b; the noncoincidence,
by a # b. We consider nine axioms, as follows.

ORrRDER AxioMms: (1.1). Ifa<b and b<a, then a=b; (1.2) ifa<bh
and b <c, then a <c; (1.3) given two words a and b, we have either
as<borb=a.

SUBORDINATION AxioMms: (2.1). For any word a we have a=a; (2.2)
if a2 b and b=a, then a=b; (2.3) if a=2 b and b=, then a3 c.

AXIOM OF THE SEMILATTICE CHARACTER: (3.1). Given two words a and
b, there exists a word ¢ such that c=a and ¢ =3 b.

AxioMs OF CORRECTNESS: (4.1). If a =3 ¢ and b =3 ¢, then we have
a=3bor b=3a.
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AxioM ofF FINITENESS: (5.1). The set of words is finite.

If a<b, but a # b, we say that a strictly precedes b and we write
a<b.If a3 b, a# b, and there exists no word ¢ such thata =2 ¢ =3 b,
a#c, b#c, we write a— b and we say that b depends upon a.

Each realization of the above system of axioms is said to be a B-
string (B from Beleckii). If we consider order axioms only, a correspond-
ing realization is said to be a string.

Although not explicitly specified, all theorems, propositions and
corollaries given in this section concern B-strings.

Theorem 4. Given two words a and b, there exists a word ¢ fulfilling
c¢=a, c3b, such that for every word d for which d=3a, d=3b, we
have d=c.

ProoF. In view of (3.1) there exists a word d, such that dy, = a, d,=3 b.
If it does not fulfill conditions of Theorem 4, there exists a word d; such
that d, = a, d, = b, but we do not have d; =3 d,. Then, by Axiom (4.1),
dy= d,. If d, is not the required word c, there exists a word d,, such that
d, =3 a, d, =3 b, but we do not have d, = d,; then d, =3 d, = d,. In this way
we obtain a sequence dy=3 d, = - - 3 d,, and, by Axioms (2.2) and (2.3)
none of the terms of this sequence may be repeated. In view of Axiom
(5.1), this sequence is finite; its last term d, is the required word c.

Proposition 3. If a=3 b, then either a = b, or there exists a sequence
a=ay—>a,—>---—>a,=b.

ProoF. Let a=3 b and a # b. If a— b, Proposition 3 is proved; if not,
we may find a word a, such that a = a,= a, 3 a, = b, the words a,, a,
and g, being mutually distinct. If a;— a, and a, —> a,, Proposition 3 is
proved; if not, we may find a sequence of four mutually distinct words
a,— a, — a, —> as. In view of Axiom (5.1), this process may be continued
only finitely many times, and we find after n steps the desired sequence.

Proposition 4. If a— c and b— c, then a=b.

PROOF. Since a=c¢ and b=3 ¢, we have a=3 b or b= a [see Axiom
(4.1)]; let us suppose that ¢ = b. Then, since a—c¢ and a=3 b3,
we have a=b or b = c; but the last equality is not possible, because
b— c. Thus, a=b. The case b =3 a may be analyzed in the same way.
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Proposition 5. Let a==3 b, b=3c. If a<b, then a<c; if b<a, then
c<a.

PrROOF. let a<b. If ¢ <a, then ¢ < a < b and, since b =3 ¢, it follows
that b =3 a and, in view of Axiom (2.2), we have b= a, which contradicts
the assumption that a < b. Hence, a <c. In the same way one can
prove the second assertion of Proposition 5.

The word a is said to be a nonsubordinated word if there exists no
word b such that b= a and b # a.

The word a is said to be a ronsubordinating word if there exists no
word b such that a=2 b and b # a.

Proposition 6. A word a is a nonsubordinated (nonsubordinating)
word if and only if there exists no word b such that b—a (a— b,
respectively).

ProOF. Proposition 6 follows immediately from Proposition 3.

Proposition 7. In every nonempty B-string there exist a nonsubordinated
word and a nonsubordinating word.

ProoF. Let us prove the existence of a nonsubordinated word. Let
a be an arbitrary word. If a is not a nonsubordinated word, there exists
a word a, such that a, — a,= a. By continuing in this way and in view
of Axioms (2.3), (2.2), and (5.1), we find a finite sequence of words
a,~—> dy_y—> *+*—>da,—> dy = a such that a, is a nonsubordinated word.

In an analogous way we can prove the existence of a nonsubordinating
word.

Proposition 8. If ¢ is a nonsubordinated word, we have a =3 b for any
word b.

PROOF. Let b be an arbitrary word. By Axiom (3.1), there exists a
word ¢ such that ¢ =2 a and ¢ =3 b. Since a is a nonsubordinated word,
we have c=a. Hence a=3 b.

Corollary 1. The nonsubordinated word of a B-string is uniquely
determined. [This follows immediately from Axiom (2.2).]

Corollary 2. If a B-string x possesses a word a which is both a non-
subordinated and a nonsubordinating word, then x is formed by a single
word.
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ProoEr. Let us suppose that x contains a word b # a; then ¢ =3 b, in
contradiction to the fact that a is a nonsubordinating word.
The words a and b are said to be comparable if a=3 b or b= a.

Proposition9. Ifa— b, a— cand b 5 ¢, then b and ¢ are not comparable.

PrROOF. Let us suppose that b and ¢ are comparable; for instance,
b = c¢. Then, since a =2 b =3 ¢ and a— ¢, we have a=»b or b = c. But
each of these equalities is false, because a — b and b # c¢. Thus, b and
¢ are not comparable.

Proposition 10. If ¢ and b are not comparable and if a =3¢ and b= d,
then ¢ and d are not comparable.

Proor. Let us suppose that ¢ and d are comparable, for instance,
¢ =d. Then, by Axiom (2.3), we have a =3 d and, in view of Axiom (4.1),
a and b should be comparable, in contradiction to the hypothesis.

Corollary 3. If a and b are not comparable and if a=3 ¢ and b= 4,
then ¢ # d.

In the following, the relation < will be interpreted as the linear order
of words (from the left to the right). Thus, every realization of the order
axioms becomes a customary string.

Theorem 5. If the string x = aya, ' - - a, endowed with the relation
=3 is a B-string, then, by putting a;R ,a; if and only if @; — a;, the structured
string {x, R.} is simple.

PrOOE. We shall prove that conditions (a), (b), and (c) from the defini-
tion of a simple string are fulfilled. Let a; be a term of x. In view of
Proposition 6, the existence of a word g, such that a, — q; implies the
existence of a word a, such that a, = q; and conversely, if a, = a;,
there exists a word g, such that a,— a;. Moreover, if a;— a;, then
k # j (see the definition of —). By Proposition 7, there exists a term q;
of x such that g, = a; for no k (1 < k< n). Thus, we have a;, — q; for no
k(1 < k< n). By Corollary 1, the term q; is uniquely determined. Hence
a; is the unique term for which a,R.a; for no k (1 <k < n). Condition
(a) is thus fulfilled.

Consider now a term a; such that j i. In view of Proposition 6 and
Corollary 1, there exists a term a; such that a,—> a;. By Proposition 4,
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this term is uniquely determined. Condition (b) is thus fulfilled. Pro-
position 8 shows that condition (c) is also fulfilled and Theorem 5 is
proved.

The converse of Theorem 3 is also true and we have Theorem 6.

Theorem 6. If the structured string {x, R;} (x=a; a; - - - a,) is simple,
by putting a; =3 a; if k=j or aRa;, the string x endowed with the
relation =3 is a B-string.

ProoF. The order axioms are obviously satisfied. Axiom (2.1) follows,
immediately from the hypothesies. To verify Axiom (2.2), let us remark
that a;=3 a, implies the existence, in G, of a path starting in a@; and arriv-
ing in g,; conversely, the existence of such a path implies a; =3 a;. Assume
that a; =3 a, and a, =3 a;. If there were k #j, there would exist in G, a
cycle passing through a; and a,. But since {x, R} is a simple string, it
follows from Theorem 2 that G, is a proper tree. Hence, by Theorem D,
G, contains no cycle. We deduce that j = k, and Axiom (2.2) is fulfilled.

Axiom (2.3) follows from the transitivity of subordination relation R,.

Axiom (3.1) is also fulfilled. Indeed, if a; and a; are two terms of x,
then, by denoting by q; the center of x (which is a simple string), we have
a;=3 a; and a;=3 qa;, (see the definition of =3).

To prove Axiom (4.1), let us assume the existence of j, k£, and m such
that a;=3 a,,, a, =3 a,,, and j # k and let a; be the center of the simple
string x. Then, a;=3 g;, a;=3 a; and we deduce the existence of a cycle
in G,. But this fact contradicts the hypothesis that G, is a proper tree
(see Theorem 2). Thus, k =j, and Axiom (4.1) is proved. Since Axiom
(5.1) is obviously fulfilled, Theorem 6 is proved.

Theorems 5 and 6 establish, in some sense, the equivalence between
simple strings and B-strings.

5. Elementary Strings and Operations with Simple Strings

In this section we define two classes of strings of a very rudimentary
structure. Then we define some operations with B-strings.

These notions will be used in Section 7, where we shall show that an
important category of B-strings may be represented by means of the
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operation of superposition, using only strings of a rudimentary structure.
In view of the equivalence between simple strings and B-strings, we
may investigate B-strings and apply the obtained results to simple strings.
A B-string is said to be elementary if from a=3 b, c=3d, a # b, and
¢ # d it follows that a = ¢. A B-string is said to be strongly elementary
iffroma=b,c=3d,a#b, and ¢ # d, it follows that b = d.

Proposition 11. Every strongly elementary B-string x is elementary.

Proor. Let a=3b, c=3d, a # b, and ¢ # d. We shall show that a = c.
Since x is strongly elementary, we have b = d. Then by Axiom (4.1), we
have a =3 c or ¢ =3 a. Assume that a =3 ¢. In view of Axiom (2.3) we have
a=dand, since a=2c¢, a=3d, and ¢ # d, we also have a =cor a=d.
if a = ¢, Proposition 11 is proved; if a = d, then, since ¢ = c and ¢ = a,
we deduce, by Axiom (2.2), that a = ¢ and Proposition 11 is proved.

Proposition 12. Every word of an elementary B-string is a nonsub-
ordinated word or a nonsubordinating word.

PROOF. Let a be an arbitrary word. Assume that a is not a nonsubord-
inated word. Thus, there exists a word b such that » # a and b3 a.
Suppose we may find a word ¢ such that a = ¢ and a # c. Then, since
b=3a,a=3c,b#a, and a # ¢ and since the considered B-string is
elementary, we have b = a, in contradiction to » # a. Thus, no word ¢
with a=3 ¢ and a # c exists, and a is a nonsubordinating word.

Proposition 13. If g is a nonsubordinated word of a B-string x of length
greater than 1 and if b is a nonsubordinating word of x, then a — b.

Proor. By Proposition 8, we have a=b; by Corollary 2, a # b.
Assume the existence of a word ¢ such that a=2c=3b, a # ¢, ¢ # b.
From ¢ # a, we deduce, in view of Corollary 1, that ¢ is a nonsubordinat-
ing word, in contradiction to ¢=2 b, ¢ # b. Thus, no word c exists with
the required properties and we have a — b.

Proposition 14. A strongly elementary B-string may not have more
than one nonsubordinating word.

PrOOF. Assume there are two nonsubordinating words a and » and let
¢ be a nonsubordinated word. By Proposition 8, we have c=3a, c3b
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and, since a and b are nonsubordinating words, we also have ¢ # a,
¢ #b. Thus, c=2d, c3b, ¢ # a, ¢ # b. Hence, since the considered
B-string is strongly elementary, we deduce a = b.

Corollary 4. A strongly elementary B-string has at most two terms.
Proor. It follows from Corollary 1 and Propositions 11, 12, and 14.

Proposition 15. Every B-string of length less than or equal to 2 is a
strongly elementary B-string.

Proor. Obvious.

Let y be a subset of a B-string x. If y is a B-string with respect to the
order relation and the subordination relation of x, then y is said to be
a B-substring of x.

Proposition 16. et ¢ be an arbitrary term of a B-string x. The set y
of words subordinated to ¢ form a B-substring of x.

ProoF. It is immediately seen that each axiom occuring in the definition
of a B-string is fulfilled by y.

We shall define four operations with B-strings. These operations
will always be concerned with B-strings without common words. To
show that the word « precedes the word b in the B-string x we shall
write a < b(x). Analogously, ¢« =3 b(x) means that b is subordinated to
¢ in the B-string x.

OPERATION OF RicHT UnionN. Let x and y be two B-strings; let a
and b be the nonsubordinated words of x and y, respectively (if such
words do exist). Let x' and y’ be the sets obtained from x and y after
removing a and b, respectively (if ¢ or » does not exist, we put x=x' or
y=y', respectively). Let a be a word occurring neither in x’ nor in y'.
Let z be the set containing precisely the words of x’, the words of y’,
and the word «. We define in z the relations < and =2, as follows:

(1) If both ¢ and d belong either to x’ or to y', then ¢ < d(z) [or
¢ =2 d(z)] if and only if the same relation holds in x or in y, respectively.

(2) If c € x' and d € y’, then ¢ = d(z) and we have neither ¢ =2 d(z)
nor d =3 ¢(z).

(3") For every word ¢ € z we have ¢ = a(z) and a =3 c(z).

It is easily seen that z, endowed with < and =2, fulfills all axioms
defining a B-string in z. The B-string z so obtained is said to be the
right union of x and y.
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OPeERATION OF LEFT UNION. This operation differs from the right
union in formulation of rule (3') only; (3') is replaced here by (3'').
(3'") For every word ¢ € z, we have « < c(z) and a = ().

OPERATION OF CENTRAL UNION. This operation differs from the
right union in formulation of rule (3’) only; (3') is replaced here by (3).

(3) For every word ¢ € x’, we have c = afz) and o =2 ¢(z); a<
a=3 «; for every word d € y’ we have o < d and a=d.

OPERATION OF SUPERPOSITION. Let us consider the B-strings
X, Y1, Y2, .., Yme We shall define the superposition between x, on one
hand, and y;, v,,. .., ¥m, on the other.

If x is the empty string, the superposition string is the empty string.

If x is not empty, then x contains some nonsubordinating words
ai, 4y, . .., ay. If m < n,then we add to yy, v, . . . , ¥, the strings y,q,- - - »
v, of length 1, such that the superposition of x and y;, ¥s,..., ¥n be
equivalent to the superposition of x and y, Y5, .- ., Yy - - -, Yo f m=n,
then our superposition will be supposed equivalent to the superposition
between x and vy;,..., ¥, Thus, we may always assume that m = n.

Let x’ be the set obtained from x by removing the words 4y, as, . . . , a,.
Let z be the set of all words belonging to at least one of the sets x',
Vi, Y2, .- » Yoo We define in z the relations < and =3, as follows:

(1) If both ¢ and d belong either to x’' or to one of the sets y;, then
¢ = d(z) for ¢ =2 d(2)] if and only if the same relation holds in x or in one
of the sets y;, respectively.

(2) If i #j, then for any ¢ € y; and d € y; we have not ¢ =3 d(z); we
have ¢ < d(z) if and only if g; < a;.

(3) If c € x’ and d € y;, then ¢ = d{(z) if and only if ¢ =2 a;(x); d < c(2)
if and only if a; < c(x).

(4) If d € y; and ¢ € x’, we have not d = ¢(z); we have ¢ < d(z) if
and only if ¢ < a;(x).

It is easily seen that all axioms defining a B-string are fulfilled in z,
with the above definition of = and =3.

6. Subordination in the Sense of Nebesky

Nebesky [62] has proposed a new way for the analysis of subordination
relation which uses some semantic aspects but, as Revzin has pointed
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out, one can remove the reference to semantics and obtain a more
formalized description [64]. This remark of Revzin suggested to Nebesky
a new and more general description of syntactic subordination, which
we now present [63].

Let x be a string over I'. Denote by T the free semigroup generated
by I Let x={x, xs,..., x,}, where x; denotes the position i in the
string x and »n is the length of x. Let £ be a mapping of % into [; this
mapping associates with x; € ¥ the word which stands in x at position i.
If we denote by ¥ the binary relation which associates to each x; € ¥
the element x;, (1 i< n), it is easily seen that the ordered set (X, &,
X) uniquely determines the string x.

ExaMmpLE 1. Let I'={aq, b, ¢, d}; x = caababdc. We have x = {x,, x,,
X3y Xgy Xy Xg X7, Xg}, XXXy (1 Si<n), X(xy) = X(xg) = ¢, X(xz) = X(x3) =
X(xs) = a, X(x,) = X(x¢) = b, X(x;) = d.

Let x and y be two strings over I'. Suppose that y may be obtained
from x by removing at least one term. Denote by x, the set of elements in
X% which are used in any derivation of y from x, by removing some terms.

ExaMPLE 2. Let us adopt the assumptions of Example 1 and let
y=-cabdc. We have y={yi, ¥z, ¥3, Y4, ¥s}, ¥i¥¥i+1 (1 <i<5). The string
y may be derived from x in four modes: (1) by removing the elements
X, X4, X5; (2) by removing x,, x4, x5; (3) by removing x,, x5, x¢; (4) by
removing xs, xs, x¢. Thus, x, = {x;, x7, xs}.

Consider a language ® over I We define a set Q of mappings o of
® into 2? such that, if x € ®, y € w (x), then either y=x or y may be
derived from x by removing at least one term. Let us denote by & the
mapping of ® into 2% which associates to every x € ® the set k(x)
containing x as well as all strings derived from x by removing at least
one term. Obviously, £k € Q@ and w(x) C k(x). Let us denote by r the
mapping of ® into 2% which associates to each string x in @ the set r(x)
of all y € @ fulfilling one of the conditions (1) y=x or (2) there exists
Z € r(x) such that y may be derived from z by removing a unique word.
Obviously, for any x € I' we have x € r(x) C k(x).

ExaMPLE 3. LetI'={a, b, ¢, d}, ® = {caababdc, ac, cabdc, caabbdc,
abdc}. We have k(caabadc) = ® # r(caababdc) = {caababdc, caabbdc};
k(caabdc) = {caabdc, cabdc, abdc} = r(caabdc); k(ac) = r(ac) = {ac}.
Let x € @, w € Q. We shall define in X a binary relation x,,, as follows.
Let x;, x; € X. We have x,x,x; if and only if the following conditions are
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both fulfilled: (1) i # j; (2) for any y € w(x) we have that if x; € x,, then
Xx; € xy.

ExampLE 4. Let I'={a, b,c,d}, ®=/{a, abd, abcd, abccd}. If
x=abccd, then X = {x,,..., x;} and we have, for w = k, x;x;X, X1x.Xs5,
X1 XXy X1 XXz, XoXiXzy X2XXay XoXXs5y XaXpXas XaXpXs, X5XxX3, X5XiXa, XsXXy; fOF
W =T, X1XXe, XoXpX1, X1XpX5, X1XpX3, X1XpX4, XXXz, XoXpXgq, XoXpX5s X3XpXy,
X4XpX3, XsXrXa, X5XpXgs X5XpX3.

We shall associate now with every string x € ® a binary relation x*
defined in x; x* will be called the subordination relation of x. Let w € ().
If for any x € ® we have x* = x, we say that {I', &} is a w-language.

Let & ={x, x’, x"}, where x=1x; " XiX;y 1 Xiga ' * " Xpy X =2X;°°°X;
Xppa " Xpy X =Xyt XiXppXpyg ot Xp  (OT =Xyttt XXy Xttt Xp,
X =Xy X oXi Xy X'= Xyt Xi—gXi—1Xi " " Xp). Suppose we have
x;x*x;,,, but we do not have x;x*x;,, (or we have x;x*x;_, but not x;_,
x*x;_5); suppose also that £(x;,,) = X(x;2)[or X(x;_;) = £(x;_5)]

It follows that x'=x", x={x1,...,x,} and xp = xp=X%= {X;44,
Xiza) (or =X = {x;_1, X;—»}). We see that, for any w € ), we have x* # x,.
Hence a language containing strings of the form x, x’, and x” may be a
w-language for no w € ().

For the sake of simplicity, we shall suppose that no word occurs
several times in a string belonging to &.

Nebesky makes several interesting remarks concerning the applica-
tion of his description to the Czech language. He observes that Czech is
neither a k-language, nor an r-language, but some portions of Czech
may be k-languages or r-languages. In this respect, he gives the following
examples.

ExXAMPLE 5. Let x = zpival ddvno zapomenutou pisein. We have k(x) =
{zpival ddvno zapomenutou pisen, zpival zapomenutou pisen, zpival
pisen, zpival ddvno, zpival}. 1t follows that zpival x, ddvno, zpival x;
zapomenutou, zpival x) pisen, pisen x, zapomenutou; zpival x* ddvno,
zpival x* zapomenutou, zpival x* pisei, zapomenutou x* ddvno, pisen
x* ddvno, piseh x* zapomenutou. It follows that x,, and x* are different, but
x,.and x* are identical.

ExXAMPLE 6. Let y = vidim bratra otce. We have k(y) = r(y) = {vidim
bratra otce, vidim otce, vidim bratra, vidim}, vidim y, bratra, vidim y,
otce, vidim y, bratra, vidim y, otce. Hence y, = y,. On the other hand,



218 VL. Subordination and Projectivity

vidim y* bratra, vidim y* otce, bratra y* otce. Hence y, and y* are
different.
The next example belongs to a mathematical language.

ExampLE 7. Let I'=1{1,2,3}, ®=1{1,2,12,13,21, 23,31, 32,
123, 132, 213, 231, 321, 312}. We interpret every string of ® as the
result of some mathematical operations, as follows: Every term of a string
is the exponent of the preceding term. For instance, 12, 23, 123, 231,
312 mean, respectively,

12, 23, 1%, 28, 313
Hence
12=1, 22=8, 1¥=1®=1, 23=20Y=8 32=309=3,

Using the analogy with natural languages, we may define in each of the
strings of @ a subordination relation corresponding to the following prin-
ciples: Each exponent is subordinated to its base; the subordination rela-
tion is transitive. Thus, in the string x = 213 we have 2x™1, 1x*3, 2x%3,
but also 2x;1, 2x:3, 2x,1, 2x,3. It follows that x* # x;. = x,..

An important common peculiarity of the mappings & and r is their
independence of the elements of I'. The exact meaning of this assertion
follows from the next definition. The mapping o € ) is said to be inde-
pendent of the elements of T if for every mapping ¢ of I' into I' we have
ifx; - -xp€®andy, - -y, € w(x; - - - x), that o(y1) - - - ©(y,) € w(p(x1)

e ‘P(xm))-

ExaMmPLE 8. Let I'={a, b, ¢, d, e, f}, ® = {ab, ac, abc, dc, df, dcf},
x=abc and y= def. Define x* and y* as follows: bx*a, cx*h, cx*a;
fytd, fyte. The considered language is an w-language for no mapping
o independent of the elements of T'.

ExaMPLE 9. Example 8 may be applied to Czech. Let x = casto
dlouho cetl, y = viera dob¥e spal. We have k(x) = {¢asto dlouho cetl,
casto ¢etl, dlouho cetl, cetl}, k(y)= {viera dob¥e spal, viera spal,
dobie spal, spal}, dlouho x* cCasto, Cetl x* dlouho, cetl x* casto, spal
y* vcera, spal y* dobre. It follows that Czech is an w-language for no
mapping o independent of the Czech vocabulary.

All notions and examples in this section are due to Nebesky [63].

It would be interesting to establish the precise connection between
Nebesky’s description and the other syntactic descriptions given pre-
viously.
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7. Various Types of Projectivity. Properties of
Montonically Projective Strings

We adopt here the definitions and the conventions of Section 3. Thus
a dependence relation is considered given; a subordination relation is
defined as the transitive closure of the dependence relation. Moreover,
we suppose that the subordination relation is reflexive, that is, every
term of a string is subordinated to itself. Let x=aa,---a; - - a,. We
adopt the notations of Section 4: a; < a; means that a; strictly precedes
(eventually, not immediately) a;, that is, i <j; a; < g; means that | <j;
a; —> a; means that a; depends upon a;; a; =3 a; means that a; is subord-
inated to a;. We tacitly assume that all strings considered in Sections
7-9 are structured strings, that is, strings endowed with three binary
relations: <, —, and =.

There are some restrictions which considerably reduce the possible
dependencies and subordinations between the terms of a string belonging
to a natural language. Among these restrictions, the projectivity restric-
tions are very important. The word projectivity suggests a geometric
situation, which will be explained in Section 10.

The string x is said to be regressively projective if for i #j we have
a; = a; if and only if a; < a;. The English string very clearly projected
pictures appeared (Yngve [61], p. 136) is regressively projective, since
every term depends upon the following term. Hence every term is sub-
ordinated to any term situated to its right and only to these terms.

The string x is said to be progressively projective if for i # j we have
a; =3 a; if and only if a; < a;. The Rumanian string citesc carti frumoase
is progressively projective, since we have only two dependencies:
citesc — carti — frumoase. Hence there are only three subordinations:
citesc =3 carti = frumoase, citesc =3 frumoase.

The string x is said to be monotonically projective if it is progressively
projective or regressively projective. If we consider — antisymetric
(that is, if a; — a; is true, then a;— qg; is false), no string exists which is
both progressively and regressively projective. The hypothesis of anti-
symetry of — agrees with most situations occurring in natural languages.
However, for the sake of generality, we do not always adopt this
hypothesis.

The string x is said to be strongly projective if from a;=3 a; and
min(i, j) < k < max(i, j) it follows that a;— a,. The Russian string
vesma malenkaja devocka is strongly projective, since we have devocka—
malenkaja — vesma.
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The string x is said to be projective in the restricted sense if from a;— q;
and min(i,j) < k < max(i,j) it follows that a; — a;. The German string
ein steiler, sandiger, schwieriger Weg (Tesniére [57], Chap. 8) is pro-
jective in the restricted sense, since we have Weg — ein, Weg — steiler,
Weg — sandiger, Weg — schwieriger.

The string x is said to be projective in the sense of Harper and Hays
(or H-projective) if from a;— a; and min(, j) < k < max(i, j) follows
a;=3 a,.. The German string ein sehr schwieriger Weg is H-projective,
since we have sehr — ein, Weg — schwieriger, Weg — ein.

The string x is said to be projective in the sense of Lecerf and Ihm
(or L-projective) if from a; = a; and min(, j) < k < max(, j) it follows that
a; =3 ax. The Rumanian string o foarte frumoasa casa is L-projective,
since we have casd — o, casa —> frumoasa —> foarte.

The string x is said to be projective in the sense of Fitialov (or F-
projective) if, for a,, =% a;, a,,=2 a; and min(, j) < k& < max(i, j), it follows
that a,,=3 a;. The Russian string v eto vremja molodoi celovek byl v
teatre (Fitialov [16], p. 105) is F-projective, since we have byl—v—
vremja —> eto, byl—> celovek — molodoi, v— teatre. It should be re-
marked that the dependence byl— v is true both for the first v and for
the second v of the considered string, whereas the dependence v — reatre
is true only for the second v and the dependence v— vremja is true
only for the first v.

ReMARK. The so-called condition Pr(I) of Lecerf and Ihm ([35], p. 8)
is in fact the condition of F-projectivity. Thus, F-projectivity originates
with Lecerf and Thm.

The string x is said to be quasi-projective if from a, =2 a;, a,,=3 a;,
i # m # j, min(i, j) < k < max(, j), it follows that a,, =2 a,. The Russian
string primerom mozét sluzit sledujuscii fakt (Paduceva (48], p. 112) is
quasi-projective, since we have sluzit — primerom, mozet — sluzit, moZet
— fakt — sledujuscii. The French string nous avons tous étudié (Hirsch-
berg [26], example 3) is quasi-projective, since we have étudié = nous —
tous, étudié —> avons.

We establish now some properties of monotonically projective strings.

Proposition 17. If x is a regressively projective string, we have a;,; = q;
for | <i<n—1 and g;— q; implies i <.

PrOOF. Let us admit the existence of an integer j (1 <j<n—1) such
that a; does not depend upon a;,,. Then, since x is regressively projective,
we have a;,,=3 a;, Hence there exists a finite sequence b,,. .., by of
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terms of x, such that a;= by, @j41 = by, and by, > b for 1 <k s=m—1.
Since the dependence relation is a particular case of the subordination
relation, we have b, < by, for 1 <k =< m-1. Hence b, < b, and a; < b,.
We also have b, — q;. Therefore b, # a;,;. Hence aj;,, < b,. It follows
that a;, < b, for s =2. Hence a;,, <b,, = a;,,. The contradiction so
obtained shows that for every i, 1 sisn—1, a; depends upon a;.;.

Now let a;— a; (i #j). We have a; =2 a; and, since x is regressively
projective, it follows that a; < a;. Therefore i <.

Proposition 18. Let x be a string such that a;,, —a; for 1 <isn—1.
If a; — ai #j) implies i <j, then x is regressively projective.

ProoF. We shall show that a; = a; (i #j) if and only if a; < a;. Suppose
first that a; =3 a,. There exists a sequence by, . . ., b, of terms of x such
that b, = a;, b, = a;, and by, —> b, for 1 <k=m—1. It follows that
b, < by, for 1 =k=m—1. Hence a; < a;.

Suppose now that @; < q;. In view of the hypothesis, we have aq;—
a,_,— - -— a;,, — a;. Therefore, by the transitivity of =, we deduce
that ¢; = a;.

Propositions 17 and 18 yield the following result.

Theorem 7. The string x is regressively projective if and only if the
following two conditions are fulfilled:

1) gy~ aforlsisn—1;

(2) the relation a; — a; (i #j) implies a; < a;.

In a similar way we obtain another result.

Theorem 7’. The string x is progressively projective if and only if the
following two conditions are fulfilled:

(1) ai_,—~>a;for2=<i=<n;

(2) the relation a;— a; (i #j) implies a; < a;.

The regressive projectivity corresponds to the regressive structures in
the sense of Yngve [61] [phrases centripétes in the sense of Tesniére
([57], Chap. 8)]. The progressive projectivity corresponds to the pro-
gressive structures in the sense of Yngve [61] [phrases centrifugues in
the sense of Tesniére ([57], Chap. 8)). These facts are clearly shown
by Theorems 7 and 7.

It is known (see, for instance, Tesniére [57]) that Turkish is very
rich in regressive structures, whereas Hebrew is very rich in progressive
structures. English and German are less regressive than Turkish, Latin
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is less regressive than English and German, whereas French and Ruman-
ian are more progressive than Latin, but less progressive than Hebrew.
It follows that Hebrew and Turkish are the most suitable languages to
be described with the aid of a monotonically projective model.

Important results concerning progressive and regressive structures
are due to Yngve. We shall try to explain his ideas, by using his own
considerations [60, 61]. ’

Psychologists have measured what they call the span of immediate
memory. We are able to memorize at a glance and repeat correctly about
seven random digits, about seven nonsense words, about seven items.
This has been known for a long time and has been summarized by Miller
[45]. Apparently we have to live with this restriction when we speak.
We can remember only about seven grammatical or syntactic constraints
at one time. Yngve has proposed a depth hypothesis, which states that
much of the syntactic complexity of a natural language such as English
(in contrast to the simplicity of mathematical notation) can be under-
stood in terms of this memory restriction. The syntax of English contains
many devices for automatically keeping utterances within the bounds of
this restriction, and it contains many devices for effectively circumventing
the restriction so as to regain the loss of expressive power that this res-
triction on immediate memory span would imply. The depth hypothesis
predicts that all languages have extensive syntactic complications for
the same purpose. A restriction on immediate memory span would not,
however, be expected to have any influence on the structure of mathe-
matical notations because they are written.

In producing a sentence, we have a device such as a phrase-structure
grammar which must remember somehow its next step by the rules of
the language. Having expanded S(sentence) into a subject NP(noun
phrase) and a predicate VP (verb phrase), it goes on to expand the left-
most constituent, NP. But somewhere in its memory it has to store the
information that when it gets finished with all the branches of the NP,
it is committed to expand a VP, otherwise it will not have a grammatical
English sentence. Similarly, after expanding NP into T (article) and N
(noun), it must store away the N while it is expanding the 7. In this way,
every time the device goes down a left branch, it must store in its tem-
porary memory one symbol for each step taken down the branch.

Now a question arises: If the set of sentences is infinite, how much
temporary memory will have to be provided in the device? Here there
appears an essential difference between regressive structures and
progressive structures.
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Let us consider a regressive structure such as Very clearly projected
pictures appeared (secondary adverb+ adverb + adjective +noun+
verb). In producing this structure (see Fig. 1), the machine has to go

/'\D
// N

5/\A /

Fig. 1.

down the stem expanding 1, 2, 3, 4, and 5, storing a number of symbols
in its memory — here four (4, B, C, and D), because there are four
unexpanded branches. Then it has to go back, expanding in turn the
branches growing from A4, B, C, and D. This regressive structure has
a depth of four, the depth of a node being numerically equal to the number
of symbols in temporary memory when that node is about to be expanded.

A quite different situation arises when progressive structures are
considered. In producing such a structure, the machine can continue
down the main stem (see Fig. 2), expanding as it goes, and never retrac-
ing its steps. It puts only one symbol away in its temporary memory

Fig. 2.
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each time, and each time it takes it right out again and expands upon it.

It is clear that as regressive structures grow longer they require more
and more memory, but progressive structures do not. They can continue
indefinitely with a minimum of memory.

Yngve’s hypothesis is an interesting contribution concerning the
problem of syntactic complexity in natural languages. Other signifi-
cances and applications of Yngve’s ideas are discussed in an interesting
paper of Varga [58]. To apply these ideas to some questions concerning
mechanical translation (especially in syntactic analysis of languages with
progressive structure), Varga has used an algorithm of Domolki [14].

8. Relations between Various Types of Projectivity

We shall establish in this Section the logical relations existing be-
tween the various types of projectivity defined in Section 7. As in that
section, we always put x = a,a, - - - a,; all considered strings are tacitly
assumed to be structured strings.

Theorem 8. Every monotonically projective string is L-projective.

Proor. First let x be regressively projective. Assume that a; =3 g; and
min (i, j) < k <max(i, j). We have a;<a;, Hence i<j and i<k <j.
By Theorem 7, we have a,—a; = 2 a2 a—=>a_,—>
— a;.,—> a;. Since—> is a particular case of =3 and =3 is transitive, we
deduce that a; =2 g,. Thus, x is L-projective.

Now let x be progressively projective and assume that a; =2 a; and
min(i, j) < k < max(i, j). We deduce that a; < a;. Hencej <iandj <k <i.
By Theorem 7', we have q;—> a;.;, =+ 2 Qg1 = = gy —> " -+ —>
a;-; — a;. Hence a; =3 a; and x is L-projective.

Proposition 19. There exists an L-projective string which is not mono-
tonically projective.

Proor. Consider the string x = a,a.a;a, and let — be defined as follows:

as— az3— a,, a,— a,. This string is obviously L-projective, but, by

Theorems 7 and 7', x is neither regressively nor progressively projective.
A French illustration of x is une tres belle fille.



8. Relations between Various Types of Projectivity 225

Proposition 20. There exists a monotonically projective string which
is not strongly projective. There exists a strongly projective string which
is not monotonically projective.

Proor. The string x = a,asa;a,, with — defined by a,— a3 — a, — ay,
is monotonically projective (in view of Theorem 7), but it is not strongly
projective, since we have a, =3 a,, without having a,— a,. (An English
illustration of x is very clearly projected pictures.)

The string y = a,a.a,, with — defined by a, — a, and a, — as, is strongly
projective, but, in view of Theorems 7 and 7', y is not monotonically
projective. (A Rumanian illustration of y is dau elevului cartea.)

Proposition 21. There exists a monotonically projective string which
is not projective in the restricted sense. There exists a string which is
projective in the restricted sense, but not monotonically projective.

ProoFr. The string x = a,a,asa,, with — defined by a,— a;— a,— q,
and a,— ay, is regressively projective, since conditions (1) and (2)
of Theorem 7 are fulfilled. But x is not projective in the restricted sense,
since we have a, — a, without having a, — a..

The string y = a,a.a;, with — defined by a,— a,, a,— a3, is pro-
jective in the restricted sense, but, in view of Theorems 7 and 7', y is not
monotonically projective. (See a Rumanian illustration of y in the proof
of Proposition 20.)

We shall now compare strong projectivity and projectivity in the res-
tricted sense.

Proposition 22. Every strongly projective string is projective in the
restricted sense, but the converse is not true.

Proor. Let x be strongly projective and assume that a;— a; and
min(i, j) < k < max(i, j). It follows that a; = a;. Hence, since x is strongly
projective, we have a;— a, and x is projective in the restricted sense.

The string x = a,a,a;a4a;, with — defined by a, = a; — as, a, — a; and
a; — a,, is projective in the restricted sense, but it is not strongly pro-
jective, since we have a, =3 a; without having @, — a,. (Rumanian illus-
tration: x = dati elevului caietul meu gros.)

Another example is the string z = a,a.a;a,a; with = defined by a; —
as—> az;—> a, — ay; z is projective in the restricted sense, without being
strongly projective (since we have a; =3 a, without having a;— a,). An
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English illustration of z was given in Section 7 after the definition of
regressive projectivity.

Proposition 23. If the length of a monotonically projective string x is not
less than 4 and if a;— a; implies |[i—j| < 1, then x is projective in the
restricted sense, but it is not strongly projective.

ProoF. Projectivity in the restricted sense is obviously fulfilled. Assume
that x is regressively projective. We have a; = q; for i <j. Take i=1
and j = 4. (This is possible because the length of x is not less than 4.) We
deduce that a, =3 a, but, in view of the hypothesis, we do not have a, — a,;
thus, x is not strongly projective.

If x is progressively projective, we reason in a similar manner; we have
ay; =3 a, without having a; — a,.

We now compare projectivity in the restricted sense and L-projectivity.

Theorem 9. If the string x is projective in the restricted sense, then x is
L-projective, but the converse is not true.

ProoF. Let x be projective in the restricted sense and let a; = a; (1 </,
Jj=n). Consider an integer k such that min(, j) < k < max(i, j). By
definition of =3 there exists a sequence by, b,, ..., b, of terms of x, such
that a; = by, a;= b,, and b, — b, for 1 = m<r—1. If there exists an
integer m such that a, = b,,, we have a; =3 a;; if such an integer m does
not exist, we distinguish two possibilities:

(1) i<j. Let s be the smallest integer m such that a, < b,. We have
1<s=tand b, ; < a; < b,. Since b,— b, ; and by taking into account
that x is projective in the restricted sense, we deduce that b,— a,. Hence
bs = a;. On the other hand, we have a; = b,. Therefore, by the transi-
tivity of =, a; = a,.

(2) i>j. Let s be the greatest integer m such that a, < b,,. We have
1=sg<tand by < ay<b, Since b, —> b, and by taking into account
that x is projective in the restricted sense, we deduce that b, — a.
Hence b, =3 a,. On the other hand, we have a; =3 b, .. Therefore, by the
transitivity of =2, a; =2 a,.

We have proved that, from a; =3 q; and min(i, j) < k < max(i, j), it
follows that a; =2 q,, that is, x is L-projective.

The string y = a,a.asa,, with— defined by a,— a;— a, and a,— ay,
is L-projective; but y is not projective in the restricted sense, because we
have a,— a; without having a,— a,. (German illustration of y: ein sehr
alter Mann.)
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Corollary 5. Every strongly projective string is L-projective, but the
converse is not true.

Proor. This is an immediate consequence of Proposition 22 and
Theorem 9.

We now compare H-projectivity, L-projectivity, and F-projectivity.
Theorems 10 and 11 will show that these three types of projectivity are
pairwise equivalent.

Theorem 10. Every H-projective string is L-projective; every L-
projective string is H-projective.

Proor. Let x be H-projective. Assume that a;=3a;(1 <i,j<n)
and let £ be an integer such that min(i, j) < k < max(i,j). By definition of
=3, there exists a sequence by, b,, . . ., b, of terms of x, such that a; = b,,
a;=b,, and b, —> b,, for 1 < m <¢— 1. If there exists an integer m such
that a, = b,,, we obviously have a; = a,. If such an integer m does not
exist, we distinguish two possibilities:

(1) i<j. Let s be the smallest integer m such that aq, < b,,, We have
1<s=tand b, , < a, < b,. Since b,—> b,_, and since x is H-projective,
we deduce that by = a,. But we also have a; = b,. Therefore a; = a;.

(2) i>j. Let s be the greatest integer m such that a;, < b,,. We have
1<s<tand by, < ax < b,. Since b;.,— b, and since x is H-projective,
we deduce that b,,, =3 a;. But we also have a; =3 b,,,. Therefore a; = q,.

Since in both (1) and (2) we have a; = a,, x is L-projective; thus, H-
projectivity implies L-projectivity.

Consider now an L-projective string x. Let a;—> a; and min(i, j) < k <
max(i, j). We have a; =3 a; and, in view of the L-projectivity, we deduce
that a; =2 a,. We have so shown that x is H-projective. Theorem 10 is
proved.

Theorem 11. The string x is F-projective if and only if it is L-projective.

PrOOF. Letxbe F-projective. Let a; =3 a; and consider an integer k such
that min(i, j) < k < max(i, j). Since =3 is reflexive, we also have a; =3 a;.
By the definition of F-projectivity (with m = j) we deduce that a; = a,.
Therefore x is L-projective.

Assume now that x is L-projective. Suppose that a,, =3 a;, a,, = a; and
min(Z, j) < k < max(i, j). We distinguish three cases:

(1) k= m; by reflexivity of =, we have a,, =3 a.

(2) k<m. If i <k, then a; < g, < a,, and, since x is L-projective and
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because a,, = q;, we deduce that a,, =3 a,. If i > k, thenj < k. Therefore,
a; < a; < an. Since x is L-projective and because a,, = a;, we deduce that
Ay =3 ag.

Q) k>m. If j>k, then a, <ax<a; Since x is L-projective and
a,=3 a;, it follows that a,,= a,. If j <k, then i > k. Hence a,, < a; < a;.
Since x is L-projective and a,, =3 q;, we have a,, = q,.

Thus, we have in all cases a,,= a, and x is F-projective. Theorem 11
is proved.

REMARK. In another way, Theorem 11 was outlined by Lecerf and
Thm [35].
We now compare quasi-projectivity and L-projectivity.

Theorem 12. Every L-projective string is quasi-projective, but the
converse is not true.

Proor. By Theorem 11, L-projectivity and F-projectivity are equiva-
lent; thus, it is enough to show that every F-projective string is quasi-
projective but not conversely. Let x be F-projective and assume
an= a;, a, =3 a;, and min (f, j) < k <max (i, j). It follows that a, =3 a.
This means, among other things, that from a,,=3 q;, a,,=3 g;, min(, j) <
k <max(i, j), and i#m#j it follows that a, = a,. Therefore, x is
quasi-projective.

An example of a quasi-projective string which is not L-projective
is x = a,a,a;a,as, with — defined by a, — a;— a, and a, — a5 — a,. Since
as=3 a; and aq; < a; < a3, but we do not have a;=3 a,, x is not L-pro-
jective. On the other hand, it is easily seen that x is quasi-projective.
(A Russian illustration of x may be found in Section 7, after the definition
of quasi-projectivity.)

Proposition 24. There exist strings which are not quasi-projective.

PrROOF. Let x=a,a,aza,a;, with— defined by a; — a3~ a, = as, a,~ as.
We have a; =3 a,, a; =3 g5, and a, < a4 < a5, but we do not have a; = a,.
Thus, x is not quasi-projective. [Russian illustration of x: goda cerez
tri ja vedu (Beleckii et al. [4], p. 73).]

We now make several remarks concerning the invariance of various
types of projectivity by the dependence isomorphism or by the subor-
dination isomorphism. It is obvious that every type of projectivity is
invariant by the dependence isomorphism, that is, if the strings x and
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y are 8-isomorphic and x is projective in some sense, then y is projective
in the same sense. But we also have the following result.

Theorem 13. If the strings x and y are o-isomorphic and if x is mono-
tonically projective (L-projective, H-projective, F-projective, quasi-
projective), then y is also monotonically projective (L-projective,
H-projective, F-projective, quasi-projective, respectively). Strong
projectivity and projectivity in the restricted sense are not invariant
by o-isomorphism.

Proor. The definitions of monotone projectivity, L-projectivity,
F-projectivity, and quasi-projectivity involve only the relations < and
=3; since both these relations are invariant by o-isomorphism, it follows
that the corresponding types of projectivity are also invariant by o-
isomorphism. What concerns H-projectivity, it is equivalent to L-pro-
jectivity (in view of Theorem 10). Hence it is invariant by o-isomorphism.

To prove the second part of Theorem 13, let us consider the strings
X = a,d,a;a,, with — defined by a,—a,—as;—a,, a,—>as, a,—ay,
a,—ay, and y = b,b,bsb, with — defined by b,— b,— b;— b, and
b,— b,. The strings x and y are obviously ¢-isomorphic, but not &
isomorphic. String x is strongly projective. Hence, by Proposition 22,
x is projective in the restricted sense. On the other hand, y is not pro-
jective in the restricted sense, because we have b, — by, but we do not
have b, — b,. In view of Proposition 22, y is not strongly projective
and Theorem 13 is proved.

The most interesting and important type of projectivity is L-pro-
jectivity. When we speak of projectivity, without otherwise specifying,
we tacitly assume that we mean L-projectivity.

9. Projectivity in Natural Languages

Let us now remark on projectivity in natural languages. A language
is said to be projective if each of its strings is projective. There are
some close connections between projective languages and context-free
phrase-structure languages. These two types of language are in some
sense equivalent (Gaifman [18], Bar-Hillel [ 2]; for context-free languages
see also [3]), but we shall not deal here with this problem.

Most of the strings belonging to natural languages are projective,
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which is a very restrictive property. As has been shown by Lecerf
([311, p. 2-3), almost 100 percent of French strings are projective.
The same seems to be true for German, Italian, Danish, and other
languages. The projectivity of a string in a natural language is in some
sense equivalent to the absence of discontinuous immediate constituents.
In this respect, very interesting remarks are made by Paduceva [48]
and lordanskaja [28], who have made a deep analysis of dependence
and subordination structures in Russian, as well as of the connections
between these structures and the description in terms of immediate
constituents. According to an investigation of Hays, among 30,000
Russian strings only 2 strings are not projective ([23], p. 4). On the
other hand, Sreider ([56], p- 38) says that among 10,500 English strings
only 610 are not projective. However, it seems that all these statistics
refer to simple strings only.

It is interesting to remark that there are about 117,000 structured
strings which may be formed with seven given words, but only 3876-
of these strings are projective. If we identify two o-isomorphic strings
and we call a class of o-isomorphic strings an abstract structured string,
we may say that there are about 117,000 abstract structured strings of
length 7, but only 3876 of them are projective. Projectivity becomes
more useful when we are concerned with strings of greater length. Thus,
there are about 1,000,000,000 abstract structured strings of length 10;
there are about 2 X 10?® abstract structured strings of length 20. Projec-
tivity enables us to select a relatively small number of these strings (Lecerf
[31], p. 6). A complete study of the number of projective strings, when
the length of the strings is less than 8, is given in Table 5 (Lecerf [31],
p. 21).

TABLE 5

Length p = number of n = number of Total number n

of projective nonprojective of n+p
strings solutions solutions solutions

1 I 0 1 0

2 2 0 2 0

3 7 2 9 22

4 30 34 64 53

5 143 482 625 77

6 728 7048 7776 90.6

7 3876 113,773 117,649 96.7
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Three concrete linguistic problems will now be discussed in the light
of projectivity: the position of separable particle in German (Lecerf-
Ihm [35], pp. 12-15); the dependencies in a certain French string (Lecerf-
Ihm [35], pp. 15~17); the so-called supplementary predicative element
in Rumanian (Marcus [40]).

THE SEPARABLE PARTICLE IN GERMAN. Let us consider the German
strings (1) ich gehe sofort aus, (2) ich bin sofort gegangen, and (3)
ich bin sofort ausgegangen. In each of these three strings there exists
a verb having a separable particle. We wish to establish how many words
may be inserted between the verb and its separable particle without
affecting the projectivity of the string. In (1) we have gehe — ich, gehe —
sofort, and gehe — aus. Hence any word of (1), other than gehe and aus,
may be inserted between gehe and aus, without affecting the projectivity
of (1)—and even the strong projectivity of (1). Thus, the interrogative
construction gehe ich sofort aus? is strongly projective. A similar situation
arises in (2), where we have bin — ich, bin — sofort, and bin — gegangen.
Any word of (2), other than bin and gegangen, may be inserted between
bin and gegangen without affecting the projectivity —or even the strong
projectivity. Thus, the interrogative construction bin ich sofort gegangen?
is strongly projective. A quite different situation arises in (3), where
we have bin— ich, bin— sofort, and bin— gegangen— aus. Here,
none of the words ich, bin, and sofort may be inserted between the verb
gegangen and its separable particle aus, without affecting the projectivity
of the string. For instance, the string ich bin gegangen sofort aus is not
projective, since we have gegangen — aus without have gegangen—
sofort; the string bin sofort gegangen ich aus is not projective, since
we have gegangen— aus without have gegangen—ich. This fact
agrees with the known rules of German grammar, which require that
gegangen and aus always be neighbors. In exchange, projectivity per-
mits us to insert between bin and gegangen any word of (3) other than
bin and gegangen; German allows us great liberty in forming the inter-
rogative constructions.

ESTABLISHING THE DEPENDENCIES IN A CERTAIN FRENCH STRING.
In most cases, the dependencies occurring in a string are established
in an intuitive way. But in many situations the intuition is not sufficient,
and we must use some a posteriori criteria, having an explanatory
power. Projectivity may sometimes be such a criterion. Consider, for
instance, the French string x =je ne le rencontre généralement pas.
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The group of words «a = ne rencontre pas is customarily considered
a single one and we have the following dependencies: a— je, a— le,
and oa—> généralement. But we wish to investigate the dependence
structure of the nucleus «. Many solutions are intuitively plausible, but
only a few of them fulfill the projectivity condition. Consider, for instance,
the following four possibilities: (a) rencontre —> je, rencontre— le, ren-
contre —> généralement, rencontre — ne —> pas; in this case, x is not
projective, since we have ne —> pas and ne < rencontre < pas, without
having ne = rencontre; (b) rencontre — je, rencontre — le, rencontre —>
généralement, rencontre — pas—> ne; in this case x is not projective,
since we have pas— ne and ne < rencontre < pas, without having
ne = rencontre; (C) rencontre — je, rencontre— le, rencontre —> gén-
éralement, rencontre—> pas, ne—> rencontre; in this case, x is not
projective since we have rencontre = je and je < ne < rencontre, with-
out having rencontre =3 ne; (d) For every word e of x, other than ren-
contre, we have rencontre = e; in this case, x is projective and even
strongly projective. This fact does not mean that the dependence struc-
ture of x is undoubtedly that given by (d), but only says that solution
(d) agrees with the projectivity condition. Hence it is more plausible
than (a), (b), and (c).

THE SUPPLEMENTARY PREDICATIVE ELEMENT IN RUMANIAN. Let
us consider the Rumanian string zgomotosi copiii vin. Some facts con-
cerning Rumanian grammar require us to consider the word zgomotosi
as dependent both upon copiii and upon vin; thus, we have vin ~—> zgomo-
tosi, vin—> copiii — zgomotosi. Condition (b) of the definition of simple
strings (see Section 3) is not fulfilled; the considered string is not simple,
but, as is easily seen, this string is projective and even strongly projec-
tive. But let us consider the string y = o pisica trecu alba. As zgomotosi
in the preceding string, alba has a double nature in y: one adjectival,
the other adverbial. Indeed, alba depends both upon the noun pisica
and upon the verb frecu and we have the following dependencies:
trecu —> pisica — albi, trecu—> alba. String y is neither simple nor
projective, since condition (b) of the definition of simple strings is not
fulfilled (trecu— alba, pisica — alba, and we have pisica =3 alba and
pisica < trecu < alba, without having pisica =3 trecu). It is interesting
to remark that such strings as y were considered earlier with another
dependence structure, which differs from the above dependence struc-
ture by the abscence of the relations copiii — zgomotosi (in the first
string) and pisicad — alba (in the second string). In other words, the
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double nature of zgomotosi and of alba was not recognized. But without
this double nature, each considered string is both simple and projective.
Thus, simplicity and projectivity are hypotheses of first approximation,
which correspond to an elementary level of grammatical analysis. A
finer analysis, which also takes into account some stylistic facts, must
abandon both simplicity and projectivity. But we know very little about
these more complex situations. Most of the known results concern
strings which are both simple and projective. Some of these results will
be presented in the next Section.

10. Simple Projective Strings

In the investigation of strings which are both simple and projective,
we shall use the axiomatic description of simple strings given in Section
4. We add a further axiom to the system of axioms introduced there.

AxioM OF ProjecTivity: (6.1). f a=3bandascsborbsc=a,
then a=c.

it is easy to recognize in Axiom (6.1) the property of L-projectivity.
The system of Axioms (1.1),(1.2), (1.3), (2.1), (2.2) (2.3), (3.1), (4.1),
(5.1), and (6.1) defines the projective B-strings. In view of Theorems
5 and 6, we shall identify B-strings and simple strings; thus, instead of
projective B-strings we shall speak of simple projective strings.

Proposition 25. If the words a and b of a simple projective string are
not comparable and if a=3 ¢ and b=3 d, then from a < b it follows that
¢ <d and from b < g it follows that d <c.

Proor. Let a <b. By Axiom (4.1), we have ¢ # d. Hence, in view
of Axiom (1.3), we have either ¢ < d or d < ¢. Assume that d < c; since
a and b are not comparable, we deduce from Axiom (6.1) that we have
neither b < ¢, nor d = a. Therefore, a <d < c < b. Then, since a = c,
we have a =3 d; by taking into account the relation b= d, we obtain a
contradiction to Axiom (4.1). Hence, the relation d < ¢ is false and we
have ¢ <d.
If b < a, we find in a similar way that d < c.



234 V1. Subordination and Projectivity

Proposition 26. Axiom (1.1) is a consequence of Axioms (2.1), (2.2),
and (6.1) ((4], pp. 84-85).

PrROOF. Assumethata<bandb=<a Wehaveasb<agandb<a=<b.
By Axiom (2.1) we have a =2 a and b =3 b. Hence, by Axiom (6.1), we

have a=3 b and b =3 a; further, by Axiom (2.2), we deduce that a = b,
and Axiom (1.1) is proved.

It may be seen, by suitable examples, that each of the other nine
axioms is independent.

Theorem 14. None of the axioms (1.2), (1.3), (2.1), (2.2), (2.3), (3.1),
(4.1), (5.1), and (6.1) follows from the other axioms (Beleckii et al.
[4], pp. 83-84).

ProoF. For every axiom « we shall give an example of a set 4 where
« is not fulfilled, but all other axioms are fulfilled.

AxioM (1.2). A=1{1,2,3,4};1=<1,2=<2,3=<3,4<4,1=<2,1=<3,
1<4,2<3,3=4,4<2;1=31,2=32,3=33,4=24,1=32,1=23,1=34.

AxioM (1.3). A=1{1,2,3}; 1=<1,2=<2,3=<3,1=<2,1=<3;,1331,
2=32,3=33,1=32,1=33.

AxioM (2.1). A={1,2};1=<1,2=<2,1=s2;1=31,1=32.

AxioM (2.2). A={1,2}; 1=<1,2=<2,1=<2,1=331,1=32,2=31,
232,

AxioMm (2.3). 4={1,2,3,4}; 1=2=<3<4, 131,232,333,
434,132,133, 134,233,334

AxioM 3.1). A={1,2};1=1,1=<2,2<2;1=31,2=32.

AxioM (4.1). A={1,23,4}; 1<s2<3<4;131;2=32:33 3:
4=34,1=32,133,1=34,2333,4=33.

AxioM (5.1). A =the set of positive integers; m =<n if and only if
m is not greater than n; m =3 n if and only if m < n.

AxioM (6.1). A=1{1,2,3}; 1<2=<3; 131,232,333, 2331,
1=3,2=33.
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In Section 5 we defined some operations with simple strings. When
these operations are applied to simple projective strings, the resulting
simple strings are also projective, that is, Axiom (6.1) is fulfilled (see
also [4], p. 76).

In the following, we shall show that every simple projective string
may be obtained from elementary strings, by means of finitely many
superpositions. Theorems 15-17 are due to Beleckii er al. ([4], pp.
81-82).

Theorem 15. Let x be a simple projective string of length greater than 1
and let a, be its nonsubordinated word. Let a;, <a, <---<q, be the
words of x which are subordinated to a,. Denote by x; (1 <i = n) the set
of words subordinated to a;; denote by 8 the set of words aq, a5, az, . . .,
a,. Then, 6, x,,..., x,_; and x, are simple projective strings, whereas
the string x is o-isomorphic to the superposition between 6 and x,,
Xoy . ooy Xp

ProoOF. Obviously, 6 is a simple projective string. Proposition 16
implies that x;, x,, . .., x, are simple projective strings. By Proposition 9,
the words a,, as, ..., a, are pairwise noncomparable; then, by Corollary
3, the sets x; (1 < i< n) are pairwise disjoint. Denote by 6’ the set ob-
tained from 6 as x’ is obtained from x in the definition of superposition
(see Section 5). It is easily seen that ¢’ contains a unique word: a,.
Therefore, the sets ', x,, x,, . .., x, are pairwise disjoint and, by Proposi-
tions 3 and 8, each word of x belongs either to §” or to one of the strings
x; (1 < i< n). Thus, the set z (see the definition of superposition) on which
the superposition between 6 and x,, x,, ..., x, is defined, may be settled
in a 1:1 correspondence with x.

By Proposition 10, two words belonging to different sets x; are
not comparable [see rule (2) in the definition of superposition]. By
rule (4) of the definition of superposition, the word a, may be subor-
dinated to no word of xy, x,, ..., x,. In view of Proposition 25, if a; < a;,
any word of x; precedes any word of x; [see rule (2) in the definition of
superposition]. By Proposition 5, if b is an arbitrary word of x; and a; < q,
(a; > ag), then b < g, (b > a,, respectively). [See rules (2) and (4) of the
definition of superposition.] Thus, the relations < and =3 fulfill in x all
conditions required by the definition of superposition between 6 and
X1, X3, ..., X, Theorem 15 is proved.

Theorem 16. Every simple projective string may be obtained from
elementary strings, by means of finitely many superpositions.
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Proor. We proceed by induction with respect to the length of the
string. If the length of x is less than or equal to 2, then, by Propositions
11 and 15, our assertion is immediate. Assume the assertion is proved
for any string of length less than n (n = 3) and let us prove the validity
of the assertion for strings of length n. Since # = 3, we may apply Theorem
15 to x and represent x as a superposition between 6 and x,, x,, ..., X,
It is easily seen that, in the construction given by the proof of Theorem
15, the string 6 is elementary, whereas each of the strings x;, x5, ..., Xn
is of length less than #, since no x; contains the nonsubordinated word of
x. By the induction hypothesis, the strings x;, x,, ..., x, may be repre-
sented as superpositions of elementary strings; thus, this is also true
for x.

We may improve the above result by representing every elementary
string by means of strongly elementary strings. Indeed, we have the
next theorem.

Theorem 17. Every elementary string may be obtained from strongly
elementary strings, by means of finitely many operations of left union,
right union, and central union.

Proor. We proceed by induction with respect to the length of the
string. If the length of x is less than or equal to 2, the assertion is im-
mediate (see Proposition 15). Assume the validity of the assertion for
every elementary string of length less than n(n = 3) and let us prove its
validity when the length is n.

By Proposition 12 and Corollaries 1 and 2, the elementary string x
is formed by one nonsubordinated word a, and n— ! nonsubordinating
words 4, as, . . ., d,_q; in view of Proposition 13, we deduce that a,— a
A=sk<sn—1).

Let us prove that x may be represented as a (left, right, or central)
union of elementary strings, each of which is of length less than n. Without
loss of generality, we may admit that a; <a, < - - - <a,,. Three cases
are possible: (1) ao < a;; (2) dp—y < ay; (3) ax < @y < ayy, where 0 <k <
n— 1. In the first case, we consider the strings x; = a,a; and x, = a,a, - - -
a,_,. It is easily seen that x is o-isomorphic to the left union of x, and x,.
In (2) we consider the strings x; = aod;" " * dy—p and x, = ayq,_y. It is
easily seen that x is o-isomorphic to the right union of x, and x,. In (3)
we consider the strings x; = o, -+ - a, and x, = Aolp1Qps2 * * * Apey-
It is €asily seen that x is o-isomorphic to the central union of x; and x,.
In the first case, x; and x; are of length 2 and n— 1, respectively; in (2)
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x; and x, are of length »—1 and 2, respectively; in (3) x, and x, are of
lengths £+ 1 and n—k, respectively. Thus, in every case we may repre-
sent the string x as a union of strings whose length is less than the length
of x. It is sufficient we now refer to our induction hypothesis.

Corollary 6. Every simple projective string may be obtained from
strongly elementary strings by means of finitely many operations of
superposition and left, right, and central union.

We now give a geometric interpretation of the projectivity condition.
This interpretation is due in essence to Lecerf and Ihm [35] and concerns
only simple strings; that is, in view of Theorem 2 it concerns only strings
whose associated graph is a proper tree. According to this interpreta-
tion, we shall justify the presence of the word “projective” in describing
this restriction. _

Let us consider a simple string x and denote by G, the associated
graph. By Theorem 2, G, is a proper tree. We represent G, in the
plane as follows.

Consider a straight line w in the plane and let us represent the center of
x by a point af situated above w; al will be the center of G,. Denote by
A1 the orthogonal projection of a} on w (see Fig. 3).
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Fig. 3.

Consider a straight line o, parallel to w, situated below the point aj
and above the line w. On w,; we shall represent all vertices a3, a3, . . ., a2,
of G, corresponding to words which depend upon the center of x.
These vertices will be disposed from the left to the right, in their linear
order in x and such that for every word a for which a < al (al < a) the
corresponding vertex is situated at the left (at the right, respectively)
with respect to the projection line aj4}. Denote by 43, A%,..., A%, the
orthogonal projections of ai, a3,. .., a2,, respectively, on the line » and
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let us consider the projection line a4} (1 <i=< n,; see Fig. 4 for n, = 9).

Consider now a straight line w, parallel to w, situated below the line
w, but above the line w. On w, we shall represent all vertices afa3 - - - a2,
of G, corresponding to words which depend upon one of the words
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corresponding to a2, a2, . . ., a%,. These vertices will be disposed from the
left to the right, in their linear order in x and such that, for every word a
for which a < al, al< a <al,,, or al, < a, the corresponding vertex is
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Fig. 5.
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situated at the left with respect to the projection line ai4!, at the right
with respect to the projection line ai4!, and at the left with respect to the
projection line a}, A} ,, or at the right with respect to the projection line
at; 1ALy, respectively (1 < i < n, — 1). Denote by A3, A43,..., A}, the
orthogonal projections of a2, a3, . . ., a23, respectively, on the line w and
consider the projection lines @343 (1 <i < ng; see Fig. 5 for ny; = 7).

Further, we consider a straight line w, parallel to w, situated below the
line w, but above the line . On w; we shall represent, as in the preceding
steps, the vertices of G, corresponding to words which depend upon ene
of the words a3, a3, ..., a3, We continue in the same way until we ex-
haust all vertices of G,. It is easily seen that the projection points so
obtained on o keep the linear order of the corresponding words in x.

We also make the convention that every arc in G, is represented by a
straight line segment.

We shall say that G, is a proper tree without intersections if in the
above construction every intersection point between two arcs of G, or
between an arc and a projection line is a vertex of G . (By the projection
line a/4i we mean the corresponding segment.)

It is easily seen that the defined property does not depend upon the
position of w and of the other points and lines considered, but only upon x.

Theorem 18. The simple string x is projective if and only if the cor-
responding proper tree is without intersections.

We shall not give here the proof of this theorem, which can easily be
accompiished by the reader. (A proof of this theorem was given by
Lecerf and Thm [35], pp. 11-12, 17-19.) Figures 6 and 7 contain two
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examples for which Theorem 18 decides, in the first case, the projectivity
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and, in the second case, the nonprojectivity of a simple string (Example
14 of [26]).
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|
|
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s Avons Tous v

Fig. 7.

We close the discussion concerning simple projective strings with
the following theorem which follows immediately from Theorems
D and 2.

Theorem 19. Let x=aa,---a, The structured string {x, R} is
simple if and only if there exists a term a; of x such that any other term
is subordinated to a; in a unique manner; that is, for j # i there exists
a unique sequence ki, k,, ..., k, such that i = k,, j= k,, and a,, = a,—
e s —> akp.

Some modifications of the geometric criteria of projectivity, which
lead to a notion more general than that of simple projective string but
less general than that of simple string, have been proposed by Lynch
[37] and Hirschberg [26]. The first is concerned particularly with Russian,
whereas the second one considers primarily French.

11. Bibliographic Remarks

Theorems 1-3, 5 and 19, Propositions 1 and 2, and all theorems and
propositions contained in Sections 7 and 8 are due to Marcus. Some
of these results have already been published [38, 39, 41]. Theorem 4,
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Propositions 3-10, Corollaries 1 and 2, and all results exposed in Sections
S and 10, with the exception of Theorems 18 and 19 are due to Beleckii
et al. [4].

In an implicit manner, the notion of projectivity may be found in
Harper and Hays [21]. The program described by these authors generates
projective strings only, but they explicitly mention the hypothesis of
compactness. In 1960, Hays introduced dependency grammars ([23];
see also [22, 24]). The description of these grammars contains a condi-
tion equivalent to L-projectivity. A survey of dependency grammars
is given by Hays [25]. At almost the same time as Hays, Lecerf and Thm
introduced the hypothesis of projectivity and made a detailed stlidy
of this notion {27, 31-35]. An algebraic analysis of a projectivity criterion
of Lecerf and Thm was made by Camion [10]. The projectivity condition
is very important in mechanical translation ([31], p. 8; [29]), but its
origin is of a purely linguistic nature (see, for instance, [57]). A hier-
archy of projectivity types has been investigated by Sreider [56]. For
the semantic aspects of dependence and subordination, see Tesniére
[571, De Boer [13], and Buydens-Ruvinschii [9]. The idea of the depen-
dence relation as a function of several variables may be found in
Reichenbach [50]. Some interesting formal aspects of dependence
and subordination were investigated by Padudeva and Sumilina [49],
Dreizin [15], and Jordanskaja [28]. Algorithmic aspects of syntactic
analysis are studied by Mel¢uk [42], who also refers to projectivity
in the study of internal flection in Indo-European and Semitic languages
[43]. Some aspects of dependence and projectivity arising in the trans-
lation of an information logic language into Russian are discussed by
Paduceva [47]. The same author discusses, in another paper, the relative
equivalence between description by immediate constituents and descrip-
tion by dependence and subordination [48]. This problem was previously
investigated by Lecerf [31] and Lecerf and Leroy [36]; in the terminology
of these authors, we may speak of “‘graphes de Chomsky” and ‘“graphes
de Tesniére.” Chomsky’s graphs are the geometric representation of
analysis of immediate constituents, whereas Tesnieére’s graphs are
the geometric representation of dependence relations occurring in a
string. Continuity of immediate constituents, in the first representation,
corresponds to the projectivity in the second one. But, as Lecerf pointed
out. Chomsky and Tesniere representations do not give the same in-
formation; each contains additional information with respect to the other.
Analogously, continuity of immediate constituents and projectivity
are not reducible one to the other. They are two aspects of the same
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syntactic mechanism. A synthesis of these two aspects is given by the
so-called “modéle des conflits” (Lecerf [31)).

Another interesting relation concerns dependency systems viewed
as generative grammars, on one hand, and phrase-structure systems,
on the other. Dependency systems are formally defined by Gaifman
[18]. The same author shows that every dependency system has a
“naturally corresponding” phrase-structure system but not vice versa;
he gives an effective necessary and sufficient condition for the existence
of a “naturally corresponding” dependency system for a given phrase-
structure system and an effective way to construct it when it exists.
Nevertheless, as Gaifman shows [18], every set of strings defined by
means of a grammar of one type is also defined by means of a grammar
of the other type, which can be found effectively. (In this respect see
also Gross [20].) However, this result implies that there will be cases
in which the second system will not be “naturally correlated” with
the first system from a structural point of view.

Another method for discovering the grammars of phrase-structure
languages is given by the calculus of parentheses due to Solomonoff [55].
Fitialov has shown that to every immediate constituent calculus corres-
ponds an equivalent Solomonoff calculus, but the converse is not
true [17].

There are many other variants of syntactic analysis. Among the
most formalized, we recall the description given by Vauquois with
the aid of syntactic operators [59] and the very original conception
of Benzécri [5, 6]. Closely connected to the presentation given in Chapter
V are the notions and the results of Gladkili [19], continuing the con-
siderations exposed in Section 11, Chapter V.

Since projective languages, languages defined by dependency systems
(in the sense of Gaifman), categorial languages (exposed in Chapter I11),
and context-free phrase-structure languages are approximatively pair-
wise equivalent, it is important to give some extensions of dependency
theory. As Hays [25] remarks, two major avenues for extension of syn-
tactic models have been opened in contemporary linguistic theory. One
is transformation theory, which extends context-free phrase-structure
grammars by admitting additional kinds of rules (see, in this respect, [1]
and [11]. The other is stratification theory, which extends immediate
constituent grammars by combining them in sequences (see Lamb [30}).
Concerning the link between various levels of language, which is fun-
damental in stratification theory, see also the interesting papers of Sgall
[54] and Danes 112].
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Many examples of graphs describing dependence relations are col-

lected by Scheffer [53]. These examples may be useful for illustrating
various dependence structures. The formal aspects of tree representations

in

[ I B NV )

10.

12.

13.
14.

15.

linguistics are analyzed by Meyers and Wang [44].
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NOTE ADDED IN PROOF
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Topological space, 128

Topology, 128

Total language, 1

Algebraic Linguistics

Total space, 128

Total topology, 128

Transitive closure of a binary relation, 204
Tree, 202

T-semifamily, 32

Type, 101, 104

Type 2 grammar, 110

Type 2 language, 110

U

Undirectional categorial grammar, 109
Union of two partitions, 24

Unit partition, 9

Universal language, 1

Vv
Variable, 105
Vertex, 201
Vertex set, 201
Vocabulary, 1

W

Well adequate language, 57

Well adequate from the left (from the right)
language, 57

W-equivalent strings, 194

Word, 1

Word allowed by a context, 6

Word class, 5

Word form, 4
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