

cospemerhaf APXИTEKTVPA ARCHITEKTUR DERGEGENWART L'ARCHITECTURE CONTEMPORAINE

1926

COBPEMEHHAG АРХИТЕНТУРА

Редакцияв Москва, 69, Новинскй бульви, 32, мв. 63 Tел. 5-76-95 ${ }^{(1)}$ oscau 69; Nowinsky bulew.; 32, 68

СТЕКЛО В СОВРЕМЕННОЙ АРХИТЕКТУРЕ

 DAS GLASIN DER NEUEN ARCHITEKTURСовременная архитектура, наи новая система архитентурного мышления, становится непреложным фантом. Год за годом, страна за страной прибавляют новое звено в этой системе, ченанят то, что вчера еще было бөсформенным, уточняют принципы, приемы и методы, тольно что бывшие подсознательными и расплывчатыми.

Перед нами - совершенно новые методы организации пространства, новый современный план, четно члененный и отнрытый, новое понимание стөны и отверстия в их качественных и количествөнных соотношениях, иные конструнтивные системы сооружония при новых строительных материалах и научном изучении старых, употребляемых до сих пор нустарно и хаотично; перед нами-неизвестная до сих пор макситальная рабочая активность всех бөз исключения частей сооружения, всех деталей наружного и внутреннего оборудования.

Вместо спящего инертного наменного массива-монумента гибний, дмнамичесний, напряженный и разумный организм.

Но это вмдят өще немногке.
Громадное большинство живет старыми представлениями и понятиями, крепко заколоченными в их мозги. Они не только не утруждают себя излишними затруднениями и размышлениями, но даже считают явлением крайне непочтитепьным вторжение новой жизни в канонизированную еще предками их спокойную жизнь.

Более того: они раздражены, они сердятся, они возражают. И мишенью их возражений и нападок служит не существо новых понятий (ведь они его не видят), а какая-нибудь деталь, один какойнибудь винтик из этой новой, крепнушей из года в год системы.

Таким винтиком во время прений по вопросам архитектуры на I съезде по гражданскому и инженерному строительству стала так называемая „стекломания " проектов, выставленных на съезде Московским Архитектурным Обшеством. Кстати сказать, выставка эта была организована чрезвычайно сумбурно; на одной и той же стене перепутаны были все существующие направления и никакой ответственности за выставку в целом нести мы, конечно, не собираемся. Речь идет исключительно о принципиальном вопросе-роли стекла в современной архитектуре, и сущность этого вопроса необходимо вскрыть.

Соображения, высказываемые на съезде, сводятся к двум положениям:

1. Сегодня на советском рынке стекла нет.
2. Наши климатические условия противоречат значительному застеклению сооружений.

Оба соображения, на наш взгляд, в целом неправильны.
Сегодня на советском рынке стекла нет, но ведь нет в достаточном количестве и целого ряда других стройматериалов, включая и кирпич. Рынок же, а в особенности советский рынок, создаегся не только предложением, но и спросом. Если стекло нам нужно, то стекольное производство надо так же интенсивно поднимать, как и производство кирпича, как и всю нашу строительную промышленность, что кстати и делается (строятся стекольные заводы Гусь Хрустальный, Ростовский и др.). В данном случае задача архитектора заключается не в пассивном подчинении случайностям рынка, а в тесной увязке его работы со всеми производственными возможностями страны.

Что касается вопроса климатических условий, нужно сказать, что создание одинаковых условий освещения вызывает в значительной части СССР потребность в большем количестве стекла, нежели в южных странах. На юге от солнечного света нужно защищаться, нам его нужно искать.

Что же касается экономических потерь в связи с бо́льшим охлаждением застекленных стен, то, думается, они вполне покрываются не только экономией в искусственном освещении (ведь в наших банковских и торговых помещениях электрический свет днем -обычное явление), но и общим состоянием всего организма и в частности зрения трудящихся, работающих в хорошо освещенных помещениях.

Обратная сторона этого вопроса, и значительно более важная, хотя о ней как раз никто из возражающих против стекла не упоминал, заключается в трудности предохранить застекленное пространство от чрезмерного нагревания солнцем. Этот вопрос, задевающий более всего южные страны, но вопрос, перед которым передовая техническая мысль Европы и Америки не отступает, а дает уже целый ряд попыток решения (система механически открывающихся окон, специальная химическая проработка стекла, задерживающая тепловые лучи, и т. д.).

Но было бы неправильным, отвечая на эти два возражения наших нонсервативных спецов, не вскрыть подлинной сущности этих возражений, о которых, нонечно, на съөзде не упоминалось.

Это, во-первых, техничесная косность большинства архитекторов и строитепей, для которых техника заключается в уже усвоенных на школьной скамье истинах, а не в непрерывно-поступательном и чисто-изобретательском завоевании. Для них нужно прежде всего спокойное существование, без усилий и напряжений: то, что проверено тысячи раз нашими дедами, - как самое надежное, самое лучшее.

Во-вторых, это психологическая косность громадного большинства этих спецов, воспитанных на мещанском уюте, на культе замкнутого индивидуалистического быта, с его плотно занавешенными окошечками, с его боязнью воздуха, света, простора. Мы говорим-психологическая косность спецов, потому что не так давно нам приходилось слышать на диспуте у перовских рабочих, обсуждающих проекты своего нового клуба, определенные возгласы: „Побольше воздуха, света, стекла", „Жили в дереве и камне, хотим пожить в стекле".

Этой двойной носности старых спецов, косности технической и психологичесной, современныв архитекторы противополагают двойную активность:

1. Активность техничесную, исходящую из анализа эволюционной роли стены, бесконечно косной и мощной в древние времена, постепенно утончающейся вплоть до наших дней, уничтоживших вовсе старое понятие о стене нак единственно необходимой опоре и превративших ее при надобности лишь в изоляционную оболочку. Опорные точки, принимающие всю нагрузку, могут располагаться в плоскости стены, но могут быть внесены и внутрь сооружения (как мы это видели в проектах Миз ван дер Рое в № 2 „С.А." или как это можно видеть в проекте Мосторга, здесь помещаемого). И, таким образом, никаких технических препятствий даже в сплошном застеклении всего сооружения, в его полном пространственном обнаружении более не имеется.
2. Активность психологическую, которая видит материальные формы нового социалистического быта на базе совершенной техники, в обилии света и воздуха. Мы утверждаем, что старые фабрики, заводы, конторы, банки, магазины и жилища, где трудящиеся слепнут и разрушают свой организм в угоду косности и плохо понимасмой экономии-отмерли. Нужно строить новые, не боясь того, что они новые. Если есть затруднения технические и экономические, надо их решать, опрокидывать, изобретая и усовершенствуя без конца.

Но выясняя этот вопрос, как единственный поднятый откровенно на съезде нашими противниками, мы опять должны прибавить, что стекло-деталь, лишь один только винтик современной архитөктуры, что не он делает ее новой.

Функциональный метод мышления, здоровый конструктивизм дают в каждом отдельном случае нужную норму застекления от максимальной - в фабринах, заводах, нонторах-до полного отсутствия в силосах и холодильнинах. Стөкло - как единственная панацея совремөнной архитектуры-вздор, и с таким пониманием ее нужно вести определенную борьбу. Te, кто только в одном стекле еидят соврешенную архитезтуру,-просто-напросто ее совсем не видят.

Ф OPMA

DIE FORM DER LUFTFAHRZEUGS UND DIE METHODE SEINER BERECHNUNG, VON ING. K. AKASCHEFF

Всем известна форма самолета, его смелие и оригинальные линии, его законченные конгуры. Вся его конфигурация на фоне неба неустанно приковывает внимание каждого, будь то простой обыватель или художник; в каждом из них форма самолета вызывает эстетическое ощущение.

Спрашивается, чем и как достигается эта оригинальность и смелость линий, каким путем идет и какими методами пользуется конструктор, чтобы получить зту эстетическую форму самолета?

Исходным пунктом при расчете самолета является требуемая грузоподъемность, т.-е. конструктор должен знать цель своей постройки: надлежит ли ему построить тяжелый бомбовоз, пассажирский самолет или легкий одноместный истребитель?

Имея это основное задание - грузо-подъемность,-определяющее тип самолета, перед конструктором встает вторая задача для некоторых типов самолета, не менее первостепенная, чем первая,вопрос о скорости самолета, хотя в конечном итоге она является функцией первого услэвия.

Для разрешения своей задачи конструктор определяет размеры самолета и мощность двигателя, т.-е. размах и ширину крыльев и величину хвостового оперения с общим центром давления или поддерживающей силы и центром тяжести самолета.

Решение этих вопросов построено на основной формуле аэродинамики

$$
\mathbf{R}=K S V^{2} .
$$

Из этой формулы следует, что при данной поверхности

движущегося тела сопротивление воздуха

R

увепичивается пропорционально квадрату скорости движения. Разложив сопротивление

R

по координатам x и y, имеем

$$
\begin{gathered}
R=\mathbf{R}_{\mathbf{x}}+\mathbf{R}_{\mathbf{y}} . \\
\mathbf{R}_{\mathbf{y}}
\end{gathered}
$$

называется полезное сопротивление, т.-е. это есть та сила, которая поддерживает самолет в воздухе, а
\mathbf{R}_{x}
—лобовое или вредное сопротивление, которое необходимо преодолеть при движении самолета по горизонтальной линии. Возьмем элементарный пример. Если взять

S

равную $1 \boldsymbol{m}^{2}$, то при скорости
V
равной $150 к м$ в час, сопротивление R_{x}
будет равняться 44 к, при

$$
\begin{gathered}
\mathbf{V}=200 \kappa \boldsymbol{\kappa} \text { в час, } \\
\mathbf{R}_{\mathbf{X}}=79 \kappa \imath, \text { а при } \\
\mathbf{V}=250 _\kappa \text { в час, } \\
\mathbf{R}_{\mathbf{X}}=123 \mathrm{\kappa} .
\end{gathered}
$$

Для преодоления этого сопротивления, на поверхность $1 \mathcal{M}^{2}$, при скоростях в 150,200 и 250 км в час, соответственно для каждого случая потребуется мотор мощностью в 25,60 и 15 лс. Цифры взяты на основании современных аэродинамических опытов, проверенных практикой самолетостроения при $\mathrm{K}=0,025$ и $\alpha=90^{\circ}$.

Отсюда следует, что конструктору самолета весь свой опыт и знание приходится сосредоточить на устранении вредных сопротивлений R_{x}. Здесь нө приходится думать о красоте формы самолета. Вся мысль конструктора сосредоточена на уменьшении вредного сопротивления R_{x}, так как уменьшение R_{x} означает уменьшение мощности мотора или, если мощность мотора останется той же, уменьшая R_{x}, мы уволичиваем R_{y}, т.-е. полезное сопротив вление или грузоподъөмность самолета.
Этот закон аэродинамики слишком суров
и строг, чтобы позволять конструктору увлекаться изящными формами самолета, т.-е. ставить перед собой эстетическую задачусоздать элегантный, красивый самолет.

APXИTEKTOP!

ТАК НУЖНО ПОНИМАТЬ МА.

ТЕРИАЛИСТИЧЕСНИЕ ОСНОВЫ

ЭСТЕТИКИ КОНСТРУКТИВИЗМА

- $\mathrm{R}=\mathrm{KSV}^{2}$ - основная формула аэродинамики, где К есть коэффициент, зависящий от характеристики окружающей среды (воздуха) и формы движущегося тела; S - поверхность движущегося тела в $\boldsymbol{\text { в }}$ сунду и R -общее сопротивление воздуха в кг.

Kроме sтого неумолимого закона аэродинамики, - сопротивление воздуха пропорционально квадрату скорости и кубу мощности двигателя, - перед конструктором стоит вторая задача: дать самолет уравновешенный, т.е. способный противостоять ударам ветра и выходить из любого положения по отношению к земле, если по тем или иным причинам будет нарушен режим его полета. Конструкция самолета, не удовлетворяющая этим условиям, рано или поздно, но должна привести к катастрофе, т.-е. самолет, потеряв равновесие, упадет на землю.

И, наконец, третье условие - метод статического расчета самолета - обязывает конструктора экономить в весе самолета. Из каждой детали выбрасывается вон весь материал, который не служит прочности. Удаляется в буквальном смысле по нескольку грамм материала, если он не несет статической нагрузки.

Таким образом, создается машина максимальной прочности при минимальном весе без какого бы то ни было мертвого груза.

Этот „режим экономии" в весе. деталей, которых имеется в самолете до 3500 , в конечном результате за счет общего уменьшения веса самолета позғоляет взять не один десяток литров бензина, что увеличивает продолжительность полета на $1-11 / 2$ часа, или дает возможность пролететь машине пишних 150-200 км.

APXИTEKTOP!

И ТЫ УДАЛЯЙ НАЖДЫЙ ГРАММ
МАТЕРИАЛА ЕСЛИ ОН НЕ НЕСЕТ
СТАТИЧЕСКОЙ НАТРУЗКИ

Короче говоря, три условия расчета при проектировании самолета:

Аэродинажииеская форма внешних деталей и их обиая компановка, построенная на приниине максималзного устранения вредных сопротивлений R_{x} поступательному движению самолета.
2. Наилучиее размешение чентра тя-
2. жессти и сопротивления $\left(R_{x} u R_{y}\right)$, обеспечиваюиеะо максимальную устойчивость самолета в воздухе и
3. Удаление из деталей материала, не

- несуиего статической натузки, ссздают в конечном итоге самолет, облеченный в известные всем красивые и изящные формы.

BOT -

МЕТОД ФУНКЦИОНАЛЬНОГО МЫШЛЕНИЯ

Если просмотреть эволюцию формы самолета от первых его конструкций в период зарождения авиации в 1909/10 гг. по наше время, то с эстетической точки зрения преимушество останется за современным типом самолета.

Переый тип самолега с нагроможденными деталями, с доходившими до нескольких сот метров проволоки и тросса, связывавших детали его конструкции, сейчас уступил место самолету с минимальным числом деталей в форме и с законченностью самой формы.

Эта эволюция самолета явилась следствием эволюции методов расчета самолета, или, вернее, научного обоснования методов расчета самолета. Отсутствие точного знания, в каких аэродинамических и статических условиях работает та или иная деталь самолета,

вынуждала конструктора для обеспечения прочности самолета и улучшения его аэродинамических (полетных) качеств усложнять конструкцию излишними деталями и придавать им произвольные формы.
Самолет получался тяжелым, не было законченности в деталях, а сама форма самолета имела вид случайно соединенных конфигураций.

Только современные достижения аэродинамики и аэротехники позволяют в наше время конструктору дать деталь самолета, отвечающую действительным условиям ее назначения и без нагромождения лишнего материала. В итоге получается современная форма самолета, воплощающая идею конструктора, на научно-построенном расчете и в конечном результате-изящная форма, вызывающая эстетическое ощущение.
Эволюция методов расчета самолета за последние $18-20$ лет, когда конструктор смог, наконец, осуществить вековую мечту человека-летать по воздуху,результат исканий человеческой мысли в течение многих веков, и только современное состояние химии, металлургии, прикладной механики, электротехники, термодинамики и аэродинамики, словом, совокупность новейших достижений научной мысли, а не романтизм или геройство изобретателя, что мы наблюдаем в попытках средневекового конструктора летакщей машины, дали возможность современному технику построить самолет.

Строя новую жизнь, создавая ее новые формы, мы кладем в основу научную мысль. Мы достаточно сильны, и наша цель слишком определенна, чтобы современную конструкцию украшать вынурностью и искусственностью красивых фмор.

Инж. К. Акашев

DER EINFLUSS DES GRUNDRISSES AUF DIE KONSTRUKTION DER WȦNDE UND bedeckungen, VON JNG G. KARLSEN

Решая конструктивный остов здания, мы нередко сосредоточиваем все внимание на разрезе. При этом легко могут остаться неиспользованными те или иные особенности плана, которые коренным образом могли бы изменить структуру здания.
Если мы, например, вынуждены прямой (в плане) забор защемлять в земле, рассчитывая на консольное сопротивление его боковому давлению ветра, то этот же забор мы можем просто поставить на землю, если придадим его плану ломаное или криволинейное очертание. То же, если мы имеем дело не с ветром, а с боковым распором хотя бы земли: нелепо строить прямоугольный погреб в $2 \frac{1}{2}$ кирпича, если круглый можно построить в 1 кирпич.

СХЕМЫ: 1, 2 и 3.

Сводчатый (в плане) приямок при меньщей толщине стенок, все же прочнее и плотнее прямоугольного, так как работает только на сжатие. Несомненно, область применения сводчатых подпорных стенок была бы еще обширнее, если бы в подвалах высоких строений избыточное утолшение стен не вызывалось большой нагрузкой от вышележащих этажей. В этом случае план подвала, конечно, определяется планом верхних этажей.

Над землей (в гражданском строительстве) мы преимущественно имеем дело с ветром, то-есть с фактором малой мощности, однако, и здесь экономичность сооружения прежде всего определяется решением плана: с переходом города к высокому строительству устойчивость здания уже не является более бесплатным приложением к теплой стене в $2 \frac{1}{2}$ кирпича; в небоскребе каждую стену приходится конструировать, приходится рассчитывать. Глядя на разрез высокой стены, мы, естественно, начинаем утолщать нижнюю часть ее. Если размеры получаются неприятные, мы выводим кривую давления из ядра сечения, переходим к растяжению и, следовательно, к арматуре-к железобетону. Для уменьшения сечений мы включаем в работу и междуэтажные перекрытия, но, оставаясь в плоскости вертикального разреза, строим дорогие железобетонные жесткие рамы, часто слишком мало считаясь с пространственностью всей системы.

Иногда это неизбежно: фабрично-заводское строительство (богатое примерами использования плана для погашения распора в силосах, резервуарах и т. п.) часто не может обойтись без жесткой рамы, так как условия производства, сквозное движение крана, возможность расширения рабочего помещения и пр. не допускают использования поперечных стен для обеспечения жесткости всего сооружения. В этом случае мы имеем „коробку" с открытыми торцевыми стенками. Устойчивость такой системы определяется защемлением боковых стенок в земле или в перекрытии. Желательно, конечно, и в этом случае создать жесткость изломами плана, уступами или эркерами (скрытые контрофорсы), но так как все это связано с увеличением периметра здания, такое решение не всегда экономично.

В гражданском строительстве почти всегда плановое решение может и должно быть использовано для осуществления жесткости и устойчивости всего здания. Необходимость пожарного разграничения строений брандмауерными стенами, значительное количество лестничных клеток, возможность установки постоянных перегородок (не деревянных, конечно), и, наконец, наличие жестких внешних стен, неизбежных по крайней мере в жилой части зданий, создают план с большим количеством углов и перекрестков. Часто, при помощи незначительной передвижки стены или части ее, мы почти даром можем получить материал для осуществления жесткости всего сооружения.

Большое значение в этом случае имеют горизонтальные элементы зданий. Если „коробка" кроме стенок имеет жесткую „крышку" или междуэтажные железобетонные перекрытия, - жесткость уже осуществлена, остается только расчетом проверить напряжения. Даже если в некоторых стенах или, наконец, во всех стенах мы имеем сплошное стекло между тонкими стойками, жесткость может быть создана внутренними стенами, если только они пересекаются по крайней мере в $2-\mathrm{x}$ местах. В планах с одним пересечением стен, в виде "угла", „тавра" или „креста", необходимо предотвратить кручение всей системы около

оси, образуемой линией пересечения стен; для этого приходится связывать горизонтальные перекрытия еще хотя бы одной вертикальной стенкой или жесткой рамой нормальной к любому радиусу вращения и достаточно удаленной от оси вращения.

Эта схема решения жесткости здания, одинаково приложима как к небоскребам и домам с максимальным застеклением, так и к самым маленьким строениям.

В деревянных павильонах первой Всесоюзной сел.-хоз. выставки жесткость перекрытий использовалась неоднократно. B „Шестиграннике Главного Дома", например (схема 1), с открытым двором посредине, была использована жесткость шестиугольной галлереи 2-го этажа. Устойчивость деревянных каркасных рабочих домов тоже нередко создается двуслойным косым полом, сшитым гвоздями.

B каменных сооружениях жесткость еше полнее осуществляется железобетонными

перекрытиями. Иногда последние могут быть использованы для распределения не только давления ветра, но и распора или других, более значительных усилий. В новой „, аэродинамической лаборатории ЦАГИ" (схема 2) железобетонное покрытие боковых крыльев передает поперечным стенам распор от двухшарнирных ферм покрытия среднего зала.В плиту ж. б.покрытия пришлось ввести небольшое количество добавочной арматуры, главным образом, „веерной", дпя собирания распорных усилий к железобетонным крючьям, заложенным в поперечные стены. Благодаря значительной высоте ($\mathrm{h}=8-9$ м) горизонтальной балки, напряжения ${ }_{n} \mathrm{n}$ и t " от горизонтального изгиба очень малы, несмотғя на большие пролеты и малую ширину ее ($\mathrm{d}=8$ см).

Рассматривая здание как систему, устойчивую в целом, мы, конечно, должны позаботиться о жесткости отдельных элементов системы. При железобетонных междуэтажных перекрытиях высота этажа обычно достаточно мала, чтобы обеспечить устойчивость даже самых тонких заполнений каркаса стены.

Совсем иначе дело обстоит у зданий, не имеющих жестких междуэтажных перекрытий, т.-е. зданий с деревянными междуэтажными перекрытиями по балкам зданий, покрытых обычными стропилами.

В этом случае уже редко удается использовать вертикальную жесткость стен. Даже при хорошем грунте и сравнительно небольшой высоте здания (схема 3) большей частью бывает выгоднее закреплять положение точки A не консольной жестностью I-I, а балочной II-II. Такое решение совершенно неизбежно в стенах над проемами, где жесткость $I-1$ зависит от сопротивления перемычки скручиванию. По схеме (II-II) решено перекрытие портальной арки в театре клуба Дорпрофсожа при Каз. жел. дор. Для уменьшения веса стена над железобетонной балкой сделана пустогелой, в виде двух стенок по $1 / 2$ кирпича, связанных через 1 метр (по высоте) железобетонными прослойками по 8 cm толщиной (разрез 4). Эти прослойки и являются горизонтальными балками с двойной арма. турой, передающими давление ветра по 1-1 ближайшим поперечным стенам. Для удобства кладки, создания опалубки под желе-

зобетонный проспоек и утепления стены кладка велась около пустотелых ящиков из $1^{\prime \prime}$ теса.

Мне кажется, что эта схема решения стены, в виде наслоения горизонтальных железобетомных рам, могла бы найти обширное применение в экономическом жилстроительстве. Кирпича расходуется в $21 / 2$ раза меньше, конструкция фундамента значительно облегчается, опалубки в виде переносных щитков (в одну тесину) расходуется ничтожное количество, все здание получается по периметру связанное, так как подбалочные мауерлаты, подоконники и перемычки объединяются в непрерывные пояса, и, главное, все явления изгиба разрешаются в плане, в разрезе же мы имели простое сжатие. Даже при значительной высоте здания можно, постепенно утолщая стенки от $1 / 2$ до 1 и $1 \frac{1}{2}$ кирпича, остаться

На земельном участке б. Александровского пассажа, площадью $2266,4 \mu^{2}$, имеюшем по фасаду со стороны Неглинного про-езда-56,1 м, по границе Малого театра и бывшего Голофтеевского пассажа- 40,4 м и по границе сушествуюшего универмага$56,1 \quad \mathcal{M}$, проектируется новое здание универмага в семь этажей с подвалами в два этажа.

Магазин располагается во всех этажах за исключением верхнего, который целиком отводится под кафэ-ресторан, функционирующий лишь во время торговли в магазине. Все этажи помещения остаются в существующем универмаге. Некоторые из них-гардероб - предполагается увеличить для удовлетворения полного состава служащих обоих магазинов. Верхний подвал отводится для торговли, и лишь часть его занимает экспедиционная, связанная лестницей и товарным лифтом с первым этажом и нижним подвалом. Второй товарный лифт соединяет экспедиционную со всеми этажами универмага. В нижнем подвале-склады товаров, котельная, склад топлива. Уборные располагаются в каждом этаже, за исключением первого.

При проектировании здания универмага быля поставлена задача: дать максимальное освещение всех помещений универмага и организовать движение понупателей тая, чтобы в местах пересечения движения было совершенно устранено образование заторов и чтобы ноличество мест пересечения двкжения было минимально

Для получения максимального освещения универмага была принята железобетонная конструкция с безбалочными междуэтажными перекрытиями. Плоскость фасада вынесена за линию колонн на 1,40 м и вся сплошь застеклена. Благодаря тому, что первый ряд колонн углублен во внутрь здания, эти колонны не нуждаются в затеплении, что даст значительный плюс в освещении. Торцы консольных плит безбалочного перекрытия обработаны металлом. Это устраняет ремонт фасада и дает в соотношении со стеклом впечатление легкости и законченности сооружения. Везбалочное перекрыи, кроме номешений, обеспечивает наилучшие условия для циркуляции вентиляционного воздуха и, допуская возможность устройства в колоннах вентиляционных каналов, что, в свою очередь, создяет равномерное распределение вентиляции в помещениях.

Проект конструкции здания .и расчет исполнен проф. А. Ф. Лолейтом и представляет исключительный интерес как результат последних достижений современной техники.

Вопрос организации движения публики в универмаге разрешен следующим образом: вход проектируется в середине фасада между двумя центральными витринами, между которыми и заключен первый тамбур в два ряда дверей по две двустворные двери, служащий первым изолятором от наружной температуры воздуха. Далее идет отапливаемый и вентилируемый вестибюль, двери из которого ведут в пассаж для распределения входящей публики.

Вы́ходы расположены по обеим сторонам главного входа и отделены от него центральными витринами. Выходы имеют также три ряда двустворных дверец. Такое расположение входов и выходов при наличии светового холла, открытого в пассаж, может вполне разгрузить движение публики. Просторный пассаж служит распределителем публики к местам торговли и к лифтам. ница, сообщающая входы и выходы с верхними этажами. Под ней проектиру ется лестница в подвальный этаж, Междуэтажное сообщение происходит

по четырем спаренным лестницам (см. продольный разрез), представляющим возможность свободного курсирования публики во все места магазина. Эти лестницы с небольшим количеством поворотов расположены против переходов из существующего магазина и связывают верхние этажи обоих магазинов. Сообщение магазинов в первом этаже в виду неравных уровней полов в $1 м$ происходит по трем лестницам в шесть ступенеи, проекны во всех этажах примыкания нового здания. Прое

Верхний этаж, как сказано выше, отводится под кафэ-ресторан. Обеденный зал рассчитан на 450 человек, одновременно обедающих. Зал занимает всю переднюю часть этажа по фасаду. Задняя часть этажа вокруг светового холла, отводится под кухню с механической заготовочной, кладовыми и холодильниками. Ресторанный зал соединен со всеми этажами универмага двумя лестницами и четырьмя лифтами. Доставка продуктов в суточную кладовую производится по сушествующей служебной лестнице и лифту

Отопление здания-центральное водяное, циркуляция воды производится двумя электромоторами, помещенными в котельной. В котельнои поставлены два водогрейных корнвалийских котла поверхностью нагрева 41,5 \boldsymbol{m}^{2} каждый для целей отопления и 4 паровых-низкого давления-корнвалийских котла поверхностью нагрева 45,3 м 2 каждый для вентиляции. Обмен вентиляционного воздуха принят в 30 м 3 в 1 час на одного человека. Приточные вентиляционные камеры из санитарных соображений устроены на плоской крыше. Свежий воздух забирается в камеру центробежными насосами, нагревается, увлажняется и затем по магистральным каналам, расположенным в конструкцни плоского перекрытия крыши, поступает в каналы в колоннах, откуда через регулируемые отверстия распределяется по соответствующим помещениям. Вентиляционные камеры с магистральными каналами спроектированы так, что камера пускается постепенно по мере накопления публики в магазине, начиная с первой магистрали от фасадной линии. Вытяжная камера проектируется пох световым фонарем, удаляемый воздух собирается в холле, в который открыты все этажи магазина

При бездействии приточной вентиляции для извлечения из магазина испорченного воздуха приводится в действие центробежный вентилятор, поставленный в вытяжной шахте.

Проект и расчет вентиляции и отопления исполнен профессором В. И. Кашкаровым и представляет большой интерес в смысле нового разрешения вопросов вентиляции и отопления общественных зданий.

Здание перекрыто плоской крышей, имеюшей уклон 0,005 к парапету на главном фасаде, у которого устраивается канавка со стоками к 3 трубам, расположенным в колоннах первого ряда. Концы водосточных труб присоединены к общей сборной трубе, которая ставится вдоль фасада в иллюмина торе, из сборной трубы вода поступает в водосточиый коллектор Неглинки.

PACYET нонструнции MOCTOP「A

BERECHNUNG DER KONSTRUK-

TION, VON A. F. LOLEIT
Значительная глубина помещений, достигающая 44 , заставляет стремиться к такой конструкции шерекрытий, которая позволяла бы обойтись без выступающих из

поверхности потолков частей. Этому требованию удовлетворяют безбалочные перекрытия.
Расположение колонн в вершинах прямоугольников, делящих план частью на точные квадраты, частью на прямоугольники, мало отступающие от квадратов, также благоприятствует устройству безбалочных перекрытий.

Устройством этих перекрытий обеспечивается максимум использования естественного света для дневного освещения помещений, и в то же время обеспечиваются наилучшие условия циркуляции воздуха благодаря отсутствию воздушных мешков, чем достигаются наилучшие условия для устройства отопления и вентиляции помещений.

Наконец, не последнее значенке имеет и то обстоятельство, что в случае безбалочных перекрытий мы имеем минимум потери в полезной высоте здания.

Чтобы не нарушить всех вышеперечисленных достоинств безбалочных перекрытий, вентиляционные каналы поме. щаются в ' колоннах, а все' разводящие каналы размещаются в нижнем подвале. При таких условиях все колонны получают характер столбов однообразного размера сечением 80 на 80 см с внутренней полостью размером 40 на 40 cm .

Как будет видно ниже из расчета, при таких размерах прочность может быть обеспечена также в наиболее нагруженных

колоннах нижнего подвального этажа путем введения поперечной арматуры (так называемой обоймы).

Для надежной передачи давления от neрекрытия на колонну устраиваются капители однообразного размера в форме усе. ченных пирамид, с широким основзнием размерами 180 на 180 см в плоскости потолка аысотою 15 cm . Исключение представтяют колонны подвальных этажей по фасаду, на которые давление от перекрытий передается через балки размером 300 на 635 мм.

Для образования по фасаду световой шахты для пропуска дневного света в подвальные помещения устраивается наклон ная стенка в форме ребристой железобетонной плиты, устойчивость которой обеспечивается распорками сечением 40 на 40 см, упертыми в колонны фасада. Наклонная поверхность, будучи облицована белыми изразцовыми плитками, представит собою зеркало, отражающее световые лучи, значительная часть которых осветит поверхность гладкого потолка, создавая, таким образом, освещение подвальных помещений даже в значительно удаленных от поверхности фасадной стены точках подвала.

По всему остальному периметру подвала ограждающие его наружные стены также предполагаются железобетонными, что создаст возможность в сочетании с железобетонной мощной плитою, образующей фундамент, защитить подвальные помещения от проникновения в них грунтовых вод.

Сплошная железобетонная плита для устройства основания под стены здания и колонны выбрана на основании следующих соображений.

Чистый пол нижнего подвала лежит на уровне, которому по геологическому разрезу соответствует тонкий (толщиною 3 фута) слой, характеризуемый как сыпучий камень, приходясь приблизительно в уровно половины толщины означенного слоя, так как дальнейшие слои глинистые, а со стороны Неглинки имеется определенный напор воды, то грунт, воспринимающий нагрузку от фундаментов, в силу своей пластичности, не допускает сколько-нибудь значительных напряжений, как будет видно из приводимого ниже расчета. На наиболее нагруженную колонну, которой соотвотствует в плане площадь нагрузки в $41,7 \mathcal{M}^{8}$, приходится около 340 тонн, т.-ө. на 1 м ${ }^{2}$ 8,15 т. Если для пластичной глины принять допускаемое напряжение в $1,25 \kappa \imath$ на 1 см 2 (около 20 фунтов на кв. дюйм), то, учитывая собственный вес плиты основания 1,89 тонны на $1 \boldsymbol{m}^{2}$, получаем напряжение грунта в уровне подошвы фундамента $8,15+1,89=10,04$ т. на $1 \boldsymbol{\mu}^{2}$, или $1,004 \mathrm{Kl}$ на 1 см², т.-е. при сплошном фун- 2 даменте сопротивление грунта оказывается использованным почти до предела.

Нагрузки. Перекрытия над подвалами рассчитываются на полезную нагрузку $\mathrm{p}=540 \kappa \imath$ на $1 \boldsymbol{\mu}^{2}$, перекрытия остальных этажей-на $p=400$ кı на $1 \boldsymbol{\mu}^{2}$, за исклкчением верхнего (7-го) этажа, для которого предусматривается нагрузка от снега $\mathrm{p}^{\prime}=150$ и случайная $\mathrm{p}^{\prime \prime}=100$ кı на $1 \boldsymbol{\mu}^{2}$, т.-е. всего на $1 \boldsymbol{\mu}^{2} \mathrm{p}=250$ к九. Но если принять во внимание, что, кроме собственного веса и веса штукатурки, в междуэтажных перекрытиях приходится учитывать еще вес полов, а для перекрытия верхнего этажа-вес кровли, то оказывается, что нам придется рассматривать только 2 значения расчетной временной нагрузки: действитепь-

но, принимая для учета веса полов паркет на асфальте, получаем

25 м.м асфальта $13.2,5=32,5$
25 мм дуба $9.2,5=22,555$ ни на $1 \boldsymbol{\mu}^{2}$.
Дпя перекрытия верхнего этажа получаем вес изоляции и кровли с предохраняющим слоем:
60 мм пробки $2,4.6=14,4$
Гольццемент
10,0
40 мм песка $16.4=64,0$ кругло
40 мм плитка $22.4=88,0 \quad 180 \mathrm{k} \mathrm{\imath}$ на 1 м 2.

Таким образом, расчетная величина временной нагрузки получается:

для верхнего этажа $180+250=430$ къ на $1 \boldsymbol{m}^{2}$.

Для проможуточных $55+400=460$ ж на $1 \mu^{2}$.

Для подвальных $\quad 55+540=600$ к九 на $1 \mu^{2}$.

Из-за ничтожной разницы в $30 \kappa \imath$ на $1 \boldsymbol{m}^{2}$ для перекрытия верхнего этажа, очевидно, не имеет смысла вводить особый тип перекрытия, а потому, учитывая собственный вес перекрытий соответственно их толщинам 170 и 185 мм, и прибавляя на штукатурку около $20 \rightsquigarrow$ на $1 \mathcal{M}^{2}$, получаем полные величины расчетных нагрузок q.

Для подвальных этажей $24.18,5+20+$ $+600=1100 \kappa 2 / \mathrm{m}^{2}$.
Для прочих этажей $24 \cdot 17,0+20+$ $+460=900 \mathrm{~m} / \mathrm{m}^{2}$.

Расчет прочности. Пусть ABCD - одна из панелей безбалочного перекрытия, и L_{1} и L_{2}-соответственно большее и меньшее расстояния между осями колонн.

Если равномерно распределенную по всей поверхности перекрытия нагрузку обозначим через q, то средняя величина изгибающего момента, приходящаяся на единицу длины сечения $1-1$, будет

$$
\mathrm{M}_{1 \max }=\mathrm{q}_{1} \mathrm{~L}_{1}^{2}: 24
$$

при чем $\mathrm{q}_{1}=\mathrm{q}:\left(1+\alpha^{2}\right)$ и $\alpha=\mathrm{L}_{2}: \mathrm{L}_{1}$-отношение меньшего пролета к большему. Средняя же величина момента, приходящаяся на единицу длины опорных сечений AD и BC , будет

$$
M_{1}=-\frac{q_{1} \cdot L_{1}^{2}}{12}
$$

Аналогично для сечений $2-2$ и для AB и DC получаем

$$
M_{2 \max }=\frac{\mathrm{q}_{2} \cdot \mathrm{~L}_{2}^{2}}{24} \quad \text { и } \quad \mathrm{M}_{2}=-\frac{\mathrm{q}_{2} \cdot \mathrm{~L}_{2}^{2}}{12}
$$

при чем

$$
q_{2}=q \cdot \frac{a^{2}}{1+a^{2}}
$$

т.-е. явление происходит таким образом, как будто нагрузка разделилась на 2 составляющих, q_{1} и q_{2}, в сумме дающих $\mathrm{q}_{2}+\mathrm{q}_{1}=\mathrm{q}$, что для случая защемленной на опорах плиты и приведет к приведенным выше величинам изгибающих моментов.
Хотя при частичном загружении отдельных панелей явление, вообще говоря, будет сложнее, опыт показывает, что размеры конструкции, удовлетворяющие указанным величинам моментов, с избытком обеспечивают прочность сооружения для всех промежуточных панелей перекрытия.

Что касается крайних панелей, то хотя на стенах обычно и имеет место некоторая степень защемления, последнее в запас прочности не учитывается при определении максимальной величины момента в пролете. Кроме того, момент по первой от стены линии колонн принимается.таким

же, как и для остальных опор. При таких условиях получаем, принимая во внимание обозначения, указанные в ниже стоящей фигуре,

откуда

$$
\begin{gathered}
\mathrm{x}_{0}=\frac{5}{6} \mathrm{~L} \\
\mathrm{M}_{\max }=\frac{\mathrm{qx}_{0}^{2}}{8}=\frac{25 \mathrm{qL}^{2}}{288}=\frac{\mathrm{qL}^{2}}{11,52 .}
\end{gathered}
$$

и

Так как эта величина по абсолютному значению более $\mathrm{qL}^{2}: 12$, то расчетный момент, очевидно, будет

$$
M_{\max }^{\prime}=\frac{\mathrm{q}_{1} \cdot L_{1}^{2}}{11,52}
$$

По этой величине момента подбирается толщина перекрытия и максимальное сечение арматуры. В поперечном направлении максимальное сечение арматуры определится величиною момент

$$
M^{\prime \prime} \max =\frac{\mathrm{q}_{2} \cdot \mathrm{~L}_{2}^{2}}{11,52} .
$$

В частном случае квадратной плиты $\mathrm{M}_{\text {max }}^{\prime}=\mathrm{M}^{\prime \prime}$ max, $^{\text {и }}$, следовательно, обе арматуры должны были бы быть одинакового сечения, если бы их можно было уложить в одной плоскости; но так как последнее невозможно, то в этом случае толщина перекрытия подлежит увеличению на величину диаметра прутьев, принятых для арматуры, при чем арматура, лежащая ближе к внешней поверхности, может быть взята легче, так как ее сечение может быть уменьшено в соответствии с увеличенным плечом внутренней пары сил.
Для балки с заделанными концами точки перегиба, как известно, удалены от опор на расстояние

$$
\mathrm{x}_{0}=\mathrm{L} \frac{3-\sqrt{3}}{6}=\text { кр. числ. } 0,21 \mathrm{~L} .
$$

Этою величиною и определяются зоны перекрытия, на которые распространяется

действие моментов того или другого знака. Но так как для определения размеров конструкции были взяты средние величины моментов, то система стержней, воспринимающих растяжения от отрицательных моментов, конструируется так, что ими покрывается треть соответствующего пролета. Зато на остальном протяжении по линиям опор достаточно покрыть одну пятую пролета.

Приведенными соображениями вполне определяется схема расположения прутьев арматуры, в общем виде представленная на чертежах №Nㅡㄴ, 2 и 3. Нумерация прутьев определяет последовательность, в которой прутья подлежат укладке, с тем, чтобы железо арматуры было возможно лучше использовано. Для этого возможно ближе к соответствующей поверхности перекрытия укладываются прутья арматуры того направления, по которому действует больший момент.

Кроме сказанного, необходимо иметь в виду, что непосредственно над колоннами абсолютное значение отрицательных моментов значительно выше тех средних значений M_{1} и M_{2}, которые были нами выведены в предыдущем; но так как для нгдежной передачи давления от перекрытия на колонну в месте их сопряжения приходится утолщать плиту перекрытия, то фактически арматура, удовлетворяющая моментам по линиям опор, оказывается непосредственно над колонною даже избыточной.

Чго касается размеров опорных утолщений, то последние определяются условием, чтобы напряжения бетона на сдвиг (скалывание) не превосходили определенной величины t_{0}. Последняя принимается в 3-4 ки на 1 см². 2.

Если через а и b обозначим соответствен. но полупролеты $a=0,5 L_{1}$ и $b=0,5 L_{2}$, то $b: a=a \quad$ и, следовательно, по периметру прямоугольника

$$
2 x \cdot 2 y=4 a x^{2}
$$

т. - е. на длине $(2 x+2 y) \cdot 2=4(1+\alpha) x$ будет действовать поперечная сила

$$
Q=4 a q \cdot\left(a^{2}-x^{2}\right)
$$

так что при q, выраженном в килограммах на $1 \boldsymbol{\mu}^{2}$, и а и х в метрах, в среднем на погонный метр придется поперечная сила

$$
Q_{0}=\frac{4 a q\left(a^{2}-x^{2}\right)}{4(1+\alpha) x}=q \cdot \frac{a^{2}-x^{2}}{x} \cdot \frac{\alpha}{1+\alpha}
$$

Так как в рассматриваемом случае мы имеем дело со сдвигом при изгибе, то за-

висимость между внешними и внутренними силами определяется условием

$$
\mathrm{Q}=\mathrm{t}_{\max } \cdot \mathrm{b} \cdot \mathrm{e},
$$

где е - плечо внутренней пары сил,
b - расчетная ширина сечения (в нашем случае 100 см),
t - наибольшее касательное напряжение.
В остальном расчет не представляет никаких особенностей.

Поверна прочности. Так как все панели, примыкающие к стенам, имеют форму квадратов, то конструкция перекрытий сообразована с расчетным моментом, соответствующим этим панелям, в остальных же панелях приходится лишь вариировать размеры арматуры, сообразуя ее сечение с величинами моментов.

Вследствие $\mathrm{q}_{1}=\mathrm{q}_{2}$ в соответствии с $L_{1}=L_{2}$ выражение максимальной величины расчетного момента принимает вид

$$
M_{\max }=\frac{q \cdot \mathrm{~L}^{2}}{23,04}
$$

Имея в виду расчетные нагрузки, указанные на стр. 4, получаем соответственно: для подвалов

$$
M_{\max }=\frac{1100 \cdot 62}{23,04}=1718,75 \mathrm{~K} / \mathrm{m}
$$

Для остальных перекрытий

$$
M_{\max }=\frac{900 \cdot 6^{2}}{23,04}=1406,25 \text { ки/... }
$$

При допускаемых напряжениях для бетона на сжатие $\left[\mathrm{n}_{2}\right]=40$ кı см 2 и для железа на растяжение $\left[\mathrm{n}_{m}\right]=1000 \kappa \imath /$ с. 2, т.-е. при $\mathrm{m}_{0}=1000: 40=25$, зависимость между внешними и внугренними силами устанавливается равенсгвом

$$
M=n_{2} \cdot \frac{63}{64} \cdot \frac{b \cdot h_{0}^{2}}{6}
$$

при n_{2}, равном допускаемому напряжению, следовательно, величина момента, который может быть воспринят сечением, определится формулой

$$
[M]=\frac{40.63 .1 . \mathrm{h}^{2}}{64.6}=\frac{105 \mathrm{~h}_{0}^{2}}{16}
$$

При арматуре из круглого железа диаметром три восьмых дюйма величина h_{0} отличается для более удаленных от опалубки прутьев на а $=2,4$ см от полной толщины h. Для двух рассматриваемых типов перекрытий, соответственно толщинам 17 и 18,5 см, следовательно, имеем $18,5-2,4=16,1$ и $17,0-2,4=14,6$ см, что по подстановке в выражение для [M] дает соответственно 1701 и 1399 кı/м, т.ее. выбранная толщина перекрытия в точности соответствует условиям прочности, конечно, при условии, что сечение арматуры будет удовлетворять отношению $\mathrm{m}_{0}=25$, т.-е. если последнее не будет менее 0,75 процента от полезного сечения, или, в нашем случае, соответственно

$$
\begin{array}{ll}
& 0,0075 \cdot 100 \cdot 16,1
\end{array}=12,08 \mathrm{~cm}^{2} .
$$

Дпя остальных панелей, как уже упоминалось, арматура будет меняться в зависимости от ведичин моменгов.

Фундаментная плита. Объем колонн составляется: из объема ее стержня, который на 1 погонный метр равен $0,80^{2} \cdot 0,40^{2}=$ $=0,48 \mathrm{~m}^{3}$, и из объема капители, который по формуле усеченной пирамиды определяется в

$$
\begin{gathered}
0,05 \cdot\left(1,8^{2}+0,8^{2}+1,8 \cdot 0 \cdot 8\right)-0,4^{2} \cdot 0,15= \\
=0,242 \mathrm{k}^{3} .
\end{gathered}
$$

Объем одной колонны составит на полную высоту 9 этажей
$\mathrm{V}_{\mathrm{k}}=0,48 \cdot 36,25+0,242 \cdot 9=19,6 \mathrm{u}^{3}$,
т.-е. на 1. м 2 горизонтальной проекции перекрытого пространства $19,6: 36=0,544 \mathrm{~m}^{3}$, объем же самых перекрытий на ту же проекцию составляет

$$
\mathrm{V}_{2}=0,17 \cdot 7+0,185 \cdot 2=1,56 \mathrm{~m}^{3}
$$

Собственный вес перекрытий вместе с колоннами, следовательно, составит на 1 . ${ }^{2}$ основания
$2,4 \cdot(1,56+0,544)=5,0496 \mathrm{~m} / \mathrm{m}^{2} ;$

гольццементная кровля, оштукатурка 9 этажей и полы дадут еще
$0,18+(0,055+0,020) \cdot 9=0,855 \mathrm{~m} / \mathrm{m}^{2}$ итого постоянная нагрузка перекрытий $\mathrm{g}=5,05+0,855=5,905 \mathrm{~m} / \mathrm{m}^{2}$.
Временная нагрузка при одновременном полном загружении всех этажей составила бы

$$
0,25+0,40 \cdot 6+0,54 \cdot 2=3,73 \mathrm{~m} / \mathrm{m}^{2} .
$$

60 процентов втой величины будут $2,238 \mathrm{~m} / \mathrm{m}^{2}$, с другой стороны, принимая верхние 2 этажа загруженными полностью, 3 -й от верха загруженным на 75 , следующий-на 60 , а остальные-на 40 процентов, получаем
$025+0,40+0,4(0,75+0,60+0,40.3)+$

$$
+0,54 \cdot 2 \cdot 0,40=2,102
$$

Таким образом, расчетная величина временной нагрузки для фундамента определится в

$$
\mathrm{p}=2,238 \mathrm{~m} / \mathrm{m}^{2}
$$

Итого, для фундаментной плиты получается полная величина расчетной нагрузки
$\mathrm{q}=\mathrm{g}+\mathrm{p}=5,905+2,238=8,15 \mathrm{~m} / \mu^{2}$ и соответственно максимальная величина расчетного момента

$$
M_{\max }=\frac{8150.36}{23,04}=12734 \mathrm{k} / \mathrm{m}
$$

Делая поверку для панелей, в которои пролеты имеют величины 7,5 на 6 м, т.-е. $\alpha=0,8$ и соответственно $q_{1}=0,61 . q$, получаем $8150.0,61=4971,5 \mathrm{~m} / \mathrm{m}^{2}$ и соответствено

$$
\frac{4971,5 \cdot 7,5^{2}}{8}=34956 \mathrm{kl} / \mathrm{m}
$$

а так как

$$
\frac{8150.36}{12.2}=12225 \mathrm{kr} / \mathrm{m},
$$

то расчетный момент определится в
$\mathrm{M}=34956-12225=22731 \mathrm{k} / \mathrm{M}$, при полной толщине плиты в 65 с.. и $\mathrm{h}_{0}=65-5,8=59,2 с$ см, получаем

$$
[M]=\frac{105.159,2^{2}}{16}=23000 \mathrm{kv} / \mathrm{m}
$$

Прочность плиты, слодовательно, обеспечена.
А. Ф. Лолейт

ОТОПЛЕНИЕИ ВЕНТИЛЯЦИЯ

HEIZUNQ UND WENTILATION, VON W. I. KASCHKAROFF

Охлаждение всего здания составляет максимум 430600 калорий в час.

Восполнение этого количества теплоты предположено производить путем поста-

новки нагревательных приборов в форме гладких высоких радиаторов, расположенных у колонн, образующих остов здания. Трубопровод, подводящий горячую воду к радиаторам и отводящий от них охлажденную воду, проложен в вертикальных бороздах колонн. Снаружи эти борозды закрыты.

Однако покрыть все охлаждение только радиаторами оказалось невозможным, и потому для возмещения охлаждения окнами, имеющими очень сильно развитую поверхность охлаждения, пришлось проложить ряд горизонтальных гладких труб у потолка, вдоль окон. Этим преследовалась также цель дать ниспадающему вдоль окон потоку воздуха умеренную температуру.

Вентиляция

Среднее количество посетителей и служебного персонала предполагается около четырех тысяч человек.

Для обеспечения здания необходимой вентиляцией принято по 30 кубических метров на человека в час при наружных температурах от минус 5 градусов С и выше и при соответствующем сокращении при более низкой температуре.

Общее количество воздуха составляет таким образом 120000 кубических метров

в час. Количество теплоты на подогревание и увлажнение этого количества воздуха равно 1200000 калорий в час при минус 5 градусах С наружной температуры и 18 градусах C внутри помещений.

Единственным местом для забора внешнего воздуха, обеспечивающим наибольшим образом его чистоту и свежесть, явилось пространство над верхним перекрытием здания. Здесь, на плоском перекрытии, спроектированы четыре приточных камеры, обслуживающие данное здание, и пятая приточная камера для обслуживания существующего здания универсальн. магазин.

Н. Я. КөлЛи. пРОЕКT CAHATOPИЯ. ENTWURF FÜR EIN SANATORIUM ARCHITEKT N. Y. KOLLI

ПЛАН 1-ГО ЭТАЖА И ФАСАД

Наружный воздух забирается воздухоприемными каналами сверху, над камерами, засасывается центробежными вентиляторами и нагнетается в калорифер. Псдогретый и увлажненный воздух в калорифере по разводящим магистральным боровам гонится к опускным каналам. Магистральные разводящие борова расположены в толще верхнего плоского перекрытия здания, а опускные каналы размещены внутри колонн здания, как это видно из соответствукщих планов. Такое устройство совершенно скрадывает все вентиляционные воздуховоды и не загромождает помещений.

В колоннах имеются выпуски воздуха в помещения.
Извлечение испорченного воздуха производится через внутреннюю лестничную клетку. Вверху лестничной клетки сделаны два вытяжных отверстия, через которые испорченный воздух посредством центробежного вентилятора засасывается в вытяжную шахту и оттуда удаляется наружу. Из угорных сделана самостоятельная вытяжная шахга.

При устройстве входа было принято во внимание характер пользования входом, т. е., необходимость парализовать образующийся сквозняк, особенно в морозные дни.

Как видно из чертежей, для этой цели спроектирована специальная камера, расположенная в подвальном этаже. В камере установлен паровой капорифер с центрсбежным вентилятором. Холодный воздух, стремящийся проникнуть внутрь здания, улавливается по пути всасывающими отверстиями и каналами, по которым ведется в камеру, где подогревается, и подогретый нагнетается в тамбур.

В котельной установлены два водогрейных котла и три паровых котла корнваллийской системы. Первые, как уже было сказано выше, служат для питания системы отопления, а вторые-для вентиляции. В котельной установлены также центробежные насосы для возбуждения искусственной циркуляции воды, насос для наполнения системы водой и опорожнения от воды и насос для перекачивания нефтяных остатков.

Цистерны, баки для хранения нефтяных остатков расположены в подвальном этаже, в достаточном расстоянии от котельной.
В. И. Кашнаров

A. B. ЩУСЕВ

ПРОЕНТ ЗДАНИЯ ЦЕНТРАЛЬНОГО ТЕЛЕГРАФА И РАДИО УЗЛА ENTWURF FÜR DAS CEBÄUDE DES CENTRALEN TELEGRAPHEN UND RADIAMTS IN MOSKAU

Участок земли, отведенный под здание Цен рального Телеграфа, своей конфигурацией обязывал проектировцика использовать застройку его по периферии, дабы получить полный объем здания не свыше 240.000 да при общей высоте от пола подвала не свышき 35 .f и при наличии площади участка, равного одному гектару.

Первый этаж, куда ведет главный вход, использован под операционные залы: кассы телеграфа для приема денег, кабинки, зал ожидания, кассы и коммутатор международной телефонной станции, помещения банка и почты.

В центре-прямо из вестибюля-зал ожидания, по бокам от главного входа -уборные для публики.

Этими помещениями исчерпывается вся площадь для публики, отделенная от непосредственного сообщения с рабочими помещениями Центрального Телеграфа. Оставшиеся площади первого этажа использованы под библиотеку, чнтальни и зал собраний, лаборатории и квартиры для служащих. Цокольные и подвальные этажи освещены со двора, где они являются уже полными этажами. С ба эти этажа отведены под раздевальни и входы для служаиих (2.400 чел.), кухню, склады, мастерские, помещения для силовых установок, коммутатор, ясли, гараж, канцелярии и квартиры для служащих.

Незастроенная середина участка образует обширный двор, разделенный широким проездом на две части, в который попадают с улицы Белин-

ФАСАД

ского через двое ворот. Непосредственно над первым этажем расположены спальни для ночного дежурства, казначейссая, обширные каниелярии и проч, подсобные помещения. В этажах же соединительной галлереи между корпу сами улицы Огарева и Белинского-уборные и лестницы с лифтами
 целиком отв әдены под залы городской и иногородней корреспонденции. В этих залах установлены аппараты Бодо, Юза, Уитстона, Клопфераи ир. Центральная сортировочная с распределительными питами и наблюдагельным пунктом расположена в центре этих зал над вестибюлем в остром углу здания.

Наиболее ответственным в настоянем проекте является расположение главных лестниц для быстрейшей подачи в рабочие залы 2.400 служащих. Кроме того, лестницы и другие подсобные помещеиия не должны затемнять сооою стен здания, дабл не создавять темных углов, вредных для телеграфной рабо
 Огарева и Белинского, а также, как ранее упоминалось, в соединитель:ом переходе во дворе между этими же корпусами.

Соединительная галлерея создает удобство близкого сообщения служебных помешений, отдаляет уборные от непосредственного соприкосновения с рабочими залами и улучнает конфигурацию двора, тем самым упрощая фигуру плана,

Фигура плана определяет разбивку фасадов без какой-либо маскировки внутренних помешений: в 2 верхних этажах обилие света, необходимого для аппаратов, выражено горизонталями стеклянных поверхностей Этаж спалентрактован, как антресоль, первый же эгаж разбит вертикалями столбов

Острый угол над главным входом весь из стекла слегка вдавлен в линию тела здания и заканчивается вверху над парапетом горизонталями световых депеш для оповещения публики.

В основу конструкции здания по программе положен железо-бетонный каркас. Ширина корпусов принята в 20 ‥ с проходами между столбами, но каркас. Ширина корпусов принята в 20 .f с проходами между столбами, ио
размерам аппаратов и обслуживающего их междупольного транспортера.

Вентиля ционные каналы приставлены к столбам в виде коробов, все же устройство вентиляцион ой ороводки помещается над крышей в средней галлерее-канале. Системя отопления-паро-водяная, помещение для котельной и складов топлива под поверхностью дворя. Ответственные части телеграфа -как-то: коммутаторная, генераторная, аггрегатная помещены окнами во двор.

Вход для служащих с раздевальнями и контролем - с улицы Oгарева, выход для них непосредственно во двор при одной обслуживающей вешалке. Здание по своей программе - узко техническое, по конструкции соответствует принципам рационализма и экономики. Разбивка этажей,

ЗАМЕТКИ ПРОФАНА
Вместо письма в редакцию Соврешенная Архнтектура
Мне, стопроцентному профану в архитектуре, как-то неловко писать в специальном журнале, в котором участвуют лучшие силы современной, советской архитектуры. Да послужат извинением моей смелости следуюцие два соображения: 1) Я очень тщательно слежу за журналом Современная архитентура. Я не просто „любопытный читатель". У меня есть свой „профессиональный", философский подход и заинтересованность. Пожалуй, я как-нибудь рискну изложить эти свои соображения на страницах журнала, если ренакция найдет это интересным. 2) Я ведь намерен только поставить вопрос. Не более. А ведь это разрешается и профану. И если мой вопрос, хотя бы в отдаленной степени, поможет более четкому цыявлению одной проблемы современной архитектуры, то и моя смелость будет несколько оправдана.

Дело вот в чем: меня чрезвычайно интересует вопрос о том, в какой мере современная, советская архитентура воплощает замыслы нашей эпохи?

Этот вопрос я хотел бы мотивировать.
В не очень доброе, и не очень уж старое время нас учили в солидных словарях архиученым языком, архиученые люди следующему. „Каждое здание, для чего бы оно не предназначалось, имеет целью удовлетворить наши потребности; потребности эти, согласно вещественной и духовной природе человека бывают двух родов: потребности материальные и потребности нравственные". И еще: „Есть даже один род здания, которое никаким материальным потребностям не удовлетворяет, а возводится исключительно в силу духовных требов ний человеческой природы".

Я думаю, что я не ошибусь, если скажу, что современная архитектура борется с этим дуализмом, что современная архитектура в корне убивает идеалистическое деление на утилитарный и эстетический ряды.

Передо мною сильно устарелая и все же очень интересная книга „Психология французского народа" А. ФУЛЛЬЕ. В этой книге имеется глава "Архитектура, музыка". Автор противоставляет французский характер немецкому. Немца характеризует будто бы натурализм и мистицизм. Французы проявляют свой гений в рационализме, в обуздывании пылкой, даже религиозной, романтики, интеллектом. Это и отразилось во французской архитектуре По мнению автора, французская архитектура „заставляла держаться на воздухе громадный свод и воздвигала колокольни до облаков, ища равновесия не в массе здания, опиравшейся перпендикулярно на землю, а в воздушной комбинации воздушных сил, противопоставлявшей напору одной

части арки сопротивление другой; уменьшая таким образом подчиненность здания земле и взаимно уравновешивая все давления, она устремляла облегченный и торжествующий свод к небесам. Так были перевернугы все античные приемы архитектуры: свод уже не предназначался только для того, чтобы покрывать здание; напротив того, само здание служило лишь под"ержкой свода и открывало во всех направлениях отдаленные перспективы, терявшиеся в таинственном полумраке. Внутренний остов здания, напоминавший руки, сложенные для молитвы, мог обходиться почти без всякой внешней опоры: он держался не столько своей массою, сколько уничтожением этой массы".

Надо ль доказывать, что схема Фуллье вся проникнута идеализмом? Надо ли доказывать метафизичность характеристики „сущности" двух нации? Но одна мысль, точнее, подход, безусловно правилен. Фуллье не замыкает архитектуру в какой-то замкнутый ряд, а трактует ее в связи с социально-культурным замыслом эпохи. Вот я и хотел поставить вопрос нашим молодым архитекторам-материалистам: в какой мере в творчестве современной архитектуры воплощается культурный замысел єпо «и?

Во втором номере журнала помещена глуооко интересная статья тов. М. Я. ГИНЗБУРГА „Международный фронт современной архитектуры". Но эта-то прекрасная статья еще рельефнее подчеркнула, по крайней мере для меня, закономерность вопроса. В статье указывается на намечающийся единый фронт передовых архитекторов. Объявляются в международном масштабе борьба рутине, помятой и поблекшей красоте; международная передовая архитектура выдвигает принцип социальной утилитарности. Но ведь тот факт, что и Америка и Советская Россия базируют на этой платформе, доказывает, что здесь еще нет ничего специфического, характерного для нашей страны и для нашей э: охи! Утилитарность! Хорошо. Но ведь мы знаем, ${ }^{\text { то }}$ и Бентам в другой области выдвинул принцип утилитарности, по кото-

КОНКУРСНЫЙ ПРОЕКТ ЗДАНИЯ БЕЛОРУССНОГО ГОСУДАРСТВЕННОГО
УНИВЕРСИТЕТА В МИНСКЕ.
МОСКВА 1926 ГӨД

ENTWURF FÜR DEN WETTBEWERB DER WEISSRUSSISCHEN STAATSUNIVERSITÄT IN MINSK.

MOSKAU 1926

В. Н. ВЛАДИМИРОВ И в. А. КРАСИЛЬНИКОВ
W. N. WLADIMIROFF UNDIW. A. KRASILNIKOFF

М. я. ГИНЗБУРГ
M. I. GINSBURG

Г. Г. BEГMAH
G. G. WEGMAN

Одна из наиболее огсталых отраслей промышленности СССР строительство - начинает развиваться усилөнным темпом. Уже в 1925 r. объем строительства в значительной степени опередил предыдущие годы и достиг в общей сложности 500 миллионов рублей. В 1926 г. предположительная сумма построек и ремонтов возрастает более чем вдвве - до 1000-1250 миллионов рублей. Конечно, и эта сумма лишь в незначительной степени удовлетворит нужды промышленного, жилищного и дорожного строительства Республики. Однако не только недостаток в средствах является слабым местом развития нашего строительства: другие факторы, не менее важные, тормозят его. Общеизвестен организационный нризис, переживаемый строительными предприятиями и даже государственными стройнонторами Союза. Общеизвестен танже недостатон в строительных материалах, их дороговизна и не всегда удовлетворительное начество.

В настоящем очерке мы остановимся на другом очень важном недостатке нашего строительства, а именно: на его техничесной отсталости и отсутствии механизации работ на постройках. Это последнее обстоятельство приводит к тому, что сами по себе недостаточные средства в виду нерационального их использования дают еще меньший результат. Путем механизации строительных работ можно, удешевив и ускорив их, при наличии тех же самых средств достигнуть гораздо большей продуктивности.

У нас до сих пор преобладает кустарный способ стройки. Даже бетонные работы, в то время как наше промышленное строительство предполагается осуществить почти исключительно в железобетоне, производятся так же, нак производились еще древними римлянами. Чувствуется жестокий голод во всех строительных машинах и нам с большими усилиями и чаще всего случайно удается раздобыть бетономешалку, подъемник или какую-нибудь другую строительную машину.

ЗЕМЛЯНЫЕ И ФУНДАМЕНТНЫЕ РАБОТЫ
Несколько землесрывных машин заменяют сотни и тысячи лопат. Прокладка дорог, воз-
движение насышей, углубление долин, прорытие движение насыпей, углубление долин, прорытие ной Европе повсеместно производятся земленой Европе повсеместно производятся землечерпалками и экскаваторами, представляющими с одним машинистом и кочегаром, заменяющими щелую артель грабарей. Некоторые системы этих машин могут представить значительный интерес для строительных организаций Союза. Таков, например, ковшевой паровой баггер для срыва массивов фирмы Menck \& Hambrock: он движется свободно по любой поверхности на каретке гусеничной системы и производит одновременно три движения: опускание и подъем стрелы, поворот вокруг себя и продвижение вперед и назад. Паровой двигатель баггера состоит из вертикального трубчатого котла, пи-

тающего горизонтальную машину для продвижения и подъема стрелы, и для ударных движений ковшем, а также вертикальную машину для поворота на каретке. При емкости ковша от $0,6-2 \boldsymbol{\mu}^{3}$, максимальном выносе рычага от $7,4-11,2 \boldsymbol{\mu}$ при 60° наклона, производительность баггера вариирует от $20-80 \mathrm{~m}^{3}$ в час. Имеются такие же баггера с электрическим приводом.

Громадные цепные экскаваторы Любенского завода своими черпалками в 500 и больше литров вырывают и поднимают от $120-750$ м 3 земли в час и затем автоматически загружают проходящие под ними вагоны или же при помощи поворотного транспортера относят срытый материал в сторону. Эти экснаваторы имеются с паровыми или электрическими двигателями. Практичен небольшой энснаватор Любенсного завода для рытья траншей и нанав с часовой производительностью 120 m 3 и транспортөром для отвода срытой земли. Стоимость ero 32000 марок.

В Америке и в Западной Европе даже для вырытия фундаментов домов, при ноторых срыв земли в виду незначительности застраиваемого пространства происходит ручным способом, подъем срытой земли производится механически при помощи специальных землеподъемников.

Конструкция их чрезвычайно проста: они состоят из слегна наклонных параллельных рельс, по которым движутся переворачивающиеся новши емкостью в $1 / 4-3 / 4$ м 3; приводятся в движение лебедкой с электрическим приводом; срытый материал из котлованов поднимается наверх и автоматичесни загружается в свозной обоз.

Благодаря таному подъемнику достигается большая экономия в рабочей силе, между тем как стоимость ero незначительна. Заводы: Kaiser \& Schlaudecker, Hüttenamt Sonthofen Carl Peschke, Internationale Baumaschinen Fabrik [lbag] и др. строят такие машины разных систем средней стоимости приблизительно в 2 С00 или в 2500 марок.

Механизация строительных работ относится не к самому воздвижению построек, а, главным образом, к наиболее нероизводительным работам на постройках, как подготовка и подача строительн. материалов. Обычно стоимость эาих рябот достигает 25% сметных расчетов построек. Годготовка раствора и бетона, дробление щебня и гравия и подача этих материалов на место потребления ручным способом не экономны уже по своему темпу. Современная строительная техника создала передвижные растворомешалки с часовой производительностью от 5-6 M^{3}, заменящие собою артель в 12 человек. Стоимость такой машины в Германии варьирует от 350 500 марок. Бетономешалки разных систем с дизельными, бенииныыи или электрическими вигателями, автоматически отмеривающие материал и воду, производительностью от 3 $60 \mathcal{M}^{3}$ в час, стоят от $1200-8500$ марок. Целый ряд заводов, как Gauhe, Gockel \& Co, Dreiswerke, Kaiser \& Schlaudecker, Internationale Baumaschinenfabrik (lbag) Carl Peschke, Hermann Ulrich, Ratzinger \& Wéidénkampf и др., строят ра. створо-и бетономешалки. Очень пракıична бетономешалка с неподвижным барабаном завода Kaisér \& Schlaudéckér. Механизм ее не засоряется.

Существуют и другие машины для подготовки материала: камнедробилки, сортировки и промывалки щебня и гравия. Эти машины строятся нан в виде отдельных передвижных приспособлений, так и в виде стационарных агrperaтов по

Гнутие и резание железо-бетонной арматуры производится так же машинным способом. Заводы „Futura", Jens, Sonnenberg и другие изготовляют специальные электрические станки для работ по железо-бетонной арматуре. Эти станки автоматически холодным способом дают круглому железу в $15-60$ мм нужную форму, загибают концы и режут его на части. Стоимость этих машин при большой их производительности незначительна - от одной тысячи двухсот до семи тысяч восемьсот марок; они амортизируются в шесть месяцев.

Механизация работы по подъему материалов имеет свою последовательную историю. Древние египтяне применали наклонные плоскости для поднятия циклопических элементов своих построек. Греки поднимали огромные глыбы кашнн при помощи так называемых ,журавлей", праотцев современных кранов. Чет более совершенствовалась современная техника, тем мельче становился основной строительный материал, и тем проще, назалось бы, поднимать и переносить его к месту работы. Уже древние римляне применяли строительные леса, по ноторым поднимались материалы, и ати способы рештования сохранились в СССР до наших времен. Но факторы времени и экономики, которые при эксплоатации рабсного труда не имели значения, заставили технику напиталистичесного мира изобретать новые, более экономные и быстрые способы подъема материала. Таким образом, от „журавлей" мы пришли к злектрическим иранаш и от ручных дөревянных лөбедон, блонов и рештований к сложныш, беспрерывно движущимся злеваторам.

На современных постройнах почти отсутствует рештование. Застраивающийся участок не производит более впечатления лесного склада. Вместо коренных рештовочных лесов применяются локальные (несколько балок и досок), куда материриалы поднимаются поворотными, вы-

движными, мачтовыми или башенными кранами, движущимися по рельсам вдоль застраиваемых стен. Эти краны строятся заводами: Arnold Georg, Ibag, Kaiser Schlaudecker, Carl Peschke, Gauhe, Gockel \& Co, Voss \& Walter и др. разных размөров и систем. Элентрические нраны

Грузоподъемность $\kappa \prec$	Высота M	Вынос стрелы \mathcal{M}
м		
	18,5	12
3000	28,5	8
	30,5	5

фирм Фос и Вольтер, Арнольд Георг и Ибаг интересны своей простотой и лөгкой нонструкцией. Өбычная высота этих кранов варьирует от $20-45 \mathrm{M}$, вынос стрелы от 5-15 М. Грузоподъемность их стоит в зависимости от высоты и выноса стрелы. Так, например, краны завода Ибаг поднимают: см. табл.

На больших бетонных постройках подъем и распределөние матөриала производится мачтовым или башенным приспособлением для литья бетона с производительностью от 80$350 \mathcal{M}^{3}$ в рабочий день. Это приспособление представляет из себя огромную железную мачту от 21-45 м высотою, по которой электричесной лебедной движется подъемный жөлезный ковш на салазнах, емиостью от 200 1500 литров. Ковш автоматически наполняется бетоном из специально приспособленных мощных бетоноверок, питающихся щебнем и гравием из камнедробилочных и сортировочных arrperатов. Ноднятая масса бетона вливается в особую воронку, откуда по суставным жөлобам, подвешенным на выносных стрелах и фермах, распределяется на место работы по радиусу or $25-40$ метров вокруг мачты. Такие установки применяются для больших построек, шлюзов, дамб, элентростанций, небоснребов и т. д. Несмотря на значительную стоимость этих бетоно-литейных приспособлений (от 10000-65000 марон), энономность производимых ими работ очевидна. Заводы Ibag, Atlaswerke, Gauhe, Dockel \& Co и др. строят зти приспособления для литья бетона. Приводим сравнительный расчет фирмы Атлас-Верке, изменяя некоторыө цифры согласно тарифам и расценкам, существующим в СССР.

ОБЫЧНЫЙ СПОСОБ ПОДАЧИ БЕТОНА От бетономешалки бетон в тележках или вагонетках подается к ручной лебедке и поднимается на место потребления
СТОИМость РАБо- ПРОЦЕНТЫ НА КАПИТА.П чих РУк

12 человек-96 рабочих часов (по 8 часов в день) подают 16 м 3. Считая зарплату бетонщика по ленингр. тарифу в 1-й половине 1925 г. т.-е. по 2,54 руб. в 8 час., рабочий день 31,7 коп. в час, мы получим:
$96 \times 0,317$
16
$\stackrel{16}{=} 1,90$ р. за μ^{3}

Подъемная ручная лебедка стоит 350 руб. 9% годовых сост. . 31,5 p. Амортизация капигала 25% (в 4 года) 80,5 p.
Монтаж, провоз, почин-
ки за 700,0 p. Ит ого819,0 p.
Если считать 120 раб. дней в году, то расходы по капиталу обходятся в

819
$120=6,825$ руб. в день или
$\frac{6,825}{16}=0,43$ руб. на $м^{3}$

Таким образом подъем одного \mathcal{M}^{3} бетона от бетономешалки до места потребления обычным способом обходится в $1,90+0,43=2,33$ руб.

ПОДАЧА БЕТОНА ПРИ ПОМОЩИ МАЧТОВОГО ПРИСПОСОБЛЕНИЯ ДЛЯ ЛИТЬЯ БЕТОНА
Бетономешалка в 350 литров автоматически вливает бетон в салазный ковш мачты и оттуда по желобам направляет его на место потребления

СТОИМОСТЬ РАБОЧИХ РУК

ПР ОДЕНТ Ы НАКАПИТА Л

Стоимость мачтового приспособления в 24 м высоты при 27 д длины жело-
6 человек, 48 рабочих часов, по 31,7 коп. за час, подымают $64 M^{3}$ бетона:
$48 \times 0,317$ 64
$=0,238 \mathrm{p}$.
на M^{3}

При постройке 5 -этажного дома 25×50 м площади стоимость подъема $1000 \mathcal{M}^{3}$ бетона обойдется:
обычным способом $1000 \times 2,33=2330$ руб. мачтовым приспособлением . $1000 \times 0,64=640$ " Экономия в работе мачтового приспособл. . 1690 руб.

Другим способом подъема жидкого и твердого материала являются элеваторы. Простейшие из них следующей конструкции: на колесных барабанах, приводимых в движение лебедками, вращается непрерывная лестничная цепь, на которой подвешиваются на особых крюках ведра или ковши с жидким материалом или вкладываются кирпичи и камни. Существуют и более сложные, наклонные и горизонтальные, конвеерные и другие системы заводов Gauhe, Gockel \& Co, Carl Peschke, Ibag, Hittenamt-Sonthofen и других.

На постройке здания Госторга полное otcyтcтвие каких-либо механизмов Нет дане под'емнинов для кирпичей. Их носят по 2830 штук КозАМИ на. 8-й эТАж.
Допотопной конструкции бетономешалки и лебедки разбросаны по огромной постройке БЕС-СИ-СТЕМ-НО

На постройке института им. В. И. Ленина, применили, по словам нашей прессы, последние достижения строительной техники, установив только одни...

трубчатые
нелезные
л e c a

Этого мало, когда остальные машины отсутствуют или просто..... устарели

Уже выше уназывалось, ч то на современных постройнах для воздвижения массива здания не применяют рештования в том виде, нак у нас в СССР. Для отдөлки, облицовки и всех внешних фасадных работ применяются особыө разборочные леса лестничной системы.

Такие леса не загромождают тротуаров и устанавливаются с знономным расчетом места и времени. Они состоят из лестниц от 3-5 м высотою и не более чем 60 см шириною, имөющих вдоль продольных брусьев шпунтовые разрезы. Лестницы наставляются одна на другую и скрепляются в соответствующих разрезах двухсторонними болтами. Путем скрепления этих лестниц сооружаются леса высотою 50 и больше мөтров. Такие нолоны лестниц устанавливаются на расстоянии 2-3 м одна от другой вдоль фасадов и скрепляются поперечными досками на высоте наждых $2-3 M_{\text {. }}$ Начиная с второго или третьего этажей, нроме поперечных, производятся также диагональные скрепления дяя того, чтобы леса не расшатывались. По онончании постройки леса разбираются на составные части и перевозятся для сбора на другую постройку. Несмотря на нажущуюся простоту нонструкции этих лесов, только две фирмы в Германии производят их. Обе эти фирмы, Лукс Нлаус и Христ, монополизировавшие все производство, выделывают их из растущей тольно в Тюрингии, специальной сосны. Леса зтих фирм экспортируются во Францию, Голландию и Бөльгию. Примерная стоимость таного рештования 30 м фасада и 21 м высоты не прөвышает 1400 марок.

За недостатком места трудно более подробно продемонстрировать все новые способы изготовления и подачи строительных материалов. Однако нельзя не коснуться много нашумевшего в Америке и Западной Европе способа бетонирования при помощи так называемой цементной пушки „Торкрет" и пневматических распылителей для окраски поверхностей.

Цементная пушка является агrрегатом из компрессора, самой пушки и шлангов, оканчивающихся соплом. Сухой цемент и гравий вводятся в машину ручным способом, от-

туда при помощи компрессора пневматически по плангу вдуваются в сопло, куда по другому шлангу проник ъет вода. Смешение с водой происходит внутри сопла, откуда с большей силой выбрасывается распыленный бетон. На гом же принципе построены пневматические распылители для окраски поверхностей. Они представляют из себя небольшое револьверное сопло, куда пневматически нагнетается соответствующая краска.

Даже нратное сообщение о новейших машинах и усовершенствованных орудиях для строительства наглядно указывает на все преимущества его механизации. Необходимость этого, впрочем, нинто и не оспаривает, тем не менее до сих пор в этой области в нашем Союзе сделано очень мало. Ни один механический завод СССР не изготовляет строительных машин. Удовлетворить спрос строительного рынка, однако, нужно, и для этого придется на первых порах прибегнуть к закупкам за границей. В частности в Германии производство строительных машин стоит на большой высоте, в то время нак состояние германского рынка, в связи с общим хозяйственным кризисом, далеко не блестящее. Такая нонъюнктура для нас благоприятна в смысле дешевых и выгодных закупок.

При наличии в Союзе большого количества мелних строительных нонтор, артелей и нооперативов, в большинстве случаев не обладающих достаточными средствами, инициативу занупки за границей и снабжения строительного рынка машинами должна взять на себя крупная экспортно-импортная организация, нан, например, Госторг. На ряду с выполнением комиссионных заказов государственных и других предприятий было бы целесобразно также устроить нонсигнационные склады типовых строительных машин и инвентаря. Таким путем можно было бы своевременно без затраты собственных средств снабжать стройконторы машинами и этим избегнуть общего на строительном рынке явления - запозданий в поставнах машин к строительному сезону.

Нанонец, что насается дорогих машин, недоступных отдельным предприятиям или же необходимых тольно в исключительных случаях, то рациональнее всего было бы устроить прокатные склады, которые такие машины отдавали бы стройнонторам в наем.

Задачи строительства в СССР огромны. Разрешение этих задач невозможно без механизации строительства. Поэтому всеми, кто в этом строительстве үчаствует, должен быть принят лозунг, выставленный рабочими Госстроя к 8-й годовщине революции: „ДАЙТЕ МАШИНЫ ДЛЯ СТРОИТЕЛЬСТВА".
А. Н. Эрлих

ЗАМЕТНИ ПРОФАНА

(Вместо письма в редакцию СА. Начало смотри на стр. 77).
рому ивдивидуум есть ходячая психо-расходная бухгалтерия, Этому утилитаризму Маркс дал беспощадный отпор, как идеологии лавочников. Возьму другой пример: футуризм в Италии и футуризм в Советской России. Надо быть безнадежно безграмотным, чтобы утверждать, что русский футуризм отличается от итальявского чисто тематически: там воспевается империализм, у нас советизм и коммунизм. Дело не так просто: сама структура, само оформление Маяковского и Асеева совершенно иное. И вот я спрашиваю: что отличает наш утилитарный полод от соответствующего, американского? На этот вопрос отчасти отвечает упомянутая статья тов. ГИНЗБУРГА: „В отличие от этого советская современная архитектура, по крайней мере, группируемая вокруг нашего журнала, прежде всего базируется на прочно материалистическом методе. Она не содержит в себе никакого нигилизма, ни в каком случае ве отказывается от требований формальной выразительности, но она базируется целиком на функциональных особенностях всего задания и каждого из его элементов. Наш фронт современной архитектуры базируется на том принципе, что законченное архитектурное произведение, как и всякая иная истинно-современная вещь, есть не дом, не вещь плюс какая-то эстетическая прибавка к ней, а разумно и планово организованная конкретная задача, в самом методе своей организации содержацая максимальные возможности своей выразительности. Наш фронт современной архитектуры базируется на здоровых началах конструктивизма, на методе функционального мышления, на методе, определенно указывающем зодчему пути его деятельности, подсказывающем ему то или иное оформление своеro задания".

Ответа на свой вопрос я не нахожу. Не понимаю, почему ирогрессируюшая целесообразность в Америке не может рассматривать дом не как вещь плюс эстетическая прибавка, а как „разумно и планово организованная конкретная задача". Правда, в другом месте автор указывает, что стандартизация наталкивается в условиях старой жизни на пошлость индивидуальных вкусов, на конкуренцию различных фирм, на стихийность в росте жилища городов. Но ведь невольно вспоминаются слова Нитцше: „зачем мне знать от чего ты освободился, ты скажи, для чего ты освободился". Ведь проникнутость данного здания замыслом эпохи характеризуется не тем, что отброшены нужные надстройки прошлого, а тем своеобразным, что характерно для данной эпохи. Нам очень интересно знать конкретно, в чем овеществлен элемент плановости в зданиях или проектах современной архитектуры.

Боюсь быть ложно понятым. Меньше всего удовлетворяет идеологическая прибавка к строго утилитарному замыслу. Это был бы безвкусно возрожденный дуализм: здание плюс советскоидеологическая пристроечка. Нет. Меня интересует иное. В чем проявляется „органически" характер эпохи в реальном овеществлении, материализации архитектурного замысла.

Заметьте: я ничего не критикую, в качестве профана я просто ставлю вопрос. Быть может, этот вопрос но существу незакономерен? - Не знаю. Правомерность постановки отчасти оправдана т. Гинзбургом. Он пишет: „В последнее десятилетие перед войной Германия, под напором пангерманизма (курсив мой. Гр. Рощ.) стремилась отыскать формы монументальные и подавляющие, создавая тяжеловесный стиль, одушевленный, главным образом, ее шовинистическим задором" (курсив мой. Гр. P.).

Итак, еще перед войной германская архитектура воплотила замысел класса! Неужто так и грешно поставить вопр с: а как наша архитектура, не перед, а после победы Октября, воплощает замысел нового класса? - Одно несомненно: тщательное выявление этой стороны проблемы советской архитектуры было бы чрезвычайно интересно многим работникам в других областях. Могут сказать: подобные проблемы можно поставить в журнале, посвященном специально вопросам теории искусства, а не в журнале строго специальном. Я так не думаю. Именно ответ философов и теоретиков меньше всего убедителен. Да и пора покончить с этим делением на теоретиков и практиков. Именно специалисты, именно работники, именно строители должны тщательно осветить проблему: в какой мере и в какой степени реализуются замыслы эпохи. Вот тот вопрос, который я позволил себе поставить в качестве профана.

И. С. Гроссман-Рощин

HA

ОСКИЗНЫИ ПРОЕНТ ЖМЛОГО ДОМА ТРУДЯЩИХСя

Все, что сделано в СССР, -практически и теоретически,- $\mathbf{\text { в }} 06$ Аасти рабочего строитедьства представлает собой пока аишь паллиативы.
Зто ни что иное как обнчное шелнө-квартирное городсное строи* тельство, норенным образом не отличающейся от европейоких и руссних образцоя имеющее оправдамие лишь кая временная затычка зияющей дыры.
Совершенно очевидна необходимость в созяании новых типов рабочего жиявя, ноторое послужило бы зчапом в оформлении быта трудящихся социалистичесного государства.
С этой цельь СА объявляет товарищесное соревнование шежду члянаши ОСА и разделающими его взгляды на составления аснизмого проекта жилего дома трудпщихся.
ОСНОВНОЕ ТРЕБОВАНИЕ: создать новый организн-дом, офоршляюций новые производственно - бытовые взаимоотвонения трудящихеа, проникнутый идеей ноллективизма.
Наждошу участвующешу в соревновании предоставляется возмомность создать по своеиу усмотрению зтот новый органиат, однако, в пределах возконности осуществлеиия и правильности ответа на социальный заказ, ноторый составлнет сущность настовцего соревиования.
ПАТЕРИАЛ-КОНСТРУКЦИЯ, ЧИСЛО ЭТАЖЕЙ предоставляетса автору. Требуетса изобретательский подход и отиаз от традиционных установок, Изооретательство не должно выходит из пределов здоровой логияи, реальной возможности осуществления и правильных акономических соображений.
Важна максимальнаи стандартизация и приспособленность н выполнению средстваши индустриального строительного производства.
ЗЛЕМЕНТЫ ЗДАНИЯ: А.-Типовое жияое звено-одношу, двуш коллективам. Б.-Систена их связи. В.-Общие помещения, в связи с оформляющим автором общим замыслом, r . - Схема застройки.
Масштабы и способ выполиения произвольные.
срок прөдставления, 10 апреня 1927 года, приурочивается к организуешой ОСА первой выетавне современиой архитектуры с иностраиными отденаши. СОСТАВ НюРИ-НОАЛЕКТИВ ОСА.

Макет номера сделал Алексей Гам. Под его руководством верстали тов, B. Tопоров, B. Пихайлов, М. Косачев ский и С. Кузнецов. Полосы обломки и титульный лист верстал тов. Крупкин. Клише вытолнены циннограсыней типограєвии под руководствопи т. Громова. фотограв Николай Мв, Корабельщиков.

