
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Technical narratives
analysis, description and representation in the conservation of software-based art

Ensom, Thomas

Awarding institution:
King's College London

Download date: 05. Aug. 2020

1

TECHNICAL NARRATIVES: ANALYSIS,
DESCRIPTION AND REPRESENTATION IN THE
CONSERVATION OF SOFTWARE-BASED ART

Thomas C. Ensom

Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Doctor
of Philosophy in Digital Humanities

Faculty of Arts and Humanities, King's College London

Corrections Revision, March 2019

[Minor redactions of sensitive and copyrighted material for e-thesis publication
carried out in September 2019]

80,204 words.

© Copyright Thomas Ensom 2019

Ensom - Technical Narratives

2

Abstract

The term software-based art has emerged from conservation practice over the past

decade to describe artworks for which software forms the primary artistic medium.

Such works present new challenges for those engaged in the long-term care of

collections of modern and contemporary art. They are often technically complex and

may employ many inter-related (and sometimes bespoke) components, embedded in

a specific technical environment. As a result, software-based artworks are particularly

at risk from processes of loss and obsolescence. While progress has been made

toward the development of practical strategies for their preservation, how to

effectively document them in a conservation context remains poorly understood.

In this thesis, I describe practice-led research which has sought to address this gap

using a constructive research approach. I first develop a conceptual framework

through which to better understand the problem space, consisting of two parts: an in-

depth examination of the characteristics of software as a medium; and an exploration

of the document concept and its meaning in relation to the role of the conservator.

Using this conceptual framework to further refine my research aims, I examine three

topics in detail, seeking to develop practical solutions for each: the analysis and

representation of software structures; the extent to which notions of significance and

artwork identity might be formalised as documentation; and how the patterns of

change which occur in the life of a software-based artwork might be understood and

recorded.

In addressing each of these aims, I draw on insights gained in the in-depth study of a

set of software-based artwork case studies from the Tate collection and the synthesis

of existing theory from a number of related domains. The outcomes of the research

have direct relevance to conservation practice, not as formal templates, but rather as

a set of flexible and reusable principles and methods that might be applied individually

or in conjunction to effectively document a diversity of software-based artwork types.

Ensom - Technical Narratives

3

Table of Contents

List of Tables ... 7

List of Figures .. 8

Acknowledgements ... 11

CHAPTER 1. INTRODUCTION ... 12

1.1. Thesis Outline ... 12

1.2. Key Knowledge Contributions.. 16

1.3. Terminology ... 17

1.3.1. Conservation and Preservation ... 17

1.3.3. Software-based Art and Genre Terms ... 19

1.4. Literature Review .. 20

1.5. Rationale and Scope ... 27

1.6. Methodological Approach .. 29

1.6.1 Legal and Ethical Considerations ... 34

CHAPTER 2. SOFTWARE AS MEDIUM AND MATERIAL 35

2.1. Chapter Outline ... 35

2.2. What is Software? .. 36

2.2.1. Defining Software.. 36

2.2.2. Software Representations and Opacity ... 39

2.2.3. Abstraction and the Materiality of Software ... 41

2.3. Software Performance Model .. 44

2.4. Software and Environment .. 48

2.5. Emergence of Software as Medium .. 54

2.5.1. Computer Art and Historical Precedents ... 55

2.5.2. New Media and the Computational Metamedium 59

2.6. Medium-Specific Conservation Considerations: A Lexicon....................... 63

CHAPTER 3. CONSERVATION DOCUMENTATION IN THEORY AND PRACTICE

 .. 69

3.1. Chapter Outline ... 69

3.2. Revisiting Documentation Theory ... 70

3.2.1. Representation, Modelling and Use .. 73

3.2.2. Information Science and Digital Documents .. 75

3.3. Documentation in the Conservation Workflow .. 77

3.3.1. Acquisition ... 79

Ensom - Technical Narratives

4

3.3.1.1. Information Gathering ... 79

3.3.1.2. Appraisal and Planning ... 86

3.3.2. Ongoing Care .. 89

3.3.2.1. Installation and Display ... 89

3.3.2.2. Preservation Strategies and Treatment .. 91

3.3.3. Information Systems ... 95

3.4. Documents for the Conservation of Software-based Art 98

CHAPTER 4. ANALYSIS AND REPRESENTATION OF SOFTWARE

STRUCTURES .. 100

4.1. Chapter Outline ... 100

4.2. Reconstructive Analysis of Software and Environment 101

4.3. Legacy Systems and Reverse Engineering ... 105

4.4. Problematising Source Code Analysis .. 107

4.4.1. Case Study: Program Comprehension Through Source Code Analysis

 ... 113

4.5. Binary-centric Software Analysis .. 116

4.5.1. Binary Analysis and Decompilation ... 117

4.5.2. Process Analysis and Instrumentation .. 125

4.5.3. Case Study: Dependency Identification Using Binary and Process

Analysis .. 128

4.6. Representing and Describing Software Structures 131

4.6.1. Appraising Existing Standards and Models ... 133

4.6.2. High-Level Perspectives on Software Structures in UML 136

4.6.3. Conceptual Model for Representing Software and Environment 139

4.7. Chapter Summary ... 144

CHAPTER 5. SIGNIFICANCE AND IDENTITY IN THE SOFTWARE

PERFORMANCE ... 146

5.1. Chapter Outline ... 146

5.2. Significant Properties and Identity .. 147

5.2.1. Revisiting Significant Properties .. 147

5.2.2. Identifying Significance in Practice .. 149

5.2.3. Significant Knowledge ... 155

5.3. Reframing Software Requirements ... 161

5.3.1. Functional Requirements .. 165

5.3.2. Non-functional Requirements .. 169

5.4. Case Study: Specifying an Interactive Artwork as Requirements 172

5.5. Case Study: Consistent Rendering and the Verification of Non-functional

Requirements ... 176

Ensom - Technical Narratives

5

5.6. Chapter Summary ... 182

CHAPTER 6. DOCUMENTING THE EVOLUTION OF SOFTWARE-BASED

ARTWORKS ... 184

6.1. Chapter Outline ... 184

6.2. Conceptualising the Lives of Software-based Artworks 185

6.3. Perspectives on Software Evolution ... 190

6.3.1. Macro-level Change Patterns .. 194

6.3.2. Micro-level Change Patterns ... 199

6.4. Representing Versions in Information Systems ... 204

6.5. Case Study: The Evolution of LiMac Museum Shop 207

6.6. Software-based Artwork Biographies in Conservation 211

6.6.1. Continuum Approach to Artwork Biography... 213

6.6.2. Capturing Conservation Narratives in Practice 217

6.7. Chapter Summary ... 220

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 222

7.1. Research Contributions and Applicability of Outcomes............................. 222

7.1.1. Binary-centric Analysis and the Software-based Art Structure Ontology

 ... 225

7.1.2. Significant Knowledge and the Requirements Specification 228

7.1.3. Change Models and the Sociotechnical Biography 230

7.2. Reflections on Overarching Themes .. 232

7.3. Recommendations for Further Research ... 235

BIBLIOGRAPHY ... 238

APPENDIX I: ARTWORK CASE STUDY DESCRIPTIONS 259

9.1. Case Studies .. 259

9.1.1. Michael Craig-Martin - Becoming (2003) ... 260

9.1.2. Cory Arcangel - Colors (2005)... 261

9.1.3. Sandra Gamarra - LiMac Museum Shop (2005) 262

9.1.4. Rafael Lozano-Hemmer - Subtitled Public (2005) 263

9.1.5. Jose Carlos Martinat Mendoza - Stereo Reality Environment 3:

Brutalismo (2007) ... 264

9.1.6. John Gerrard - Sow Farm (near Libbey, Oklahoma) 2009 (2009) 266

APPENDIX II: CONCEPTUAL MODEL FOR THE REPRESENTATION OF

SOFTWARE-BASED ARTWORK SYSTEMS ... 268

10.1. Introduction to OWL 2 Ontology ... 268

10.2. Classes .. 269

10.3. Object Properties .. 279

Ensom - Technical Narratives

6

10.4. Data Properties .. 282

APPENDIX III: SOFTWARE-BASED ARTWORK TECHNIQUE AND CONDITION

TEXTS ... 283

11.1. Introduction to Technique and Condition Texts .. 283

11.2 Michael Craig-Martin - Becoming (2003) .. 284

11.3. Cory Arcangel - Colors (2005) ... 285

11.4. Rafael Lozano-Hemmer - Subtitled Public (2005) 286

11.5. Jose Carlos Martinat Mendoza - Stereo Reality Environment 3: Brutalism

(2007) .. 288

11.6. John Gerrard - Sow Farm (2009) ... 290

APPENDIX IV: LITERATURE SEARCH STRATEGIES AND TERMS 292

12.1. Literature Search Strategy ... 292

12.2. Table of Search Categories and Terms ... 293

Ensom - Technical Narratives

7

List of Tables

Table 1. List of the software-based artwork case studies examined in this thesis,

with basic descriptive information for each. See Appendix I for further descriptive

details. ... 33

Table 2. Representation of Kenneth Thibodeau’s properties model for digital

objects, with original examples provided to demonstrate how its principles might be

applied to software. .. 44

Table 3. Basic prompt list for the gathering of software-specific documentation at

the acquisition of a software-based artwork. .. 85

Table 4. DirectX library read results of a trace analysis of QuestViewer.exe process

using Microsoft Sysinternals Process Monitor (output to a CSV file and edited here

for clarity). .. 131

Table 5. Identified significant information categories for software-based artworks,

with mappings to related significant property frameworks and examples of

supporting materials. ... 160

Table 6. List of software-based artwork case studies and simple descriptions of the

functional purpose of their software component. .. 166

Table 7. Mapping of the IFLA FRBR model (IFLA Study Group on the Functional

Requirements for Bibliographic Records, 2009), FRBR-based Conceptual Model for

Software (Matthews, et al., 2010) and an FRBR-based model for describing

software-based artworks. ... 205

Table 8. Dimensions of a continuum-based understanding of software-based

artwork change, from the perspective of a time-based media conservator.

Dimension numbers do not imply an increasing scale or any other ordinal

arrangement. ... 214

Table 9. List of primary search terms employed in the literature review undertaken

during this research. .. 294

Ensom - Technical Narratives

8

List of Figures

Figure 1. Diagram of transformations between software representations, indicating

the potential for code to be compiled to machine code or an intermediate

representation which must then be interpreted. ... 40

Figure 2. Visual representation of the software performance model, adapted from

the National Archives of Australia’s (NAA) performance model for digital records.

Coloured boxes indicate the components of the model, while grey boxes indicate

the environment within which they exist or occur. .. 46

Figure 3. Representation of the generic structural components of a technical

environment consisting of two linked computer systems (the smaller computer

system is simplified for clarity, but would also contain components). Coloured

bounded boxes indicate component layer types (description can be found in the

main text), while grey unbounded boxes indicate environment types. Dotted lines

indicate technical interfaces between environments. ... 50

Figure 4. Reproduction of Oscillion 19 (1952) by Ben Laposky, from Oscillon:

Electronic Abstractions (Laposky, 1969). © Ben Laposky and MIT Press. 56

Figure 5. Photograph of CYSP 1 (1956) by Nicolas Schöffer. The movements of the

sculptural array at its top and wheels at its bottom were controlled by a computer

concealed within the black cylindrical base. © Nicolas Schöffer and Reuben Hogget.

 .. 58

Figure 6. Representation of the forward and reverse engineering processes in

relation to artefacts resulting from processes in software engineering. Arrows

between boxes relate to processes of forward engineering above (from left to right)

and source code analysis as a method of reverse engineering below (from right to

left). ... 107

Figure 7. Representation of the forward and reverse engineering processes in

relation to artefacts resulting from processes in software engineering, extended to

incorporate binary-centric analysis methods. Arrows between boxes relate to

processes of forward engineering above (from left to right) and reverse engineering

below (from right to left). .. 116

Figure 8. The nested DLL dependencies (along with metadata describing one of

them) of the Subtitled Public calibrate.exe program, revealed through the use of

CFF Explorer binary analysis tool. The third-party Intel OpenCV library is

highlighted. .. 118

Figure 9. Comparison of a snippet of original ActionScript 3.0 source code (left) and

decompiled code (right) for [REDACTED]. The decompiled code has been modified

to include spaces where the header would be, to allow easier line-for-line

comparison with original source code. ... 120

Figure 10. Comparison of snippet of original Java source code (left) with

decompiled code (right) for a binary files from Jose Carlos Martinat’s Brutalismo.

Ensom - Technical Narratives

9

The decompiled code has been modified to include spaces where the header would

be, to allow easier comparison with original source code. 122

Figure 11. Screenshot of the debug overlay (which appears in the top left-hand

corner of the rendered image), which is used for monitoring of Sow Farm while the

software is running. .. 126

Figure 12. Screenshot of the Sysinternals Process Monitor program (Russinovich,

2017), showing file system activity logging results for the sowfarm.exe software

process. Each line represents a file system activity. .. 130

Figure 13. The hardware and software components of the 2011 realisation of

Brutalismo represented as a UML deployment diagram. 3D boxes are nodes, boxes

with file symbols in their top right-hand corners are artifacts, solid lines indicate

(non-directional) communication pathways, dotted arrows indicate dependency

relationships, while semi circles indicate external interfaces. 138

Figure 14. Representation of modelled entities for the 2011 realisation of Brutalism,

produced using the Protégé 5.2 OntoGraf plugin. Boxes represent instances, red

labels indicate classes, while object properties are represented by colour coded

dashed arrows (red: hasRealisation; blue: hasConstituent; yellow:

hostsEnvironment; purple: isExecutableIn; grey: hasComponent; green:

hasSoftwareComponent; brown: hasInterface; orange: hasDataComponent) 143

Figure 15. Comparison of 3D landscape rendering techniques in John Gerrard’s

Sow Farm (near Libbey, Oklahoma) 2009 (left) and Western Flag (Spindletop,

Texas) 2017 (right). These images are detail from screen captures of the complete

render in each case. © John Gerrard 2018. ... 154

Figure 16. Line graph plotting frame time values (ms) against running time for the

Sow Farm software running in a VMware virtual machine (blue) and natively on the

host machine (red). Logging of frame time values was carried out separately for

native and virtual environments. .. 179

Figure 17. Comparison of frames from two performances of Sow Farm, one with

default NVDIA display driver settings applied (top) and the second with custom

NVIDIA display driver settings applied to force multi-sample anti-aliasing and

anisotropic texture filtering (bottom). .. 181

Figure 18. Representation of the Digital Curation Centre’s (DCC) Lifecycle Model,

reproduced from Higgins, 2008. ... 186

Figure 19. Production diagram for the artwork Becoming by Michael Craig-Martin,

created by the time-based media conservation team at Tate. Black boxes indicates

information (not corresponding to an actual component), green indicates a media

component suitable for exhibition use, while red indicates an archival media

component not suitable for exhibition use. ... 197

Figure 20. Screenshot of a record of a C++ code change committed to a GitHub

code repository for the Rafael Lozano-Hemmer artwork Level of Confidence (2015),

by programmer Stephan Schulz. The commit record includes metadata about the

author and date, a description of the change, and a visual indication of the changes

Ensom - Technical Narratives

10

made to the code itself (green lines have been added, while red have been

removed). .. 200

Figure 21. Results of an automated code comparison between the source code of

Cory Arcangel’s Colors (2005) (left) and Colors Personal Edition (2009) (right),

using the FileMerge (Apple, 2016a) tool package with XCode 7 (Apple, 2016b). . 202

Figure 22. Representation of class instances that make up the artwork version

history of Becoming by Michael Craig-Martin, using the SASO model. Relationships

between classes are modelled as object properties, indicated by arrows (grey:

hasVersion; green: hasVariant; purple: hasRealisation). 206

Figure 23. Sandra Gamarra, LiMac Museum Shop, 2005, installed at Tate Modern

in 2011. The terminal providing access to the website is visible on the side of the

cabinet in the right hand image. ... 208

Figure 24. Screenshot of the front page of the static version of the LiMac website,

which was live from 2005-2007. © Sandra Gamarra 2018. 209

Figure 25. Screenshot of the front page of the MODx version of the LiMac website,

which was live from 2007-2012. © Sandra Gamarra 2018. 209

Figure 26. Screenshot of the front page of the WordPress version of the LiMac

website, which has been live from 2005-present. © Sandra Gamarra 2018. 210

Figure 27. Michael Craig-Martin, Becoming, 2003 (T11812). Photograph of installed

work. © Michael Craig-Martin and Tate, London 2018. .. 260

Figure 28. Cory Arcangel, Colors, 2005 (L02995). Still image capture. © Cory

Arcangel and Tate, London 2018. .. 261

Figure 29. Sandra Gamarra, LiMac Museum Shop, 2005. Images of installation at

Tate Modern in 2011. © Sandra Gamarra and Tate, London 2018. 262

Figure 30. Screenshot of the Wordpress-based LiMac website in 2018. © Sandra

Gamarra. ... 263

Figure 31. Rafael Lozano-Hemmer, Subtitled Public, 2005 (T12565). Photograph of

two subtitled gallery visitors interacting during an installation. © Rafael Lozano-

Hemmer and Tate, London 2018. .. 264

Figure 32. Jose Carlos Martinat Mendoza, Stereo Reality Environment 3: Brutalism,

2007 (T13251). Photograph of the work installed at Tate Modern in 2011. © Jose

Carlos Martinat Mendoza and Tate, London 2018. .. 265

Figure 33. John Gerrard, Sow Farm (near Libbey, Oklahoma) 2009, 2009 (T14279).

Photograph of the work installed at Tate Britain in 2016. © John Gerrard and Tate,

London 2018. ... 266

Ensom - Technical Narratives

11

Acknowledgements

I dedicate this thesis to my parents, Meriel and Paul Ensom, who have instilled in me

a thirst for knowledge and an interest in all things, and without whom I would never

have ended up on the winding road that eventually led me to undertake to this PhD.

Thank you to my supervisors Mark Hedges and Pip Laurenson, whose measured

guidance kept me on track on the long road to submission. When I saw this project

advertised four years ago, I couldn’t believe how closely aligned it was with my

research interests. I am so grateful that you devised its foundations and entrusted me

with its undertaking.

Special thanks to Patricia Falcão, whose patience and insight was incredibly

important in shaping my research and keeping me grounded in the reality of Tate’s

day-to-day work. Your open mind and enthusiasm for the subject continues to inspire

me.

Thank you to the entire Time-based Media Conservation team at Tate, past and

present, who welcomed me during my time at Tate Stores. I feel very lucky to have

worked within such a great team and have learnt a great deal from the experience.

Thank you to Martina Haidvogl, Mark Hellar and Jill Sterrett, who made my research

visit to San Francisco Museum of Modern Art not only possible, but such a stimulating

experience.

Thank you to all those who generously agreed to be interviewed during my research—

Deena Engel, Ben Fino-Radin, Mark Hellar, Joanna Phillips, Klaus Rechert, Eric

Kaltman, Jon Ippolito and Gaby Wijers—with extra thanks to Deena and Mark, who

first coined the term “technical narrative” that forms a crucial part of title of this thesis.

Thanks also to Annet Dekker for her advice in the early phases of this research, and

to the PERICLES research team for another set of formative experiences.

Last but by no means least, thank you to my wonderful partner Kitty Clark for her

patience during the long hours at my desk and her support during those moments

when it started to feel too much. I’m not sure I could have finished it without you, and

I’m so glad you were there to enrich my work and enthuse me with your own passion

for art.

Ensom - Technical Narratives

12

CHAPTER 1

INTRODUCTION

1.1. Thesis Outline

The term software-based art has emerged from art conservation practice over the

past decade to describe a group of artworks for which software forms the primary

artistic medium. The characteristics of these works pose new challenges for

conservators engaged in the long-term care of collections of modern and

contemporary art. They are often technically complex and may employ many inter-

related components embedded in a highly specific technical environment. These

components often include bespoke code used to achieve particular behaviours or

qualities, the underlying complexity of which is typically not apparent from the tangible

elements of the work nor from the software’s compiled form. As the external technical

environment changes through time, it may become increasingly difficult to realise

these works, as hardware components become harder to replace and the software

platforms employed move towards obsolescence. Software-based artworks can

therefore be considered at risk of loss if not properly cared for. While progress has

been made toward the development of practical strategies for preserving software-

based artworks, how to effectively document them in a conservation context remains

poorly understood. In this thesis I aim to address this gap through a practice-led study

of the issues involved, and the use of existing theory from a number of related

Ensom - Technical Narratives

13

domains to develop pragmatic approaches to documentation.

I begin by developing a conceptual framework, consisting of two fundamental

research strands. This first is the development of a more complete understanding of

the characteristics of software as an artistic medium—particularly in relation to the

technical characteristics of software and the medium-specific conservation

considerations demanded in its treatment and care. The second is the theoretical re-

consideration of the delimitation of the concept of document and how this relates to

the practical undertaking of documentation as a core conservation activity with a

variety of purposes—undertaken by both human and machine agents. Taken

together, these two research strands form a conceptual framework which allows the

identification of three key challenges in the documentation of software-based art,

which I address in turn in the subsequent chapters. The first concerns the analysis

and representation of the software structures, which form the basis of the software

performance that occurs when a work is realised. The second concerns the extent to

which notions of significance and artwork identity might be pragmatically formalised

as documentation. The third concerns how the patterns of change which occur in the

life of a software-based artwork might be understood and recorded. The outcomes of

these chapters are not formal templates, but rather offer flexible and reusable

principles and methods that might be applied individually or in conjunction to

effectively document the great variety of software-based artworks.

This research is intrinsically interdisciplinary in nature and necessitates a novel

synthesis of knowledge from digital preservation, art conservation, software

engineering and other related domains. While based primarily in a synthesis of theory,

it also seeks to directly address a practical problem through a practice-led approach.

As such, the close study of a set of software-based artwork case studies from the

Tate collection (the cultural organisation partner in this AHRC Collaborative Doctoral

Partnership) form the core evidence base on which the research draws. The

conservation of software-based art is a relatively new activity for museums, and has

so far only received limited attention in research and published literature. This project

represents the first major study of documentation within this emerging area of practice

and may have applications in the wider field of software preservation, particularly for

other kinds of software-based cultural work such as video games.

In Chapter 1 I introduce the research topic and provide a rationale and methodology

for its undertaking. As this project is interdisciplinary and uses terminology from

several domains which may not be familiar to all readers, I first introduce and

Ensom - Technical Narratives

14

disambiguate some key terminology to arrive at working definitions. Through a review

of the state of the art in the field of software-based art conservation, I develop a

rationale and scope for this research. I then describe the methodological approach

this research has taken and introduce the six artworks which are discussed

throughout this thesis as case studies and are a major source of evidence for the

conclusions drawn.

In Chapter 2 I explore what software is and how it is used as a medium, with the aim

of identifying the challenges it presents as the object of conservation. I start by

identifying some of the key technical characteristics of software and introduce a model

for understanding the processes which occur within the realisation of a software-

based artwork. This model posits that, while software might be seen as consisting of

digital objects, the human experience of software can only be understood as a

performance, during which these objects interact with a technical environment. I then

explore the place of software in the history of art, identifying diversity in its usage and

arguing that only some of these use types constitute what we consider software-

based art. Building on the preceding sections, I conclude the chapter by identifying

the medium-specific conservation considerations presented by software.

In Chapter 3 I explore the nature of the document as a theoretical construct and a

crucial part of conservation practice, with the aim of assessing the suitability of

existing approaches to dealing with the medium-specific conservation considerations

identified in Chapter 2. I begin by considering the development of documentation

theory and discussing the potentially expansive notion of the document. I isolate some

of the key principles in understanding the document in relation to the subject it

documents, and the particular significance of documentation as something

informational and representational. This is followed by an in-depth examination of the

kinds of documentation found in conservation practice and a reflection on how they

might need to be reconsidered in light of the characteristics of software-based art

identified in Chapter 2. Three core documentation challenges emerge from this

analysis, which are focused on in turn in the following three chapters.

Software is structurally complex and closely linked to the technical environment in

which it is executed, and understanding and documenting these structures is crucial

to the preservation of software-based artworks. In Chapter 4 I consider how this

information can be effectively derived and represented. I begin by framing software

analysis and documentation in relation to elements of the conservation workflow and

related concepts from software engineering. Building from a critique of the dominant

Ensom - Technical Narratives

15

approach of source code analysis, I consider other complementary reverse

engineering and software analysis techniques—particularly those which address

software binaries and processes—in terms of their potential use in generating

knowledge to aid understanding of the software performance. In the last part of the

chapter I consider how these structures might be formally represented, particularly

with information systems in mind. Comparing a number of existing metadata models

from related domains, I find them unsuitable for this purpose and develop a

conceptual model (expressed as an OWL ontology) for guiding the creation of human

and machine-readable structured representations.

Changes to some of the components of a software-based artwork are expected to

occur in their long-term preservation. In Chapter 5 I consider how documentation

might be used to ensure that the significant characteristics that constitute the core

identity of a work are captured and appropriately managed through time as it is

realised in different contexts. Dominant theoretical frameworks in digital preservation

and art conservation, including the notion of significant properties, are examined and

considered in terms of their practical applications. I introduce the idea of significant

knowledge as an alternative view on this problem, and develop a set of knowledge

categories for the software-based art domain. Finding there to be a need for a better

defined approach to capturing identity at the level of the software performance, I

introduce concepts from requirements engineering as a means of formalising the

constraints on what a software-based artwork should do and how it should do it.

Software-based artworks are the result of processes largely unfamiliar to collecting

institutions and are likely to continue to evolve through time while within their care. In

Chapter 6 I consider how the evolution of the artwork through time might be recorded

by conservators. I introduce two contrasting approaches through which to

conceptualise change, and theory from the study of software evolution which aids in

understanding why software-based artworks experience change to varying degrees.

I examine the nature of processes of creation and ongoing change in the life of a

software-based artwork, at the software level, and how these processes might be

understood and captured. I then consider how software might change in practice at

two levels: the micro-level processes which are traceable through changes at the level

of code and environment; and the macro-level decisions regarding the description of

a particular transformation and the versioning of the software and artwork. Finally, I

consider how we might describe the complex life histories of these works in narrative

forms which consider the software-based artwork as something situated within a

Ensom - Technical Narratives

16

broader socio-technical context.

Finally, in Chapter 7 I conclude with an overview of the research contributions

generated in the preceding chapters and a consideration of the potential limitations

of the practical outcomes. I then reflect on some of the overarching themes identified

within the thesis and present a set of recommendations for future research in the field.

1.2. Key Knowledge Contributions

This research has been undertaken in response to a need to develop solutions to

challenges in an emergent and thus poorly defined problem-space. As such, it has

not sought to respond to a single specific research question, but rather undertake

work to better define this problem-space and construct pragmatic solutions to gaps

identified using existing knowledge where possible. As a result, a set of

interconnected but standalone research contributions have been generated, each

responding to a specific knowledge gap. These are spread throughout the five core

chapters of the thesis. In this section I present a concise overview of these

contributions so that they can be located and consulted independently of the high-

level narrative.

A group of these contributions were formulated specifically to improve the delimitation

of the problem-space and can be found in Chapters 2 and 3:

• A lexicon of clearly defined terminology for describing the medium-

specific characteristics of software-based art, each term being implicated

in the challenges faced by conservators (p. 63)

• A thorough examination of the potential scope of the ‘document’ concept

within a practice software-based art conservation (p. 98)

A second group of novel outcomes resulted from research in Chapters 4, 5 and 6,

which focused on particular issues in software-based artwork documentation

identified in prior chapters:

• An extension of existing conservation approaches to software analysis

to incorporate additional methods from reverse engineering, particularly

those which can be applied in the absence of source code (p. 116)

• A conceptual model for the description of software structures and

versions, with potential applications in the extension of collection-related

Ensom - Technical Narratives

17

information systems and metadata (p. 131 and p. 204)

• An approach to the formalisation of the identity of software-based

artworks which emphasises categories of knowledge and documentation in

place of sets of defined properties (p. 155)

• A theoretical synthesis of conservation documentation and

requirements engineering documentation, with particular relevance to the

documentation of works in which functionality is the primary purpose of

software (p. 161)

• A study of the phenomenon of software evolution in the lives of

software-based artworks and its implications for their effective

documentation (p. 190)

• A proposal for a practical approach to artwork biography for software-

based art and reflections on its connection with a practice of technical art

history (p. 211)

While of value as independent research contributions, these outcomes form an

interconnected framework which I propose might serve to support a more holistic

practice of generating conservation documentation for software-based artworks, as it

emerges.

1.3. Terminology

This research is by its nature cross-disciplinary, operating at an intersection between

art conservation, digital preservation, computer science, information science and

media theory. Readers of this thesis may therefore be from any of a number of

different domains and as such familiar with only a portion of the technical language

used, or only with particular uses of a term. The majority of specialist terminology is

defined as it is introduced within the text, but some particularly fundamental

definitions—and the ambiguities surrounding their use—are discussed in this section

for the sake of clarity.

1.3.1. Conservation and Preservation

The terms conservation and preservation both occur regularly alongside each other

(sometimes being used interchangeably) in the literature around the care of museum

collections, particularly collections of artworks. We can find discussions regarding the

Ensom - Technical Narratives

18

meaning of this terminology as far back as 1985, when Pamela W. Darling highlighted

problems with the conflation of the two terms in the American Institute for

Conservation of Historic and Artistic Works’ (AIC) Abbey Newsletter (Darling, 1985).

Darling also acknowledges the two words’ respective roots in libraries and archives

(for preservation) and museums (for conservation).

A full disambiguation of these terms is beyond the scope of this thesis, but a number

of general distinctions are made. This first is the use of conservation to refer to the

profession of conservation and its activities, as defined by the AIC:

“The profession devoted to the preservation of cultural property for the future.

Conservation activities include examination, documentation, treatment, and

preventive care, supported by research and education.” (American Institute for

Conservation of Historic and Artistic Works, 2016)

Preservation is itself embedded within this definition, and as such I use the term to

describe the goal of conservation. In addition, I use digital preservation to refer to a

separate field, which the Library of Congress defines as encompassing “the active

management of digital content over time to ensure ongoing access” (Library of

Congress, 2012). Much as preservation has its origins in and has its origins in records

management (Day, 2000). While it has distinct origins in traditional art conservation,

the conservation of art with a digital component has become increasingly closely

connected with the field of digital preservation.

1.3.2. Representation

The term representation is used in several slightly different senses in this thesis, all

of which ultimately relate to either one or both of two primary meanings of the word1:

1. The potential for something to act on behalf of or in place of something else.

2. The depiction or portrayal of something in a particular way.

Within the text these uses are distinguished by context, so below I provide some

examples of their usage to aid comprehension.

The first significant use of the term in this thesis relates to the technical characteristics

1 These are derived from the subdivision of definitions presented in the Oxford English

Dictionary definition of representation (anon. representation, n.1, 2018).

Ensom - Technical Narratives

19

of software and digital data, all of which fall under definition 1. Source code and

executable binaries are both particular representations of the same software

program, with distinct uses: source code is human readable and writable; binary code

is machine executable. This usage is discussed further in Chapter 2. Representation

in this sense may also be used to describe some of the products of software and

preservation processes, such as disk images. A disk image is a digital representation

of what would traditionally have been the contents of a physical disk drive. The actual

data content of a disk image is identical whether it is stored as a raw disk image file

or on a physical drive. Similarly, a document (such as this thesis) might have multiple

possible representations in different file formats. The use of representation in this

context points to the need for representation information from which to correctly

interpret these file formats, a component explicitly modelled within the dominant

model of archival systems, the Open Archival Information System and discussed

further in Chapter 3 (CCSDS, 2012).

The second significant use of the term representation is in relation to documentation,

where the type 1 and type 2 definitions become intertwined. This is because all

documents to some extent act on behalf of the thing they document and depict or

portray that thing to some degree. A narrative description of an exhibition for example,

is a depiction of that exhibition from a particular viewpoint. However, in portraying

qualities of the installation, the reader of the narrative may form an impression of the

work which stands in for the physical experience, despite not necessarily having seen

the installation. In the case of a representation of a thing as machine-readable data,

the documentation may act as a surrogate or stand-in for the artwork through, for

example, structuring that permits actioning of preservation policies. This kind of

representation, such as a metadata record, I refer to as structured representation.

Representation in the context of documentation is discussed further in Chapter 3.

1.3.3. Software-based Art and Genre Terms

The term software-based art is one which has become increasingly widely used the

art conservation field, while resisting formal definition. While a detailed examination

of the meaning of the term and its relationship with overlapping terminology can be

found in Chapter 2, a working definition is required for its usage prior to this

discussion. The definition of software-based art used in this thesis is: art for which

software is the primary artistic medium. Taking a constitutive meaning of artistic

medium (e.g. a sculpture in the medium of bronze or a drawing in the medium of

pencil), this definition would pertain to artworks where software is the primary

Ensom - Technical Narratives

20

mechanism in the realisation of the work and the primary material which the artist has

chosen as a means of expression. This usage has its origins in discussions at Tate2

in 2010 around the refinement of language to describe such works in its collection.

It is important to note that software-based artworks may incorporate other artistic

media, limited not just to computers and other electronic equipment, but perhaps

including sculptural elements or precisely defined installation environments. While I

discuss such physical considerations where necessary in relation to a particular

artwork case study (particularly as part of the conceptual whole of the artwork) the

focus of this thesis is primarily on the software (and to a lesser extent, hardware)

components, as these are what makes software-based art unique and demanding of

particular conservation consideration. A distinction is consistently made between the

software and the artwork in the text.

I generally avoid the use of other genre terminology (such as new media art or

software art) to refer to software-based art, unless making reference to specific

historical movements or trends with which a particular artwork might be associated.

The only other art genre terminology that will be used more frequently is time-based

media, which Tate defines as “‘works of art which depend on technology and have

duration as a dimension.” (anon. Conservation – time-based media, n.d.). This is

useful as a higher-level grouping of software-based art with other types of art with

similar time-based characteristics, which together typically fall within the care remit of

the same conservation team within a museum. Software-based art should not be

confused with the distinct software art. The latter, as Christiane Paul clarifies in Digital

Art, is closely linked to the tradition of software artists engaging directly with coding

and the formal languages of computation (Paul, 2015). While all software art would

fall within the classification of software-based art, the inverse is not true.

1.4. Literature Review

This research operates at the intersection of two disciplines—art conservation and

digital preservation. Despite distinct origins (see Section 1.2.1), the two have become

increasingly enmeshed as conservators of time-based media artworks have sought

2 While there is no documentation of these discussions, they are evidenced by the use of the

term in a number of Tate linked research outputs from between 2010 and 2014 (Laurenson,

2010, Falcão, 2010, Falcão, et al., 2014) and its adoption as a term in collections

management systems.

Ensom - Technical Narratives

21

to deal with the challenges posed by digital materials entering museum collections.

The conservation of software-based art has emerged at this nexus. In this section I

introduce key literature from art conservation (primarily in relation to time-based

media) and digital preservation, and review the current state of theory and practice

surrounding the conservation of software-based art. In addition to identifying gaps in

existing literature, this initial review also serves to position the approach taken in this

research in relation to existing perspectives on conservation. The need for the

synthesis of new knowledge from other disciplines necessitates the introduction of

material from other bodies of literature at later stages of research. These are

introduced and discussed within specific chapters, most significantly: media theory in

Chapter 2, documentation theory in Chapter 3 and various aspects of software

engineering in Chapters 4, 5 and 6. The search strategies adopted in identifying key

literature are detailed in Appendix IV.

This research focuses on the practice of conservation that has emerged around

museums that care for collections of art, where it developed in response to traditional

modes of practice such as painting and sculpture. Salvador Muñoz-Viñas suggests

that the approach of conservators during the early, “classical” era of conservation

theory might be best understood in relation to the principles of scientific conservation

(Muñoz-Viñas, 2004). This, he suggests, is an approach to conservation driven by

“strong, implicit principles”, which centre on the notion of an artworks “true nature”,

understood as residing in its constituent materials, and best maintained through

objective modes of scientific enquiry and treatment (Muñoz-Viñas, 2004, p.90).

Problematising these principles and proposing an alternative, pragmatic and socially-

situated perspective on conservation theory, Muñoz-Viñas’ critique is emblematic of

a fundamental shift in thinking which has occurred over the past few decades and is

evidenced in much of the theory which has emerged from scholars of conservation

over the past few decades. This includes the young sub-discipline of time-based

media conservation, which concerns the care of artworks with a technological

component which unfold over time (Tate, 2017)—and encompasses software-based

art.

The variable, ephemeral and changeable nature of such artworks has brought to the

fore an array of philosophical, ethical and practical considerations in sustaining such

artworks through time—and in response, a growing body of research seeking to

address them. Foundational knowledge was cultured in early symposia. In 1997

participants in Modern Art: Who Cares? in Amsterdam grappled with the challenges

Ensom - Technical Narratives

22

of modern materials, including electronic media (INCCA, n.d.), while in 2000,

TechArchaeology: A Symposium on Installation Art Preservation was held at San

Francisco Museum of Modern Art and explored the preservation of technology-based

installation artworks (Real, 2001). In the 2000s we see a host of institutionally-led

research projects exploring aspects of time-based media conservation, including The

Variable Media Initiative (Depocas, et al., 2003), Capturing Unstable Media

(Fauconnier, & Frommé, 2003), Inside Installations [2004-2007] (Scholte, & Wharton,

2011), and Documentation and Conservation of Media Arts Heritage (or DOCAM)

[2005-2010] (DOCAM, n.d.). In common to these projects was an acknowledgment

that instead of being fixed and centred on specific material artefacts, time-based

media artworks have the potential to vary in their constituents between realisations

and may possess medium-independent characteristics. Through focused research on

case study artworks, these projects explored the ways in which change might be

negotiated in the care of time-based media artworks, including, in some cases,

software-based artwork case studies.

In parallel, conservators embedded in museums with collections of time-based media

art were beginning to formalise some of these ideas. Pip Laurenson proposed a

theoretical model for approaching the conservation of time-based media based on

experiences at Tate, which formalised the distinction between an artwork and its

ongoing realisation through time as variable “installed events” (Laurenson, 2006).

Elements of this theory were operationalised by Joanna Phillips, in a documentation

model used at Solomon R. Guggenheim Museum, which distinguished between a

documenting a work’s identity and its iterative staging through time as display

equipment changed (Phillips, 2007), while the Matters in Media Art consortium later

developed a set of guidelines and templates with similar ambitions (Matters in Media

Art, 2015). Underlying theory has remained under question however, with growing

bodies of research engaging with ideas of intentionality and authenticity in relation to

the conservation of modern and contemporary art (van de Vall, 2015, Wharton, 2016)

and the changing role of the museum in relation to restaging performance and

installation artworks (Wharton, & Molotch, 2009, van Saaze, 2013, Laurenson, & van

Saaze, 2014). These might be considered as emblematic of what Hanna Hölling

identifies as a new relativistic approach to conservation; a shift from a practice

focused simply on prolonging artworks material forms, to conservation as a “complex

techno-cultural practice with a strong, retroactive impact on its objects and subjects”

(Hölling, 2017, p.89). While this new approach offers fresh perspectives on the

potential role of the conservator, it remains somewhat detached from the pragmatic

Ensom - Technical Narratives

23

concerns of the time-based conservator attempting to care for a growing collection of

software-based artworks, for which even the “techno” component of this practice

remains poorly understood.

Before discussing the state of the conservation of software-based artwork in more

detail, I will introduce the second discipline on which it depends: digital preservation.

This is a relatively young, techno-centric discipline which has emerged in parallel to

time-based media conservation. While early examples of literature pertaining to the

preservation of electronic records can be identified as far back as the 1970s (Day,

2000), it is around the turn of the 21st century that we see digital preservation at a

point of coalescence. Here we find the literature setting out the issues that would

occupy the field for the coming years: the loss or failure of the media on which it is

stored and the process of technological obsolescence which renders it inaccessible

or unreadable (Rothenberg, 1995, Waters and Garrett, 1996, Chen, 2001). In the

years following we see a response which, rather unlike contemporary theories of art

conservation, is more focused on the development of standards and tools that could

guide institutions seeking to establish systems and policy for digital preservation.

These have nonetheless gradually worked their way into art conservation practice

over the past decade—as reflected in a growing body of practical guidelines (Matters

in Media Art, 2015, Digital Preservation Coalition, 2015, Fino-Radin, 2018). As a

result, many of the fundamentals of the long-term preservation of digital materials in

art collections, such as methods for establishing secure archival storage, are now

relatively well understood and surmountable providing appropriate technological and

organisational frameworks are implemented.

While such developments have benefited the preservation of various forms of digital

media—by maintaining the integrity of the ones and zeros of digital information—the

problem of ensuring long-term access to the content that the bits represent is a much

harder problem to solve. In 2001, Howard Besser’s examination of “electronic art”

preservation identified a number of challenges presented by digital media artworks,

including difficulties in identifying their boundaries where they extend into the

surrounding technical environment (“the inter-relational problem”) and their complex

relationship with the technologies used in the playback of their stored form (“the

translation problem”) (Besser, 2001). Both implicate the obsolescence-induced

precarity of the complex systems constituting and surrounding such artworks as a

significant risk to continued access. For media types which are relatively clearly

bounded, such as digital video, considerable progress has been made towards

Ensom - Technical Narratives

24

understanding these issues. Detailed technical guidelines for preservation are in the

process of being established (IASA Technical Committee: Standards, Recommended

Practices, and Strategies, 2018), while recent research has begun to isolate granular

issues such as achieving consistent playback (Rice, 2015). For media with less clear

boundaries, such as software, our understanding remains in a rather less developed

stage.

Nonetheless, addressing the conservation of software-based art has become a

practical need for museums and other collecting institutions over the past decade,

and the foundations for a specialised area of practice have begun to emerge. With

important initial discussions occurring in events organised by universities and libraries

(Konstantelos et al., 2012, National Digital Information Infrastructure and

Preservation Program, 2013), the first museum-led events dedicated to the issue

soon followed: Technology Experiments in Art: Conserving Software-Based Artworks

in Washington in 2014 (Time-Based Media and Digital Art Working Group, 2014),

followed by TechFocus III: Caring for Software-based Art in New York in 2015

(Electronic Media Group, 2015). While tenets of digital preservation such as fixity and

redundant storage remain relevant to software-based art, a number of points of

divergence from file-centric approaches have emerged. Studies exploring the

medium-specific qualities of software have found that they tend to exacerbate such

risks in the face of certain technological change, resulting in both a faster onset of

obsolescence and a complicating of the identification and effective treatment of risk

factors (Falcão, 2010, Fino-Radin, 2011, Laurenson, 2013). This body of research

particularly emphasises the significance of the connection between software and its

technical environment both locally (on operating systems and supporting software)

and as it extends into external services and data accessed through the internet—

although stops short of offering solutions.

In another point of divergence from the preservation of media such as digital video—

which has been largely focused on file format migration—research on preservation

strategies for software-based art has favoured emulation. Emulation was originally

proposed by Jeff Rothenberg as a means of bypassing the continual “heroic effort”

demanded by migration (Rothenberg, 1995, Rothenberg, 2002), and proposes that

access to digital materials be maintained through the use of a layer of software which

translates instructions designed for one (obsolete) system into those understood by

another (contemporaneous) system. While Rothenberg’s proposal was criticised at

the time on the grounds of its focus on preserving functionality over the content

Ensom - Technical Narratives

25

represented by digital information (Bearman, 1999), when applied to software, these

criticisms hold less weight. Functionality, or the “ability of software to ‘do’ something”,

is, as Laurenson points out, one of the defining characteristics of software-based art

(Laurenson, 2013). We have thus seen a renewed interest in emulation over the past

decade, alongside the maturation of the tools required to implement it, and a number

of compelling demonstrations of its viability as a tool in the conservation of software-

based artworks (Lurk, 2008, Lurk, et al., 2012, Rechert, et al., 2013, Falcão, et al.,

2014). It is important to note that this ongoing engagement with emulation does not

preclude the value of other approaches. Although examples of published work on the

migration of software-based artworks are few, it has recently been demonstrated to

be an effective strategy for conserving internet artworks (Phillips, et al., 2017). In a

more radical departure from established approaches, it has been suggested that in

some cases accepting a degree of loss in the process of change might be necessary,

and that this might even serve to highlight the historical significance of technological

change (Guez, et al. 2017).

While the research highlighted above has undoubtedly pushed forward our

understanding of the conservation of software-based artworks, there is a noticeable

gap in the literature in relation to documentation. While several documentation-centric

projects pertaining to time-based media conservation have produced templates for

describing particular realisations of artworks (Phillips, 2007, V2_Institute for the

Unstable Media, 2003, DOCAM, n.d., Matters in Media Art, 2015), their suitability for

a medium which was relatively poorly understood at the time of their formulation

makes their value difficult to assess. Documentation of artwork identity lacks even

generic templates such as these. Despite an interest in certain frameworks such as

significant properties as a means of capturing such information, both within the

conservation of software-based art (Laurenson, 2013) and software preservation

(Matthews, et al., 2008), there is little evidence of their use in practice. Recent

commentary has suggested that this relates to ambiguity in the definition and

application of the significant properties concept (Dappert, & Farquhar, 2009, Yeo,

2010), and further work is required to understand whether the concept might be

operationalised in the preservation of software-based art, particularly in relation to a

relativistic perspective on conservation activities. Capturing documentation on the

nature of the changes (both material and conceptual) that occur during an artwork’s

life are even less well understood—likely due to the nascent status of the previously

highlighted forms of documentation, from which it logically follows.

Ensom - Technical Narratives

26

While the literature on the documentation of software-based art remains small, there

are two notable strands of recent research. The first draws on the established field of

software engineering, seeking to reframe its principles within art conservation as a

tool for analysis and documentation (Marchese, 2011, Marchese, 2013, Engel, &

Hellar, 2014, Engel, & Wharton, 2014). Engel and Wharton’s research on source code

documentation shows particular promise in its application to real collections. The

authors worked with a group of students at New York University to carry out the

analysis of source code for a number of software-based artworks from the collection

of the Museum of Modern Art (Engel, & Wharton, 2014). While the paper clearly

demonstrates the power of this approach, questions remain as to how practical this

kind of time-intense, specialised work is in relation to the limited resources of many

institutions, and what other methods of analysis might be utilised for works for which

source code is not available. Further work by Engel and Wharton suggests an

emerging practice of technical art history for software-based artworks may also build

on source code analysis (Engel, & Wharton, 2015), while evidence from other authors

indicates that the close analysis of compiled software may also offer insights (Adang,

2013). The conservator has traditionally had an important role in investigating the

material and process histories of artworks within the history of scientific conservation

(Hermens, et al., 2012), yet how conservators might engage with or produce technical

art history for software-based artworks in practice remains relatively unexplored.

A second strand of research can be identified in work that has sought to extend the

documentation of software beyond immediate technical concerns, and instead

consider the capture of contextual information. This has been explored particularly in

the preservation of video games (McDonough, et al., 2010, Lowood, 2013, Kaltman,

et al., 2014), where interactivity is key, and where the inherent ephemerality of

experiences (such as networked virtual worlds) prevents their stabilisation in any

material form. Related issues have been explored for internet art by Annet Dekker,

who develops a processual model for understanding the conservation of internet art

and which touches on many issues relating to documentation (Dekker, 2014). This

work has implications for understanding the ontology of an important category of

software-based artworks for which the identification of boundaries is challenging.

Even more significantly though, it points to the importance of documentation of

context and process as a means of establishing meaning for a medium likely to

experience change during the life of a work. Problems remain in how such research

might be operationalised by conservators, however, given the lack of formalised

models, and further work is required if we are to understand what kind of

Ensom - Technical Narratives

27

documentation materials might support this.

In summary, pragmatic strategies for the documentation of software-based artworks

remain poorly defined, as evidenced by a small body of literature devoted to its

challenges. Despite an increasingly sophisticated theory of conservation, alongside

a powerful set of technical tools, a practice of software-based art documentation has

been slow to emerge. A number of factors seem to have contributed to this. At a

fundamental level, there appears to be a lack of agreed upon terminological

frameworks for describing software-based artworks and their technical constituents

and the way in which they might be addressed and analysed. Furthermore, identifying

the significance of these constituents in relation to the artwork’s identity is fraught with

challenges regarding the ontology of the work, and would benefit from further

exploration in reference to real case studies. Finally, as strategies for preserving

software-based artworks have remained emergent, defining a practice of

documentation to support them has been difficult. With methods recently becoming

more established however, it seems like an appropriate time to revisit documentation

theory and reconsider what documentation might mean when supporting the

conservation of software-based artworks.

1.5. Rationale and Scope

In the previous section I identified a lack of practical and theoretical frameworks to

guide the creation of conservation documentation that might effectively support the

long-term care of software-based artworks. This research is concerned with

addressing this gap, and the first consideration is doing so is the identification of an

appropriate approach. Ultimately this research topic is inextricably linked to an area

of professional practice—art conservation—and so it seems immediately obvious that

this research should seek to contribute to this through the new knowledge generated

if possible. This points to the significance of a practice-led approach, which—as

opposed to a practice-based approach which would seek to carry out practice as

research and present the outcomes as original contributions—engages with practice

closely but focuses on creating original contributions through empirical research. It is

important to acknowledge how this impacts the dimensions of conservation theory

engaged with in this research. Most significantly, this research is limited through a

reliance on existing modes of practice—primarily occurring within museums—and

neither proposes nor extensively engages with approaches which are radically

divergent from this established perspective. Therefore, some elements of the

research will be normatively framed, and grounded in the assumption that the

Ensom - Technical Narratives

28

principles of a Brandian3 approach to conservation require modification rather than

reinvention. This is justifiable at this early juncture in the development of a practice of

software-based art conservation as we cannot, after all, hope to reinvent a field until

it is understood in relation to the suitability of existing modes of practice.

This research will therefore aim to develop research contributions with practical

implications for conservators of software-based art through an interrogation of the

characteristics of the medium and aspects of professional conservation practice. Two

fundamental theoretical gaps must be addressed initial, both of which serve to better

define the problem-space that is being addressed. The first, which is addressed in

Chapter 2, is an incomplete understanding of software as a medium—an ontologically

sound and scientifically grounded understanding of which is essential to its

conservation. The “significant difference” of software-based art, as Laurenson puts it

(Laurenson, 2013), is clear, but there remain questions over the nature of this

difference and how the technical characteristics of software might impact the way in

which we approach their conservation. Furthermore, there is need for further

investigation into the ways in which software can be used by artists (in terms of their

intent regarding the work) and how these might affect a potential treatment of the

media.

The second theoretical gap, which is addressed in Chapter 3, is a limited

understanding of the body of documentation which might support a software-based

artwork’s long-term preservation. Materials termed documentation might include a

multitude of descriptive and representational materials which are linked to a museum

object, event or other recorded phenomenon; such flexibility is desirable in dealing

with variability among artworks. However, while conservation documentation is

composed of multifarious documents and is unlikely to conform to any one standard,

well defined approaches may still provide a important baseline and means of

achieving best practice. Therefore, it is important we understand the purpose of

documentation in relation to the conservation activities that occur in the care of a

software-based artwork. There are approaches from the software engineering and

computer science domains which may be well suited to fill some of the gaps in this

area, and an attempt to consolidate these with art conservation approaches (a focus

3 Pertaining to the theories of conservation developed by Italian theorist Cesare Brandi,

whose place within the history of the theory of contemporary art conservation is introduced

by Hölling (2017).

Ensom - Technical Narratives

29

of this thesis) begins with the specification of a conceptual framework for

documentation theory and practice. Existing approaches also require consideration,

as suitable frameworks may well already exist given the several decades of research

and practice within the time-based media conservation field.

There are several areas which relate closely to the aims of this research, but for

practical reasons (relating both to the expertise of the author and time constraints)

must be considered out of scope. Software-based artworks may incorporate physical

components and so bring with them concerns over their gradual degradation and

eventual loss. They may also involve elements of performance and so require

consideration of staging and scoring, or the need for installation and so require careful

consideration of lighting and display equipment. While these might be important

considerations when addressing the conservation of a software-based artwork

holistically, they are considered largely out of scope of this thesis, in order to restrict

focus to addressing software and its unique challenges. Exceptions are made where

referencing these considerations is important to the overarching concept and artistic

intent of a piece, and for computer hardware as a physical component, as it is

inextricably linked to software.

Finally, it is important to note that this thesis is generally based on the premise that

the software-based art conservator (and the reader of this text) has not received a

higher education qualification in computer science, and as such terminology from this

domain is clearly defined throughout. While training in these areas may become more

commonplace among conservators in the future, such explanation and terminological

synthesis is important during a time of transition within the field. Collaboration with

computer scientists has been a recurring theme of recent research in the conservation

of software-based art (e.g. Engel, & Wharton, 2014, Dover, 2016, Rechert, et al.,

2016), particularly within museums, and is likely to remain an important and

necessary activity. The focus of this thesis lies in identifying the elements of technical

work which might form part of the conservator’s remit, while highlighting parts of the

process which may demand connection with software specialists.

1.6. Methodological Approach

In this research I have applied a hybrid methodological approach which combines

constructive research and case study research. A constructive research approach

was chosen as it is particularly well suited to research which seeks to develop

solutions to real-world problems and is designed to connect practical problems with

Ensom - Technical Narratives

30

existing theory (Lehtiranta, et al., 2017). Gordana Crnkovic, an advocate of

constructive research methods within software engineering, defines the approach as

follows:

“Constructive research method implies building of an artifact (practical, theoretical or

both) that solves a domain specific problem in order to create knowledge about how

the problem can be solved (or understood, explained or modeled) in principle.

Constructive research gives results which can have both practical and theoretical

relevance.” (Crnkovic, 2010, p.4)

The construction of an “artifact” is also the goal of this research—in this case a

pragmatic framework, grounded in relevant theory, to guide the application of

appropriate analysis and documentation methodologies to the conservation of

software-based art. Constructive research methodology is closely related to design

science research methodologies (Dresch, et al., 2015) which similarly seek to explore

how research may contribute pragmatic solutions rather than focus on explaining

phenomena.

Other related methodologies suitable for a practice-led research approach were

considered as an alternative to constructive research. Grounded theory, while

similarly fostering the iterative construction of theory alongside analysis (Bryant, &

Charmaz, 2007), was rejected due to its focus on explanatory theory production over

practical outcomes. Action research was also considered due to its applications in

research that aims to solve real-world problems (Stringer, 2013). However, the

methodologies focus on addressing the study of social groups and organisations

makes it unsuitable for application to the problem identified early in this: a lack of

knowledge about the technical characteristics of software as a component of

software-based artworks, their significance and the methods that might be used to

describe them. As discussed in Section 1.5, not taking such an approach excludes

the dimensions opened by relativistic conversation theory (as discussed in Section

1.4), particularly in relation to networks of care which may surround complex artworks

both inside and outside the institution. While this certainly excludes a potentially

interesting avenue of research, this can be justified at this formative point in the

development of a practice of software-based art conservation due to the need for a

well-defined technical basis on which to understand the medium in question.

Constructive research methodology has already found use in research from varied

domains including digital preservation (McGovern, 2009) and computer science

(Crnkovic, 2010) and as such suitable models for its use in this research already exist.

Ensom - Technical Narratives

31

Building on a methodology developed by Kasanen, Lukka and Siitonen in a

management research context (Kasanen, et al., 1993), Nancy McGovern applies a

constructive research approach to a digital preservation scenario and the

development a conceptual model (McGovern, 2009). I reuse the core of this

constructive methodology here, which McGovern characterises as having the

following stages:

1. “Find a relevant practical problem with research potential

2. Obtain a general and comprehensive understanding of the topic

3. Build an innovative solution (or construct)

4. Demonstrate that the solution works

5. Show the theoretical connections and research contributions of the solution

6. Examine the scope of applicability of the solution”

(from McGovern, 2009, p.64)

Stage 1 has been addressed in the 1.3. Rationale and Scope section in this chapter.

Chapter 2 and 3 build a comprehensive understanding of the topic, so addressing

Stage 2. The result of these two chapters will be referred to as a conceptual

framework, which can be defined as “the system of concepts, assumptions,

expectations, beliefs, and theories that supports and inform your research” (Maxwell,

2005, p.39). This conceptual framework incorporates a study of the use and potential

significance of software as a medium, and the implications of this material choice for

conservation (in Chapter 2). The other part of the framework, incorporating knowledge

generated from the first, is an examination of documentation theory and its

connections with documentation practice in art conservation (in Chapter 3).

Due to the close connection of this research to conservation practice, interviews with

those engaged with professional activities or research projects related to the care of

software-based artwork collections were undertaken, to help further refine the

conceptual framework. The aim of these interviews was to develop a richer

understanding of an area of study which, as practice-driven, is not always able to

publish with the frequency of a traditional academic disciplines. The interviews were

undertaken using a semi-structured approach and were designed to gather

respondents’ perspectives and priorities relating to the documentation of software-

based art. These interviews are not a core part of the research methodology

Ensom - Technical Narratives

32

employed here, and could not be considered comparatively as part of a qualitative

analysis. Rather, they act as an extension to the literature review underpinning the

development of the conceptual framework in Chapters 2 and 3. The individuals

interviewed were: Deena Engel, Ben Fino-Radin, Mark Hellar, Joanna Phillips, Klaus

Rechert, Eric Kaltman, Jon Ippolito and Gaby Wijers. Ethical issues relating to

interviews and informed consent are discussed in Section 1.6.1 below.

Stage 3 of McGovern’s constructive research methodology is addressed in Chapters

4, 5 and 6. Here, specific problem areas as identified in the conceptual framework

chapters, are addressed through the construction of appropriate solutions through the

reframing and extension of existing theoretical frameworks from relevant domains of

knowledge. These solutions are then tested for their compatibility with practice

(fulfilling Stage 4) within the relevant section, using evidence from a set of case study

artworks from the Tate collection. The data that provides this evidence is derived from

the in-depth study of these case studies using a combination of direct technical

analysis at the software and hardware level, examination of secondary materials

(such as existing documentation and archival materials) and research into their

production and material histories. These case studies are referred back to continually

throughout the text, and to ensure a basic understanding of the artworks it may be

useful for the reader to consult the summary descriptions and images in Appendix I.

This research was original formulated as a collaboration between King’s College

London and Tate, and was predicated on the opportunity to work directly with the

latter’s collection in addressing the research questions formulated. As such, this

research is a direct response to challenges currently faced by conservators at Tate.

There are currently ten software-based artworks in the Tate collection, from which a

set of six were selected based on their diversity in technological platform, construction

and behaviour (and so being meaningfully comparable and somewhat representative

of the diversity of the medium). The other four artworks share characteristics and

were determined to be unlikely to provide sufficient additional insight to warrant

detailed in-depth study. The complete set of case selected are presented in Table 1

below.

Title Artist Year

created

Technical

characteristics

Operating

system

Core

technologies

Becoming Michael 2003 Wall mounted

monitor displaying

Windows XP Shockwave

Director and

Ensom - Technical Narratives

33

Craig-Martin dynamic 2D

assemblage

Lingo script

Brutalism:

Stereo Reality

Environment 3

Jose Carlos

Martinat

Mendoza

2007 Sculpture with

mounted printers

and web search

software

Linux (Ubuntu) Java and

MySQL

Colors Cory

Arcangel

2005 Video processing

software

Mac OS X Objective C /

C++

LiMac Museum

Shop

Sandra

Gamarra

2005 Actively maintained

website with online

shop

Linux (CentOS) MySQL, PHP,

HTML and

CSS

Sow Farm

(near Libbey,

Oklahoma)

2009

John Gerrard 2009 Real-time 3D

simulation

Windows 7 Quest3D and

HLSL

Subtitled Public Rafael

Lozano-

Hemmer

2005 Interactive

installation

Windows XP

(via Mac OS X

Bootcamp)

Borland Delphi

Table 1. List of the software-based artwork case studies examined in this thesis, with basic

descriptive information for each. See Appendix I for further descriptive details.

The case studies are integrated with the constructive research methodology, primarily

through their use in demonstrating the viability of proposed solutions at Stage 4 in the

methodology. Solutions and strategies developed during Stage 3 are tested against

case studies in each case and are presented as supporting evidence through detailed

account embedded within the relevant section of each chapter. The majority of these

artworks were already well studied prior to this research—research by Pip Laurenson,

Patricia Falcão and others at Tate precedes mine, and generated a considerable

amount of documentation and insight. Both their documentation and their first-hand

accounts of experiences with the works has considerably informed my examination.

In some cases, and where a gap was identified in existing documentation, artists (and

sometimes their collaborators) were consulted or interviewed regarding specific

issues and questions.

In the final chapter of the thesis (Chapter 7), I discuss the overall research

Ensom - Technical Narratives

34

contributions to theory and practice (Stage 5) and reflect on the wider applicability of

the framework developed (Stage 6).

1.6.1 Legal and Ethical Considerations

For artwork related materials (understood here in relation to sets of physical and

digital components), access was granted in accordance with institutional policies on

research using collection materials, including my own abidance by Tate’s Code of

Good Practice in Research. In cases where the physical components associated with

artworks were accessed, this was always carried out in collaboration with time-based

media conservation staff at Tate and steps taken to ensure that such interactions

would minimise impact on the objects. For all digital materials access was granted

only on secure workstations within Tate property using temporary research copies.

No interventions or treatments were carried out on any artworks or associated

materials during this research.

In examining artwork and documentation materials typically closed to general

audiences, ethical considerations were raised by this research in relation to the

intellectual rights of the artists whose works were examined. Such materials were not

shared with others during the research and, as stated above, security was ensured

by accessing materials only on Tate property using secure workstations. Some

information or data derived from the analysis of artwork materials is incorporated into

this thesis as evidence, as are several source code fragments. Where these uses

have occurred, they will be approved with the artist (or their representative) prior to

general access being granted through thesis deposit/publication or otherwise

redacted. Additional considerations were raised through engagement with techniques

for software reverse engineering, which could reveal information that artists had not

intended to share. Where reverse engineering tools were employed during this

research, they were used only in cases where materials equivalent to those being

reverse engineered were already accessible as part of the artwork’s documentation,

or where they did not compromise intellectual property.

For the interview series, ethical approval was gained from King’s College London’s

Ethics Review. In each case, consent was granted by all participants that their

responses could be used in the context of this research and a signed consent form

stored. The option of requesting that data not be used beyond this project was also

offered and will be respected for those individuals.

Ensom - Technical Narratives

35

CHAPTER 2

SOFTWARE AS MEDIUM AND MATERIAL

2.1. Chapter Outline

In Chapter 1 I identified the need for a technically informed understanding of the use

of software as a medium and material of conservation concern, as the first part of a

conceptual framework for further refining the problem space this thesis seeks to

address. I also presented a working definition of software-based art as ‘art for which

software is the primary artistic medium’. In this chapter I explore the two key concepts

in this definition—the characteristics of software as a material (defined here simply

as the substance of software) and its significance as an artistic medium (defined here

as something which is used as a means of artistic expression)—and consider how

they might together impact conservation. I clarify both definitions further within the

chapter.

Despite its limited treatment within art conservation, the study of software has

considerable precedent from across a number of disciplines—therefore this chapter

takes an approach of robust review and synthesis of existing literature. It also

incorporates information gathered during the examination and analysis of a number

of the case study artworks. In the first portion of the chapter, I examine the technical

characteristics of software, taking a bottom-up approach isolated from concerns

related to artistic use. Based on these findings, I develop a model of software

Ensom - Technical Narratives

36

performance which generically describes the process that occurs behind the

experiential qualities of software. In the next section I explore the ways in which

software has been used by artists, how they relate to specific genre terminology and

our conception of software-based art as a category of artistic works. Building on the

knowledge developed in the previous sections, I then consider how the unique

qualities of software as a medium and material choice may impact our attempts to

conserve it.

2.2. What is Software?

Definitions of software found in art conservation and software preservation literature

are various and at times confused. Software might be talked about as a means of

rendering other digital objects (for example, video player software to play back a

digital video file), but in other cases software is itself the digital object of concern.

Code is also a frequently referenced concept, yet this term has multiple related

meanings within computer science. In this section I will explore the meanings of these

terms and connect software as an observable phenomenon with its underlying

technical foundations—a process which, I propose, will elucidate important

characteristics of software as a material of conservation concern.

While this section deals with well-understood concepts within the computer science

domain and attempts to generalise them, it also takes a perspective on software

which is coloured by the cultural heritage context of this research. There are a

multitude of other perspectives on software. Software engineers for example, may

consider software as a product to be designed, developed and packaged, in order to

solve a problem. Mathematicians on the other hand, might approach software as a

logical construct, understood within computational theory. The particular viewpoint

taken here is that of a conservator engaged with the care of a cultural heritage

collection. This perspective is ultimately experience-centred—software is considered

a phenomenon which has been experienced and potentially could be experienced in

the future.

2.2.1. Defining Software

The definition of software in Butterfield and Nogondi’s Dictionary of Computer Science

presents a pragmatic starting point for this discussion and its length permits the

clarification of a number of important concepts. I consider this definition in three parts.

The first of these parts defines software as:

Ensom - Technical Narratives

37

“A generic term for those components of a computer system that are intangible

rather than physical.” (Butterfield, & Ngondi, 2016)

This definition highlights the non-physicality of software: it is not a phenomenon that

we are able to touch directly. This points to the significance of interface and the layers

of abstraction through which humans interact with the physical layer of computer

systems. This idea is important in understanding the relationship between software

as experience and software as process—something I return to in Section 2.2.3.

The use of the word intangible to characterise software is also problematic, in that

while it is a necessary condition, it does not offer sufficient contrast with other kinds

of digital object that we might not consider software. After all, any digital object—be it

a plain text file containing ASCII values or a JPEG raster image—might be considered

just as intangible. This observation hints at an underlying ambiguity in the relationship

between software and data, which can make drawing a clear distinction challenging

(Suber, 1988, Oberle, et al., 2009). Software might require data sources in its

operation and in some cases might be seen as part of the stuff of software—for

example, the database underlying a collections management system or the graphics

assets which make up a game environment. At the same time, software might be

viewed as data—the code that makes up software is stored as discrete binary values

in much the same way as any other digital object. Both are valid viewpoints—

therefore, coming to a workable distinction between software and data comes down

to selecting an appropriate level of granularity at which to work.

The second part of the definition helps with this selection by introducing a slightly

more specific definition of software:

“It is most commonly used to refer to the programs executed by a computer system

as distinct from the physical hardware of that computer system, and to encompass

both symbolic and executable forms for such programs.” (Butterfield, & Ngondi,

2016)

This statement provides a basis for software as a countable digital thing by

introducing the idea of software programs, which Butterfield and Ngondi define as a

“set of statements that [...] can be executed by a computer in order to produce a

desired behaviour from the computer” (Butterfield, & Ngondi, 2016). The software

program is the level at which I will primarily address software within this thesis. In

accordance with the ontological model of software proposed by Oberle, Grimm and

Staab (Oberle, et al., 2009), software will be considered itself a subtype of data,

Ensom - Technical Narratives

38

distinguishable through its potential to manifest as a sequence of computational

activities and itself manipulate data. As with Pressman and Maxim’s definition of

software (Pressman, & Maxim, 2014), it may also incorporate non-program data

where it forms part of the operation of the software.

Several other important concepts are introduced in this part of the definition: software

programs are executed by a computer and they have multiple “forms” or

representations. If programs are executed—that is, read and acted upon by a

computer system—they must therefore be in an otherwise latent form, until they are

called into action by whatever agent is able to trigger them. This latent form consists

of encoded instructions, which the host computer system is able to interpret and act

upon in some way. The symbolic form referenced in the definition is a representation

of the software which the host computer system is not able to interpret or act upon,

such as source code. The importance of this distinction and the transformation

between representations is discussed further in Section 2.2.2.

This part of the definition also makes clear a further distinction between software and

hardware: the physical components that make up a computer system. This distinction

poses its own ontological challenges. Hardware components often contain deeply

embedded software, known as firmware, without which they would be rendered non-

functional. This kind of software is hard to separate from its specific physical carrier.

Furthermore, hardware can be replaced with software through processes such as

emulation. There has been historical debate over the validity of the distinction

between software and hardware among philosophers of computing (Moor, 1978,

Suber, 1988, Duncan, 2009). In this thesis, I adopt Duncan’s position that the

separation is valid when framing software programs as a unit of grouping for

computational functions which are actualised by computing hardware (Duncan,

2009). This position accommodates firmware and allows for hardware to be non-

physical, in cases where it is emulated.

The final part of the definition reveals a typological distinction within software:

“A distinction can be drawn between systems software, which is an essential

accompaniment to hardware in order to provide an effective overall computer

system (and is therefore normally supplied by the manufacturer), and application

software specific to the particular role performed by the computer within a given

organization.” (Butterfield, & Ngondi, 2016)

This highlights the separation of custom software designed to carry out a specific

Ensom - Technical Narratives

39

purpose (application software) from that which forms the computational environment

essential for supporting it (system software). The notion of environment is crucial to

understanding the requirements for the long-term preservation of software, as their

reconstruction provides the contingencies necessary to enable its successful

execution. These ideas are developed within a conceptual model of software

performance in Section 2.3.

2.2.2. Software Representations and Opacity

In the previous section, I introduced the idea that software can exist in multiple

possible representations and introduced the fundamental distinction between source

code (a symbolic representation) and executable representations. Source code

typically refers to the human-authored expression of a software program, symbolically

expressed using syntactically valid language but not directly executable by a

computer processor. This source code can be transformed into something executable

by a processor through the process of compilation, or through the action of an

interpreter (an additional software component) which converts the source code into

machine actionable instructions on-the-fly. In practice, source code is not the only

component in the complex processes involved in the creation of software, which can

involve the use of development environments, automation and reusable third-party

components. Within this thesis, I will collectively refer to these as source materials.

Executable programs (sometimes called binaries) are the transformed, machine

actionable products of source code (or source materials)—now represented in a form

in which a computer processor can carry out operations based on the encoded

instructions. Executable programs are also made up of code, but this representation

takes the form of a lower level language designed for machine execution rather than

human readability. This may be machine code (which is encoded in binary) at its

lowest level, or in other cases an intermediate representation (such as bytecode)

which requires interpretation by supporting software in order to be executed (e.g. Java

or PHP) (see Figure 1 below). In practice, compiled software is not necessarily made

up of just executable code—the code may also be accompanied by data, libraries and

other components which are called upon as the program executes. For convenience,

I will refer to this collection of digital components as a software super-object4.

4 From the Latin root of super, meaning above or on top of.

Ensom - Technical Narratives

40

Figure 1. Diagram of transformations between software representations, indicating the

potential for code to be compiled to machine code or an intermediate representation which

must then be interpreted.

The structure of the software super-object which results from the process of compiling

source materials varies considerably. In some cases all of the required functionality

is packaged within a single executable file, which can then be run on the target

platform with little additional configuration. In some cases, features and requisite data

may be distributed among a number of files within an application directory. For more

complex software, additional supporting software must be managed alongside the

program and correctly configured within the compilation (or execution) environment

for the software to function. Taking libraries (packages of resources another program

can utilise in its execution) as an example: static libraries are accessed during the

development of the software, and the necessary parts incorporated into the binaries

when the software is compiled. Runtime libraries on the other hand, are accessed on-

the-fly as the software is executed and must be included in the package of binaries.

Compilation is usually carried out with a particular platform (typically an operating

system) in mind—therefore the format of the executable varies depending on the

platform targeted. Windows Portable Executable is the primary format for Windows

family operating systems for example, while Mach-O is the dominant format for

MacOS operating systems. These executable formats cannot be considered file

formats of the same kind as data file formats (for example, MP3 audio files or PDF

documents). The latter type is generated to conform to a file format specification that

allows them to be decoded, independently of platform, by software. Software

programs are written for decoding by hardware (usually via an operating system), and

Ensom - Technical Narratives

41

contained within a file structure which ensures they can be loaded by the specific

target platform.

Symbolic and executable representations can be considered on a spectrum of human

readability, which I term opacity. Source code is relatively transparent: this code is

intended to be written by humans and so it is possible to read the code and interpret

what it does.5 Compiled software on the other hand, is relatively opaque. Its inputs

and outputs are usually apparent, but the actual mechanisms of the software—the

sequences of low-level operations such manipulation of data or arithmetic

calculations—are hidden from view, rendering the software (for practical purposes) a

black box. Even if the machine code expression of these mechanisms were to be

examined, its interpretation would be impossible for those without specialist

knowledge, and time-consuming for those with. For most users of software, what the

program is doing is hidden beneath the surface—be that behind screen output or

some other manifest behaviour. Where there is no transparent representation of the

software program available, then, it is likely to be challenging to work out what that

software is doing, and as a result to document and debug it. Finding ways to manage

opacity therefore becomes an important consideration when working with software—

a topic I return to later in this chapter.

2.2.3. Abstraction and the Materiality of Software

While the opacity problem introduced in the previous section can make understanding

software difficult, its cause is fundamental to the way in which humans interact with

computer programs: detail is hidden so that the user can focus on what is relevant in

the given context, through a process known as abstraction (Guttag, 2013).

Programmers code in, and compile from, high-level programming languages (as

opposed to machine code or the closely linked assembly language) so that they can

focus on writing a program to achieve a goal without including the large amount of

instructional detail required to carry out basic operations. Email clients present a

button that a user can engage to send an email, rather than have them deal directly

with the appropriate email protocols. While the practical benefits of such uses are

clear, the downside to the prevalence of abstraction is that in most cases those who

5 There can be variance in the degree to which source materials are transparent, particularly

in relation to whether the code has human authored comments, the programming approach

taken and whether the full code base is available. This is an important issue in relation to

software documentation which I discuss in depth in Chapter 5.

Ensom - Technical Narratives

42

engage with software (including those that create it) are to some extent removed from

the concrete realities of the computational processes that underlie their operation.

Thoroughly addressing the technical characteristics of software therefore involves

grappling with how any one view on the software might be presenting abstractions

from technical detail.

Nick Montfort proposed the term screen essentialism to describe the contrast

between contemporary readings of textual works of new media (such as interactive

fiction), which are focused on screen outputs, and the early days of computing in

which interaction with computers was largely paper based (Montfort, 2005). Montfort

argues that the reader’s connection to the “formal workings” of such programs has

been lost through a focus on screen outputs. The punch cards of early computer

systems for example, bore a clear physical signifier of their connection to the stored

information: the holes themselves. The digital document as rendered by a document

reader, on the other hand, bears little resemblance to its underlying representation as

code. The “screens” of screen essentialism are not always involved in the use of

software, yet a similar phenomenon can still be observed; the perceptible traces of

formal workings are lost in the artifice of the software’s manifestation. I propose

experiential essentialism as a more general term for this phenomenon, which

encompasses any tangible action of a software-based artwork. The primary use of

the concept for this research, is to contrast engaging with a software-based artwork

as a tangible phenomenon with the deeper (and typically more technical) level of

engagement required of the conservator.

These issues relate closely to notions of software’s materiality—that is, the

significance of its basis in physical substance. As something which might be

considered intangible, is it possible for software to possess a materiality? Matthew

Kirschenbaum, building on the ideas of Montfort, proposes a two-part conception of

materiality for digital media: formal and forensic (Kirschenbaum, 2012). Formal

materiality, much like Montfort’s “formal workings”, concerns an interrogation of the

digital object and its environment, below the screen itself but at a level still removed

from any physical trace. This offers an extension of the concept of materiality beyond

physical substance, to also encompass computational abstractions, such as the

interface of an operating system or the textured surface of a 3D object. Formal

materiality is further complicated when applied to software due to the status of the

software super-object as manifold: each sub-component of the super-object presents

different formal qualities and could be considered materially distinct. Forensic

Ensom - Technical Narratives

43

materiality on the other hand, concerns the potential for uniqueness among all digital

things, if they are examined to a low enough level of detail. All computational

phenomena are ultimately rooted in a physical substrate of some kind, be that the

magnetisations of hard disk platter or the charged capacitors of a random-access

memory chip. These are potentially “individualizing” physical traces in the study of

digital artefacts (Kirschenbaum, 2012).

Rigorous study of software as a material then, necessitates understanding the levels

of abstraction at which it is and has been engaged—by both creator and user (or

viewer)—and how they interact. I will end this section by presenting a model of the

levels of abstraction at which we might need to address software in a conservation or

digital preservation scenario. While preceding the work of Montfort and

Kirschenbaum, Kenneth Thibodeau proposed a tripartite model for understanding the

different levels of interaction we have with digital objects (Thibodeau, 2002) that

retains relevance in light of their conclusions. Thibodeau suggests that digital objects

can be understood as having properties addressable at three different levels:

physical, logical and conceptual. These levels are described in Table 2 below,

accompanied by my own examples of how their principles might be applied to

software.

Digital

object level

Definition (adapted

from Thibodeau, 2002)

As applied to software

Physical The object as an

inscription of signs on a

physical medium.

The physical representation of the software on a

physical substrate, such as the sequential patterns

of magnetisation on the surface of a hard disk drive

platter to represent the binary bits that make up the

software program.

Logical The object that is

recognised and

processed by software.

The symbolic representation of the software that is

machine actionable, such as executable machine

code, compilable source code, or a technical

interface made available to another software

system.

Conceptual The object as it is

recognised and

understood by a person.

The software as a system of inputs and outputs

which can be perceived by an agent (usually a

human), such as the modulated light emitted by an

LCD display or the response of a set of files to a

Ensom - Technical Narratives

44

drag-and-drop action via an input device.

Table 2. Representation of Kenneth Thibodeau’s properties model for digital objects, with

original examples provided to demonstrate how its principles might be applied to software.

I propose that these three levels are one way in which we can understand an

expanded notion of the materiality of software; one that helps us in appropriately

addressing questions relating to the conservation of software-based art. Sometimes

the appropriate level at which to work in order to answer a question relating to a

software program might be clear. Storage concerns and maintaining the bit-level

integrity of files would be addressed primarily at the physical level. Connectivity to

another software system would be understood through technical interfaces

addressable at the logical level. In other cases, however, there will be a need to

navigate connections between the levels. The experience of pressing a button on a

website, for example, is one which is tactile at the conceptual level, while also

providing computational instruction at the logical level which might flow into bit-level

change at the physical level. The qualities of a rendered image are understood by a

viewer primarily on the conceptual level, yet their formation requires addressing the

processes occurring at the logical level. Understanding software holistically,

therefore, requires operating at the boundaries between different materialities.

2.3. Software Performance Model

While the physical and logical layers of the model introduced in the previous section

are persistent, the conceptual layer is ephemeral: when software is not being

executed, it is impossible to address its conceptual properties directly. As described

earlier in the chapter, execution is the point at which latent software becomes

actualised, and the host computer system begins to process and act upon the

encoded instructions for as long as they specify or until the process is terminated.

This process yields the manifest behaviours of the software and in turn, the tangible

characteristics of a software-based artwork.

The ephemeral nature of this process and the instructional nature of the code invite

analogies to performance. This is not a new idea in the study of digital media: Lev

Manovich introduces a similar notion in Software Takes Command (Manovich, 2013).

Using the phrase “software performances” (p.33), Manovich emphasises how the

“media experience constructed by software usually does not correspond to any single

static document stored in some media” (p.34) but rather is subject to the design of

the software it is viewed with. While Manovich’s focus here is on software as a means

Ensom - Technical Narratives

45

of rendering other files, the focus of this research is on software (or rather, the

software super-object) as the source of the performance in and of itself. As a result,

the focus shifts from the experience constructed by software in relation to a data

object upon which it acts, to one constructed by the software itself and its host

execution environment (itself composed of software and hardware). In this case then,

the host computer system is the performer and the software its instructions. To further

extend the analogy of theatrical performance: the performance involves more than

just an actor (the execution environment) and a script (the code)—it also involves

props (data sources). The form of these data sources may be various, ranging from

resources packaged with a software program (e.g. graphics assets used in a user

interface) or external services (e.g. geolocation data fetched via a web API).

This idea of software as performance relates closely to Clifford Lynch’s formalisation

of “experiential” digital objects, which emphasises a shift in the focus of digital

preservation “from the bits that constitute the digital object to the behaviour of the

rendering system” (Lynch, 2000, p.36-37). A formal model to describe these kinds of

performance was initially created by the National Archives of Australia (NAA) (Heslop,

et al., 2002) in the context of digital records. This model specifies a sequence of

events: source, process and performance. Within the NAA model, a source is a “fixed

message that interacts with technology” (p.8) and must be combined with technology

for it be of meaning to a user. The process is “the technology required to render

meaning from the source” (p.8-9). Together, the source and process combine to

create a performance, which a user (a person or machine) is then able view. The

experiential qualities of a digital record are therefore essentially ephemeral, and its

qualities contingent on the hardware and software processes involved in its

performance. As later demonstrated during the InSPECT research project, this model

can provide a framework for understanding how the properties of digital objects are

not inherent, but rather the result of a process of interpretation and rendering (Knight,

2009).

The NAA model was first applied to software by Matthews, Shaon, Bicarregui and

Jones (Matthews, et al., 2010). This usage adapted the model to apply to “software

products”, a term which the authors use to refer to programs designed for the

playback and processing of data—thus framing software as a means of creating of a

“data performance”. While software programs (including all the case study artworks I

am examining) typically do involve an element of data processing, the structural and

conceptual relationship between software and data may vary considerably.

Ensom - Technical Narratives

46

Furthermore, for software-based artworks, software is the medium of creative

expression in and of itself—not simply a tool for rendering. Therefore, the original

NAA model seems a more suitable starting point for a model of software

performances that can be applied to software-based artworks.

An adaptation of the NAA model is presented in Figure 2 below. In this version of the

model, the “Researcher” element has been removed and bounding boxes have been

added to delineate two distinct phases to the performance: source and process exist

within an execution environment, whereas the performance occurs externally of this

in a performance environment. While this model is relatively simple and makes

concessions regarding the actual complexity of its elements (for example, the source

element may be made up many interdependent components), it provides a base on

which to build within this thesis.

Figure 2. Visual representation of the software performance model, adapted from the

National Archives of Australia’s (NAA) performance model for digital records. Coloured

boxes indicate the components of the model, while grey boxes indicate the environment

within which they exist or occur.

The most immediate practical implication of this software performance model is that

we must consider whether each execution of a software program has the potential to

be different. While the instructional nature of software might imply that there is limited

room for interpretation, there are two reasons that the results of computational

processes might vary. The first is simply that the instructions themselves may

introduce randomness to the performance, through for example, an algorithm that

creates probabilistic behaviour. The second is that, while the process might follow the

precise logic of the instructions, it can only act within the capabilities of the hardware

and software environment in which it executes. The power of a computer system’s

hardware for example, might result in the rendered output of a program being

generated at a visibly slower or faster rate. Therefore, the precise components of the

Ensom - Technical Narratives

47

system and their configuration may also have a significant impact on the nature of the

performance and therefore the human experience of software.

In the context of this research, the software performance model must also be

considered in relation to how the artwork as a whole is experienced—software may

only be a part of the works material constituents. Pip Laurenson argues that time-

based media artworks should be considered “installed events”, realised as part of a

two-stage process (Laurenson, 2006). Laurenson builds her argument using the

theories of Nelson Goodman, who set out a distinction between autographic and

allographic artistic works in Languages of Art (Goodman, 1968). Autographic works

are one-stage works, such as a painting, wherein their replication does not result in

an authentic realisation of the work—it could only be considered a forgery).

Allographic works are two-stage, such as a musical composition, the authenticity of

which resides in its score—thus requiring enacting (with potential degrees of

variation) each time it is realised. Any performance of an allographic work can be

considered essentially authentic. Laurenson uses this distinction to explain how

works which are realised in two phases, such as time-based media artworks, demand

careful consideration of acceptable parameters of change between installations

(Laurenson, 2006).

In a paper presenting an approach to the documentation of time-based media

installations developed at the Guggenheim, and building on Laurenson’s theory,

Joanna Phillips points out a persistent terminological confusion over the label for an

occurrence of a time-based media artwork in conservation literature (Phillips, 2007).

The terms Phillips highlights include “manifestation,” “realization,” “materialization,”

“representation,” and “instance”. It is useful to consider Brian Castriota’s

crystallisation of the type-token distinction as the forbear of the autographic-

allographic divide: an occurrence of an artwork is a token to the artwork’s type

(Castriota, 2017). There is a common philosophical basis in related terminology then,

the broad applicability of which might explain its proliferation. Realisation is given

preference within this thesis as it emphasises the processual nature of tokenisation,

while maintaining a link with the phrasing used by Laurenson—other similar terms are

largely avoided.6

6 “Manifestation” and “materialisation” (the latter of these is rather infrequently used in the

literature) are not preferred as this language implies a physicality to the token. “Instantiation”

is also avoided, as it has distinct meanings in computer science (particularly object-oriented

Ensom - Technical Narratives

48

The significance of this term in relation to the software performance can be further

clarified using concepts from formal ontology (Spear, 2006). A realisation is an

occurrent entity, in that it has temporal parts and exists only partially at any given

point in time. Most of the components of a realisation, on the other hand, are

continuant entities, in that they have no temporal parts and are persistent through

time while maintaining their identity. However, while a software super-object or a

particular projector might be examples of continuant entities, the software

performance itself, much like the realisation, is an occurrent entity. If we see both

software and the artwork itself as essentially temporal and performative, how do these

two levels of performance relate to each other? Laurenson briefly considers this

relationship between the media itself (with an emphasis on moving image) and the

larger realisation of the artwork. She concludes this by stating that:

“An element of indeterminacy is central to the idea of a work being performed, and

this indeterminacy is not present in the playback of media but is present in the act of

installing an installation.” (Laurenson, 2006, para. 28)

While there are degrees of difference in the level of indeterminacy, recent research

suggests that contrary to this assertion, playback of media such as a digital video

does in fact have an element of indeterminacy as a result of contingency on the

features of the playback system used (Rice, 2015). Can software be said to have a

similar (or analogous) contingency? Evidence from research by Agathe Jarczyk into

the emulation of Cory Arcangel’s Super Mario Clouds, indicates that the visual output

of the software employed by Arcangel has a level of contingency on its execution

environment—in this case different NES console emulations give slightly different

results (Jarczyk, 2015). Whether this might have wider applicability (particularly

outside of an emulation context) is unclear from existing research. In the next section,

I will argue that the key to addressing this may lie in the relationship between software

and the technical environment in which it is executed.

2.4. Software and Environment

programming) and information science (in the construction of representations of knowledge).

“Iteration”, Phillips choice for the Guggenheim documentation model, is contextually useful,

but implies lineage through time and progressive change which may not always be

applicable. Finally, “representation” does not suitably describe an artwork performance, as

any individual token could be considered authentic rather than representational.

Ensom - Technical Narratives

49

In this section I examine the composition and boundaries of the software super-object,

particularly its close relationship with the technical environment in which it is

executed. There has been a tendency to characterise software-based artworks as

complex digital objects in digital preservation research (e.g. Enge, & Lurk, 2014;

Konstantelos, et al., 2012, Rechert, et al., 2013). Given that “digital object” is generally

defined as one or more bit sequences (CCSDS, 2012, anon. The InterPARES 2

Project Dictionary, 2014), the portion of the software super-object which resides in

digital files would certainly seem to fit within this definition. However, the ideas of the

software performance and potential indeterminacy introduced in the previous section

indicate that the situation may be more complex than this. This is important for

purposes of preservation because we want to be able to identify how a particular

software performance is achieved and perhaps reproduce that software performance.

Compiled software programs or binaries7 were introduced earlier in this chapter as

the executable representation of a software program, as opposed to a non-executable

representation such as source code. The basis of a software performance is often

more complex than a single computer program however, and I am using the term

software super-object to describe the set of binaries and associated data which form

the source components of the software performance model introduced in the previous

section. More concretely, the software super-object can typically be understood as

comprising digital files structured and linked in some way which is meaningful to the

host system when the software is executed. In some cases locating these resources

at time of execution (or runtime) may involve using operating system functionality

(system path calls) while in others it may use the location of the binaries as a relative

point from which to traverse the file system. While directories are not a meaningful

indication of the reality of file storage media (directory systems are an abstraction of

these structures to enable easier file management), it is sometimes helpful to focus

on the collection of files contained within a directory as the object of preservation. A

compressed bundle (e.g. a ZIP or tarball file) of this application directory is a common

way to distribute software over the internet, while software installers contain

instructions to establish appropriate directories and any necessary references in a

location in the host system. As I will go on to demonstrate, limiting engagement to

this level is unsuitable for effectively managing software-based artworks in the long-

7 Another related term is ‘application software’, which is used in contrast to ‘system software’

to distinguish user-oriented and support-oriented software. The distinction is difficult to apply

to software-based artworks and their complex ontologies, so is avoided in this thesis.

Ensom - Technical Narratives

50

term. This is because the process element of the software performance model

transcends the software super-object that it takes as source, by employing the

constellation of interconnected components that make up the technical environment

in which the process is launched.

Determining the extent to which a software super-object can be moved between

technical environments while maintaining the characteristics of a software

performance involves many variables. These variables can be understood in relation

to the components that form the technical environment, and their individual

configuration. In examining the software employed in the case study artworks

examined within this thesis, we can identify certain recurring types of components

that make up these environments. These components are visualised in Figure 3 and

described in further detail below.

Figure 3. Representation of the generic structural components of a technical environment

consisting of two linked computer systems (the smaller computer system is simplified for

clarity, but would also contain components). Coloured bounded boxes indicate component

layer types (description can be found in the main text), while grey unbounded boxes indicate

environment types. Dotted lines indicate technical interfaces between environments.

Ensom - Technical Narratives

51

As illustrated in the diagram, the component layers that make up a technical

environment can be divided into those forming software and hardware environments

respectively. Data exchange can occur between any component and that of another

computer system, provided a suitable interface is available. The software

environment is composed of four possible component types:

● Software Super-Object: A subset of software consisting of binaries and data

assets which perform some function or purpose. This component is a

simplification of what may be a very variable structure.

● Supporting Software: Other software components which support the

function of the software super-object, including (but not limited to) runtime

libraries, runtime environments, APIs and databases, where these are not

considered part of the operating system.

● Operating System: A specialised form of software supporting the execution

of software programs and communication with hardware and other

components. An operating system is usually composed of a kernel—the

primary control system—and supporting interfaces, frameworks and services.

● Device Drivers: A specialised form of software which supports

communication between software, operating system and hardware.

In practice, some of these layers may mesh very closely. Some device drivers, for

example, are a core part of an operating system to enable access to generic

hardware.

The hardware environment has two components types:

● Firmware: A form of specialised software which is stored in hardware and

provides core functionality. Despite firmware being software, its inextricable

link to hardware means it should be considered part of the hardware

environment. Firmware may not always be present on hardware.

● Hardware Components: The physical components that provide individual

functionality and when assembled make up a computer system.

Technical interfaces exist between hardware and software environments. These

interfaces separate the software super-object from the specifics of hardware to some

degree, meaning that in many cases a specific hardware component can be swapped

Ensom - Technical Narratives

52

for other similar hardware without affecting the software performance. Furthermore,

hardware may be emulated using software, at which point it becomes a part of the

software environment. In practice this means that in many cases making exchanges

in the hardware component layer may have relatively little impact on the software

performance, providing sufficiently generic hardware has been used (Rechert, et al.,

2016). The more likely areas of influence on the software performance result from

connections between the software super-object and other components in the software

environment. Connections of this kind can be referred to as dependency

relationships.

The term dependency is sometimes used in a programming context to describe the

internal relationships within program code, but is here used to refer strictly to external

dependency relationships. This also excludes dependency relationships between

digital objects within the software super-object, which are links established within the

code. Digital preservation researcher Klaus Rechert has developed a typology for

dependencies based on their relationship with the software program component of a

software-based artwork (Rechert, et al., 2016). There are two crucial distinctions

identified. The first is between abstract and specific dependencies. The former would

only require the presence of a non-specific component to provide generic functionality

(e.g. any graphics API capable of rendering 2D graphics), while the latter would

depend on a specific component (e.g. the OpenGL API). The second distinction is

between direct and indirect dependencies. The former describes dependency

relationships posed by the software program (i.e. the target of preservation efforts),

while the latter describes the possibility that a component linked by a direct

dependency may itself have dependency relationships with other components.

Indirect dependencies may result in an exponential increase in technical environment

complexity, as any one linked component may itself pose multiple dependencies.

Dependency relationships may therefore form complex networks, which might be

understood as a graph representing the directed relationships between components.

The reproducibility of software environments is further complicated by the

configuration of the individual components that are linked in the dependency graph.

Any component within a computer system may have parameters or settings which

can be changed between performances, including both the software super-object and

the components on which it poses dependencies. In the former case, configuration

might be managed within the application directory through text files or as variables

stored within the executable itself. John Gerrard’s Sow Farm, for instance, employs

Ensom - Technical Narratives

53

a 32-bit Windows Portable Executable file containing the program code and data,

associated with a set of plain text files which contain variables loaded by the software

program on execution. These can be altered by opening the text files in a text editor

and changing the values. In the case of Rafael Lozano-Hemmer’s Subtitled Public

software, the configuration files are managed behind the scenes, a Graphical User

Interface (GUI) providing a user friendly interface through which to edit them.

Configuration may also be associated with environment components on which the

software depends, introducing further challenges to understanding the parameters of

a particular software performance. Different component types and versions may

present variable configuration processes and option sets, and require careful

examination to fully understand and document.

In practice, the extent to which performance indeterminacy is caused by variations in

technical environment appears to be variable. For example, the 2010 realisation of

Michael Craig-Martin’s Becoming employs a software super-object consisting of a

single Windows Portable Executable file. This file encapsulates everything required

to execute the software performance correctly, providing it is hosted within a range of

suitable Windows operating systems (OS) and connected to appropriate display

hardware (an LCD screen in a custom case). Suitable Windows OSs range from

Windows XP (released in 2001) to Windows 10 (released in 2015). Providing the

hardware provides simple graphics rendering capabilities and sufficient processing

power, an accurate software performance could be achieved within a variety of

technical environments. John Gerrard’s Sow Farm on the other hand, involves a set

of interlinked files including a Windows Portable Executable, data assets, libraries

and text configuration files. This software super-object requires not only a Windows

operating system between versions Vista and 10, but also a set of other software

components that are correctly configured and installed, for the desired software

performance to be achieved. I return to issues of performance reconstruction and

verification later in this thesis.

The software super-object, the digital materials at the heart of a software-based

artwork, have an extremely close relationship with their technical environment. Not

only might a very specific component need to be present within this technical

environment, but it may also pose its own dependency relationships and require

configuration in a certain way to generate the desired software performance. The

ability to reconstitute this performance is not only desirable in the immediate

examination and display of a software-based artwork, but also for ensuring that the

Ensom - Technical Narratives

54

parameters of a software performance are understood so that they can be maintained

in future performances where desirable. As a result, the activity of identifying and

understanding the various elements of the technical environment has significant value

for the long-term preservation of the software-based artwork.

2.5. Emergence of Software as Medium

So far within this chapter, software has been considered with the aim of characterising

its properties as a material, and largely in isolation of its use by artists. The first issue

to address, is the need for a baseline understanding of how to distinguish between

medium and material, concepts which I introduced at the beginning of this chapter.

Our understanding of material has been further clarified earlier in this chapter in

relation to various notions of materiality. For software, material describes not only the

substance of software in a literal sense (understood as its forensic or physical

materiality), but can also be used to describe the logical and conceptual layers of

software (understood as its formal materiality). In developing a clearer notion of

medium, we can look to the philosophy of art. Philosopher David Davies has

developed a theoretical framework of medium in art which helps us clarify the

concept, defining the artwork as “an artistic statement as articulated in an artistic

medium realized in a vehicle” (Davies, 2004, p.60). The vehicular medium is the

substrate or substance of the artwork (which might range from a physical object to an

action carried out by a performer), whereas the artistic medium is the means through

which the artist imbues the artwork with meaning, through their intentional

manipulation of the vehicle. Crucially for this discussion, the artistic medium need not

constitute an element of the works realisation.

This distinction allows further refinement of the definition of software-based art:

software-based art is that where software materials can be seen to constitute both

the primary vehicular medium and primary artistic medium. Considering some

hypothetical examples provides a demonstration of how this might be applied. A

software generated image, ink-jet printed on paper, could be considered an example

of the use of software as an artistic medium. However, as the artwork manifests as

ink on paper, software could not be considered to constitute the vehicular medium of

this work (which is ink and paper). An installation artwork which employed software

to control lighting changes could be considered an example of the use of software as

a vehicular medium. However, software could not be considered an artistic medium

in this case, as the artist is not articulating an artistic statement through software—

rather, the artistic medium is light, and software serves a purpose as a tool. However,

Ensom - Technical Narratives

55

a superficially similar installation artwork which employed software to control lighting

changes—but in the case based on data gathered live from the internet—could be

considered software-based. Here software is not only a part of works realisation, but

is essential to its understanding as an artwork.

As these examples imply, we cannot make the assumption that all artists use software

in the same way, nor that the history of software as a medium will not challenge the

various models I have presented to assist in the characterisation of software as a

digital object. There has been considerable scholarly interest in the historical

relationship between art and computers in the past two decades (Brown, et al., 2008,

Shanken, 2009, Taylor, 2014 and Paul, 2015 represent a sample of this work.)

However these histories tend to only give limited attention to those forms of use where

software is both the artistic and vehicular medium of choice. It is not the aim of this

section to attempt a treatment of this topic. Rather, I aim to simply identify some of

the key software-based art related threads from the larger story of the relationship

between art and technology, and through this develop a clearer picture of the

significance of software as an artistic medium within both historical artistic practice

and that of today. This process also offers a means of introducing and contextualising

some of the significant genre terminology of relevance to the study of any kind of art

with a significant technological component.

2.5.1. Computer Art and Historical Precedents

While the creative use of computer technology has occurred since the birth of modern

computational paradigms in the 1950s, the rejection of art of this kind by critics and

the commercial art world at the time of its creation (Taylor, 2014) has resulted in a

patchy historical record. Renewed interest in the 21st century has seen parts of this

history emerge, through projects such as the CACHe project, which culminated in an

edited volume on the subject (Brown, et al., 2008), and the work of others such as

Christiane Paul (Paul, 2003), Edward A. Shanken (Shanken, 2009) and Grant Taylor

(Taylor, 2014). When examined in relation to their coverage of software and

computation, these historical accounts focus largely on what is termed computer art.

This is a broad term that can encompass any kind of art which involves a computer

in its production or display and seems to far precede use of the word ‘software’ to

describe artworks which involve software. As a result, the computer art canon

includes many examples of works which we would consider software-based. There

are important distinctions between these terms however, which I will clarify below

through the use of two historical examples.

Ensom - Technical Narratives

56

Among the earliest examples of the use of a computer to create something framed

as art were Ben Laposky’s Oscillon series, the first of which was produced in 1952

(Victoria and Albert Museum, 2011). These works involved the use of analogue

computer equipment to produce abstract forms which were displayed on the screen

of a cathode ray oscilloscope, which would then be captured using long exposure

photography and printed on paper for the purposes of exhibition (Laposky, 1969). An

example, Oscillon 19, is reproduced in Figure 4 below.

Figure 4. Reproduction of Oscillion 19 (1952) by Ben Laposky, from Oscillon: Electronic

Abstractions (Laposky, 1969). © Ben Laposky and MIT Press.

Nick Lambert points to Laposky’s Oscillons as a pivotal moment in the emergence of

computer art and other forms of technology-based art, as for the first time art was

created outside of the constraints of a physical medium (Lambert, 2003). The screen

outputs certainly had many of the process-driven and iterative characteristics of

software, but Laposky’s electronic manipulations did not involve software in a strict

sense—that is, encoded instructions were not processed by a computer system. The

oscilloscope was controllable via a physical interface of knobs and buttons, so in

theory it would have been possible to recreate particular configurations—but this

bears little resemblance to code-based computer programs. It does however,

potentially align with the software performance model introduced in the previous

section of this chapter: a data source (wave generator) is being realised as a

performance (the CRT output) by a process (which occurs within the oscilloscope).

Ensom - Technical Narratives

57

The additional step of photography complicates the nature of the performance,

however, as it is unclear whether Laposky viewed the printed photographs as the

primary artistic output, rather than the actual shapes displayed on the CRT. The use

of photography may have been a practical concession to allow the works to be

displayed independently of the technology, or it may have been viewed by Laposky

as an essential step in the works’ realisation. This ambiguity draws attention to an

important distinction between software-based art and computer art: the former must

always be executed in software at the time of exhibition, while the latter may refer to

artworks where there is a transition from a software medium to paper (or another non-

software medium). Understood in relation to the artistic-vehicular distinction

developed earlier in this chapter, computer artworks often employ software only in the

sense of artistic medium. Software’s presence as a constitutive part of the artwork

when it is realised is extremely important in relation to conservation: the conservation

of an Oscillon printed on paper, for example, would demand a different set of

considerations from the conservation of the means to produce them. However, in both

cases the technological means of production would remain of great conceptual

significance, given the level of interest Laposky expressed in his writings (Laposky,

1969). We can conclude, therefore, that the use of software as an artistic medium is

not necessarily indicative of its interest in relation to the goals of this research.

The potential for software be constitutive of an artwork is often contingent on it having

a storable form—thus allowing repeat performances of the encoded instructions8. The

storage of a computer program in electronic memory (essentially the foundation of

what we understand as software today) was first achieved in 1948 by a team at the

University of Manchester using their Mark 1 computer (Lavington, 1998). While there

is limited information about the patterns of creative experimentation involving

software that followed, some of the earliest exhibited examples were the cybernetic

sculptures of Nicolas Schöffer. The earliest of these was CYSP 1 which was first

exhibited in 1956 (Dreher, 2014). This work used a computer—sometimes referred to

as an “electronic brain” (Dreher, 2014)—developed by the Philips Company9 to

8 It should be noted that truly ephemeral software programs (e.g. self-destructive) could be

employed by artists, although the author is not aware of any examples.

9 Artist collaborations with commercial and military groups were frequently the means by

which art and technology could cross-pollinate during the early days of computer art, due to

the high cost and limited availability of computers at the time.

Ensom - Technical Narratives

58

process and convert light and sound inputs into the movement of the parts (including

wheels on its base) of a kinetic sculpture (Hoggett, 2017). While there is limited record

of the technical components of the work available, it seems likely that the computer

used by Philips would have contained stored routines or algorithms. Shanken’s

account of CYSP 1 supports this conclusion, stating that it was “programmed to

respond electronically to its environment, actively involving the viewer in the temporal

experience of the work" (Shanken, 2002).

Figure 5. Photograph of CYSP 1 (1956) by Nicolas Schöffer. The movements of the

sculptural array at its top and wheels at its bottom were controlled by a computer concealed

within the black cylindrical base. © Nicolas Schöffer and Reuben Hogget.

The work also responded to people in its proximity and was intended to be shown

with dancing performers. CYSP 1 and similar artworks that followed in the 1960s and

70s bear a remarkable resemblance to software-based art as we understand it today,

particularly in their use of interactivity. They embody the liveness and performativity

of software within such works, which can exist only in their fully realised form while

code is being executed.

Aside from those historical developments which we can isolate due to the involvement

Ensom - Technical Narratives

59

of identifiable technology, during a similar time frame other forms of art were being

developed which have revealing similarities. Shanken has proposed that the parallel

emergence of conceptual art and what he terms “art-and-technology” is associated

with the transition into the Information Age (Shanken, 2002)—that is, a shift in focus

among many economies from traditional industry to information technology. Lev

Manovich earlier proposed that these two parallel worlds—he refers to them as

Duchamp-land (the art world) and Turing-land (the computer art world) respectively—

have fundamentally different outlooks and are unlikely to ever converge (Manovich,

1996). However, Shanken highlights how a number of individuals were moving fluidly

between the two camps: Jack Burnham curated the 1970 exhibition Software at the

Jewish Museum in New York, which juxtaposed works of conceptual art with displays

of technology; while artists such as Roy Ascott and Hans Haacke have found favour

on both sides of the divide. The connection between these two worlds is important,

as it invites consideration of the extent to which software can be considered as a

medium outside of the technological frameworks of its definition. Florian Cramer

describes an algorithm-like, instructional form of poetry (the process he describes

involves using coin flips to generate a new poem from an existing poem) as

essentially akin to software (Cramer, 2002)—though in this case they are forms which

would be theoretically executable by either human and machine. Returning to the

software performance model introduced in the previous section, we find that it could

also be applied to understanding Cramer’s poem program: a set of instructions

(source) are used to generate a poem (process) resulting in an audible rendition

(performance). The implication of this is that theory which can help us understand the

conservation of conceptual and instruction-based art, might also help us understand

the conservation of software-based art—an idea I return to later in this chapter.

2.5.2. New Media and the Computational Metamedium

The commercial possibilities of software were being realised by the late 1960s and

the first software companies began producing tools to aid the programmer (Haigh,

2011). The rise of the personal computer in the 1970s and 80s (Ceruzzi, 2003) saw

increasing demand for software, the emergence of new programming languages and

tools, and a host of new technologies. By the 1990s, an increasing diversity of

computer-related technologies had caused the term computer art to begin to be

replaced by a more nuanced lexicon which included internet art, interactive art,

generative art and software art (Taylor, 2014). We also see the emergence of the

term new media (and thus new media art) to describe the growing use and

significance of these diverse technologies based in computation. The term new media

Ensom - Technical Narratives

60

is itself lacking any widely agreed upon definition—indeed, Lev Manovich devotes an

entire chapter to describing it in The Language of New Media without arriving at a

succinct definition (Manovich, 2001). In the study of new media art, the situation is

not much clearer. Mark Tribe and Reena Jana’s treatise on the genre opens by

defining new media artworks as those, “that make use of emerging media

technologies and are concerned with the cultural, political, and aesthetic possibilities

of these tools” (Tribe, & Jana, 2006, p.6). In an interview, curator Steven Sacks

frames new media art more as a way of thinking than an identifiable movement,

suggesting that it is:

“not just about being new—it’s a contemporary way of thinking and responding to

the latest tools of creation and societal changes. Each generation reveals their own

‘new media art’ based on current influences and the latest technologies.” (Goldstein,

2014)

Despite a lack of clarity over its definition, the term new media art remains in use and

software-based artworks often fall within its broad umbrella. Indeed, the proliferation

of new media and the parallel development of accessible software programming gave

rise to new kinds of software, which further complicate our understanding of software

as medium. I will consider two of these new forms below.

The first is the emergence of software to generate art which mimics non-

computational media—for example, email mimics letter-writing while digital painting

tools mimic traditional painting processes. In Manovich’s Software Takes Command,

he uses the term cultural software to describe software which enables cultural

activities relating to creativity and communication (Manovich, 2013). He traces the

origin of cultural software back to research by Alan Kay and Adele Goldberg at Xerox

PARC in the mid-1970s (Kay, & Goldberg, 1977), in which the authors offer a vision

of computing where the computer is more than just a tool of business and industry,

but a tool for creativity (Wardrip-Fruin, & Montfort, 2003). They suggest that the

computer could provide “a metamedium, whose content would be a wide range of

already-existing and not-yet-invented media” (Kay, & Goldberg, 1977, p.40). To

illustrate this they offer a number of prescient proposals for the use of such a

metamedium, including an architect being able to simulate 3D space during the

design process, and a composer having the option to easily edit and listen to their

score as they wrote it. Cultural software such as CAD and audio sequencing tools

were later developed to fulfil these roles, with the computer as the interface with this

metamedium.

Ensom - Technical Narratives

61

An implication of the metamedium concept is that software might not be considered

a distinct medium at all when considered at the conceptual level—rather, due to the

compound nature of the software super-object and the potential to engage with it at

various levels of abstraction, it is one which can present multiple materialities. Some

of these materialities might relate to pre-computational media. As Nick Lambert notes,

these replications of existing media “are not judged by standards derived from their

computational origins, so much as the visual and experiential connections with older

media” (Lambert, 2010, p.89). A software program which generates a moving image

and is viewed as a projection, for example, might be considered in relation to the

language of cinema. The extent to which the projected image might be considered in

relation to the languages of new media would relate to how conspicuous the medium

is made. If the moving images had signifiers of 3D graphics (for example, visible

texture tiling or aliasing artefacts), they might be considered in relation to video

games, for example. The actual means of expression—code or production software—

is not always signified at the conceptual layer. This points to a feature that

distinguishes software performances from other kinds of performance: the precise

mechanism of the performance is typically not visible. In theory, this might allows for

potential changes in the source element of the performance model, without impacting

the integrity of the performance providing its characteristics are maintained.

With the rise of cultural software, so too came an increased distance between the

artist and code (Taylor, 2014). While early computer artists had to grapple with the

technology using a limited range of languages and hardware, increasing availability

of programming and production tools would begin to see the underlying technological

frameworks obscured. This shift in working practice may not have altered the

significance of code as material, but it certainly affected its significance as medium.

This curious relationship between artist and code was explored by curator Christiane

Paul in the online CODeDOc exhibitions, one for the Whitney Museum of American

Art’s Artport in 2002 (Paul, 2002) and a second for the Ars Electronic Festival in 2003

(Paul, 2003). For the CODeDOc exhibitions, source code was presented alongside

the artwork it generated, inviting the contemplation of code as both mechanistic and

aesthetic consideration. In all of the six case studies I examined, the behavioural

qualities of the artworks are a product of a degree of programming; in only one did

the artist have direct engagement with the code itself. This factor may not alter the

significance of code at the logical layer (it remains at least a historical artefact), but it

certainly would have an effect on its conceptual significance. The relationship

between code, as an individual expression, and the artwork is a topic of importance

Ensom - Technical Narratives

62

which I return to later within this thesis.

The second significant new form of software to emerge with new media was that

associated with the internet. Artists engagements with these technologies resulted in

a new genre known as internet art (or net art) (Greene, 2004, Paul, 2015). The term

internet art is generally used to refer to art which is made for dissemination over the

internet, although its usage varies as with other genre terms introduced here.

Because of the networked means of accessing such works, this is a practice that is

geographically diffuse, and that has responded quickly to technological

developments. It is important to note for the purposes of this thesis that much internet

art can also be considered software-based art, as most works involve both remote

(e.g. web servers, databases, APIs) and local (e.g. web browsers and their plugins)

software programs. The connectivity in this sense is crucial to their understanding,

and therefore poses a significant challenge to the repeatability of the performance

model. Internet art also posed challenges to the mainstream art world’s ability to

collect its art. Indeed, its collection and exhibition in conventional art spaces has

caused considerable debate amongst those who contributed to its history. In 1997

internet art was included in documenta X (David, 1997), a first for the documenta

series—a major event in the mainstream art world calendar. The inclusion was

controversial among artists, with the selected artworks being consigned to their own

room which was visually themed to feel something like an office space filled with

desks and desktop computers. Artist duo Jodi (whose work was included in the

exhibition) called the internet art room an “unnecessary, confusing symbolic

construct”, which they felt artificially grouped artists whose only similarity was their

shared choice of media (Jodi, 1997). Showing a sensitivity to the context in which

internet art—and indeed, other forms of software-based art which might be

experienced outside a typical gallery setting—is likely to be an important

consideration in their restaging and long-term preservation.

While the use of software within art has continued apace since the events of the

1990s, there has been a gradual process of integration into artistic practice which

marks a shift in focus from media-centric exhibiting to one in which the use of

technology is informed by a set of cultural conditions rather than as an end in itself

(Wiley, et al., 2013). While this shift was signposted by exhibitions such as 010101 at

SFMOMA in 2001, which exhibited both new media and traditional media artworks

side-by-side (Graham, & Cook, 2010), it has only more recently become widely

acknowledged. This shift is reflected in the appearance of terms such as “post-

Ensom - Technical Narratives

63

internet” (Olson, 2012) and “neomateriality” (Paul, 2015)—both of which suggest an

environment in which the digital is becoming more firmly integrated with existing

languages of art. With this shift has come the increased attention given to software-

based art as something of conservation concern. As technology continues to evolve,

new challenges may emerge rapidly. There is an opportunity for the conservator,

therefore, to take a crucial role in connecting the evolving artistic metamedium of

software with the material concerns it presents.

2.6. Medium-Specific Conservation Considerations: A Lexicon

In this chapter I have explored a range of issues relating to the technical

characteristics of software and its status as a medium and material of artistic

expression. As a preliminary advancement in the development of this conceptual

framework, we can revisit the working definition of software-based art provided in

Chapter 1. We can now clearly define software-based art is that for which software is

the primary artistic medium and is executed at the time of the work’s realisation. To

conclude this chapter, I will use the knowledge gathered to build a lexicon of terms to

describe the medium-specific conservation considerations presented by software-

based art. These considerations are not necessarily unique to software-based art but

are connected within it in such a way that they find new meaning. The six key

concepts that form the lexicon are: performativity, functionality, structural complexity,

opacity, liminal materiality and multiplicity.

The idea of performativity reflects the fact that the realisation of a software-based

artwork is to some degree ephemeral—it is contingent on the continued activity of a

process running on a computer system. This can be formalised using a model of

software performance: a source consisting of executable code (perhaps linked to

other digital resources) is executed as a computational process (or processes),

yielding a performance (i.e. the experiential elements of the work). Understanding this

is important because if software performances are to be reliably recreated (a

requirement of long-term preservation), there is a need to manage any potential for

variability within the form and interpretation of the executable code. While in Section

2.3 I highlighted evidence to suggest that differences in execution environment may

introduce variability into a performance, this area remains relatively unexplored

territory for software-based art. If we are to understand the software-based art

conservator’s role as one which centres on achieving consistent software

performances through time, there is a need for new approaches to identifying and

documenting acceptable parameters of change at the software level. Addressing this

Ensom - Technical Narratives

64

gap is one of the major goals of this thesis.

Other kinds of digital art might also be considered performed in a similar sense—a

quality which relates to the presence of software within all digital environments. As

Christiane Paul has pointed out in relation to difficulties in defining software art, “every

form of digital art employs code and algorithms at some level” (Paul, 2015, p.124).

Digital images require rendering while digital video requires playback—both of which

require software. However viewing software itself as the source of a performance (as

it is software-based art), rather than as the mediator of a performance (i.e. a media

playback mechanism) presents different considerations. This is because unlike other

forms of digital media, like a digital video file which contains a set number of frames

to played back in chronological order, software is instructional: the host computer acts

upon encoded instructions to achieve some result. This has been characterised in

various ways by other authors: Steve Dietz calls it “computability” (Dietz, 2000), while

Pip Laurenson frames it as software-based art’s capacity to “do something in real

time, something more than playback, so that the input is different from the output”

(Laurenson, 2013, p.77). These qualities might be understood as relating to the

inherent functionality of software—all software is created to achieve an effect of

some kind. In a conservation context, it is important to understand this functionality,

because if it is possible to identify and express it, it is then possible to understand

what the software’s purpose within the artwork is and how it might be maintained.

The potential for functionality resides within the software super-object, a compound

digital object that may be comprised of numerous interconnected components linked

by code. This structural complexity presents itself in a variety of ways. At its most

basic level, software is itself not necessarily composed of a single discrete file, but

rather a set of interlinked parts including additional executable code and data

resources. The software may then also be inextricably linked to a certain execution

environment consisting of particular software or hardware components (which can

perhaps be configured in a variety of ways) on which it depends for successful

execution. A number of authors have also identified the potential for software-based

artworks to be “diffuse” (Fino-Radin, 2011, Laurenson, 2013)—that is, the software

employed has connections to and dependencies on external systems and resources.

This has also been identified in relation to the networked properties of some software-

based artworks, particularly internet art (Beryl, & Cook, 2010, Dekker, 2014). Such

links may need to be maintained if the software is to be correctly performed, so

changes occurring in these external resources and the means through which they are

Ensom - Technical Narratives

65

accessed pose considerable risks in terms of long-term preservation. Furthermore,

tracing connections may yield further connections—the output of one system can

become the input for another (Dietz, & Altshuler, 2014), while dependencies can

themselves have other dependencies. This potential for structural complexity may

pose challenges in a conservation context because it makes understanding the

complete software super-object harder, and because the maintenance of technical

interfaces between components may be compromised by technological change. Thus

achieving a reproducible software performance may become increasingly

challenging. As a baseline, the relevant structures must be well understood to enable

the management of this problem.

The effectiveness of the kinds of analysis required is likely to be further inhibited by

other characteristics of software. In Section 2.2.2 I introduced the idea that software

presents a variable level of opacity. Compiled software is essentially a black box

system when it is running and can typically only be understood as a set of inputs and

outputs. This means that the underlying code governing the behaviour of the software

is largely hidden from view (as compiled machine code)—despite the fact that this

hidden layer might be the one at which the artist is making important decisions (Dietz,

& Altshuler, 2014). Examining this code is essential in order to elucidate the

functionality that a software program has and ensure that a particular software

performance can be repeated in the future. Therefore, opacity presents a significant

conservation risk. This may be particularly significant where a human-readable

representation of the software program (such as source code) is not available to

consult.

The possibility of more than one representation or version of a software program can

be understood as its potential for multiplicity. Software-based art is intrinsically multi-

representational in that compiled binaries (a representation for interpretation by a

computer system) are derived from source materials (a representation for human

authoring and eventual compilation). Software-based artworks may also be modified

and a new version of any the components of the software super-object generated,

perhaps in the creation a new version for exhibition or to fix a bug. This is important

simply because it is necessary to know what is being preserved, where it came from,

and how it relates to the future realisation of the artwork— issues which are

particularly critical when operating in digital environments which enable copying,

transmission and the proliferation of digital objects. There is a need for some

consistent means of structuring descriptions of versions, representations and the

Ensom - Technical Narratives

66

relationships between them when writing documentation.

In addressing the technical components of a software-based artwork in relation to

questions of meaning, we are confronted with a multi-faceted materiality which defies

simple categorisation. As I demonstrated earlier in this chapter, the software super-

object simultaneously presents several distinct material levels: the physical object

(signs stored on a physical medium), the logical object (the symbolic representation

of the physical object which can be executed) and the conceptual object (the manifest

results of the processing of the logical object). Software presents a liminal

materiality—that is, it simultaneously occupies multiple material states (which

present different qualities and characteristics), without definitively belonging to any of

them. As a metamedium (i.e a medium capable of reproducing other media) it has

the potential to continue to evolve and so present new material qualities, as illustrated

by historical shifts in the range of technical possibilities available to and then utilised

by artists.

Addressing this liminal materiality requires working outside of modes of experiential

essentialism, and addressing underlying structures. While on a physical level

software must be considered in relation to the physical characteristics of its storage,

its tangible manifestations are ultimately meaningless without understanding them in

relation to more abstract conditions of the logical layer—the decoding of signs, the

rendering of pixels and the manipulation of interfaces. Navigating these various

levels—their boundaries and connections—is the only way by which the conservation

of software-based artworks can be meaningfully addressed. The individual

significance of these levels in relation to a particular software-based artwork may vary

considerably, and requires careful interpretation by the conservator. While to some

extent we can understand the weighting of material concerns as defined by the artist’s

intentions and the work’s production, it may also be modulated by expectations

regarding the viewer’s experience of the work. Graham and Cook suggest that in

some cases a “viewer will ‘see’ this material [the visible manifestation] for the work

and only with further investigation discover the layer of the work that is about the

system, the flow, the interaction” (Graham, & Cook, 2010, p.62).

Navigating the subjectivity of viewer experience and the complex relationship

between a work’s tangible elements, its technical characteristics and its meaning, will

be essential in understanding the identity of a software-based artwork and guiding

efforts to preserve it. While software-based art remains a useful catch-all, relating to

a specific challenge at this moment in time, as Rebecca Gordon points out in relation

Ensom - Technical Narratives

67

to the phenomenon of expanded material range in contemporary art, “even when the

same materials are adopted by different artists, a unifying interpretation of these

materials is unlikely” (Gordon, 2013, p.8). In practice, we may be dealing with

software-based artworks that present very different characteristics.

The six terms that form the lexicon of medium-specific conservation considerations

described in this section can be summarised as follows:

● Peformativity: Software is experienced by the viewer as the tangible effect

of instructions being executed by a computer system, which means that there

may be potential for variation when this performance is repeated in a different

environment.

● Functionality: In contrast to other digital media such as video, software is not

played back—rather, it specifies instructions to achieve some effect. This

means that in theory, there might be multiple ways to achieve this effect.

● Structural complexity: Software is not typically a discrete digital object, but

rather presents a complex structure that includes linkages with its

environment, including external systems and resources. This introduces

difficulty in the restaging of software performances when this environment

changes.

● Opacity: Different representations of software can be understood as falling

somewhere on an opacity spectrum—the more opaque they are, the harder it

is to understand how they work.

● Multiplicity: Software might exist in multiple representations, while copies

and versions of a particular program might proliferate. This creates challenges

in terms of the management of these different instances, particularly in

maintaining their provenance and the relationships between them.

● Liminal materiality: Software has a curious material status that can only be

understood by addressing it as if it possessed multiple materialities

simultaneously. Understanding the significance of these different levels and

the connections between them on a technical level will be important in

addressing the conservation of a software-based artwork.

The terms introduced in this lexicon provide terminology for describing a set of key

issues in developing approaches to the long-term care of software-based artworks.

Ensom - Technical Narratives

68

Each of them will need to be addressed in any comprehensive framework for the

documentation of software-based art. With this refined understanding of the software

medium and its implications for conservation, in the next chapter I will consider the

suitability of existing approaches for the documentation of software-based artworks.

Ensom - Technical Narratives

69

CHAPTER 3

CONSERVATION DOCUMENTATION IN

THEORY AND PRACTICE

3.1. Chapter Outline

In Chapter 1, I identified the potentially multifarious nature of documentation and a

need to better understand how it might serve the conservation of software-based art.

Equipped now with the prerequisite knowledge—a more complete understanding of

the software medium as developed in Chapter 2—the purpose of this chapter is to

consider existing conservation documentation standards, methods and approaches,

and ascertain their suitability for the documentation of software-based art. At the end

of the chapter, I will have arrived at some conclusions regarding the areas requiring

most research attention, which will serve to guide the structure of this research and

the following sections of this thesis.

Grappling with the nature of the document was a prominent concern of the early

pioneers of what we now know as the field of information science. In the first part of

this chapter I revisit historical documentation theory in relation to the technological

changes of the past few decades—the characteristics of software in particular—with

the aim of more clearly delimiting the scope of the document within this research. In

Ensom - Technical Narratives

70

the second part of the chapter, I consider the practical implications of this theoretical

framework in relation to museum practice, through an examination of the role and

activities of the conservator. I look at the core components of the conservation

workflow, including the documentation approaches employed, and assess whether

they might be applied to the documentation of software-based artworks as-is or where

new methodologies may need to be developed.

3.2. Revisiting Documentation Theory

The origins of the term documentation are shared with those of document, and can

be traced to the latin documentum, meaning lesson, proof, or written evidence

(Duranti, & Franks, 2015). While these origins are still to some extent evident in the

use of the word today, documentation might now be used to refer to a nebulous array

of materials that extends far beyond. For insight into the development of

contemporary notions of the document, we look to a group of European pioneers

(based mostly in libraries) who were known collectively as the “documentalists”

(Rayward, 1996). This group of thinkers, active from the early to mid- 20th Century,

set out the foundations for our understanding of documentation today by redefining

what a document could be. Prior to their work, the term documentation was almost

solely used to refer to the management of documents for scholarly use—documents

being effectively limited to printed texts (Buckland, 1997). The documentalists,

beginning with Paul Otlet’sTraité de documentation in 1934, began to develop an

expanded understanding of document to include, for example, museum objects and

explanatory models.

Several decades after Otlet, Suzanne Briet developed these ideas further in her 1951

treatise, Qu'est-ce que la documentation? (“What is documentation?” in English). This

text contains a definition of document that remains impressively representative of our

multi-faceted understanding of the word in information science today. The definition,

this version taken from a recent translation of the original French text, posits the

document as:

“any concrete or symbolic indexical sign [indice], preserved or recorded toward the

ends of representing, of reconstituting, or of proving a physical or intellectual

phenomenon" (Briet, 2006, p.10)

Briet’s decision to refer to the object of documentation as sign or “indice” has

positioned this definition favourably for the later development of digital documents

and computational paradigms such as the semantic web, as well as other

Ensom - Technical Narratives

71

unconventional documentation types. Indeed, this definition allows for a broad variety

of materials to be considered documentation. Briet provides the famous example of

an antelope: a specimen of the animal, she suggests, becomes documentation when

captured and entered into a museum collection.

The three “ends” to documentation specified by Briet all have significance in the

context of conservation. “Representation” was introduced in Section 1.2.2 in relation

to both software and documentation. In a documentation context it relates to the

potential for a document to depict or act in place of something else, an important and

broadly relevant concept in conservation documentation and one I discuss in more

detail later in this chapter. “Reconstitution” is highly significant in time-based media

conservation, where conservators might be interested in documentation that supports

the future realisation of a work, whether that work is specified as a specific set of

components or with more flexibility. Finally, “proof” relates closely to notions of

evidence and authenticity. Documentation might provide substantiation of authenticity

in a direct way, such as an artist-signed certificate of ownership or an artists approval

of some conservation action. Importantly for conservation documentation however,

the notion of proof links to the value that any document attempting representation or

supporting reconstitution might have. Evidence of authenticity in documentation is

how we understand it to be reliable or trustworthy.

In the same text, Briet outlines some of the potential forms documentation can take.

Of particular interest in our further refining the limits of documentation, is a breakdown

of these forms according to the concepts that documentation can “make known”.

While the complex, performative nature of time-based media art is not easily

reconciled with Briet’s now dated examples, this structure still provides a helpful lens

through which to gauge the problem space. Based on the knowledge gathered in

Chapter 2, we might consider software-based artworks to span three of Briet’s

suggested targets (or “objects”) of documentation, existing simultaneously as

concepts (or ideas), artistic creations, and events (or activities)—and therefore not

classifiable within the same framework. Using Briet’s principles, I have developed a

typology relating to the time-based media art domain, illustrated with contemporary

examples of real-world documentation practice. It should be noted that these types

are non-discrete, and any single document may belong to multiple categories—rather

than offering a taxonomy, these categories serve to highlight the range of things which

can be considered documentation in this domain.

1. Documentation can be descriptive information about an entity or event

Ensom - Technical Narratives

72

(e.g. an exhibition catalogue text for an artwork; a description of the

components in an installation).

2. Documentation can be an abstract representation of an entity or event

(e.g. a diagrammatic representation of an installation; an artwork metadata

record).

3. Documentation can be a concrete representation of an entity or event (e.g.

a scale model of an installation; a photograph of an installation).

4. Documentation can be a token representation of an entity or event (e.g. a

sample of data produced by a generative artwork).

5. Documentation can be a surrogate representation of an entity or event

(e.g. a scale model used for planning; a simulation model used for testing).

6. Documentation can be a resolvable reference to an entity or event (e.g. a

collection number or identifier; a citation).

7. Documentation can be a reproduction of other documentation (e.g. a

quotation; a photocopy).

8. Documentation can be a description of documentation (e.g. a metadata

schema; a standard).

As I will go on to demonstrate in this chapter, all of these types of documentation

might find use in the conservation of software-based artworks. While representing a

diversity of very different forms, what all of the types have in common is that they

must all be created with reference to an entity or event of some kind (Briet’s “physical

or intellectual phenomenon”): the object of documentation. This is sometimes called

indexicality, referring to the document’s semiotic function in acting as an index or

pointer (Day, 2016). This is important within the understanding of the document

concept as applied to this research, as without their indexicality documents lose their

meaning. The findings of Chapter 2 suggest the software-based artworks may present

a particular challenge to indexicality. While a software performance could be

considered an event, it is an event associated with the coming together of a certain

constellation of components. These components, such as the software itself, have

porous boundaries and may have multiple forms and versions, making the network of

references between document and object potentially expansive. A complete

treatment of issues regarding consistent identification of digital resources is beyond

Ensom - Technical Narratives

73

the scope of this research, but is revisited in the context of documenting artwork life

histories in Chapter 6.

3.2.1. Representation, Modelling and Use

The indexicality relationship bears no greater weight than where documentation is

representational, as it is in this role that the document must be able to act in place of

the object of documentation. In this section I will take a brief aside to consider the

significance of representation in conservation documentation, particularly in the

creation of highly structured documentation such as diagrams, metadata and

ontologies. Challenges around creating effective structured representations can be

considered in relation to modelling: the process of creating models. A model, I here

define as a representation of a system for some purpose—usually informational,

interrogative or analytical—and to some degree possessing the ability to stand in for

the thing it represents. For example, a model of a climate system might be used to

forecast weather, and as such stands in for the climate system so that the forecaster

does not have to deal with the much higher levels of complexity the real climate

system presents. The origins of modelling are in the physical sciences and

formalisation of scientific theory, but since the emergence of computing, the practice

of constructing models has been applied as an experimental method in the humanities

(Schreibman, et al., 2004, Terras, 2005, Ciula, & Eide, 2014). The development of

any system of documentation involves some degree of modelling, whether that be in

the elements to be drawn in a diagram or the metadata elements to include in an

information architecture. In practice, a model of some kind (even if not explicitly

referred to as such) typically forms the theoretical basis of documentation templates,

frameworks and methodologies.

One of the major challenges in modelling is how to ensure a model’s utility as a

representation, where it is constructed for some purpose. Difficulty arises in deciding

what to model, a problem well illustrated by the Jorge Luis Borges’ parable (presented

with fictitious accreditation), On Exactitude in Science:

“...In that Empire, the Art of Cartography attained such Perfection that the map of a

single Province occupied the entirety of a City, and the map of the Empire, the

entirety of a Province. In time, those Unconscionable Maps no longer satisfied, and

the Cartographers Guilds struck a Map of the Empire whose size was that of the

Empire, and which coincided point for point with it. The following Generations, who

were not so fond of the Study of Cartography as their Forebears had been, saw that

that vast Map was Useless, and not without some Pitilessness was it, that they

Ensom - Technical Narratives

74

delivered it up to the Inclemencies of Sun and Winters. In the Deserts of the West,

still today, there are Tattered Ruins of that Map, inhabited by Animals and Beggars;

in all the Land there is no other Relic of the Disciplines of Geography.

—Suarez Miranda,Viajes devarones prudentes, Libro IV,Cap. XLV, Lerida, 1658”

(Borges, 1999)

The Empire’s impractical map alludes to one of the key tensions in the construction

of any kind of model or knowledge representation system: a balance of accuracy or

completeness against usability. This tension is known as the map-territory relation. In

this case, the accuracy of the map has been given priority over the usability of the

map, thus rendering it useless. While the absurdity of Borges’ story serves an

illustrative purpose, real world examples of balancing usability and accuracy in

representations might be much more nuanced. How then, would we assess whether

a representation is successful and so avoid creating our own “Unconscionable

Maps”? There is clearly a need for abstraction of complex systems, but the extent to

which abstraction can or should be made without compromising their value is less

clear. There is little literature exploring this topic in the domains of art conservation

and digital preservation documentation. However, richer theoretical discussion of

representation can be found within political science and scientific simulation.

In political science this discussion relates to the potential ability of a candidate or

government to represent their people. Despite this very different context, this domain

is relevant to this discussion as it also pertains to representation in place of another

thing, much as structured representations of a thing act in place of the thing they

represent—whether that be for information retrieval or some explanatory purpose. In

the 1960s, Hanna Pitkin developed a classification of representation types through

an examination of the word’s use and the differing meanings which emerge (Pitkin,

1967). Pitkin’s types, Dovi suggests, could be used as a standard for assessing a

representative (Dovi, & Zalta, 2017). Summarised in general terms, the types present

a set of criteria:

● Formalistic representation: the level to which the representation is able to

act in place of the represented;

● Symbolic representation: the significance of the representation for the

represented;

● Descriptive representation: the extent to which the representation

Ensom - Technical Narratives

75

resembles the represented;

● Substantive representation: the use which the representation receives in

service of the represented;

These criteria highlight a number of important characteristics of representation in the

context of cultural artefacts, and form a useful set of baseline criteria for assessing a

representation’s value. For three of the four criteria, there appears to be no upper

bound on the extent to which that type of representation would be desirable: the more

formalistically capable, symbolically significant (this could be seen as relating to ideas

of authenticity) and descriptively accurate the representation is, the more successful

the representation would be. In many cases, availability of information may place a

limit on the extent to which these criteria can be met, but in a hypothetical situation

where all information were available, the problem of the map-territory relation is

encountered: we have simply created a replica of the represented.

It is the fourth criterion—substantive representation—which may provide the key to

managing the map-territory relation by placing a requirement of use on the

representation. The value of descriptive metadata, for example, would be judged not

only by its success at descriptive representation of the work in question, but also by

its use value in conveying appropriate information succinctly to someone browsing a

collections database. Digital preservation metadata on the other hand, might be

judged by its success as a formalistic representation: that is, it must be able to be

acted upon in place of the digital object itself. However, the extent of the actual

information required is governed by the types of preservation process which might be

applied to the object by a preservation system—so defining the use value of this

representation. Later in this chapter I return to ideas of representation in relation to

use, and explore how a use criterion can be used to interrogate existing approaches

to structured representation in relation to the conservation of software-based art.

3.2.2. Information Science and Digital Documents

By the 1990s the documentalist tradition was considered a part of the broader

discipline of information science, which Saracevic defines as “the science and

practice dealing with the effective collection, storage, retrieval and use of information”

(Saracevic, 2017, p.1). It has been suggested that information science should be

considered a kind of meta-discipline through its shared borders with the many other

disciplines that must also navigate these issues (Bawden, & Robinson, 2012). Despite

it being less recognisable as a distinct field of practice, there was renewed interest in

Ensom - Technical Narratives

76

documentation science in the mid-1990s, triggered in part by a need to revisit old

questions in light of the growth of information systems and new forms of digital

document (Levy, 1994, Buckland, 1997). The work of Briet, Otlet and the

documentalists was revisited at this time, with scholars finding that their theories of

documentation—as functional and framed by use, rather than form—helped provide

a meaningful lens on this new, dematerialised document (Buckland, 1997).

New approaches to documentation theory that have emerged since then have often

focused on the social construction of the meaning of documents and identifying the

forces that shape their creation (Levy, 1994, Buckland, 1997, Zhang, & Benjamin,

2007). While the technology employed is identified as a common means of

understanding documentation, Levy emphasises that documents are ultimately social

artefacts: they must be understood with respect to their use (which Levy identifies

more specifically as “work”), particularly in relation to the human activities and

institutions within which they are embedded (Levy, 1994). This helps deal with the

impractically broad documentalist conception of the document as almost anything, by

allowing us to define documents through the human creation or designation of a

document. Sabine Roux crystallises Jean Meyriat’s distinction between these two

types as “‘documents by intention,’ which are produced from the start with the aim of

communicating, and ‘documents by attribution,’ which become documents when the

user uses them to search for information” (Roux, 2016, p.4).10

Armed with this theory, we can begin to answer questions about the limits of what can

be considered a document within this research. An important preliminary question is

whether or not the artwork can or should be considered a document in and of itself.

In her study of the documentation of internet art, Annet Dekker argues (building on

documentation theory) that such works might indeed be considered documents when

their properties are examined (Dekker, 2014). Looking at this idea in relation to

Meyriat’s distinction, it is clear that software-based artworks are not documents by

intention: an artwork is the product of an artistic intention, not a documentary one. If

the artistic intention is also documentary (for example, it employs photographs which

document a subject), then it may be said to have documentary properties, but it

remains essentially an artwork. Nor can software-based artworks be understood as

10 This quotation contains phrases translated by Roux from Meyriat’s 1981 article Document,

documentation, documentologie, for which a general English translation is not yet available

and so could not be consulted directly.

Ensom - Technical Narratives

77

documents by attribution: they do not typically hold a use value in relation to

information retrieval. It is possible that in the future artworks might become of interest

to historians of the time as, for example, a proxy for their social conditions—therefore

conveying information to some degree and so gaining documentation-like properties.

However, there is a lack of a clear indexical relationship with an object of

documentation in such a scenario, and I therefore reject the idea that artworks should

be given document status.

While I propose that artworks and documents are distinct concepts (at least for the

purposes of this research), it is important to note that the components that make up

an artwork may become documentary when they are not resolved or resolvable into

a realisation of the work. Traces of the artwork may be particularly distinctive in some

cases. For example, if the work involves a prominent sculptural component this may

act as an effective signifier of the nature of the original installation, even outside of its

original context. This is an important theoretical issue for museums engaged with the

care of ephemeral works, as it gives value to the components of a work even where

further realisations impossible. Within this research however, I will primarily focus on

those documents which are authored with an intention of documentation, as only this

type can be meaningfully addressed using the constructive research methodology.

Based on the typologies developed, the primary forms of documentation with which I

expect to engage are informational (being designed to convey information) and

representational (being designed to represent a thing). Given the assertion that

documentation is created through intention to document, I propose that the problem

of documenting software-based art may be addressed through the identification of

the purpose of this documentation. In the next section I consider the purposes which

may emerge in a museum conservation context. This permits a closer examination of

the relationship between documentation, the needs of the collection or object in

question (in this case software-based art) and the technological approaches

available.

3.3. Documentation in the Conservation Workflow

In the preceding sections I identified that the types of documentation generated in a

particular conservation context will usually be documents by intention—so derived

from some purpose—and that they may serve informational and representational

functions in relation to the thing they document. Ultimately a documentation purpose

responds to some identified need and so a document’s value will be understood

through its actual use in serving this need. In this second part of the chapter, I will

Ensom - Technical Narratives

78

consider the potential needs which conservators might have in terms of conservation

documentation for software-based art and the extent to which these might be

addressed using existing approaches.

The conservator’s views on documentation might be best understood through the

conservation workflow: the phases of action which make up the conservator’s

engagement with a particular artwork. This workflow is variable in its exact formulation

and inherently non-linear, as works are revisited through time both as part of regular

collection care procedures and for the purposes of a specific display of the work.

Nonetheless, there are certain identifiable stages and activity areas which help us

isolate the use that might be made of documentation in the service of conservation

processes. I will look at each of these in turn in the following sections and examine

how they might need to be reconsidered to accommodate software-based art. The

structure of these sections has in part been shaped by my experiences within the

Time-based Media Conservation team at Tate, but also by published methodologies

and information gathered during interviews and research visits during this research

(all of these sources are referenced within the text where specifically drawn upon).

Given the potential relevance of this research to institutions or individuals with

differing resources or interests—perhaps an artist or collector developing their own

strategies—I have divided the text into modular sections and phrased them as

generically as possible. It should be emphasised however, that there is no truly

generic workflow for conservation; this is merely one perspective.

There have been several comparisons of the prominent models for the documentation

of time-based media art (Jones, 2008, Heydenreich, 2011, Dekker, 2013). These are

thorough examinations of the models they cover and reveal something of the

considerable breadth of work in this area, but are flawed in that they attempt to

compare models with very different purposes. Rather than use a similar comparative

approach, my aim is to contextualise individual components of these models in

relation to the area of practice to which they might apply, and in doing so reach more

concrete conclusions regarding use value in relation to software-based art. In the

following sections, I look at the workflow according to three activity areas: Acquisition,

Ongoing Care, and Information Systems. For each I explore the applications and

limitations of current approaches to documentation when applied to the unique

conservation considerations posed by software-based artworks. Gaps are identified

within each section of the text, and are then considered in terms of their implications

for this research in the final section of this chapter.

Ensom - Technical Narratives

79

3.3.1. Acquisition

Acquisition is a term used to describe the process through which an artwork is brought

into a collection. While acquisition involves many parties within the museum and the

clarification of issues outside of the scope of this thesis (such as ownership and

copyright), it also represents the first steps in the documentation process for

conservators. Some documentation guidelines suggest a more granular breakdown

of acquisition into distinct sub-phases (e.g. pre-acquisition, the phase where the

viability of an acquisition is explored before it is formally agreed), such the Matters in

Media Art approach (Matters in Media Art, 2015). In practice, the goals of these sub-

phases overlap considerably in relation to documentation considerations and can be

characterised by an increasing level of detail as an acquisition gains momentum. I

therefore identify the overarching goals here, rather than the incremental steps.

Conservation processes involving documentation which occur at acquisition might

include:

● Developing an understanding of what the artwork is, the artist’s intentions in

its making, and its significance as an addition to the collection.

● Developing an understanding of the work’s technical components, including

what will be acquired (computer systems, digital files etc.) and the basic

parameters of installation or display.

● Carrying out initial consideration of risk for identified technological

components and developing a plan for their long-term care, including

consideration of costs.

The first of these two processes involves consultation and compilation of existing

documentation, particularly that created by the artist and other parties involved in its

creation, exhibition and care prior to acquisition. This might be characterised as

information gathering. The last process and the formulation of a plan for the long-term

care of the work, involves analysis of the information gathered as well as the artwork

itself. This stage can be characterised as conservation planning and culminates in

the formulation of a structured document which captures the plan developed. In the

following three sections I look in turn at the documentation requirements of

information gathering, examination of materials, and conservation planning.

3.3.1.1. Information Gathering

Documentation processes during the early stages of acquisition could be

Ensom - Technical Narratives

80

characterised as driven by information gathering rather than analysis. For software-

based artworks, the extent of the information gathered may require reconsideration

in light of the significant differences between software (as explored in Chapter 2) and

the media types which many existing guidelines have been developed to address.

The primary aim of this section then, is to present a preliminary exploration of the

targets of this kind of information gathering process. The information gathered at this

stage is a significant factor in making informed decisions about the future of a work,

particularly in assessing the viability of the acquisition, and later in developing an

appropriate plan for the long-term care of the work in relation to risks of loss and

obsolescence. I will begin by considering the kinds of existing documentation which

might be gathered together at this stage.

The DOCAM (from the French project name, ‘Documentation et conservation du

patrimoine des arts mediatiques’) Documentation Model was developed during a

Daniel Langlois Foundation project running from 2005 to 2010 (DOCAM, n.d.). This

approach explicitly models the Creation stage of an artwork, which includes the

conception and production of the work. Where the context is a museum environment,

this Creation stage must be considered at time of acquisition as it will typically only

be understood through documentation of the process acquired with the work. The risk

of losing this documentation increases the more time has elapsed since creation, and

therefore gathering documentation associated with the creation of a work should be

a high priority during acquisition. While several time-based media documentation

models offer typologies of documents which provide a starting point for information

gathering (DOCAM, n.d., V2_Institute for the Unstable Media, 2004), these models

make limited reference to the technical documentation of the software development

process. To identify where these models might be expanded, the use of software

engineering approaches has been explored by several authors (Marchese, 2011,

Engel, & Hellar, 2014, Engel, & Wharton, 2014). Documentation is a significant

component of software engineering practice, with well-established standards which

aim to ensure that a software system can be effectively maintained in the long-term.

Within this field, units of documentation are commonly referred to as artefacts11, a

broad term which can denote any “self-contained work result” of software engineering

processes (Fernández et al., 2018, p.12) ranging from design materials to an actual

11 In this thesis the British English spelling ‘artefact’ is used, but it should be noted that the

US English ‘artifact’ is more common in software engineering literature.

Ensom - Technical Narratives

81

software product.

The conservation community seems to have arrived at a consensus regarding the

significance of one particular artefact of the creation of software: source code. Its

value in the documentation and conservation of software-based art is now well

established (Enge, & Lurk, 2013, Engel, & Wharton, 2014). This resonates with the

results of surveys of documentation practice in software engineering (Lethbridge, et

al., 2003, de Souza, et al., 2006). The value of source code stems from the fact that

it represents what the program does in a human readable form. As discussed in

Chapter 2, source code can be considered another representation of the low-level

code that is contained within the executable software program: it essentially

expresses the same set of instructions. However, acquiring source code may not be

straightforward, as an artist may have never intended their source code to be shared

or studied. Even where it is acquirable (and for all but one of the case study artworks

examined, it was acquired), it may not provide the full picture. In reality, the creation

of a software-based artwork can be characterised as comprising variable processes

of programming and production, which may involve specialised development software

and tools. Actually writing code may only be a part of the process. In the case of all

six of the case study artworks examined within this thesis, development environments

operating at various levels of abstraction have been employed in addition to the

authoring of original code. Where access to or value of source code is compromised,

there remains an open question as to whether the insights it reveals can be gained

through other means—one I aim to address in this thesis (see Chapter 4).

Looking beyond source code, consensus on other important artefacts is less well

established. Francis T. Marchese has suggested applying software engineering

models to the documentation of software-based art. He proposes a set of generic and

time-tested software engineering documentation artefacts (Marchese, 2011), which

he later expands in relation to the Rational Unified Process model of software

engineering (Marchese, 2013). Marchese’s descriptions of these artefacts are

reproduced below:

• “Requirements – Statements that identify the capabilities and

characteristics of a digital artwork. This is the conceptual foundation for

what has been created.

• Architecture/Design – An overview of software that includes the software’s

relationship to its environment and construction principles used in design of

the software components. Typically a system’s architecture is documented

Ensom - Technical Narratives

82

as a collection of diagrams or charts that show its parts and their

interconnections.

• Technical – Source code, algorithms, and interfaces are documented.

Comments may be embedded within the system’s source code and/or parts

of external documentation.

• End User – Manuals are created (e.g., static documents, hypermedia,

training videos, etc.) for the end-user, system administrators, and support

staff.

• Supplementary Materials – Anything else related to the system. This

includes: legal documents, design histories, interviews, scholarly books,

installation plans, drawings, models, documentary videos, web sites, etc.”

(from Marchese, 2011, p.305)

While Marchese’s rigorous approach would likely be valuable in addressing

conservation problems (as these established methods are for maintenance in

commercial software environments), experience with the case study artworks

examined for this research indicates that such a rigid formulation of documentation is

unlikely to resonate with artists. Indeed, for the artwork case studies only end user

(installation guidelines) and limited technical documentation (usually just commented

source code) was supplied with the artwork. Furthermore, production of these

artworks was a complex, often multi-party process and ultimately driven by the

intention of creating art, not maintainable software. As Deena Engel put it in an

interview in 2016, “I certainly wouldn’t ask an artist to take time to do a UML diagram

when they were busy creating art” (D. Engel, personal communication, 23 May 2016).

This is not to say artists do not think about technical documentation. A media artist’s

perspective on documentation is clearly represented in Rafael Lozano-Hemmer’s

“Best practices for conservation of media art from an artist’s perspective” resource

(Lozano-Hemmer, 2015). Lozano-Hemmer’s suggestions for documentation are

more loosely specified and include:

● Working documents such as “sketches, prototypes, parts lists, bits of

research on the project”.

● Change tracking and versioning of both code and other project documents

● Bill of materials list, which includes all the works components including

Ensom - Technical Narratives

83

“brand and model, its function, the URL for information, and a small picture”.

● Read me document to be bundled with software, including information about

“operating system, DirectX, any graphics drivers, APIs, programming

environments” required for its installation.

● Artwork manual which (incorporating some of the above) includes the follow

parts: “i) a ‘meta’ narrative describing the key concepts and elements of the

piece and how it works; ii) a detailed set-up procedure, including pictures of

example installations, wiring diagrams, museographic notes such as desired

lighting or acoustic conditions, sample layouts showing what is and is not

allowed; iii) maintenance section on how to clean the piece and turn it on and

off; iv) preservation section with the Bill of materials, all schematics, comments

to the code.”

(Quoted text elements above are from Lozano-Hemmer, 2015)

In the same document Lozano-Hemmer suggests that artists might mistrust set

conservation methods, which may not consider “the vast range of disparate

experiences, methods, constraints and dependencies that can arise even within the

work of a single artist” (Lozano-Hemmer, 2015). While likely somewhat tongue-in-

cheek (after all, Lozano-Hemmer goes on to specify his own guidelines), this

highlights the potential difficulties in a one-size-fits-all approach to conservation

documentation and in placing any predefined expectation on an artist’s working

practice. Deena Engel and various collaborators have attempted to address this

tension by exploring the generation of such documentation for works entering (or

already in) museum collections either independently or in collaboration with artists.

The document set explored overlaps with Marchese’s, and includes source code

documentation, high-level narratives describing code, flowcharts and UML diagrams

(Engel, & Hellar, 2014, Engel, & Wharton, 2014, Engel, & Wharton, 2015). The

construction of the latter three types is largely contingent on the former activity having

been carried out, and so the potential applicability of these approaches is limited by

the same difficulties I introduced in relation to source code earlier in this section.

However, as the studies cited demonstrate, where it is possible to generate these in

collaboration with the relevant expertise (and associated resources), their value is

likely to be significant in the next steps of acquisition and conservation planning.

Using the recommendations of the studies discussed above, it is possible to develop

Ensom - Technical Narratives

84

a generic, idealised classification of the documentation materials which might be

acquired for software-based artworks. This classification, presented in Table 3 below,

could be used as a prompt for conservators to identify and acquire these materials on

acquisition. It should be noted that this table focuses on documentation types which

are particularly important for software-based artworks, but does not include some of

the more generic documentation types which might apply to time-based media art in

general.

Document

type

Description Example formats

Source

materials

The human-authored code and other

production materials (including data

assets) used in the creation of the

software. Code should be acquired

annotated with descriptive comments, or

as a source code repository. Where

relevant, this should also include

important software and other production

tools for accessing these source materials

and potentially recompiling the software.

Code is usually stored as plain

text, however if development

software has been used the

formats may be more complex,

and have proprietary elements.

Production tools may also be

software. Data assets might be

various e.g. SQL databases,

images, video, 2D graphics,

3D models.

Installation

documentation

Description of how the work has been

configured and installed previously,

including information about how it should

behave and how it should look, and

detailed instructions on how it might be

reinstalled.

Documents, diagrams,

screenshots/screencasts,

photographs, videos, press

materials.

Non-technical

manuals

Manuals and other materials which

describe the software and its use (usually

in the context of display), usually for a

non-expert user

Documents,

screenshots/screencasts

Design

documentation

Any design documentation that provides

an overview of the software system such

that its key components and their

relationships can be understood, or the

origins of the software in requirements,

prototypes or other research.

Documents, diagrams.

Ensom - Technical Narratives

85

Technical

manuals

Detailed technical manuals for any off-the-

shelf hardware or software components.

For software this may include

documentation of the development

environments or programming languages

used.

Documents, diagrams.

Table 3. Basic prompt list for the gathering of software-specific documentation at the

acquisition of a software-based artwork.

The interview is a staple document of artist consultation in conservation practice and

its nuances are well covered elsewhere (e.g. Crook, 2001, Beerkens, et al., 2012).

However, I want to comment briefly on the potential impact of the qualities of software-

based art on the interview process. Perhaps the most obvious, is the need for a

specificity of questioning relating to the technical features of software as a medium.

Based on the case studies examined in this thesis, artists are sometimes not involved

in some of the lower level detail of the production of their software and often

collaborate with specialists. As a result, there is a risk of information gaps—a risk

heightened where there is a third party (for example, a gallery) involved in the

artwork’s custody transfer. This necessitates that the artist’s collaborators be involved

too where possible—a process which has been going on at Tate since their first

software-based artwork was acquired in 2003. While production assistance is not

uncommon in the production of contemporary art, the risk of lost knowledge is

heightened where programmers are involved; this is because the understanding of

the technical details may vary considerably between the two parties’. If a collaborator

moves on, there is a high risk that that knowledge will be lost or become unavailable

to the institution unless it is properly documented.

The principles of the interview might be further extended into documentation methods

that aid this. One approach to this that particularly stands out among the Tate’s

existing body of documentation for their software-based artworks is something I will

call the walkthrough. One party involved in the process is a non-programmer (typically

a conservator), and the other is the artist, programmer or developer involved in the

creation of the artwork. This person describes, in clear but technically accurate

terminology, how the artwork functions and how it relates to the underlying software

structures and the code. This description develops through a process of questioning

driven by the conservator and provides a uniquely valuable insight through the lines

of questioning which emerge, revealing information which the developer may not have

Ensom - Technical Narratives

86

otherwise thought to convey. Equally, the conservator develops a much more

nuanced understanding of the artwork’s relationship with its programmatic basis and

the decisions involved in its software implementation, than might be achieved through

isolated technical analysis. In practice this document usually takes the form of a

transcribed conversation or in some cases a chat logs from internet communication

software. The walkthrough approach might be further extended by attaching the

dialogue to a video screen capture of the digital resources in question.

3.3.1.2. Appraisal and Planning

The process of acquisition is typically evidenced by an initial report into the structure

and condition of the artwork followed (assuming acquisition proceeds) by planning for

its future care (Matters in Media Art, 2015). This initial assessment is based partly on

the information resources discussed in the previous section, but potentially also by

examining an artwork’s components. The necessity for artwork analysis is intertwined

with the act of documentation, a fact which is enshrined in the Code of Ethics and

Guidelines for Practice created by the American Institute for Conservation of Historic

and Artistic Works (AIC):

“Before any intervention, the conservation professional should make a thorough

examination of the cultural property and create appropriate records. These records

and the reports derived from them must identify the cultural property and include the

date of examination and the name of the examiner. They also should include, as

appropriate, a description of structure, materials, condition, and pertinent history”

(American Institute for Conservation of Historic and Artistic Works, 1994, p.9)

While the physical and hardware components will vary considerably, for software-

based artworks analysis might typically focus on software in the form of digital files.

Sometimes these might be delivered over the internet, in some cases on physical

media (e.g. a hard drive or USB flash drive) or even as a whole computer system—

all of these possibilities are evidenced among the artwork case studies I examined.

Given the potential risks of acquiring digital materials on storage media, particularly

that nearing or at obsolescence (Fino-Radin, 2011), acquiring digital files may be

preferable. In either case, at this point of first contact, it becomes crucial that the

integrity of the materials acquired is maintained by ensuring that the bits remain

unchanged as they move between platforms and media: a concern known as “fixity”

in the field of digital preservation (NDSA Infrastructure & Standards Working Groups,

2014).

Ensom - Technical Narratives

87

Where storage media or a whole computer system is acquired, maintaining fixity

requires the implementation of special procedures. When connecting storage media

or powering on a computer system in order to extract examination copies of the digital

files, there are risks of alterations to the data and file system. Furthermore, there is a

requirement to know that the integrity of the bits has been maintained in any

duplication procedures. The repurposing of approaches from the field of digital

forensics has been found to help mitigate these risks. Digital forensics is a well-

established field in law enforcement and security which, while seemingly far removed

from the concerns of the arts, has been identified as an area with potential relevance

to those working with digital cultural heritage (Kirschenbaum, et al., 2010, John, 2012,

Dietrich, & Adelstein, 2015). The essential appeal of digital forensics in the context of

acquiring digital artworks is that it provides a means to avoid risking alteration of data

and to maintain fixity. This entails a strategy called write-blocking (usually using a

hardware device that sits between the source and target), which prevents data write

operations in the direction of the source.

A fundamental activity in digital forensics is combining write-blocking with principles

of disk imaging (Woods, et al., 2011). Disk imaging can be used as a means to extract

and encapsulate the complete data content of storage media for bit-level preservation

(Rechert, et al., 2016). If this is done via write-blocking technology, a complete

(mountable) representation of the data content has been acquired without any impact

on the integrity of the original data. If the device imaged were originally bootable

(typically if it was taken from a physical computer system), then this image can be

used to reconstruct, via emulation or virtualisation, the original for purposes of

examination and analysis. Even where this is not possible, it can act as a bit-for-bit

backup of the original content of the drive. Working with disk images in this way poses

many advantages over directly interacting with a computer system, including

assurance of maintaining the integrity of the files in their original context, tracking (and

reversing) changes made, and ease of manipulation and access.

While approaches such as disk imaging make accessing and analysing software

more practical, methods for the actual analysis and documentation of results are still

poorly developed. Existing templates for condition reporting, such as the Matters in

Media Art Structure and Condition report for “computer-based” artworks (Matters in

Media Art, 2015), provide little more than a prompt for information. As discussed in

Chapter 2, the structurally complex and opaque nature of software-based artworks

means that it might be difficult to identify the technologies used, while the functionality

Ensom - Technical Narratives

88

and material complexity of the medium makes gaining this knowledge extremely

important. Methods for the targeted analysis of software-based artworks are poorly

understood however. The research outlined in the previous section has already

highlighted source code analysis as a potential source of this information, yet this is

time-consuming work currently being led by collaborations with computer scientists

external to the museum (Engel, & Wharton, 2014, Dover, 2016). However, within

existing research there is a lack of clarity over what the conservator might be

expected to do and what might require collaboration with specialists in a particular

programming language or technology. Given that the primary aim at acquisition is to

work out what software is being used and how it might be installed and configured,

spending resources on unearthing the details of technical implementation through

source code analysis may be surplus to requirements.

At the confluence of many of the above concerns, is the aim of the conservation

planning phase to identify those parts of the work which can be safely changed in

order to achieve future realisations of the work. This relates back to the work of Pip

Laurenson introduced in Section 2.3, who proposed that the identity12 of a time-based

media artwork can, to a varying extent, be detached from its constituent parts. This

identity is understood through what Laurenson calls a “cluster of work-defining

properties” that should remain consistent between realisations (Laurenson, 2006,

para.50). In digital preservation an analogous concept known as significant properties

emerged at around the same time, which digital preservation researcher Andrew

Wilson defines as “the characteristics of digital objects that must be preserved over

time in order to ensure the continued accessibility, usability, and meaning of the

objects, and their capacity to be accepted as evidence of what they purport to record”

(Wilson, 2007, p.8). These notions may help us manage change in a software-based

artwork by establishing what is required to maintain an authentic performance of the

work. Documenting work-defining or significant properties is likely to be crucial then,

yet frameworks for doing so remain poorly developed. This is exacerbated by the fact

that two levels of performance must be addressed: the realisation of the software-

based artwork as a whole and the computational performance of the software super-

object itself. In Section 2.3 I drew attention to research which suggests that consistent

12 Where I use this term within this thesis, it can be understood as referring to what an

artwork is. As I discuss later in this thesis, the idea of being able to pin down such a notion

for an artwork is inherently challenging, but the term remains a useful concept from which to

build this discussion.

Ensom - Technical Narratives

89

playback of digital video requires careful management of the playback technology

employed (Rice, 2015). For software-based artworks, there is a pressing need to

identify whether any analogous concerns exist or whether software’s functional nature

overrides such concerns.

3.3.2. Ongoing Care

After the process of acquisition, an artwork formally enters the collection and impetus

shifts towards completing documentation that is required for subsequent display and

addressing concerns raised in conservation planning. Even where this sequential

action is not apparent, the artwork is now in the care of the institution for the long term

and becomes subject to monitoring and appropriate application of conservation

strategies and treatments in the future. Taking Tate as an example, best practice for

time-based media conservation has been to take what is referred to as an active life

approach to preservation, which makes managing change a primary concern

(Laurenson, 2015). Works are revisited “during the life of the artist, who may re-

engage with the work at different points, but also beyond the life of the artist, as the

work continues to be exhibited and displayed” (Laurenson, 2015). These revisits

occur according to two rhythms: the first is that of the museum’s collection care

programme and an ongoing desire to display the work; the second is that of the

medium, and so varies for works of different types. The regularity of significant change

in software technologies (particularly in relation to patterns of software obsolescence)

is still poorly understood however, and might require in-depth research and access to

tacit knowledge relating to industry trends in order to predict. The time frame for

returning to a software-based work and reappraising risk is therefore something which

might need to be more regular for software than it has been for other forms of time-

based media, at least as institutional expertise builds. In this section I reflect on the

kinds of documentation generated during the active life of a work, particularly in

relation to incidents of display and the application of conservation strategies.

3.3.2.1. Installation and Display

A new realisation of a work requires an understanding of the constellation of

components which constitute that work, and of their respective significance. When a

new realisation occurs, a reconsideration of the parameters of the installation is

triggered, in light of technological change that has occurred since they were last

formalised (e.g. at acquisition or for a previous realisation). This precipitates a revision

of existing documentation to capture the structure of the new realisation and the

nature of changes from previous realisations. The Guggenheim’s “Iteration Report”

Ensom - Technical Narratives

90

was developed by Joanna Phillips to meet this documentation need (Phillips, 2007).

It focuses on describing a new realisation (Phillips uses the term “iteration”) of a work

in terms of its components and their installation, while maintaining direct reference to

the identity of the work through recording of deviations made from earlier realisations.

The reasoning behind these decisions, and who made them, is also recorded, as well

as reflections on the success of the realisation. While its principles remain valuable

in the context of software-based art, the version of the report currently available from

the Guggenheim operates primarily at the artwork installation level rather than the

software level (Phillips, 2012). The elements that create the software performance

are therefore not easily captured within this framework.

Research relating to the preservation of video games (McDonough, et al., 2010,

Lowood, 2013) and networked artworks (Dekker, 2014, Guez, et al., 2017) has

demonstrated the potential value (while also acknowledging the inherent difficulty) of

maintaining a contextualised appreciation of cultural heritage as we move through

time. Similarly, for software-based artworks there is a broader context to a particular

realisation which it might be desirable to capture. This might not be easily addressed

with approaches to documentation that rely on inflexible document templates, and

there have been a number of experiments with alternative approaches. The

‘net.artdatabase’ project, for example, captures video footage of the experience of an

individual interacting with an internet artwork (including the computer system used

and the surrounding desk space) and juxtaposes it with a screen capture of their

interaction (Sakrowski, & Dullaart, 2018). Narratives, or account-based descriptions

of an artwork realisation, may supplement such documentary media. During a

research residency at the Daniel Langlois Foundation in 2007, Lizzie Muller

experimented with the use of oral histories to capture the experience of visitors’

interaction with an installed artwork (Muller, 2008). A narrative approach has also

been explored by conservators at San Francisco Museum of Modern Art (SFMOMA).

There, complex (and media rich) accounts of new realisations of time-based media

artworks are generated in a collaboratively compiled document called a “technical

narrative” (Hellar, 2013, p.3)—the inspiration for the title of this thesis—which is

managed using a flexible Wiki system (Johnson, 2016).

In addition to describing the realisation itself, there are questions over documenting

the relationship between the various realisations of an artwork, and between the

digital objects (and environments) which constitute its software element. Approaches

to describing such relationships have been explored through the repurposing of

Ensom - Technical Narratives

91

models from bibliography—including examples from the media art conservation

(DOCAM, n.d.) and video game preservation (McDonough, et al., 2010) domains.

However, it remains to be seen whether these models would be fit-for-purpose in the

context of describing software-based artworks, particularly given their layered

nature—realised artwork on one level, and within that a software performance (ideas

introduced in Chapter 2).

3.3.2.2. Preservation Strategies and Treatment

Whether associated with a display event or simply occurring within the rhythms of

collection care, applying a conservation strategy or treatment is a major event in the

course of a work’s life. The basic intent of any conservation or preservation strategy

is either to mitigate risks relating to future obsolescence or degradation, or to solve

specific problems with the work as they arise. There are a number of general

preservation strategies for time-based media art with applications to software-based

art, all of which address these aims in slightly different ways. I will use Rinehart &

Ippolito’s classification from the monograph Re-Collection, which proposes:

emulation (with which I include virtualisation), migration and reinterpretation

(Rinehart, & Ippolito, 2014). Choosing an appropriate strategy is not a case of

selecting a single pathway: they may be used together in a hybrid approach to

preservation, which involves their combined application either in conjunction or at

different stages in the course of long-term preservation. Reinterpretation, for

example, is something which is necessitated to some degree whenever a work is

realised through the necessary interpretation of installation parameters. Nonetheless,

these three strategy types serve to illustrate the variety of ways in which preservation

strategies are influenced by documentation availability and how they shape

documentation requirements.

This first strategy I will cover is emulation, for which two uses can found in the

literature. The first was championed by the Variable Media Initiative project and

characterises emulation as the creation of “a facsimile of them [the digital and physical

constituents of an artwork] in a totally different medium” (Depocas, et al., 2003, p.51).

This essentially describes the simulation of an artwork through any suitable means—

technical or non-technical. The second usage refers to a set of technologies which

involve the use of software to mimic (hence emulate) a technical environment—

typically hardware—in which the software can be executed. This theoretically allows

for close approximation of original behaviour by recreating the precise requirements

on hardware sometimes presented by software-based artworks and their execution

Ensom - Technical Narratives

92

environments. Within this thesis I use emulation only in this context. Virtualisation,

although similar to emulation in principle and result, involves a slightly different

mechanism. Rather than imitating the target system’s hardware completely,

virtualisation allows an encapsulated software environment access to real hardware

components (usually limited to the CPU). The limitation of this is that virtualisation

software can only run (guest) environments which are supported by the native (host)

environment. In allowing direct access to the processor however, virtualisation

software allows the hosted environment to perform much closer to native speed

(Rechert, et al., 2016).

Both emulated and virtualised guest environments can be considered semi-portable,

in that they can encapsulate all dependencies and be run on any machine which can

run the emulation or virtualisation software. This abstraction from underlying

hardware reduces the impact of changes in the hardware environment, so lowering

obsolescence risk. They also have the advantage of preserving something of the

context of software by maintaining the look and feel of its software environment. Both

techniques have found applications in the preservation of software-based artworks

(Lurk, 2008, Falcão, et al., 2014, Rieger, et al., 2015, Rechert, et al., 2016). Recent

work in the field of emulation presents significant new possibilities for providing

access to emulated born-digital software-based art over the internet, using so called

Emulation as a Service (EaaS) technologies (von Suchodoletz, et al., 2013, Rechert,

et al., 2013). Despite their power, both emulation and virtualisation rely on specialised

software which may bring with it its own set of preservation problems (although these

are likely to be lessened), and in some cases legal considerations (Rosenthal, 2015).

Applying either of them also requires detailed technical documentation about the

native environment, for which there are currently no widely agreed upon templates or

standards. In particular, it is crucial to understand the dependencies of the software

in order to be able to reconstruct an appropriate environment to support it. It is also

important that the parameters of a software performance are verifiable using suitable

metrics or reference materials, yet approaches to documenting these parameters are

also currently absent.

Migration, rather than attempting to maintain an appropriate execution environment,

involves recreating the object of preservation using a contemporary technology. For

software, this would involve re-writing the code for a contemporary platform. While a

common preservation approach for digital materials (for example, digital video and

research data), migration is uncommon in software preservation. While in some cases

Ensom - Technical Narratives

93

this may be simply because it is unnecessary to carry out migration, it is also a

resource intensive process and requires considerable care to be taken in the

replication of the original artworks function and behaviour. In other cases, the actual

code may not be available, so necessitating resource intensive reverse engineering

processes. One such effort is recorded in Ben Fino-Radin’s account of the restoration

of Teiji Furuhashi’s Lovers by conservators at MoMA (Fino-Radin, 2016). This

complex work was painstakingly analysed and documented in order to provide the

blueprint from which to rebuild the software at the centre of a control system and verify

its performance in relation the other components of the work. In other cases, such as

the Guggenheim’s restoration of Brandon by Shu Lea Cheang (Phillips, et al., 2017),

migration is partial: while some elements of the website remained operable with

current web technology, others required updating. While both emulation and

migration strategies require documentation from which to verify their performance,

migration strategies require documentation of the functionality of the software, rather

than the nature of its technical environment. Developing guidelines for capturing both

of these early on in the life of an artwork is likely to provide the most value in terms of

applying migration strategies at a later stage and avoiding the need to deal with

difficult legacy issues in the future.

Reinterpretation is the final and perhaps most radical of the preservation strategies I

will discuss—and there are very few case studies where it has been applied. This

strategy relies not on maintaining the integrity of the original components of the

artwork, or even its original functionality, but rather on a careful interpretation of the

identity and intentions behind the work. This relies on a definition of the identity of an

artwork that exists separately from its materials, a notion formalised by the Variable

Media Initiative in the early 2000s (Depocas, et al., 2003). In practise, this means

having the required artist support, rights, and documentation in place to enable the

recreation of the artwork using new materials and techniques as necessary.

Reinterpretation hinges on the idea of separating an artwork from the technology of

its realisation, an idea which I introduced earlier in this thesis. Where this is possible

within the parameters of the artist’s intent or indeed, where it is carried out in

collaboration with the artist, its application would require that parameters of change

can be understood and justified within the lineage of that work.

One example of this strategy would be the iterations of Julia Scher’s Predictive

Engineering series of site-specific installations at San Francisco Museum of Modern

Art (SFMOMA), each of which has involved a reinterpretation of the previous versions

Ensom - Technical Narratives

94

of the work in order re-situate the original ideas of the artwork in a contemporary

context (Clark, et al., 2015). The software at the heart of the installation was of course

rewritten to support the new requirements that emerged during its development. All

of this was carried out in very close collaboration with the artist, who has built

reinterpretation into the work as part of its identity. While an unusual case such as

this one suggests the potential for an expanded practice of conservation, in cases

where the artist is not able or willing to engage in such work, strategies of

reinterpretation may risk the loss the characteristics that constituted the artwork’s

identity. Where it is possible, there are questions over how the nature of these

changes (and indeed, conservation treatments more generally) might be conveyed to

museum audiences. Decrying the “cramped conventions” of the wall label and

museum cataloguing systems, Jon Ippolito suggests that these approaches might fail

to convey the “strange or complicated territory” that the realisation of a media artwork

represents (Ippolito, 2008). How exactly such stories might be conveyed to museum

audiences remains an open question however, and one which I return to later in this

thesis (see Chapter 6).

In concluding this section, it is important to emphasise that there is no evidence that

there will ever be a one-size-fits-all technical solution for the conservation of software-

based art. There is great potential in bespoke approaches to conservation involving

combined elements of emulation, migration (or modification) or reinterpretation:

achieving the various realisations of Predictive Engineering has involved all three, for

example. However, none of these strategies is straightforward to apply, and all rely

on an in-depth technical understanding of the artwork’s function and structure, and a

nuanced appreciation of the artist’s original intent and the parameters of the work’s

performance. Each of the strategies also places particular emphasis on certain

aspects of documentation principles already introduced in this chapter—all of which

remain poorly understood for software-based artworks. Emulation demands detailed

documentation of technical environments; migration requires in-depth knowledge of

the functionality and behaviour of the earlier version; while reinterpretation can only

be carried out with a nuanced understanding of the artworks historical context.

More fundamentally, there are currently no published frameworks for how to record

information regarding the application of a strategy or treatment to a software-based

artwork—something core to the ethics of conservation. The AIC’s Code of Ethics and

Guidelines for Practice specify that:

“During treatment, the conservation professional should maintain dated

Ensom - Technical Narratives

95

documentation that includes a record or description of techniques or procedures

involved, materials used and their composition, the nature and extent of all

alterations, and any additional information revealed or otherwise ascertained.”

(American Institute for Conservation of Historic and Artistic Works, 1994, p.9)

What a record or description of techniques of emulation, virtualisation, migration or

reinterpretation might look like for software-based art however, has yet to be

established within the conservation community. While the aim of this research is not

to propose documentation templates for describing such treatments, the outcomes

are likely to assist those developing them within their own organisations.

3.3.3. Information Systems

In the previous two sections I have discussed a number of activities within the

conservation workflow and their implications for the collation and creation of software-

based art documentation. In this section I take a slightly different perspective and

examine a framework which sits in parallel to all phases of the workflow: the collection

information system. Collections-related information systems within museums and

archives are the means by which knowledge about a collection is managed, retrieved,

manipulated and potentially shared. The information system is on one level a

technical consideration, as it resides in the technology which enables information

storage and access. The precise nature of the systems used on a technical level

varies depending on the institutional context and history and may be found under

various guises such as Collection Management Systems (CMS), Digital Asset

Management Systems (DAM) and Digital Repositories (DR). While emerging from

different cultures and with slightly different purposes, information systems are unified

through their common use in capturing information about objects (be they digital or

physical) which can then be manipulated in some way.

The forms of information that these systems might capture, typically highly structured

information, is very much a documentation concern. The structure of this information

is key to its utility, yielding possibilities such as search and retrieval, machine

actioning, and the potential for sharing and exchange. Examining the collection

information infrastructure at Tate, information systems are employed in the service of

conservation activities in a variety of ways:

● Management of physical and digital objects, including tracking of their

locations and recording of loans, and their relationship with an artwork and its

realisations through time.

Ensom - Technical Narratives

96

● Serving information to support analysis of and reporting on the characteristics

of the collection or a subset of the collection.

● Allowing computer systems to manage and manipulate digital objects stored

in a repository.

What these activities have in common, is that their value is contingent on the

availability of structured information objects that to some degree represent the

artworks, components and digital objects that they indexically relate to. I will refer to

these as structured representations.

The dominant form of structured representation in museum information systems is

metadata. With origins in libraries and archives, the term metadata developed during

the formalisation of information science as a discipline, and can be understood “as

‘structured data about an object that supports functions associated with the

designated object’–with an object being ‘any entity, form, or mode for which

contextual data can be recorded’” (Greenberg, 2005, p.20). Although the terms usage

is less frequent within the history of museum collection management, its principles

are nonetheless ubiquitous within these environments. Here, metadata can be

understood as structured data about a collection object. There are two possible

meanings to the word within this context. The first relates to metadata instances,

which are the concrete pieces of recorded information (such as an integer or a text

string). The second relates to how these instances are structured and defined, and

might be understood through a defined metadata schema. For example, ‘Year of

Creation’ might be an element within a defined metadata schema for describing

artworks, with a specific metadata instance for a particular artwork of ‘2008’.

Modelling and ontologies offer a logical extension to the principles of the metadata

schema, allowing the structuring of a whole domain of knowledge and its formal

semantics (Liu, & Özsu, 2009). These approaches may provide a means of

developing sophisticated metadata representations in relation to particular domains

of knowledge (Munir, & Sheraz Anjum, 2018). The uses of metadata for describing

collections of time-based media artworks are well established (Fino-Radin, 2011,

Rinehart, & Ippolito, 2014, Griesinger, 2016) and irrespective of the suitability of the

models according to which the metadata is created, such artworks continue to enter

institutional information systems. In practice, a metadata record for an artwork is a

primary port of call when a work is revisited for purposes of exhibition, loan or study,

and acts as a nexus for locating information on an artwork’s constituent components

Ensom - Technical Narratives

97

and their locations within storage.

Software-based artworks (and indeed, time-based media artworks in general) do not

fit easily into these existing frameworks, due primarily to their structural complexity

and multiplicity (see Section 2.6 for an explanation of these characteristics), both of

which are difficult to represent using approaches to structured representation that are

designed to address artworks as single objects (e.g. forms which are not realised or

performed, such as painting or sculpture). A substantive structured representation

(i.e. one which is useful and meets the purposes I outlined above) must be based in

a clear conceptual model of the component types that constitute the software

structures of a software-based artwork; including how they relate to each other, to the

artwork as a whole, and to realisations of that artwork. While this would be valuable

simply in supporting the software performance model developed within this research,

there are also direct practical uses for such a model. During this research, issues

relating to the representation of software-based artworks within collection

management systems have been under discussion at Tate, while interviews with

other practitioners reveal that similar issues have been faced at other institutions (B

Fino-Radin, personal communication, 17 June 2016; J Phillips, personal

communication, 12 December 2016; G Wijers, personal communication, 13

December 2016). Gaby Wijers, reflecting on the value of such approaches, points out

that while “you can make an ideal metadata set […] then you also have to take in to

consideration how much work needs to be done to fill it in” if it is to be pragmatically

applied (G Wijers, personal communication, 13 December 2016). An appropriate

system of structured representation will need to address this balance of completeness

and usability.

There is no clear existing standard or model for creating structured representations

of software-based artworks. If a suitable approach is to be identified, a number of

existing approaches will require further exploration based on information derived from

case study analysis. Based on a survey of published approaches, I have identified a

selection with coverage that intersects with the concerns raised in this section. These

are: Media Art Notation System (MANS) (Rinehart, 2007), PREMIS (PREMIS Editorial

Committee, & others, 2015), Capturing Unstable Media Conceptual Model (CMCM)

(V2_Institute for the Unstable Media, 2003), outputs of the EU FP7 PERICLES project

(Waddington, et al., 2016) and CIDOC-CRM in conjunction with CRMdig ((Enge, &

Lurk, 2014). Unified Modelling Language (UML) is another approach which, while not

being intended for metadata specification, may also have relevance here given its

Ensom - Technical Narratives

98

close relationship with software engineering and its suitability for describing software

structures. I will critically appraise the potential use of each of these approaches in

Section 4.6.

3.4. Documents for the Conservation of Software-based Art

Arriving at the end of this chapter, I have now developed the two halves of a

conceptual framework (the first being developed in Chapter 2) which

comprehensively describes the problem space this research seeks to address: how

to effectively document software-based artworks in a conservation context. This

concludes stage three of the constructive research methodology outlined in Chapter

1. From the analysis carried out in this chapter it is clear that, when considered in

relation to software-based artworks, there are a number of gaps in existing

conservation documentation practice. It is these gaps that I will address in the

following chapters, which represent three distinct topics: analysis and representation

of software structures; capturing the identity of a software-based artwork; and

describing software evolution and version history. The rationale behind each of these

is summarised below. Although the chapters are presented in an order by necessity

of the document format, the research strands that resulted in these chapters were

conducted in parallel. They are intended as both stand-alone solutions to the practical

problem this research seeks to address, and as complementary components of a

larger and more comprehensive framework. I demonstrate the applicability of each

solution within each chapter using evidence from the study of case study artworks in

each chapter (completing Stage 4 of the methodology), while research contributions

and scope of applicability are addressed in Chapter 7 (completing Stage 5 and 6 of

the methodology).

While research has resulted in a greater understanding of the documentation

materials that might be sought when a software-based artwork is acquired, the

significance of source code as the primary document raises questions over what

actions might be taken if source code is not available. There is, therefore, a need to

further develop approaches to examination at the software level, particularly those

which can bypass the barriers to addressing compiled software. This is likely to be

particularly significant in condition reporting processes, but also has strong synergies

with the need to document individual realisations of software-based artworks.

Furthermore, there is a need to consider the ways in which information derived from

such analyses might be captured and incorporated into information systems, with

reference to the array of competing metadata standards. In Chapter 4 I develop a

Ensom - Technical Narratives

99

methodological framework for analysing software structures which complements

source code based approaches, and explore the use of systems of structured

representation in capturing this information.

Within all of the treatment strategies discussed—and sometimes between realisations

of a work for exhibition—a degree of change in the original software super-object and

its technical environment might be necessitated. This leads to questions over how to

ensure that the identity of the artwork is maintained between realisations and

versions. Through research over the past decade, parameters of acceptable change

in time-based artworks and digital objects are now much better understood. However,

this remains a complex area which the conservator must navigate individually for each

artwork. Software performances present another layer to consider and one for which

a formal framework has yet to emerge. In Chapter 5 I develop documentation

strategies to assist in the capturing and managing of the identity of a software-based

artwork at both the artwork and the software level, and so aiding decisions regarding

its future realisation.

When change occurs in how a software-based artwork is realised, this change should

be captured in documentation in order to fulfil the requirements of conservation best

practice. On a structural level, there is a need to capture how the new version or

realisation relates to the artwork as a conceptual entity. On a processual level, there

is a need to capture or describe the changes made in a meaningful way. Finally, on

a conceptual level there is a need to understand why choices were made and how

they relate to the meaning of the materials employed. If the artwork is never truly

fixed, these documentation materials present a crucial trail of evidence and historical

insight into the life of the work. In Chapter 6 I explore how we might approach

documenting change in the long-term care of software-based artworks, while

ensuring the complex and evolving relationships between artwork, version, material

and meaning are maintained.

Ensom - Technical Narratives

100

CHAPTER 4

ANALYSIS AND REPRESENTATION OF

SOFTWARE STRUCTURES

4.1. Chapter Outline

The purpose of this chapter is to examine approaches to the analysis and

documentation of software structures, and to ascertain how they might most

effectively support the requirements of the conservator. In Chapter 2 I introduced the

idea that software-based art is typically structurally complex—that is, the arrangement

of the parts of the artwork and the relationships between them can be many and

varied. This applies not only at the artwork level, but also at the level of the software

performance itself—the latter of which is currently poorly understood in a conservation

context. I also highlighted the potential opacity of compiled software—the obfuscation

of underlying code and process—which may make the comprehension of this

structure particularly challenging. As proposed in Chapter 3, understanding and

describing these software structures is an important component in planning the long-

term preservation of the work, particularly in identifying how the software might be

reliably realised in the future and in identifying components at risk of obsolescence.

In the first part of this chapter I introduce a simple workflow for the examination of

Ensom - Technical Narratives

101

software-based artworks, which provides a framing for the discussion to come. In the

next part I introduce ideas relating to software maintenance and reverse engineering

in order to help situate software analysis within the frameworks of software

engineering and clarify some of the more important concepts. I then explore in more

detail the role of source code analysis as it has developed in conservation, including

and its limitations, and then consider alternative and complementary approaches to

the analysis of software structures. Taking established methods from software

engineering, debugging and reverse engineering as a starting point, I assess their

potential relevance and the limitations of their application, particularly in relation to

the priorities of identifying the constituents of a software super-object and its

relationship to its technical environment. In the last part of the chapter, I consider how

the results of analysis might be formalised as structured metadata for incorporation

into information systems. This takes the form of a conceptual model with mappings

to several other relevant standards, designed to capture key information about a

software-based artwork’s realisation, its software components, and their relationships

with the supporting technical environment.

4.2. Reconstructive Analysis of Software and Environment

As discussed in Chapter 3, the purpose of the examination and documentation of

time-based media artwork realisations is reasonably well understood. Conservation

workflows in this area of practice are carried out with the aim of gaining knowledge

about an artwork’s components and their meaning, the requirements for the works

display, and how it might be cared for in the long term. Given that for software-based

artworks another layer of realisation is present below that of the artwork—the software

performance—we need to consider how to formulate examination and documentation

processes at this level. In this section I will introduce a generic workflow for

approaching the examination of software-based artworks, as a framing device for the

analysis that follows. This workflow stems from research at Tate in 2016 in

collaboration with Klaus Rechert at the University of Freiburg and Time-based Media

Conservator Patricia Falcão. This project developed a tentative workflow for applying

emulation strategies to software-based artworks (Rechert, et al., 2016)13. Many

aspects of this workflow are applicable to a general analytical approach to deriving

knowledge from software for purposes of examination and documentation—that is,

13 The author of this thesis was a minor contributor to the project and an editor of the

resulting report.

Ensom - Technical Narratives

102

they might be used even where emulation is not applied. Taking this approach as a

basis, I have formulated a less emulation-specific derivation of this workflow which I

present here.

In essence, the workflow uses non-invasive disk imaging in combination with

emulation and virtualisation technologies—principles which were introduced in

Section 3.3—to reconstruct a technical environment (composed of an interlinked

hardware environment and software environment) in which the software-based

artworks can be executed. The disk image (a file-based encapsulation of data that

might traditionally have been the contents of physical storage media) might be taken

from a source computer system or manually constructed to create an appropriate

software environment. The emulation or virtualisation tools provide the hardware

environment. The primary purpose of the workflow is reconstructive analysis—the

process of reconstructing a software performance as a means of identifying its

parameters. If the reconstructed performance can be verified against the original, we

can be more certain that we have identified the crucial components and their

configuration. A secondary purpose is the production of a generalised (i.e. in which

dependencies are made more abstract) and encapsulated representation of the

software super-object and its environment which is portable and can be used for

further study (e.g. studying the software’s function and behaviour). Many of the issues

touched on here are discussed extensively in Rechert et al., which also incorporates

the rationale for the development of the workflow on which this research builds

(Rechert, et al., 2016).

The workflow is presented in five stages below. The assumption is made that a digital

representation of the software is available, and that preliminary information gathering

(discussed in Section 3.3.1.1) has been carried out to some extent.

1. Identify the software super-object that is being acquired. This is the

artist-approved version of the software which is intended for use in the

display of the work. It could be acquired in a multitude of forms, such as

installed on a pre-built computer system for display, stored on a USB flash

drive, or delivered as a compressed bundle from an online server. In some

cases, the software may be acquired with other supporting software

dependencies.

2. Use an appropriate non-invasive methodology to capture the software

super-object (and software environment if applicable). While in the most

Ensom - Technical Narratives

103

straightforward cases this involves simply downloading files and verifying

their contents, in cases where physical storage media are involved (or even

provided as a functioning system of physical hardware components) this will

necessitate the use of forensic disk imaging tools to ensure the integrity of

the source data and the data captured.

3. Examine and analyse captured software super-object, its environment

and any gathered documentation (including source code if available) in

order to identify technical environment components and configuration.

The primary objective of this stage is to gather as much information as

possible towards rebuilding an appropriate technical environment for the

performance of the software super-object. This stage may be iterated if are

problems encountered in steps 4 and 5. Interaction with originals would be

avoided where possible, but where necessary careful consideration should

be given to the risk of interacting with them.

4. Reconstruct technical environment using captured software super-

object, gathered information and any required software or hardware

components. A physical computer system might be built or, more

pragmatically in many cases, a virtualised or emulated hardware

environment. If the software super-object cannot be run in the reconstructed

environment, stage 3 is returned to in order to acquire more information and

address the problem.

4.1. If possible, reconstruct production environment and

attempt recompilation of software. This extra step provides

additional assurance that where software production materials have

been acquired, they are complete. Furthermore, if it is ever

necessary, modifications could be made and the software

recompiled.

5. Verify the reconstructed software-based artwork performance against

an artist approved version or suitable documentation, in collaboration

with the artist or other authorised person where possible. The aim of

this stage is to ensure an authentic realisation of the artwork and might

involve side-by-side comparison with another version, testing and

measurement, and the conservator’s own judgement. Where the

performance is found to be inadequately representing the original, stage 3 is

Ensom - Technical Narratives

104

returned to in order to gather more information.

5.1. If possible, create a generalised, portable version of the

technical environment using emulation, virtualisation or

containerisation technology. Selection of the technology to be

used will depend on the available tools for meeting the technical

environment requirements of the software. The encapsulated version

generated can act as both a valid representation of the software-

based artwork’s software component and documentation of the

reconstructed environment.

6. Document the technical environment and configuration that achieved

the verified performance. The documentation of the composition of the

software structure that resulted in a successful performance provides

important documentation for achieving future performances, and thus

realisations of the artwork itself. In practice, much of this documentation

work may occur alongside the previous stages.

The reconstruction and verification of software performances in this way, would—

through the isolation of an appropriate technical environment—develop considerable

insight into their technical basis. This process also presents other advantages. The

accumulation of reusable software components (e.g. runtime libraries or drivers), pre-

built disk images (e.g. a generic installation for a particular operating system) and

tools (e.g. analysis tools or virtualisation configurations) means that undertaking the

process for other software-based artworks in the future may be simplified. There is

also the potential for elements of the workflow to be automated, for instance where

similar kinds of software are encountered. A workflow reconstruction tool such as

Apache Taverna (anon. Apache Taverna, 2016), for example, could be used to

(partially) automate an analysis tool chain.

The process of reconstructive analysis outlined in this section offers a framework for

understanding how the examination and documentation of software-based artworks

might be undertaken. However, there is currently a lack of research in two key areas,

on which its usability is dependent: methods for the analysis of software and

environment; and approaches to recording the information gathered in a way in which

it is useful for conservators. In this chapter I aim to address these two gaps. Analysis

primarily occurs during stage 3 of the workflow with the aim of information gathering

but may also occur where a performance is verified at stage 5. I explore approaches

Ensom - Technical Narratives

105

to software analysis in Section 4.3 to 4.5. Stage 6 of the workflow implies a need for

some system of representation with which to capture the insights gained from analysis

regarding the software super-object and its relationship with its technical

environment. These are likely to be particularly significant in relation to the demands

of institutional information systems introduced in Section 3.3.3. I explore and develop

methods for deriving such representations in Section 4.6.

4.3. Legacy Systems and Reverse Engineering

Software analysis and documentation are not new fields—indeed, while these

processes have only become of interest to conservators relatively recently, their

history parallels that of software. Therefore, contextualising these processes within

the field of software engineering is a helpful starting point to this discussion. In many

cases, software-based artworks fit within the software engineering conception of a

legacy system. Legacy systems can be defined as socio-technical software systems

(that is, they involve both technology and existing users or business processes) which

rely on languages or technology components which are no longer current

(Sommerville, 2015, Butterfield, & Ngondi, 2016). Alderson and Shah acknowledge

that that there is little real consensus about when a system can or should be labelled

‘legacy’, and that this is usually a strategic consideration relating to the costs and

benefits of maintenance (Alderson, & Shah, 1999). It is therefore important to

understand something of what software maintenance means as a part of the software

engineering lifecycle, and how it might relate to the goals of conservation.

Software maintenance relates to the totality of activities required to support an

operational software system, particularly the modification of the system after delivery

to correct faults, adapt to changes in environment and to prevent future operational

problems (anon. ISO/IEC 14764:2006(E) IEEE Std 14764-2006: Software

Engineering — Software Life Cycle Processes — Maintenance, 2006). While the

typical focus of software maintenance is continuous delivery of system services, the

conservator has analogous goals in relation to software-based art. Indeed, in their

work on source code analysis in conservation, Deena Engel and Glenn Wharton

highlight the significance of software maintenance in relation to the long-term care of

software-based artworks (Engel, & Wharton, 2014). Legacy systems pose a particular

challenge to software maintenance in cases where some kind of custody change has

occurred, as is often the case for artworks acquired by an institution. In these cases,

the conservator is in a similar position to the role of a new maintainer of a legacy

system. Their primary goal is understanding the software: what it does, how it does it

Ensom - Technical Narratives

106

and how it can be kept running.

To achieve this, one might look at the non-software product outputs of the

development process—often referred to as artefacts in software engineering

(although there is no widely agreed definition of this term). The potential nature of

these materials was explored in Section 3.3.1.1, where I found that while it is possible

to derive best practice guidelines from software engineering practice, extensive

documentation in accordance with these guidelines is unlikely to be received when

an artwork is acquired—certainly, this is case for the case study artworks examined

during this research. Evidence from other research indicates that, while artists

working with new media value documentation highly in relation to the legacy of their

work, the documentation they generate is idiosyncratic, linked closely to their mode

of practice and often concerned with shorter time spans than museums might be

required to consider (Post, 2017). As such, the presence of this kind of detailed design

documentation is hardly guaranteed, nor will it necessarily be suitable for the

purposes of software maintenance and preservation activities. There are also risks

associated with prior generated documentation presenting an idealised view of the

artwork or one which differs from the final realisation of the work as it was acquired.

The danger of documentation being out of date or mismatching the deployed software

is an acknowledged concern regarding its value in a software engineering context

(Lethbridge, et al., 2003). Therefore, conservators must be at the very least prepared

to verify such documentation to some extent.

In software engineering, the challenges raised by a poorly documented legacy system

might be addressed using reverse engineering. Chikofsky and Cross (1990) define

reverse engineering as “the process of analysing a subject system to identify the

system’s components and their interrelationships and create representations of the

system in another form or at a higher level of abstraction” (p.15), and that it can can

be considered in contrast to “forward engineering”, the traditional process of moving

from design to a physical implementation. A term first formalised in 1985 by M. G.

Rekoff in the context of “cloning” or recreating existing hardware systems (Rekoff,

1985), it has since come to encompass a much broader practice that includes deriving

documentation that supports program understanding from existing software

representations. Engel and Wharton demonstrate the value of a reverse engineering

approach based on the analysis of the source code representation (Engel, & Wharton,

2014), the purpose of which (in relation forward engineering) is illustrated in Figure 6

below.

Ensom - Technical Narratives

107

Figure 6. Representation of the forward and reverse engineering processes in relation to

artefacts resulting from processes in software engineering. Arrows between boxes relate to

processes of forward engineering14 above (from left to right) and source code analysis as a

method of reverse engineering below (from right to left).

Source code’s value is also well established in the broader software engineering field,

and research has found that software engineers consistently rate source code as the

most important artefact produced by the software development process in terms of

maintenance value (Singer, 1998, de Souza, et al., 2006, Das, et al., 2007). In

Chapter 2 I identified a number of concerns regarding the limitations of source code

analysis as an approach to documenting software-based artworks. These included

scenarios where source code is unavailable for software or where it may be

impractical or unnecessary to undertake such work. In the next section I examine

these limitations in more detail.

4.4. Problematising Source Code Analysis

While I have largely made reference only to source code in the preceding section, it

is more appropriate to consider source materials—a more general term inclusive of

14 Implementation and deployment are used in a variety of ways in the software engineering

literature. Implementation is used here to describe the process of moving from concept to

code, while deployment refers to the process of making an implemented concept useable in

its operational environment.

Ensom - Technical Narratives

108

non-source code elements involved in the development process such as data and

production software. As I have already illustrated, the value attached to source code

within this body of development materials is high. A number of explorations of the

analysis of source code by Deena Engel and collaborators have already revealed

how this process can result in deep insight into the workings of software-based

artworks and the creation of rich technical documentation (Engel, & Wharton, 2014,

Engel, & Wharton, 2015, Dover, 2016). These source materials also present other

benefits beyond software analysis. They are a trace of the process of artistic

development and creation, and as such are significant artefacts in their own right and

worthy of preservation as historical documents (ideas explored further in Chapter 6).

Furthermore, if the complete environment containing the original set of code, data

and tools can be reconstructed, it may even be possible to modify and recompile

software, if desirable. While the value of having access to source materials is

impossible to dispute, I propose that there are three factors which may mitigate the

benefits of taking a source-centric approach to software analysis: inaccessibility,

nonequivalence and redundancy.

Inaccessibility arises where source materials are not available for examination, or

what is available is in some way an incomplete representation of the software.

Perhaps most obviously, this problem might arise where source code is unavailable

altogether, either because it never existed (for example, where WYSIWYG15

development software was used) or because it could not be acquired from the artist

(perhaps because it was lost or they simply do not wish to share it). The use of a

complex development environment may also impact accessibility. For cases where

source materials are simply plain text source code, accessibility is unlikely to pose a

problem as the code can be easily rendered and preserved. For four of the six

software-based artwork case studies addressed in this thesis, source materials

consist primarily of plain text source code. However, while this source code underpins

the creation of the software employed, the source materials in each case consist of

more than just plain text source code. Integrated development environment (IDE)

software and other authoring tools were used in each case to simplify elements of

project management, programming (such as working with libraries and debugging

15 This is an acronym of “what you see is what you get”, and is used here to refer to

development software which uses visual interfaces to make the process of development

more intuitive.

Ensom - Technical Narratives

109

code) and interface design.

Without access to this complete development environment, some elements of the

software in question may remain unclear. Even for source code-based projects where

this is less essential, it can be a significant comprehension aid in providing structure

to the various elements of the program, particularly where it is complex. If there is a

desire or need to achieve recompilation however, ensuring access to a complete

development environment is essential, preferably including the original versions of

the software that made up that environment. In practice, recompilation may be an

ambitious goal in many cases, and indeed, not necessary for preservation purposes

(applying an emulation strategy for example, does not require recompilation). For all

the artwork case studies, loading the source code projects into contemporary IDEs

(where this was possible at all) resulted in errors which would need to be addressed

before they could be recompiled.

Problems with accessibility may also manifest for software developed in IDEs and

other production tools which create further abstraction layers between user and code.

Many development tools abstract underlying complex systems, such as graph-based

visual editors (e.g. Max for audio processing), WYSIWYG editors (e.g. Visual Basic

for building forms) and 3D engines (e.g. Unity for developing video games). The

Quest3D software used in the development of Sow Farm presents a clear example

of this problem. This now obsolete software—it is no longer sold or supported by its

developer Act-3D—simplifies otherwise complex programming tasks relating to the

3D rendering pipeline through the use of a graph editor. Custom code can be

developed within this environment, but this code alone would not be sufficient to

understand the software super-object, let alone recompile it. Even with the complete

development environment, reliance on obsolete, closed source technology adds

significant additional preservation requirements if long-term access is to be

maintained to these. Later in this chapter I consider binary-centric analysis

approaches which can to some extent address problems with the accessibility of

source materials.

Nonequivalence refers to the potential for the binaries included with a software-

based artwork acquisition to have an unclear provenance in relation to the

corresponding source materials in the same acquisition. This may arise for a number

of reasons. In some cases, the source materials acquired may simply not be a

complete representation of the materials involved in the creation of a particular set of

binaries, for reasons of accidental omission or loss. In such cases it is therefore not

Ensom - Technical Narratives

110

possible to make fully informed inferences about the binaries on the basis of the

source materials. This might also be a problem where binaries were generated within

the original development environment, using a particular configuration that is no

longer known. Without detailed documentation of the build process, equivalence can

only be inferred by acquiring the complete development environment, recompiling the

software and comparing performances in a suitable technical environment. This is a

task which, as discussed earlier in this section, may not be possible if the examination

is occurring a long time after the artwork was created, particularly taking into

consideration the loss of associated tacit knowledge. They may also arise where

alterations to software are being made rapidly (perhaps in relation to a deadline),

resulting in a proliferation of versions that may have been inadequately tracked.

Problems with nonequivalence between binaries and source materials are evident in

the examination of the Brutalismo software. This artwork has a large Java source

code project associated with it, which was developed in the NetBeans IDE. Within the

source code project, there are several sub-projects and a number of modules

(function-related organisational structures for blocks of code) which were not

incorporated into the binaries used when the software was built (i.e. transformed into

an executable set of Java files). Furthermore, there are numerous versions of the

binaries without a clear naming protocol, making it difficult to establish concrete links

with the code base. These kinds of problem might be mitigated by communication

with the artist on acquisition of a work, and where possible the associated acquisition

of a development environment allowing recompilation of the software (although this

may have significant licencing cost implications). Where custody of the code is still

shared by artist and institution, change management and versioning can provide a

means of ensuring that equivalence is recorded—ideas which are explored further in

Chapter 6. Where this kind of collaboration is not possible, methods for reversing the

compilation (or build) process may prove useful in establishing equivalence. In other

cases, dealing with questions of equivalence may be avoided by analysing the

binaries or process (at runtime) directly. I discuss these approaches in more detail

later in this chapter.

Redundancy refers to the potential for source code analysis to be surplus to

requirements during the examination of software by a conservator. This may arise

where the effort required to develop program comprehension through code analysis

outweighs the value of the information that might be gained, or where information

might be more easily gained using an alternative approach. With increasing

Ensom - Technical Narratives

111

complexity of source materials comes greater challenges to program comprehension.

Program comprehension is aided by documentation: for example, a structural

overview or documentation of the relevant programming language syntax. As

highlighted in Chapter 3, the process of source code analysis is also eased

considerably if the source code is well documented by in-line annotations (or code

comments). Where these are missing, and resources are limited, and presuming the

conservator is unable to carry out the analysis themselves, questions arise regarding

whether to seek external expert assistance. While doing so is not unusual within

conservation practice, in some cases detailed analysis of source code may simply not

be necessary.

Given that the demands of the reconstructive analysis workflow introduced at the

beginning of this chapter are quite specific—identifying the technical environment

required to perform a software super-object—analysing source code may not be the

most effective way of addressing them. This can be understood as another example

of a map-territory problem (discussed in the context of representation in Chapter 3),

in that a decision must be made about the value of an exhaustive approach versus a

pragmatic one. When Microsoft released the file format specifications for their native

Office XML formats, the specifications were found to be extremely large and complex

compared to those for similar formats, so frustrating those interested in developing

software that could use them and stymying interoperability (Hiser, 2007). Former

Microsoft programmer Joel Spolsky, suggests that this relates to the complex history

of the software they were designed for:

“The bottom line is that there are thousands of developer years of work that went

into the current versions of Word and Excel, and if you really want to clone those

applications completely, you’re going to have to do thousands of years of work.”

(Spolsky, 2008)

While it is impossible to know the actual amount of work that would be required to

clone Word or Excel, the point of relevance here is that reverse engineering complex

software is an inherently a resource intensive activity. Completely understanding a

complex software-based artwork through its source code may take a considerable

amount of time. Therefore, the question we might ask prior to examining an artwork,

is whether it is necessary or efficient to carry out source code analysis as part of this

process. In cases where an environment-centric preservation strategy is applied

(such as emulation or virtualisation), understanding the intricacies of the software

programs functionality is not helpful.

Ensom - Technical Narratives

112

Practical examples of this problem are, again, easy to find among the artwork case

studies. Rafael Lozano-Hemmer’s Subtitled Public uses very complex software

consisting of over 60000 lines of code written in an old version of the Delphi

programming language (a derivative of Object Pascal). If the conservator wants to

understand how to prepare a new technical environment for display, analysing the

binaries directly is much more efficient than consulting the large volume of code, as

this permits targeted extraction of such information without any requirement on the

conservator to be able to read the programming language used.

Indeed, it may also be less ambiguous, as in other cases redundancy may stem from

the fact that source code does not accurately capture connections with technical

environment. Looking at the source code of Colors for example, it is impossible to

concretely identify dependency relationships with the QuickTime framework through

the source code alone. We can find calls to QuickTime libraries, but we don’t know

whether these calls would work for all or only a subset of the released versions of

QuickTime. In this case, understanding the software involves also understanding the

complex development history of QuickTime, a closed-source, proprietary framework

maintained by Apple. Approaching the problem of dependency management

pragmatically, we might instead test the application in different software environments

with different QuickTime versions, and so establish the parameters of its portability.

This reflects the fact that each computational process (which exists in memory only

during the period in which it is executed) is unique and ephemeral, and not equivalent

to the binary or the source code. This brings us back to issues of nonequivalence: the

software process through which a software performance is generated is not

equivalent to the source code representation of the software being executed in

memory.

It is important to note that certain models of artist-institution collaboration in the care

of software-based artworks dramatically reduce the risks posed by the factors

discussed above. This includes relationships that are either closely collaborative or

involve sharing infrastructure prior to or after acquisition. Collaboration with artists

and programmers has been a common approach in the care of software-based

artworks at Tate. During the installation of Rafael Lozano-Hemmer’s Subtitled Public

at Tate Liverpool in 2008, the software was altered during the installation process and

recompiled. Similarly, work on the Jose Carlos Martinat’s Brutalismo software was

able to continue between installations, as the programmer remotely connected to a

Tate hosted development machine. In these cases, it becomes feasible to generate

Ensom - Technical Narratives

113

some of the essential code documentation in collaboration with the artist and other

collaborators, where resources permit this—an idea I return to in Chapter 6.

4.4.1. Case Study: Program Comprehension Through Source Code
Analysis

In this section I will examine the value of insights gained from source code analysis

of the 2010 Flash version of Becoming by Michael Craig-Martin. The original version

was developed in 2003 using Macromedia Director 8, an authoring tool for creating

Shockwave multimedia applications, by London-based digital design company

AVCO. With an interest in exploring how the process of migrating software to another

technology might work, in 2010 Tate worked with the artist and AVCO to develop

software using a similar contemporary software platform—Adobe Flash Professional

CS5.5. The Flash version replicates the behaviour and formal characteristics of the

original using a reimplementation of the code in the ActionScript 3 scripting language

and a third-party extension library called GreenSock. While this version of the

software has not yet been used in a realisation of the work, I chose to examine this

version simply because it still runs correctly in contemporary operating systems

(unlike the original Director version) and will therefore offer greater potential in terms

of long-term preservation. Flash is technically on the cusp of obsolescence, with the

technologies maintainer Adobe announcing that support will end by 2020 (Adobe,

2017). However, Flash projector executables (which are not dependent on a web

browser) compiled for Windows operating systems still run natively on its most recent

edition (Windows 10), without the need for additional supporting software. Loss of

access is therefore not an immediate risk, although must remain under review in

respect to the continued evolution of the Windows platform and PC hardware.

The work consists of custom software used to generate dynamic 2D graphics

displayed on an LCD screen. This screen is housed in a custom-built case which

provides framing and conceals the computer hardware. The 2D graphics are an

assemblage of everyday objects drawn in Craig-Martin’s signature style of brightly

coloured line drawings, rendered against a magenta background. Elizabeth

Manchester, writing for Tate, describes the dynamic elements of the software as

follows:

“For this project, AVCO developed a programme that generates the random

appearance and disappearance of the objects. [...] The objects may all appear at

once, or none may be visible for a considerable length of time. The programme

allows for unpredictable combinations which may never be repeated.” (Manchester,

Ensom - Technical Narratives

114

2004)

The parameters of the algorithms which result in these “unpredictable combinations”

are unclear from examining the artwork when it is displayed. The speed at which

objects fade in and out could be measured manually using a timer, but these times

are found to be variable, and the reasons for this (as well as for the selection of an

object to add or remove) is impossible to determine from looking at the screen output

alone. Certain behaviours do hint at features of the underlying algorithm. For

example, when the software starts, all objects are visible, and the program initially

seems to remove objects (randomly) at a much greater rate than it replaces them.

However, more precise information that this would be extremely difficult to determine.

The ActionScript code used in this version of the work can be expressed as plain text,

but in order to create the software it was combined with the graphical elements of the

work within the Flash authoring software. The source code consists of four

ActionScript files with different purposes:

● Becoming.as: Initialises the animation and instantiates the BecomingView and

BecomingController classes;

● BecomingView.as: Instantiates the BecomingObjects as layers;

● BecomingController.as: Controls the appearance and disappearance of

objects within the scene;

● BecomingObject.as: Initialises the object fading animations and assigns a 2D

graphic to each object.

The BecomingController functions are by far the most complicated part of the code

and use nested conditional statements and pseudorandom number generation to

create variance in the behaviour of the software. Studying the BecomingController

code reveals a number of features of the underlying processes:

● While pseudorandom number generators are used in the creation of some

variables (such as fade time and choosing which object to remove) they are

all constrained in some way in relation to the current status of the animation.

● If there are more than 8 objects in the process of changing (from visible or

hidden), no further changes will occur until this number reaches 8 or less.

Ensom - Technical Narratives

115

● There is random wait time of between 0.4 and 3 seconds before checking

whether to remove or replace another object.

● The most complex part of the code deals with deciding whether to remove or

replace an object at the current time. This takes into consideration the number

of objects currently visible, the number of objects removed, and whether the

last action was a replacement or removal.

● The speed of a removal or replacement animation is linked to the number of

currently changing objects. Based on the number of changing objects, a

random time is chosen within a range that is specific to that number (these

range from the lowest of 27.5 seconds and highest of 46.4 seconds).

This information greatly helps us understand the parameters of the Becoming

software’s functionality, and detailed documentation of the exact parameters could

allow them to be recreated using another platform. However, it does little to tell us

about the requirements of the software in terms of its execution environment. For

example, which components of the host technical environment are utilised by the

Becoming process at runtime and what impact they might have on the software

performance. This problem stems from that fact that much of the Flash technology at

the core of the work is not directly accessible to the user of the Flash development

software. This is because these proprietary elements are simply not present in the

source materials as far as the developer is concerned; rather, the Flash development

software incorporates them into the binaries when they are generated for use.

Developers are drawn to platforms such as Flash precisely because the out-of-the-

box functionality they offer does not require them to build their own equivalent

software from scratch, but it also means that the developers of the platform (such as

Adobe, the current owners and maintainers of Flash) will typically keep their

proprietary source code private.

As already stated, Adobe has announced plans to end support for and distribution of

Flash by 2020 (Adobe, 2017). Therefore, from a conservator’s perspective it may be

sensible to think about migrating the Becoming software to a new technology before

this time. In this case the artist has not indicated that the Flash rendering engine is

conceptually significant to the work’s realisation, so the most significant consideration

would be how to maintain the software performance as accurately as possible.

HTML5 and JavaScript technology offer an open and community-led standard that

may offer a suitable migration pathway. Approaching this migration would necessitate

Ensom - Technical Narratives

116

considering not only whether the ActionScript functionality of the source code could

be reimplemented in JavaScript, but whether there are features of the Flash rendering

engine which might need to be replicated. For example, the anti-aliasing of the edges

of the vector graphics is handled by the Flash renderer and results in a particular

quality of smoothing to their edges.

4.5. Binary-centric Software Analysis

An alternative to source code analysis is to instead look to the binaries; the compiled

software representation. As discussed in Chapter 2, the problem presented by

binaries in developing program understanding is that they are a relatively opaque

software representation—their internal structure is complex and designed for

machine comprehension, rather than human. Fortunately, there are other reverse

engineering approaches which can be used to address precisely this problem. These

are illustrated in relation to forward and reverse engineering, including source code

analysis, in Figure 7 below.

Figure 7. Representation of the forward and reverse engineering processes in relation to

artefacts resulting from processes in software engineering, extended to incorporate binary-

centric analysis methods. Arrows between boxes relate to processes of forward engineering

above (from left to right) and reverse engineering below (from right to left).

Binary analysis seeks to analyse the compiled code contained within the binary files

and may be potentially useful as a way of extracting information. Decompilation and

Ensom - Technical Narratives

117

disassembly can transform compiled software back into a higher-level representation

(i.e. something more analogous to the source materials). Given that the software

performance is the result of a distinct computational process rather than of the

software super-object as a static digital object, there is a need to address this process

component too. The considered use of dynamic analysis tools can permit “the

analysis of data gathered from a running program” in order to gain program

understanding (Cornelissen, et al., 2009, p.684). I look at all of these techniques in

more detail in the following sections.

4.5.1. Binary Analysis and Decompilation

Where source materials are not available, it may be possible to use reverse

engineering methods to derive equivalent information from the binaries. One such

approach is simply to analyse the content of the binaries. While the code contained

in binaries is typically low level and intended for execution (or interpretation) by a

machine, tools have been developed which can extract information from this code

and from the other metadata stored inside such files. Tools for doing this are

sometimes called static binary analysis tools and have found particular use in the

identification of malware (Bergeron, et al., 1999, Moser, et al., 2007). In the context

of examining software-based artworks for which source code is not available, binary

analysis can extract useful information about the structure of the binary file. For

example, it is a simple way to ascertain whether an executable was built for x86 or

x64 processor architectures—a useful piece of preliminary information in identifying

technical environment requirements. It also offers a powerful tool for identifying

dependencies. In the example illustrated in Figure 8 below, the CFF Explorer (Pistelli,

2012) binary analysis tool has been applied to the calibrate.exe Windows Portable

Executable used in the setup of Subtitled Public by Rafael Lozano-Hemmer. This

enabled the capture of information about the software that was not available for the

software when it was acquired, including the nested set of Windows Dynamic Link

Libraries (DLLs) required by the program and metadata describing them. In the

example pictured, the cv.dll library is a specific version of an Intel computer vision

library.

Ensom - Technical Narratives

118

Figure 8. The nested DLL dependencies (along with metadata describing one of them) of

the Subtitled Public calibrate.exe program, revealed through the use of CFF Explorer binary

analysis tool. The third-party Intel OpenCV library is highlighted.

Another binary-centric approach is to attempt the transformation of the low-level code

contained in the binaries into a representation at a higher-level of abstraction, which

might be more easily comprehended by a human reader. The transformation from

source materials to compiled software is essentially a one-way process, and so the

original source materials can never be derived exactly as they were. However, as a

representation of the program is still essentially present in the binary code (the exact

level of abstraction varies depending on the language used), it may be possible to

generate a higher level representation from it if a suitable tool is available. This

process of reversing compilation is known as decompilation (Geffner, 2014). In

relation to available tools, the term decompiler has a slightly more ambiguous

Ensom - Technical Narratives

119

meaning, and might also refer to tools such asset extractors16 which do not actually

translate machine code. These are nonetheless relevant tools in seeking to derive

source materials from binaries, as they might allow the extraction of data assets which

are packed into an executable, resource file or other encoded form.

The nature of the transformations that occur during compilation mean that

decompilation is not a straightforward process, and the efficacy and usefulness of

decompilation tools varies considerably depending on the type of software being

targeted. This can be demonstrated through its efficacy in relation to three of the

software-based artwork case studies, each of which relies on a different software

platform. [REDACTED] has associated source code acquired by Tate, which has

been commented by the developer [REDACTED]. This allows for meaningful

comparison with the results of decompilation. As [REDACTED] the program was

written in Flash ActionScript, which is translated by the Flash runtime on execution,

there is no need for the interpretation of machine code and we might therefore expect

a high-level level of correlation between decompiled code and source code.

The source code was decompiled using a Flash decompilation tool called JPEXS

(JPEXS, 2016). This program outputs a set of resources which correspond roughly to

the assets that make up a Flash project, including the graphical data assets,

animation data and the ActionScript code itself. In Figure 9 below, I compare compiled

and decompiled versions of the same segment of source code from a class called

[REDACTED].

16 Such tools might, for example, decode compressed packages of data (which are

manipulated by a software program when it is executed) and so allow the examination of

their contents.

120

[FIGURE REDCATED]

Figure 9. Comparison of a snippet of original ActionScript 3.0 source code (left) and decompiled code (right) for [REDCATED]. The decompiled code has

been modified to include spaces where the header would be, to allow easier line-for-line comparison with original source code.

121

The content of the decompiled code is very similar to that of the original source,

including consistent file, class and variable names. There are however a small

number of changes apparent, including one package import being condensed into a

generalised form and one variable name change. These would have a minimal effect

on program comprehension. The missing comments (grey formatted text) from the

original version however, are slightly more significant, most strikingly apparent in the

absence of the metadata header describing the file, its author and version information.

A common feature of compilers (and other build tools) is that they strip out code

comments and metadata in this way. More subtly, while variable names have largely

been maintained, line break formatting has not been retained, resulting in the loss of

logical groupings of related variables. In this case, the decompilation output is clearly

a useful representation of the program and could form an effective basis for the

recoding of the software. However, the loss of comments and other authorial traces

in the decompiled code means that program comprehension is slightly more difficult,

and the decompiled code offers a rather less rich history of the development process.

The Brutalism Java binaries are another case where decompilation is likely to be

successful, as Java is not compiled as machine code. Java binaries contain a

representation of the code known as bytecode, a higher-level abstraction than

machine code, and one which requires interpretation by the Java Runtime

Environment at runtime. While this is not equivalent to the Java source code, Java

bytecode is much easier to decompile than machine code (Hamilton, & Danicic,

2009). In this case, the binary was decompiled using a software tool called JD-GUI

(a version of Java Decompiler) (Dupuy, 2017).

122

Figure 10. Comparison of snippet of original Java source code (left) with decompiled code (right) for a binary files from Jose Carlos Martinat’s Brutalismo.

The decompiled code has been modified to include spaces where the header would be, to allow easier comparison with original source code.

123

Decompilation output (illustrated in Figure 10) again closely matches the original

code, including project, package, class and variable names. As with Becoming, the

primarily losses are the code comments and header metadata. While for Becoming

this did not have a major impact on program comprehension, comments are

potentially much more important in interpreting the Brutalismo software—a much

larger project. However, the decompiled code retains a close resemblance to the

original and would undoubtedly be valuable in developing program understanding in

the absence of source code. In this instance, the decompiled code is also helpful in

addressing an equivalence problem due to the proliferation of binary files on the host

machine. Comparing the two allows a direct link between a component of the complex

source project and an individual binary to be established. It is revealed through this

process that the binaries only incorporate a subset of functionality contained in the

source project. It should be noted that while bytecode decompilation was found to be

very effective in this case—a conclusion which other evidence suggests might be

widely applicable (Naeem, et al., 2007)—studies have also found Java decompilers

(including the JD decompiler used in this case) to be unreliable in some cases

(Hamilton, & Danicic, 2009). Java decompilation may be particularly difficult where

code obfuscation techniques are used to counter it (Chan, & Yang, 2004), a technique

which might be used to prevent reverse engineering of proprietary software.

For a work such as Sow Farm where source materials are not available for

examination, decompilation could provide a means of filling this gap. However,

decompiling this kind of large project, which was constructed in a graphical C/C++

based development tool called Quest3D, would be much more technically challenging

than the prior examples. In this case, decompilation would need to target the machine

code of the entire Quest3D engine in order to return a complete representation of the

source code. In addition to the legal and ethical issues involved in doing so in this

case (which I return to below), decompiling machine code is much more challenging

than an intermediate representation such as Java bytecode. While decompilers

targeting machine code do exist, the transformations that occur during the compilation

process means that the results are typically much less useful and bear little

resemblance to human-authored C or C++ source code (Jazdzewski, 2014). As a

result, the decompiled program would require considerable effort and expertise to

interpret, without any certainty as to whether all parts of the program are actually

represented (i.e. the extent to which decompilation was successful). There is debate

within the reverse engineering community as to whether decompilation of machine

code into a complete high-level source code representation will ever be possible due

Ensom - Technical Narratives

124

to the technical challenges involved (see Eilam, 2011 for a discussion of this). Even

when taking the attitude that this is theoretically possible, until there are tools

available that allows the process to be carried out reliably, the technique only has

limited use in a conservation environment.

An alternative approach in this case would be to use a disassembler which can be

applied to any machine code representation. A disassembler transforms machine

code into a mnemonic representation designed to be more easily read by a human:

assembly language (Geffner, 2014). As assembly language instructions have a one-

to-one relationship with machine code instructions (Eilam, 2011), the volume of code

produced (as well as the expertise required to interpret it) makes it considerably less

useful when compared to source code or decompiled code. Despite the inherent

challenges, the results of either decompilation or disassembly could—given enough

resources put into their analysis by someone with the expertise—eventually allow

reverse engineering of program understanding. The more pertinent question is

whether this is actually worthwhile—the answer to which depends on the questions

being asked. In the case of Sow Farm, much of the information required to plan an

emulation-based preservation strategy could be gained through static binary analysis

and other techniques which I will introduce in the next section. Accurately migrating

Sow Farm to a new 3D engine on the other hand, would be very difficult without

reverse engineering a more complete set of source materials and design

documentation.

It is important to note that there are legal and ethical implications to the decompilation

of proprietary software platforms—a prominent component of both Becoming (Flash)

and Sow Farm (Quest3D). In UK copyright law, the right to decompile is, in certain

circumstances, enshrined in law through a section of the Copyright, Designs and

Patents Act 1988 (Atkins, 2009). While the use case highlighted in this section would

likely count as an “acceptable objective”, Atkins found the Act to be unclearly defined.

Similar legal ambiguities regarding decompilation exist in the United States (Behrens,

& Levary, 1998). Exploring these issues in further detail is out of the scope of this

thesis, but should be a consideration in the application of these techniques to

software-based artworks which involve proprietary technology. Perhaps more

important here are the ethical considerations. Gerrard has chosen to keep the source

materials of Sow Farm in his care rather than pass them on to the museum—perhaps

respecting this decision and working with the artist to alleviate preservation concerns

offers the more appropriate pathway for this work.

Ensom - Technical Narratives

125

4.5.2. Process Analysis and Instrumentation

While in the previous section I considered approaches which target software binaries

as static digital objects; in this section I consider those which target the software as a

process—that is, a program in execution (Silberschatz, et al., 2014). By directly

addressing the binary program as an executing process, information may be gathered

about the program’s behaviour and performance, offering a potential alternative to

directly examining code. The term dynamic analysis is used to refer to a set of

methods which focus on the analysis of a software program while it is executing

(Gosain, & Sharma, 2015). While this term is often used specifically in relation to

methods that focus on debugging and testing code, here I adopt a broader definition

that includes any method of intercepting or analysing software processes executing

in a technical environment. The advantage of such techniques is that they offer

precision and a goal-oriented strategy for understanding software programs

(Cornelissen, et al., 2009). Dynamic analysis contrasts to static analysis, which

focuses on analysing (source or binary) code as an object. Whereas static analysis

can be used to exhaustively explore different executions scenarios, dynamic analysis

is best used where a particular software characteristic or behaviour is targeted, and

complete understanding of the system is not necessary (Stroulia, & Systä, 2002).

Approaches to dynamic analysis can be considered in relation to the point at which

they intercept the software process in question. I will refer to the act of creating an

interception mechanism (of any kind) as instrumentation. The most direct form of

instrumentation is the addition of special lines of code to the source code which allow

information to be captured when the software is executed. Sow Farm for example,

permits monitoring of graphics performance and simulation data as the software runs,

viewed through a hidden overlay feature (see Figure 11). This feature may never have

even been intended for use by a collector or institution but may have been used to

assist in testing and debugging the software during development.

Ensom - Technical Narratives

126

Figure 11. Screenshot of the debug overlay (which appears in the top left-hand corner of the

rendered image), which is used for monitoring of Sow Farm while the software is running.

Becoming also contains instrumented code (using the ActionScript “trace” function),

which allows the viewing of the live state of certain variables as the executable runs,

if run through Abobe’s Flash Debug Player. In this case however, because of changes

in the instrumentation requirements of Flash Debug Player, it is no longer possible to

view the Becoming software in debug mode in current technical environments. This

highlights one of the limitations of code instrumentation of this kind—it relies heavily

on the nature of the instrumentation the artist (or collaborator) chose to hard code into

the software, and (unless it is possible to revisit the code) it might be difficult to reliably

maintain. Nonetheless, working with artists and programmers to implement or select

appropriate instrumentation could be very beneficial for long-term preservation of

software-based artworks by providing a means of verifying the accuracy of elements

of a software performance—an issue I return to in Chapter 5.

Where code has not been instrumented (as in most cases where this has not been

planned) and revisiting code is not possible, third-party dynamic analysis tools may

be used to instrument the binary or intercept the process in some other way. Such

tools can be built with a huge variety of goals in mind and can be implemented in

many different ways. However, in experiments applying them during this research, I

identified several generalisable method types which were particularly useful when

analysing software-based artworks:

● Profiling: Designed to capture and log information about the performance of

Ensom - Technical Narratives

127

a software program (or elements of its technical environment) as it is running.

In a software-based art conservation context, this can be particularly useful in

capturing and verifying software performance metrics such a rendering speed,

execution times or hardware load. This might be useful, for example, in the

verification of a software performance or in testing the software on a new

system. Profiling some aspect of a software performance requires careful

consideration of the appropriate metrics to use.

● Tracing: Designed to capture and log information about events and system

interactions as a software program is running. In a software-based art

conservation context, these techniques can be particularly useful in identifying

calls to dependencies and other interactions with software environments.

Operating system level tracing can be employed to reveal events such as file

system interactions (which may indicate dependency), but this can produce

very large quantities of data to be analysed. Program level tracing can be

targeted more precisely and can give more detailed insight into program

functionality, but may require negotiating machine code instrumentation,

which brings with it the challenges of analysing machine code that were

introduced in the previous section.

● Data Monitoring: Designed to capture and log data that is sent and received

by a software program. Such tools could target a variety of communication

protocols. For example, they might be used to monitor network activity (this is

known as packet sniffing) or capture data being sent to a port (for example, to

a printer or other hardware device). In a software-based art conservation

context, this kind of information can be particularly useful for identifying the

nature of a program’s interaction with an external resource, or simply for

assessing whether transmission is occurring.

Dynamic analysis techniques also have limitations with regards their use value.

Stemming from their nature as goal-oriented strategies, the most significant of these

limitations is that dynamic analysis is inherently an incomplete form of analysis, and

only targets a portion of a potentially large and complex execution domain

(Cornelissen, et al., 2009). Relying on such techniques for developing program

understanding, in preference to source code analysis, therefore runs the risk of not

capturing important elements of program function. Consider a hypothetical example,

where a specific input triggers a program to make a dynamic call to a specific

dependency. Unless this specific input were triggered (and knowing how to trigger it

Ensom - Technical Narratives

128

might itself require in-depth knowledge of the program), this dependency may never

be captured by dynamic analysis methods. While any information is valuable in cases

where source materials are unavailable, we might be cautious when considering

whether to base more significant preservation actions (for example, reimplementing

a program in another programming language) on information gathered through

dynamic analysis.

Ultimately, dynamic binary analysis tools are complementary to other approaches

such as static binary analysis and source code analysis, and can be used alongside

them in cases where this is possible. In the next section I describe a case in which

both dynamic and static binary analysis are applied to answer questions about a

software program. However, for those cases where the utility of source code-centric

analysis is constrained in some way, dynamic analysis tools provide another means

to gather information about a software program. Performance verification, an issue I

return to in Chapter 5, may be where dynamic analysis will be most useful for

analysing software-based artworks. In these cases, working with artists to build or

specify appropriate software instrumentation may be particularly valuable.

4.5.3. Case Study: Dependency Identification Using Binary and Process
Analysis

Identification of the technical environment required to run John Gerrard’s Sow Farm

is an important task in the examination and documentation of the work. This is made

particularly important by the existing interest in virtualisation as a preservation

strategy for this work (Falcão and Dekker, 2015)—migrating this work is not an

option—which would require an understanding of how the technical environment is

constructed. Doing this is challenging however, as the software relies on a complex

3D rendering pipeline. For this software, which was designed for the Microsoft

Windows operating system (OS), the primary interface between the software and the

graphics hardware is the DirectX API. DirectX has been under development in some

form since the mid-1990s, and has had a number of core versions roughly paralleling

the history of the Windows operating system. These core versions (the most recent

at the time of writing is DirectX 12, which ships with Windows 10) have offered an

evolving feature set. As new versions are released, older functionality is sometimes

deprecated and even phased out.

While a version of the DirectX runtime (the component required to run software

developed for DirectX) is included with all versions of the operating system family

since Windows 98, compatibility of contemporary versions of Windows with

Ensom - Technical Narratives

129

applications written for older DirectX versions varies as a result of the gradual

changes to the API. To combat this problem, Microsoft makes granularly versioned

runtime libraries available, in order to provide backwards compatibility for older

applications. This is not an unusual approach for backwards compatibility among

runtime libraries, but results in a proliferation of versions. The version used by a

particular software program will depend on the version of the DirectX SDK used

during its development. This can be quite specific, new versions having been released

as frequently as monthly during some periods. For this reason, the installation of an

additional runtime library is sometimes necessary in order to run a program. Where

there is no well-defined installation process, as in the case of Sow Farm, it is important

to identify which versions of the DirectX runtime libraries the software requires.

With no source materials available for study, unambiguously identifying these

dependencies might fall to other methods of binary-centric analysis. An initial problem

encountered was that analysing the Windows Portable Executable from which the

software was launched using CFF Explorer (Pistelli, 2012) does not return information

about Dynamic Link Library (DLL) dependencies—the kind of dependency that the

program has in relation to DirectX runtime libraries. This suggests something is

happening when the program is executed that results in this information being hidden,

so we might instead consider addressing the running process instead to reveal what.

Using Microsoft Sysinternals Process Monitor (ProcMon) tool (Russinovich, 2017) to

carry out a system trace analysis, it is possible to log all the file read and write

operations being made as the software was executed, generating a very large

quantity of data.

Ensom - Technical Narratives

130

Figure 12. Screenshot of the Sysinternals Process Monitor program (Russinovich, 2017),

showing file system activity logging results for the sowfarm.exe software process. Each line

represents a file system activity.

In this case, carefully examining the log data from the sowfarm.exe process file

system trace reveals that the software was unpacking the contents of the executable

to a temporary directory behind the scenes and executing an unpacked program from

there. With this knowledge, it is possible to make a copy of this data while the process

is running (it would normally be deleted when the process was terminated) and

examine this extracted data in detail.

With the correct executable representation of the software identified, we can now

again attempt to use binary analysis to derive information about its dependencies.

However, the correct binary to address is unclear: there are 195 files in the extracted

directory, many of which are DLL files which could pose their own dependencies.

While it is possible to analyse these one by one, a more effective approach is to,

again, analyse the process directly at runtime. Using ProcMon on the process, we

find that a set of DLL files with d3d9 or d3dx9 in their file name are being loaded, the

Ensom - Technical Narratives

131

naming of which indicates that they are DirectX 9 related runtime libraries:

Time Process Name Operation Path Result

56:23.6 QuestViewer.exe CreateFile C:\Windows\SysWOW64\d3dx9_25.dll SUCCESS

56:23.6 QuestViewer.exe CreateFile C:\Windows\SysWOW64\d3d9.dll SUCCESS

56:23.7 QuestViewer.exe CreateFile C:\Windows\SysWOW64\d3dx9_36.dll SUCCESS

Table 4. DirectX library read results of a trace analysis of QuestViewer.exe process using

Microsoft Sysinternals Process Monitor (output to a CSV file and edited here for clarity).

The first and third entries in Table 4 are both runtime libraries (the middle entry being

the core library), and are versioned with the numbers at the end of their file names:

25 and 36 respectively. This allows us to find the appropriate runtime library installer

package distributed by Microsoft. This is a useful starting point for disentangling the

web of dependency relationships posed by the Sow Farm executable that spread into

the technical environment within which it is embedded, and the steps could be

repeated to identify other dependencies of different kinds. This is important because

when this software is emulated or installed on a new host machine for display, we

need to be able to reconstruct an appropriate execution environment from scratch.

4.6. Representing and Describing Software Structures

For the last part of this chapter I shift focus from analysis to representation of the

results of analysis. This is a crucial stage in the workflow introduced in Section 4.2,

which ensures that knowledge derived from reconstructive analysis is captured in a

form that can be used to inform conservation activities. There is some overlap here

with the metadata requirements for the representation of software-based artworks in

information systems, which must also represent the elements that constitute the basis

of a software performance and their relationships with the work’s versions and

realisations. While it is important to capture the analysis stage itself, in terms of both

the resulting data and the descriptive narratives of the process (examples of these

are found in the case study sections of this chapter), these are highly dependent on

the kinds of analysis and tools used. The structured metadata representation of the

constituents of a software performance, on the other hand, can be considered, to

some extent, independent of how the information was derived.

A structured metadata representation may also have potential in serving as a high

Ensom - Technical Narratives

132

level architectural overview of the components of a software system, an artefact

valued by software engineers (Das, et al., 2007, Lethbridge, et al., 2003, Tilley, et al.,

1992). The Institute of Electrical and Electronics Engineers (IEEE), one of the key

bodies in the standardisation of software engineering practice, defines architecture

as comprising the “fundamental concepts or properties of a system in its environment

embodied in its elements, relationships, and in the principles of its design and

evolution” (anon. ISO/IEC/IEEE Systems and software engineering – Architecture

description, 2011, p.2). An overview of architecture for a legacy system might include

the components of the system, the external interfaces with its environment, and the

relationships between them (Hilton, 2016). Given that collaboration with software

specialists may be required in the long-term care of software-based artworks, a high-

level representation of the software architecture may be of value in communication

between parties.

As discussed in Chapter 3, the value of a representation might be best understood

through the extent to which it is useful to those using it. In considering how to direct

the formulation of an appropriate representation, we can return to the roles of

information systems in conservation activities identified in Chapter 3:

● Management of physical and digital objects, including tracking of their

locations and recording of loans, and their relationships with an artwork and

its realisations through time.

● Serving information to support analysis of and reporting on the characteristics

of the collection or a subset of the collection.

● Allowing computer systems to manage and manipulate digital objects stored

in a repository.

These roles are somewhat generic and could apply to any time-based media artwork.

In Chapter 2 I discussed the distinction between the realisation of a software-based

artwork and the software performance that occurs within this realisation—in this

section I am only considering the latter. With this in mind, we can further refine the

potential uses a representation of a software structure might have for a conservator:

● Providing information about the discrete, locatable hardware and software

components that were used to achieve a software performance, where they

are located, and how they relate to each other.

Ensom - Technical Narratives

133

● Making clear particular characteristics of a performance, such as whether

processes of technical abstraction (e.g. emulation and virtualisation) were

employed or whether external resources (i.e. those which cannot be acquired

as digital materials for preservation) are required.

● Identifying how many software-based artworks employ a particular hardware

or software component (e.g. that require a Mac OS X operating system or that

were developed for the Flash platform) for achieving a particular software

performance.

● Providing a means for a digital repository system to serve appropriate digital

resources (i.e. the components required to prepare a particular software

performance) when required for exhibition or display.

This list provides a baseline from which we might judge the suitability of a

representation of a software structure and the metadata needed to populate it. In the

following sections I consider the extent to which existing approaches to metadata and

modelling (as identified in Section 3.3.3) might be used to describe software

structures in a way which can fulfil these uses effectively.

4.6.1. Appraising Existing Standards and Models

Richard Rinehart’s Media Art Notation System (MANS) approach aimed to create a

structured method for “scoring” an artwork, which could “constitute a guide to aid in

the re-creation or re-performance of the work” (Rinehart, 2007, p.183). This model’s

basis in ideas of performance is attractive for our requirements, so warrants further

analysis. The descriptive elements of the model offer limited value for describing

qualities specific to software-based artworks, as they simply map to Dublin Core

elements, the dominant standard for collections metadata, which the majority of

collections management systems already support. The structural elements of MANS

are more novel, as they present a conceptual model for media artworks. This model

consists of an “artwork” which is made up of “versions” (similar to our ‘realisation’),

which are made up of “parts” (or components), which in turn consist of “resources”

(physical or digital things). This bears a close resemblance to our understanding of

time-based media artworks, and so provides a useful high-level model. However, it

does not incorporate sufficient structural complexity to allow the requirements of the

software performance to be modelled at a lower level: modelling the software as a

“resource” would ignore the complexities of the software super-object and its technical

environment completely.

Ensom - Technical Narratives

134

PREMIS is the de facto preservation metadata standard for digital objects, its primary

application being in the management of digital objects and associated preservation

activities (PREMIS Editorial Committee, & others, 2015). PREMIS can be integrated

with other metadata schemas through the use of specific identifiers applied to objects

(typically files), events or agents, and operates primarily at the file (or package of files)

level. An essential tool in implementing high quality preservation metadata, PREMIS

will be an equally important standard for software-based art. However, the diffuse

nature of software-based art (i.e. the connectivity between software super-object and

technical environment), does raise some issues with PREMIS’ focus on digital

objects. Version 3.0 of the standard introduced support for the capture of

“environments”, which are modelled as objects in themselves and linked to the

associated digital object by a dependency relationship (Dappert, et al., 2016).

PREMIS also models the purpose of an environment in relation to an object (a

classification of “create”, “render” and “edit” is available for use) and the extent to

which an environment supports that object (”minimal”, “recommended” or “known to

work”). Environments are composed of other entities, which might in turn be

composed of still other entities—so allowing the construction of a representation of a

complete environment down to the level of granularity at which it will be managed.

While the terminology remains somewhat unrefined and its application untested in

relation to software-based art, PREMIS 3.0 appears to present a set of modelling

options which would capture the fundamental components of a software structure.

However, it lacks the descriptive detail through which a representation of sufficient

detail (in order to support the uses outlined earlier in this section) could be

constructed.

A similarly granular approach emerged from research in digital preservation more

than a decade prior to this: the Capturing Unstable Media Conceptual Model

(CMCM), an ontology developed by the V2_ organisation’s Capturing Unstable Media

project (V2_Institute for the Unstable Media, 2003, V2_Institute for the Unstable

Media, 2003). CMCM provides a structure for the “capture” of an artwork or

occurrence as a specific event in time and for its explicit linking to associated

documentation. The CMCM is not designed to provide structure to a database or to

be implemented as an out-of-the-box solution, but rather, “may function as an

independent reference framework” (V2_Institute for the Unstable Media, 2003,

p.15)—in essence it is a conceptual model. While the modelling choices made in the

construction of the ontology are not completely clear from the project documentation,

an examination of the published ontology reveals that specific consideration has been

Ensom - Technical Narratives

135

given to software as a type (or component) of a “captured thing”. This includes capture

of elements of a technical environment, including a form of dependency linkage

through relationship assertions between software “applications” and “configuration”

(a grouping entity for other components) instances. Due to the broad scope of the

model, the level of detail that can be captured is rather limited in terms of the explicit

modelling of software and hardware environments, and there are only a limited set of

entity types defined for the constituents of these environments. Nonetheless, CMCM

represents a significant contribution to the challenge of modelling complex time-

based media artworks and provides a valuable starting point for a model of software

performances.

The EU FP7 PERICLES17 research project, which ran between 2013 and 2017,

developed a model-driven approach to the preservation of complex digital objects.

The outputs of the project include a set of digital preservation ontologies, designed

primarily to model digital resources within a changing technical environment or

“ecosystem” (Waddington, et al., 2016). Unlike PREMIS and CMCM, the approach

taken is somewhat modular, in that a wide array of digital object types might be

modelled at their respective domain level and connected using an upper level

ontology called the Linked Resource Model (LRM) (PERICLES Consortium, & others,

2014). The LRM has its roots in the PROV-O ontology, one of the W3C standards for

exchange of provenance information over the web—a relationship it shares with

PREMIS. The LRM is similar to PREMIS in its digital preservation purview, with a

slightly different degree of specialism, primarily to model complex dependencies

between digital objects in an operational environment. While the LRM is too generic

to model software structures, an ontology design pattern for computer systems also

resulted from the PERICLES project (Mitzias, et al., 2017)—this may have relevance

given that it was produced in relation to work in the software-based art preservation

domain. This pattern models the software and hardware components that make up a

computer system, and the dependencies and compatibility between them. While the

model is rather simplistic (only five classes of entity are defined), its modelling of

dependency is a useful conceptual foundation for further work. Particularly interesting

is the decision to model dependency through two types of relationship: “uses” and

“requires”, which respectively indicate a soft (should be maintained) or hard (must be

17 For more information about PERICLES, see the project website: http://www.pericles-

project.eu/

Ensom - Technical Narratives

136

maintained) dependency. This distinction is likely to be arbitrary in some cases, as it

can be practically difficult to determine whether a dependency is of one or the other

type.

CIDOC-CRM is a conceptual model for enabling interoperability of museum

information systems (Le Boeuf, et al., 2015). It does not, therefore, attempt to specify

the precise nature of any underlying data structures, but rather presents a high-level

model which enables mapping between systems and approaches. By design CIDOC-

CRM does not model to a level of detail that would allow capture of the relationships

between the technical components of a software-based art system. Of more interest

in this regard is its digital extension, CRMdig, which has been applied to the

description of time-based media artworks by Juergen Enge and Tabea Lurk (Enge, &

Lurk, 2014). This is an interesting approach which captures the performative nature

of such artworks well in the examples developed, which include an internet artwork,

by using the event modelling components of CRMdig. The artwork in this case is not

modelled as something consisting of components, but rather it is the output of a

“digital machine event” which draws upon data inputs to yield the digital object as it is

experienced. Missing from this approach, in the examples given, is any modelling of

the software super-object as a concrete digital thing (which in all the case studies I

have examined, it is) or of the relationships between artwork, realisation and

components. This makes it unsuitable for use in the management of concrete digital

objects.

Among the approaches I have examined in this section, none offers a fully realised

approach to the structured representation and description of software-based artworks

when considered in isolation. Furthermore, there are few case studies from the

software-based art conservation domain to demonstrate their value. If metadata is to

be placed into effective service in the conservation of software-based artworks, there

is the need for a clear conceptual model of what the software structures must capture,

grounded in the realities of managing a set of physical and digital components. There

is however, evidence of sufficient potential in existing models to allow them to be

integrated usefully with such a conceptual model and so maintain links with relevant

standards—particularly in the case of PREMIS, which is widely used in the digital

preservation domain.

4.6.2. High-Level Perspectives on Software Structures in UML

Now faced with the challenge of defining an appropriate conceptual model for

Ensom - Technical Narratives

137

representing software structures, we might look again to the approaches employed in

the established field of software engineering. The ubiquitous representational

language in this field is Unified Modeling Language (UML). Its de facto maintainers,

the Object Management Group standards consortium, state that UML is designed to

help, “specify, visualize, and document models of software systems, including their

structure and design” (Object Management Group, 2005). UML is a flexible language

and can be used to represent diverse software structures at different levels of

abstraction. While, unlike the standards and models examined in the previous section,

it is not designed for knowledge organisation, it may offer principles from which we

might draw.

The use of UML in the context of software-based artwork source code documentation

has been explored by Deena Engel in collaboration with Glenn Wharton (Engel, &

Wharton, 2015) and Mark Hellar (Engel, & Hellar, 2014) in research on museum

collections. It is suggested that UML may “give future programmers an overview of

the system as a whole, and how different aspects of the software work together”

(Engel, & Wharton, 2015, p.94). These studies focus on producing class diagrams (a

UML subset for the representation of object-oriented programming structures) for

source code, however, which is unsuitable for describing the higher level of

abstraction which has been the focus of this chapter. Other parts of UML operate at

this higher level. The deployed (that is, put into use) hardware and software

components of a system are best represented using the language’s deployment

diagram type. In the following discussion and examples, I refer to and use UML

Version 2.5, the most recent version of OMG standardised UML (Object Management

Group, 2015). This version defines the deployment package as specifying “constructs

that can be used to define the execution architecture of systems and the assignment

of software artifacts to system elements” (p.651). A deployment diagram uses nodes

and artifacts to represent the concrete components of a system. Nodes typically

represent hardware devices or software execution environments, and may nest within

each other (e.g. an operating system execution environment nests within a computer

system). Connection pathways can be made between nodes to indicate flow of

information between devices or execution environments. Artifacts represent the

products of development such as executables, scripts, libraries and databases.

In Figure 13 below, the software system associated with artwork Brutalism (as

realised in 2011 at Tate) by Jose Carlos Martinat Mendoza is represented as a UML

deployment diagram. This model was constructed based information gathered from

Ensom - Technical Narratives

138

an interview with the developer of the Brutalism software, Arturo Diaz Rosemberg

(carried out by Patricia Falcão at Tate), and my own examination of the source code,

binaries and software environment. The examination was carried out within a virtual

machine using a captured disk image (see Section 4.2 for a description of this

workflow).

Figure 13. The hardware and software components of the 2011 realisation of Brutalismo

represented as a UML deployment diagram. 3D boxes are nodes, boxes with file symbols in

their top right-hand corners are artifacts, solid lines indicate (non-directional) communication

pathways, dotted arrows indicate dependency relationships, while semi circles indicate

external interfaces.

Although the diagram elements require a level of specialised knowledge to decode,

this UML deployment diagram succinctly conveys a considerable amount of

information about the structure of the system it represents. Digital objects are

identified clearly using the artifact type, while their relationship with their technical

environment is indicated through the use nested layers of nodes. We can easily

determine that emulation or virtualisation are not being used in this realisation, as the

primary execution environment is nested within a device node. The fact that Java

Runtime Environment (JRE) and MySQL are required in order to use particular

binaries is implied through nesting. We can also determine that there is a technical

interface between the JRE and the database (and its type, JBDC), and between one

of the binaries and the external Google Search API.

Ensom - Technical Narratives

139

Despite its value as a means of effectively visualising a complex system, the UML

deployment diagram is of limited value in terms of integration with information

systems—the primary use case for structured representations of software structures.

This is because, as a modelling language designed primarily to produce diagrams,

UML lacks the ability to encode formal semantics or data properties that could

describe artwork components in detail. For example, if we want to be able to query

how many artworks within a collection involve peripherals with RS-232 connection

interfaces, this would be impossible to reason using a UML model defined at the

deployment level, which would only indicate a communication path between one

named hardware device and another. Furthermore, UML, as a maintained standard,

does not accommodate the extension of its principles with domain-specific

knowledge. This ability to extend beyond the software engineering focus of UML is

important, as to make sense of descriptions of software-based artworks we need to

be able to relate software structures to the various version, variants and realisations

of artworks.

An ontology-based approach to modelling is proposed as a more appropriate solution.

Ontologies (as introduced in Section 3.3.3) are systems of knowledge representation

which include provision for formal semantics and are designed to explicitly

accommodate the specification of domain knowledge (Munir, & Sheraz Anjum, 2018).

Nonetheless, the successful elements of the UML deployment diagram identified

above have implications for how an ontology-based conceptual model should be

specified. Firstly, execution environments must be explicitly modelled (and

distinguished from the software required to create them) and related to one another

in order to capture deployment requirements. Secondly, relationships between

software components must also be explicitly modelled to indicate that a technical

interface is required between components.

4.6.3. Conceptual Model for Representing Software and Environment

In this section I will briefly introduce a conceptual model developed in response to the

challenges discussed in earlier sections. This model was designed to capture

representations of realisations of software-based artworks by describing their

software and hardware constituents, the properties of these constituents and the

ways in which they relate to each other. Model elements were develop iteratively

based on insights gained from the close examination of the technologies employed in

the artwork case studies, using the methods of software analysis described earlier in

this chapter. Three case studies of varying levels of technical complexity were

Ensom - Technical Narratives

140

modelled using the ontology developed—Becoming, Sow Farm and Brutalismo. The

model is specified as a Web Ontology Language (OWL) 2 ontology (World Wide Web

Consortium, 2012), the de facto standard for ontology for authoring ontologies.

However, the conceptual model it represents was designed to be technology-agnostic

with regards implementation and functions as a standalone model for guiding the

description of software structures.

The model is intended to provide a structured representation both as a form of

architectural overview and description, and as a preservation information resource.

Although designed in the context of describing software-based artworks, the ontology

could describe other structures where the software performance model is relevant. A

brief summary of the model and a use case example are presented below. In

Appendix II, the complete set of classes and properties that constitute the model are

specified in detail, including a description of each element. The model is titled the

‘Software-based Artwork Structure Ontology’ and is presented as an RDF/XML format

OWL 2 (World Wide Web Consortium, 2012) ontology developed in protégé 5.2

(Stanford Center for Biomedical Informatics Research, 2016). The ontology is also

available for re-use under a Creative Commons BY-SA 4.0 licence via GitHub

(Ensom, 2018).

Focusing on the realisation of an artwork in time and space, the realisation is

modelled as being constituted of several key entity types which map to PREMIS 3.0

semantic units (PREMIS Editorial Committee, & others, 2015):

● Hardware Environment (maps to PREMIS 3.0 Intellectual Entity of type

environment): the hardware portion of a technical environment in which

software can be executed;

● Software Environment (maps to PREMIS 3.0 Intellectual Entity of type

environment): the software portion of a technical environment in which

software can be executed;

● Software Super-Object (maps to PREMIS 3.0 Intellectual Entity): the set of

digital objects which constitute a unique expression of the software.

Using PREMIS, the Intellectual Entities could be linked to relevant Representations

(e.g. a raw disk image capturing a software environment). Hardware Environment and

Software Environment entities are linked to the Software Environment entities they

support using the hostsEnvironment object property. Software Super-Object entities

Ensom - Technical Narratives

141

are linked to suitable Technical Environments using the isExecutableIn object

property.

Hardware Environment, Software Environment and Software Super-Object entities

can each be composed of:

● Hardware (maps to PREMIS 3.0 Intellectual Entity): a hardware component;

● Software (maps to PREMIS 3.0 Intellectual Entity or File): a software

component;

● Data (maps to PREMIS 3.0 File): a data component.

For each of these, relationships can be indicated by the hasHardwareComponent,

hasSoftwareComponent and hasDataComponent object properties (detailed usage

restrictions are specified in the full model). For each of these a preliminary set of types

is proposed based on the software-based artwork case studies examined. Although

PREMIS 3.0 does include a vocabulary with similar coverage (for the

environmentFunctionType property), this currently conflates technical environments

and discrete software/hardware components, which limits is usefulness in this

context.

It should be noted that this model does not explicitly model dependency. This was

found to be unnecessary, as all dependencies are inferable through the modelled

relationships between software program and execution environment. Rather than

take the approach of the PERICLES software system domain model and explicitly

model them as relationships of “requires” or “uses” (Mitzias, et al., 2017), assertions

which are difficult to make with certainty in practice, I propose that a better approach

is to consider dependency in relation to environments that are known to have been

used to achieve a software performance. A dependency is therefore inferred from a

Software Super-Object to the constituents of those environments in which it has been

executed when the artwork has been realised in the past (isolating which are essential

requires the use of reconstructive analysis, as described in Section 4.2). The

approach developed also ignores configuration issues—that is, the user definable

parameters of a particular component—as modelling attempts found that these were

too variable and complex to be captured in a way that would make them useful within

a collections management system or digital repository. There is in any case, relatively

little value to be gained from describing configuration in an information system, as it

is not applicable in the tracking of physical and digital components, but more

Ensom - Technical Narratives

142

frequently considered when a work is realised. The association of clear identifiers with

each component within a technical environment would allow relationships between

components to be established with other documents, which themselves offer a

suitable description of configuration requirements.

The application of the set of classes and object properties defined is demonstrated in

Figure 14 below. This diagram represents the modelled constituents of the 2011 Tate

Modern realisation of the Brutalismo artwork case study as expressed in the OWL

ontology developed. This model incorporates formal semantics, which ensure that the

properties of individual components and the relationships between them are

captured. For example, the Software components that constitute a Software

Environment are modelled using the hasComponent property, which in turn makes it

possible to reason that the Software Super-Object (connected to the Software

Environment by the isExecutableIn property) has a dependency on those Software

components. While this formal expression in a machine-readable language means

the model is well suited to integration with information systems, it also has

disadvantages. For example, it is harder to achieve the clarity of visual representation

achieved in the earlier UML deployment diagram, which uses a defined notation to

convey information. However, as semantics are encoded into the model there is the

possibility of generating a UML diagram from the OWL ontology, providing tools are

developed to carry out this transformation.

143

Figure 14. Representation of modelled entities for the 2011 realisation of Brutalism, produced using the Protégé 5.2 OntoGraf plugin. Boxes represent

instances, red labels indicate classes, while object properties are represented by colour coded dashed arrows (red: hasRealisation; blue: hasConstituent;

yellow: hostsEnvironment; purple: isExecutableIn; grey: hasComponent; green: hasSoftwareComponent; brown: hasInterface; orange: hasDataComponent)

144

4.7. Chapter Summary

In this chapter I have presented a pragmatic approach to the analysis and

representation of software structures for use in the conservation of software-based

art. This approach was developed in the context of the processes of examination,

analysis and reporting demanded of the conservator in the long-term care of such

artworks, as well as the desire to create contained, generalised representations of

software and its technical environment through the process of reconstructive analysis.

Conservation strategies which seek to keep software systems running have similar

goals to those of software maintenance, while software-based artworks may have

parallels with poorly documented legacy systems. These links allows the effective

repurposing of existing approaches to analysis from the discipline of software

engineering. Reverse engineering becomes the most appropriate way of deriving

program understanding from a legacy system, ultimately providing a means for the

conservator to create effective documentation that stands in for detailed development

documentation where this is absent or in some way limited.

While source code centric strategies have dominated discourse in the area of

software-based artwork analysis, in this chapter I problematised this approach and

offered a set of complementary approaches for the interrogation of software

structures. These approaches navigate the liminal materiality of software in order to

reveal hidden information about the software representation they address. Binary

analysis can be used to unpack and interrogate the opaque, machine-oriented

representations of software which form the executable software components of a

software performance. Process analysis can be used to interrogate the software as a

computation process rather, and so intercept the actions of the system as a software

performance occurs. While suffering from their own respective limitations, these

approaches provide valuable tools for the software-based art conservators toolbox

that both complement and offer an alternative to source code analysis. They are likely

to be particularly effective where a preservation approach is taken which aims to

maintain access to software through maintenance of an appropriate technical

environment, as the software super-object is likely to remain largely unaltered in these

cases. While these approaches may also provide insight into the functionality and

implementation of the software, these insights are often limited by the extent to which

code and process at the machine level can be comprehended in practice by a human

reader.

Insight gained from these analysis approaches may be particularly significant in

Ensom - Technical Narratives

145

capturing information that describes a particular software performance, which can

then be used to create a representation of the underlying structure for storage within

an appropriate information system. Such a representation benefits not only the

management of digital objects within a collection, but ensures that information about

a particular performance is documented for use in the display and study of that work

in the future. I propose that an effective way to capture this information is through the

use of a well-defined model of the technical environment in which a software super-

object was performed, and the hardware, software and data components that

constitute this environment. This is useful not only as a means of structuring machine-

actionable metadata records in the service of conservation, but as a tool for

representing artwork realisations and supporting understanding of system

architecture. The model I have presented is a domain ontology (written in OWL 2),

which maps to the core components of the dominant digital preservation metadata

model PREMIS 3.0, while offering further clarity over the semantics of a software

program’s relationship with its technical environment. While the model is expressed

in a machine-readable language and might be implemented as-is, it may be most

useful as a tool for guiding the extension of existing systems of structured

representation to better support software-based artworks.

Ensom - Technical Narratives

146

CHAPTER 5

SIGNIFICANCE AND IDENTITY IN THE

SOFTWARE PERFORMANCE

5.1. Chapter Outline

In Chapter 3 I suggested that the identity of a software-based artwork might be

understood in relation to a set of significant properties, the maintenance of which

helps to ensure that future realisations are authentic. However, precisely how

significant properties might be used to represent identity in practice is unclear.

Maintaining identity is likely to be a particularly important consideration where change

occurs due to the loss or obsolescence of specific components and where there are

shifts in the context of the work. In this chapter I will identify how existing frameworks

for the capture of this kind of information might be applied to software-based artworks

and, where they are found insufficient for this purpose, how they might be extended.

I start the chapter by revisiting the notion of significant properties from the digital

preservation domain (including its relationship with conservation theory) and critically

considering the value of using such a framework in the conservation of software-

based art. A particular theoretical concern is the practicality of identifying significance

among large numbers of variables, particularly in relation the complex set of material

Ensom - Technical Narratives

147

considerations posed by the software medium. Other challenges concern how

properties might extend beyond the object of conservation, particularly in relation to

the variable nature of the connection between of the meaning attached to materials

used. Maintaining a focus on practical solutions, in the second half of the chapter I

develop frameworks for identifying significance at the level of the software

performance.

5.2. Significant Properties and Identity

A recurring idea in the preceding chapters is that software-based artworks change

over time. The circumstances of their realisation, the specific components and

technology, and the social and technological contextual of the work, may all vary

between realisations. For conservators, it is therefore important to understand what

the acceptable parameters of change are and ensure that a software-based artwork

can still be realised as an authentic representation of the artwork’s identity. Even

where change is occurring slowly or is not permissible at all, the conservator needs

documentation to ensure that the particular realisation can be verified as acceptable.

As I noted in Chapter 3, these are not new ideas and have found currency in both

digital preservation (significant properties) and time-based media conservation theory

(work-defining properties). There is however, a noticeable gap between theory and

practice. A lack of published methodologies for the identification, capture and

verification of the properties that constitute an artwork’s identity—and few examples

of these principles being used in the real world—raise questions over their value. In

this section I revisit the concept of significant properties and related notions, and

consider their potential use in caring for software-based artworks.

5.2.1. Revisiting Significant Properties

Significant properties, sometimes used interchangeably with significant

characteristics, is a widely used but vaguely defined concept in the field of digital

preservation. The concept’s origins and the ambiguities over its definition have

already received some critical attention (Dappert, & Farquhar, 2009; Giaretta, et al.,

2009) so I will not repeat this work here, but rather consider their suitability for the

specific use case of software-based art conservation. The definition developed during

the significant properties focused research project InSPECT is one of the more widely

cited definitions, and remains representative of a general understanding of the term:

“The characteristics of digital objects that must be preserved over time in order to

ensure the continued accessibility, usability, and meaning of the objects, and their

Ensom - Technical Narratives

148

capacity to be accepted as evidence of what they purport to record". (Wilson, 2007,

p.80)

I will briefly examine some of the terminology used, analogues in conservation theory,

and challenges posed to this definition by software-based art. The first and most

obvious consideration is that, when we look at conserving software-based art, we are

not dealing with discrete “digital objects”. As illustrated in Chapter 2, software-based

artworks are structurally complex and their digital object components tend to be

numerous (hence the definition of the software super-object as a grouping concept),

interlinked and at times highly dependent on the technical environment in which they

are situated. The software is experienced as a performance, and as such, the

boundaries of the work as any identifiable digital thing are often unclear. This is

problematic for applying the significant properties concept, as potential properties

might have to be identified at multiple levels—the digital objects, the software and

hardware environment, and the performance itself—which are closely linked.

In the InSPECT definition, “accessibility, usability and meaning”, are supplied as the

motivations behind significant property preservation. While this kind of terminology

might not be typical in art conservation, the concerns they reference actually align

well. Conservators too, are concerned with continuing “access” to and “usability” of

artworks—most crucially evidenced by their display—and with ensuring that their

“meaning” is maintained in the process. The latter part of the definition, and the notion

of “evidence” in particular, is again not typical terminology in a conservation context,

yet there are clear analogues. “Evidence” seems to align closely with the idea of

authenticity, the navigation of which in relation to artistic intent is a recurring topic of

interest (and debate) in the conservation field (Laurenson, 2006, Hermens, & Fiske,

2009, Scott, 2015). In the same way that archival records must be accepted as

“evidence of what they purport to record”, software-based artworks should be

accepted as evidence of the identity of the work, authentically realised.

As we might expect given this alignment of concerns, analogous theoretical

frameworks have emerged in the time-based media art conservation field. In Section

2.3 I discussed Goodman’s autographic-allographic distinction as applied by Pip

Laurenson to the conservation of time-based media artworks. Laurenson proposes

that the identity of time-based media artworks can be understood as a “cluster of

work-defining properties” (Laurenson, 2006). Elements of the concept and

terminology used clearly align with significant properties. There are also some subtle

differences between the digital preservation and conservation perspectives on

Ensom - Technical Narratives

149

significance, however. Applying the theories of philosopher Stephen Davies,

Laurenson introduces the idea that an artist may specify the properties of an artwork

“thinly” or “thickly”; the former being very precisely specified and the latter allowing

for a degree of variation between realisations of the work (Laurenson, 2006).

Prevalent notions of significant properties do not typically incorporate the same

flexibility perhaps due to their focus on the aforementioned digital object, which stands

in contrast to the more explicit acknowledgement of the performative qualities of the

object of conservation in the field of time-based media art conservation.

A second key difference is the privileging of the artist’s authorisation in the realisation

of time-based media artworks. While author and intent are still relevant in digital

preservation, in areas such as data archiving and libraries more focus might be placed

on the requirements of the users of the digital materials in question. The user in a

conservation context (e.g. gallery or website visitor) on the other hand, is rather more

passive in relation to the process of defining significant properties. The question of

the extent to which the desires of the artist should be prioritised over other concerns

is in itself a challenging issue in art conservation (Gordon, & Hermens, 2013,

Wharton, 2016). Any in-depth examination of these issues is beyond the scope of this

thesis, but it is important to note caution in relying on any single account of the artist’s

perspective on the intentions behind their work. While such accounts are undoubtedly

important, in some cases they can be found to be inconsistent and changeable

through time (van de Vall, 2015, Wharton, 2016).

This relates to broader challenges in how significance might be identified. A number

of authors in the digital preservation community have raised concerns regarding the

subjectivity implicit in the specification of significant properties by any one party

(Dappert, & Farquhar, 2009, Yeo, 2010). Dappert and Farquhar suggest that

significance is something assigned to a property by a particular agent or group and

that this means that value judgements are implicit in their specification, while rarely

discussed by those specifying them. Yeo suggests that significant properties defined

by those caring for collections might not align with the needs of future stakeholders.

This brings us to the question of whether we can make effective conservation

decisions based on a concept as subjective as significance, particularly when limited

to notions of identifiable ‘properties’.

5.2.2. Identifying Significance in Practice

In order to better understand how we might address problems with the use of

Ensom - Technical Narratives

150

significant properties, as identified in the previous section, I will explore how notions

of significance might find use in the selection of preservation strategies for software-

based artworks. In this section I discuss three time-based media artworks—all of

which employ software in their realisation—and consider for each how a weighting of

significance might be applied when considering the kind of preservation approach to

apply, particularly regarding how the artwork’s identity might be separated from its

software implementation. These three works were selected as they are all realised as

projected moving images within an exhibition space. This allows an initial point of

comparison from which to explore differences, which, as I will go on to demonstrate,

arise in how the particular use of the software medium relates to the intentions of the

artist, the creative process and the artwork’s shifting context.

The first example is The Clock (2010) by Christian Marclay, which while not one of

the core case study artworks chosen for this thesis—and not strictly speaking a

software-based artwork—is helpful in illustrating one particular use of software. The

Clock is a single channel video artwork that compiles scenes taken from cinematic

history which portray time—a shot which is tied to a particular time through the

presence of a watch or a clock face, for instance. The fragments of video are

sequenced so that the appearances of time within the scenes flow in real-time, which

can then be synced to the local time of the installation; thus rendering the work a

functioning timepiece (White Cube, 2010). With respect to medium, The Clock very

much operates within a cinematic framework, and as such its primary artistic medium

is one of linear moving image in the tradition of artists’ film and video art. Yet behind

the scenes, software has been used to achieve the consistent playback of the

considerable quantity of video data.

In this instance, software has no conceptual link to the artwork and no apparent

presence within the artwork’s realisation or any (viewer facing) descriptive information

or documentation. While The Clock was realised using software in the vehicular

sense, the software was not intended to articulate an artistic statement—which is

instead located in the selection, editing and sequencing of the video fragments

themselves (among other actions). The software is utilised here simply as a tool to

achieve an effect. If this artwork were brought into a collection, this usage of software

might remain relevant to the work’s display in the short term, and in the longer term

be historically interesting. Its absolute preservation however, is not important. Rather,

preservation efforts would seek to ensure that the sequential playback of the video

fragments could be maintained and synced to local time—the software

Ensom - Technical Narratives

151

implementation used could be replaced with some other mechanism for achieving the

same effect without impacting the work.

The second example I will consider is Colors (2005) by Cory Arcangel. Colors

employs software which manipulates a video file, the processed output of which is

projected into the exhibition space. The software program plays back each horizontal

row of pixels in a specific video file (a QuickTime MOV of Dennis Hopper’s 1988 film

of the same name) line-by-line. Each line is stretched vertically to fill the projection

area, which creates a shifting pattern of vertical bands of colour. Much like The Clock,

this work’s formal elements might be considered in relation to moving image mediums

such as cinema (and in this case also to the history of artistic experimentation with

video). When the work installed, there is little to immediately suggest from the

projected image alone that software is involved in its realisation. However, this is

complicated when we consider that Arcangel’s practice has frequently engaged with

coding (Arcangel, 2013, Arcangel, 2017), giving the presence of software a contextual

and art historical significance. In contrast to Marclay’s The Clock, this is a rather more

ambiguous relationship between artwork and software, and we might consider

intervention at the level of the software with caution when addressing the work’s long-

term preservation.

However, Arcangel takes a rather different attitude, explicitly stating that as far as he

is concerned, the concept is the work and that he is happy for it to be reimplemented

using different technology if necessary for purposes of long-term preservation

(Arcangel, 2012, March 14). We might conclude from this statement that maintaining

the actual technology of the original implementation—a Mac OSX application utilising

the QuickTime and OpenGL frameworks—is not essential to the work’s realisation in

the future. In the case of Colors, the vehicle is the execution of code and the

processing and manipulation of video data by a computer system, yielding output

frames and audio. The artistic medium could be considered Arcangel’s subversion of

cinematic images and playful references to the slit-scan18 technique. While there are

considerations over the presentation of the work such as projection specifications and

other display parameters, Colors would seem to be a clear example of a software-

18 Slit-scan is a photographic technique which has been used for a variety of purposes, but

the one referenced by Arcangel in Colors is its use to create abstract visual effects in

cinematography, such as the ‘Star Gate’ sequence in Stanley Kubrick’s 2001: A Space

Odyssey.

Ensom - Technical Narratives

152

based artwork for which the authenticity of its realisation lies in the concept rather

than the vehicle.

This conclusion is supported by an understanding of the artist’s practice. Arcangel

has talked about his artworks as DIY recipes (Birnbaum, & Arcangel, 2009) and has

expressed an affinity with open source culture—much of his artwork source code is

available online (Arcangel, 2013) and in printed publications (Arcangel, 2017)—where

. Indeed, Arcangel has shared the source code for a version19 of Colors online

(Arcangel, 2017), exposing the mechanism and revealing the project’s origins in a

code template from the open source openFrameworks toolkit (anon.

openFrameworks, 2018). Original and artist authored code is undoubtedly an

important technical art historical artefact, however. In this case, in-line source code

comments written by the artist—playfully identified with HTML-referencing <CORY>

</CORY> tags—reveal how the code was extended from the original template. This

also raises questions over how such technical art historical insight might be captured

and reflected in public-facing documentation—a question I return to in Chapter 6.

However, where achieving the ongoing realisation of Colors is concerned, it is what

this code does rather than how it does it which holds primary significance. Faced with

a choice between maintaining the integrity of the underlying implementation and being

unable to display the work, migrating the code would likely be viewed favourably.

The third example is Sow Farm near Libbey, Oklahoma 2009 by John Gerrard. This

work depicts an agricultural complex on the American Great Plains, rendered in real-

time 3D and simulating day and night cycles. The work was created with a 3D

development tool and rendering engine called Quest3D (Act-3D, 2012), which might

typically have found use in the creation of video games and architectural

visualisations. The work was completed in 2009, and the results achieved represent

high fidelity 3D rendering for the era it was created. While the work maintains a

connection to moving image mediums through its use of similar visual language (for

example, the scene is viewed from the perspective of a virtual camera), visual

characteristics of the rendering techniques might invite connections with the

vernacular of video games, for example. Gerrard is interested in what he calls a

19 While this source code is actually for the Colors Personal Edition, a version of the work

the artist distributed online, the code differs from the version collected by Tate by only a

single line of code which only serves to skip processing of the black letter-boxing present in

the source video file.

Ensom - Technical Narratives

153

“‘slippery’ space between the real and the representation of the real” (Gerrard, 2015)

and his use of 3D is integral to achieving this.

In the case of Sow Farm, the vehicle is the execution of encoded instructions and

data and the resulting rendering of frames by the computer system. The artistic

medium might be identified as Gerrard’s articulation of his “slippery” representational

qualities through the manipulation of the vehicle. This use of software is much more

important than merely as a tool then—it is present in the artifice of the work’s

realisation and critical to its reception. We know from evidence of the work’s

production history that considerable effort went into achieving the precise

characteristics of the rendered environment (Gerrard and Pötzelberger, 2015) and we

might understand the identity of the work as residing in these carefully constructed

details. The conservator might, therefore, be cautious in modifying the software

involved and favour an approach which maintains the software as-is (e.g. emulation

or virtualisation).

The previous assertion is complicated however, by the potential for the meaning of

materials to shift through time. In comparison to the possibilities of 3D today, and

indeed to Gerrard’s own recent work, Sow Farm’s 3D graphics are beginning to show

signs of age. In Figure 15 below, I compare the 3D rendering of Sow Farm with that

found in a work from 2017, Western Flag.

Ensom - Technical Narratives

154

Figure 15. Comparison of 3D landscape rendering techniques in John Gerrard’s Sow Farm

(near Libbey, Oklahoma) 2009 (left) and Western Flag (Spindletop, Texas) 2017 (right).

These images are detail from screen captures of the complete render in each case. © John

Gerrard 2018.

While depicting different locations, so limiting one-for-one comparison, there are clear

differences in the level of detail and realism achieved. In the more recent work

textures are more detailed, lighting effects more sophisticated, and grass more

realistically rendered. As the baseline measure of perceived realism in 3D graphics

shifts, the “slippery” qualities of Gerrard’s older works are at risk of being lost over

time. This potential shift invites reconsideration of the potential significance of the

artwork’s original software implementation and poses the question: would it be

desirable to attempt to augment the existing rendering pipeline (perhaps through post

processing or porting to a modern 3D engine) in order to attempt to improve realism

and maintain the link with viewer expectations?

Ensom - Technical Narratives

155

When asked in an interview about technological change and the ageing of earlier

works, the artist expressed his interest in the work’s use of the technology of the time

during which they were produced and felt that making any changes would need to be

approached carefully (G. Gerrard, personal communication, 12 September 2016).

Although he embraces technological change within his practice, he views the

significance of the work as residing in the executable code he generated. This

suggests that in this case, the successful display of this work in the future would

appear to be contingent on maintaining the original software implementation as-is. In

taking such as a decision, we would accept that a shift in meaning occurs in the

decoupling of the material and the original context of its use. The identity of the work

can now only be understood in relation to this history. How this kind of history might

be recorded and conveyed to an audience becomes an additional concern for the

conservator.

In the latter two examples examined above, it is clear that there can be considerable

nuance to decision making in the conservation of software-based artworks.

Understanding the significance of a particular use of software cannot be understood

as relating simply to the intentions of the artist, nor indeed to any single narrative or

account. Rather, significance is established through careful interpretation of

sometimes conflicting sources of evidence—a process in which context plays a major

role. Arcangel’s artistic practice informs our understanding of the value of his code.

Insight into Gerrard’s shifting relationship with the representational qualities of his 3D

environments helps us to navigate questions over the treatment of the software used.

In the latter case, the identity of the work has shifted when seen in relation to how

audiences would interpret the qualities of the 3D rendering. Thus we arrive at an

understanding of significance and identity that is shaped not only by the properties of

digital objects nor simply by the intentions of the artist, but by these factors viewed in

conjunction with their evolving context.

5.2.3. Significant Knowledge

Published methodologies for capturing significant properties currently seem poorly

suited to the scenarios outlined in the previous section, suffering either from being

overly prescriptive at one extreme, or under-specified at the other. In digital

preservation, various authors have suggested an approach which involves a

constraint model of property-value pairs (Dappert, & Farquhar, 2009, Knight, 2009).

In art conservation, Richard Rinehart’s Media Art Notation System (MANS) takes the

form of an XML schema which provides a score in order to “aid in the re-performance

Ensom - Technical Narratives

156

or recreation of works of art” (Rinehart, 2004, p.3). While certain characteristics, such

as the environment requirements for executing Sow Farm, might be usefully

constrained to a set of values, the information required to appreciate the technical

history of a work could not. Reducing the identity of the work to a digital object which

can be performed risks loss of context and any historical record of the work being

preserved.

At the opposite end of the spectrum to these highly structured approaches we have

the Variable Media Questionnaire (VMQ) (Ippolito, et al., 2003). The VMQ provides

an instrument for capturing artists’ perspectives on the significance of their choices,

and the identification of what its creator Jon Ippolito frames as “medium independent

behaviours” (Ippolito, et al., 2003). Taking the idea of separating identity from

technical implementation to a logical extreme, this is an open-ended framework for

compiling documentation in collaboration with an artist. This flexibility is both benefit

and drawback: benefit in that it permits considerable freedom in the formulation of

resulting documentation; drawback in that no prompts for the capture of medium-

specific information are provided, which creates a risk of missing important

information. The principles of the VMQ and indeed, the artist interview in general,

might have usefully gathered information relating to the case studies in the previous

section, such as Gerrard’s software-based artworks, but they still provide a relatively

limited frame through which to understand identity.

Given that identity can often only be understood in relation to contextual information

and tacit knowledge, and certainly not defined at any one moment in time, there

seems to be a need for a broader framework. Potential components of this framework

have already been proposed elsewhere. Guillaume Boutard and Catherine

Guastavino propose the idea of “significant knowledge” as an extension of significant

properties (Boutard, & Guastavino, 2012). Developed in the context of electro-

acoustic instruments as cultural artefacts (which are similar to software-based

artworks as technical systems with performative characteristics), this concept

encompasses tacit knowledge and information about the creation of an artefact. The

emphasis of their approach is on the intelligibility of the object of preservation, which

sits in contrast to previous frameworks for significance which focus on rendering and

authenticity.

Rather than disregard any of the other approaches discussed above—they all have

potential value—I propose that we might completely reconceptualise significant

properties as significant knowledge and so widen its scope. Through this simple

Ensom - Technical Narratives

157

reframing of the problem, a great deal of the existing baggage is lifted from the

concept. The emphasis shifts from attempts to distil identity into sets of properties or

characteristics, to a more pragmatic approach of building knowledge that can support

efforts to sustain the identity of an artwork through time. This is inherently less

prescriptive than the approaches to significant properties we have available, and

instead allows room for an interpretative and contextualised approach. For the

purposes of this research, I define significant knowledge as:

The developing body of knowledge required to ensure the future realisation

and intelligibility of a software-based artwork, in a way which can be accepted

as authentic in relation to the original intellectual creation.

While the form this knowledge takes is intentionally left very open, so permitting that

it might to some extent reside in the tacit knowledge of individuals or organisations

caring for the work, it is desirable for it to reside in concrete documentation materials

wherever possible. Where knowledge can be made explicit in this way, there is a need

for some kind of guiding structure, which I propose might be best served by categories

of significant knowledge that guide this work rather than restrict it.

Two research projects have developed categories for significant properties for closely

related domains, which might be easily extended to encompass significant

knowledge. The first was developed by a conservation research team at Tate and

proposes a classification for the significant properties of “networked art”, which might

be considered a type of software-based art with strong network dependencies

(Dipple, et al., 2010). This is a particularly useful source in its direct reference to the

concerns of software-based art, and also in that it makes explicit the idea that the

“identity of the artwork may be larger than the artwork itself” (Dipple, et al., 2010). The

second comes from the software preservation domain, and a JISC-funded study of

the significant properties of software (Matthews, et al., 2008). Also proposing a

classification system, this study is important in its close consideration of the technical

characteristics of software. However, the orientation of this study towards software

as playback mechanism (i.e. a tool for rendering other files) rather than performed

artefact, makes it less applicable to software-based artworks as-is.

Using a mapping of the Dipple et al. and Matthews et al. classification systems

developed by Patricia Falcão, Time-based Media Conservator at Tate (Falcão, 2013),

and further refined by myself, I have identified a set of seven categories of significant

knowledge relating to software-based art. These categories are listed in Table 5

Ensom - Technical Narratives

158

below with a brief description of their scope. I also provide a set of examples of the

documentation materials which might support an understanding of each property

category.

159

Significant

Knowledge

Category

Tate Software-based

Artworks Significant

Property Categories

(Dipple, et al., 2010)

Mapping

InSPECT Software

Significant Property

Categories (Matthews,

et al., 2008) Mapping

Significant Knowledge Description Examples of Materials Making

Knowledge Explicit

Function Behaviour

Function

Processes

Functionality Knowledge concerning the intended

functionality of the software (i.e. what it

does) and how it manifests as a set of

behaviours

• Artist’s interviews and statements

• Source materials and associated

documentation

• Development and design

documentation

Experience Rules of Engagement

Visitor Experience

User Interaction Knowledge concerning the experience

of the work from the perspective of

viewers or users (be that interaction in a

physical setting or via a web browser, for

example)

• Video documentation of previous

realisation

• Parameters for installation

• Narrative accounts

• Questionnaires

Structure Content and Assets

External Linkages and

Dependencies

Software Composition

Software Architecture

Software Environment

Knowledge concerning the make up of

the work including its constituent

components (either physical or digital)

and the relationships between them, and

with their technical environment

• Source materials and associated

documentation

• Development and design

documentation

• Past installation documentation

Formal Spatial or

Environmental

 Knowledge concerning the environment

in which the work is intended to be

• Artist’s interviews and statements

• Past installation documentation

Ensom - Technical Narratives

160

Parameters

Formal and Structural

Elements

experienced (either physical or digital) • User system requirements

• Software analysis reports

Performance Time

Appearance

Operating Performance Knowledge concerning the qualities of

the software performance (such as

timings or character of interactive

elements)

• Software testing tools and metrics

• Reference photographs, images

and videos

Provenance Other Versions of the

Work

Legal Frameworks

Provenance and

Ownership

Knowledge concerning the lineage and

versioning of the work and its

components

• Version history

• Ownership and rights Knowledge

• Licence agreements

Context Artist’s Documentation

of Process

Context

 Knowledge concerning the history of the

work and its creation, and other

contextual information that enhances

understanding and intelligibility

• Source code and change tracking

• Development and design

documentation

• Scholarly and critical writing

• Press and media coverage

• Social media data

Table 5. Identified significant information categories for software-based artworks, with mappings to related significant property frameworks and examples of

supporting materials.

161

Of these categories there are four which relate closely to the software performance

itself: Function, Experience, Structure and Performance. While the significant

knowledge framework addresses these broadly, a more precise framework may be

required to ensure that they are maintained when software or environment change in

future realisations of the work. On the one hand we have works like Sow Farm, which

demand maintenance of a tightly specified performance and so require detailed

information about the technical environment in which this can be achieved. On the

other, we have works like Colors, which theoretically permit a complete rewriting of

the underlying software—so demanding a clear account of the precise functionality of

software. Other works will sit somewhere between the two and so demand elements

of both.

While the document examples listed in the table above serve to support significant

knowledge relating to the identity of the artwork at the level of software performance,

there would be considerable value in a unified, concrete approach to capturing

relevant information as documentation. In the field of software engineering, this kind

of information would be captured through the specification of requirements, which are

formulated early in the design process and maintained alongside the software. In the

second half of this chapter I explore how the principles of requirements engineering

might clarify how significant knowledge regarding software performances can be

made explicit.

5.3. Reframing Software Requirements

In software engineering, the sub-domain of requirements engineering is defined as

the process of “finding out, analyzing, documenting and checking” the “services that

a system should provide and the constraints on its operation” (Sommerville, 2015,

p.83). In more general terms, these services might be considered the things that the

software system does—corresponding to the idea of functionality introduced in

Chapter 2—while the constraints are the parameters within which it must achieve

those things. When producing a requirements specification document, these

requirements are identified by or in collaboration with the relevant stakeholders in

non-technical language (as far as possible), allowing the developers of the system to

implement this functionality using their own technical solution.

The practice of requirements engineering emerged in the 1980s, partly in response

to a crisis in software development as a result of increasing complexity, cost and scale

of software projects around this time, and partly as an expanding range of users

Ensom - Technical Narratives

162

became interested in the technologies involved (Alexander, 1997, Karch, 2011). Ian

Alexander describes the shift:

“Attention gradually moved, in software terms, from code to design, and then on to

specification. This was understood initially as the precise description of components-

to-be-built; gradually this understanding too broadened to encompass entire

systems. Finally, with input from the human-centred sciences (psychology,

sociology, ethnology...) specification has come to include a definition of the problem

to be solved, as seen by the human users of any putative system.” (Alexander,

1997)

The formalisation of eliciting requirements (what Alexander calls “the definition of the

problem”) from the users of the system directly—a problem-centric rather than

technology-centric approach—was a particularly important innovation of

requirements engineering. Requirements specification remains a ubiquitous

component of mainstream software engineering today. Research into documentation

methodologies among software engineers has revealed that requirements

documentation is considered among the most important documentation artefacts for

a software project in the context of ongoing maintenance (Lethbridge, et al., 2003, de

Souza, et al., 2006). The core principles of requirements related processes are similar

across different software engineering methodologies, even among those so-called

agile approaches that eschew documentation in favour of speed and efficiency (Cao,

& Ramesh, 2008, Inayat, et al., 2015)—the main difference being that these will be

developed more iteratively.

Requirements are usually split into two types which I have already alluded to above:

functional (the things the software should do) and non-functional (the constraints

within which it should do them). The Software Engineering Body of Knowledge

defines these terms as follows:

“Functional requirements describe the functions that the software is to execute; for

example, formatting some text or modulating a signal. They are sometimes known

as capabilities or features.”

“Nonfunctional requirements are the ones that act to constrain the solution.

Nonfunctional requirements are sometimes known as constraints or quality

requirements.”

(from IEEE Computer Society, et al., 2014, p.1-3)

Ensom - Technical Narratives

163

In a typical requirements engineering process, requirements would be defined in

collaboration with stakeholders based on their needs, recorded in a document called

a requirements specification and then the software solution developed would be

validated against the these requirements (Sommerville, 2015). Requirements

engineering principles also allow for management of change in requirements once a

software system has been developed, as users demands on that system change (for

example, a new feature is required).

I propose that requirements engineering principles, particularly the creation of a

requirements specification document, can be effectively applied in support of the

conservation of software-based artworks. The significance of requirements as a

production artefact has already been noted by several authors working in the field of

software-based art conservation (Engel, & Wharton, 2014, Marchese, 2011), but the

concept has not yet been thoroughly explored as a process of documentation

undertaken after production by the conservator. There are a number of reasons that

the use of requirements specification and management may hold value in this context:

● Separation of function from structure: Requirements engineering aims to

separate what is required of a system from any specific technical solution. In

a software-based art context, this means that those elements of the software

function or behaviour that are not specific to a particular technology can be

identified and described in a technology agnostic way. This allows these

elements of work to be reinterpreted or modified (within parameters specified

by non-functional requirements) while maintaining the identity of the work,

providing this has been understood as acceptable in relation to the artwork’s

material concerns.

● Collaborative and non-technical: Requirements are designed to be written

collaboratively with stakeholders and in (as far as possible) non-technical plain

English. This fits well with the collaborative nature of the conservation

profession and with the demands of artist consultation and authorisation.

● Management of change: Requirements specification methodologies allow

for the updating of requirements through time and the tracking of relationships

between requirements and implementation (known as traceability). In the

context of software-based art conservation, this might be necessitated when

works are revisited, modified or migrated.

Ensom - Technical Narratives

164

● Communication with software developers: Requirements specification is a

ubiquitous documentation practice in software engineering and so will be

readily understood by many software engineers and developers. This is an

audience with which those caring for software-based artworks are increasingly

likely to engage.

● Synergies with conservation practice: Eliciting and specifying

requirements may have value beyond the creation of the requirements

documentation artefact in itself, as the process may reveal further information

about function, structure, experience and performance. It also acts as a

historical record of changes through time.

The major difference between the typical software engineering process of

requirements specification and the use scenario I am exploring, is that when software-

based artworks are acquired the software has usually already been completely

implemented. In this reframing of requirements principles, we are reverse engineering

(a concept introduced in Chapter 4) the requirements from their implementation. This

involves identifying, extracting and defining them using multiple sources of

information including existing significant knowledge (such as documentation and the

artist themselves) and analysis of the software and its environment. By specifying

requirements in this way, we can identify the extent to which we can detach the

concept of the software from its implementation. Problems with the application of

requirements engineering approaches often involve poorly defined requirements

(Firesmith, 2007, Cerpa, & Verner, 2009). In these cases, the implemented solution

may not match the needs of stakeholders and achieve its intended purpose. These

problems become much less relevant when requirements are generated a posteriori,

as of course, the solution already exists—as such, it becomes possible to generate

requirements that match the system. The only stakeholder negotiation required (while

factoring in other considerations such as institutional resource constraints) is to

understand which of characteristics of a software performance can be transformed

back into less technology-specific requirements.

Requirements could theoretically be used to describe any aspect of a software

system’s behaviour, including the way in which it permits user interaction. In cases

where this is particularly important it may be preferable to explore use cases and user

stories as an alternative or complementary way of specifying requirements. These

are similar approaches to requirements documentation which specify requirements in

relation to a user’s experience of interacting with that system. Use cases tend to

Ensom - Technical Narratives

165

describe a user’s interaction with a system through structured text and diagrams,

while user stories are short semi-structured textual descriptions of a user’s encounter

with a system (Pressman, & Maxim, 2014, Sommerville, 2015). I suggest that an

approach based on user stories may be most useful in a conservation context, as this

methodology has emerged from agile development and is thus relatively lightweight

and flexible. I discuss user stories in the context of an interactive artwork case study

in Section 5.4.

In the following sections I discuss in detail functional and non-functional requirements

respectively, and in particular investigate how they might be of value when used for

describing software-based artworks of different types. I then illustrate two particular

practical applications of requirements specification through two case studies which

relate primarily to functional and non-functional requirements respectively.

5.3.1. Functional Requirements

In this section, I look at how we might understand what the software components of

software-based artworks do—their functionality—and how this might be captured as

functional requirements. Introduced in the previous section, functional requirements

are those requirements that specify the functions that the software is meant to

execute. One of the primary questions in applying this principle to software-based

artworks is: to what level of detail should this functionality be specified?

Most simply, functionality could be described with a statement of the purpose of the

software component of a software-based artwork. In Table 6 below I compare such

statements for the six artwork case studies. These statements are based both on

existing documentation of the works held by Tate (including artists’ contributions) and

my own experiences of examining and analysing the software involved. It should be

noted that they refer only to the software component of the artworks, which while

always of primary importance, may form only part of a more complex system or

assemblage.

Artwork Title Artist Description of Functional Purpose

Becoming Michael

Craig-Martin

The function of the Becoming software is to render a

dynamic arrangement of 2D objects to a display device of

fixed size. It must ensure the objects’ correct relational

arrangement and randomise the fading in and out of the

objects, including the length of time taken to fade in and

Ensom - Technical Narratives

166

out.

Subtitled Public Rafael

Lozano-

Hemmer

The function of the Subtitled Public software is threefold:

1) it must locate and track visitors to the exhibition space

using a video feed from CCTV cameras; 2) it must project

randomly selected words from a predefined list onto the

tracked visitors and allow the exchange of assigned words

when two individuals come into close proximity; 3) every

few minutes the projection must briefly switch to the raw

video camera footage.

LiMac Museum

Shop [website]

Sandra

Gamarra

The function of the LiMac software is to manage, store

and serve an internet accessible set of web pages

(including scripts, styling and image media) managed

through a content management system.

Brutalism: Stereo

Reality

Environment 3

Jose Carlos

Martinat

Mendoza

The function of the Brutalism software is to search the

internet for the word ‘brutalism’ (sometimes with an

additional accompanying search term), harvest results

and convert them into simple paragraphs of text, and then

print these results onto small slips of paper.

Colors Cory

Arcangel

The function of the Colors software is to play back each

horizontal line of pixels in a video file frame by frame (with

the sound played back as normal), stretching the pixels

vertically to fill the screen. After playing each line of pixels

in the video file, the software should repeat this process.

Sow Farm (near

Libbey, Oklahoma)

2009

John Gerrard The function of the Sow Farm software is to realistically

simulate a pig farm and surrounding environment in real-

time, using a 3D visualisation engine and according to the

precise formulation of the artist’s expression. The

rendered environment will be presented from a slowly

orbiting camera. The simulation should run indefinitely,

and incorporate the animation of the arrival and departure

of a truck which is triggered once every 159 days.

Table 6. List of software-based artwork case studies and simple descriptions of the

functional purpose of their software component.

The strength of these short functional descriptions is a clear articulation of purpose of

the software, but is this sufficient to allow the reinterpretation of the work if future

Ensom - Technical Narratives

167

conservation treatment demands it? Looking at what is perhaps the most

computationally straightforward work on the list, Cory Arcangel’s Colors, we might

think it is. Arcangel has quite explicitly stated that Colors can be considered an

“algorithm” of sorts (Arcangel, 2012, March 14), and that there is no expectation that

the desired effect be achieved using any particular technology in the future. We might

want to know slightly more detail—which could be relatively easily determined through

the analysis of the small code base—such as where the pixel scanning begins and

whether the output frame rate should match the video file, but otherwise it is easy to

conceive of a reimplementation that achieves identical results to the original.

Looking at more complex software, such as that supporting Subtitled Public

(consisting of many thousands of lines of Delphi code), we find it more challenging to

capture the work through a simple statement. Referencing the functional description

presented above with an actual installation of the work would raise a number of

questions. In what font, colour and size should the words be projected? Should the

accuracy and quality of the tracking and projection reflect technology at the time of

the works creation, or be updated to improve performance? Should the word list be

updated or added to depending on the context of the installation? To support the

answer of questions such as these, there is a need to develop a more sophisticated

model of functionality documentation, particularly in relation to the nuances of

behaviour which are not made explicit in the existing documentation.

This is where the capture of more granular statements of functional requirement may

be effectively applied. There is some flexibility in how these requirements are actually

captured, but each statement of functional requirement should include as little

ambiguity as possible. Although in practice there is no single accepted template for

requirements specification, the process has been made an international standard

(within the ISO framework) by the Institute of Electrical and Electronics Engineers and

International Electrotechnical Commission (anon. ISO/IEC/IEEE 29148:2011:

Systems and software engineering — Life cycle processes — Requirements

engineering, 2011). The most recent version of this standard defines three templates

which aim at capturing slightly different levels of detail. Of these I propose that the

lowest level approach—the Software Requirements Specification (SRS)—may be the

most appropriate in order to maximise the information captured. The standard defines

this as “a specification for a particular software product, program, or set of programs

that performs certain functions in a specific environment” (p.45). The guidelines for

producing an SRS do not specify that functional requirements should take any specific

Ensom - Technical Narratives

168

form, but states that they should describe “the fundamental actions that have to take

place in the software in accepting and processing the inputs and in processing and

generating the outputs” (p.58). The value of requirements would be enhanced by ease

of use, and this flexibility removes the barrier of a formal syntax and may help ensure

their capture regardless of any one conservator’s approach. In Section 5.4 I return to

the Subtitled Public case study introduced above to explore its functional

requirements in more detail.

There are cases (even complex ones) where functional requirements may not be a

useful way to document a software-based artwork, or at least provide limited value.

This is likely to be most apparent where works are “thickly” specified (see Section 2.3

for an introduction to this terminology) with regards the specific software technology

employed. John Gerrard’s Sow Farm, which is a particularly clear example of this kind

of work and serves to illustrate this point. This work was realised in a 3D engine

representative of the technology of the time it was produced, called Quest3D (Act-

3D, 2012). As a result, it presents visual characteristics in the rendered 3D

environment, which require that it is realised in this specific engine in order for them

to be maintained, and thus maintain this aspect of its identity. This severely limits how

much value there would be in specifying the complexity of the engine as functional

requirements (for example, the way in which grass is rendered using an adapted fur

shader), as they may be very difficult to describe accurately or recreate in

contemporary 3D engines. In this case it is more appropriate to maintain the software

exactly as it is (so including its visual characteristics), while maintaining an

appropriate technical environment in which it can be performed (for example, by

emulating this environment on contemporary hardware).

As a result, Sow Farm could be specified with a single functional requirement which

makes direct reference to the technology used: the software must simulate and render

the Sow Farm 3D environment from the associated data assets in the Quest3D

engine according to the associated data structures contained in the files acquired

from the artist. This is, of course, a somewhat redundant act of documentation—it

offers little value beyond that which can gained from even a cursory examination of

existing documentation. Migration or reinterpretation would not be an appropriate

preservation strategy for this work and therefore we are likely to look to techniques

such as emulation and virtualisation to achieve long-term preservation. When

applying this kind of strategy, requirements relating to performance and rendering

quality become much more significant concerns in achieving an authentic realisation

Ensom - Technical Narratives

169

of the work. For this work, and other similarly thickly specified software-based

artworks, identifying and capturing these non-functional requirements should be

prioritised.

5.3.2. Non-functional Requirements

In this section I will explore the constraints on quality or performance that might be

linked with functional requirements, and how these might be captured as non-

functional requirements. While functional requirements are the things the software

does, non-functional requirements specify the way in which it should do those things.

Unlike functional requirements, non-functional requirements might also be associated

with metrics and operate within ranges or bounds of acceptability. There are a large

number of kinds of non-functional requirement, and while no single standardised

classification exists, this topic has been well explored in the software engineering

literature (Chung, et al., 2000, Glinz, 2007, Chung, & do Prado Leite, 2009). In the

context of documenting software-based art, I have identified the following kinds of

requirements as of primary concern, presented below with examples:

● Performance (e.g. a consistent level of response time to interaction must be

maintained; frames must be rendered at a rate of at least 30 frames-per-

second);

● Quality (e.g. certain post-processing effects must be applied; vector graphics

must have a certain kind of anti-aliasing applied);

● Reliability and Stability (e.g. the software be able to run for a certain length

of time independently and without fault; the system must be able to suffer

power failures);

● Security (e.g. if the software is connected to or presented over the internet it

must be appropriately secured; if interfaces are accessible to gallery visitors

they must be securable to prevent tampering).

Addressing the capture of these kinds of requirements necessitates a thorough

understanding of functionality, and in many cases, the structural components of the

software and the parameters of its previous realisations. The ISO/IEC/IEEE standard

for requirements engineering, as for functional requirements, does not specify any

particular format for their capture, but does emphasise the identification of “the

verification approaches and methods planned to qualify the software” (anon.

Ensom - Technical Narratives

170

ISO/IEC/IEEE 29148:2011: Systems and software engineering — Life cycle

processes — Requirements engineering, 2011, p.61), a topic I will return to below.

In contrast to functional requirements, when identifying non-functional requirements

it is particularly important to work outside of modes of experiential essentialism (a

concept introduced in Chapter 2) and to address the underlying software processes.

Artworks which rely on graphics rendering are an example of a kind of software

experience which focuses on the screen (or projection), and so obscures the complex

software processes that create this manifestation. Non-functional requirements

relating to rendering are particularly relevant for software-based art due to the

prevalence of artworks producing visual output or carrying out image capture and

processing. This rendering pipeline is a consideration in the realisation of four of the

seven case study artworks examined in this research (Becoming, Colors, Subtitled

Public and Sow Farm).

The transformation of code and data into image frames, then rendered and delivered

through an output device, depends on a graphical rendering pipeline that is made up

of many interlinked software and hardware components. These include physical

graphics hardware and associated drivers, operating system supported interfaces to

allow communication between software and the OS kernel, drivers and specialised

hardware components. The relationships between these may need to be carefully

disentangled to capture their performance and quality requirements, and appropriate

tools identified for their later verification. In Section 5.5 I use the artwork Sow Farm

as a case study to demonstrate how these challenges might manifest, while related

software analysis methods are discussed further in Chapter 4. Even for works such

as Brutalism, which involves no screen or projection outputs in its realisation, issues

of rendering can still be relevant. In this case, the Ubuntu configuration employed

uses the Gnome GUI. Understanding that this requires access to a display driver in

order to be loaded was essential in creating a virtualised version of the software and

its technical environment.

The Sow Farm case study represents a work for which machine-driven verification of

non-functional requirements could be usefully applied to address rendering

performance and quality concerns. However, there are cases in which this kind of

approach may be less useful. Becoming is a relatively computationally straightforward

piece of software. It is not interactive in any sense after the software has started

running, and runs continually after this point (unless interrupted) in a single state—

which is to say, it can be considered either on or off. This simplicity of function places

Ensom - Technical Narratives

171

an emphasis on the rendered result and adds particular weight to issues around

performance and quality requirements. At the concept layer we might see the objects

rendered in Becoming as line drawings, conceptually and stylistically similar to those

the artist uses in his wall-based works (which are realised in various media, but

typically drawn or painted). At the logical level however, these are understood as 2D

scalable vector graphics. The vector graphics are handled by code written in Lingo

and are embedded in a Windows Portable Executable file containing Shockwave

projector and the requisite dependencies.

The 2D assets have been acquired alongside the work as supplementary materials,

and so can be examined. A cursory glance at these 2D graphics on a

contemporaneous system would likely indicate that the files are identical to those

embedded in the executable, and that the object rendering could be documented as

the functional requirement: the software must be capable of rendering the associated

SVG vector graphics files. However, an understanding of the SVG format reveals that

their rendering can be subject to renderer specific edge anti-aliasing, resulting in

distinct visual characteristics to the edges of the shapes (anon. Web technology for

developers - SVG attributes: shape-rendering, 2014). This could be documented as

a non-functional requirement which specifies: the software must anti-alias the edges

of the SVG vector graphics to conform to the anti-aliasing algorithm applied in the

original (2003) realisation of the work. This kind of non-functional requirement might

be difficult to verify by addressing the software at a technical level—there is no means

of programatically measuring SVG anti-aliasing in a Shockwave projector file.

Instead, it represents a case in which visual documentation, such as a lossless video

screen capture of the work, might better serve this goal.

It is helpful to consider execution environment and abstract dependencies in relation

to technical requirements, which could be modelled as part of the requirements

specification (see Chapter 4). Technical requirements are a specification of the

individual components required in order to successfully perform a software program.

For commercial software, these are often provided as abstract requirements

specifying an acceptable minimum or range of power or performance - for example,

a program might require 8GB of RAM or more. In reality, it may be hard to derive

these requirements. The artist or gallery supplied machine is sometimes quite

precisely specified by the artist, but might also just be a suitably specified machine

available at the time of fabrication or sale. Furthermore there is unlikely to have been

much testing on other systems to yield comprehensive technical requirements. In

Ensom - Technical Narratives

172

these cases, the specifications or the artist approved version may provide a safe

minimum and further alteration be made cautiously.

5.4. Case Study: Specifying an Interactive Artwork as
Requirements

The artwork Subtitled Public by Rafael Lozano-Hemmer was introduced earlier in this

chapter, and is highlighted here as complex software-based artwork with an identity

which resides primarily in its functionality—so making it suitable for documentation

using functional requirements. To briefly reiterate the earlier stated functional

description: the work is an interactive installation, which projects a single random

word (from a predefined list of conjugated verbs) onto each visitor to the exhibition

space it is installed in. This word follows this visitor around the exhibition space, and

can be exchanged with another visitor’s word when the two come within a certain

distance of each other. In a user manual created by the artist, there are some notes

on the works preservation which include the statement:

“From the artist’s perspective, the project as it is now20 is beautiful and delivers the

required effect. However, the artwork is not the tracking system and algorithms

currently used but the concept of subtitling the public. In this sense he is open to

future ways to accomplish the effect.” (Lozano-Hemmer, 2006, p.24)

It would seem a high priority then, that the conservator handling the works care

understand what exactly the “concept of the subtitling the public” is in clear terms. I

propose that this could be captured using requirements specification. Subtitled Public

is a very well documented piece, but as I will go on to demonstrate, limitations to the

original documentation are discovered during the process of specifying formal

requirements. There is some context required to ensure that this following analysis

make sense, including the definition of some essential terminology. In practice, such

a terminological clarification might be presented at the beginning of a requirements

document (anon. ISO/IEC/IEEE 29148:2011: Systems and software engineering —

Life cycle processes — Requirements engineering, 2011).

The work is assumed to be presented in what I will term an exhibition space (which

is also the artist’s original phrasing), taken to be a relatively large (at least 9 x 9 x 4

meters), darkened, open room. The members of the public that enter the space to

20 We presume the artist is referring to the 2005 version of the work, as it was acquired by

Tate.

Ensom - Technical Narratives

173

experience the work will be referred to as visitors, and the words that are projected

onto visitors as subtitles. The exhibition space is divided into zones, each of which

contains a set of linked components called a surveillance pod, consisting of a camera,

computer and projector. These need not be maintained as discrete units (the camera

for example, if often in the middle of zone while the projector is on the edge) and in

fact, due to the low ambient light, equipment is not actually visible in the installation

other than as in relation to the light emitted by projectors. For the purposes of this

analysis, detailed non-software requirements (e.g. ceiling height, carpeting, wall

painting) are assumed to have been captured in separate installation documentation.

The work has two modes, tracking mode, which is when subtitles are being projected,

and video mode when the raw video feeds are being projected.

The requirements identified below are based on extensive documentation provided

by the artist and generated by Tate, as well as on an examination of the software

executables, their source code and mock installations of the work. The functional

requirements for the software components of Subtitled Public (i.e. what it is required

to do) could be specified as follows:

● Individual visitors arrival and movement within the exhibition space must be

tracked.

● Subtitles must be projected onto individual visitors from their arrival, and the

position of the subtitles in the middle of their chests maintained as they move

about the exhibition space.

● Subtitles must be selected at random from a predefined list of words

(conjugated verbs) and the same word should not be projected more than

once at the same time.

● When two individual visitors come within a user definable distance of each

other, their respective subtitles must be swapped.

● Video cameras must be used to capture live video of visitors to the exhibition

space.

● Every three minutes the projectors must project the raw camera feeds into the

exhibition space for a user determinable amount of time, and then resume

subtitle projection where it was left off before the switch.

● An administrative user must be able to modify the set of words and add new

Ensom - Technical Narratives

174

words.

● An administrative user must be able to switch between word sets, which

represent different languages.

● It must be possible for an administrative user to control the software system

from an accessible location while the work is being exhibited.

The non-functional requirements for the software components of Subtitled Public (i.e.

the constraints on the functional requirements identified above) could be specified as

follows:

● The subtitle should use the following font specification:

○ Font: Arial

○ Font style: Regular

○ Size: 8

○ Script: Western

○ Colour: #C0DCC0 (hex) or R192, G:220, B:192 (RGB) or H:120,

S:13, V:86 (HSV)

● The highest projection resolution possible should be used to ensure that

subtitle fonts are smoothly anti-aliased.

● Subtitle text should be appropriately scaled to ensure that they are contained

roughly within the body of a visitor, and therefore remain readable by other

visitors.

● Subtitles should be projected at chest height (from the floor or feet of the

visitor).

● The software should run stably and without interference required once

initialised, for as long as the exhibition space is open.

● The subtitle projection should refresh at a rate which results in smooth tracking

that keeps pace with an individual’s movements within the gallery.

● The software should be able to simultaneously track as high a number of

visitors as possible.

Ensom - Technical Narratives

175

We can also specify requirements as user stories21, a notion I introduced in Section

5.3. For an artwork such as Subtitled Public which involves interaction at its core, this

may be particularly valuable in understanding the nature of this interaction and

identifying problems which may arise in maintaining its characteristics. This short

example imagines a hypothetical gallery visitor’s experience as a sequence of events:

● When a visitor enters the exhibition space they should be immediately

identified as a new object to track, a random word fetched from the predefined

list and (if the system is in tracking mode) a subtitle projected onto them at

chest height.

● As the visitor moves freely through the gallery space this subtitle should follow

them and be positionally maintained at chest height.

● If the visitor touches another visitor, this should be identified immediately, their

assigned words exchanged and the projection updated.

In this case, the specification of a user story raises considerations missed in earlier

requirements specification. The focus on interaction reveals that we must consider

the response time of the system when a visitor enters the exhibition space and when

two visitors come into proximity and exchange words. While it is otherwise somewhat

limited in what is captures, the user story is in this case complementary to more fully

fleshed out requirements.

To illustrate how requirements specification can help separate the core identity of the

work from its past realisations, we can look to what is not covered in the requirements

statements, particularly in contrast to aforementioned technical documentation such

as the user manual. This, by inference, is detail which is not essential to the future

realisation of the work. The model of camera, the specific computer hardware and the

actual software implementation itself are not important to the realisation of the

artwork. They may be of historical and technical interest, and therefore preserved, but

they need not be maintained in their current form when realising the work in the future

or where changes are required to keep the work realisable. It would also be

theoretically permissible to improve the software performance’s alignment with the

desired non-functional requirements. For example, existing problems with the

21 While these might typically be written from the perspective of a user, in the example that

follows I have written from the perspective of a system designer.

Ensom - Technical Narratives

176

tracking software, such as its inability to reliably identify chest height based on the

height of a visitor, could be addressed.

Specifics of the exact tracking mechanism are also conspicuously absent from the

requirements, but investigating this issue reveals that software requirements alone

should not be relied on—or at least, that they should allow for a degree of

interpretation. In its 2008 realisation at Tate Liverpool, the piece used infrared-

sensitive cameras to improve tracking, the performance of which is boosted by the

use of ‘congo blue’ filters applied to the rooms lighting. The artist has specified that

the parameters of this lighting are in theory flexible, including the colour, provided the

artist is consulted. We can therefore infer that the software using infrared is not a

requirement of the work either, allowing the potential for other tracking systems to be

employed. The artist has expressed an interest in the Microsoft Kinect2 capture

device to these ends, suggesting that its “tracking is orders of magnitude faster, more

accurate and easier to install” (Lozano-Hemmer, 2015). It also includes the requisite

video feeds.

While the artist has clearly stated his interests, given the ageing software and

challenges of installation, we might question whether such a change might also result

in the loss of some of the identity of the work as represented by the 2005 version.

The speed of tracking observed, the qualities of the blue-hued low light and the

character of the raw camera feeds all add up to a very particular experience which is

closely linked to the nature of surveillance technology at the time the work was

created. These characteristics, one might argue, are core to the identity of the work.

If requirements are unable to capture this kind of nuance, then can they be relied on?

While this demonstrates the risks of considering requirements in isolation, an

appropriate solution would be to specify more granular requirements. The tracking

speed could be constrained as a non-functional requirement, while the cameras could

be specified to only be models within a certain range of performance and image

quality—and these requirements could be associated with video footage of past

installations. In this case, establishing connections between requirements and

materials capturing significant knowledge enhances the value of the former.

5.5. Case Study: Consistent Rendering and the Verification of
Non-functional Requirements

As I argued in Section 5.3.1, Sow Farm is not a work which is usefully represented

by functional requirements. As discussed elsewhere in this thesis, this work is likely

Ensom - Technical Narratives

177

to be best preserved in its current software implementation in the Quest3D engine, in

order to maintain the specific graphical qualities of the work. This shifts the emphasis

of requirements analysis to the non-functional requirements that constrain the

performance of this work. This case study demonstrates the process of capturing and

verifying such requirements for a complex work reliant on the rendering pipeline. Sow

Farm is a work which, even seen in the light of technological advances since its

creation, employs sophisticated 3D rendering techniques, which have been very

carefully applied by the artist and his production team. Maintaining these is, as

discussed in Section 5.2.2, essential to maintaining the identity of the work. Much of

this character is located within the binaries and associated data, but the technical

environment in which execution occurs also plays an important role. With this in mind,

there are two non-functional requirements relating to the projected output of the

software that I will consider in this section: rendering speed (measured in frames per

second) and graphics settings applied at the driver level.

The rendering speed requirement might be specified as: output must render

consistently at a consistent 60 frames per second. One of the primary measures of

performance for 3D applications such as a Sow Farm is the number of frames

rendered per second (FPS). This metric has its origins in moving image and is used

in characterising film and video, where set rates (e.g. 24 FPS for 35mm film) exist for

particular media formats. A digital video file for example, will have a certain number

of frames stored in an encoding format and a player will attempt to play them back at

the speed determined by this format. As the system resource requirements of this

process (understood in relation to the capabilities of the CPU and graphics card) are

relatively light in the case of video, this is usually easy to maintain (although modern

high definition formats may challenge this requirement). A real-time 3D application on

the other hand, while also experienced as frames which are rendered and sent to an

output device, does not have a predetermined number of frames. Frames are

generated on-the-fly by the graphics processing hardware, based on instructions from

software. Achieving a high and consistent frame rate is usually considered the most

desirable level of performance for real-time 3D applications, and this is also the case

for Sow Farm.

Sow Farm has a number of dependencies which may result in it no longer functioning

on contemporary hardware in the near future (these are explored further in Chapter

4). In order to plan for the future and keeping the artwork running in new

computational environments, it was proposed that the work be virtualised, and initial

Ensom - Technical Narratives

178

experiments were carried out by a research team at Tate in 2015 (Falcão and Dekker,

2015). This approach would be advantageous for preservation due to the potential for

generalising the software’s dependencies—for example a virtual graphics card could

be used instead of specific hardware. While the virtualisation of 3D applications is still

in its formative stages, some consumer level virtualisation platforms such as VMware

Workstation (VMware, 2018) support graphics processing through a virtual SVGA

display driver, which mimics the functionality of a graphics card and its driver.

However, this uses emulated video ram and so is likely to exhibit lower performance

levels than a real graphics card, which is larger and designed to efficiently calculate

math operations common in 3D rendering. Despite this potential limiting factor, it does

allow use of the DirectX 9 framework required by Sow Farm. In fact, when installed in

a virtualized Windows 7 environment, the application was found to run at what

seemed to be a high, consistent framerate according to frame rate measurement

tools.

However, there was nonetheless a visible impact on performance, perceptible to the

human eye as an occasional subtle drag of the motion of the camera. This did not

seem to be reflected in either of the FPS monitors logging outputs, which recorded

FPS at a fairly consistent 125-130 FPS. These tools included one built into the

Quest3D software itself and an independent monitoring program called RivaTuner

Statistics Server (Hagedoorn, 2017). It was only through an examination of frame time

values, a less frequently used performance metric which measures the length of time

taken to render each frame (in milliseconds), that the limitations of the FPS metric

were realised. Logging frame time, it was revealed that on this more granular level,

some frames were taking double or triple the amount of time to be generated when

the software ran in a virtual machine, in contrast to a consistent frame time for the

native installation. Values from logs recorded for the native and virtualised version

are plotted in Figure 16 below for contrast.

Ensom - Technical Narratives

179

Figure 16. Line graph plotting frame time values (ms) against running time for the Sow Farm

software running in a VMware virtual machine (blue) and natively on the host machine (red).

Logging of frame time values was carried out separately for native and virtual environments.

The native version consistently generates frames at a rate between 23 and 25

milliseconds, while the virtualized version occasionally shows dramatic spikes in

frame time. These spikes were sufficient to cause a perceptible drag in the motion of

the camera in the screen output. In this case, problems in achieving a software

performance were identified by a human viewer and clarified through closer

examination of the technical properties of the software. As a result of these

processes, a potential conservation treatment was rejected. The non-functional

requirement could now be phrased slightly differently, and state: the output must

render at a consistent 60 frames per second, and with a variance in frame time of no

more than 2 milliseconds.

The second non-functional requirement I will consider relates to the quality of the

rendered image, in the use of the driver level graphical configuration options. The

requirement might be expressed as: specific NVIDIA display settings must be applied

to the rendered 3D image at the driver level (4x multi-sample anti-aliasing and 16x

anisotropic filtering). In order to achieve this, a crucial element in creating an

appropriate technical environment for the software performance is the configuration

of custom display driver settings for the graphics card hardware (also known as a

graphics processing unit or GPU). An appropriate GPU chipset model and associated

driver made by a particular manufacturer (in this case NVIDIA) can be used to force-

Ensom - Technical Narratives

180

apply these graphical effects for a specific software application, though they are

generated by the driver not the application itself and are therefore contingent on this

configuration being applied when the software is placed in a new technical

environment.

In this case, these settings result in noticeable changes to the graphical rendering of

the 3D environment, as illustrated in Figure 17, which features two screen captures

of Sow Farm running on the same Windows 10 desktop computer with and without

the two NVIDIA driver-level settings applied.

Ensom - Technical Narratives

181

Figure 17. Comparison of frames from two performances of Sow Farm, one with default

NVDIA display driver settings applied (top) and the second with custom NVIDIA display

driver settings applied to force multi-sample anti-aliasing and anisotropic texture filtering

(bottom).

Ensom - Technical Narratives

182

Multi-sample anti-aliasing smooths the jagged edges of 3D objects and in this case

has a particularly visible impact on the right-most telephone pole. Anisotropic texture

filtering improves texture quality on surfaces viewed from oblique angles, and in this

case has a particularly significant impact on the detail present in the grass in the

foreground.

The maintenance of these display settings should be considered an essential part of

the correct performance of the software. However, in most virtualisation environments

these particular effects are unsupported by existing virtual display drivers.

Furthermore, the settings utilised may be specific to the driver version used (or a

range of versions). It is also quite possible that future versions of the NVIDIA display

driver will drop support for older features in favour of new methods, and so

compromise the aesthetic provided by the older settings. Given that virtualisation and

the use of a generic VGA driver is not yet an option, this raises questions over whether

these should be applied if they become available without impacting other aspects of

the work’s identity. Would a VMware implementation of anti-aliasing match the

qualities of the one available through the NVIDIA driver? This further emphasises the

importance of negotiating the fine detail of non-functional requirements with the artist,

even where the level of functional change between realisations it expected to be low.

5.6. Chapter Summary

In this chapter I have advanced a theoretical framework for capturing the identity of

software-based artworks. Revisiting the significant properties concept from the field

of digital preservation and establishing links with related ideas from art conservation,

I found that existing approaches suffer from various problems which make their use

in practice difficult when applied to software-based artworks. In many cases they are

overly prescriptive and conditional on the reduction of a work into a set of properties

which fail to capture the rich context within which the artwork continues to evolve. I

propose the notion of significant knowledge as an alternative, which shifts the

emphasis from properties as constraints to knowledge (be it tacit or explicit) that

supports the understanding of the artworks evolving identity. Combining two existing

classifications of significant properties from related domains, I propose a set of

categories of significant knowledge which might serve to guide efforts to ensure it is

representatively captured.

With this theoretical foundation in place, significant knowledge relating to the software

performance was identified as requiring further consideration. For this purpose I

Ensom - Technical Narratives

183

proposed a reframing of the requirements engineering process, a ubiquitous

component of software engineering practice which describes the problem the

software should seek to solve. Taking an approach which aims to reverse engineer

requirements from implemented software, I found that its principles can be used to

usefully articulate various issues relating to software-based artwork identity. The

functionality of the software can be specified in a technology-agnostic way using non-

functional requirements. Non-functional requirements can be used to effectively

describe constraints on the parameters of a software performance. While

requirements templates from software engineering may not be suitable for use in a

conservation environment as-is, the principles of requirements engineering alone

may offer a valuable conceptual core for the documentation of software-based

artworks. The extent to which a software program can be transformed into

requirements appears to be variable, and they must remain supported by contextual

materials and other relevant components of significant knowledge.

Ensom - Technical Narratives

184

CHAPTER 6

DOCUMENTING THE EVOLUTION OF

SOFTWARE-BASED ARTWORKS

6.1. Chapter Outline

In the previous two chapters I have focused on developing approaches to

documentation that capture some aspect of the software-based artwork at a particular

moment in time—that is, they provide a kind of snapshot. In Chapter 4 this was the

analysis of a realisation of a work, in order to generate a representation of the

software structure employed. In Chapter 5 this was the use of documentation to

capture the identity of a work and the software performance itself. An underlying

assumption of these discussions has been that software-based artworks change

through time, yet how this might actually manifest has not yet been explored. In this

chapter I focus in on the processes of change that a software-based artwork might

experience and consider how its ongoing evolution might be captured as

documentation. This kind of documentation has the potential to support assertions of

authenticity and capture the technical art history of a work for future study.

I will start by assessing how we might conceptualise the life of a software-based

artwork, by examining existing models that can be characterised as lifecycle and

Ensom - Technical Narratives

185

continuum approaches. In order to problematise these characterisations, I look

closely at the set of processes involved in creating and maintaining software-based

artworks and software performances. I particularly consider the contrasting nature of

low-level incremental processes of change, which typically occur at the level of code,

and the higher-level transformations that yield discrete versions. Considering existing

documentation models from computer science and information science, I consider the

extent to which these processes can be transformed into useful documentation.

Finally, I explore a perspective on change documentation which unifies continuum

principles with the notion of biographical accounts of artworks, and which may provide

a means of capturing the software-based artworks movement through complex socio-

technical dimensions during its life both inside and outside the collection.

6.2. Conceptualising the Lives of Software-based Artworks

In trying to identify how change manifests for software-based artworks, it is helpful to

characterise what the life (used here to refer to the length of time an artwork, or a

trace of it, exists in any tangible way) of such an artwork might be like in terms of the

creative processes that shape it and the changes that occur from the point of its first

realisation. From there, we can begin to identify the kinds of process which result in

change, the levels at which they occur and when they should be documented in the

course of caring for the work. In this section I consider two conceptualisations of the

life of a digital preservation object, which offer contrasting philosophical perspectives

on the relationship between this object and the processes that shape its existence.

These are lifecycle models and continuum models. Below I introduce each

perspective, and consider their potential benefits and limitations in understanding and

capturing the lives of software-based artworks.

A lifecycle model can be broadly characterised as implying discrete phases through

which the entity in question passes during its life. Luciana Duranti has pointed out

that while lifecycle models are often construed as relating to ideas of human life, they

are in fact employing the metaphor of circular natural resource cycles (such as the

carbon cycle) (L. Duranti in Ashley, et al., 2015). Despite an identifiable shared basis,

lifecycle models can take very different forms. In order to draw out some of the key

characteristics of lifecycle approaches I look at three models of this type, developed

in the fields of digital preservation, art conservation, software engineering

respectively.

The Digital Curation Centre’s (DCC) Lifecycle Model emerged from the digital

Ensom - Technical Narratives

186

preservation domain and the work of the eponymous institution, which claims the

value of a lifecycle approach is in ensuring “that all the required stages are identified

and planned, and necessary actions implemented, in the correct sequence” for

curation and preservation of digital material (Higgins, 2008, p.135). While many

components of the model seem aimed as modelling research data and simpler digital

objects, it theoretically permits understanding of “complex digital objects”, as we might

consider software-based art to be. This model is represented as a series of layered,

concentric circles which are cycled through clockwise (illustrated in Figure 18 below).

Figure 18. Representation of the Digital Curation Centre’s (DCC) Lifecycle Model,

reproduced from Higgins, 2008.

All processes within the DCC model occur after the creation of the digital material,

and it is implied in its specification that the state in which the material enters the

curation and preservation environment is to some degree fixed in terms of its identity

(although on a technical level, it might later be transformed using migration or other

processes). This would present an immediate problem for considering software-

Ensom - Technical Narratives

187

based artworks within such a lifecycle. As described in Chapter 5, the software-based

artwork is understood in relation to an identity that is heavily context dependent and

might shift through time. While the sequential ordering of the outer ring phases is

presented diagramatically as linear, the model does incorporate non-linear elements,

such as the “migrate” and “reappraise” pathways, and parallel occurrence of phases

implied by the concentric “preservation planning” and “community watch and

participation” rings.

The DOCAM documentation model (introduced in Section 3.3.1.1) from the time-

based media art conservation domain also specifies a lifecycle component, but in this

instance the authors acknowledge that “media artworks tend to follow dynamic and

vastly different lifecycles”, and so specifies a slightly less linear model (DOCAM, n.d.).

This model centres on a “work” (i.e. artwork) instead of a digital object but still

incorporates many of the same broad process types as the DCC model. The key

difference however, is that it does not specify a sequential ordering. Instead, lifecycle

events are broken down into different types (Creation, Dissemination, Research and

Custody), with subtypes below them. In this way, events are used more as a guideline

for capturing events than a way of literally representing the life a work. The main

limitation to this model is that it does not model the linkages between activity types

and so would be rather difficult to operationalise in its current form. Conservation, for

example, may be triggered by a Dissemination event, and may itself trigger activities

in Creation. This lack of connectivity reflects a problem with lifecycle models artificially

viewing activities as discrete.

In software engineering the life of a software product (i.e. the output of software

engineering processes) can also be understood through lifecycle models. The IEEE

Software Engineering Body of Knowledge presents an overview of such models,

stressing their “wide variety” (IEEE Computer Society, et al., 2014, p.8-5). They

contrast two kinds of approach within the field, linear models and agile (or iterative)

models, and distinguish them by the tendency of the former to be heavily specified

prior to development work, while the latter involves iterative returns to requirements

specification. In a similar fashion to the DOCAM model, lifecycle models are

understood as being composed of processes, which they define as the “set[s] of

interrelated activities that transform one or more inputs into outputs while consuming

resources to accomplish the transformation” (IEEE Computer Society, et al., 2014,

p.8-1). In software engineering, the idea of lifecycle model relates closely to the idea

of software evolution. Indeed, the IEEE standard covering lifecycle processes defines

Ensom - Technical Narratives

188

the software lifecycle as the “evolution of a system, product, service, project or other

human-made entity from conception through retirement” (anon. ISO/IEC/IEEE Std

12207-2008: Standard for Systems and Software Engineering - Software Life Cycle

Processes, 2008, p.4).

All three of the lifecycle models introduced above use process or activity types as a

way of conceptualising the life of a subject entity. The DDC Lifecycle Model

acknowledges the interconnectedness of lifecycle phases by sequencing them,

although this sequence is of a relatively linear nature. In contrast to the DCC Lifecycle

Model, neither the DOCAM model nor the IEEE lifecycle approach conceptualise the

mapping out of the life of their subject as linear. Instead they take a more flexible

approach with the aim of simply modelling individual lifecycle events and categorising

them, without making assumptions regarding their sequencing. These kinds of model

have the benefit that they make fewer assumptions about patterns of change within

the life of their subject. Returning to the purpose of our analysis, a lifecycle

perspective on the documentation of software-based art appears to have immediate

value in that it would allow us to identify stages at which documentation should be

generated or revisited. Whether the realities of change in software-based artworks

can actually be represented in such a way remains unclear however.

In contrast to the lifecycle model, a continuum model offers a perspective that situates

its subject as something contingent on and connected to its context. The idea of a

continuum model stems from records continuum theory, a school of thought in records

management and archival theory emerging in Australia in the 1990s (McKemmish,

2001) and first formalised as a model by Frank Upward (Upward, 1996, Upward,

1997). The notion of a records continuum offers an alternative to lifecycle metaphors

by not specifying discrete phases within the life of a record at all, but rather conceiving

of the record’s life as a continuum (i.e. a continuous sequence). In doing so, it accepts

a fluidity to the identity of records, which Sue McKemmish describes as “always in a

process of becoming” (McKemmish, 1994, p.8). The model also emphasises a post-

custodial approach to records management, wherein the archival organisation need

not have control over a record for it to engage with its care, so resisting the idea that

entering a collection signals a records end-of-life and transition into an archival phase

of existence.

Unlike the lifecycle models described above, the continuum model is not intended to

be put directly into practice, but rather presents, as Barbara Reed puts it, a “method

of thinking that challenges all archivists to engage on a broad social canvas” (Reed,

Ensom - Technical Narratives

189

2005, p.1). This makes appraising the model rather difficult, as it has had few, if any,

practical implementations. Linda J. Henry criticised records continuum theory,

alongside several new theoretical trends within archiving that gained traction in the

late 1990s, for having “little basis in archival theory and practice and [containing]

alarmist language, unnecessary jargon, technobabble and unclear new ideas”

(Henry, 1998, p.326). If the criteria is ease of comprehension, the records continuum

model in the forms it has been represented so far does indeed come across as

unclear—for instance, the multi-dimensional representation of the model lacks any

formal definition of its axes and layers. While there is a clear gap between the theory

and any kind of derivative practice, this does not necessarily make the model, and

others like it, useless.

Reed acknowledges the complexity of the model, and the fact that it can be subject

to multiple readings (Reed, 2005). In light of the theoretical background of the model

and the comments of Reed and other champions of continuum theory, it is perhaps

more pragmatic to consider the continuum model as a tool for deconstructing dogma

in archiving and related fields. My own reading is that the continuum model helps us

to see the object of preservation as something never definitively actualised and

possessing multiple meanings for different stakeholders. Seen in this light, the

processes of change that occur in the life of a software-based artwork may send

ripples running through time and space that affect the meaning and identity of the

artwork. By dispensing with the implied significance of lifecycle stage transitions

(including that of custodial change), the model better reflects the possibility that an

artwork’s life continues even within a museum environment. The use of continuum

principles as the basis for a model-based approach to preservation in research as

part of the PERICLES project (Lagos, et al., 2015) indicates that indeed, the

continuum metaphor may hold value in practice.

Both model types discussed in this section are means of understanding complex

phenomenon through simplified views. As for any such effort, it must be

acknowledged that they cannot represent an objective reality but rather, an

interpretation. Therefore, it is most helpful to consider not whether a lifecycle or

continuum perspective is the correct one, but how lessons can be taken from both

and used to guide documentation strategies. While the conservation workflow

explored in Chapter 3 implies that lifecycle-like stages can be observed in

conservation practice, the precise nature of change at the level of software remains

unclear. In the following section I explore how processes of change might be

Ensom - Technical Narratives

190

characterised in relation to the connections between lifecycle and continuum

principles established. I draw on evidence from the artwork case studies, whose life

histories have been examined and mapped based on existing documentation.

6.3. Perspectives on Software Evolution

In beginning this section, I want to consider the processes which lead up to the initial

realisation of an artwork, which might conventionally be understood as relating to its

creation. The DOCAM lifecycle model, introduced in the previous section, presents a

particularly nuanced conception of the creation of a work which distinguishes this act

from linked dissemination processes of installation and presentation. They define

creation activities as consisting of the:

“definition of the concepts mobilized and their method of structure (conception),

definition of the presentation method, and the production of elements required for

the work’s presentation (materials, environmental aspects, etc.).” (DOCAM, n.d.)

For software-based art, interaction with software development processes permeates

all aspects of this idea of creation. Understanding exactly what these processes were

like is difficult where they occur outside the institution and prior to acquisition. The

artefacts of the processes of production can help us to understand them to some

extent—most significantly the source materials of the software. Software-based

artwork source code for example, has been found to include significant traces of the

creative process through code comments, design choices and unused code (Engel,

& Wharton, 2015). In a conservation context, it is tempting to view these processes

as historical actions, as such artworks are often acquired some length after they were

created. The average time for the artwork case studies examined was a three-and-a-

half year gap between initial production and acquisition, with the longest gap being

seven years (for Cory Arcangel’s Colors).

However, these case studies also illustrate how the nature of museum interaction with

artists and art-making sometimes challenges the idea that a software-based artwork

could ever fully leave the creation phase—or to use the language of continuum theory,

become actualised. Foremost, processes which might constitute acts of creation

continue to occur after acquisition as the result of ongoing realisation and occasional

treatment of the works. Examples of this have occurred at numerous times for the

artwork case studies. The ongoing development of the Jose Carlos Martinat

Mendoza’s Brutalism software at Tate has involved the refactoring of the Java source

code on which the work was built to accommodate the use of USB printers, replacing

Ensom - Technical Narratives

191

the obsolete DB-25 parallel port printers. The LiMac Museum Shop website, by

Sandra Gamarra, remains under the control of the artist and is regularly updated, and

so resists the idea of the artwork’s stabilisation and transition into museum custody.

In these cases, the emergence of the artwork extends beyond conception, beyond

the first realisation and beyond even its entering the care of a museum.

In software engineering the study of the patterns of change in software programs is

known as software evolution, or more precisely, “the process by which programs are

modified and adapted to their changing environment” (Herraiz, et al., 2013, p.1:1).

Meir M. Lehman’s ‘Laws of Software Evolution’ are the most well-known theories

within this field of study and constitute a set of observations that characterise the

process of software evolution. These were developed and refined gradually between

1974 and 1996, driven by a growing body of research into their validity (Lehman, &

Ramil, 2003). Most interesting to us is Lehman’s classification of software types,

which he uses as a way to understand why the laws only apply to some programs.

The typology, known as the SPE scheme, was initially developed in one of his early

papers in relation to software programs (Lehman, 1980) and later revised as the

SPE+ scheme in reference to software systems (Cook, et al., 2006). The three types

that constitute SPE+ plus can be summarised as follows:

● Type S (Specification-based) software can be fully defined as a complete and

unchanging formal specification. The acceptability of the software to its

stakeholders is contingent on whether it satisfies this specification or not. Type

S software defines the conditions in which software evolution does not occur.

● Type P (Paradigm-based) software attempts to solve problems and maintain

consistency with a particular paradigm specified by its stakeholders. The

acceptability of the software is contingent on whether it successfully solves

this problem and remains consistent with a paradigm to the satisfaction of its

stakeholders—a process which generally involves compromise. Type P

software is more likely to evolve than Type S, but this is constrained in some

way to ensure the paradigm is maintained.

● Type E (Evolving) software interacts with the external world in some way—by

design—and can never be fully specified as the software must be responsive

to its environment. The acceptability of the software is therefore contingent on

whether it is able to continue to respond to its changing environment and

context. Type E software must evolve for its survival or otherwise become

Ensom - Technical Narratives

192

progressively less useful to its stakeholders.

The SPE+ types are helpful in characterising the different kinds of evolutionary

pattern that can be observed among software-based artworks after their creation. It

should first be acknowledged however, that all software-based artworks can to some

extent be considered Type E software, in that they are all embedded in the real-world

through their ontological status as software performances, realised as artwork

events—contingent on the environment and context in which this occurs. Indeed,

Cook et al. acknowledge that true Type S software are rarely found outside of theory

(Cook, et al., 2006), and suggest that both Type S and Type P software can only exist

through constraints placed on the software by stakeholders. As I will illustrate below,

this idea of varying degrees of constraint is helpful when we look at the different

evolutionary potential among the case study artworks.

Some software-based artworks have characteristics of Type S software, in that they

are highly specified, and evolution is undesirable and so constrained by those

involved in the conservation of the work. John Gerrard’s Sow Farm, for example, is a

work precisely specified at the level of the software. Preserving this exact expression

of the software and its consistent performance through time is therefore desirable:

the positioning of each virtual building, the quality of each texture map and the

precisely choreographed intensity of the simulated lighting. Breaking with Lehman’s

program-centric perspective, in this case the environment of the software might also

be constrained using virtualisation so preventing the need for evolution to occur at

the software level. The characteristics of Type S software are similar to those of

Laurenson’s “thickly” specified time-based media artworks (Laurenson, 2006), in that

change is less acceptable for these types of artwork.

Other software-based artworks are more akin to the Type P software, in that they

were created to solve a problem or implement a paradigm. For example, the software

used in Rafael Lozano-Hemmer Subtitled Public was developed to implement the

paradigm of projecting subtitles onto visitors to the exhibition space. As this paradigm

is more important than the precise way it has been specified, Subtitled Public may

have to evolve to ensure that consistency with the paradigm can be maintained when

the work is realised in the future in a changing environment. The work does not

engage with this changing environment by design however, and the paradigm itself

is relatively well determined and can be considered in isolation. In reality, the practical

challenges of realising Subtitled Public in a changing technical environment create a

tension between the extent to which evolution might need to occur in order to maintain

Ensom - Technical Narratives

193

the paradigm, and the degree to which there is flexibility in the paradigm itself—a

tendency toward the latter in the future would indicate Subtitled Public is shifting

toward a Type E program. Characteristics of Type P software are similar to those of

Laurenson’s “thinly” specified time-based media artworks (Laurenson, 2006), which

allow for a degree of change in their realisation.

There are software-based artworks for which characteristics of Type E programs

come to the fore. For these works, evolution is an inherent part of their identity. For

example, Jose Carlos Martinat Mendoza’s Brutalism software harvests search results

for a particular term from the Google Search API, which are accumulated in a

database and printed in the gallery. Thus, part of its identity lies in interaction with this

changing external API and the activity on the internet that feeds Google’s search

algorithms, resulting in emergent meaning in the text harvested. When realised,

Brutalism becomes part of a wider socio-technical environment, extending beyond

the boundaries of the exhibition space and into the external world. In the case of

Brutalism, the software can never be fully specified nor understood in relation to a

fixed problem, as its realisation is tied to the changing properties of external

environment and context. The software must also therefore continue to evolve in

order to maintain this connection. If this was found to be impossible at any stage, and

the artwork disconnected from this context so that it no longer accumulates words, it

would shift more towards Type P software.

There is of course some distance between the kinds of embedded, continuity-driven

software systems with which software engineering largely concerns itself, and the

software-based artwork as something realised and thus ephemeral. Even for works

which require persistent availability, such as the LiMac website, change does not

appear to happen at a single constant pace (I examine this case study in more detail

in later in this chapter). For software-based artworks that enter collections, software

evolution in response to changing technical environment seems to occur as a kind

punctuated equilibrium22. This term extends the biological evolution metaphor, and

references evolution patterns which involve long periods of relatively slow change (or

stasis), punctuated by periods of rapid evolution. The trigger for these rapid

evolutionary events, in the case of the artwork case studies examined, appears to

22 This term has its origins in a paper by Niles Eldridge and Stephen Jay Gould (Gould, et

al., 1972), which contrasts their theory of “punctuated equilibria” with the traditional model of

biological evolution, “phyletic gradualism”, which views change as steady and continuous.

Ensom - Technical Narratives

194

vary depending on the type of program but be heavily associated with the revisiting

of works in the context of display. In the future, as the technology involved in these

case studies ages (most were produced in the 2000s), we can expect preventative

conservation efforts to become a second major trigger.

In this section I have developed an overarching theoretical framework for

understanding how software evolution occurs for software-based artworks, which

helps to explain how patterns of change may differ between artworks. Major

evolutionary events would trigger a return to existing documentation: the relevant

body of significant knowledge would be reconsidered, and technical documentation

revisited to align it with the resulting software structure. We are also interested in

documenting the processes of change themselves, however, as this ensures a

provenance trail and provides records of processes to allow the reconstruction of the

artwork’s technical history. This relates to the well-established ethical codes guiding

the conservator in ensuring treatments and conservation measures are documented

(The Institute of Conservation, 2014, American Institute for Conservation of Historic

and Artistic Works, 1994). Documentation of the process might be addressed at

different levels of abstraction. At a high level, this might be understood as relating to

the goals of the process and the production of new versions of software and artwork.

These I refer to as macro-level change patterns. At a low level it would relate to the

formal material (understood in relation to Kirschenbaum’s theory of materiality)

manipulated by the artist and collaborators. While this might be most obviously

understood as the shaping of code, as I have demonstrated elsewhere in this thesis,

this work often involves other formal materialities such as software interfaces and

production tools. These I refer to as micro-level change patterns. Micro-level change

is often necessary to achieve macro-level change, while macro-level changes may

result from micro-level change—the two pattern types are inherently linked. The utility

of the distinction is that it distinguishes between two levels at which change can be

documented, even where the same change processes are being observed. I discuss

each of these levels in more detail in the next two sections.

6.3.1. Macro-level Change Patterns

At the macro-level we can observe the transformation between software versions,

among which certain kinds of transformation occur repeatedly. The terminology for

describing these is not well developed in the context of software-based art, but

terminology from software engineering can be repurposed to help fill this gap. Below

I propose a set of process descriptors for the various kinds of software transformation

Ensom - Technical Narratives

195

which might occur during the evolution of a software-based artwork (including

examples from case studies where possible), in relation to activity engaging the

source and executable code representations:

● Refactoring: Software is revised to improve or correct non-functional

attributes, without altering its functional attributes, within the same

environment as the original. In the case of Subtitled Public, the Delphi

software was refactored to allow use of higher resolution camera feeds.

● Rewriting: Source code is rewritten to add or alter functional attributes, within

the same environment as the original. Reengineering, redesign and

rearchitecting are terms used to indicate similar kinds of change in software

development, and in practice may be hard to distinguish from rewriting. In the

case of Brutalism the original Java code has been partially rewritten to allow

the use of USB printers instead of DB-25 parallel port printers, which required

an entirely new Java package.

● Migration: Source code is rewritten for a different operating environment or

platform without impacting its functional attributes. This is widely understood

within digital preservation in relation to format migration, but is also significant

in software development where it is sometimes referred to as porting. The

Shockwave version (including its Lingo scripting) used in the 2003 version of

Becoming was migrated to Flash (and ActionScript scripting) for the 2010

version, as an experimental conservation treatment aiming to maintain the

software’s functional and non-functional attributes.

● Compilation: Source code (and other material) is compiled into an executable

representation. This process occurs for almost all software-based artworks

during their creation, although for some languages (e.g. Java) it is to an

intermediate representation which must be interpreted to be executed.

Compilation can be carried out with different parameters, which can be

captured using build logs or metadata. The form and availability of these is

dependent on the programming language and development environment

used.

● Decompilation: Executable representation is transformed into higher level

code approximating the source code. I present experiments with this

transformation technique in Chapter 4, and propose it is likely to be a useful

Ensom - Technical Narratives

196

tool in conservation practice for dealing with missing or inaccessible source

code.

● Encapsulation: Binary representation is captured with elements of its

software environment and configuration (for example, as a disk image), in

order to allow effective virtualisation or emulation. This method is being used

in the preservation of software-based artworks at Tate and was used

extensively during this research to create controlled environments for the

examination of software.

The adoption of such a vocabulary to describe software-based artwork

transformations provides one foundation for documenting macro-level change and

could be accompanied by a more detailed description of the process, its purpose and

its justification. One potential usage relates to the practice of production history

documentation at Tate. The change history of media elements relating to an artwork,

are captured using what is known as a “production diagram”, a representation of their

lineage presented as a branching directed graph. An example for Becoming (2003)

by Michael Craig-Martin is embedded below in Figure 19. The terminology introduced

above presents a vocabulary with which relationships between software media

elements might be described within this framework.

197

Figure 19. Production diagram for the artwork Becoming by Michael Craig-Martin, created by the time-based media conservation team at Tate. Black boxes

indicates information (not corresponding to an actual component), green indicates a media component suitable for exhibition use, while red indicates an

archival media component not suitable for exhibition use.

198

In commercial software development, transformations would also be reflected in

software versioning: the practice of uniquely identifying the representations of a

program produced by development processes. This usually takes the form of an

incremental version number for technical users, but versions can also be expressed

through non-technical language aimed at consumers of software products. For

example, Apple’s naming scheme for its OS X operating systems uses memorable

themed names alongside more granular version numbers. OS X 10.10 is known as

“Yosemite”, as part of series of version names themed on Californian landmarks, but

in fact has six patch versions (10.10-10.10.5) and many more builds (identified using

a separate number) which reflect the implementation of various bug fixes.

This distinction between technical and public facing versioning schemes is reflected

in software-based art. For instance, there has only been one version of Subtitled

Public the artwork. However, at the software level, there have been multiple minor

versions generated which either improve or slightly modify the program’s behaviour.

In addition, there have been multiple realisations of the work for different exhibitions,

which provides a third potential understanding of version. The artist David Rokeby for

instance, considers versions in this way, relating them to an iterative process of

technical development—such as the evolution of the five different realisations of the

ongoing work The Giver of Names (Rokeby, 2010). With this possibility in mind, there

is a need for clear language with which to make distinct the various artwork versions,

artwork realisations and software versions. I return to this later in this chapter (see

Section 6.4) but for now consider only the software level. Granular versioning of

software is advantageous for conservators in the same way that it is advantageous

to unambiguously identify any resource: it can be located reliably, referenced

unambiguously and its relationship with the artwork and its realisations recorded.

There is no single standard approach to version numbering, but Tom Preston-

Warner’s “Semantic Versioning” scheme (I here reference version 2.0.0) is widely

adopted and understood (Preston-Werner, 2013). Versions are represented using

three numbers in the form “MAJOR.MINOR.PATCH” (e.g. 2.10.5 represents major

version 2, minor version 10, patch 5), which are incremented to indicate different

levels of change. The major number is incremented where a change has been made

which breaks backwards-compatibility. The minor number is incremented where the

changes have less impact and add functionality in a way which is backward-

compatible. The patch number indicates least impact and is incremented when a

change is a backwards-compatible bug fix. When a particular number is incremented,

Ensom - Technical Narratives

199

this resets the numbers to the right of them, which can then be incremented from zero

again.

While useful as a model, in practice the practicality of this kind of formal approach

has limitations. Foremost, clarity of versioning comes with a contingency on the

methods of whoever is making the changes. The reality is that different programmers

will want to work in different ways, and development might not occur in such a way

that permits clear identification of the meaning of a change. For instance, during the

rewriting of the Brutalism software in the run up to the artwork’s display at Tate

Modern, numerous versions of the software were generated in a short space of time

in order to rapidly test prototypes of the modified software. Reconstructing their

relationship with the source codebase and the evolving work is now difficult. Allowing

such flexibility in working methods however, may be essential within these

collaborations. As I will demonstrate in the following section, micro-level change

tracking (which is largely systems-driven) is another way in which this problem can

be managed.

6.3.2. Micro-level Change Patterns

At the micro-level, change can be understood not through software transformations,

but as gradual change at the level of the material (understood in relation to

Kirschenbaum’s formal materiality, introduced in Chapter 2) manipulated in the

realisation of the work. This material might be source code, or a development project

manipulated via interfaces. Source code changes at this level may be understood

from documentation generated by systems that interact with the process directly, or

from retroactive inference using available artefacts, which I will discuss below in turn.

As such, documentation of this kind of change is generally contingent on the

availability of source code and associated artefacts, on which I will focus in this

section.

Software development at scale (be that understood as a large codebase or numerous

collaborators) necessitates the orchestration of many individuals working on a code-

base simultaneously. As a consequence of these challenges, low-level change

management systems have emerged to support modern software development

practice. Source code version control systems (VCS) allow the tracking of multiple,

parallel modifications at the source code level through a system of access control and

change tracking (Yuill, 2008). Managing changes to source code is an important

activity in software development, particularly in ensuring multiple programmers can

Ensom - Technical Narratives

200

work without conflict on a complex code base. There are a multitude of VCS

platforms. Some involve the use of a single centralised repository such as Apache

Subversion (or SVN), while others such as Git (perhaps the most widely known

through the popular cloud-based service GitHub) use a distributed method involving

a local repository and committing changes to a shared repository as a separate step.

An example of commit record, taken from the open-source GitHub repository for the

Rafael Lozano-Hemmer artwork Level of Confidence (2015), is shown in Figure 20

below.

Figure 20. Screenshot of a record of a C++ code change committed to a GitHub code

repository for the Rafael Lozano-Hemmer artwork Level of Confidence (2015), by

programmer Stephan Schulz. The commit record includes metadata about the author and

date, a description of the change, and a visual indication of the changes made to the code

itself (green lines have been added, while red have been removed).

As a by-product of the process of version control, a VCS may provide a

comprehensive record of alterations to the code (including by whom alteration were

made) and by inference, of the development process. Therefore, where these

systems have been used, they have great potential interest in the study of software-

based artworks. Where they can be used during future development work for a

Ensom - Technical Narratives

201

software-based artwork, they may provide a rich addition to the documentation of a

work. This is already occurring in museum conservation practice. Ian Cheng’s

Emissaries series of three software-based 3D simulation artworks were exhibited at

MoMA PS1 in 2017. During the display of these works, the artist worked from a

version control system in the care of the museum (B. Fino-Radin, personal

communication, 17 June 2016). According to Ben Fino-Radin, then a Media

Conservator at MoMA, this allowed him to update the software during the exhibition

to fix bugs, and then later allowed MoMA to acquire the VCS as a documentary record

of the works development, as all the changes made are represented within this

system. At San Francisco Museum of Modern Art (SFMOMA) in 2015, media

conservator Martina Haidvogl worked closely with the artist Jürg Lehni on the

acquisition of his robotic drawing machine Viktor (Haidvogl, 2015). Again, the artist

worked from a Git repository (in this case using Bitbucket, a cloud-based Git platform)

which could be synced with a computer at SFMOMA and archived. The code

repository included a record of the various code modules developed, automatic

syncing with any changes occurring during the acquisition process, and even the

tracking of documentation authored in Markdown.

Where VCS or other system-based change management tools have not been used,

there may be other ways to infer information about the development process. For

example, if more than one version of the source code is available, automated

methods can be used to compare them. In the case of Colors, there is more than one

version of the work—the 2005 version which was acquired by Tate, and a 2009

version released as free and open source software called Colors Personal Edition

(Arcangel, 2017). While the actual functionality of the software is very similar for both

versions, the Personal Edition is open source and distributed over the internet for

free. This version allows the user of the software to process a video file of their

choosing. The 2005 version of the work, on the other hand, is intended to specifically

play through Dennis Hopper’s 1998 film (also titled Colors) 404 times (as this is the

number of lines in the video provided), and is to be projected in an exhibition setting.

Clearly these two artworks share a similar core concept (playing back a video file line

by line), while also being guided by slightly different intentions and modes of

presentation. Source code analysis allows us to compare on a technical level how

similar the two pieces are. An automated line-by-line comparison tool (known as a diff

tool) allows us to reveal that the code used is identical bar one change—as illustrated

in Figure 21.

202

Figure 21. Results of an automated code comparison between the source code of Cory Arcangel’s Colors (2005) (left) and Colors Personal Edition (2009)

(right), using the FileMerge (Apple, 2016a) tool package with XCode 7 (Apple, 2016b).

203

The first line of the change is a code comment (i.e. non-functional text embedded in

the code structure), the reasons for the removal of which are unclear, while the

second line skips a certain number of pixels in the 2005 version in order to avoid

processing the black letter-boxing of the source video file (processing it would result

in a black screen rather than bands of colour for a portion of the software

performance). In this case, understanding code level change is much less important

than understanding the artist’s own versioning systems. This is an interesting

technical art historical insight however, and in this case further emphasises

Arcangel’s elevation of the concept over the technical implementation.

In addition to code-level change and processes of software development, there is a

need for systems-based change documentation for technical environments and their

representations (e.g. disk images and virtual appliances). Where encapsulation

methods are used to create emulated and virtualised representations of software-

based artworks, a record of the changes required to create a suitable execution

environment would be valuable (an idea introduced in the context of the

reconstructive workflow described in Chapter 4). One approach would be to use

manual techniques to carry out the systematic capture of environment information at

key points in time such as acquisition or after a treatment. Although approaches to

continuous monitoring (and documentation) of environment information have been

developed for digital preservation purposes (Corubolo, et al., 2014), there remain

practical obstacles to their integration. Such tools involve invasive embedding in the

host system followed by continuous operation which may be resource intensive and

put strain on the relationship with artist or programmer. While the approach

highlighted is modular and thus extensible as new technology arises, there are also

currently limits on the extent of the system environment they are able to monitor.

Managing change within disk images and virtualised or emulated environments is in

many ways similar to managing complete computer systems, but also offers a means

of achieving a higher level of environment monitoring and capture. A number of

emulation and virtualisation software packages (e.g. QEMU, VirtualBox, Vmware) are

able to utilise a technique called copy-on-write to automatically document changes

made to read-only disk images during operation. This involves use of a secondary

disk image format (for QEMU this is in the qcow format, for example) which will only

grow in size in order to store modifications (not a complete representation) made to

an underlying disk image, rather than writing directly over the data in the base image.

If data is requested from the base image, it will be retrieved directly from there, while

Ensom - Technical Narratives

204

if it is requested from modified sectors, it will use the secondary image.

6.4. Representing Versions in Information Systems

The interlinked set of entities which are the result of the processes of software

evolution described in the previous section will, much like the software structures

discussed in Chapter 4, require a model through which they can be represented in

information systems. This provides a means of connecting a particular software

structure (including its physical and digital constituents) with the concepts that give it

meaning: the artwork, its realisations and its versions. It also provides a consistent

framework for connecting conservation activities with the appropriate entity in relation

to the ongoing life of the work. Having an appropriate conceptual model is the first

step in ensuring that we can accurately record this information. The software-based

art domain has received little attention in the definition of such models. In this section,

I explore the application of a mature model from the libraries and archives domain to

this problem.

The Functional Requirements for Bibliographic Records (FRBR) was developed to

provide a structural model for relating information contained in bibliographic records

to the needs of users, and ultimately improve the efficiency of finding, identifying and

accessing bibliographic records (IFLA Study Group on the Functional Requirements

for Bibliographic Records, 2009). While originally designed for the description of

bibliographic materials, the model has been influential beyond and has already been

explored in relation to the description of software. Matthews et al. develop an

interpretation of the model for the description of software systems (Matthews, et al.,

2010), the focus of which is primarily on software products and terminologically

divergent from an art use case. McDonough et al. apply the model (as-is) to a work

of interactive fiction (expressed as software) with a complex, branching version

history, and find it suitable for describing its many manifestations with relative clarity

(McDonough, et al., 2010). The DOCAM project also applied the FRBR model as-is,

in this case to the hierarchical description of media art (DOCAM, n.d.). An additional

level of granularity below item called “component” is proposed, which serves to

capture the parts of an “item”.

In Table 7 below I compare the bibliographic IFLA version of FRBR (as used by

McDonough et al.) to the model developed by Matthews et al., and in the final column,

propose a set of entities with which to describe software-based artworks and their

linked representations.

205

FRBR Standard (IFLA 2009) Conceptual Model for Software (Matthews et al. 2010) Conceptual Model for Software-based Art

Entity Description Entity Description Entity Description

Work A distinct intellectual or

artistic creation

Product The product is the whole top-level entity of

the system, and is how the system may be

commonly or informally referred to.

Artwork A distinct intellectual or artistic

creation.

Expression The intellectual or

artistic realisation of a

work

Version A version of a software product is an

expression of the product which provides a

single coherent presentation of the product

with a well defined functionality and

behaviour.

Version An expression of the artwork with well

defined formal, functional and

behavioural characteristics.

Manifestation The physical

embodiment of an

expression of a work

Variant Versions may have a number of different

variations to accommodate different

operating environments.

Variant A specific implementation of a version

which has broadly similar formal,

functional and behavioural

characteristics.

Item A single exemplar of a

manifestation.

Instance An actual physical instance of a software

product which is to be found on a particular

machine is known as an Instance.

Realisation An embodiment of a particular variant

of the work in time and space.

Table 7. Mapping of the IFLA FRBR model (IFLA Study Group on the Functional Requirements for Bibliographic Records, 2009), FRBR-based Conceptual

Model for Software (Matthews, et al., 2010) and an FRBR-based model for describing software-based artworks.

206

A significant limitation in representing a software-based artwork using the FRBR and

Software models is that, emerging from bibliography and software “product”

preservation respectively, they describe (at the lowest level) singular instances

understood as discrete objects—“Item” and “Instance” respectively. The notion of

“realisation” as it has been developed in this thesis cannot be understood as a

discrete object. A realisation is not physically (or digitally) persistent through time,

rather it is essentially an event, often understood in relation to the coming together of

many components (i.e. the physically and digitally persistent parts of the artwork

which are stored and managed even when an artwork is not realised). I reject the

DOCAM proposal of a “component” level, as the structural complexity at this level

would be difficult to represent in a useful form. Instead, the realisation level of the

model could be connected to a representation of the software structure, as described

using the conceptual model introduced in Section 4.6.3.

In Figure 22 below, the version lineage of Becoming has been modelled as an

RDF/XML format OWL 2 (World Wide Web Consortium, 2012) ontology, developed

in Protege 5.2 (Stanford Center for Biomedical Informatics Research, 2016). The

classes and properties that constitute this component of the model are incorporated

into the larger Software-based Artwork Structure Ontology (SASO) introduced in

Chapter 4 and detailed in Appendix II.

Figure 22. Representation of class instances that make up the artwork version history of

Becoming by Michael Craig-Martin, using the SASO model. Relationships between classes

are modelled as object properties, indicated by arrows (grey: hasVersion; green: hasVariant;

purple: hasRealisation).

Ensom - Technical Narratives

207

Examining the technical histories of the software-based artwork case studies, it is

clear that versions—as defined in the conceptual model introduced here—are largely

absent from their production histories. That is, there have been few cases where an

artwork has involved more than one formally, functionally or behaviourally distinct

expression, that could be considered to still constitute the same work. The only

example for which this is apparent is LiMac Museum Shop, which I explore in depth

in the next section.

6.5. Case Study: The Evolution of LiMac Museum Shop

LiMac Museum Shop (2005) is an artwork by the artist Sandra Gamarra which is

indicative of some of the challenges in documenting the evolving software-based

artwork. It is important to note that the work is not a software-based artwork per se

however, as the website which might be characterised as such has a complex

relationship with the artwork acquired by Tate. LiMac Museum Shop itself is a variably

formulated installation and part of a larger body of work produced by Gamarra which

is structured around the fictional “Museo de Arte Contemporáneo de Lima” (“Museum

of Contemporary Art of Lima” in English). Addressing the absence of such an

institution in Peru, the artist (herself Peruvian) has constructed a complete corporate

identity for the museum complete with a collection, exhibitions programme and

website. LiMac Museum Shop is one physical embodiment of the museum, and

mimics the trappings of the museum gift shop, consisting of a central cabinet filled

with souvenirs, many of which are branded with the LiMac identity (see Figure 23

below).

Ensom - Technical Narratives

208

Figure 23. Sandra Gamarra, LiMac Museum Shop, 2005, installed at Tate Modern in 2011.

The terminal providing access to the website is visible on the side of the cabinet in the right

hand image.

The website has typically been presented as a part of this installation, usually through

a terminal embedded in the cabinet with which visitors can interact in order to browse

its content. The external manifestation of the museum that this website indicates

could be seen to further enhance the illusion of the museums existence and authority.

Indeed, the website continues to exist independently of the work. While LiMac

Museum Shop was acquired by Tate in 2011, the website itself has remained hosted

by the artist, while Tate Information Systems work with the artists team to acquire

regular snapshots of the server data. This has allowed Gamarra the freedom to

continue developing and updating the site, with only minimal requirements for the

negotiation of institutional information systems. If we look at the evolution of the

website, we can observe the pattern of punctuated equilibrium which I developed

earlier in this chapter. There are several points of significant macro-level change

where the website is redesigned and transitions to a new technical platform. The

visual characteristics of these changes are illustrated in Figure 24 to 26 below.

Ensom - Technical Narratives

209

Figure 24. Screenshot of the front page of the static version of the LiMac website, which

was live from 2005-2007. © Sandra Gamarra 2018.

Figure 25. Screenshot of the front page of the MODx version of the LiMac website, which

was live from 2007-2012. © Sandra Gamarra 2018.

Ensom - Technical Narratives

210

Figure 26. Screenshot of the front page of the WordPress version of the LiMac website,

which has been live from 2005-present. © Sandra Gamarra 2018.

The underlying technical platform used is representative of popular web technologies

through time, moving from static HTML pages with embedded Shockwave elements,

to a content management system (CMS) MODx, followed by a later transition to the

more popular CMS WordPress. The past forms are an important part of the technical

history of LiMac Museum Shop, which would have incorporated different versions of

the site depending on the time of realisation. Pip Laurenson points out that in using

the tropes of the museum website, the LiMac website “is not only designed to evolve

and change over time but [...] also references a form for which this is to be expected”

(Laurenson, 2013, p.88). A record of these forms is therefore core to establishing the

artwork’s link with museum branding and web design as it too has evolved through

time. Throughout the website’s history, micro-level change has occurred in a more

regular pattern through the addition of content, such as new publications and

additions to the collection. There is value in recording these incremental updates,

which present a record of the artist’s engagement with the site through time, and allow

a more direct link to be established between any one realisation and the state of the

site at a particular time.

Several complementary technical options might be considered for the documentation

of the website, which overlap with the preservation of the software itself. The first is

Ensom - Technical Narratives

211

to simply save snapshots of the website server stack (including all the sites back-end

data and supporting software) at different points in time. This would represent the

most complete capture of the site, but would also demand the most storage space,

so potentially preventing regular capture. The second is to capture the site through

web crawls or other website archiving tools. These capture the performance from the

perspective of a user agent (e.g. browser), and so would not fully capture the back-

end components. However, the crawl data would require considerably less storage

volume as a result, and an automated crawl (using the Internet Archive’s Heritrix

crawler for example) could for be used to capture daily snapshots. The third would be

to use a version control system to monitor changes at the code level. This would

ensure that the actual systematic change observed at the level of code is captured.

This would not fully capture the nature of change at the content-level however, much

of which would be stored in a SQL database.

The future of the artwork may lie in the artefacts generated by the first two processes,

as these provide a means of reconstructing a moment in the website’s history. While

LiMac Museum Shop as an installation that has become relatively fixed in terms of its

material constituents (the souvenirs and the cabinet itself have been collected by

Tate), the website has continued to evolve. The point at which LiMac Museum Shop

entered the Tate collection marks a branching point in its history, when a historical

version of the website, built in MODx, was created on Tate servers—though not made

publicly accessible. In agreement with the artist, a live version of the site will be shown

as part of the installation, while the process of capturing historical versions continues

as the site evolves. However, as the installation itself is now fixed, and visually and

thematically linked to a particular period of the LiMac project (spanning from 2005 to

the last time it was shown in 2011), there may come a point in time when presenting

an older snapshot of the site may be the most appropriate choice. This would then

detach the site as seen in the installation from its original context, and leave it out of

sync with the ongoing LiMac project and the evolving web. If the MODx version, which

has been isolated from the evolutionary pressures which applied to the original, were

to be displayed, it would be important to convey the reasoning behind this and the

installations relationship to Gamarra’s ongoing practice. If museums such as Tate are

to be able to effectively convey the history of evolutionary software-based works such

as LiMac, there is a need to develop novel methods for doing so.

6.6. Software-based Artwork Biographies in Conservation

Ensom - Technical Narratives

212

The earlier sections of this chapter have illustrated that change occurs both as micro-

level process, where code and other digital materials are shaped and reshaped in a

digital environment, and as macro-level process, where transformative events such

as realisation and conservation treatment generate new identifiable versions. So far

I have focused primarily on technically-driven approaches to understanding and

capturing these kinds of process. These are important considerations in a museum

conservation context, but understanding the meaning and significance of changes in

relation to an artwork’s identity requires more than tracking processes and recording

transformation in information systems. The data stored in a Git repository may be a

complete representation of change a technical level sense, but how do we ensure it

retains meaning in relation to the artwork itself and the forces that have shaped the

pattern of branches and commits? There is therefore a need for a framework capable

of linking together technical documentation and the broader social and historical

context of the artwork, in order to be able to effectively capture narratives of software-

based artwork evolution.

The contributions of the theory of object biography appear to broadly align with these

needs, particularly in offering an outlook which considers objects as products of

shifting social context. The origins of this idea are found in a paper by cultural

anthropologist Igor Kopytoff (Kopytoff, 1986), which proposed that we might ask

questions of objects (or “things” more generally) that are similar to those we might

ask of persons. Who made it and why? How has it changed through its lifespan?

These foundations have gone on to inspire the development of related theory in a

number of fields, including conservation. In research emerging from Dutch

contemporary art conservation research project “New Strategies in the Conservation

of Contemporary Art” (van de Vall, et al., 2011), the group of researchers involved

introduce the idea of a biographic approach to documentation in response to the

complexity and multiplicity observed in the life of an artwork. They propose that:

“the meaning of an object and the effects it has on people and events may change

during its existence, due to changes in its physical state, use, and social, cultural

and historical context. The concept of the biography enables us to describe – and

thereby construct – the artworks’ ‘lives’ as individual trajectories that nevertheless

may show similar phases and patterns of change.” (van de Vall, et al., 2011, p.3)

These biographies, the authors suggest, need not begin or end with the acquisition

of a work by a museum, and will likely need to be rewritten repeatedly or exist as

“various singular interweaving partial biographies with different beginnings,

Ensom - Technical Narratives

213

itineraries, dynamics and endings” (van de Vall, et al., 2011, p.6). How then, might

such a biographical approach take shape for software-based artworks and how might

it help us describe their technical histories? In the next section I consider how an

approach might be developed through linkages to ideas from continuum theory

introduced earlier in this chapter, which provide a mode of enquiry through which to

develop biographies. I then look at a significant yet currently unanswered question of

the biographical approach developed by van de Vall et al.: how it might transition from

theory and research into the everyday practice of a conservator.

6.6.1. Continuum Approach to Artwork Biography

I propose that the biography of a software-based artwork might be understood in

relation to ideas from records continuum theory. This outlook bears a striking

resemblance to the notion of artwork biographies introduced in the previous section,

in that it accommodates the artist’s continued stake and involvement in the artwork’s

future, the multiplicity of perspectives involved in conservation, and the dynamic

organisational and social forces that artworks are subject to on their evolutionary

trajectory. As suggested at the beginning of this chapter, the continuum model serves

more as a tool for directing enquiry than an easily repurposable approach. While

methods for formally applying continuum theory are lacking, I draw inspiration from

Barbara Reed’s practical examples of “recordkeeping stories” to structure my

approach (Reed, 2005).

A continuum-situated biographical approach, much like the records model, might

consider the artwork in relation to several dimensions—as developed by Frank

Upward in the original formalisation of the model (Upward, 1996). These dimensions

are (metaphorical) spaces which the work simultaneously occupies, and serve to

organise the various forces that shape the artworks life. Events and processes of

change send ripple effects through these dimensions, potentially affecting others. A

reinterpretation of the original records continuum model dimension set is proposed in

Table 8. The term “event-process” is used to refer to those events and processes (the

two are here considered as indistinguishable) which occur within the continuum, and

may occur over any interval of time ranging from seconds to centuries.

Dimension Scope Event-Process Examples

1. Create Relates to acts of

conceptualisation,

creation and

• An artwork is conceived of as an idea by an artist

• An artwork is reinterpreted by an artist

Ensom - Technical Narratives

214

modification of the

artwork (as

something both

abstract and

concrete).

• Inherent vice results in breakdown of a material

component

• Source code is written

• Software is compiled from source code

• A version of an artwork is realised in time and space

• A display computer is constructed

• Decompiling compiled software

2. Capture Relates to the

formalisation (i.e.

transformation into

a formal model) of

an artwork for a

particular purpose,

in order to allow

some particular

use, realisation or

representation.

• Artwork is formalised as a set of requirements

• An installation is documented

• A metadata record is composed

• An exhibition catalogue is published

• A disk image of the original hard disk is captured

• Reverse engineering documentation from software

3. Organise Relates to modes of

operation, policy

and business rules

within a collection,

institution or other

group with custodial

responsibility for the

artwork.

• An artwork’s ownership changes

• A new institutional mandate results in the need to

present artworks online

• A loan is requested

• A new metadata schema is defined and

implemented in a collections management system

• A long-term web hosting agreement is drafted

4. Pluralise Relates to the

interaction of

society, politics and

a broader human

context with the

artwork.

• A semantic shift in the meaning of a conceptually

significant component of the artwork occurs

• A technology company goes out of business and

stops producing and supporting a software product

• A technology becomes associated with strongly

negative connotations e.g. through criminal use of

their products

• A technology becomes seen as common-place or

archaic

• An art movement becomes a taught part of art

history

Table 8. Dimensions of a continuum-based understanding of software-based artwork

change, from the perspective of a time-based media conservator. Dimension numbers do

not imply an increasing scale or any other ordinal arrangement.

Ensom - Technical Narratives

215

While event-processes have been provided as examples occurring within particular

dimensions, they are best understood through connections with other event-

processes—so forming trajectories through the dimensions of the model. In order to

illustrate its use in practice, I will present biographical fragments—or short

narratives—of two case study artworks, both of which sought to engage all the

dimensions of the model. The occurrence of a particular dimension is annotated within

the text. In the first, I develop a biographical fragment relating to the creation of John

Gerrard’s Sow Farm, and the legacy of the choices made during development:

Sow Farm was developed around the year 2009 using Quest3D (dimension 1), a 3D

development environment available at the time of production that was typically used

for architectural visualisation and real-time 3D simulation (dimension 4). This software

was used by other artists around this time period (e.g. Samyn, 2008), which reflects

an emerging interest in easy-to-use technical solutions for 3D production among

creative communities (dimension 4). Gerrard worked with a team of collaborators

based at a production studio in Vienna to produce the work, the process of which

resulted in a number of production artefacts including documentation (dimension 2).

Later in Gerrard’s career, the availability of other more advanced 3D software tools

(dimension 4) resulted in changes in his team’s production process, and Unigine is

now used as their primary 3D production software (dimension 3). While these shifts

were occurring, Sow Farm work has been acquired by Tate in 2014 (dimension 3),

and a new realisation of the work created at Tate Britain (dimension 1) and re-

formalised as additional documentation (dimension 2). Quest3D has since been

retired as a commercial product by its developers, in favour of supporting their new

software (dimension 3) and as a result of market pressures to keep up with

technological developments (dimension 4). The lack of availability of source materials

(dimension 3) and software to read them (dimension 4) results in difficulties carrying

out complete documentation of the work by conservators (dimension 2). The artist

indicates that they would like future realisations of Sow Farm to remain faithful to the

original Quest3D implementation (dimension 1), a preference which is documented

by Tate and so provides further formalisation of the work (dimension 2), while his

studio offers to provide support as a service (dimension 3).

The advantage of the approach in this case is that it highlights connectivity between

processes and events in the life of the work by situating creation and production

choices within a wider sociotechnical context. Particularly significant is the clarity

gained over the moment at which the identity of the work becomes further fixed, as

distance grows from the original production process. It also clearly identifies the way

in which technological shifts in commercial 3D rendering technology directly relate to

Ensom - Technical Narratives

216

the demands of Tate’s ongoing engagement with the work and its conservation.

A biographical fragment relating to the context and acquisition of Jose Carlos Martinat

Menzoda’s Brutalism offers further illustration of the approach:

Brutalism was created in 2007 (dimension 1), and in a conceptual sense draws on

two historical currents: the Fujimori presidency in Peru, during which the brutalist style

Pentagonito building housed the military secret service and acts of violence

associated with the regime (dimension 4), and the multiple meanings of the word

brutalism (dimension 4). These references link directly to the production choices made

in the creation of the work (dimension 1)—the sculptural element as a scale model of

the Pentagonito, and the web search and printing system as a means of deriving semi-

random associations of meaning. The artwork was purchase by Tate in 2010

(dimension 3), setting a cascade of processes in motion including accessioning into

the collection (dimension 3) and formalisation through documentation (dimension 2).

This was immediately followed in 2011 by a realisation at Tate (dimension 1) resulting

in further re-formalisation of the works characteristics negotiated with the artist

(dimension 2) and changes to the underlying technical system—namely the need to

constrain regularity of printing operations—to accommodate display in a busy gallery

(dimensions 1). These technical alterations (dimension 1) were carried out in

collaboration with the programmer who authored the original code (dimension 3). This

programmer was based in Peru, and a remote access system was used to allow him

direct access to the display computer at a Tate site in London (dimension 3). As a

work primarily exhibited in Latin American countries prior to acquisition (dimension 4),

being realised in the context of a European (and predominantly English-speaking)

country (dimension 4) resulted in a level of recontextualisation through language

changes and new documentation (dimension 2). This realisation operated using a

different database (dimension 1) which captured words from English language Google

search results, rather than Spanish (dimension 4).

In this instance a trajectory from the events of Fujimori presidency through to a gallery

installation in London many years later can be established. The ways in which this

trajectory—particularly the works acquisition by Tate—has resulted in a degree of

compromise and reformalisation of the work’s characteristics is made clear. It also

implies that the work’s reliance on the Google search engine data stems from an

interest in serendipitous association in meaning rather than an interest in the Google

search engine per se, and as a result this aspect of the work—which is problematic

in terms of conservation—might be open to interpretation if the work’s future

realisation demanded it. Perhaps most importantly, the narrative highlights the

connection with the history of Peru and its social memory, and the need for care in

Ensom - Technical Narratives

217

recontextualising this conceptually important element of the work.

The approach outlined in this section serves to highlight one potential application of

continuum theory—or what might be better labelled continuum thinking—to

conservation problems and the documentation of the life a software-based artwork.

The model’s dimensions are useful prompts for exploring artworks technical histories

even when considered in isolation, but it seems particularly useful as a way of

identifying the kinds of event which trigger cascades of influence through the

dimensions, such as those associated with the acquisition of Brutalism. This may be

helpful in identifying when to revisit an artwork biography and remap these

trajectories. Earlier observations regarding software evolution hint at the occurrence

of a kind of punctuated equilibrium: periods of relative stasis are interspersed with

periods of rapid change, with recurrent causes for such events. These examples

provide further evidence that acquisition and display are among the most important

of these events. It should also be acknowledged that my formalisation is just one

potential view on the continuum among many possible. Much like the artwork

biographies of van de Vall et al., understanding the continuum requires accepting the

inherent non-neutrality of individual accounts and the “standpoint of the writer” (van

de Vall, et al., 2011, p.7). Gathering multiple biographical perspectives will therefore

serve to create a richer historical record—the artist’s own biographical fragments

being one perspective of clear interest.

6.6.2. Capturing Conservation Narratives in Practice

While emerging from a project involving conservation practitioners, the biographical

approach developed by van de Vall et al. (2011) remains primarily theoretical and is

not immediately reconcilable with the day-to-day of the conservator’s professional

role. In this section I will consider the practical implications of the principles of artwork

biography and address the question of how they might mesh with conservation

activities in practice. While new forms of art and media demand the reconsideration

of many established processes, the museum conservator has been telling stories

about the technical histories of artworks for some time—endeavours which are now

widely understood as constituting the field of technical art history. Erma Hermans

defines this as an area of study which:

“aims at a thorough understanding of the physical object in terms of original

intention, choice of materials and techniques, as well as the context in and for which

the work was created, its meaning and its contemporary perception.” (Hermens, et

al., 2012, p.165)

Ensom - Technical Narratives

218

Technical art history exists at an intersection of interests, so bringing together

conservators, art historians and specialists from other fields—much as we might hope

from a biographical approach. The origins of technical art history lie in so-called

technical studies of artworks, which were often carried out as part of conservation

work (for example the studies published in the National Gallery’s Technical Bulletin

series (anon. The National Gallery Technical Bulletin, 2017)). Indeed, in some cases,

technical art history is defined directly in relation to the “scientific examination of works

of art ... [by] researchers from the fields of art history, conservation, and conservation

science” (Ainsworth, 2005, p.5). Where “scientific examination” in the context of

traditional media might introduce interdisciplinarity through exchanges with chemistry

(for painting) or geology (for sculpture), a reframing for software-based artworks might

draw on many of the computer science related approaches discussed and developed

in this thesis.

As a result of a historical association with conservation, much of what might be

considered technical art history also fits within the range of activities expected within

the discipline of conservation. Conservation, after all, requires close technical study

of medium and methods. Due to this similarity, many techniques used in developing

conservation documentation may also offer insight into technical art historical

concerns. Recent research indicates that this may also apply to the conservation of

software-based art. Deena Engel and Glenn Wharton have already demonstrated this

kind of synergy elegantly, in a paper on technical art history revealed through

conservation-driven source code analysis of software-based artworks at the Museum

of Modern Art in New York (Engel, & Wharton, 2015). If, as these authors suggest,

the nature of methods for the examination of technical art history overlaps with those

of analysis and documentation within conservation, there seems to be solid grounds

for extending conservators’ activities to encompass production of art historical

narratives that broadly align with the biographical approach explored earlier in this

chapter.

Technical art history has a strong history at Tate through its research and

conservation departments. Tate publishes public facing technical art historical

information for selected artworks through what are referred to as “Technique and

Condition” texts. These are available through the Tate website and collection

catalogue, and are in essence brief technical accounts of a work’s making and

conservation history, written for a non-expert audience. Jo Crook, former

Conservation Curator at Tate, introduces them in an internally published introduction

Ensom - Technical Narratives

219

to the writing of these texts:

“A technique and condition text is a summary of the making, technical structure and

where relevant the condition of a work in the Tate collection, written for Tate online

and accessible to a general non-technical audience and also of interest to

specialists.” (Crook, 2015)

The structure of the reports is broken down into two sections: “materials and

techniques” and “condition and treatments”. The materials and techniques section

offers a narrative account of the elements that make up the work and how they were

created, while the condition and treatments section presents a description of the

condition and history of conservation treatments as far as is known. Taking the Tate

Technique and Condition text format—which had yet to be explored for Tate’s

software-based artworks (or any time-based media artworks)—as a basis, I have

written texts for five of the artwork case studies in order to test its suitability (see

Appendix III).

In constructing these texts, I found that in many cases new sources of documentation

had to be considered. Indeed, there are an array of relevant materials existing on the

edges of conservation practice which are required to support a technical art history of

software-based art. The potential value of contextual materials in collecting and caring

for time-based media artworks has been highlighted by a number of authors—curator

Steve Dietz comments on the potential value in preserving “materials that might have

been linked to the work” (Dietz, 2014) while conservator Ben Fino-Radin highlights

the interest of “ephemera produced by the artist” (Fino-Radin, 2011, p.20). These

might include production materials, the artist’s websites and other online activity or

even, as Fino-Radin suggests, artist’s working computers. Another important

component which has been little discussed in the context of preservation, is the

relevance of the complex histories of third-party software and other technical

components which might not be considered part of the artwork. For instance,

programming languages are (much like the software they are used to produce)

evolving, and the documentation of these language at any one moment represents a

snapshot of the language’s specification in time. While this provides the how,

understanding why it was used at a particular time will requires new forms of

scholarship which engage with the history of software development.

While extending the supporting body of documentation represents a source for the

development of narratives of technical art history, the formal structure of the

Ensom - Technical Narratives

220

Technique and Condition text was found to be restrictive when attempting to convey

their complexity. This is partly because these texts are short public-facing summaries,

and the level of detail that it is possible (or indeed, desirable) to convey within them

is limited. However, it also reflects fundamental challenges in constructing static

narratives of technical history for artworks which have the potential to change in their

makeup, and even ontology, during their life in the museum. Artwork biographies must

necessarily vary in their structure, to accommodate the “different beginnings,

itineraries, dynamics and endings” presented by complex artworks (van de Vall, et

al., 2011, p.6). Representing the multiple versions, variants and realisations of a

software-based artwork as they emerge through time requires reconsidering the form

of that narratives of conservation and technical art history take. Approaches such as

the use of the Wiki—a development in documentation management which paralleled

the software version control system (Fuller, & Yuill, 2008)—have recently been

explored by media conservator Martina Haidvogl and other collaborators at San

Francisco Museum of Modern Art (SFMOMA) (Johnson, 2016). At SFMOMA it is

being used as a tool to help manage the documentation of time-based media and

other complex artworks. The dynamic, collaborative and flexible nature of the Wiki

paradigm may make it similarly well suited to supporting the conservation narratives

that conservators of software-based art may wish to capture and convey.

6.7. Chapter Summary

In this chapter I have developed a theoretical framework to guide the documentation

of the patterns of evolution that occur in the life of a software-based artwork. Taken

together, the contributions can be used to direct a documentation approach that

charts the evolution of the work through time. In this first part of the chapter I

introduced the idea of the metaphorical ‘life’ of the work through two

conceptualisations: lifecycle and continuum. In practice, both are useful in providing

insight on the patterns of change that can be observed within the lives of software-

based artworks.

A lifecycle perspective helps us to understand that evolution often occurs in relation

to certain life events, such as acquisition or display. Patterns of evolution vary

between artworks and can be understood in relation to principles of software evolution

(an area of study within software engineering), which suggest that highly specified

software is less likely to evolve than that which is in some way reflexive of or

embedded within human activity and external environment. Where evolution does

occur, it can be understood as occurring on two inter-related levels. At the lowest

Ensom - Technical Narratives

221

level, logical constructs—code, environments and interfaces—are manipulated to

affect incremental change. These can be documented using systems-driven change

tracking. Micro-level change patterns yield new identifiable variants of the software,

which at the higher macro-level can be understood in relation to well known

transformation types from the domains of software development and digital

preservation. These can be documented using new vocabulary incorporated into

existing frameworks for recording production history. This is aided by a clear

conceptual model for structuring the relationship between artwork and its expressions

and realisation, which I developed in Section 6.4, based on a model from descriptive

bibliography.

Despite clear uses for the largely systems-driven approaches discussed in the first

part of this chapter, the case study artworks examined reveal that change can only

be truly understood in relation to the rich socio-technical context of software-based

artworks. Building on ideas from artwork biography and continuum theory, I

developed an approach to capturing narratives of technical history which engages

with the various external forces that shape the ongoing processes of creation and

formalisation in the evolution of the artwork. In practice, this information may reside

in multifarious forms, and be supported by an array of contextual materials which may

not conventionally be sought out by those caring for software-based artworks.

Approaches to managing complex, multi-authored documentation, such as the Wiki

are beginning to find favour in museum environments, and show promise in helping

to deal with the issues of connectivity and change management that limit the capture

of narratives of software-based artwork evolution. Existing modes of conservation

storytelling might also be reframed, as demonstrated in my explorations of the

Technique and Condition text methodology used at Tate. This requires renegotiating

traditional museum models in order to accommodate the levels of change that are

occur for software-based artworks (and other forms of time-based media), and make

clear the role of the conservator in shaping the life of the work.

Ensom - Technical Narratives

222

CHAPTER 7

CONCLUSIONS AND

RECOMMENDATIONS

7.1. Research Contributions and Applicability of Outcomes

Based on the identification of a gap in existing scholarship, the aim of this thesis has

been to develop approaches to the documentation of software-based art in support

of its conservation and long-term preservation. Through practice-led research—

grounded in a set of case study artworks from the Tate collection—and the synthesis

of theory from several related domains, the outcomes of this research are intended

as contributions to theory and practice in the fields of art conservation and digital

preservation. In this section I will reflect on these outcomes and their respective

research contributions and theoretical connections, while considering the extent to

which these outcomes may have wider applicability beyond this research. This forms

the final component of the constructive research methodology adopted in this

research (corresponding to Stages 4 and 5).

In Chapter 2 and 3 of the thesis I developed a conceptual framework for

understanding the two foundational elements of this research: software as a material

and medium; and the nature of the document in the context of conservation. This

Ensom - Technical Narratives

223

conceptual framework allowed the development of a more nuanced understanding of

the problem space identified in Chapter 1, and guided the shape of the chapters that

followed. Chapters 2 and 3 also contain research contributions that stand alone, and

I reflect briefly on these below before discussing the primary research outcomes of

Chapter 4, 5 and 6 in the subsequent sections.

In Chapter 2 I brought together existing knowledge and theory relating to software as

a technology (drawing particularly on the computer science domain) and as an artistic

medium (drawing particularly on art conservation theory and the history of media art).

In doing so I developed a comprehensive understanding of the considerations and

challenges the medium presents to conservators faced with its long-term care. I

proposed that software might be best understood as possessing multiple material

statuses, all of which are of concern to conservators. At the lowest level it is a physical

representation of bits, stored using a physical carrier. At the level above, it is a

symbolic construct—code—which can be considered as analogous to a score or

script. Higher still, it can be understood as a software process: the execution of the

code within a suitable technical environment, which yields the experiential elements

of the artwork’s software component. These experiential elements are the highest

level at which we can understand software, and can be termed a software

performance, itself a part of the artworks larger realisation.

Formalised as the software performance model, the processual perspective taken is

one way of understanding the link between an artwork’s concrete elements (such as

hardware components or software binaries) and the ephemeral nature of the

experience of the work when it is realised in time and space. The intangible and

contingent processes which produce this performance introduce potential variability

into each realisation of a software-based artwork, through the effects of a variable

constellation of hardware and software components. One way of seeing the goal of

the conservator then, is to maintain consistent software performances through time,

despite changes in the other components of the model (such as code or technical

environment). This novel outlook is also relevant to other kinds of performative

computational phenomena, such as video games and commercial software products.

The lexicon developed in the last part of the chapter is the other primary contribution

of this chapter (p.63). This describes a set of terms which I identify as the primary

conservation considerations posed by software as a medium, and to which strategies

for documentation must respond. This extends current understanding of the medium

within the field of conservation and may also be of interest to those who work closely

Ensom - Technical Narratives

224

with software-based art in fields outside of conservation such as art history and media

theory.

In Chapter 3 I focused on defining potential forms of documentation and

understanding their significance within conservation—so developing the second part

of the conceptual framework. In the first part of this chapter I considered

documentation theory from the 1950s to the present and looked at how the scope of

the document concept might be pragmatically defined for museum conservation

documentation, particularly where this might be challenged by the characteristics of

software-based art. I found that the inclusive definitions developed by early pioneers

of what is now information science are still very much relevant to the way we

understand documentation today, particularly in their positing of documents as

primarily defined by use. Much of this chapter was dedicated to defining the problem

space that the remainder of the thesis sought to address, and so its relevance is

rather specific to the context of this thesis. However, this examination of

documentation theory represents a small contribution to the current resurgence of

interest in this area and may of particular interest to those working at the intersection

of information science and cultural heritage.

Drawing on the structure of institutional conservation workflows, in the latter half of

the chapter I sought to explore the types of documentation used within the

conservation domain and appraise the suitability of existing documentation models

for describing software-based art. While this part of the chapter was, again, primarily

a grounding component of this research, it also represents a contribution to our

understanding of time-based media conservation practice today, within which the

position of document has not yet been extensively recorded or studied.

Within Chapter 3, I identified that, while frameworks exist to support general

documentation activities within the conservation of time-based media art, there has

been little attention given to the specific considerations presented by software as a

medium. Through this analysis I identified three broad documentation challenges

which formed the focus of the next three chapters:

● Software is structurally complex and closely linked to the technical

environment in which it is executed, and understanding and documenting

these structures is crucial to the preservation of software-based artworks. How

can this information be effectively derived and represented?

Ensom - Technical Narratives

225

● Changes to some of the components of a software-based artwork are

expected to occur in their long-term preservation. How can documentation be

used to ensure that the core identity of the work is captured and appropriately

managed through time as it is realised in different contexts?

● Software-based artworks are the result of processes largely unfamiliar to

collecting institutions, and the works themselves are likely to continue to

evolve through time while within their care. How can the evolution of the

artwork through time be captured by conservators as documentation?

These interconnected focal areas correspond to three broadly defined outcomes of

this research, which I derived in Chapter 4, 5 and 6. In the following three sections I

consider the value of these outcomes in more detail, identifying the main theoretical

and practical contributions as well as their potential limitations.

7.1.1. Binary-centric Analysis and the Software-based Art Structure
Ontology

The technical structures which underpin any one software performance are complex

systems consisting of numerous software and hardware components in a particular

configuration. The software binaries which are executed within a performance appear

essentially opaque, in that the instructions encoded within them cannot be readily

interpreted by a human, and so the details of their functionality and connectivity are

concealed. Furthermore, the software performance exists only as the result of an

ephemeral process, as code instructions are executed by the host computer system

in real time. Source code analysis has been established as the primary means of

decoding the functionality of software-based artworks and has been demonstrated to

be a powerful tool in prior research. I do not dispute the value of source code analysis

as a process in software documentation—it is evidenced by a long history of use in

software development where it is highly valued by software engineers and is now

further supported by practice-led research in the field of art conservation. However,

in Chapter 5 I explored a number of situations in which utilising this kind of approach

might be challenging and developed a three-part critique which indicates a

requirement for other approaches to supporting analysis and documentation

processes (p.107).

In response to this critique, I explored a set of methods which offer a counterpoint to

source-centric analysis and focus instead on the environment-embedded executable

representation, bypassing the need for access to source code (from p.116). In these

Ensom - Technical Narratives

226

cases, methods from software development and reverse engineering may be

repurposed to step into the software as it is executed—logging events and tracing

program flow—and even reverse the compilation process. Careful analysis of data

generated can yield important insights for conservation, including elucidating complex

dependencies, revealing unclear program behaviours and capturing significant

performance characteristics and metrics. This approach could have particular value

for conservators who utilise environment-centric approaches to preservation such as

emulation and virtualisation, where the focus is on understanding and reconstructing

environment rather than migrating the code, which would require a deeper

understanding of functionality. While presented as an alternative to source code

analysis, it is important to acknowledge that there is no single universally effective

method for analysing software. Rather, there are an array of complementary tools

which, when combined with an informed human interpreter, are more than the sum of

their parts. The approaches introduced here provide another set of tools, and are

likely to be of considerable interest to conservators of software-based art.

Decision-making regarding which tools to use in a particular scenario may not be

straightforward however and relates not only to the questions that must be answered,

but the expertise and resources available. In this respect, the effective use of source-

centric analysis approaches is contingent on the availability of expertise in the

particular language and type of use. The effective use of binary-centric approaches

on the other hand, often comes down to problems of data volume and identifying the

pertinent information within that data. Getting concrete answers may require highly

specialised knowledge of assembly language and the associated time investment

required to carry out reverse engineering at this low level. The potential for a

generalist software-based art conservator is therefore unclear. Anyone with an

understanding of one high-level programming language (in which all the case studies

I examined were programmed) is likely to be able to read a program written in another,

given sufficient time to learn its constructs and syntax. However, languages are many,

and time and resources are not unlimited, meaning that museums will be required to

find a balance between the development of expertise within their conservation

departments and the fostering of new collaborations outside the institution.

Another limitation to binary-centric approaches is that they involve interpretation or

translation by third party tools, as opposed to source code which has a more direct

link to the process of creation. This introduces a certain amount of uncertainty about

whether the information gained is accurate or complete. As such, selecting

Ensom - Technical Narratives

227

instrumentation techniques for a particular artwork requires careful assessment. This

is all exacerbated by the fact that this kind of software analysis exists on the fringes

of mainstream computer science, as it can be applied to the illegal reverse

engineering of proprietary software projects developed in the commercial sector.

Indeed, whether such methods are usable at all will often be dependent on whether

community developed tools are available for the specific purpose and platform in

question. Conservators of software-based art are, at the current moment, fortunate in

that the artists are usually still alive, and are willing to engage with them directly to

help preserve their work. There is no reason that this kind of collaboration should not

continue to be an important part of the conservator’s role. In some cases, then, it may

be possible to consider the analysis of process and the principles of instrumentation

in collaboration with the artist. Developing and defining suitable analysis techniques

in these collaborations may be the best route for ensuring that future realisations of

the work maintain the appropriate functional and non-functional requirements.

In the last part of the chapter, I developed a conceptual model for capturing

component-level metadata representations of software structures using information

derived from software analysis (p.139). This model provides a semantically

meaningful formal language which might be incorporated into information systems

such as collections management systems or digital repositories. The use of this model

is an advancement of earlier efforts, not only in that it incorporates formal semantics,

but because it is designed for a software preservation use case which has so far

received limited attention. In practice, it is likely to be of particular interest to

conservators as a tool for recording structured information to help locate and identify

the hardware and software components of software-based artworks, and in

supporting the reconstruction of appropriate technical environments when applying

emulation and virtualisation strategies. This is of relevance to the preservation of

other kinds of software system beyond the realm of art conservation, where such use

cases are also poorly served by existing standards.

The most apparent limitation of the model is that, in the current museum climate,

museum information systems may not be sufficiently technically developed to

incorporate ontologies, making it challenging to integrate with existing systems.

However, it seems likely that this may change in the near future as information

systems continue to develop, given a growing interest in such approaches within

museums. Elements of the ontology may also inform the structuring of simple (not

ontology based) metadata schema, vocabularies and thesauri, particularly the set of

Ensom - Technical Narratives

228

component classes and their hierarchical structure. Furthermore, the ontology stands

alone as a theoretical model which captures the structural form of software systems,

and so furthers discussion regarding the most appropriate way to do this in the field

of digital preservation.

7.1.2. Significant Knowledge and the Requirements Specification

The management of change is understood to be an essential consideration in the

conservation of software-based art and must be supported by appropriate

documentation— documentation which captures something of the artwork’s identity,

so that it can be maintained through time as change is negotiated at a technical level.

In Chapter 4, I developed an approach to the capture and management of the identity

of a software-based artwork through time using documentation. This is not a new

problem in art conservation or digital preservation, and the significant properties

concept provided a starting point for this discussion. In reviewing existing literature, I

found that while there are problems applying this approach in practice due to the

subjectivity inherent in property definition and unclear guidelines for implementation,

the fundamentals of the concept might be usefully reframed as significant knowledge

(p.155). This unloads some of the historical baggage associated with significant

properties and broadens the concept’s scope to encompass the diverse array of

documentation and other (potentially tacit) knowledge sources which support the

long-term care of an artwork.

Using a set of significant knowledge categories developed in this chapter as a guide,

artwork and medium specific approaches might be applied as appropriate, ranging

from the acknowledgement of the tacit knowledge present in individuals within an

organisation, to the definition of metrics for verifying software performances at a

technical level. This approach better reflects the reality of conservation practice as

inherently subjective, necessarily bespoke and responsive to emergent forms of

software-based art. It is important to note however, that this does not make attempting

to capture documentation that represents an artwork’s identity trivial, and the inherent

challenges to formalising such a concept remain the primary limitation in developing

documentation of this kind. The knowledge categories proposed nonetheless

represent a small but significant shift in thinking, which responds to earlier criticisms

of significant properties (and associated theoretical stasis) and may be of particular

interest to the digital preservation community as a means of working with significant

knowledge in practice.

Ensom - Technical Narratives

229

While many of the significant knowledge categories identified were well supported by

relatively well understood documentation types, those categories relating to the

software performance itself were found to lack a clearly defined means of

documenting how software should behave. To meet this need, I proposed a reframing

of the requirements specification, a loosely defined documentation artefact widely

incorporated into software development processes (p.161). This approach aims to

specify what a software system needs to do (or its functionality) as functional

requirements, and the constraints on how it does them as non-functional

requirements. By avoiding reference to specific technologies except where this is

necessary, a requirements specification allows developers to choose a technical

platform that is appropriate for implementing the requirements. In a conservation

context, we consider the place of requirements not as something specified prior to

development and in support of software, but rather as a tool for supporting processes

analogous to software system maintenance. The requirements document can be

used to provide a clear and maintainable record of what a software program is meant

to do when realised, and within what constraints, making clear the permitted

parameters for flexibility and change across realisations.

The exploration of requirements as a documentation tool in this thesis represents the

first detailed work to consider how this component of software engineering might be

utilised within an art conservation context. In some cases, the value of a requirements

engineering approach may be limited, particularly where a work is very closely linked

to a particular technology and so is very difficult (or even impossible) to separate from

it without compromising the identity of the work. Put another way: the more closely

linked a software-based artwork’s identity is to its actual implementation by the artist

as software, the harder it would be to migrate it to another technology using functional

requirements as a basis. In these cases, however, the specification of non-functional

requirements can still be valuable in ensuring that the work is appropriately realised

and that the characteristics of the software performance are maintained through time,

when changes in its technical environment occur (for example, if it is emulated). The

transformation of software into a set of requirements can also be a valuable

investigatory tool, as this formalisation, when combined with rigorous examination

and artist consultation, can help clarify the relative significance of the characteristics

of a software performance and their relationship with the identity of the work.

Much like significant properties, the utility of requirements in practice is challenged by

the need to exhaustively identify them, or risk compromising the identity of the work—

Ensom - Technical Narratives

230

should, for example, the requirements be used as the basis for a conservation

treatment. When the artwork is in its latent state between realisations—usually as a

set of components in storage—it may be particularly difficult to identify requirements,

particularly for installed works. Although to some extent mitigatable through

collaboration and transformation of tacit to explicit knowledge, it is also important to

acknowledge the degree to which such an approach is subjective. This is a

particularly important limitation to note, as at the point of requirements specification

the conservator must make decisions regarding the target layers for preservation,

particularly the weighting of preserving the technology against preserving the

performance. Requirements might therefore be best captured when a work is

displayed and with artist involvement and approval. The latter may be challenging

however, as the language of requirements engineering is not likely to be that of artists

who typically work outside the structures of formal software engineering.

Nonetheless, the fundamental approach of separating functional and non-functional

requirements appears to have a resonance with the documentation demands of

software-based art conservation. With its long history and continued place in software

engineering, the concepts at the heart of requirements specification offer a useful

theoretical framework for the conservator. Indeed, its principles have the potential to

be further extended to the description of other time-based media artworks where

technology takes on a primarily functional role.

7.1.3. Change Models and the Sociotechnical Biography

Software-based artworks, much like other forms of time-based media art, are

contingent on a process of realisation for them to be experienced and can only be

truly understood as unfolding through time. This unfolding occurs not just in the

performance of their media components (e.g. the execution of a software program) at

the time of realisation, but in the evolution of the artwork itself as it is realised at

different points in time. Software creates an additional level at which change might

occur between realisations, and to maintain a documentary record of this evolution, it

is important to have a clear understanding of the nature of these processes and their

relationship with the artwork. In Chapter 6, I explored how software-based artworks

evolve through both iterative and transformative processes of change, and how this

evolution might be captured as documentation. I situated this discussion in relation to

several theoretical perspectives on change, including contrasting lifecycle and

continuum models, and theories of software evolution.

I found that established terminology and methodologies from software engineering

Ensom - Technical Narratives

231

can be directly applied to documenting technical processes of change for software-

based artworks. Version control systems (VCS) used in software development

processes offer a particularly powerful tool, and the data captured by these systems

can represent a record of a conservation intervention, and a rich resource for

technical art history. While this component of the research was primarily of an

exploratory nature, it is clear from preliminary evidence that this approach allows

capture of authorial, temporal and descriptive information which would otherwise be

lost. The value of these methods in conservation practice may be limited by how well

they mesh with the working practice of an artist—where this kind of direct

collaboration continues during the works life in the museum—or with that of

programmer collaborators. They may also be less useful for documenting

development processes which are not code based, as while VCS systems might

recognise that a non-text file has changed, the nature of the change may be lost

unless this is recorded manually. At a higher-level, processes of software

development might be understood in relation to transformations in the software itself.

I introduced a set of terms for classifying changes based on language from software

engineering, which might be used to record transformations occurring in the history

of a software-based artwork. These terms are likely to be useful to conservators

writing documentation which records media production histories for software-based

artworks.

Moving to a higher-level still, I looked at how the relationship between the software-

based artwork and its multiple forms might be captured. Using mature models from

bibliographic records as a basis, I developed a conceptual model for describing the

hierarchical relationships between the work and its various expressions (p.204). This

model also extends the ontology developed in Chapter 4, and provides formal

language for the linking of the software structures described in that chapter to related

realisations, variants and versions. This model is a theoretical contribution to ontology

in the conservation of time-based media art, while also being of interest to

conservators and information professionals considering the integration of version

information with collection-related information systems. While the model is intended

to be generic enough to describe the considerable diversity of form found in software-

based art, including the case studies examined, only its continued use in practice will

allow more concrete conclusions regarding its utility. The primary limitation of this

model and to some extent the others discussed above, is that they suffer from

limitations regarding the extent to which they can capture the human and social

context in which software evolution occurs. Without this context, the understanding of

Ensom - Technical Narratives

232

the evolutionary history of an artwork that can be gained from documentation is

partial.

To address this shortcoming, I proposed that a more contextually rich, narrative-

driven form of documentation might be employed. Drawing on the notion of the

artwork biography from conservation theory, and applying principles from records

continuum theory, I demonstrated an approach which focuses on the creation of

biographical fragments (p.211). These fragments draw links between the artwork,

including its technical components and characteristics, and the various forces that

shape its evolution through time. This represents a demonstration of how artwork

biography and continuum theory, which have primarily existed only as theoretical

frameworks, into practice in the description of software-based artwork life histories.

The primary limitation of this approach is that it is more resource intensive than other

approaches discussed in the chapter and does not readily integrate with existing

notions of day-to-day conservation practice. While I propose various ways in which

this might be aided and incentivised (such as the desire of museums to create public-

facing narratives of technical history), ultimately the in-depth research required to

generate these kinds of biographies remains time intensive and highly specialised.

Nonetheless, their contribution to the documentary record of the work is likely to be

unique, and their creation may form an important part of the conservator’s role in

illuminating the history of the work and its treatment. This approach, and the example

narratives generated, are a contribution to the emerging field of technical art history,

and may be of interest to those working in areas of scholarship where the technical

history of software is also studied and reconstructed, such as software studies and

software archaeology.

7.2. Reflections on Overarching Themes

In Chapter 2, I suggested that in understanding the inherent performativity of software

as a medium, we might frame the role of the conservator as working to ensure that,

for any one artwork, a consistent software performance can be achieved through time.

Through this lens, we can consider how elements of the software performance model

that result in the performance—the source code, the technical environment, and the

computational process—might be permitted to change, providing the identity of the

work that resides in the software performance is maintained. Looking at this research

as a whole, we can see that by understanding the connection between the way

software has been used by the artist and the characteristics of the software

performance, different kinds of documentation come to the fore.

Ensom - Technical Narratives

233

A work might emphasise the consistent realisation of a precisely defined core identity

each time it is realised. In these cases, it may be most appropriate to maintain the

software super-object as-is, and by carefully analysing and documenting this objects

relationship with its technical environment, ensure that these critical links are

maintained. In other cases, the artwork may employ software in a way which is

functional (that is, designed to carry out some task or implement a particular

algorithm), and so permit the reimplementation of the functionality represented by the

source code using another language or tool. In other cases, a work’s identity may be

so closely tied to its socio-technical environment, that it must evolve in order to stay

alive. In these cases, it may be accepted that the work will live on outside the

collection, so shifting the emphasis of conservation work to capturing documentation

that represents its historical states. In practice, the weighting of these different

concerns may shift over time, so requiring a reconsideration of the focus of

documentation efforts. Regardless of the nature of the changes in the artwork through

time, documentation is an important legacy for institutions collecting and conserving

software-based art. In a sense, the generation and collation of documentation could

be considered a preservation strategy in and of itself, which focuses on capturing a

work’s complex sociotechnical history, and a representation of the work as record or

trace.

Variety among software-based artworks, as described above, as well as the cultures

of the institutions which collect them, will result in a proliferation of approaches

needed to care for them. Developing any single comprehensive strategy for their long-

term care is of course, impossible, and this research represents a set of contributions

to a challenge which cannot be solved, but rather must be regularly and collectively

reconsidered. In the conservation of time-based media art, it seems that specific

formal approaches to documentation are rarely adopted universally. In an interview,

Jon Ippolito summed up his feelings on the legacy of his Variable Media

Questionnaire:

“People show me their questionnaire, and at a certain point I realise, ‘You know,

isn’t that the point?’ That people start doing it. They don’t have to do it my way, as

long as they do it their way.” (J. Ippolito, personal communication, 9 February 2017)

Here Ippolito acknowledges that while it is tempting to focus on the value and

adoption of a specific approach, it tends to be the overarching theoretical outlooks

that have wider influence. In a way, the Variable Media Questionnaire has become a

kind of design pattern for describing media art, one which focuses on twin principles

Ensom - Technical Narratives

234

of medium-independence and the artist interview.

With this outlook in mind, the value of this thesis is not in providing a rigid model or a

set of document templates; instead its contents might loosely be considered as a set

of design patterns. The idea of pattern has its roots in physical architectural and

human-oriented design, and stems from the research of Christopher Alexander into

town and city building (Alexander, 1977):

“Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in such a

way that you can use this solution a million times over, without ever doing it the

same way twice.” (Alexander, 1977, p.x)

The intention of a pattern then, is not to provide a rigid model or template. Rather, the

pattern is a modular, flexible and semi-user-defined solution. It is my hope that the

research outcomes highlighted in this chapter might serve as patterns for the

formulation of case-appropriate conservation documentation for software-based art.

At the very least, this thesis has served to fill a knowledge gap in understanding the

kind of documentation a conservator might expect or hope to receive when a

software-based artwork falls into their care. Better still, this same information might

help them recognise what is missing and provide a guide as to how it might be

generated. This is important, as conservators will not always have access to the

required level of documentation to enable them to carry out their professional role. In

this sense, this thesis also provides a reference work for the state of software-based

art conservation at a point in time. As collaborations and knowledge exchange with

software experts builds a shared understanding of the issues at play, we will hopefully

see the development of even more refined—and potentially community driven—

frameworks within this domain.

The time-based media art conservator has always had a hybrid role, balancing

technical concerns with respect for artistic intent and the practicalities of just keeping

things running. The nature of software-based art conservation involves developing

more facets to this role, which might move fluidly between software archaeologist and

performance dramaturge. A defining element of this role is collaboration, and handling

software will undoubtedly require new links to be forged in the both commercial and

public sectors. There is also the need for new technical skills from computer science

and software engineering in the field, although the precise way in which these will

manifest—i.e. what hybrid of collaboration, training and consultation—remains

Ensom - Technical Narratives

235

unclear. My own research indicates that, in the short term at least, the role may

require the development of new skills which resemble those of the systems

administrator, such as the configuration and maintenance of software systems. While

many of the lessons learned here are broadly applicable to software in all its forms

and uses (which have certain shared technological foundations), this research

responds to a particular moment in time. If the museum is to keep pace with the rapid

emergence and adoption of new technology by artists, which historical evidence

indicates often outpaces museums acquisition strategies, another facet to their role

will be a continued engagement in the cultures and communities of software

development.

7.3. Recommendations for Further Research

As a thesis intended to generate outcomes with practical implications, I want to

conclude by offering a set of recommendations for future research. The first is an

acknowledgement that the documentation patterns identified in this research would

benefit from further testing order to make the final jump from theory to practice. This

would be best carried out through consultation with conservation practitioners,

perhaps through focus groups or independent review, and should focus on assessing

the extent to which they might be operationalised. The other recommendations I will

make pertain to specific avenues of research that extend the work started here, and

that I feel would offer a significant contribution to the still emerging field of software-

based art conservation. They would also contribute to a broader knowledge base from

which to better understand the difficult problem of software preservation, as applied

to a range of software types in addition to software-based art.

Recommendation 1: Explore the feasibility of shared infrastructure for generic

components of software environments.

Essential in the future of software preservation, is access to the software of the past.

The software structures described in Chapter 5 are carefully constructed

environments, contingent on software components which may be highly specific.

Many of these are commonly reused across environments however, and are liable to

be repeatedly drawn on for future preservation efforts (particularly those employing

emulation and virtualisation) by different institutions and in different areas of digital

preservation. For example, there are sets of common operating system families,

including numerous versioned products, which form the basis of most software

structures. Particular dependency sets are also recurrent, such as runtime libraries,

Ensom - Technical Narratives

236

runtime environments and hardware drivers. Similarly, maintaining availability of

popular development environments and production software would help ensure long-

term access to source projects. The availability of a shared repository containing

reusable and well described copies of these software components could be a valuable

resource for the digital preservation community, avoiding the sometimes arduous

process of locating legacy components online on through resale. Unfortunately, the

creation of such a library in any centralised and openly accessible form is likely to be

severely limited by legal constraints on the redistribution of software—obstacles

which will require negotiation with the original producers in order to be solved. More

immediately, it is important that those collecting software begin assembling their own

supporting software libraries (legally) to ensure that these important artefacts are not

lost.

Recommendation 2: Test the migration and rewriting of software-based

artworks with complex functional requirements.

As I have shown within this thesis, not all software-based artworks are closely tied to

a specific implementation of the software employed. They can instead be understood

in relation to functional requirements, which the software implements as a means of

achieving particular set of behaviours or characteristics. While this implies the

potential for a degree of acceptable change at the software level, there are few

practical examples of actually migrating and rewriting software with complex

requirements from within the art conservation field. As a result, the extent to which

this is possible without compromising an artwork’s identity is not well understood.

Undertaking practical experiments in these processes using real-world case studies

is resource intensive work, but the insights gained from such research could be

valuable in developing the conservation discipline’s understanding of these issues. It

could be particularly interesting to experiment with how documents such as the

requirements specification could be used as a tool in the process. Testing could also

engage directly with the artist and assess how requirements specification might act

as a way of formalising the artwork’s identity between realisations. More generally, it

may be useful to experiment with the integration of principles of requirements

specification (including use case description) into conservation documentation

processes.

Recommendation 3. Further in-depth research into the technical history of

software-based artworks and the way in which these narratives might be

conveyed to various audiences.

Ensom - Technical Narratives

237

This research has intersected with concerns of technical art history—an area of

scholarship closely linked to conservation practice—in a number of ways. In general

however, this remains an under-developed area of research in relation to software-

based art. This is concerning given the ephemerality of many of the materials which

offer the insights required to document such histories. Understanding production

history involves gaining access to project files, production assets and prototypes,

which often rely on particular technical environments for access, or on direct

engagement with the artists working practice. Other ephemeral resources of relevant

information, such as artists’ websites and third-party software documentation, are in

a constant state of flux and older versions are not necessarily archived by their

maintainers. There is fertile ground for new strands of research here, and I

recommend further in-depth research into the technical history of software-based

artworks by conservators engaged in their care. Generating narratives of technical art

history is an activity that has been closely connected with the role of the conservator

historically. In order to develop this facet of conservation for software-based art, there

is the need to allow conservators the resources to develop and pursue this important

aspect of practice. In achieving this, it may also be necessary to develop approaches

for conveying narratives of conservation and technical art history to general

audiences. This may demand new models of documentation which move beyond

static texts, and into dynamic forms of document such as the Wiki. Understanding

how conservation knowledge might be made public through a Wiki or similar system

of knowledge management could be another fruitful area for future conservation

research and collaboration.

Ensom - Technical Narratives

238

BIBLIOGRAPHY

Ensom - Technical Narratives

239

Act-3D (2012) Quest3D Front Page [online]. Available from: https://web.ar-

chive.org/web/20170822144850/http://www.quest3d.com/ (Accessed 30 January

2018).

Adang, L. (2013) Untitled Project: A Cross Disciplinary Investigation of JODI’s Untitled

Game. [online]. Available from: http://media.rhizome.org/artbase/documents/Untit-

led-Project:-A-Cross-Disciplinary-Investigation-of-JODI%E2%80%99s-Untitled-

Game.pdf.

Adobe (2017) Flash & The Future of Interactive Content [online]. Available from:

https://blogs.adobe.com/conversations/2017/07/adobe-flash-update.html (Accessed

7 September 2017).

Ainsworth, M. W. (2005) From Connoisseurship to Technical Art History: The Evolution of

the Interdisciplinary Study of Art. The Getty Conservation Institute Newsletter. 20

(1), 4.

Alderson, A. & Shah, H. (1999) Viewpoints on legacy systems. Communications of the ACM.

42 (3), 115–116.

Alexander, C. (1977) A Pattern Language: Towns, Buildings, Construction. New York: Ox-

ford University Press.

Alexander, I. F. (1997) A Historical Perspective on Requirements Engineering. Require-

nautics Quarterly: The Newsletter of the Requirements Engineering. 12 (3), 13–21.

American Institute for Conservation of Historic and Artistic Works (1994) Code of Ethics and

Guidelines for Practice. [online]. Available from: http://www.conservation-

us.org/docs/default-source/governance/code-of-ethics-and-guidelines-for-prac-

tice.pdf?sfvrsn=9 (Accessed 11 February 2018).

American Institute for Conservation of Historic and Artistic Works (2016) Conservation Ter-

minology [online]. Available from: http://www.conservation-us.org/about-conserva-

tion/definitions#.WU7cSWjyuUk (Accessed 24 June 2017).

Anon (n.d.) About - Digital Preservation (Library of Congress) [online]. Available from:

http://www.digitalpreservation.gov/about/ (Accessed 23 January 2018).

Anon (2016) Apache Taverna [online]. Available from: https://taverna.incubator.apache.org/

(Accessed 5 September 2017).

Anon (n.d.) Conservation – time-based media [online]. Available from:

http://www.tate.org.uk/about/our-work/conservation/time-based-media (Accessed 29

July 2017).

Anon (2006) ISO/IEC 14764:2006(E) IEEE Std 14764-2006: Software Engineering — Soft-

ware Life Cycle Processes — Maintenance. [Online] 1–46.

Anon (2011) ISO/IEC/IEEE 29148:2011: Systems and software engineering — Life cycle

processes — Requirements engineering. [Online] 1–94.

Anon (2008) ISO/IEC/IEEE Std 12207-2008: Standard for Systems and Software Engineer-

ing - Software Life Cycle Processes. [Online] c1-138.

Anon (2011) ISO/IEC/IEEE Systems and software engineering – Architecture description.

[Online] 1–46.

Ensom - Technical Narratives

240

Anon (2018) openFrameworks [online]. Available from: http://openframeworks.cc/ (Accessed

1 March 2018).

Anon (2018) representation, n.1. OED Online [online]. Available from:

http://www.oed.com/view/Entry/162997 (Accessed 23 January 2018).

Anon (2014) The InterPARES 2 Project Dictionary [online]. Available from: https://web.ar-

chive.org/web/20141002211915fw_/http://www.interpares.org/ip2/dis-

play_file.cfm?doc=ip2_dictionary.pdf&CFID=5710346&CFTOKEN=69123980 (Ac-

cessed 3 September 2017).

Anon (2017) The National Gallery Technical Bulletin [online]. Available from: https://www.na-

tionalgallery.org.uk/paintings/research/technical-bulletin (Accessed 11 March 2018).

Anon (2012) The Preservation of Complex Objects Volume 2. Software Art. [online]. Availa-

ble from: http://www.pocos.org/books/pocos_vol_2.pdf (Accessed 3 October 2014).

Anon (2014) Web technology for developers - SVG attributes: shape-rendering [online].

Available from: https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/shape-

rendering (Accessed 3 August 2017).

Apple (2016a) FileMerge.

Apple (2016b) Xcode.

Arcangel, C., 2006. Colors. In collection of Tate, London (L02995)

Arcangel, C. (2009) Colors Personal Edition [online]. Available from: http://colors-personal-

edition.coryarcangel.com/ (Accessed 2 August 2018).

Arcangel, C. (2017a) Colors-Personal-Edition: OSX App to play a movie one horizontal line

of pixels at a time. [online]. Available from: https://github.com/coryarcangel/Colors-

Personal-Edition (Accessed 1 March 2018).

Arcangel, C. (2012, March 14). Re: Archving [sic] your work Colors. [Email to Iolanda Ratti].

Copy in Conservation Folder for artwork L02995. Tate, London.

Arcangel, C. (2017b) The Source Digest. Arcangel Surfware.

Arcangel, C. (2013) Things I Made: Code [online]. Available from: http://cor-

yarcangel.com/things-i-made/category/code/ (Accessed 1 March 2018).

Atkins, R. D. (2009) Copyright, contract and the protection of computer programs. Interna-

tional Review of Law, Computers & Technology. [Online] 23 (1–2), 143–152.

Badger, C. (2008). Subtitled Public Code Description. Copy in Conservation Folder for art-

work T12565. Tate, London.

Bawden, D. & Robinson, L. (2012) Introduction to Information Science. London: Facet Pub-

lishing.

Beerkens, L., t Hoen, P., Hummelen, Ij., van Saaze, V., Scholte, T., Stigter, S., (2012) The

Artist Interview: For Conservation and Preservation of Contemporary Art. Guidelines

& Practice. Heyningen: Jap Sam Books.

Behrens, B. C. & Levary, R. R. (1998) Practical legal aspects of software reverse engineer-

ing. Communications of the ACM. 41 (2), 27–29.

Ensom - Technical Narratives

241

Bergeron, J., Debbabi, M., Erhioui, M.M., Ktari, B., (1999) ‘Static analysis of binary code to

isolate malicious behaviors’, in Enabling Technologies: Infrastructure for Collabora-

tive Enterprises, 1999.(WET ICE’99) Proceedings. IEEE 8th International Work-

shops on. 1999 IEEE. pp. 184–189.

Birnbaum, D. & Arcangel, C. (2009) Do It 2. Artforum p.191–199.

Borges, J. L. (1999) ‘On Exactitude in Science’, in Collected Fictions. New York: Penguin

Books.

Boutard, G. & Guastavino, C. (2012) Archiving electroacoustic and mixed music: Significant

knowledge involved in the creative process of works with spatialisation. Journal of

Documentation. [Online] 68 (6), 749–771.

Briet, S. (2006) What is Documentation? English Translation. Scarecrow Press.

Brown, P., Gere, C., Lambert, N., Mason, C., (2008) White Heat Cold Logic: Early British

Computer Art 1960-1980. The MIT Press. [online]. Available from:

http://eprints.lancs.ac.uk/id/eprint/55521.

Bryant, A. & Charmaz, K. (2007) The SAGE Handbook of Grounded Theory. London,

UNITED KINGDOM: SAGE Publications. [online]. Available from: http://ebookcen-

tral.proquest.com/lib/kcl/detail.action?docID=1138448.

Buckland, M. K. (1997) What Is a ‘Document’? JASIS. 48 (9), 804–809.

Butterfield, A. & Ngondi, G. E. (eds.) (2016) software. A Dictionary of Computer Science

[online]. Available from: http://dx.doi.org/10.1093/acref/9780199688975.001.0001

(Accessed 30 July 2018).

Cao, L. & Ramesh, B. (2008) Agile requirements engineering practices: An empirical study.

IEEE software. 25 (1), . [online]. Available from: http://ieeexplore.ieee.org/ab-

stract/document/4420071/.

Castriota, B. (2017) Ontological Models and Authenticity in Time-Based Media Art Conser-

vation. [online]. Available from: http://www.academia.edu/32430089/Ontologi-

cal_Models_and_Authenticity_in_Time-Based_Media_Art_Conservation (Accessed

28 January 2018).

CCSDS (2012) Reference Model for an Open Archival Information System (OAIS): Magenta

Book.

Cerpa, N. & Verner, J. M. (2009) Why did your project fail? Communications of the ACM.

[Online] 52 (12), 130.

Ceruzzi, P. E. (2003) Google-Books-ID: x1YESXanrgQC. A History of Modern Computing.

2nd Edition. MIT Press.

Chan, J.-T. & Yang, W. (2004) Advanced obfuscation techniques for Java bytecode. Journal

of Systems and Software. 71 (1–2), 1–10.

Chen, S.-S. (2001) The paradox of digital preservation. Computer. [Online] 34 (3), 24–28.

Chikofsky, E. J. & Cross, J. H. (1990) Reverse engineering and design recovery: a taxon-

omy. IEEE Software. [Online] 7 (1), 13–17.

Ensom - Technical Narratives

242

Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J., (2000) Google-Books-ID: MNrcBwAAQBAJ.

Non-Functional Requirements in Software Engineering. Springer Science & Busi-

ness Media.

Chung, L. & do Prado Leite, J. C. S. (2009) ‘On non-functional requirements in software en-

gineering’, in Conceptual modeling: Foundations and applications. Springer. pp.

363–379. [online]. Available from: https://link.springer.com/chapter/10.1007/978-3-

642-02463-4_19.

Ciula, A. & Eide, Ø. (2014) ‘Reflections on cultural heritage and digital humanities: modelling

in practice and theory’, in Proceedings of the first international conference on digital

access to textual cultural heritage. 2014 ACM. pp. 35–41.

Clark, R., Frieling, R., Haidvogl, M., Scher, J., (2015) Predictive Engineering by Julia Scher:

A Case Study from the Artist Initiative, San Francisco Museum of Modern Art.

[online]. Available from: http://www.tate.org.uk/context-comment/video/media-transi-

tion (Accessed 12 March 2018).

Cook, S., Harrison, R., Lehman, M.M., Wernick, P., (2006) Evolution in software systems:

foundations of the SPE classification scheme. Journal of Software: Evolution and

Process. 18 (1), 1–35.

Cornelissen, B., Zaidman, A., Deursen, A. van, Moonen, L., Koschke, R., (2009) A System-

atic Survey of Program Comprehension through Dynamic Analysis. IEEE Transac-

tions on Software Engineering. [online] 35 (5), 684–702.

Corubolo, F., Eggers, A.G., Hasan, A., Hedges, M., Waddington, S., Ludwig, J., (2014) ‘A

pragmatic approach to signifcant environment information collection to support ob-

ject reuse’, in Proceedings of iPRES 2014 Melbourne, Australia.

Craig-Martin, M., 2003. Becoming. In collection of Tate, London (T11812)

Cramer, F. (2002) ‘Concepts, notations, software, art’, in Seminar for Allegmeine und Ver-

gleischende Literaturwissenschaft. 2002 p. [online]. Available from: http://peo-

ple.zhdk.ch/shusha.niederberger/doks/kunst-und-internet/cramer-concepts_nota-

tions_software_art_2002-clean.pdf (Accessed 11 May 2017).

Crnkovic, G. (2010) Constructive research and info-computational knowledge generation.

Model-Based Reasoning in Science and Technology. 314359–380.

Crook, J. (2001) Guide to Good Practice: Artists’ Interviews.

Crook, J. (2015) Technique and Condition Texts: Writing Guide.

Dappert, A., Guenther, R.S., Peyrard, S., (2016) Digital Preservation Metadata for Practition-

ers: Implementing PREMIS. Springer.

Dappert, A. & Farquhar, A. (2009) ‘Significance is in the eye of the stakeholder’, in Interna-

tional Conference on Theory and Practice of Digital Libraries. 2009 Springer. pp.

297–308. [online]. Available from: http://link.springer.com/10.1007/978-3-642-04346-

8_29 (Accessed 10 August 2016).

Darling, P. W. (1985) Preservation vs. Conservation. Abbey Newsletter 9 (6). [online]. Avail-

able from: http://cool.conservation-us.org/byorg/abbey/an/an09/an09-6/an09-

604.html (Accessed 17 June 2017).

Ensom - Technical Narratives

243

Das, S., Lutters, W.G., Seaman, C.B., (2007) ‘Understanding documentation value in soft-

ware maintenance’, in Proceedings of the 2007 Symposium on Computer human in-

teraction for the management of information technology. 2007 ACM. p. 2. [online].

Available from: http://dl.acm.org/citation.cfm?id=1234790.

Day, M. W. (2000) Preservation of electronic information: a bibliography. [online]. Available

from: https://www.webarchive.org.uk/wayback/en/ar-

chive/20170705065345/http://homes.ukoln.ac.uk/~lismd/preservation.html.

David, C. (1997) Politics-Poetics: Documenta X: The Book. Cantz Verlag.

Davies, D. (2004) Art as Performance. Blackwell Publishing Ltd.

Day, R. E. (2016) All that is the Case: Documents and Indexicality. Scribe. 22 (1). [online].

Dekker, A. (2014) Enabling the Future, or How to Survive FOREVER1: A study of networks,

processes and ambiguity in net art and the need for an expanded practice of conser-

vation. PhD thesis.

Dekker, A. (2013) ‘Enjoying the Gap: Comparing Contemporary Documentation on Strate-

gies’, in Preserving and Exhibiting Media Art: Challenges and Perspectives. Amster-

dam University Press. pp. 150–169.

Depocas, A., Ippolito, J., Jones, C. (eds.) (2003) Permanence Through Change: The Varia-

ble Media Approach. New York, USA and Montreal, Canada: Guggenheim Museum

Publications and The Daniel Langlois Foundation for Art, Science, and Technology.

[online]. Available from: http://www.variablemedia.net/e/preserving/html/var_pub_in-

dex.html.

Derevenets, Y. (2017) Snowman. [online]. Available from: https://derevenets.com/ (Ac-

cessed 14 February 2018).

Dietrich, D. & Adelstein, F. (2015) Archival science, digital forensics, and new media art.

Digital Investigation. [Online] 14, Supplement 1S137–S145.

Dietz, S. (2014) ‘Collecting new-media art: Just like anything else, only different’, in Bruce

Altshuler (ed.) New Collecting: Exhibiting and Audiences After New Media Art. pp.

57–71.

Dietz, S. (2000) Signal or Noise? The Network Museum [online]. Available from:

https://web.archive.org/web/20101020121400/https://walkerart.org/gallery9/web-

walker/ww_032300.html (Accessed 4 July 2017).

Digital Preservation Coalition (2015) Digital Preservation Handbook, 2nd Edition [online].

Available from: http://handbook.dpconline.org/ (Accessed 21 June 2017).

Dipple, K., Laurenson, P., Fadenza-Rodrigues, F., (2010) ‘Describing Networked Art for the

Purpose of Documentation and Conservation’.

DOCAM (n.d.) DOCAM Documentation Model [online]. Available from: http://www.do-

cam.ca/en/documentation-model.html (Accessed 31 July 2017).

DOCAM (n.d.) DOCAM Documentation Model: Typology of documents [online]. Available

from: http://www.docam.ca/en/typology-of-documents.html (Accessed 1 August

2017).

DOCAM (n.d.) The DOCAM Research Alliance [online]. Available from: http://www.do-

cam.ca/ (Accessed 29 July 2017).

Ensom - Technical Narratives

244

Dover, C. (2016) How the Guggenheim and NYU Are Conserving Computer-Based Art.

Guggenheim [online]. Available from: https://www.guggenheim.org/blogs/check-

list/how-the-guggenheim-and-nyu-are-conserving-computer-based-art-part-1 (Ac-

cessed 27 July 2017).

Dovi, S. (2017) ‘Political Representation’, in Edward N. Zalta (ed.) The Stanford Encyclope-

dia of Philosophy. Spring 2017 Metaphysics Research Lab, Stanford University. p.

[online]. Available from: https://plato.stanford.edu/archives/spr2017/entries/political-

representation/ (Accessed 15 February 2017).

Dreher, T. (2014) History of Computer Art. 1st Update (September 2015). [online]. Available

from: http://iasl.uni-muenchen.de/links/GCA_Indexe.html.

Dresch, A., Lacerda, D.P., Antunes Jr, J.A.V., (2015) ‘Design science research’, in Design

Science Research. Springer. pp. 67–102.

Duncan, W. (2009) Making Ontological Sense of Hardware and Software. [online]. Available

from: http://www.cse.buffalo.edu/~rapaport/584/S10/duncan09-HWSWOnt.pdf (Ac-

cessed 27 July 2015).

Dupuy, E. (2017) Java Decompiler. [online]. Available from: http://jd.benow.ca/ (Accessed 8

September 2017).

Duranti, L. & Franks, P. C. (2015) Encyclopedia of Archival Science. Rowman & Littlefield.

Electronic Media Group (2015) TechFocus III: Caring for Software-based Art [online]. Availa-

ble from: http://resources.conservation-us.org/techfocus/techfocus-iii-caring-for-com-

puter-based-art-software-tw/ (Accessed 6 March 2019).

Eilam, E. (2011) Reversing: secrets of reverse engineering. John Wiley & Sons.

Enge, J. & Lurk, T. (2014) Classification and indexing of complex digital objects with CIDOC

CRM. Archiving Conference. 2014 (1), 58–62.

Enge, J. & Lurk, T. (2013) ‘Operational Practices for a Digital Preservation and Restoration

Protocol’, in Preserving and Exhibiting Media Art. Challenges and Perspectives. Am-

sterdam University Press. pp. 270–281.

Engel, D. & Hellar, M. (2014) Technical Narratives and Software-Based Artworks. [online].

Available from: http://www.si.edu/tbma/symposiums.

Engel, D. & Wharton, G. (2014) Reading between the lines: Source code documentation as

a conservation strategy for software-based art. Studies in Conservation. [Online] 59

(6), 404–415.

Engel, D. & Wharton, G. (2015) Source Code Analysis as Technical Art History. Journal of

the American Institute for Conservation. 54 (2), 91–101.

Ensom, T. (2018) Software-based Artwork Structure Ontology. [online]. Available from:

https://github.com/tomensom/saso (Accessed 2 August 2018).

Falcão, P. (2010) Developing a Risk Assessment Tool for the conservation of software-

based artworks. MA thesis. Bern. [online]. Available from: http://www.aca-

demia.edu/6660777/Developing_a_Risk_Assessment_Tool_for_the_conserva-

tion_of_software-_based_artworks_MA-Thesis.

Falcão, P. (2015) John Gerrard Studio Visit Interview. [audio recording].

Ensom - Technical Narratives

245

Falcão, P. (2013) Comparison of the Significant Properties of Software and Software-based

Arts. [unpublished document].

Falcão, P., Alistair, A., Jones, B., (2014) ‘Virtualisation as a Tool for the Conservation of

Software-Based Artworks’, Proceedings of iPRES 2014 Melbourne, Australia.

[online]. Available from: https://www.academia.edu/12462584/Virtualisa-

tion_as_a_Tool_for_the_Conservation_of_Software-Based_Artworks (Accessed 19

May 2015).

Falcão, P. & Dekker, A. (2015) Virtualizing John Gerrard’s ‘Sow Farm’ (2009), or not?

[online]. Available from: https://vimeo.com/147884591.

Fauconnier, S. & Frommé, R. (2003) Capturing Unstable Media: Summary of research.

[online]. Available from: http://v2.nl/files/2003/publishing/articles/capturing_sum-

mary.pdf.

Fernández, D.M., Böhm, W., Vogelsang, A., Mund, J., Broy, M., Kuhrmann, M., Weyer, T.,

(2018) Artefacts in Software Engineering: What are they after all? Preprint submitted

to the International Journal on Software and Systems Modeling [Preprint]. Available

from: http://arxiv.org/abs/1806.00098 (Accessed 30 July 2018).

Fino-Radin, B. (2016) Art In the Age of Obsolescence [online]. Available from: https://sto-

ries.moma.org/art-in-the-age-of-obsolescence-1272f1b9b92e (Accessed 9 February

2018).

Fino-Radin, B. (2018) Digital Art Storage: What Every Conservator Needs to Know. AIC

News 43 (1). [online]. Available from: http://resources.conservation-us.org/aic-

news/digital-art-storage-what-every-conservator-needs-to-know/ (Accessed 8 Febru-

ary 2018).

Fino-Radin, B. (2011) Digital Preservation Practices and the Rhizome Artbase. Rhizome.

org.

Firesmith, D. (2007) Common Requirements Problems, Their Negative Consequences, and

the Industry Best Practices to Help Solve Them. Journal of Object Technology. 6

(1), 17–33.

Gamarra, S., 2005. LiMac Museum Shop. In collection of Tate, London

Garijo, D. (2018) Widoco. [online]. Available from: https://github.com/dgarijo/Widoco.

Geffner, J. (2014) What’s the difference between a disassembler, debugger and decom-

piler? [online]. Available from: http://reverseengineering.stackexchange.com/ques-

tions/4635/whats-the-difference-between-a-disassembler-debugger-and-decompiler

(Accessed 4 October 2016).

Gerrard, J. (2015) John Gerrard interviewed by Nicholas Forrest [online]. Available from:

http://uk.blouinartinfo.com/news/story/1103413/interview-john-gerrard-on-his-slip-

pery-sims-at-thomas-dane (Accessed 31 January 2018).

Gerrard, J., 2009. Sow Farm (near Libbey, Oklahoma) 2009. In collection of Tate, London

(T14279)

Gerrard, J. & Pötzelberger, W. (2015) John Gerrard Studio Visit Interview. Copy in Conser-

vation Folder for artwork T14279. Tate, London.

Giaretta, D., Matthews, B., Bicarregui, J., Lambert, S., Guercio, M., Michetti, G., Sawyer, D.,

(2009) Significant Properties, Authenticity, Provenance, Representation Information

Ensom - Technical Narratives

246

and OAIS Information. California Digital Library. [online]. Available from:

http://escholarship.org/uc/item/0wf3j9cw (Accessed 26 May 2016).

Glinz, M. (2007) ‘On non-functional requirements’, in Requirements Engineering Confer-

ence, 2007. RE’07. 15th IEEE International. 2007 IEEE. pp. 21–26. [online]. Availa-

ble from: http://ieeexplore.ieee.org/abstract/document/4384163/.

Goldstein, A. M. (2014) Expert Eye: Bitforms Gallery’s Steven Sacks on How to Collect New

Media Art [online]. Available from: http://www.artspace.com/magazine/inter-

views_features/how_to_collect_new_media_art (Accessed 25 November 2014).

Goodman, N. (1968) Languages of art: An approach to a theory of symbols. Hackett publish-

ing.

Gordon, R. (2013) Material Significance in Contemporary Art. ArtMatters: International Jour-

nal for Technical Art History. 51–10.

Gordon, R. & Hermens, E. (2013) The Artist’s Intent in Flux. CeROArt. Conservation, exposi-

tion, Restauration d’Objets d’Art. (HS), . [online]. Available from: http://jour-

nals.openedition.org/ceroart/3527 (Accessed 27 February 2018).

Gosain, A. & Sharma, G. (2015) ‘A Survey of Dynamic Program Analysis Techniques and

Tools’, in Proceedings of the 3rd International Conference on Frontiers of Intelligent

Computing: Theory and Applications (FICTA) 2014. Advances in Intelligent Systems

and Computing. Springer. pp. 113–122. [online]. Available from:

https://link.springer.com/chapter/10.1007/978-3-319-11933-5_13 (Accessed 18 Feb-

ruary 2018).

Gould, S. J. & Eldredge, N. (1972) ‘Punctuated Equilibria: An Alternative to Phyletic Gradual-

ism’, in Thomas J. M. Schopf (ed.) Models in Paleobiology. San Francisco, USA:

Freeman, Cooper and Company. pp. 82–115.

Graham, B. & Cook, S. (2010) Rethinking Curating: Art after New Media. Cambridge, MA

and London, England: The MIT Press.

Greenberg, J. (2005) Understanding Metadata and Metadata Schemes. Cataloging & Classi-

fication Quarterly 40 (3–4), 17–36. [online].

Greene, R. (2004) Internet Art. Thames & Hudson London.

Griesinger, P. (2016) Process history metadata for time-based media artworks at the Mu-

seum of Modern Art, New York. Journal of Digital Media Management. 4 (4), 331–

342.

Guez, E., Stricot, M., Broye, L., Bizet, S., (2017) The afterlives of network-based artworks.

Journal of the Institute of Conservation. [Online] 40 (2), 105–120.

Guttag, J. V. (2013) Introduction to computation and programming using Python. Mit Press.

Hagedoorn, H. (2017) RivaTuner Statistics Server. Guru3D. [online]. Available from:

http://www.guru3d.com/files-details/rtss-rivatuner-statistics-server-download.html

(Accessed 3 August 2017).

Haidvogl, M. (2015) Acquiring and Documenting Jürg Lehni’s ‘Viktor’ (2006~). [online]. Avail-

able from: https://vimeo.com/146980154. [online].

Haigh, T. (2011) The History of Information Technology. Annual Review of Information Sci-

ence and Technology. 45 (1), 431–487. [online].

Ensom - Technical Narratives

247

Hamilton, J. & Danicic, S. (2009) ‘An evaluation of current java bytecode decompilers’, in

Source Code Analysis and Manipulation, 2009. SCAM’09. Ninth IEEE International

Working Conference on. 2009 IEEE. pp. 129–136. [online]. Available from: http://iee-

explore.ieee.org/abstract/document/5279917/.

Hellar, M. (2013) Smithsonian Institution Time-Based and Digital Art Working Group: Inter-

view with Mark Hellar. [online]. Available from: https://www.si.edu/content/tbma/doc-

uments/transcripts/MarkHellar_130614.pdf (Accessed 12 March 2018). [online].

Available from: https://www.si.edu/content/tbma/documents/transcripts/MarkHel-

lar_130614.pdf (Accessed 12 March 2018).

Henry, L. J. (1998) Schellenberg in Cyberspace. The American Archivist. [Online] 61 (2),

309–327.

Hermens, E. (2012) ‘Technical art history: the synergy of art, conservation and science’, in

Lenain, T., Locher, H., Pinotti, A., Rampley, M., Schoell-Glass, C., Zijlmans, K.

(eds.) Art History and Visual Studies in Europe: Transnational Discourses and Na-

tional Frameworks. Leiden, The Netherlands: Brill. p. [online]. Available from:

http://eprints.gla.ac.uk/46122/ (Accessed 19 April 2015).

Hermens, E. & Fiske, T. (eds.) (2009) Art, Conservation and Authenticities: Material, Con-

cept, Context. Archetype.

Herraiz, I., Rodriguez, D., Robles, G., Gonzalez-Barahona, J.M., (2013) The evolution of the

laws of software evolution: A discussion based on a systematic literature review.

ACM Computing Surveys (CSUR). 46 (2), 28.

Heslop, H., Davis, S., Wilson, A., (2002) An Approach to the Preservation of Digital Records.

[online]. Available from: https://www.ltu.se/cms_fs/1.83844!/file/An_ap-

proach_Preservation_dig_records.pdf.

Heydenreich, G. (2011) ‘Documentation of Change–Change of Documentation’, in Inside In-

stallations. Theory and Practice in the Care of Complex Artworks. Amsterdam Uni-

versity Press. pp. 155–171.

Higgins, S. (2008) The DCC Curation Lifecycle Model. International Journal of Digital Cura-

tion. [Online] 3 (1), 134–140.

Hilton, P. (2016) Where to start documenting a legacy system. Writing by Peter Hilton.

[online]. Available from: http://hilton.org.uk/blog/legacy-system-documentation (Ac-

cessed 25 July 2017).

Hiser, S. (2007) Achieving Openness: a closer look at ODF & OOXML. [online]. Available

from: https://web.archive.org/web/20100612230613/http://odfalliance.org/re-

sources/Achieving_Openness%20w-banner.pdf (Accessed 30 July 2018).

Hoggett, R. (2017) 1956 - CYSP-1 - Nicolas Schöffer - (Hungarian/French) [online]. Availa-

ble from: http://cyberneticzoo.com/cyberneticanimals/1956-cysp-1-nicolas-schoffer-

hungarianfrench/ (Accessed 20 June 2017).

Hölling, H. (2017) The technique of conservation: on realms of theory and cultures of prac-

tice. Journal of the Institute of Conservation. [Online] 40 (2), 87–96.

IASA Technical Committee: Standards, Recommended Practices, and Strategies (2018)

Guidelines for the Preservation of Video Recordings (IASA-TC 06). [online]. Availa-

ble from: https://www.iasa-web.org/tc06/guidelines-preservation-video-recordings

(Accessed 3 March 2019).

Ensom - Technical Narratives

248

IEEE Computer Society (2014) SWEBOK v3.0: Guide to the Software Engineering Body of

Knowledge. 3rd edition. Pierre Bourque & Richard E. Fairley (eds.). Los Alamitos,

CA: IEEE Computer Society Press.

IFLA Study Group on the Functional Requirements for Bibliographic Records (2009) Func-

tional Requirements for Bibliographic Records: Final Report.

INCCA (n.d.) Symposium: Modern Art: Who Cares? (1997) [online]. Available from:

https://www.incca.org/events/symposium-modern-art-who-cares-1997 (Accessed 25

February 2019).

Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S., (2015) A systematic liter-

ature review on agile requirements engineering practices and challenges. Comput-

ers in Human Behavior. [Online]. 51 (Part B), 915–929.

Ippolito, J. (2003) ‘Accommodating the Unpredictable: The Variable Media Questionnaire’, in

Depocas, A., Ippolito, J., Jones, C. (eds.) Permanence Through Change: The Varia-

ble Media Approach. New York, USA and Montreal, Canada: Guggenheim Museum

Publications and The Daniel Langlois Foundation for Art, Science, and Technology.

pp. 47–54. [online]. Available from: http://www.variablemedia.net/e/preserv-

ing/html/var_pub_index.html.

Ippolito, J. (2008) Death by Wall Label [online]. Available from: http://vec-

tors.usc.edu/thoughtmesh/publish/11.php (Accessed 9 February 2018).

Jarczyk, A. (2015) The Documentation of the Audiovisual Output and Interactive Experience.

[online]. Available from: https://vimeo.com/149089331.

Jazdzewski, C. (2014) Why can’t native machine code be easily decompiled? [online]. Avail-

able from: https://softwareengineering.stackexchange.com/questions/229761/why-

cant-native-machine-code-be-easily-decompiled (Accessed 30 July 2018).

Jodi (1997) debate: dx webprojects [online]. Available from: https://web.ar-

chive.org/web/20170611223729/http://www.documenta12.de/archiv/dx/lists/de-

bate/0010.html (Accessed 11 June 2017).

John, J. L. (2012) Digital Forensics and Preservation. [online]. Available from:

http://www.dpconline.org/component/docman/doc_download/810-dpctw12-03pdf

(Accessed 3 October 2014).

Johnson, A. (2016) How MediaWiki is streamlining San Francisco’s new Museum of Modern

Art. Wikimedia Blog. [online]. Available from: https://blog.wiki-

media.org/2016/07/07/sfmoma-mediawiki/ (Accessed 11 March 2018).

Jones, C. (2008) Surveying the state of the art (of documentation). [online]. Available from:

http://www.fondation-langlois.org/html/e/page.php?NumPage=2126 (Accessed 17

July 2017).

JPEXS (2016) JPEXS Free Flash Decompiler. JPEXS. [online]. Available from:

https://www.free-decompiler.com/flash/ (Accessed 4 October 2016).

Kaltman, E., Wardrip-Fruin, N., Lowood, H., Caldwell, C. (2014) A Unified Approach to Pre-

serving Cultural Software Objects and their Development Histories. [online]. Availa-

ble from: http://escholarship.org/uc/item/0wg4w6b9 (Accessed 16 March 2015).

Ensom - Technical Narratives

249

Karch, E. (2011) The Software Crisis: A Brief Look at How Rework Shaped the Evolution of

Software Methodolgies [online]. Available from: https://blogs.msdn.mi-

crosoft.com/karchworld_identity/2011/04/04/the-software-crisis-a-brief-look-at-how-

rework-shaped-the-evolution-of-software-methodolgies/ (Accessed 18 August 2017).

Kasanen, E., Lukka, K., Siitonen, A., (1993) The constructive approach in management ac-

counting research. Journal of Management Accounting Research. 5, 243.

Kay, A. & Goldberg, A. (1977) Personal Dynamic Media. Computer. 10 (3), 31–41.

Kirschenbaum, M., Ovenden, R., Redwine, G., Donahue, R., (2010) Digital forensics and

born-digital content in cultural heritage collections. [online]. Available from:

http://drum.lib.umd.edu/handle/1903/14722 (Accessed 17 December 2014).

Kirschenbaum, M. G. (2012) Mechanisms: new media and the forensic imagination. Cam-

bridge, Mass.; London: MIT Press.

Knight, G. (2009) InSPECT - Framework Report - Investigating Significant Properties of

Electronic Content. [online]. Available from: http://www.significantproper-

ties.org.uk/inspect-framework.html (Accessed 11 November 2014).

Kopytoff, I. (1986) The cultural biography of things: commoditization as process. The social

life of things: Commodities in cultural perspective. 6870–73.

Konstantelos, L., Delve, J., Anderson, D., Billenness, C., Baker, D., Dobreva, M. (Eds.),

2012. The Preservation of Complex Objects Volume 2: Software Art. [online]. Availa-

ble from: http://www.pocos.org/books/pocos_vol_2.pdf (Accessed 3 October 2014).

Lagos, N., Waddington, S., Vion-Dury, J.-Y., (2015) ‘On the Preservation of Evolving Digital

Content – The Continuum Approach and Relevant Metadata Models’, in Metadata

and Semantics Research. Communications in Computer and Information Science.

Springer, Cham. pp. 15–26. [online]. Available from: https://link.springer.com/chap-

ter/10.1007/978-3-319-24129-6_2 (Accessed 19 July 2017).

Lambert, N. (2003) A critical examination of computer art: its history and application. Univer-

sity of Oxford. [online]. Available from: http://ethos.bl.uk/OrderDe-

tails.do?uin=uk.bl.ethos.273456 (Accessed 14 October 2015).

Lambert, N. (2010) ‘The Computer as a Dynamic Medium’, in Proceedings of the 1st interna-

tional conference on Ideas before their time: connecting the past and present in

computer art. 2010 BCS Learning & Development Ltd. pp. 86–97.

Laposky, B. F. (1969) Oscillons: electronic abstractions. Leonardo. 345–354.

Laurenson, P. (2006) Authenticity, change and loss in the conservation of time-based media

installations. Tate Papers Autumn 2006. [online]. Available from:

http://www.tate.org.uk/research/publications/tate-papers/authenticity-change-and-

loss-conservation-time-based-media.

Laurenson, P. (2010) Time-based Media Conservation – Recent Developments from an

Evolving Field. [online]. Available from: https://vimeo.com/14632365 (Accessed 12

June 2017).

Laurenson, P. (2013) ‘Old Media, New Media? Significant Difference and the Conservation

of Software-Based Art’, in Preserving and Exhibiting Media Art. Challenges and Per-

spectives. Amsterdam: Amsterdam University Press. pp. 73–96.

Ensom - Technical Narratives

250

Laurenson, P. (2015) The Lives of Digital Things: A Community of Practice Dialogue.

[online]. Available from: http://www.tate.org.uk/about-us/projects/pericles/lives-digi-

tal-things (Accessed 4 March 2018).

Laurenson, P. & van Saaze, V. (2014) Collecting Performance-based Art: New challenges

and shifting perspectives. Performativity in the gallery: Staging interactive encoun-

ters. 27–41.

Lavington, S. H. (1998) Google-Books-ID: JRbESAAACAAJ. A History of Manchester Com-

puters. Second Edition. British Computer Society.

Le Boeuf, P., Doerr, M., Emil Ore, C., Stead, S., (2015) Definition of the CIDOC Conceptual

Reference Model Version 6.1.

Lehman, M. M. (1980) Programs, life cycles, and laws of software evolution. Proceedings of

the IEEE. 68 (9), 1060–1076. [online].

Lehman, M. M. & Ramil, J. F. (2003) Software evolution—background, theory, practice. In-

formation Processing Letters. 88 (1–2), 33–44.

Lehtiranta, L., Junnonen, J.-M., Kärnä, S., Pekuri, L., (2017) ‘The Constructive Research Ap-

proach: Problem Solving for Complex Projects’, in Designs, Methods and Practices

for Research of Project Management. Online Edition Gower. pp. 95–106. [online].

Available from: https://web.archive.org/web/20161116225103/http://www.gpm-

first.com:80/books/designs-methods-and-practices-research-project-manage-

ment/constructive-research-approach.

Lethbridge, T.C., Singer, J., Forward, A., (2003) How software engineers use documenta-

tion: The state of the practice. IEEE software. 20 (6), 35–39.

Levy, D. M. (1994) Fixed or Fluid? Document Stability and New Media. [Online] 24–31.

Liu, L. & Özsu, M. T. (2009) Encyclopedia of Database Systems. Springer Publishing Com-

pany, Incorporated. [online]. Available from: http://dl.acm.org/cita-

tion.cfm?id=1804422 (Accessed 30 October 2015).

Lowood, H. (2013) ‘The Lures of Software Preservation’, in Preserving.exe. Library of Con-

gress. p. [online]. Available from: http://www.digitalpreservation.gov/multimedia/doc-

uments/PreservingEXE_report_final101813.pdf.

Lozano-Hemmer, R. (2015) Best practices for conservation of media art from an artist’s per-

spective. [online]. Available from: https://github.com/antimodular/Best-practices-for-

conservation-of-media-art (Accessed 30 July 2017).

Lozano-Hemmer, R., (2005). Subtitled Public. In collection of Tate, London (T12565)

Lozano-Hemmer, R. (2006) Subtitled Public Manual. [online]. Available from:

http://www.lozano-hemmer.com/texts/manuals/subPublic_manual.pdf (Accessed 21

July 2017).

Lurk, T. (2008) ‘Virtualisation as conservation measure’, in Archiving Conference. 2008 Soci-

ety for Imaging Science and Technology. pp. 221–225.

Lurk, T., Espenschied, D., Enge, J. (2012) Emulation in the context of digital art and cultural

heritage preservation. PIK – Praxis der Informationsverarbeitung und Kommu-

nikation. 35 (4), 245–254.

Ensom - Technical Narratives

251

Lynch, C. (2000) ‘Authenticity and Integrity in the Digital Environment: An Exploratory Analy-

sis of the Central Role of Trust’, in Authenticity in a Digital Environment. Washing-

ton, D.C.: Council on Library and Information Resources. pp. 314–331.

Manchester, E. (2004) Becoming - Summary [online]. Available from:

http://www.tate.org.uk/art/artworks/craig-martin-becoming-t11812 (Accessed 30 July

2017).

Manovich, L. (1996) The Death of Computer Art. Rhizome [online]. Available from: http://rhi-

zome.org/community/41703/ (Accessed 18 May 2018).

Manovich, L. (2013) Software Takes Command. Bloomsbury Open Access Edition. Blooms-

bury. [online]. Available from: http://dx.doi.org/10.5040/9781472544988.

Manovich, L. (2001) The Language of New Media. MIT Press.

Marchese, F. T. (2011) Conserving Digital Art for Deep Time. Leonardo. [Online] 44 (4),

302–308.

Marchese, F. T. (2013) ‘Conserving software-based artwork through software engineering’,

in Digital Heritage International Congress (DigitalHeritage), 2013. [Online]. October

2013 pp. 181–184.

Marclay, C. (2010) The Clock. In collection of Tate, London (T14038)

Martinat Mendoza, J.C., 2007. Brutalism: Stereo Reality Environment 3. In collection of Tate,

London (T13251)

Matters in Media Art (2015a) About Matters in Media Art [online]. Available from: http://mat-

tersinmediaart.org/about.html (Accessed 29 July 2017).

Matters in Media Art (2015b) Acquiring Media Art [online]. Available from: http://mattersinme-

diaart.org/acquiring-time-based-media-art.html (Accessed 15 July 2017).

Matters in Media Art (2015c) Documenting Media Art [online]. Available from: http://matter-

sinmediaart.org/assessing-time-based-media-art.html (Accessed 17 July 2017).

Matters in Media Art (2015d) Sustaining Media Art [online]. Available from: http://matter-

sinmediaart.org/sustaining-your-collection.html (Accessed 24 January 2018).

Matthews, B., Shaon, A., Bicarregui, J., Jones, C., (2010) A framework for software preser-

vation. International Journal of Digital Curation. 5 (1), 91–105.

Matthews, B., McIlwrath, B., Giaretta, D., Conway, E., (2008) The Significant Properties of

Software: A Study.

Matthews, B., Shaon, A., Bicarregui, J., Jones, C., Woodcock, J., Conway, E., (2009) To-

wards a methodology for software preservation. California Digital Library.

Maxwell, J. A. (2005) ‘Conceptual Framework: What Do You Think Is Going On?’, in Qualita-

tive Research Design: An Interactive Approach. SAGE. pp. 33–63.

McDonough, J.P., Kirschenbaum, M., Reside, D., Fraistat, N., Jerz, D., (2010) ‘Twisty Little

Passages Almost All Alike: Applying the FRBR Model to a Classic Computer Game.’

Digital Humanities Quarterly 4 (2). [online]. Available from: http://www.digitalhumani-

ties.org/dhq/vol/4/2/000089/000089.html#figure01 (Accessed 15 October 2015).

Ensom - Technical Narratives

252

McDonough, J.P., Olendorf, R., Kirschenbaum, M., Kraus, K., Reside, D., Donahue, R.,

Phelps, A., Egert, C., Lowood, H., Rojo, S., (2010) Preserving Virtual Worlds Final

Report. [online]. Available from: https://www.ideals.illinois.edu/handle/2142/17097

(Accessed 11 March 2015).

McGovern, N. Y. (2009) Technology responsiveness for digital preservation: a model. UCL

(University College London). [online]. Available from: http://discov-

ery.ucl.ac.uk/18017/1/18017.pdf.

McKemmish, S. (1994) ‘Are records ever actual?’, in The Records Continuum: Ian Maclean

and Australian Archives First Fifty Years. Ancora Press. p. [online]. Available from:

http://arrow.monash.edu.au/vital/access/services/Download/monash:155356/DOC.

McKemmish, S. (2001) Placing records continuum theory and practice. Archival Science.

[Online] 1 (4), 333–359.

Mitzias, P., Kontopoulos, E., Riga, M., (2017) Computer System Ontology Design Pattern

[online]. Available from: http://ontologydesignpatterns.org/wiki/Submissions:Com-

puter_System (Accessed 16 February 2017).

Montfort, N. (2005) Continuous Paper: The Early Materiality and Workings of Electronic Lit-

erature. [online]. Available from: http://nickm.com/writing/essays/continuous_pa-

per_mla.html (Accessed 8 November 2016).

Moor, J. H. (1978) Three Myths of Computer Science. The British Journal for the Philosophy

of Science. 29 (3), 213–222.

Moser, A., Kruegel, C., Kirda, E., (2007) ‘Limits of static analysis for malware detection’, in

Computer security applications conference, 2007. ACSAC 2007. Twenty-third an-

nual. 2007 IEEE. pp. 421–430.

Muller, L. (2008) Towards an oral history of new media art. Daniel Langlois Foundation.

[online]. Available from: http://www.fondation-langlois.org/pdf/e/towards-an-oral-his-

tory.pdf.

Muñoz-Viñas, S. (2004) Contemporary Theory of Conservation. 1 edition. Oxford; Burling-

ton, MA: Routledge.

Munir, K. & Sheraz Anjum, M. (2018) The use of ontologies for effective knowledge model-

ling and information retrieval. Applied Computing and Informatics. [Online] 14 (2),

116–126.

Naeem, N.A., Batchelder, M., Hendren, L., (2007) ‘Metrics for measuring the effectiveness of

decompilers and obfuscators’, in Program Comprehension, 2007. ICPC’07. 15th

IEEE International Conference on. 2007 IEEE. pp. 253–258. [online]. Available from:

http://ieeexplore.ieee.org/abstract/document/4268259/.

National Digital Information Infrastructure and Preservation Program (2013) Preserving.exe:

Toward a National Strategy for Software Preservation. [online]. Available from:

http://www.digitalpreservation.gov/multimedia/documents/PreservingEXE_report_fi-

nal101813.pdf.

NDSA Infrastructure & Standards Working Groups (2014) Checking Your Digital Content:

How, What and When to Check Fixity? [online]. Available from:

https://blogs.loc.gov/thesignal/files/2014/02/NDSA-Checking-your-digital-content-

Draft-2-5-14.pdf?loclr=blogsig (Accessed 8 February 2018).

Ensom - Technical Narratives

253

Oberle, D., Grimm, S., Staab, S., (2009) ‘An ontology for software’, in Handbook on ontolo-

gies. Springer. pp. 383–402. [online]. Available from: http://link.springer.com/chap-

ter/10.1007/978-3-540-92673-3_17/fulltext.html (Accessed 25 January 2017).

Object Management Group (2015) Unified Modeling Language Version 2.5. [online]. Availa-

ble from: http://www.omg.org/spec/UML/2.5/.

Object Management Group (2005) What is UML [online]. Available from:

http://www.uml.org/what-is-uml.htm (Accessed 9 September 2017).

Olson, M. (2012) POSTINTERNET: Art After the Internet. Foam magazine 29 p.59–63.

Paul, C. (2002) CODeDOC [online]. Available from: http://artport.whitney.org/commis-

sions/codedoc/ (Accessed 29 January 2018).

Paul, C. (2003) CODeDOC II [online]. Available from: https://web.ar-

chive.org/web/20060821221233/http://www.aec.at:80/de/festival2003/pro-

gramm/codedoc.asp (Accessed 29 January 2018).

Paul, C. (2015a) Digital Art. 3rd edition. London: Thames and Hudson Ltd.

Paul, C. (2015b) ‘From Immateriality to Neomateriality: Art and the Conditions of Digital Ma-

teriality’, in Proceedings of the 21st International Symposium on Electronic Art. 2015

p.

PERICLES Consortium & others (2014) Deliverable 3.2: Linked Resource Model. July.

Phillips, J. (2012) Iteration Report. [online]. Available from: https://www.guggenheim.org/wp-

content/uploads/2015/11/guggenheim-conservation-iteration-report-2012.pdf.

Phillips, J. (2007) Reporting iterations: a documentation model for time-based media art. Re-

vista de História da Arte. 4168–179.

Phillips, J., Engel, D., Dickson, E., Farbowitz, J., (2017) Restoring Brandon, Shu Lea

Cheang’s Early Web Artwork. Guggenheim [online]. Available from:

https://www.guggenheim.org/blogs/checklist/restoring-brandon-shu-lea-cheangs-

early-web-artwork (Accessed 10 February 2018).

Pistelli, D. (2012) Explorer Suite. NTCore. [online]. Available from:

http://www.ntcore.com/exsuite.php (Accessed 14 February 2018).

Pitkin, H. F. (1967) The Concept of Representation. University of California Press.

Post, C. (2017) Preservation practices of new media artists: Challenges, strategies, and atti-

tudes in the personal management of artworks. Journal of Documentation. [Online]

73 (4), 716–732.

PREMIS Editorial Committee & others (2015) PREMIS Data Dictionary for Preservation

Metadata, version 3.0. OCLC, Washington.

Pressman, R. & Maxim, B. (2014) Software Engineering: A Practitioner’s Approach. 8th Edi-

tion. New York, NY: McGraw-Hill Education.

Preston-Werner, T. (2013) Semantic Versioning 2.0. 0. [online]. Available from:

https://semver.org/spec/v2.0.0.html.

Rayward, W. B. (1996) The History and Historiography of Information Science: Some Re-

flections. Information Processing & Management. 32 (1), 3–17.

Ensom - Technical Narratives

254

Real, W. A. (2001) Toward Guidelines for Practice in the Preservation and Documentation of

Technology-Based Installation Art. Journal of the American Institute for Conserva-

tion. [Online] 40 (3), 211–231.

Rechert, K., Espenschied, D., Valizada, I., Liebetraut, T., Russler, N., Suchodoletz, D. von,

(2013) ‘An Architecture for Community-Based Curation and Presentation of Com-

plex Digital Objects’, in Shalini R. Urs et al. (eds.) Digital Libraries: Social Media and

Community Networks. Lecture Notes in Computer Science. Springer International

Publishing. pp. 103–112. [online]. Available from: http://link.springer.com/chap-

ter/10.1007/978-3-319-03599-4_12 (Accessed 17 November 2014).

Rechert, K., Falcão, P., Ensom, T., (2016) Introduction to an emulation-based preservation

strategy for software-based artworks. [online]. Available from:

http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-

for-software-based-artworks (Accessed 23 March 2017).

Reed, B. (2005) Reading the records continuum: interpretations and explorations. Archives

and Manuscripts. 33 (1), 18.

Rekoff, M. G. (1985) On reverse engineering. IEEE Transactions on Systems, Man, and Cy-

bernetics. [online] SMC-15 (2), 244–252.

Rice, D. (2015) Sustaining Consistent Video Presentation [online]. Available from:

http://www.tate.org.uk/about-us/projects/pericles/sustaining-consistent-video-

presentation (Accessed 30 January 2018).

Rieger, O.Y., Murray, T., Casad, M., Alexander, D., Dietrich, D., Kovari, J., Muller, L.,

Paolillo, M., Mericle, D.K., (2015) Preserving and Emulating Digital Art Objects.

[online]. Available from: http://ecommons.cornell.edu/handle/1813/41368 (Accessed

4 April 2016).

Rinehart, R. (2004) ‘A System of Formal Notation for Scoring Works of Digital and Variable

Media Art’, in Annual Meeting of the American Institute for Conservation of Historic

and Artistic Works 2004, 14 June 2004 Portland, Oregon. [online]. Available from:

http://cool.conservation-us.org/coolaic/sg/emg/library/pdf/rinehart/Rinehart-

EMG2004.pdf (Accessed 30 March 2015).

Rinehart, R. (2007) The Media Art Notation System: Documenting and Preserving Digi-

tal/Media Art. Leonardo. 40 (2), 181–187. [online].

Rinehart, R. & Ippolito, J. (2014) Re-collection: Art, New Media, and Social Memory. Cam-

bridge, Massachusetts: MIT Press.

Rokeby, D. (2010) David Rokeby: The Giver of Names. [online]. Available from: http://da-

vidrokeby.com/gon.html (Accessed 8 March 2018).

Rothenberg, J. (1995) Ensuring the Longevity of Digital Documents. Scientific American. 272

(1), 42–47.

Rothenberg, J. (2002) Avoiding Technological Quicksand: Finding a Viable Technical Foun-

dation for Digital Preservation: A Report to the Council on Library and Information

Resources. Available from: https://clir.wordpress.clir.org/wp-content/up-

loads/sites/6/pub77.pdf (Accessed 15 March 2018).

Rosenthal, D. S. (2015) Emulation & Virtualization as Preservation Strategies. [online]. Avail-

able from: https://mellon.org/media/filer_public/0c/3e/0c3eee7d-4166-4ba6-a767-

6b42e6a1c2a7/rosenthal-emulation-2015.pdf (Accessed 31 May 2016).

Ensom - Technical Narratives

255

Rosenthal, D. S. (2012) Formats through time. DSHR’s Blog [online]. Available from:

http://blog.dshr.org/2012/10/formats-through-time.html (Accessed 29 July 2017).

Roux, S. (2016) The Document: A Multiple Concept. Proceedings from the Document Acad-

emy. 3 (1), 10.

Russinovich, M. (2017) Process Monitor. Microsoft. [online]. Available from: https://docs.mi-

crosoft.com/en-us/sysinternals/downloads/procmon.

Sakrowski, R. & Dullaart, C. (2018) net.artdatabase [online]. Available from:

http://net.artdatabase.org/ (Accessed 9 February 2018).

Samyn, M. (2008) Postmortem: Tale of Tales’ The Graveyard [online]. Available from:

http://www.gamasutra.com/view/feature/132258/postmortem_tale_of_ta-

les_the_.php?print=1 (Accessed 21 November 2016).

Saracevic, T. (2017) ‘Information Science’, in Encyclopedia of Library and Information Sci-

ences. 3rd Edition. Boca Raton: Taylor & Francis.

Scholte, T. & Wharton, G. (2011) Inside installations: theory and practice in the care of com-

plex artworks. Amsterdam University Press. [online]. Available from:

http://www.bcin.ca/Interface/openbcin.cgi?submit=submit&Chinkey=431451 (Ac-

cessed 22 September 2016).

Schreibman, S., Siemens, R., Unsworth, J. (eds.) (2004) A Companion to Digital Humani-

ties. Oxford: Blackwell. [online]. Available from: http://www.digitalhumani-

ties.org/companion/ (Accessed 14 February 2017).

Scott, D. A. (2015) Conservation and authenticity: Interactions and enquiries. Studies in

Conservation. [online] 60 (5), 291–305.

Shanken, E. A. (2009) Art and electronic media. Phaidon Press, London.

Shanken, E. A. (2002a) Art in the Information Age: Technology and Conceptual Art. Leo-

nardo. 35 (4), 433–438.

Shanken, E. A. (2002b) Cybernetics and art: cultural convergence in the 1960s. From En-

ergy to Information. 155–177.

Silberschatz, A., Galvin, P.B., Gagne, G., (2014) Operating System Concepts Essentials.

Second Edition. John Wiley & Sons, Inc.

Singer, J. (1998) ‘Practices of software maintenance’, in Proceedings of the International

Conference on Software Maintenance, 1998. 1998 IEEE. pp. 139–145. [online].

Available from: http://ieeexplore.ieee.org/abstract/document/738502/.

Sommerville, I. (2015) Software Engineering. 10th Edition (Global Edition). Boston, Mass.;

Amsterdam; Cape Town: Pearson Education.

de Souza, S.C.B., Anquetil, N., Oliveira, K.M. de, (2006) Which documentation for software

maintenance? Journal of the Brazilian Computer Society. 12 (3), 31–44.

Spear, A. D. (2006) Ontology for the twenty first century: An introduction with recommenda-

tions. [online]. Available from: http://ifomis.uni-saarland.de/bfo/documents/man-

ual.pdf (Accessed 16 February 2017). [online]. Available from: http://ifomis.uni-saar-

land.de/bfo/documents/manual.pdf (Accessed 16 February 2017).

Ensom - Technical Narratives

256

Spolsky, J. (2008) Why are the Microsoft Office file formats so complicated? (And some

workarounds). Joel on Software [online]. Available from: https://www.joelonsoft-

ware.com/2008/02/19/why-are-the-microsoft-office-file-formats-so-complicated-and-

some-workarounds/ (Accessed 6 September 2017).

Stanford Center for Biomedical Informatics Research (2016) protégé. [online]. Available

from: https://protege.stanford.edu/products.php (Accessed 29 July 2018).

Stringer, E. T. (2013) Action research. Sage Publications.

Stroulia, E. & Systä, T. (2002) Dynamic analysis for reverse engineering and program under-

standing. ACM SIGAPP Applied Computing Review. 10 (1), 8–17.

Suber, P. (1988) What is software? The Journal of Speculative Philosophy. 89–119.

von Suchodoletz, D., Rechert, K., Valizada, I., (2013) Towards Emulation-as-a-Service:

Cloud Services for Versatile Digital Object Access. International Journal of Digital

Curation. 8 (1), 131–142.

Taylor, G. D. (2014) When the Machine Made Art: The Troubled History of Computer Art.

Bloomsbury Publishing USA.

Tate (2017) Time-based media – Art Term [online]. Available from:

https://www.tate.org.uk/art/art-terms/t/time-based-media (Accessed 25 February

2019).

Terras, M. (2005) Reading the readers: Modelling complex humanities processes to build

cognitive systems. Literary and Linguistic Computing. 20 (1), 41–59.

The Institute of Conservation (2014) The Institute of Conservation’s Code of Conduct.

[online]. Available from: https://icon.org.uk/system/files/docu-

ments/icon_code_of_conduct.pdf (Accessed 8 March 2018).

Thibodeau, K. (2002) Overview of Technological Approaches to Digital Preservation and

Challenges in Coming Years. [online]. Available from: https://web.ar-

chive.org/web/20160520092136/http://www.clir.org:80/pubs/re-

ports/pub107/thibodeau.html (Accessed 11 November 2014).

Tilley, S.R., Müller, H.A., Orgun, M.A., (1992) ‘Documenting software systems with views’, in

Proceedings of the 10th annual international conference on Systems documenta-

tion. 1992 ACM. pp. 211–219. [online]. Available from: http://dl.acm.org/cita-

tion.cfm?id=147033.

Time-Based Media and Digital Art Working Group (2014) TECHNOLOGY EXPERIMENTS

IN ART: Conserving Software-Based Artworks [online]. Available from:

https://www.si.edu/tbma/symposiums (Accessed 6 March 2019).

Tribe, M. & Jana, R. (2006) New Media Art. Taschen London and Cologne.

Upward, F. (1996) Structuring the records continuum (Series of two parts) Part 1: Post cus-

todial principles and properties. Archives and Manuscripts. 24 (2), 268.

Upward, F. (1997) Structuring the records continuum (Series of two parts) Part 2: Structu-

ration theory and recordkeeping. Archives and Manuscripts. 25 (1), 10.

V2_Institute for the Unstable Media (2004) Capturing Unstable Media: Glossary.

Ensom - Technical Narratives

257

V2_Institute for the Unstable Media (2003a) Deliverable 1.2: Documentation and capturing

methods for unstable media arts. [online]. Available from: http://v2.nl/archive/arti-

cles/documentation-and-capturing-methods-for-unstable-media-arts.

V2_Institute for the Unstable Media (2003b) Deliverable 1.3: Description models for unstable

media art. [online]. Available from: http://v2.nl/archive/articles/documentation-and-

capturing-methods-for-unstable-media-arts.

van de Vall, R., Hölling, H., Scholte, T., Stigter, S., (2011) Reflections on a biographical ap-

proach to contemporary art conservation. [online]. Available from:

http://dare.uva.nl/record/434262 (Accessed 8 October 2015).

van de Vall, R. (2015) The Devil and the Details: The Ontology of Contemporary Art in Con-

servation Theory and Practice. The British Journal of Aesthetics. 55 (3), 285–302.

van Saaze, V. (2013) Installation Art and the Museum : Presentation and Conservation of

Changing Artworks. Amsterdam University Press.

Victoria and Albert Museum (2011) A History of Computer Art [online]. Available from:

http://www.vam.ac.uk/content/articles/a/computer-art-history/ (Accessed 1 June

2017).

VMware (2018) VMware Workstation Pro 12. VMware. [online]. Available from:

https://my.vmware.com/en/web/vmware/info/slug/desktop_end_user_compu-

ting/vmware_workstation_pro/14_0 (Accessed 3 March 2018).

Waddington, S., Hedges, M., Riga, M., Mitzias, P., Kontopoulos, E., Kompatsiaris, I., Vion-

Dury, J.-Y., Lagos, N., Darányi, S., Corubolo, F., others, (2016) PERICLES–Digital

Preservation through Management of Change in Evolving Ecosystems. The Suc-

cess of European Projects using New Information and Communication Technolo-

gies. 51.

Waters, D. & Garrett, J. (1996) Preserving Digital Information. Report of the Task Force on

Archiving of Digital Information.

Wardrip-Fruin, N. & Montfort, N. (2003) The New Media Reader. MIT press.

Wharton, G. (2016) Artist intention and the conservation of contemporary art. Objects Spe-

cialty Group Postprints. 22. [online]. Available from: http://resources.conservation-

us.org/osg-postprints/wp-content/uploads/sites/8/2015/05/osg022-01.pdf.

Wharton, G. & Molotch, H. (2009) ‘The Challenge of Installation Art’, in Conservation: Princi-

ples, Dilemmas and Uncomfortable Truths. 1st Edition. Amsterdam; Boston: Lon-

don: Elsevier/Butterworth-Heinemann; In Association with the Victoria & Albert Mu-

seum. 210–222.

White Cube (2010) Christian Marclay: The Clock, Mason’s Yard 2010 [online]. Available

from: http://whitecube.com/exhibitions/christian_marclay_the_clock_ma-

sons_yard_2010/ (Accessed 1 February 2018).

Wiley, C., Novitskova, K., Dullaart, C., Archey, K., Coburn, T., Cairns, S., Cornell, L., (2013)

Beginnings + Ends. frieze magazine. (159) [online]. Available from:

https://frieze.com/article/beginnings-ends (Accessed 11 June 2017).

Wilson, A. (2007) Significant Properties Report. [online]. Available from: http://citese-

erx.ist.psu.edu/viewdoc/download?doi=10.1.1.109.7923&rep=rep1&type=pdf (Ac-

cessed 12 August 2016).

Ensom - Technical Narratives

258

Woods, K., Lee, C.A., Garfinkel, S., (2011) ‘Extending digital repository architectures to sup-

port disk image preservation and access’, in [Online]. 2011 ACM Press. p. 57.

[online]. Available from: http://portal.acm.org/citation.cfm?doid=1998076.1998088

(Accessed 11 November 2014).

World Wide Web Consortium (2012) OWL 2 Web Ontology Language Document Overview

[online]. Available from: http://www.w3.org/TR/2012/REC-owl2-overview-20121211/.

Yeo, G. (2010) ‘Nothing is the same as something else’: significant properties and notions of

identity and originality. Archival Science. [Online] 10 (2), 85–116.

Yuill, S. (2008) ‘Concurrent Versions System’, in Matthew Fuller (ed.) Software Studies: A

Lexicon. Cambridge, Massachusetts; London, England: The MIT Press.

Zhang, P. & Benjamin, R. I. (2007) Understanding information related fields: A conceptual

framework. Journal of the American Society for Information Science and Technol-

ogy. 58 (13), 1934–1947.

Ensom - Technical Narratives

259

APPENDIX I: ARTWORK CASE STUDY

DESCRIPTIONS

9.1. Case Studies

Seven software-based artwork case studies were selected as the focus of this

research. These artworks are all part of the Tate collection and have been displayed

at least once since acquisition. As such, they are already accompanied by a

considerable body of documentation generated within the institution, in addition to the

tacit knowledge which resides in the conservators and other individuals who have

been involved in their care.

In this section I briefly introduce each artwork, with the intention of providing essential

background to enable the works to be referenced within the rest of the text without

the need to repeat basic descriptive information. The summaries provided in the

following sections include:

● Description of the work as a conceptual whole and critical information

regarding the context of the work

● Description of the technologies involved in the production and realisation of

the work, focusing particularly on the software components

Ensom - Technical Narratives

260

● Photographic or screen capture documentation of at least one realisation of

the work

9.1.1. Michael Craig-Martin - Becoming (2003)

Becoming consists of a 2D animation generated in real-time by a software program,

and presented on a wall-mounted LCD screen. The screen’s bevel provides framing

and conceals the computer on which the software runs. The animation features an

assemblage of objects rendered in the style of Craig-Martin’s signature line drawings.

Eighteen vividly coloured objects (a chair, a pair of pliers, a tape cassette, a fan, a

pitchfork, a sandal, a light bulb, a drawer, a metronome, a book, a bucket, a TV, a

flashlight, a safety-pin, a knife, a pair of handcuffs and a medicine jar spilling pills)

fade in and out of visibility against a fuchsia pink background. The number of objects

visible at any one time is randomised so that unpredictable combinations may arise.

This work is one of a series of technologically similar works created in collaboration

with the London-based digital design and production studio AVCO.

Figure 27. Michael Craig-Martin, Becoming, 2003 (T11812). Photograph of installed work. ©

Michael Craig-Martin and Tate, London 2018.

Ensom - Technical Narratives

261

Underlying Becoming is a Macromedia Shockwave executable file running on a

Windows XP PC. The objects are 2D vector images positioned in a pre-defined

relational arrangement, the rendering and animation of which is controlled by the

Shockwave playback engine embedded in the executable. The images fade in an out

of the screen according to parameters defined in the code, which constrains the

number of objects visible at any one time and the speed and regularity with which

they appear and disappear. The software was originally developed in Macromedia

Director, with custom code written in the Lingo scripting language. As part of a

research project undertaken in 2010, the software was ported to Flash, with the code

rewritten for ActionScript 3.0.

9.1.2. Cory Arcangel - Colors (2005)

Colors is a software program which plays back the 1988 movie Colors (directed by

Dennis Hopper), one line of horizontal pixels at a time, with each line stretched

vertically to fill the screen. The resulting animated bands of colour are presented as

a projection in a dark exhibition space, with the original movie soundtrack playing

from stereo speakers. The dynamic patterns of abstract colour reference the source

film itself (which is about Los Angeles gangs), the analog special effects technique

known as slit-scan, and artistic practices such as colour field painting and

experimental film.

Figure 28. Cory Arcangel, Colors, 2005 (L02995). Still image capture. © Cory Arcangel and

Tate, London 2018.

Ensom - Technical Narratives

262

The software employed is an Apple OSX application developed in Apple’s XCode

development environment using the OpenFrameworks toolkit. The application uses

the QuickTime and OpenGL frameworks embedded in OSX to process a QuickTime

digital video file in real-time. The video file is sourced from a DVD of the original

movie. The video file is played back frame by frame according to its encoded

framerate, but only one horizontal row of pixels is rendered each time, and each row

stretched vertically to fill a 1024x768 resolution area. The software loops after it has

played the entire movie through for that pixel row, and moves on to the next row of

horizontal pixels from the first frame. When the program reaches the last line of pixels,

it returns to the first row and starts the process again.

9.1.3. Sandra Gamarra - LiMac Museum Shop (2005)

LiMac Museum Shop is an installation which mimics the formal trappings of a

museum gift shop, and forms a part of a larger project in which Gamarra has created

a fictional museum of contemporary art for Lima, Peru (‘Museo de Arte

Contemporáneo de Lima’ or ‘LiMac’). Gamarra has constructed a complete corporate

identity for the museum including branding, merchandise and the focus for this case

study: a website. The site is accessible via a terminal as part of the installation, but

also exists externally and independently at a public domain, where it remains under

the artists control and is regularly updated. The website includes online exhibitions, a

shop and even a spurious “friends of the museum” scheme.

Figure 29. Sandra Gamarra, LiMac Museum Shop, 2005. Images of installation at Tate

Modern in 2011. © Sandra Gamarra and Tate, London 2018.

Ensom - Technical Narratives

263

Figure 30. Screenshot of the Wordpress-based LiMac website in 2018. © Sandra Gamarra.

The LiMac website has been realised in various version through time, aping the

progression of museum website development and design. The current version of the

website was developed for WordPress by ComCom, a Spanish web design company.

WordPress is a content management system (CMS) which provides a user-friendly

website management and customisation interface, and has a back-end which

supports custom PHP code for page templates. The WordPress installation is

supported by a server running the LAMP stack, a popular server platform which

consists of a Linux operating system, Apache Web Server software, MySQL database

software and the PHP interpreter. These tools operate together to serve the web

pages to site visitors via HTTP in their chosen web browser.

9.1.4. Rafael Lozano-Hemmer - Subtitled Public (2005)

Subtitled Public is an interactive installation which tracks visitors to a darkened

exhibition space, and projects a ‘subtitle’ word onto them which follow them around

the space. Visitors are monitored by surveillance cameras, which feed images to a

motion-tracking software installed on a network of computers. The words are selected

randomly from a pre-defined set of verbs conjugated in the third person. If two visitors

touch, the words projected onto them will be exchanged. Occasionally the subtitling

process is interrupted for a short time, as the camera feed is projected back into room.

Ensom - Technical Narratives

264

Figure 31. Rafael Lozano-Hemmer, Subtitled Public, 2005 (T12565). Photograph of two

subtitled gallery visitors interacting during an installation. © Rafael Lozano-Hemmer and

Tate, London 2018.

Subtitled Public was developed in the Borland Delphi programming environment,

which uses a derivative of the language Object Pascal. The programmer, Conroy

Badger, utilised open source computer vision libraries, from which bespoke software

was constructed to implement the tracking system. The software consists of a set of

Windows executables which were developed for the Windows XP operating system,

and installed on a set of Mac Mini computers running Bootcamp. The full expanse of

the exhibition space is covered using a variable number of surveillance pods running

this software, each consisting of a computer, infra-red sensitive camera and short

throw projector. The surveillance pod computers are networked and controlled

centrally by a master computer.

9.1.5. Jose Carlos Martinat Mendoza - Stereo Reality Environment 3:
Brutalismo (2007)

At the centre of the Stereo Reality Environment 3: Brutalismo installation is a scale

model of the former Peruvian military headquarters building known as the

“Pentagonito”, which became notorious during the Fujimori presidency as a site of

torture and murder perpetrated by the secret service. On top of the sculpture sit a set

Ensom - Technical Narratives

265

of thermal printers, which are connected to a computer visible on the floor of the

exhibition space. This computer is connected to the internet, and harvests fragments

of text from web page which contain references to “Brutalismo” or “Brutalism”. These

text fragments are then printed onto slips of paper which fall to the gallery floor and

accumulate during the exhibition period.

Figure 32. Jose Carlos Martinat Mendoza, Stereo Reality Environment 3: Brutalism, 2007

(T13251). Photograph of the work installed at Tate Modern in 2011. © Jose Carlos Martinat

Mendoza and Tate, London 2018.

Brutalism employs a pair Java programs, developed in the NetBeans IDE, which carry

out two primary functions. The first carries out internet searches using the Google

Search API, scrape fragments of text from search results for the terms ‘brutalism’

and ‘brutalismo’, and store these fragments in a MySQL database for later access.

The second program takes text fragments from the database and prints them out via

the thermal printers. The software runs from on a repurposed Dell workstation PC,

Ensom - Technical Narratives

266

running the Linux Ubuntu operating system, which is visibly connected via a mass of

cabling. The software originally connected to the till receipt printers employed via the

DB-25 parallel port interface, while a later version was developed that can utilise the

USB protocol.

9.1.6. John Gerrard - Sow Farm (near Libbey, Oklahoma) 2009 (2009)

Sow Farm (near Libbey, Oklahoma) 2009 is a real-time 3D simulation depicting an

unmanned pig farm in a remote region of the Great Plains in Oklahoma, United

States, seen from the perspective of a slowly circling virtual camera. Running a

complete simulation cycle over a period of 365 days real time, the 3D environment

features realistic rendering of industrial buildings, arid prairie landscape and day-night

cycles complete with dynamic sun and stars. Once every 156 days in real time, a

truck drives up to the buildings and waits for one hour. Sow Farm is one in a series

of works depicting buildings relating to the military-industrial complex in the USA. The

work can be displayed in a variety of ways, but is usually presented as a projection in

a darkened gallery space.

Figure 33. John Gerrard, Sow Farm (near Libbey, Oklahoma) 2009, 2009 (T14279).

Photograph of the work installed at Tate Britain in 2016. © John Gerrard and Tate, London

2018.

The Sow Farm software consists of a Windows executable file which packages the

3D data assets and rendering engine, and an associated set of plain-text

Ensom - Technical Narratives

267

configuration files. Running the software at the level of quality specified by the artist

requires a high performance PC with a powerful graphics card and access to

Microsoft’s DirectX 9 framework. The software was built in a proprietary software

package for the development of real-time 3D applications called Quest3D. This

software package allows the authoring of complex 3D environments (such as games

or architectural simulations) without having to write a 3D rendering engine from

scratch. Custom code components were added by the artist and his team in the form

of Quest3D plugins (written in C++) and HLSL shaders.

Ensom - Technical Narratives

268

APPENDIX II: CONCEPTUAL MODEL FOR

THE REPRESENTATION OF SOFTWARE-

BASED ARTWORK SYSTEMS

10.1. Introduction to OWL 2 Ontology

Below is documentation of the classes and object properties and data properties

specified in version 1.00 of the Software-based Art Structure Ontology.

Documentation was generated using Widoco (Garijo, 2018), and a RDF/XML format

OWL 2 (World Wide Web Consortium, 2012) ontology generated in Protégé 5.2

(Stanford Center for Biomedical Informatics Research, 2016). Named individuals

have been excluded from this version for brevity, but are available in the online

version, maintained on GitHub by the author (Ensom, 2018). While the version of the

ontology which this documentation describes will remain static as a part of this thesis,

the GitHub version may be updated in the future, so should be referred to if the

ontology is being reused.

The following system of annotation is used to indicate entity types:

• c: Classes

• op: Object Properties

Ensom - Technical Narratives

269

• dp: Data Properties

10.2. Classes

Abstract Componentc

IRI: http://tomensom.com/saso#AbstractComponent

has sub-classes
Technical Environment c

is in domain of
is externally hosted dp

Androidc

IRI: http://tomensom.com/saso#Android

has super-classes
Operating System c

is disjoint with
Linux c, MacOS c, Windows c, iOS c

APIc

IRI: http://tomensom.com/saso#API

has super-classes
Software c

has members
google search a p i 2011 ni

is disjoint with
Binary c, Database Software c, Driver c, Instrument c, Operating System c,
Runtime Environment c, Runtime Library c

Artworkc

IRI: http://tomensom.com/saso#Artwork

A distinct intellectual creation.

is in domain of
has realisation op, has variant op, has version op

has members
t11812 becoming ni, t13251 brutalismo ni, t14279 sow farm ni

Audio Interfacec

IRI: http://tomensom.com/saso#AudioInterface

has super-classes
External Hardware c

Ensom - Technical Narratives

270

Binaryc

IRI: http://tomensom.com/saso#Binary

The executable representation of a software program.

has super-classes
Software c

is disjoint with
API c, Database Software c, Driver c, Instrument c, Operating System c,
Runtime Environment c, Runtime Library c

Casec

IRI: http://tomensom.com/saso#Case

has super-classes
Hardware c

is disjoint with
External Hardware c, Internal Hardware c

Concrete Componentc

IRI: http://tomensom.com/saso#ConcreteComponent

has sub-classes
Data c, Hardware c, Software c

is in domain of
is externally hosted dp

Connectorc

IRI: http://tomensom.com/saso#Connector

Software that allows communication between other software components.

has super-classes
Software c

has members
j d b c ni

Controllerc

IRI: http://tomensom.com/saso#Controller

Hardware that provides an interface for other hardware to connect to the host
machine.

has super-classes
Internal Hardware c

CPUc

Ensom - Technical Narratives

271

IRI: http://tomensom.com/saso#CPU

has super-classes
Internal Hardware c

is disjoint with
GPU c, Internal Soundcard c, RAM c, Storage Device c

Datac

IRI: http://tomensom.com/saso#Data

A component with a material manifestation which is only verifiable through the use
of computer hardware and appropriate rendering software.

has super-classes
Concrete Component c

has sub-classes
Image c, SQL c, Video c

is in range of
has data component op

Database Softwarec

IRI: http://tomensom.com/saso#DatabaseSoftware

Software that manages databases.

has super-classes
Software c

has members
my s q l 5.1 ni

is disjoint with
API c, Binary c, Driver c, Instrument c, Operating System c, Runtime
Environment c, Runtime Library c

Display Devicec

IRI: http://tomensom.com/saso#DisplayDevice

has super-classes
External Hardware c

has sub-classes
Monitor c, Projector c

is disjoint with
Keyboard c, Mouse c, Printer c

Driverc

IRI: http://tomensom.com/saso#Driver

A specialised form of software which supports communication between software,
operating system and hardware.

Ensom - Technical Narratives

272

has super-classes
Software c

has members
n v i d i a display driver 285.62 ni

is disjoint with
API c, Binary c, Database Software c, Instrument c, Operating System c,
Runtime Environment c, Runtime Library c

External Hardwarec

IRI: http://tomensom.com/saso#ExternalHardware

Hardware component which is intended to be exposed during use.

has super-classes
Hardware c

has sub-classes
Audio Interface c, Display Device c, Keyboard c, Mouse c, Printer c

is disjoint with
Case c, Internal Hardware c

GPUc

IRI: http://tomensom.com/saso#GPU

has super-classes
Internal Hardware c

is disjoint with
CPU c, Internal Soundcard c, RAM c, Storage Device c

Hardwarec

IRI: http://tomensom.com/saso#Hardware

A component with a material manifestation which is verifiable without the use of
other hardware.

has super-classes
Concrete Component c

has sub-classes
Case c, External Hardware c, Internal Hardware c

is in domain of
has interface op, is virtual dp

is in range of
has hardware component op, has interface op

Hardware Environmentc

IRI: http://tomensom.com/saso#HardwareEnvironment

A constellation of interconnected software components that form an environment in
which software might be executed.

Ensom - Technical Narratives

273

has super-classes
Technical Environment c

is in domain of
has hardware component op

has members
t13251 brutalismo dell workstation ni, t14279 sow farm custom p c1 ni, t14279
sow farm v mware v m test ni

HDDc

IRI: http://tomensom.com/saso#HDD

has super-classes
Storage Device c

is disjoint with
SSD c, SSHD c

Imagec

IRI: http://tomensom.com/saso#Image

has super-classes
Data c

Instrumentc

IRI: http://tomensom.com/saso#Instrument

A specialised type of software which is capable of intercepting or measuring the
properties of a hardware or software component.

has super-classes
Software c

is disjoint with
API c, Binary c, Database Software c, Driver c, Operating System c, Runtime
Environment c, Runtime Library c

Internal Hardwarec

IRI: http://tomensom.com/saso#InternalHardware

Hardware component which is intended to be enclosed during use.

has super-classes
Hardware c

has sub-classes
CPU c, Controller c, GPU c, Internal Soundcard c, RAM c, Storage Device c

is disjoint with
Case c, External Hardware c

Internal Soundcardc

IRI: http://tomensom.com/saso#InternalSoundcard

Ensom - Technical Narratives

274

has super-classes
Internal Hardware c

is disjoint with
CPU c, GPU c, RAM c, Storage Device c

iOSc

IRI: http://tomensom.com/saso#iOS

has super-classes
Operating System c

is disjoint with
Android c, Linux c, MacOS c, Windows c

Keyboardc

IRI: http://tomensom.com/saso#Keyboard

has super-classes
External Hardware c

is disjoint with
Display Device c, Mouse c, Printer c

Linuxc

IRI: http://tomensom.com/saso#Linux

has super-classes
Operating System c

is disjoint with
Android c, MacOS c, Windows c, iOS c

MacOSc

IRI: http://tomensom.com/saso#MacOS

has super-classes
Operating System c

is disjoint with
Android c, Linux c, Windows c, iOS c

Monitorc

IRI: http://tomensom.com/saso#Monitor

has super-classes
Display Device c

Mousec

IRI: http://tomensom.com/saso#Mouse

Ensom - Technical Narratives

275

has super-classes
External Hardware c

is disjoint with
Display Device c, Keyboard c, Printer c

Operating Systemc

IRI: http://tomensom.com/saso#OperatingSystem

A specialised form of software supporting the execution of software programs and
communication with hardware and other components. An operating system is
usually composed of a kernel—the primary control system—and supporting
interfaces, frameworks and services.

has super-classes
Software c

has sub-classes
Android c, Linux c, MacOS c, Windows c, iOS c

has members
ubuntu 7.04 ni, windows 7 build7601 ni

is disjoint with
API c, Binary c, Database Software c, Driver c, Instrument c, Runtime
Environment c, Runtime Library c

Printerc

IRI: http://tomensom.com/saso#Printer

has super-classes
External Hardware c

has members
thermal printer1 ni, thermal printer2 ni, thermal printer3 ni, thermal printer4 ni

is disjoint with
Display Device c, Keyboard c, Mouse c

Projectorc

IRI: http://tomensom.com/saso#Projector

has super-classes
Display Device c

RAMc

IRI: http://tomensom.com/saso#RAM

has super-classes
Internal Hardware c

is disjoint with
CPU c, GPU c, Internal Soundcard c, Storage Device c

Realisationc

Ensom - Technical Narratives

276

IRI: http://tomensom.com/saso#Realisation

An embodiment of a particular variant of the work in time and space.

is in domain of
has constituent op

is in range of
has realisation op

has members
t11812 becoming realisation tate britain2013 ni, t13251 brutalismo
realisation2011 ni, t14279 sow farm realisation2016 ni

Runtime Environmentc

IRI: http://tomensom.com/saso#RuntimeEnvironment

Software that provides an environment in which other software can be executed.

has super-classes
Software c

has members
j r e 7 ni

is disjoint with
API c, Binary c, Database Software c, Driver c, Instrument c, Operating
System c, Runtime Library c

Runtime Libraryc

IRI: http://tomensom.com/saso#RuntimeLibrary

Software which provides shared functionality, usable by other software at runtime.

has super-classes
Software c

has members
direct x runtime april2005 x86 ni, phidget21 library x86 ni

is disjoint with
API c, Binary c, Database Software c, Driver c, Instrument c, Operating
System c, Runtime Environment c

Softwarec

IRI: http://tomensom.com/saso#Software

A component with a material manifestation which is only verifiable through the use
of computer hardware.

has super-classes
Concrete Component c

has sub-classes
API c, Binary c, Connector c, Database Software c, Driver c, Instrument c,
Operating System c, Runtime Environment c, Runtime Library c, Software
Super-Object c

Ensom - Technical Narratives

277

is in domain of
architecture dp, has interface op

is in range of
has hardware component op, has interface op, has software component op

Software Environmentc

IRI: http://tomensom.com/saso#SoftwareEnvironment

A constellation of interconnected hardware components that form an environment in
which software might be executed.

has super-classes
Technical Environment c

is in domain of
has software component op

is in range of
hosts environment op

has members
t13251 brutalismo software environment1 ni, t14279 sow farm software
environment1 ni

Software Super-Objectc

IRI: http://tomensom.com/saso#SoftwareSuperObject

A subset of software consisting of binaries and data assets which perform some
function or purpose. This component is a simplification of what may be a very
variable structure.

has super-classes
Software c

is in domain of
has data component op, has software component op, is executable in op

has members
t13251 brutalismo s s o ni, t14279 sow farm s s o ni

SQLc

IRI: http://tomensom.com/saso#SQL

has super-classes
Data c

has members
t13251 brutalismo database ni

SSDc

IRI: http://tomensom.com/saso#SSD

has super-classes
Storage Device c

is disjoint with

Ensom - Technical Narratives

278

HDD c, SSHD c

SSHDc

IRI: http://tomensom.com/saso#SSHD

has super-classes
Storage Device c

is disjoint with
HDD c, SSD c

Storage Devicec

IRI: http://tomensom.com/saso#StorageDevice

is equivalent to
HDD c or SSD c or SSHD c

has super-classes
Internal Hardware c

has sub-classes
HDD c, SSD c, SSHD c

is disjoint with
CPU c, GPU c, Internal Soundcard c, RAM c

Technical Environmentc

IRI: http://tomensom.com/saso#TechnicalEnvironment

A constellation of interconnected hardware and software components that form an
environment in which a software program might be executed.

is equivalent to
Hardware Environment c or Software Environment c

has super-classes
Abstract Component c

has sub-classes
Hardware Environment c, Software Environment c

is in range of
is executable in op

Variantc

IRI: http://tomensom.com/saso#Variant

A specific implementation of a version which has broadly similar formal, functional
and behavioural characteristics.

is in domain of
has realisation op

is in range of
has variant op

has members

Ensom - Technical Narratives

279

t11812 becoming variant flash2010 ni, t11812 becoming variant
shockwave2003 ni

Versionc

IRI: http://tomensom.com/saso#Version

An expression of the artwork with well defined formal, functional and behavioural
characteristics.

is in domain of
has realisation op, has variant op

is in range of
has version op

has members
t11812 becoming version 2003 ni

Videoc

IRI: http://tomensom.com/saso#Video

has super-classes
Data c

Windowsc

IRI: http://tomensom.com/saso#Windows

has super-classes
Operating System c

is disjoint with
Android c, Linux c, MacOS c, iOS c

10.3. Object Properties

has constituentop

IRI: http://tomensom.com/saso#hasConstituent

A Realisation is made up of one or more Software Super-Object and one or more
Technical Environment.

has domain
Realisation c

has range
Software Super-Object c or Technical Environment c

has data componentop

IRI: http://tomensom.com/saso#hasDataComponent

Ensom - Technical Narratives

280

A Software Super-Object can consist of one or more Data components.

has domain
Software Super-Object c

has range
Data c

has hardware componentop

IRI: http://tomensom.com/saso#hasHardwareComponent

A Hardware Environment can consist of one or more Hardware components.

has domain
Hardware Environment c

has range
Hardware c
Software c

has interfaceop

IRI: http://tomensom.com/saso#hasInterface

A Software or Hardware component may use a Software or Hardware component to
communicate with another Software and Hardware component.

has domain
Hardware c
Software c

has range
Hardware c
Software c

has realisationop

IRI: http://tomensom.com/saso#hasRealisation

An Artwork, Version or Variant may have one or more Realisation.

has domain
Artwork c
Variant c
Version c

has range
Realisation c

has software componentop

IRI: http://tomensom.com/saso#hasSoftwareComponent

A Software Super-Object or Software Environment can consist of one or more
Software component.

Ensom - Technical Narratives

281

has domain
Software Environment c
Software Super-Object c

has range
Software c

has variantop

IRI: http://tomensom.com/saso#hasVariant

An Artwork or Version may have one or more Variant.

has domain
Artwork c
Version c

has range
Variant c

has versionop

IRI: http://tomensom.com/saso#hasVersion

An Artwork may have one or more Version.

has domain
Artwork c

has range
Version c

hosts environmentop

IRI: http://tomensom.com/saso#hostsEnvironment

A Technical Environment (Hardware or Software) may host another Software
Environment.

has domain
Hardware Environment c or Software Environment c

has range
Software Environment c

is executable inop

IRI: http://tomensom.com/saso#isExecutableIn

A Software Super-Object may have one or more Technical Environment in which it
can be sucessfully executed.

has domain
Software Super-Object c

has range
Technical Environment c

Ensom - Technical Narratives

282

10.4. Data Properties

architecturedp

IRI: http://tomensom.com/saso#architecture

Describes the processor or instruction set architecture that the software component
is designed for.

has domain
Software c

is externally hosteddp

IRI: http://tomensom.com/saso#isExternallyHosted

Indicates that a component is not maintained by the organisation.

has domain
Abstract Component c
Concrete Component c

is virtualdp

IRI: http://tomensom.com/saso#isVirtual

Indicates that a hardware component is virtual.

has domain
Hardware c

versiondp

IRI: http://tomensom.com/saso#version

The version number or code of a particular component.

has domain
Data c or Software c

Ensom - Technical Narratives

283

APPENDIX III: SOFTWARE-BASED

ARTWORK TECHNIQUE AND CONDITION

TEXTS

11.1. Introduction to Technique and Condition Texts

These texts were produced as part of my PhD research, using information gathered

during the analysis of the artwork case studies. Each text is written to comply with

Tate’s guidelines on the writing of technical entries for artworks in the collection, while

also necessitating a reconsideration of how these texts might be written in order to

accommodate the specific conceptual and technical considerations posed by

software-based art, and time-based media more generally.

It should be noted that the texts, as they appear here, are unedited drafts and are not

necessarily representative of those that will be published as part of Tate’s online

collections information in the future. The LiMac case study is also excluded from the

texts written, as the website focused on in this thesis is only one component of the

installation in the Tate collection, and a lack of direct access to the technical

components of the work (which are managed by the artist) prevents the analysis

required to write such a text.

Ensom - Technical Narratives

284

11.2 Michael Craig-Martin - Becoming (2003)

Becoming consists of custom software used to generate dynamic 2D graphics

displayed on an LCD screen. These graphics are comprised of a set of brightly

coloured images of household objects which fade in and out in randomly against a

fuchsia background. The screen is embedded within a wall-mounted grey and black

case, which conceals the computer hardware on which the software runs. The

software itself is a Windows Portable Executable file, which contains custom code,

2D graphics and Shockwave playback functionality. The executable file–also known

as a Shockwave projector–does not require any external data or supporting

software beyond the Windows XP operating system on which it runs.

The software was developed in 2003 using Macromedia Director 8, a tool for

creating Shockwave multimedia applications. At this time, Macromedia Director 8

was a commercial tool in widespread use for creating multimedia content for digital

platforms. This work is one of the first works by Craig-Martin to use this technology

and was produced by Daniel Jackson at the London-based digital design company

AVCO Productions. AVCO also worked with other prominent artists at this time who

were producing digital artworks, such as Fiona Banner and Julian Opie. The

software runs on a custom-made PC built by the company Torch Computers Ltd,

the case of which has been professionally resprayed. The hardware used includes a

VIA Ezra 800 Mhz processor, 126 MB of RAM and an Intel 845 graphics chip.

The images that appear in the work are sourced from digital versions of Craig-

Martin’s signature line drawings in the Adobe Illustrator Artwork format. These were

imported to Macromedia Director 8 as vector graphics, and can be individually

animated using code, which determines the appearance and disappearance of the

images. This code was written in Lingo, the high-level scripting language native to

the Macromedia Director 8 software. Source code analysis reveals that the

parameters of the software behaviour are complex and place limits on the

randomisation on the fading of the objects. For example, the number of objects

visible at any one time and the speed and regularity with which they appear and

disappear are all managed by the code.

Becoming was the first software-based artwork to enter Tate’s collection and as

such presented a host of new conservation challenges. In 2010, with an interest in

assessing the suitability of migrating software to another technology in order to slow

the effects of obsolescence, Tate worked closely with the artist and AVCO to

Ensom - Technical Narratives

285

develop contemporary software that maintained the behaviour and formal

characteristics of the original. The software was rebuilt in Adobe Flash Professional

CS5.5, with the code reimplemented in the ActionScript 3 scripting language with

the use of a third-party extension library called GreenSock. The computer case uses

a very similar design to the original, with hardware upgraded to an Intel Celeron 1.8

Ghz processor and 248 MB RAM.

This new version of the software addressed several conservation concerns. Since

the original software was developed, use of Shockwave, Director and associated

technologies had declined in favour of Flash. Furthermore, the timings of the

animations in the Shockwave version were dependent on the CPU speed of the

host computer, which resulted in problems replicating the intended animation speed

on modern hardware. Absolute timings were implemented when the code was re-

written in ActionScript. Alongside rigorous documentation of the work, the

conservation team has tested a number of other conservation strategies, including

virtualisation and emulation.

11.3. Cory Arcangel - Colors (2005)

Colors is a software program which processes a video file—the 1988 film of the

same name—transforming it into bands of animated color which are projected in the

exhibition space. The software program itself is a Mach-O application for Apple’s

Mac OS X operating system and utilises the QuickTime and OpenGL visual

frameworks which are part of this platform. QuickTime is used to decode the video

file and store the current pixel line (starting in the middle of the first frame) in a

buffer, which is then projected as a texture map using OpenGL and stretched to fill

the screen. The video file itself is a QuickTime MOV format DVD transfer of the film

Colors by Dennis Hopper, encoded in H.264 video with PCM audio. The audio of

the video file is decoded and played back by the QuickTime framework as normal.

The software is written in the C++ and Objective-C programming languages. The

artist developed the software using a template from the open-source

OpenFrameworks toolkit for the Xcode integrated development environment (IDE).

The source code, which was also acquired by Tate, contains code comments,

including the comments present in the original OpenFrameworks template and

portion of comments made by the artist. Arcangel has clearly marked these,

evidently intending the code to read, using the format “<CORY>” to open and

“</CORY>” to close these sections, in a playful reference to the syntax of markup

Ensom - Technical Narratives

286

languages such as HTML.

Arcangel has stated that he considers this work the concept of playing back the

video file line by line, stretching that line to fill the projection area, and doing this

until each line has been played (Arcangel, 2012, March 14). Should it become

impossible to run the software on contemporary platforms, this theoretically permits

the rewriting of the software in another programming language. This understanding

of material significance meshes with our understanding of Arcangel’s practice.

Arcangel has talked about his artworks as DIY recipes (Birnbaum, & Arcangel,

2009) and has expressed an affinity with open source culture—much of his artwork

source code is available online (Arcangel, 2013) and in printed publications

(Arcangel, 2017).

Colors is closely related to another artwork by Arcangel called Colors: Personal

Edition, which has been distributed online as free and open-source software. This

work differs conceptually in that the user play back any appropriately encoded video

file using the software. Source code analysis indicates that this version differs only

in one line, which bypasses the black letterboxing found in the source DVD transfer

of the Colors movie. The binaries and source code for Colors: Personal Edition are

available online (Arcangel, 2017), where it is also presented within a corporately

styled website aping software culture of the time (Arcangel, 2009).

The work is displayed at a 16:9 aspect ratio and size of at least 14 feet across, in a

darkened exhibition space. Stereo speakers are mounted on the walls on either side

of the projected image. Since it was last displayed, the QuickTime and OpenGL

framework have both been deprecated in newer versions of MacOS, and it is

expected that at some point support will be completely dropped by Apple. This

means that at some point in the future, should appropriate emulation options not

become available, the work may need to migrated to a new software implementation

in order to keep it running.

11.4. Rafael Lozano-Hemmer - Subtitled Public (2005)

Subtitled Public is a complex interactive installation, consisting of numerous

components brought together in a physical exhibition space. At the heart of the work

is custom software running on a network of what the artist calls “surveillance pods”,

each of which consists of a computer connected to a surveillance camera and

projector—the precise models of which are to some degree flexible.

Ensom - Technical Narratives

287

The hardware set acquired with the work consists of a set of mid-2007 Mac Mini

(Macmini2,1) shuttle computers running Windows XP (via Mac OSX Bootcamp), a

set of Firewire 400 Allied Vision Guppy F-033C surveillance cameras and

associated wide angle lenses, and a set of compact, short throw Canon LV-7265

projectors. These computers are networked via an unmanaged D-Link DGS-2205

ethernet switch, using CAT-5e ethernet cables, to a master computer. Each pod can

cover a certain maximum area depending on the hardware used (such as camera

field of view), which must be considered when installing the work to ensure that

zones of surveillance are appropriately configured.

The custom software programs used consists of three 32-bit Windows Portable

Executables. The first of these, the “Master” program runs from the central master

computer, and manages and controls the networked pod computers, the layout of

the space and the assignment of subtitle words. The other networked computers run

the “Slave” program, which finds targets for tracking within the camera feed and

relays that information back to the master computer over the network. Finally, a

separate camera calibration program is used in the installation to correctly configure

the camera's position and orientation and correct for radial distortion.

The two software programs running on the pod computers use the Microsoft

DirectShow interface, which is a part of Microsoft’s DirectX framework, to access

the camera feeds. Each computer is assigned a static local IPv4 address, a

software communication is carried out using the UDP protocol. A considerable

amount of configuration can be undertaken once the software is installed, allowing

flexibility in the way the software is installed. The word list defined is not an

exhaustive list of conjugated verbs and does not include unusual or particularly

complex verbs. The software uses the Arial font at a dynamically sized scale for the

formatting of the words.

The custom software was developed in the Borland Delphi 7 integrated

development environment (IDE) and coded in the derivative of the Object Pascal

programming language that this environment supports by Conroy Badger, a

programmer who has collaborated with the artist on a number of projects. In its

development a number of open-source computer vision libraries were employed,

including Intel’s Open Source Computer Vision (OpenCV) Library and Image

Processing Library. Badger has stated that Delphi and the UDP protocol were

Ensom - Technical Narratives

288

chosen due to their reliability for real-time applications such as the time-sensitive

tracking carried out in Subtitled Public (Badger, 2008). The DirectShow component

of the code was based on the Amcap program (original in the language C), while the

UDP component uses the open source Indy library for Delphi.

The artwork can be installed in a variable exhibition space, and the number of

surveillance pods adjusted to meet different size requirements. The space is dark,

but uses illuminators fitted with congo-blue filters to provide a low blue light, which

improves the visibility of targets on the infra-red sensitive cameras. The tracking

system is sensitive to cast shadows, and so requires careful management of lighting

sources and wall and floor surfaces when installed.

The artist has stated that while he is very happy with the implementation described

above, it is the concept of “subtitling the public” which is his primary impetus behind

the creation of the work, and as such it is not linked to a specific implementation of

the software or a particular set of hardware (Lozano-Hemmer, 2006). As a result,

there is a certain amount of room for altering components of the system in order to

cope with obsolescence in the future. The artist has also stated that, with

consultation, he would welcome improvements to latency, stability and precision of

tracking.

In 2018, the work was migrated to a new set of hardware, consisting of a set of Intel

i3 NUC PCs running Windows 10, IDS Imaging uEye LE USB 3.1 surveillance

cameras and BenQ MP771 Projectors. The original Delphi software was used,

demonstrating that for now it is possible to run the it in contemporary technical

environments despite the time elapsed since the work was authored. For how long

is unclear, however, as DirectShow, the means of accessing the cameras, has been

deprecated by Microsoft and may be dropped from future versions of Windows.

11.5. Jose Carlos Martinat Mendoza - Stereo Reality
Environment 3: Brutalism (2007)

The primary formal focus of Brutalism is the wooden scale model of the Pentagonito

building. This is a free-standing structure made up of 12 box like elements, each of

which is constructed from glued and screwed pieces of MDF. A variable number of

Nanoptix High-Speed Kiosk thermal printers (typically used for till receipt printing)

are placed on the top of this sculptural component. These printers are connected to

a repurposed Dell Workstation PC (by a visible mass of cables), running the Ubuntu

7.04 operating system (with Gnome 2.18.1 desktop), which sits on a floor next to the

Ensom - Technical Narratives

289

model. This computer is connected to the internet, and runs software which gathers

internet search results relating to the term “brutalism”, and prints fragments of these

onto slips of paper which fall to the gallery floor and accumulate during the works

display.

The software involves two custom Java applications, each of which carries out a

particular function. The first is the internet search harvester component, which uses

the Google Search API to make queries based on pairings of words. The first is

"brutalism", which is then combined with a second word randomly selected from a

set of 11 related terms (such as “Concrete”, “Blood” and “Torture”). Text is

harvested as HTML from the first sentence to contain the words within the page

results, stripped of HTML tags by a special parser component (HTML Parser 1.6),

and then stored in a SQL database managed by MySQL 5.0.38.

The second Java application manages the retrieval of terms from the database, and

communication with the printer. Using SQL queries sent via the JDBC API, the

application retrieves random text fragments from the database, and sends them to a

random printer using the parallel port interface and DB-25 connectors. Printing is

able to continue independently of the internet search component. The same

database is used each time the work is installed, and so allowing it to grow. When

installed, sensors are sometimes used to limit the regularity of printing to only occur

when gallery visitors enter the space.

The software was developed in the NetBean’s 5.51 integrated development

environment (IDE), by the artist and programmer, Arturo Diaz Rosemburg. Using

this IDE provides certain benefits to the programmer, as it is designed for working

with Java programming projects. The function of the software within Brutalism is

similar to that of other works by Martinat, which employ internet searching and

printer. In this case, code from an earlier work in the Estéreo Realidad series called

Inkarri was used as a basis on which to build, artefacts of which are present in some

of the Java class and module names.

Using remote access tools to work on the computers at Tate, modifications have

been made to the software at various points in time, particularly in the run up to its

installation at Tate Modern in 2011. This resulted in the implementation of USB

printer support, to ensure support for printers which do not use the now obsolete

parallel port interface. Modifications have also been made to keep up to date with

changes to the Google Search API. As such, this work must continue to evolve at

Ensom - Technical Narratives

290

the software level, in order to remain functional in a changing technical environment.

11.6. John Gerrard - Sow Farm (2009)

Sow Farm employs a medium the artist calls real-time 3D. This involves the use of a

system of computer hardware and software to render a 3D environment in which

events unfold in real-time. The custom software at the heart of the system is a 32-bit

Windows Portable Executable file, associated with a set of text files which allow

manual configuration of certain elements of the simulation and rendering. The

executable file encapsulates the data assets (such as 3D models and textures)

which are used to realise the 3D environment, as well as the proprietary rendering

engine and the simulation model which controls the day-night cycles. The software

was developed for Windows 7, and requires access to additional supporting

software on the host system including the Phidget21 libraries, DirectX 9 helper

libraries and Microsoft Visual C/C++ runtime libraries.

Gerrard worked with a production team at his studio in Vienna to create Sow Farm.

The development of the software involved a team including a production lead

(Werner Poetzelberger), 3D modeller (Daniel Fellsner) and programmer (Helmut

Bressler). An engine and authoring tool called Quest3D (in this case version 3.6.6)

was used to create the software. Quest3D provided a development environment for

the creation of 3D software, through the simplification of some of the more complex

aspects of working with 3D graphics. This engine would have been typically used for

purposes such as architectural visualisation and video game development.

In addition to the engine at the heart of the development process, a number of other

processes and tools were utilised in the multi-stage production process. As for other

works of this kind by Gerrard, this began with research photography undertaken in

the field at a real-world pig farm. Using this material, 3D assets were created in

Maya and 3D Studio Max, two industry standard software tools for 3D modelling and

animation. These assets could then be imported into Quest3D as DirectX .X files.

Textures were created in Adobe Photoshop and imported into Quest3D as Direct

Draw Surface (DDS) files. Surfaces in the environment consist of a number of

texture layers, including diffuse (colour), specular (colour and intensity), normal

(light mapping) and transparency (alpha). Ambient occlusion information, used to

help achieve realistic shadowing, was baked into the diffuse texture layer. The

models and textures were assembled as a scene in Quest3D, where lighting and

custom shaders–a way of implementing 3D rendering effects–written in the HLSL

Ensom - Technical Narratives

291

programming language were added. For example, the grass effects are achieved

using a repurposed shader for generating animal fur.

The work is usually projected at a resolution of 1600x1200 pixels (4:3 aspect ratio)

when installed, in a light locked room with flooring that reflects some of the

projected image. The computer hardware used to run the software is flexible

between installations, although Gerrard has specified that it should be able to

maintain an output frame rate of at least 60 frames-per-second at all times. When

installed in 2015 at Tate Britain, a PC running Windows 7 Professional (64-bit) was

used with an Intel Core i7 4820k processor, 16GB RAM and an NVIDIA GTX 780

graphics card. The NVIDIA graphics card driver was used to apply a number of

graphical effects, specified by Gerrard, to the rendered output. These included

multi-sample anti-aliasing (reducing edge artefacts), anisotropic filtering (improving

texture detail at angles) and vertical sync (locking frame rate to refresh rate). The

software uses the host machines system clock on which to base the time of day

simulated in the 3D environment, which is set to the real-time in Oklahoma when the

work is on display. The appearance of the truck operates on a separate time scale,

triggering after the software has been running for 159 days without interruption.

Since creating Sow Farm, Gerrard’s production process has continued to evolve

and Quest3D is no longer used to create new artworks. Furthermore, the support

and sale of Quest3D has been discontinued by its owner, Act-3D. This means that it

is likely that this proprietary software will no longer be updated to function in

contemporary hardware and software environments, increasing risk of

obsolescence. Conservation research at Tate has explored the use of virtualisation

as a means of preserving the work. Virtualisation enables suitable hardware to be

simulated, thus allowing the long-term operation of an appropriate technical

environment in which to run the software.

Ensom - Technical Narratives

292

APPENDIX IV: LITERATURE SEARCH

STRATEGIES AND TERMS

12.1. Literature Search Strategy

Literature was reviewed in a series phases, the first of which focused on an initial

shortlist of search categories identified in collaboration with the project supervisors.

This phase was focused on identifying relevant research within the high-level

categories of art conservation and digital preservation, and the state of the art in the

conservation of software-based art, which operates at their intersection. Further

phases of literature review were carried out relation to specific areas of interest

identified in later chapters, which served to fill gaps identified in existing scholarship

relating to the conservation of software-based art. The high-level search categories

identified were media theory (incorporated in Chapter 2), information science

(incorporated in Chapter 3) and software engineering (incorporated throughout

Chapters 4, 5 and 6). Further information on search terms and their formulation is

detailed in Section 12.2.

Searches were primarily undertaken using academic search engines, and to a lesser

extent the digital and physical library indexes available at King’s College London

Library, Tate Library & Archive and Senate House Library. Google Scholar was the

main academic search engine employed, as in initial tests it was found to return

Ensom - Technical Narratives

293

results equivalent or superior in quantity when compared to other options tested

during literature review. The multidisciplinary or humanities-specialist indexes Base,

CiteSeerX, Project MUSE, Scopus, and Web of Science were all tested. For computer

science and software engineering related topics the IEEE Xplore Digital Library was

also used. Due to the close link between this research and a field of practice of which

a considerable amount of research existing in non peer-reviewed publications,

searches were also passed through Google’s general search engine to ensure these

important sources were not missed. Boolean operators were used frequently in all

searches to narrow down results, as were conjunctions of terms and experimentation

with alternative phrasings. Given their frequent conflation, for cases where the terms

“conservation” or “preservation” were used, search variations using both terms were

carried out.

Literature identified was managed using the Zotero reference manager platform,

where it was grouped into libraries based on the search categories. Zotero and

plugins for LibreOffice Writer and Microsoft Word were used for managing references

and compiling the final bibliography.

12.2. Table of Search Categories and Terms

Term Category Term Sub-term

Art

Conservation

Time-based Media Art

Conservation

Software-based Art Conservation

New Media Art Conservation

Internet Art Conservation

Managing Change in Art

Conservation

Authenticity in Art Conservation

Technical Art History

Art Conservation Documentation
Installation Documentation

Acquisition Documentation

Digital

Preservation

Significant Properties
Significant Properties of Software

Significant Knowledge

Software Preservation

Digital Preservation

Documentation
Digital Preservation Metadata

Digital Preservation Strategies

Emulation in Digital Preservation

Migration in Digital Preservation

Storage in Digital Preservation

Media Theory Software Studies

Ensom - Technical Narratives

294

 Digital Forensics

Media Art History

Computer Art History

Digital Art History

Software Art History

Digital Materiality

Information

Science

Modelling

Lifecycle Modelling

Continuum Theory

Software Modelling / Computer

Systems Modelling

Documentation Theory

Documentation and Representation

Documentation Science

Digital Documentation Theory

Museum Documentation
Cataloguing

Information Systems

Structured Documentation

Metadata

Vocabularies

Ontologies

Software

Engineering

Requirements Engineering
Functional Requirements

Non-functional Requirements

Software Evolution Software Versioning

Software Analysis

Dynamic Analysis / Process

Analysis

Static Analysis / Binary Analysis

Software Reverse Engineering
Decompilation

Source Code Analysis

Legacy Software

Program Comprehension

Table 9. List of primary search terms employed in the literature review undertaken during

this research.

