

Executing Liveness
An examination of the live dimension of code inter-actions

in software (art) practice

Winnie Soon

A thesis submitted in partial fulfilment of the requirements of

Aarhus University for the degree of Doctor of Philosophy.

November 2016

Executing Liveness –
An examination of the live dimension of code inter-actions in software (art) practice
by Winnie Soon

PhD dissertation
School of Communication and Culture,
Aarhus University, 2016.

Main supervisor: Geoff Cox, Associate Professor.
School of Communication and Culture, Aarhus University

Co-supervisor: Christian Ulrik Andersen, Associate Professor.
School of Communication and Culture, Aarhus University

Co-supervisor: Jane Prophet, Professor.
Goldsmith, University of London

Layout and design: Winnie Soon and Polly Poon
Proofreading: David Selden
Danish translation: Rachel Stoklund
Cover image by author. The image is generated by code and the design is referenced from a
throbber in the earlier Unix operating system.

3

import processing.pdf.*;

String[] x = {"—","\\","|","/"};

int scaleFactor = 5;

void setup() {

 size(2000,2000); background(255);

 beginRecord(PDF, "thesis_cover.pdf");

}

void draw() {

 scale(200/72.0);

 for (int h = 0; h < height; h+=10) {

 for (int w = 0; w< width; w+=10) {

 fill(0);

 textSize(6);

 int y = int(random(0, x.length));

 text(x[y], w, h);

 }

 }

endRecord();

noLoop();

}

The above shows a piece of source code written in the language Java (with

an open source software called Processing) for the printed book cover.

As part of the thesis’s submission the USB storage device includes video

documentations and source code for the three submitted projects, namely

Thousand Questions, The Spinning Wheel of Life and Hello Zombies.

Additionally the USB includes a README file for each project containing

information and specification to RUN them.

4

Table of Contents

Table of Figures and Tables .. 6

Words of Thanks .. 10

Abstract (in English) ... 12

Abstract (på	 dansk) ... 14

1 Introduction .. 17

1.1 Motivation: The Listening Post ... 19

1.2 Nonhuman Turn .. 23

1.3 Perspective on Liveness ... 26

1.3.1 The living bodies and the presence ... 26

1.3.2 Interaction between humans and technology .. 30

1.3.3 Temporality and liveness ... 34

1.3.4 Unpredictability and liveness .. 38

1.3.5 A sense of (digital) liveness .. 41

1.4 Aims and Contributions ... 43

1.5 Chapter overview .. 47

2 Approaches to code inter-actions ... 53

2.1 Software Art .. 54

2.2 Software Studies: Three key concepts .. 66

2.2.1 Invisibility ... 68

2.2.2 Performativity .. 75

2.2.3 Generativity .. 82

2.3 Materialist Approach ... 90

2.3.1 Why code inter-actions? .. 93

2.3.2 Live inter-actions ... 96

2.4 Methodological Considerations ... 100

2.4.1 Close reading in Critical Code Studies ... 101

2.4.2 Iterative trials in Software Studies .. 103

2.4.3 Cold gazing in Media Archaeology ... 105

2.5 Reflexive Coding Practice .. 107

5

3 Executing Unpredictable Queries ... 117

3.1 Databases and queries ... 120

3.2 The format of output queries ... 127

3.3 Query as cultural form .. 132

3.4 The unpredictability of live queries ... 140

3.4.1 Random events .. 141

3.4.2 Noise, entropy and randomness .. 148

3.4.3 Operators .. 155

3.5 Inexecutable query in closed platforms ... 161

3.6 Notes on Reflexive Coding Practice: Thousand Questions 171

4 Executing Micro-temporal Streams ... 187

4.1 A cultural reading of a throbber .. 189

4.2 Micro-temporal analysis .. 195

4.2.1 Data Signal Processing .. 198

4.2.2 Data packets and Network protocols ... 203

4.2.3 Buffer and Buffering .. 211

4.2.4 The absence of data .. 218

4.3 The Spinning Wheel of Life .. 223

4.4 Notes on Reflexive Coding Practice: The Spinning Wheel of Life 228

5 Executing Automated Tasks .. 247

5.1 Spam as automated agents ... 251

5.1.1 Hello Zombies .. 253

5.1.2 Loop .. 262

5.1.3 Open or die ... 269

5.1.4 Try and Catch Exceptions .. 272

5.2 A sense of ending in algorithms ... 279

5.3 Notes on Reflexive Coding Practice: Hello Zombies .. 291

6 Unfinished Thesis .. 305

6.1 Contribution .. 307

6.2 Future directions .. 311

Bibliography .. 315

Software (art) projects cited .. 335

6

Table of Figures and Tables

Figure 1.1: Liveness check feature in the Android operating system 28
Figure 2.1: GEO GOO (2008) by JODI 60
Figure 2.2: Whitespace (2003) by Edwin Brady and Chris Morris 64
Figure 2.3: The diagram of Google Will Eat Itself (2005) 74
Figure 2.4: An example of code that listens to mouse events 76
Figure 2.5: Two pieces of Microcodes (2009-) by Pall Thayer 78
Figure 2.6: An excerpt of the work femme Disturbance Library (2012). 78
Figure 2.7: A screen shot of the work Net.Art Generator (1997) by Cornelia
Sollfrank 84
Figure 2.8: A thinking model of code inter-actions 94
Figure 3.1: A love letter from LoveLetters 117
Figure 3.2: Centralized, Decentralized and Distributed Networks 126
Figure 3.3: The Manhattan system of Twitter 127
Figure 3.4: An experiment to extract a sample tweet returned from Twitter
platform. 129
Figure 3.5: Excerpt of code, in Processing Software, for parsing JSON query
from OpenWeatherMap for getting a list of cities’ name. 131
Figure 3.6: Net.Art Generator by Cornelia Sollfrank 137
Figure 3.7: Endless War was shown in Hong Kong as part of the exhibition
Tracking Data: What you read is not what we write (2014) 137
Figure 3.8: A screen shot of Thousand Questions 139
Figure 3.9: A screen shot of Thousand Questions, where the program is
waiting for the next query execution 139
Figure 3.10: A conceptual model of Twitter random input 144
Figure 3.11: Schematic diagram of a general communication system. 149
Figure 3.12: Two binary strings 151
Figure 3.13: A requested query in Thousand Questions 149
Figure 3.14: An excerpt of the returned query in Thousand Questions 156
Figure 3.15: The erasure of the data content of the requested query
in Figure 3.10 156
Figure 3.16: The erasure of the data content of the returned query
in Figure 3.11 156
Figure 3.17: A screen shot of the error page of Net.Art Generator (1997) that
was captured on January 14th, 2016. 167
Figure 3.18: Thousand Questions (2012-2016) 171
Figure 3.19: Thousand Questions in Hong Kong (2012) 173
Figure 3.20: Audio effects in Thousand Questions (2012) 175
Figure 3.21: A conceptual stage, the flow chart, of Thousand Questions 178
Figure 3.22: An excerpt from Thousand Questions’ source code: Setting up
variables and screen dimensions, and establishing a Twitter connection 178

7

Figure 3.23: An excerpt from Thousand Questions’ source code: Querying
Twitter data 179
Figure 3.24: An excerpt from Thousand Questions’ source code: Splitting
tweets to individual characters 179
Figure 3.25: An excerpt from Thousand Questions’ source code:
Processing text-to-speech 180
Figure 3.26: An excerpt from Thousand Questions’ log: The feedback process 180
Figure 3.27: The notes of Thousand Questions in 2012 181
Figure 3.28: The notes of Thousand Questions in 2016 182
Figure 3.29: An excerpt from Thousand Questions’ source code:
General notes 183
Figure 3.30: An excerpt of a returned query from OpenWeatherMap.org 183
Figure 4.1. Throbber in different browsers. 190
Figure 4.2: Throbber in the form of circles and lines 191
Figure 4.3: A code-based throbber 197
Figure 4.4: Discrete time signals 199
Figure 4.5: The clock cycle 200
Figure 4.6: Three-way handshake 204
Figure 4.7: Data packet analysis I - the screen shot highlights the three-way
handshake 206
Figure 4.8: Data packet analysis II - the screen shot highlights the
two greeting messages 207
Figure 4.9: Data packet analysis III - the screen shot highlights the field
‘Time to Live’ for the data packet that transverses from the Youtube server to
a local client computer 209
Figure 4.10: Sliding Window Protocol 214
Figure 4.11: TCP- flow control with the sliding window protocol 215
Figure 4.12: Principle organization of a playback buffer 218
Figure 4.13: The Pirate Cinema (2012-2014) 222
Figure 4.14-4.19: The animated visuals of The Spinning Wheel of Life (2016) 225
Figure 4.20: The mini setup and work-in-progress of
The Spinning Wheel of Life (2016) 226
Figure 4.21: The Spinning Wheel of Life (work-in-progress) (2016) 228
Figure 4.22: Experiment on how a throbber display on a browser 230
Figure 4.23: Experiment on a throbber display with HTML, CSS
and JS script 231
Figure 4.24: A slightly modified version of the Unix shell script 231
Figure 4.25: First Screenshot of running the Unix Shell Script 232
Figure 4.26: Second Screenshot of running the Unix Shell Script 232
Figure 4.27: Third Screenshot of running the Unix Shell Script 232
Figure 4.28: Experiment with the command ‘tcpdump’ for networked
data analysis 233
Figure 4.29: Experiment with the parameters of ‘tcpdump’ for networked data
analysis 233
Figure 4.30: Experiment with watching youku video with data analysis. 234

8

Figure 4.31: Log analysis for the youku video in relation to Figure 4.30 234
Figure 4.32: A screenshot of Wireshark for packet analysis
(with a focus on window size) 235
Figure 4.33: Tracking networked data: Experiment the Carnivore library
by RSG in Processing 236
Figure 4.34: Tracking networked data: Experiment the Carnivore library
by RSG in Processing 237
Figure 4.35: The log for networked data experimentation 237
Figure 4.36: Initial setup concept of The Spinning Wheel of Life 238
Figure 4.37: Concept stage of The Spinning Wheel of Life 239
Figure 4.38: Concept stage of The Spinning Wheel of Life 239
Figure 4.39: First prototype of The Spinning Wheel of Life 241
Figure 4.40: An excerpt from The Spinning Wheel of Life (work-in-progress)’s
source code: The ellipses design 242
Figure 4.41: An excerpt from The Spinning Wheel of Life (work-in-progress)’s
source code: Setting up IP addresses and the carnivore library. 243
Figure 4.42: An excerpt from The Spinning Wheel of Life’s log:
The feedback process 243
Figure 4.43: An excerpt from The Spinning Wheel of Life’s source code:
General notes from 2015 to 2016 244
Figure 4.44: A screenshot of the notes from Apr 2016 to present 245
Figure 5.1: Hello Zombies (2014) 254
Figure 5.2: A spam poem in Hello Zombies (2014) 255
Figure 5.3: Sending out poems in Hello Zombies (2014) 256
Figure 5.4: Receiving emails in Hello Zombies (2014) 257
Figure 5.5: Running addresses in Hello Zombies (2014) 258
Figure 5.6: A while loop in Python and its result in the Mac OS’s terminal 264
Figure 5.7: An infinite loop in Hello Zombies 264
Figure 5.8: Bounded loop in Hello Zombies 266
Figure 5.9: The concept of recursion in making a 3-layer cake. 267
Figure 5.10: I/O operations in Hello Zombies 269
Figure 5.11: An error result 270
Figure 5.12: Try and catch exceptions (1) in Hello Zombies 274
Figure 5.13: Try and catch exceptions (2) in Hello Zombies 275
Figure 5.14: A high-level flowchart of Hello Zombies 280
Figure 5.15: Decomposition of algorithms. 281
Figure 5.16: An idea sketch of Turing’s halting problem in Python 283
Figure 5.17: The construction of N 283
Figure 5.18: Hello Zombies (2014) 291
Figure 5.19: Testing out different sculptural forms at
City University of Hong Kong in 2014 292
Figure 5.20: Site visit in 2014 293
Figure 5.21: A blog was setup to document my own reflections. 294
Figure 5.22: A high level draft of the flow chart 295
Figure 5.23: A high level logics of the programs 295

9

Figure 5.24: Reading network replies in Hello Zombies 297
Figure 5.25: Sending poems in Hello Zombies 298
Figure 5.26: Rolling Spammer addresses in Hello Zombies 299
Figure 5.27: Densely packed spammer addresses in Hello Zombies 299
Figure 5.28: The excerpt of the source code on presenting email addresses
on a screen 230
Figure 5.29 The highlight of a connection error in running the test programs
of Hello Zombies 301
Figure 5.29: The hightlight of a network error in running the test programs
of Hello Zombies 301
Figure 5.31: An excerpt of the source code on sending poems 302
Figure 5.32: An excerpt of the source code on checking server emails 303
Figure 5.33: An excerpt of the source code on fetching spammers’
address list 303

Table 1: A selected list of (software) artworks that address the
notion of liveness 56

10

Words of Thanks

In memory of Bolei Poon (2006-2014)

There are so many people I have to thank who, in different ways, helped me

to accomplish this doctoral research journey. I am extremely grateful for the

mentorship and support that I received from my supervisors, Geoff Cox,

Christian Ulrik Andersen and Jane Prophet and Geoff in particular for

identifying my potential, trusting my ability, and my thesis development is

highly inspired by his works. It is my honour to receive their attentive

supervision and my gratitude to them is beyond measure.

In the prestigious research environment at Aarhus University I could not

have hoped for a more supportive, open and collegial atmosphere. I would

like to thank the Participatory Information Technology Research Centre and

the Graduate School of Arts which have funded my project and supported its

development. Conversations with visiting researchers, faculty members and

colleagues in the School of Communication and Culture have been truly

valuable and my heartfelt thanks goes to Thomas Bjørnsten, Lone Koefoed

Hansen, Nicolai Brodersen Hansen, Lukasz Mirocha, Finn Olesen, Lea

Muldtofte Olsen, Søren Pold, Andrew Prior, Morten Riis, Sigrid Nielsen

Saabye, Cornelia Sollfrank, Marie Louise Juul Søndergaard and Magda

Tyżlik-Carver. I apologise if I have missed anyone off the list.

Many concepts that I have developed in this thesis were, in part, informed

by the undergraduate course, Aesthetic Programming, which I taught twice

in the Department of Digital Design. I am thankful to Morten Breinbjerg

who appointed me, as well as for the creative dialogue with the students. I

11

would like to extend my thanks to the course instructors, Nils Rungholm

Jensen, Frederik Højlund, Tobias Stenberg Christensen and Malthe

Stavning Erslev.

I am especially grateful for those who have encouraged me and given me

guidance and care to cope with issues that are related to self-confidence and

gender. I have been inspired by the work and conversation of feminists such

as Christine Cheung, Jane Prophet, Helen Pritchard, Audrey Samson,

Cornelia Sollfrank, Sarah Schorr, Geoff Cox, Annette Markham and

Jennifer Gabrys. They have given me the strength to become a more

sensitive and stronger person working in a technology related field. My geek

aunt Christine, in particular, who has raised me and brought me to this tech

world through learning Logo, Telnet and circuit bending when I was young

and she continuously inspires me to be curious in life. My co-supervisor

Jane, a supportive and caring mentor, who generously hosted me in the City

University of Hong Kong as a visiting researcher where I had the

opportunity to observe and learn from her closely. Also special thanks to

Helen for being a great advisor, friend and collaborator who has witnessed

my development over the years.

I am thankful to my writing buddy Magnus Lawrie, as well as the Critical

Software Thing Group for their valuable input in sparking dialogue and

improving the manuscript at various stages. I also thank Maria

Chatzichrostodoulou, Maureen V Eastwood, Christopher Newell and Toni

Sant who assisted me in the early stages of my PhD.

Finally, and most importantly, my warmest thank goes to my beloved

family. My wife, Polly Poon, an excellent listener who has given me

tremendous support. She has taken good care of my mental and physical

state, as well as offering an extraordinary calm and loving home. Finally I

thank Bowtie Soon who has accompanied me throughout my ups and downs

during the whole research journey.

12

Abstract (in English)

With today’s prevalence of technology enormous quantities of data are

generated and disseminated in real-time through a highly networked,

programmable and distributed environment. Networks of machines and the

circulation of data mediate our sense of time. The sensation of ‘liveness’ is

deeply reconfigured by complex technological infrastructures behind

ubiquitous screens and interfaces. This thesis explores how real-time

computation reconfigures this immanent sense of liveness, specifically in

relation to contemporary software art and culture. By focusing on the live

dimension of code inter-actions this thesis examines the complexity of our

current computational environment as evident in the increasing use of data

queries, the instantaneous transmission of data streams and the seamless

running of automated agents.

By drawing together the methods of reflexive practice, close reading,

iterative trials and cold gazing in the fields of artistic research, critical code

studies, software studies and media archaeology respectively, this thesis

presents three artistic and experimental projects together with the written

manuscript. Together they examine barely visible code operations and

consider the cultural implications of the reading, writing, running and

execution of code, which I refer to as ‘reflexive coding practice.’ This

methodology provides an applied approach to computational processes,

invisible architectures and a means to reflect on cultural issues through

experimentation and practice.

A materialist framework for liveness is presented with the use of three main

vectors, namely: unpredictability, micro-temporality and automation. This

facilitates the unfolding of the assemblages of things and relations that have

emerged through the inter-actions of code across various computational

layers at multiple scales. The analysis and discussion contributes to a

widening of critical attention to software (art) studies primarily in terms of

13

its distinct focus on the live dimension of code. Furthermore, it expands the

debate in media and performance studies, providing technical description

and analysis in relation to the concept of liveness. In overall terms, the

research contributes to our understanding of software by expanding our

understanding of liveness in contemporary culture. This includes a nuanced

examination of liveness beyond immediate human reception.

14

Abstract (på dansk)

At eksekvere 'liveness': en undersøgelse af live
dimensionser i kode-interaktioner for software (kunst)

I kraft af den store udbredelse af teknologi, vi har i dag, bliver enorme

mængder data konstant genereret og distribueret gennem et omfattende

netværk, der både er programmerbart og distribueret. Store netværk af

maskiner og cirkuleringen af data mellem dem, er med til at påvirke vores

tidsopfattelse.

Følelsen af at være ’live’ er rekonfigureret af en kompleks teknologisk

infrastruktur som er til stede overalt bag skærme og brugerflader. Denne

afhandling udforsker hvordan disse real-tids beregninger ændrer vores

følelse af at være ’live’, med et særligt fokus på nutidens software kunst og

kultur. Ved at fokusere på ’live’ delen af kodeinteraktioner, vil denne tese

undersøge kompleksiteten af det nuværende beregningsmiljø, som det

fremstår gennem vores øgede brug af data, den øjeblikkelige overførsel af

data og den næsten usynlige brug af automatiserede agenter.

Ved at kombinere metoderne fra refleksiv praksis, nærlæsning, iterative

forsøg og ’cold gazing’ i relation til områderne kunstnerisk forskning,

kritiske kode studier, software studier og medie arkæologi, vil denne

afhandling præsentere tre kunstneriske og eksperimenterende projekter

sammen med et manuskript. Sammen undersøger de næsten usynlig

kodeafvikling og vurderer de kulturelle implikationer forbundet med at

læse, skrive og afvikle kode, hvilket jeg refererer til som ’refleksiv kode

praksis’. Denne metode resulterer i en brugsorienteret tilgang til

computerrelaterede beregninger og processer og giver mulighed for at

reflektere over kulturelle problemstillinger gennem eksperimenter og

praksis.

15

Et materialistisk framework til ’liveness’ bliver præsenteret ved hjælp af tre

hovedvektorer: uforudsigelighed, mikro-temporalitet og automatisering.

Dette faciliterer udfoldelsen af sammensatte objekter og relationer, som er

opstået gennem interaktionen mellem kode på tværs af flere beregningslag i

varierende skala. Denne analyse og diskussion bidrager til en udvidelse af

fokus i den kritiske tilgang til software (kunst) studier, primært i forhold til

det udprægede fokus på ’live’ området af koden, såvel som medie og

performance studier, hvori konceptet omkring ’liveness’ tilsyneladende har

behov for yderligere og mere kompleks teknisk formidling. Denne

afhandling leverer en nuanceret undersøgelse af ’liveness’, som går udover

den umiddelbare menneskelige forståelse, med det formål at tilpasse vores

forståelse af software og udvide diskussionen om ’liveness’ i nutidig kultur.

16

17

1

Introduction

With the prevalence of technology today, enormous quantities of data are

generated and disseminated in real-time through a highly networked,

programmable and distributed environment. Networks of machines and the

circulation of data mediate our sense of time. Demand for the latest

information is high and constant updates are expected. The sensation of

‘liveness’ or ‘nowness’ is reconfigured by the complex technological

infrastructures behind ubiquitous screens and interfaces. The immediacy of

interactions between humans and machines, such as click/touch actions and

screen representation, are just part of a mega structure of computational

logics. This thesis focuses on those interactions that are not directly

apparent to us but are an essential part of what constitutes the sensation of

liveness. From live streams on social media and breaking news to the

constant update of predictive measures, such as weather forecasts1 (Olaiya,

2012), stock markets (Pan et al., 2003) and even political campaigns

(Tumasjan et al., 2010), data is captured and updated in a seamless manner

that is both speedily and silently underscored by computational processing

involving real-time calculation, analysis and the manipulation of data to

generate the sensation of liveness.

The rise of so-called ‘big data’ 2 in the 21st century has sparked

unprecedented economic value through datafication—a phenomena in which

personal profiles and behavioural logs are stored in corporate server farms.

Data is captured, processed and analysed to generate new information and

knowledge. New business models have been established that aim to manage,

1 Many companies provide a minute-by-minute update weather forecast. AccuWeather is one of them.
See: http://www.accuweather.com/en/about
2Few art exhibitions have addressed this cultural phenomena: “Data in the 21st Century” (2015-
2016), organised by V2_Institute For the Unstable Media in Rotterdam, Netherlands and “Big Bang
data” (2014, 2015, 2016), co-organised by The Centre de Cultura Contemporània de Barcelona in
Spain, United Kingdom and Singapore.

Introduction

18

produce and analyse big data for profit-making, such as cloud computing

(Cisco Systems, 2013), API businesses3 (Mason & McKendrick, 2015) and

tracking solutions (Barcena et al., 2014; Oracle, 2012). These models are

implemented at the level of code within platforms, applications and software

packages, enabling data to be captured, accessed, analysed, manipulated

and distributed in the background behind a user-friendly interface and

within a technological network. The increasing phenomena of networked

agents, including applications, firmware and feed updates, push

notifications, auto files and data synchronisation, suggests that dynamic

code and automated live processes play an increasingly significant role in

cultural activities, as part of our everyday practices.

Computation can be processed behind and beyond a screen according to pre-

programmed rules and logics. On a more conceptual level, phenomena are

processed on a plane of “immanence” with unformed elements, variables and

materials (Deleuze & Guattari, 1987, p. 255). The plane is not fixed, rather

it moves at different speeds and comprises distinct relations and hence

produces differences. The processing of cultural logics is subjected to a

distributed live environment that consists of many other things that are

contingently brought together as a state of becoming. The attention to speed

and time gives rise to the assemblage of things (Deleuze & Guattari, 1987,

p. 255). Therefore, the connections and relations between things exist in

multiplicities. This plane of immanence, according to philosopher Gilles

Deleuze, is not confined to humans, but emphasises wider relations with

machines and other entities (1988, pp. 127-8).

This thesis examines the relations and interactions of code between

substances, elements and materials in this way. In the era of big data, the

execution and running of code not only enables the storage of an ever-

3 API refers to Application Programming Interface, which is a form of machine query and interface
that is used for communication between applications or programs. The offering of an API allows more
third-party applications to build upon services like Google Maps and Twitter. Data can be
“redistributed” and “remixed,” opening up a connection that results in more data, activities and usage
generation (Soon, 2016, in press). APIs also facilitate new business model generation, for example
Google Maps have been embedded in many other mobile applications / games.

19

growing amount of data but also the capacity to process the mix of data

across the past, present and an unknowable future. This is all accelerated

by real-time technology. According to software and media studies scholar

Wendy Hui Kyong Chun, the term real-time “refers to the time of computer

processing, not to the user’s time. Real-time is never real time—it is

deferred and mediated” (Chun, 2011a, p. 98). The essence of real-time data

processing may be understood as the collapse and construction of time, in

which different kinds of data are being processed and manipulated to

produce the immanent sense of liveness. Examples of this include, for

instance, the ‘timeline’ interface in various social media applications and the

network-provided time4 on mobile devices. Such an instantiated sense of

nowness is a computed and rendered snapshot, which is subjected to a live

and networked environment of influences, as a plane of immanence.

Importantly the now is constantly changing through computation: mutating

in both time and space. The now exists in multiple forms and people are

reading these different computational nows to access, adapt, react and

imagine the world. As Chun explains, “The NOW constantly punctures time,

as the new quickly becomes old, and the old becomes forwarded once more

as new(ish)” (2016, p. 3). Therefore, the now is effectively a complex

multiplicity of nows. 5 This thesis explores how real-time computation

reconfigures this immanent sense of nowness, which I refer to as liveness in

this thesis, specifically in relation to contemporary software art and culture

(the notion of liveness will be further discussed in the latter section).

1.1 Motivation: The Listening Post

My interest in the notion of liveness was first inspired by my experience of

an award-winning artwork called Listening Post (2000-2001) by statistician

Mark Hansen and sound artist Ben Rubin. The project consists of 231

4 The feature “Network Identity and Time Zone” (NITZ) is a mechanism offered by telecommunication
operators to provision local time and date to mobile devices. The consequence is that a mobile device
will get an automatic update of the system clock of mobile phones. See the service description of NITZ:
http://www.etsi.org/deliver/etsi_ts/101600_101699/101626/06.00.00_60/ts_101626v060000p.pdf
5 This comes close to the notion of contemporaneity that is under exploration by the research project
The Contemporary Condition: The Representation and Experience of Contemporaneity in and through
Contemporary Arts Practice. See: http://contemporaneity.au.dk/about/

Introduction

20

monochromatic screens arranged in a rectangular grid in a darkened room.

The screens show the running fragments of texts, starting with the text

sequence, “I am,” “I like,” or “I love.” The text is captured in real-time from

thousands of internet chat rooms, bulletin boards and other public forums.

The sound experience is carefully composed of pulsing and flashing beats,

accompanied by the synthesised recitation of text taken from the internet.

Both the visual and sonic effects of the text are the result of an endless

process of data scraping and processing. I was fortunate to visit the art

installation at London’s Science Museum in 2008, sitting on a bench and

gazing at the piece for some time. Back then, in the late 2000s, Interactive

Art still tended to emphasise the audiences’ participation and co-production

of human and machine (Jacucci et al., 2010; Kluszczynski, 2010). However

this piece breaks with that convention as it is an autonomously running

machine in as far as it runs without any human intervention or interaction,

yet it offers a dynamic experience through its solo performance that engages

its audience. Scholar of literature and media studies, Roberto Simanowski,

categorises the work as “Real-time web sculpture,” demonstrating the “ever-

changing compositions of dissociated messages” that are scraped from online

communication (2011, p. 199). The artwork not only offers a rich visual and

immersive sonic experience but also, as Simanowski suggests, “prompts

reflections” through the capturing and presenting of data (2011, p. 200).

Simanowski is interested in the semantics of the text, such as indicating the

currency of information on the internet or specific message content. By

contrast, I am more curious about how the machine performs on its own and

what this indicates in terms of the production of meaning and authorship.

Performance studies scholar Philip Auslander raises a similar question: “If

Listening Post is a performance, who or what is the performer?”

Fundamentally, “do machines perform?” (2005, p. 5-6) Notably, the work

challenges our general understanding of what constitutes performance.

Auslander argues that Listening Post is in itself a live performer and

concludes that the term performance is not exclusive to human behaviour,

and that taking machine performance into account for analysis is indeed

necessary (2005, pp. 8-9). To what extent are these free-standing machines

21

to be regarded as performers? What are the parameters that categorise

them as live performers? How might we better understand machine

performance? Specifically, how is the notion of liveness different in a

machine performance from the liveness of a human performance, or human-

machine performance?

Regarding machinic performance, the use of real-time technology allows the

programmed software to express the temporality and immediacy of data in

the piece Listening Post in its own terms through its programmed rules.

Importantly, an audience can never capture the full complexity of

computation and data processing within the piece and the feeling of liveness

is a consequence of the audience’s experience of what has been presented on

the representational layer of the piece. For instance, the feeling of proximity

to the Internet “crowd” with approximately 100,000 real-time messages

(Raley, 2009, p. 31), or what radio host Jad Abumrad describes as a “mirror

to look at society,” or how radio reporter and producer Allan Coukell

suggests the piece offers “a real sense of what people are talking about”

(both cited in Simanowski, 2011, p. 193). All these senses of liveness are

based on the spectacular technological effects that transform the data into a

perceptible form. However, we gain little understanding of this in our

experience of the work. So how might we discuss machine performance

beyond the representation of data, its meaning and the perception of

audiences?

Recognising the gap between what is happening behind the representational

layer of the work and what is perceivable by audiences, I want to shift away

from the human-centric interpretation of what constitutes liveness to

investigate liveness in terms of the dynamics of computational and

networked technology. I have therefore developed frameworks to better

understand the performance and aesthetics of a running machine such that

we can perceive technological artworks on a different register. My

assumption, in line with how Auslander discusses machine performance, is

that liveness should not be a term that is exclusive to human experience. I

acknowledge that technology plays a significant role in shaping the

Introduction

22

sensation and aesthetics of liveness. In particular, I am arguing that

technology should not be understood merely as the manifestation of visual

and sonic experience, that we should understand it additionally through the

operational aspects of technological processes behind these representations

such as data scraping and capturing, network transmission and processing.

Performance studies scholar Christopher Newell defines liveness briefly as

something “beyond a vague sensation of immediacy and now-ness” in his

research on synthetic voice analysis (2009, p. 13), in which the sensation of

liveness is, as he claims, “easy to detect but difficult to describe” (2009, p.

95). A better understanding of operational computational processes will

arguably enrich what is otherwise only a vague sensation of liveness. Taking

this operative approach to Listening Post, our understanding of performance

and the notion of liveness extends beyond audience perception. Informed by

this premise, the work Listening Post becomes the point of departure for this

thesis.

23

1.2 Nonhuman turn

My project starts out from the observation and recognition of the fact that

code inter-acts with different arrays of technology, across artistic, cultural

and industry-based practices. The notion of inter-actions, which I use

throughout the thesis, references computer science’s understanding of

“interaction” (Beaudouin-Lafon, 2008; Bentley, 2003; Murtaugh, 2008;

Wegner, 1997) as well as the notion of “intra-actions” from philosophy

(Barad, 2003, 2007). The next chapter comprises a more detailed discussion

of this concept. In general, the inter-action of code carries not only the

technical attributes and technical qualities of how things are made

functional and operative but how these inter-actions are also embedded with

“anonymous forces” which constitute what I have already introduced as the

plane of immanence, something “constantly being altered, composed and

recomposed, by individuals and collectives” (Deleuze, 1988, pp. 127-8). These

forces are comprised of both the entanglements of human and nonhuman

phenomena.

My emphasis on forces, collectives, elements, variables and materials (as

well as vectors, a concept that I will introduce later) is influenced by what

has been called the ‘nonhuman turn’ 6 that has emerged in the arts,

humanities, and social sciences in recent years. The nonhuman turn

involves a critical reconsideration of human-oriented approaches to

examining the world. According to poststructuralist scholar Jon Roffe and

literary scholar Hannah Stark,

[the nonhuman turn] has been instrumental in challenging

human privilege and placing the human in the more-than-

6 In 2012, a conference on the ‘nonhuman turn’ was organised by the Center for 21st Century Studies
in Milwaukee, United States. The conference brought together scholars whose works were situated in
the realm of the nonhuman turn. The conference was a key to provoking debates, challenging the
anthropocentric discourse and intensifying the development and discussion of the nonhuman turn. In
2015, a book titled The Nonhuman Turn emerged from the conference. It was edited by Richard
Grusin, who was also part of the conference’s organising team. The publication was claimed to be the
first to discuss various aspects and approaches under the concept of the nonhuman turn. See:
http://www.c21uwm.com/nonhumanturn/

Introduction

24

human world, motivated in part by the ongoing theoretical and

political interrogation of the anthropocentrism of the Western

tradition (2015, p. 2).

A wide range of theoretical approaches have been developed in various

fields, from Actor-Network Theory, to Speculative Realism and Object

Oriented Ontology to New Materialism, suggesting a critical engagement

with nonhuman objects beyond human and even other biological life forms

(such as animals and plants). Importantly, it provokes the recognition of

objects and considers all human and nonhuman beings as active

participants in shaping the world. Focusing on the relation between various

‘actants,’7 technologies, things and materials in this way suggests that

nonhuman things act and perform beyond human control. They exhibit

agency through their inter-action with, and through, the world, producing

meaning and shaping events that call for our critical attentiveness. As such,

this thesis follows the trajectory of the nonhuman turn to examine the inter-

actions of things.

Informed by networked conditions—data capture, streaming and networked

agents—the primary objective of this thesis is to develop a more nuanced

understanding of liveness through code inter-actions and examine how code

inter-actions exhibit particular forms of liveness in contemporary software

cultural practices. The intention is to contribute to a widening of the focus of

critical attention in software studies, by investigating liveness beyond

immediate human reception. Situating this thesis within the domain of

software studies, it follows an established critical tradition of scholarship

(Berry, 2011, 2014; Cox, 2013; Fuller, 2003; Mackenzie, 2006; Marino, 2006,

2014) in which code is the primary object and subject of study. Within

software art practices, attention moves from the representation and display

of the art object to processes of computational systems that have been

7 The term ‘actant’ was first suggested by Bruno Latour in Actor Network Theory. The word actant is
used to extend the term actor and agent to those relatively uncommon nonhumans or non-individual
entities, respecting the fact that all things play an active role in shaping the world (Latour, 1999, pp.
180-1). Latour refers to actants as anything that operates as “a source of action” (1996, p. 373).

25

relegated to the background in works like Listening Post. Some artists have

critically reflected upon the structures of program code and the cultural

operation of digital objects, “[making] visible the aesthetics and political

subtexts of seemingly neutral technical command” (Arns, 2004, p. 178). This

type of critical art practice has gained wide attention in art festivals,

exhibitions and scholarly works over the past decade (and examples of

works will be described in detail in subsequent chapters, including examples

drawn from my own practice).

As an artist-programmer, my works engage similarly with and reflect upon

contemporary software culture, computational networks and processes. In

recognition of the fact that code is not a standalone object, I make a strong

assertion that code cannot be separated from other relational objects and

materials. It is more than program source code or high level programming

code. Code compiles and executes as executable code and also operates in

the form of network protocols that control data transmission (Galloway,

2004, p. 7). Moreover, code can be seen in the form of a script or command

that provides access to other computer systems, or even queries data in

databases. Code, according to artist-programmer-scholar Alexander

Galloway, “is a set of procedures, actions, and practices” (2004, p. xii). The

procedures allow code to inter-act with various machines, systems, networks

and databases. To examine such complex relations I bring together the

closely related fields of software studies, digital humanities, media

archaeology, platform studies8 and interface studies,9 whilst acknowledging

the inter-actions of various objects beyond the dichotomy of software and

hardware, or technology and culture. Therefore, code is not considered as

software specific but refers to wider computational assemblages that

perform and act in the world, such as social media platforms which operate

across machine interfaces, distributed technology and cloud servers.

Therefore, the concept of code is taken in this broad sense, as operating

beyond software applications and programming languages.

8 See: http://platformstudies.com/ and https://mitpress.mit.edu/books/series/platform-studies
9 See: http://mediacommons.futureofthebook.org/tne/pieces/manifesto-post-digital-interface-criticism

Introduction

26

As this thesis does not focus on code as an isolated or standalone object but

rather considers code inter-actions in a dynamic networked environment

which is process-oriented, the processual events therein cannot be examined

through the mere written form of code. Beyond that, code alludes to the

activities of executing and running code, inter-acting with different systems,

objects and materials which together generate the phenomena of liveness.

1.3 Perspectives on liveness

Most importantly, the central theme of this thesis is to explore the notion of

liveness within the context of contemporary software culture, thereby filling

a perceived gap by adding detail on the complexity of code inter-actions. In

the following section I offer an overview of the notion of liveness, organised

around textual analysis. The aim is to show how the concept of liveness has

evolved and been discussed to date through the exploration of key

approaches that I expand upon in subsequent chapters. The overview

identifies this perceived gap in the wider discourses on liveness but also

outlines some of the fundamental concepts of liveness that will be developed

further in the remainder of the thesis. In keeping with overviews, at times

the discussion may seem limited, but further detail will be added in

subsequent chapters.

Liveness has long been a subject of debate in performance and media

studies. Although it has been widely discussed in relation to various media,

including but not limited to television and radio broadcast, digital cinema

and music, the concept of liveness still remains contested and there is no

agreed precise or single definition (Barker, 2012, p. 61; Crisell, 2012, p. 3;

Davis, 2007, p.36; Newell, 2009, p. 13). Seemingly, liveness is a contingent

concept with various definitions of the term situated in a wide array of other

discussions.

1.3.1 The living body and presence

Within the history of theatre and performance art, liveness is often used to

27

describe a setting where there is the presence of human living bodies,

exploring the relationship and engagement between performers and

spectators (Carlos, 1998, p. 10). The term Live Art is sometimes used

interchangeably with Performance Art, in which the former takes its

historical roots in the United Kingdom (UK) where it was used to indicate a

broader understanding of performance inclusive of media and technology

and to indicate a type of performance that emanated more from a Fine Art

tradition (Live Art Development Agency, n.d).

The presence of living bodies, to some scholars, is fundamental to

performance. Performance studies scholar Peggy Phelan does not regard

other kinds of technological media as live performance. “Performance in a

strict ontological sense is nonreproductive […] [It] implicates the real

through the presence of living bodies” (Phelan, 1993, p. 148). The presence

of human bodies is crucial that plays a central role of the ‘live act’ in the

performance of live art (Jones, 2012, pp. 12-3). When both performers and

spectators are physically located in a same space, described as “physical co-

presence” (Auslander, 2008, p. 61), the performing acts and receptive

experiences are happening simultaneously in the same time and space.

Auslander describes this co-presence as “classic liveness” (2008, p. 61) and

this can be traced back to the 1960s when some artists wanted to make

radical changes that challenge the canon of established, and more

traditional, art media (Carlos, 1998, p. 15).

Over the years, classic liveness involves living bodies that explore the role of

various life forms in the domain of live/performance art, stretching the

meaning of biological life to include other beings such as animals. However,

a concern with living bodies remains central (Sofaer, 2002), as the most

basic level of performance art, according to curator Cindy Baker, “requires

the presence of a body in space over time” (2014, p. 5).

Beyond performance art, the concern with bodies or living human beings is

also discussed in relation to notions of liveness in computational

applications and devices. Within biometric detection systems, the term

Introduction

28

liveness is used to indicate the sign of a human being. For instance, the

term ‘liveness detection’ is used in fingerprint, face and iris recognition

systems (Abhyankar & Schuckers, 2004; Chakraborty & Das, 2014;

Drahansky, 2011; He et al., 2010; Pan et al., 2008). Another human-centric

definition of liveness is how the function ‘Liveness Check’ has become a

standard option in the Android Operating System - Jelly Bean series on

smartphone devices. ‘Liveness check’ is a security-checking feature that

requires a user to blink in order to unlock their device (see Figure 1.1). In

order words, the feature ensures not only the presence of a living body and

the right body.

Figure 1.1: Liveness check feature in the Android operating system

Extending the discussion beyond physical presence with living human

bodies, media theorist Paddy Scannell explains the sensation of presence in

television broadcasting. Some television programmes, such as travel series

and breaking news, allow audiences to have a “real sense of access to an

event.” The audio-visual representation unfolds the events moment-by-

29

moment, producing “the effect of being-there, of being involved (caught up)

in the here-and-now of the occasion” (Scannell, 1996, p. 84). In other words,

liveness (from the perspective of presence) is about audiences who engage

with television images10 with a sensation of the events, offering the sense of

presence, of being-there.

In internet environments, Auslander further explains the sensation of

presence by drawing upon Nick Couldry’s discussion of liveness on the

internet and in social devices. He describes the characteristics of networked

liveness as a “sense of co-presence” among users and a “sense of connection

to others” (as cited in Auslander, 2008, p. 61). In the context of the

immersive virtual environment, presence is further and rather

pragmatically described as “the sensation of being at the remote worksite”

that is not necessarily situated at the actual physical locale (Witmer &

Singer, 1998, p. 225). In Second Life, a 3D virtual world, live performance

takes place in which an avatar represents a person, creating live

performance in real-time using streaming technology. In this case, unlike

classic liveness, spatial co-presence is a defining characteristic of liveness in

which performers and spectators are not in the same physical space but

rather share a virtual space. Telepresence emerges as a term specifically to

describe this remote presence situation with the use of virtual-environment

technology (Rheingold, 1991, p. 158). The sensation of remote presence is

further promoted through the live transmission of images and sound effects,

alluding to the remote experience of proximity and intimacy (Donati &

Prado, 2001, p. 438; Zemmels, 2004, p. 11).

From concerns over the presence of a physical living body to the mediated

10 The quality of liveness can be technically examined through television image. Wendy Davis argues
that liveness can be observed through the qualities of the material surface of the televisual. The logic
of television transmission is based on scanning with the wavy lines in the image. At any point, the
television image is never completely composited. As Davis explains, “The television image has no
separate frames as such, because the image is produced through a continuing signal that modulates
in intensity” (Davis, 2007, p. 45). The operational perspective pays attention to the technological
forces in which “the technicalities of scanning and transmission produced a specifically televisual
image” (Davis, 2007, p. 46). This moves away from the unfolding of events to the operative processing
of television’s surface. In other words, liveness is about the presence of television images.

Introduction

30

sensation of being-there, the concept of liveness and presence are thoroughly

intertwined. Technology plays a significant role in offering a sense of

intimacy and immediacy through a spatio-temporal networked environment

(Zemmels, 2004, p. 2). A more detailed examination of the interactions

between humans and technology is required to discuss the notion of liveness

more fully.

1.3.2 Interaction between humans and technology

Auslander’s book Liveness was first written in 1999. Nine years later, during

which time different cultural understandings of live performance and

various mediated live forms had been promulgated, he published the second

edition in response to this changing technological landscape. Of course any

current understanding of liveness will have shifted since then too. He

acknowledges that highly volatile media landscapes—such as television,

telecommunications and the internet—are part of the reason that he shifted

his central focus to digital media (Auslander, 2008, pp. xi - xiii). Auslander

traces the term ‘live’ through a history of recording technologies and argues

that “live is actually an effect of mediatization [...] it was the development of

recording technologies that made it possible to perceive existing

representation as live” (2008, p. 56). He defines mediatisation as technical

mediation and claims that mediatisation has a dependent relationship with

liveness, arguing that “liveness was made visible only by the possibility of

technical reproduction” (Auslander, 2008, p. 57). In contemporary software

culture it is not surprising that liveness is mediatised by various kinds of

technology, such as a distributed and programmable network. The focus of

this thesis is neither the visibility of liveness nor the possibility of

technology creating a live environment but rather what constitutes the

“mediatized live” (to use Auslander’s term). Precisely what constitutes a

distributed and programmable network? How do we delve into technological

materials that inform different understandings of liveness?

Indeed, Auslander has recognised the need to examine technological

31

materials. Drawing upon the work of media studies scholar, Margaret

Morse, he opens up the discussion about human and machine interaction

beyond the audience-performer model. He notes, “Liveness is attributed not

only to the entities we access with the machine but also to the machine

itself” (Auslander, 2008, p. 62). He did not discuss the machine itself in any

detail but, all the same, shifted attention to the relations between human

and machine interaction. Auslander gives the example of a website that is

said to ‘go live’ to foreground the relationship between the feedback

mechanism of user input and machine output. He explains, “the liveness of a

website resides in the feedback loop we initiate with it: the website responds

to our input” (Auslander, 2008, p. 62). The things behind a website include

procedures that are embodied in code and users interact with code (Bolter et

al., 2013, p. 328). Media studies scholar Jay David Bolter highlights the

importance of procedurality when discussing liveness in the digital realm. A

website, for example, captures the parameters of a human’s actions and

continuously processes the request and feedback according to written

procedures. Such procedurality maintains a feedback loop between human

and machine that refers to the “performativity of digital media” (Bolter et

al., 2013, p. 328) in which the human is performing within a procedural

feedback loop. Therefore, both human and nonhuman entities are

participating in the performance and interaction.

With regards to human and nonhuman interaction, the practice of ‘live

coding’ 11 that has emerged in computer music performance blurs the

distinction between composers and programmers. Live coder and musician

Shelly Knotts summarises the practice of live coding as “writing code on

stage to produce sound” (2013). A performer interacts with code in live

performance situations in front of audiences. The performance creates a

nearly instantaneous feedback loop, taking the command written by a

composer-programmer and output as audible sound. Audiences are able to

11 There are different organisations that are founded to promote live coding in the 2000s. For example,
TOPLAP and Repl Electric. See: http://toplap.org/ and http://www.repl-electric.com/. Moreover,
international conferences are setup for live coding research, see: http://iclc.livecodenetwork.org/.
Performer/Programmer, such as Alex McLean and Sam Aaron develop various tools for live coding
performance.

Introduction

32

read the editing code (sometimes the code also overlays other visual effects)

and listen to the sound that is generated by that code in real-time.

Unsurprisingly the live aspect has been widely discussed in the area of live

coding. More precisely, the framework that analyses the degree of liveness,

as proposed by computer science scholar Steven L. Tanimoto merges

programming and systems’ perspectives (1990, 2013). Tanimoto highlights

the shift in computer programming from the traditional four distinctive

phases of the development cycle, ‘edit-compile-link-run cycle,’ and reduces it

to one phase only. He explains that code is running continuously even

though there are various code edits on-the-fly (Tanimoto, 2013, p. 31). In

other words, once running a program does not stop unless a terminate

instruction is made during the live coding event. Liveness is considered as a

characteristic of a programming environment, in which the programming

software has to be easy for a programmer “to understand quickly what a

program is doing or supposed to do” (Tanimoto, 2013, p. 31). From this

perspective Tanimoto’s analysis of the various degrees of liveness is based

on the near-instant feedback between a program and a programmer. His

latest article highlights two additional phases that a system incorporates,

the new fifth and sixth levels of liveness, ‘tactically predictive’ and

‘strategically predictive’ measures respectively. Such ‘intelligent’ systems

are capable of predicting the “programmer’s intentions or desires,” and this

type of system has “the ability to act autonomously” (Tanimoto, 2013, p. 34).

(This automated characteristic of a system requires more attention in

understanding the liveness that is generated by automatic system, and this

will be discussed later).

Similarly, again with respect to live coding, artist-programmer Alex McLean

refers to a programming language that is easier for a user to learn and

debug as “more live” (2014, p. 1). He summarises three main feedback loops

in live coded performances: 1. “manipulation feedback” which happens

between the programmer and their written code; 2. “performance feedback”

which happens between the programmer and the program output, such as

sound; 3. “social feedback” which happens between audiences and the

33

programmer (McLean, 2014, p. 2). The feedback relations between the

programmer-performer are one of the key components in discussing the

notion of liveness in live coding (performance).

McLean is also interested in the feedback loop within the machine,

especially how code interacts with, or modifies, itself. He developed a text

editor Feedback.pl (2004)12 that allows programmers to edit the code during

live coding performances and for it to edit itself. The code on the one hand is

being modified by a human and, on the other, it has the ability to modify

itself, changing the original source code on its own in real-time (Cox, 2013,

pp. 61-2; Cox et al., 2004, pp. 170-1; McLean, 2004). This feature of self-

modification, according to McLean, is useful for user feedback because it

visually indicates “what the running code is up to” during live coding

performance, where the performer can read the status of the code and

respond to it (2004, n.p).

The focus on human and machine feedback is also observed in the field of

artificial life (A-Life) that examines natural systems, exhibiting “life-like

behaviour”13 (Bedau, 2003). According to David Cameron and John Carroll,

scholars of digital media, drama education and technology, “The level of

liveness and direct human player input is most evident in forms of

machinima designed for live performance” (2009, p. 3). In A-Life, the

behavioural, computational graphical models and virtual objects, as well as

live input data are all central to the discussion of feedback mechanisms. In

other words, the real-time rendering between the input and output become

core issues within the discussion of liveness in the context of artificial life.

Nevertheless, in general, the discussion of feedback loops tends to

concentrate on human and machine interactions and pays only slight

12 The text editor is for edit Perl code. In live coding performance, it is required to run the written
code all the time without any pause. The editor is designed without a save function See:
http://www.perl.com/pub/2004/08/31/livecode.html
13 The artistic project TechnoSphere (1995), created by Jane Prophet and Gordon Selley, serves as an
example that demonstrates life-like behavior through the use of 3D graphic rending techniques and
real-time technology, creating a 3D simulated virtual environment (Prophet, 2001).

Introduction

34

attention to cover other scenarios which Auslander describes in terms of the

machine itself. In the model of human and machine feedback mechanisms,

input usually comes from a human user, however it does not only come from

a human/user but also from other systems. As opposed to Auslander’s

scenario of a website ‘going live,’ the term ‘live’ signals, on the contrary, a

readiness for public viewing and participation. The website is regarded as

live once the pages are put up or uploaded on a production platform, usually

located in other systems associated with the web server and internet

network. From a systems point of view, the platform takes in the

upload/input of web files and outputs them as webpages. Theoretically and

practically speaking, a website can be claimed to be live once the upload

process is completed regardless of any page views by users. Once the website

is loaded on a production server, it is live unless someone takes it down or it

crashes. Additionally, the earlier example feedback.pl demonstrates the

ability of self-modifying code in which code interacts with itself and not only

for other humans, as software studies scholar Geoff Cox puts it, “code

embeds both action in-itself and action for-itself” (2013, p. 61). Furthermore,

in his book Protocol, Galloway highlights that a feedback loop may not only

occur between humans and machines, but it also between computers’

interaction through protocols that “operate at the level of coding” (2004, pp.

7-8). It is precisely this thinking and discussion of code inter-actions (with

itself and other nonhuman systems) that the thesis further develops,

suggesting a fuller examination and acknowledgement of nonhumans in the

overall discussion of liveness.

1.3.3 Temporality and liveness

The concept of time is crucially important in the discussion of liveness. The

previously mentioned degree of liveness and feedback, as proposed by

Tanimoto, are both subjected to the response time between a given human

and machine. The concept of liveness is, instead, understood as ‘non-

instantaneous’ as the moment of a programmer’s input does not happen at

the same time as the machine’s output (McLean, 2014, p. 2). Chun has also

35

recognised that the notion of real-time is “deferred and mediated” (2011a, p.

98) as mentioned earlier.

The discussion of real-time has become central to the domain of media and

internet studies. Real-time, on the contrary, usually refers to “instantaneous

communication” that enables timely or instant delivery (Palmer, 2008, pp.

10-1; Zemmels, 2004, p. 2). In particular, the so called “real-time web” has

been championed to differentiate from an earlier static web era, to “live

social activities” that are now taking place on a more dynamic web platform

(Weltevrede et al., 2014). The notion of real-time is generally understood as

the human experience of time within the context of media study (Palmer,

2008, pp. 10-1; Weltevrede et al., 2014). This perspective also resonates with

literary and media studies scholar Rita Raley’s discussion of liveness which

is based on the artwork Listening Post (referred to earlier). She claims that

this work, even though it collects data in “near real-time (there is [actually]

a time delay of 1-2 hours),” still constructs a sense of liveness and audiences

feel the immediacy of the process (Raley, 2009, pp. 24-30). In other words,

our experience of time is subjective and cannot be measured or standardised

precisely. Instead, the issue of time is a way to discuss the sensation of

liveness as a mediated experience.

In a similar vein, software studies scholar David M. Berry suggests that the

real-time computation of the web brings “liveness, or nowness to the users

and contributors” (2011, pp. 142-3). He explains that it is the operability of

the real-time web, including the process of content-generation and the

feedback mechanism that provides new experiences to users and producers.

Precisely, the contemporary experience of nowness is the result of the real-

time web and the immediacy of social media platforms. Immediate user

interactions and updated feeds are made possible via real-time technology

(Weltevrede et al., 2014, p. 2). As already explained, the word real-time is

never a real-time delivery as such, “the processing information is organized

at such speed that allows for access without perceptible delay” (Weltevrede

et al., 2014, p. 4).

Introduction

36

Therefore, the notion of real-time is highly related to liveness that

constitutes the live experience and yet real-time is fundamentally about

computer processing time (Chun, 2011a, p. 98; Weltevrede et al., 2014, p. 4).

Esther Weltered, Anne Helmond and Carolin Gerlitz explain the concept

‘system real-time’ as follows:

real-time refers to systems and processes performing tasks in

predetermined temporal windows, most notably in micro-or

nanoseconds, and the computational challenges of this (2014, p.

4).

This explanation suggests that the notion of real-time concerns micro-time

and micro-processes that might not be humanly perceptible. If liveness in

part refers to system real-time, then the constitution of liveness, as I argue,

could also be produced through micro-processes of time in a system.

Seemingly little attention has been paid to these micro-processes and micro-

temporalities which operate within real-time environments and beyond

human perception (This microscopic perspective of time will be discussed

further in later chapter).

The use of the term ‘live’ has become commonplace. In particular, internet

service providers often use the phrase ‘live data.’ The notion of liveness on

the internet often refers to data which is updated immediately. However,

Tara McPherson, scholar of digital media, argues that such an immediate

sense of updated feeds is an “illusion of liveness” because it is not always

instant but a mere recycling of data that is repackaged as “newness” (2006,

p. 202). She points out that computational processing involves the

movement of data and this relates to “the depth of electronic forms” which is

not only temporal but is also spatialised (McPherson, 2006, p. 202). Such

focus on the spatial-temporal dimension of data is one of the key

components in understanding data beyond representational forms as to how

they appear to us in a perceptible form.

Beyond the focus of media and internet studies, Luciana Parisi covers a

37

wider range of data in her philosophical account of computational

architectural space. According to her,

Data are defined by what has been in the past, but also by what

might have been, and by what might yet be of the spatial

configurations: a software program, the real-time movements of

a crowd, the reshaping of the pistons, all enter into a

quantitative relation that precisely accounts for an invisible

spatiotemporality (Parisi, 2013, p. 125).

Parisi highlights the potentiality of data, which is beyond its direct

materialised form. Data enters a spatiotemporal relationship with other

configurations in real-time. The understanding of real-time technology

cannot be discussed without thinking of the “aliveness of data” that is

related to “the capacity of software of media technologies.” This suggests

that different forces, not a single entity, constitute the notion of liveness as a

plane of immanence. As Parisi puts it,

The capacity of software of media technologies to retrieve

information live, and to allow this information to add new data

to programming. Real-time technologies can only be understood

in terms of the aliveness of data (2013, p. 266, original

emphasis).

Parisi examines temporalities through parametric and computational design

which constantly transforms architectural space. Architecture, like a

computational system, contains various parts and any change of constituted

configurations, parameters and values will consequently alter the system as

a whole. These variables include “relations between mechanical, physical,

and algorithmic parts” (Parisi, 2013, pp. 107-9) which are inter-acting on a

plane. The real-time feedback that she refers to include three parametric

modes of operations and interactions that work with external and internal

data: program mode, crowd mode and memory mode (Parisi, 2013, pp. 107-

9). The system is never kept constant but is instead contingent. The

Introduction

38

changing parameters and adaptations to environments are what she

describes as “temporal variations” (Parisi, 2013, pp. 107-9).

These “live temporalities,” as Parisi describes them, explore the

measurement of time “to the indeterminacies of differential relations”

through “unpredictable or intensive relations between present parameters

(2013, pp. 110-2). All the parameters that come with the structure, which

are not always predictable, as well as the relations between parameters,

further shape the live temporalities. The study of temporalities and

unpredictability enable an understanding of the feedback activities between

computation and environment through both temporal and spatial

dimensions, which liveness is emerged through differential relations.

1.3.4 Unpredictability and liveness

Arguably, one of the exciting aspects of liveness concerns unpredictable

events. Something that is unknown, unplanned and unpredictable might

happen while an event or a process is unfolding in real-time (Davis, 2007, p.

48; Tate, 2014). Within the context of music performance, Paul Sanden

discusses the liveness of spontaneity, which is improvised and “without a

predetermined set list” (2013, p. 72). This spontaneity is fundamental to

how a musician performs in an unpredictable manner, and which is unique

to any performance (Sanden, 2013, p. 159). In live performance, Claudia

Georgi examines the relationship between disruption and unpredictability.

She argues that “unpredictability, imperfection and failure are inherent

aspects of liveness” (Georgi, 2014, p. 152), which is different from pre-

recorded materials which demonstrate a relatively stable, controllable and

predictable outcome. In theatre and live performance there is always the

risk of imperfection and susceptibility to failure because it is impossible to

guarantee the act will follow exactly what has been rehearsed or scripted. A

human mind and body are indeed unreliable (Georgi, 2014, p. 134).

Following a similar line of enquiry into liveness through unpredictable

39

human behviours, media studies scholar Alla Gadassik extends this to the

television context. According to her, the essence of liveness is its

unpredictability, the possibility of disruptions and “the possibility that

anything could happen” during a live program show (Gadassik, 2010, p.

120). She focuses on what she calls “affective corporeal disruptions” that

stem from an actor’s behaviour (Gadassik, 2010, p. 118). For example, an

audience might witness a participant or a performer who might suddenly

cry or lose her/his temper, or s/he might speak outside of a pre-written

script, or there might even be unexpected crises. Therefore, Gadassik

remarks, “Television performances become most live when they break down”

(2010, original emphasis).

Such breakdowns can also be further understood in relation to the temporal

dimension of television through what media studies scholar, Mary Ann

Doane calls the “catastrophe machine” in her article Information, Crisis,

Catastrophe (2006). She defines catastrophe as “unexpected discontinuity in

an otherwise continuous system” (Doane, 2006, p. 255), as, for example, with

breaking news of earthquakes, explosions, nuclear disasters and plane

crashes. These catastrophes disrupt an ordinary routine about what is

expected to be seen and heard (Doane, 2006, p. 258). She also introduces the

distinction of “dead or alive” as a way of characterising television liveness.

She refers to deadness in general as a disruption of continuity, resulting in

something that goes wrong just as the case of the appearance of breaking

news in normal routines (Doane, 2006, pp. 259-60).

The introduction of deadness is useful in addition to Auslander’s liveness for

an analysis of contemporary software culture. Although Auslander’s

historical perspective of technological mediatisation and recording

technologies demonstrates an understanding of how the notion of liveness

has evolved and how it is historically rooted, the analysis inevitably falls

short of keeping up with the changing conditions and new complexities of

technology and culture. Thinking of liveness and deadness, continuities and

discontinuities in which different forces exist in a plane of immanence,

opens up unexpected consequences beyond a smooth or continuous flow of

Introduction

40

events.

With regard to digital performance, Andrew Murphie proposes thinking of

performance beyond living organisms. Similarly to Auslander, with respect

to nonhuman machines, Murphie accounts for nonliving beings, in

particular signal processing and computational processes (2013, p. 3). He

highlights the fact that these nonliving forces are generally imperceptible

but contribute to the register of performance. He takes a micro perspective

to explain the processes that underline a running machine to address

imperceptible, or less visible, forces.

The processes are hidden; literally micro-processes of

microprocessors. So these are micro-performances, or, better, we

are dealing with a multiplicity of performances, and the

resonances of patterns of relation, that are able to scale across

micro and macro (Murphie, 2013, p. 3).

Murphie argues that the differential distribution of signals and

computational events and intensities constitute what it means to be live. As

such, “performance has always been a mix of forces of the living and the

dead” (Murphie, 2013, p. 3). His understanding of liveness (and deadness) is

developed from a nonhuman perspective that accounts for signal machines,

signal processes and their relationships with performance.

As stated this thesis mainly investigates the live condition of real-time

technologies, especially distributed networks and databases, and not the

presence of living bodies and their mediatised representations. It becomes

apparent that both temporality and unpredictability are essential for the

discussion of digital and networked environments. In clarifying this I

incorporate nonliving forces to examine unpredictability, disruption and

deadness in computational systems beyond human perception, human

bodily behaviours and mediatised representation. Attention to the

nonhuman dimension suggests that there may be scope for a more dynamic

engagement with computational structures and micro-processes (addressed

41

in detail in Chapter 4) that will provide further insights.

1.3.5 A sense of (digital) liveness

In more current discussions of liveness the incorporation of digital

technologies is inevitable. For instance, Auslander acknowledges how the

term live has been employed culturally to describe human-machine

relationships (such as the previously mentioned example of the website

‘going live’) but “digital liveness” to him still primarily points to human

interaction with machines or virtual environments (2012). Digital liveness,

he claims, “emerges as a specific relation between self and other, a

particular way of ‘being involved with something” (Auslander, 2012, p. 10,

original emphasis). Auslander does recognise the intrinsic properties of

digital objects and media that are co-constructing the experience of liveness

but only once the assumption is made that the human accepts that

technology becomes live for us (2012, p. 9). This does not fully account for

my earlier example, feedback.pl, in which code runs and modifies itself in a

live environment for instance. Technology becomes live, as I argue, not only

for us but also for-itself and for other beings that are beyond the scope of

human reasoning and understanding.

Performance and technology studies scholar Sally Jane Norman on the

contrary, calls for attention to new ways of “making sense” of technology, to

establish “materialized temporal frameworks,” recognising that digital times

affect our sense of liveness beyond human understanding and knowledge

(2016, p. 3). In other words, the digital comprises of things and events that

are both known and unknown. Informed by various digital technologies,

digital times, as described by Norman, generate “phenomena at scales that

escape our usual reasoning abilities” (2016, p. 6). Informed by this

argument, this thesis shifts its attention from a human-orientated or

phenomenological approach, such as Auslander’s, to a more nonhuman (or

even posthuman) perspective which incorporates the hybridisation of known

and unknown phenomena, things that are perceptible and imperceptible,

Introduction

42

visible and invisible to human perception. Even though there are micro-

processes and invisible forces that might not be observable to human senses,

Norman suggests we have to generate imaginary ways of dealing with such

hybridisation.

The sense of liveness that I promote in this thesis departs from human

centrism and rather opens itself up to nonhuman sense-making. My

assumption here is that nonhuman things, such as code and algorithms, are

able to sense too. Indeed, the word sense is not something exclusive to

humans. In computation, for instance, remote sensing and listening events

are commonly found in the Internet of Things (IoT) and in computer

programming. One might argue that these sensing technologies are

implemented for humans and are derived from human design but how they

work technically is highly system and material specific, hence, their inter-

actions are not exclusively human-centric. Technically, in computer science,

liveness refers to a property that a program has set up (Owicki & Lamport,

1982; Pradhan & Harris, 2009). The property designates how “some

desirable state is repeatedly or eventually reached” (Pradhan & Harris,

2009, p. 14). An example would be how a traffic light eventually turns green

or how an outdated software version is repeatedly detected. Such a

perspective emphasises the material state of things, and how things are

inter-acts beyond the presence of humans, and increasing automated

systems, such as tracking agents and bots, can be found in contemporary

software culture. It also becomes apparent that automation becomes one of

the key and emerging areas for understanding liveness.

To be clear, focusing on the nonhuman aspect is not about ignoring the

significance of human interactions and, subsequently, the feeling of human

liveness but a change of emphasis. If we take this perspective, we may gain

a different understanding and discussion of liveness that can extend our

understanding. As such, it is strongly suggested that the notion of liveness

is not solely situated or based on the engagement of audiences, nor

perceptible representational forms. By situating itself in the analysis of

contemporary software culture this thesis suggests that the inter-actions of

43

things and any sense of liveness are intricately interwoven. Following the

discussion of Auslander and Norman on digital liveness, this thesis argues

that we need to imagine and generate new ways to conceptualise liveness in

keeping with our times.

1.4 Aims and Contributions

Informed by the perspectives of liveness across diverse fields, as outlined in

the above sections, the aim of this dissertation is to further develop this

discussion in the field of software studies. Taking into account real-time and

programmable technologies and networked environments, the live

dimension is important for a fuller understanding of contemporary software

culture. For the purpose of delimitation, this thesis specifically draws

attention to the phenomenon of data queries, data streams and automated

agents that are processed in distributed networks, where things are highly

connected with devices, machines, systems and networks. The capturing,

storing, updating and transmitting of data are actively processed in

different kinds of programmable applications, programs and platforms that

constitute an immanent sense of liveness. Importantly, automated agents

are programmed and mutated transparently and they have the ability to

interact with or without direct human involvement. The nonliving or

nonhuman forces of code inter-actions co-constitute how we experience

liveness in contemporary culture.

Inter-actions take place across computational layers and at multiple scales.

The live dimension, as proposed in this thesis, is investigated along three

key vectors: unpredictability, temporality and automation. The use of term

‘vector’ makes references to the work of Deleuze and Félix Guattari in their

philosophical account of “assemblages,” they explain,

The multiplicity of systems of intensities conjugates or forms a

rhizome throughout the entire assemblage the moment the

assemblage is swept up by these vectors or tensions of flight.

(Deleuze & Guattari, 1987, p. 110)

Introduction

44

These vectors can be understood as forces that traverse time through space,

propagating across computational layers through the perpetual running and

execution of code. These vectors also modulate the sensation of liveness, in

which code inter-acts with and through different dimensions, layers and

nodes as becoming. The assemblages of relations, in particular code inter-

actions, determine the vector of (nonliving) forces.

The three vectors are used to address the complexity and forces that arise

from the technological and networked conditions of contemporary culture.

The first two of these are based on material I have already introduced

briefly in the above sections, addressing some of the pressing issues in

existing discussions, especially the inter-actions beyond audience perception

and human-machine interactions. The third vector, automation, is more

clearly informed by the artwork Listening Post but it is also inspired by the

increasing availability of automated systems. Automation in computation

implies the act of repetition, which is now manifested in bots, machine-

learning systems, auto update agents and among many more instances.

Blurring the start and the end of a process as well as what is considered to

be new or old and inferring the smooth and interrupted micro-processes of

running code, the notion of automation implies continuity. In other words,

automation is related to how data is being read and written through a

repetitive act of code inter-actions, contingently and dynamically producing

differences in computational processes. The three vectors—unpredictability,

temporality and automation—together form a framework for the

examination of the deep computational structures and architecture of these

computational processes.

Within this framework, I will explore how code inter-acts with different

materials and technologies, expanding the understanding of liveness beyond

its immediate reception and mediatised representation. Three of my

customised software (art) projects will be discussed to address the

underlying conditions for three phenomena—data queries, data streams,

and automated agents—which I will position in relation to the vectors of

45

unpredictability, temporality and automation respectively. Coupling

practice and theory in this way is used to pay attention to otherwise barely

visible code operations and to take seriously their cultural implications. The

three projects and their related experiments, trial processes and reflexive

thinking will be structured and presented at the end of (and within) each

chapter to further examine the phenomena under discussion (Chapters 3-5).

The inclusion of these elements in the body of the thesis, rather than as

separate appendices, emphasises that although the outcomes of these

projects are explained within the chapters, my findings are not only

demonstrated in the written text but in the running of the projects

themselves. They are not written in an academic style, but rather through a

textual method of self-narration and are presented together with screen

shots that integrate my experience, observations and reflections in support

of the overall argument of this thesis. Together with the examination of

these vectors I intend to demonstrate how theory and practice inform each

other. I refer to this in the thesis as ‘reflexive coding practice,’ a

methodology which I discuss in more detail in the next chapter, alongside

other methodological considerations.

It is also important to recognise that this thesis does not intend to define or

explain liveness but rather it focuses on what constitutes liveness within a

contemporary computational context, drawing attention to previously under-

researched constituent parts, such as those imperceptible to humans. It

acknowledges the significant and changing role that technology plays in

shaping the vague sensation of liveness and departs from previous

perspectives (as outlined earlier in this introduction). This thesis asks: how

does a materialist framework of liveness reconfigure our understanding of

software and expand the discussion of what constitutes liveness? This

question is the main line of inquiry for this thesis, examining the technical

and cultural aspects of software to inform a contemporary understanding of

liveness.

This research contributes primarily to a widening of the focus of critical

attention in software (art) studies through a close analysis of data queries,

Introduction

46

data streams and automated agents. With a distinctive focus of the live

dimension of code inter-actions, it presents the vectors of unpredictability,

temporality and automation. This thesis develops what I call “reflexive

coding practice” to examine these live phenomena and it is an applied

approach to computational processes and a means by which to reflect on

cultural issues through experimentation and practice. Furthermore, the

thesis expands the debate in media and performance studies, providing

technical description and analysis in relation to the concept of liveness. In

overall terms, the research contributes to our understanding of software by

expanding our understanding of liveness in contemporary culture. This

includes a nuanced examination of liveness beyond immediate human

reception.

The process of research for this thesis has revealed that there are relatively

few female voices in the interdisciplinary field of software studies. Although,

historically, women played a significant role in the development of

programming and computation, it is generally agreed that there is an under-

representation of women in the fields of science, technology, engineering,

and mathematics (STEM subjects) (Hill et al., 2010). The reasons for this

gender gap, and the strategies for bridging it are more multiple and complex

(Etzkowitz et al., 2000) but it is widely acknowledged that a lack of women

role models in STEM subjects in schools and universities negatively

contributes to the problem (McIntyre et al., 2005). Furthermore, by

contributing to the field of software (art) studies as an East Asian woman

with an open attitude that champions gender and race equality and

diversity I recognise that I am a de facto role model, and contribute in some

way to addressing the stereotypes associated with software studies, whether

I focus explicitly on issues of gender and race or not. Therefore, while gender

and race are not the focus of this research, I recognise that my subject

position ‘matters’ to the research I have undertaken (Barad, 2007, p. 57;

2012, p. 80).

47

1.5 Chapter Overview

The structure of this thesis acknowledges the complexity of code inter-

actions. It reframes the object of study from code to code inter-actions, which

are integrated into the processes of contemporary software culture. It argues

that liveness is in part constituted by code inter-actions, in which processes

are executed at various layers and at multiple scales beyond immediate

reception, in the process of executing and running of code. This thesis aims

to demonstrate a materialist framework, a live dimension of code inter-

actions, to address these conditions. The framework uses and develops

cultural, theoretical and practice-oriented approaches to make a material

and critical account of the process of code inter-actions through the three

vectors that are employed to understand the live condition, which is both

culturally and technically entangled. It is organised across 6 chapters,

including this one, Chapter One.

Chapter Two, ‘Approaches to code inter-actions,’ provides an in-depth

discussion of the field of software (art) studies. It presents key concepts

related to the understanding of contemporary software culture, beginning

with the notion of invisibility that is associated with the materialisation of

code and the opaqueness of computational processes. Secondly, the concept

of performativity is introduced to examine the relationship between code

and language as well as the operational logics of code that produce

performative effects and highlights machine agency as a way to think about

the materiality of code. Thirdly, the notion of generativity is discussed

inasmuch as it introduces a certain degree of autonomy in a given system.

Exploring these three concepts leads to a better understanding of some of

the current debates in the field of software studies and acts as a

complementary force to the three vectors of liveness that I will introduce in

subsequent chapters.

In addition, Chapter Two presents a distinctive perspective on nonhuman

agency and code inter-actions, which I refer to as a materialist approach in

recognition of (feminist) new materialism. This overarching conceptual

Introduction

48

framework for the whole thesis foregrounds the materiality of code inter-

actions. It highlights the concept of code inter-actions that are comprised of

“interactions” (Beaudouin-Lafon, 2008; Bentley, 2003; Murtaugh, 2008;

Wegner, 1997) and “intra-actions” (Barad, 2003, 2007) that produce forms of

agency. Code inter-actions examine code and its dynamic relations and

inter-actions with other materials that underpin the underlying

computational structure and operations therein.

The chapter also discusses the methodology, which I call ‘reflexive coding

practice,’ that is informed by the field of artistic research (Borgdorff, 2011,

2014; Rolling Jr, 2014; Sullivan, 2010). Following the tradition of software

studies in examining code and digital objects, it pays attention to code

reading, writing, running and execution, intertwining theory with practice

to think through the cultural implications of code inter-actions. Informed by

the ‘close reading’ of critical code studies, ‘cold gazing’ in media archaeology

and ‘iterative trials’ in software studies, these methods allow me to delve

into code structures, observing and sensing how things operate and how

materials are subject to inter-action. The artistic projects that I have

developed are also to be regarded as forms of knowledge in parallel to the

written form of this manuscript. This chapter argues that the execution of

code is also a site of knowledge production and this is echoed in the thesis

title.

After situating this thesis in the field of software studies and discussing my

conceptual and methodological considerations in Chapter Two, the

materialist framework of liveness is introduced across Chapters Three to

Five. Liveness is examined in two main ways. Each chapter focuses on a

contemporary condition which is based on computational phenomena

observed in our culture, one of the specific vectors is then introduced. As

part of the reflexive coding practice, each vector is used to examine an

experimental art project. Therefore each chapter engages with and reflects

upon a different platform, coding and networked environment, alluding to

their inter-actions that inform the concept of liveness.

49

Chapter Three, ‘Executing Unpredictable Queries,’ investigates the

unpredictable vector of liveness. Informed by computational media scholar

Noah Wardrip-Fruin’s analysis of the computer-generated program

Loveletters (1952), this chapter examines similar computational processes

but in a networked environment. It takes my collaborative project Thousand

Questions (2012-2016) as an example. Thousand Questions takes ‘questions’

from the internet as text and ‘voices’ them. This chapter discusses the

format of query as a cultural form that has been widely adopted in cultural

and artistic contexts. Findings are also based on this artistic project,

offering an analysis of the unpredictability of live queries and how they

inter-act with databases and network protocols.

The analysis consists of a discussion of the relative openness and closedness

of the internet micro-blogging platform Twitter. By applying the concept of

generativity, it explains how Twitter is a dynamic platform that generates

random events. The chapter also draws upon information theory (Shannon,

1948; Weaver, 1949) and algorithmic information theory (Chaitin,

1987/[1975]) to underline the relationship of randomness to unpredictability

in information processing. Furthermore, following N. Katherine Hayles’

concepts of ‘microscopic events’ and ‘macroscopic chaos’ (1990), the chapter

identifies how mathematical operators play a major role in querying data at

a microscopic level, arguing that they generate a temporal, unpredictable

and dynamic relation of data that cannot be produced in the same way

repeatedly. Lastly the possibility of disruption is introduced, which I call

‘inexecutable query.’ I use this concept to think through business logics,

cultural operations and political decisions across seemingly smooth and

uninterrupted computational processes. The chapter argues that what

makes digital objects live is not the disruptive moment where things do not

function technically but rather the possibility of disruption—the forces of

deadness—which occur at any time that queries are executed through a

technological network beyond a programmer or user’s control. This

inexecutability operates at high levels of unpredictability, uncontrollability

and unknowability across time in which a query is made inexecutable. The

material forces in part constitute the notion of unpredictability.

Introduction

50

Chapter Four, ‘Executing Micro-temporal Streams,’ addresses the temporal

vector of liveness. In particular, it is based on the spinning and loading icon,

commonly known as the ‘throbber,’ that often appears while waiting for

social media feeds, streaming videos and content in contemporary software

culture to load. This chapter further draws upon Wolfgang Ernst’s notion of

“micro-temporality” (2013b), to examine the underlying complex and

temporal activities of real-time data processing that is running behind the

abstract form of the throbber. Micro-temporality addresses the micro-events

of signal and operative processing, as well as computer execution and

network synchronisation.

The chapter begins with a cultural reading of a throbber, examining its use

in both the historical and contemporary context of software (art) practices. It

proposes the term ‘discontinuous micro-temporality’ to rethink the notion of

flow and stream in networked environments. Drawing upon computer

scientist Paul Baran’s ‘packet switching mechanism’ and media and cultural

studies scholar Florian Sprenger’s notion of ‘micro-decisions,’ the chapter

further unfolds the operative processes of data transmission in distributed

networks beyond the linear and continuous flow of time. By using the

method of the ‘cold gaze’ (Ernst, 2013b, pp. 186-9), the chapter analyses

digital signal processing, data packets and network protocols, the buffer and

buffering within its deep internal and operational structures. It

demonstrates that any perceived stream comprises the micro-temporality of

the inner-workings of data processing which is discontinuous in distributed

networks. Informed by this understanding of micro-temporality and the

buffering of data streams, it calls for critical attention to the gaps, ruptures,

pauses and silence of streams.

My experimental project entitled The Spinning Wheel of Life (2016) is

discussed as it emphasises the micro-temporal dimension of code inter-

actions that are manifested in the operations of a throbber. There are

different processing rates, tempos, pulses and rhythms running at multiple

scales—from the operations of the CPU to network routers, from sender to

51

receiver and from continuous streams to discontinuous packets. It highlights

the temporal and spatial dimensions of data streams. Central to the

argument of both chapters Three and Four are the inter-acting relationships

between code, signals, network protocols, computer memory and the buffer,

data processing and databases, query formats and operators which together

constitute the vague sensation of liveness. By analysing the deep query and

micro-temporal structures and processes these chapters explicate the

complex inter-actions of code.

Chapter Five, ‘Executing Automated Tasks,’ examines the third vector,

automation. Automated systems enable real-time computation, tracking and

querying of data, responding to the live environment without human

intervention. Automation is the act of repetition by pre-set algorithms,

performing with changes and differences. This consists of spam, bots and

various sorts of notifications that are perpetually active and processed in the

background, ever-updating and ever-proliferating. The chapter centres upon

Chun’s notion of ‘undeadness’ (2008, 2011) which emphasises endless

updating of code and circulation of data in a networked environment.

Through an analysis of my project Hello Zombies (2015) the chapter closely

examines three main code syntaxes, namely ‘loop’, ‘open or die’ and ‘try and

catch exceptions,’ demonstrating how automated agents enable and disable

certain activities while maintaining the perpetual running of code.

Going beyond the human sensation of liveness, the chapter further draws

upon the writing of Alan Turing (1937), Ernst (2009), Chun (2011), Parisi

and Beatrice M. Fazi (2014) who variously discuss the notion of ending in

computation, how a process can come to an end or completion. The chapter

examines undeadness as a conceptual and technical counterpart to liveness

in order to think about whether there is (and what might be described as)

the ‘end’ of a running program. It argues that the assemblage of forces, in

particular the highlighting of contradictory and unknowable forces, which

constitute the notion of liveness in computation, exhibit unpredictability

through systemic automation.

Introduction

52

Finally and in conclusion (whilst recognising that this comes without an

ending as such, reflected in the title), Chapter Six, ‘Unfinished Thesis,’

brings together the key elements of the dissertation together, in particular

the three vectors, in order to discuss potential future paths for the

conceptualisation of liveness. The overall argument of this thesis is

reiterated: that liveness is about code inter-actions, a continuous process of

executing and running of code that inter-acts across various computational

layers at multiple scales. The detail of this is contained in the various

chapters.

Throughout the thesis as a whole and as reinforced in its title, I present the

central notion of ‘executing liveness’ in order to assert the importance of the

contingent and complex computational processes that execute liveness. The

written thesis, together with the three projects presented herein, provides a

materialist framework to examine the live dimension of code inter-actions

and to produce new understandings of both technical and cultural layers of

liveness

53

2

Approaches to code inter-actions

This thesis is primarily situated in the field of software studies, in which

programmable logic is arguably one of the key components that are

embedded in many kinds of interfaces, devices and media in our culture. In

2001, Lev Manovich observed this is fundamental different from older media

forms like print, photography and television (2001, pp. 47-8). The media that

we are experiencing now is a distributed environment, situating in

networked and data-driven landscape. Although networked and distributed

applications are not something new in everyday life (examples such as the

automated teller machine14 and the bulletin board system15 began operating

in the public domain in the 1960s and 1970s respectively) the web and

internet dominate almost every aspect of life in the twenty-first century

from finance and communication to entertainment and educational sectors

to name but a few. Contemporary software culture denotes networks of

machines that are operated through a highly programmable and distributed

environment, demanding real-time data circulation, dissemination and

processing. The term software studies was coined by Manovich in his early

book entitled The language of New Media in 2001 (pp. 47-8). He argued that

existing media theory did not provide sufficient critical tools to understand

this computational world and he suggested turning to computer science,

shifting the interest and attention from media to software in order to

understand programmable logics and parameters, as for instance, evident in

interface and database (Manovich, 2001, pp. 47-8). Crucially, software

studies is different from, although deeply related to, computer science in

that it is about the culture and practices of software, computation and

technology in its broadest sense. As Manovich puts it, software studies is “to

14 It is claimed that cash dispenser machines first appeared in Japan and the United Kingdom in 1966
and 1967 respectively (Bernardo, 2009, p. 6).
15 In 1978, Ward Christensen and Randy Suess created the first dial-up public bulletin board allowing
exchange of files and information (Taboada, 2004, p. 59).

Approaches to code inter-actions

54

investigate the role of software in contemporary culture, and the cultural

and social forces that are shaping the development of software itself” (2013,

p. 10).

This chapter aims to contextualise the emerging field of software studies by

reviewing some of the existing and relevant literature to understand the

current debates in the field and to establish a foundation on which the

concept of liveness can be situated. This chapter uses textual analysis

supplemented by the discussion of specific instances of software art to

demonstrate some key concepts in the field of software (art) studies which

examine different forces beyond technical innovation and functions. Many

software artworks pay attention to the specific technical/cultural qualities

that explicate the general concerns in the field of software (art) studies. By

drawing upon the scholarly discussions in software studies, three key

concepts which inform the understanding of distinct processual and

expressive nature of code, namely invisibility, performativity and

generatively, will be examined in detail. Finally, this chapter outlines the

conceptual and methodological frameworks for the whole thesis, revealing

the approaches and methods to the study of code that explore the

constitution of liveness.

2.1 Software Art

Software studies makes an argument for a close relationship between art

and culture Specifically, there are increasing numbers of artists whose

works explore the notion of liveness, utilising real-time computation, live

data and dynamic systems which operate on, and through, a technological

network to create artworks. For example, the work Live Wire (1995) by

Natalie Jeremijenko exposes the dynamic of immaterial information

through visualising network traffic in real-time. In past decades the

unprecedented growth of social media sites and online platforms have

fostered the querying of data through programmable technology as observed

in works such as The Sound of Market (1996), Listening Post (2000-2001),

Toy Town (2009), Thousand Questions (2012), Read for us...And show us the

55

pictures (2015) amongst others. Table 1 demonstrates some of the software

artworks that particularly emphasise and explore the various dimensions of

liveness.

Approaches to code inter-actions

56

Table 1: A selected list of (software) artworks that address the notion of liveness

Year Artwork Artist Excerpt of artwork description
1995 Live Wire Natalie

Jeremijenko
“The Live Wire is a 3D, real-time network traffic
indicator”(Jeremijenko, 1995, my emphasis).

1996-
2001

Image/ine
Steina Vasulka
and Tom
Demeyer

“Image/ine is a Macintosh program that allows a user
to manipulate visual source material in a live
performance environment” (Vasulka & Demeyer, n.d,
my emphasis).

1996 The Sound of
Market

Henry Chu

“This work uses the stock chart of Hong Kong stock
market, downloaded in real time, according to which
stock code the user puts in. The chart will be analyzed,
and transformed into music notes” (Chu, 2007[1996],
my emphasis).

2000-
2001

Listening Post

Ben Rubin and
Mark Hansen

“Listening Post is a dynamic portrait of online
communication, displaying uncensored fragments of
text, sampled in real-time, from public internet
chatrooms and bulletin boards” (Hansen & Rubin,
2000-2001, my emphasis).

2004
www.is-a-
living.org

Mushon
Zer-Aviv

“It is using a physical computed tracking system
conjunct with live internet search-engine activity,
interactive visuals and sounds and a game system to
deliver the concept” (Zer-Aviv, 2004, my emphasis).

2005 Lyric economy Electroboutique

“Poetic Economy visually deconstructs a traditional
poetic text (Goethe, Shakespeare, Pushkin, you to
decide) and replaces it with a news feed coming in real
time through RSS channels” (Electroboutique, 2005,
my emphasis).

2009 Toy Town

Ellie Harrison

“Together they form part of a trilogy of new works
which use specially designed software to respond
instantaneously to news headlines reported in the
BBC News RSS feed” (Harrison, 2009, my emphasis).

2012 Thousand
Questions

Winnie Soon
and Helen
Pritchard

“The questions are gathered in real-time from the
social media site Twitter and encoded to speech.
Listening is a form of decoding, and in this work the
machine constantly undergoes the process of editing,
encoding and decoding texts” (Soon & Pritchard,
2012b, my emphasis).

2012

A live portrait
of Tim
Berners-Lee
(an early
warning
system)

Thomson &
Craighead

“A live portrait of Tim Berners-Lee (an early warning
system) is a drawing made from two live cameras
located on opposite sides of the world and eleven time
zones apart from each other” (Craighead, 2012, my
emphasis).

2014 Radiancescape XCEED

“It based on the live radiation data from the
Safecast.org, a global sensor network for collecting and
sharing radiation measurements, to generate a
cityscape” (XCEED, 2014, my emphasis).

2014 The Pirate
Cinema

Nicolas
Maigret

“The project is presented as a monitoring room, which
shows Peer-to-Peer transfers happening in real time
on networks using the BitTorrent protocol.[…] This
immediate and fragmentary rendering of digital
activity, with information concerning its source and
destination, thus depicts the topology of digital media
consumption and uncontrolled content dissemination
in a connected world” (Maigret, 2014, my emphasis).

2015

Show us the
pictures ‘Some
Thing We Are’

John Cayley
and Daniel
Howe

“The Readers Project presents the work of a software
entity that generates digital video montage, with
visual content sourced through live image search”
(Cayley & Howe, 2015, my emphasis).

57

The first use of the word ‘software’ in an exhibition title can be traced back

to the 1970s. Artist and critic Jack Burnham curated an exhibition called

Software - Information Technology: Its New Meaning for Art at the Jewish

Museum in New York (1970-1971). This exhibition opened up a way of

thinking software beyond the confines of engineering. According to

Burnham, the exhibition was focused on information processing that “[dealt]

with underlying structures of communication or energy exchange instead of

abstract appearances” (1970, p. 12). This focus on process rather than

appearance suggests that code must be understood together with system

procedures and data sources, or that the resulting representations would

have a richer, or alternate meaning if the system procedures and data

sources were understood. Software structure, for Burnham too, does not

limit itself to languages, programs and procedures (that is the ‘form’ of

written code) but includes system design, such as flow diagrams and ‘system

procedures’ (1970, p. 12). He asserted that the notion of software should be

expanded to include “any kind of data” that is taken “from the environment

by a system, living or organic” (Burnham, 1970, p. 12). In addition,

Burnham’s understanding of software is a creative and expressive medium

that “represent[s] the programs of artists,” including their views and

concepts. Burnham’s words and his curated exhibition indicate that software

not only refers to a specific piece of code but rather to the processes and

other living systems which are also part of it. His interest in the morphology

of structure and processes of materialisation can be said to demonstrate how

materials are inseparable from the final ‘object’ (or appearance) of software.

In the words of the materialist Manuel DeLanda, the notion of

“morphogenesis” describes such an entanglement between stable forms and

material processes (1995, 2003).

On the contrary, the exhibition CODeDOC (2002), which was curated by

Christiane Paul for the Whitney Museum online portal,16 took the medium

of code as its focus and presented twelve commissioned artworks in the form

16 Paul took the concept of CODeDOC and developed CODeDOC II (2003) at the digital art festival Ars
Electronica. For all the artworks and the curatorial statement of CODeDoc, see:
http://artport.whitney.org/commissions/codedoc/.

Approaches to code inter-actions

58

of source code and executed results. The intention of the exhibition was to

“explore the relationship between the underlying code of software art and its

results” (Paul, 2003, n.p). Such presentation of the works draws attention to

the procedures, rules and grammar of code. Paul regarded code as a form of

creative writing in which both the artists themselves and how the code is

structured become the integrated whole of the creative process (2002, 2003).

These procedural and stylistic instructions are specific to different

programming languages. The exhibition of instructions, rather than the

visual representation that emerges from them or the result of the work,

becomes the focal point as the audience moved between the front and

backend of the artworks (Paul, 2002). This is also demonstrated in the

recent award-winning artwork 50. Shades of Grey17 (2015), Hong Kong’s

artist-programmer Bryan Chung shows 6 different programming languages,

in the form of both source code and executed outcomes, which create the

same graphic pattern of fifty shades of grey tone. These kinds of artwork

suggest source code as a material, indicating underlying structure and

processes which are distinct from the finished form of the (art) objects.

The focus on technical materials and processes also challenges the

perception and meaning of art and whether software art can be considered

art at all (Cramer, 2003, n.p; Goriunova & Shulgin, 2004, pp. 19-20). As

noted by media theorist Florian Cramer, software art is a genre that

addresses the materiality of software, rather than reflecting the mainstream

contemporary art scene in which artists are the core participants who make

the meaning of the work manifest in many contemporary art forms such as

installation, video and audio/sound art (Cramer, 2003). Software art’s

attention to its medium or material specificity shares values with net art,

which has often described itself as an anti-aesthetic (Stallabrass, 2003, p.

49). As Paul explicitly stated in CODeDOC: “Visual Beauty does not have to

be the main focus” (2002, n.p). One could argue that software art is similar

to conceptual art in the 1960s where technology was not prevalent and the

human idea was favoured above its representation. Indeed such a

17 The artwork 50. Shades of Grey received the Grand Prize of the Japan Media Art Festival in 2015.
See: http://www.magicandlove.com/blog/artworks/50-shades-of-grey/

59

connection to conceptualism has been traced by scholars such as Jullian

Stallabrass (2003), Edward Shanken (2002) and Alexander Galloway (2004).

In particular, software studies scholars Christian Ulrik, Andersen and

Søren Pold argue that software art promotes our critical awareness of

software culture and evokes debates on the art form itself. Specifically, one

of the claims about software art is that such an art form “has the power to

contemplate its own materiality and language” (Andersen & Pold, 2004b, p.

13). As such Andersen and Pold argue that software art can be regarded as a

conceptual art form (2004a, p. 13).

Software art finds its roots in the net art movement in the 1990s (cf.

Bookchin & Shulgin, 1999, n.p; Goriunova, 2012, p. 74). Yet this is not

straightforward and browser art, for instance, blurs sub genres that are

hard to classify as either network or software centric. Importantly Cramer

points out that many software artists consider the wider network or

computer system as part of the code materials (2003). Although net art

places its focus on the internet network, it often requires the presence of

software. Conversely, everyday software is operated under and within a

network. For example, software requires an internet connection that deals

with live data feed, or a script which runs in a web browser (a HTML web

page for instance). Networks and software are integrated and increasingly

blurred and they inter-act with one another and form new relations that

undermine the separation between the two. JODI’s earlier work GEO GOO

(2008) (see Figure 1.1) demonstrates the intertwining of software and

network. This hacked Google map calls for our attention to daily proprietary

software and familiar interfaces and icons that are used in everyday

network culture. GEO GOO is not a narrative form of art but it presents in a

fairly messy interface, something like a malfunction map, by appropriating

Google Maps and icons in a manner that disrupts how may we normally

think of a map and the consequences of how Google has changed the

conception of a map in everyday practice. One may argue that JODI’s work

shows the concept of digital interventions by destabilising and presenting

special kinds of internet materials in which the idea behind, the concept, in

the work takes over its visual beauty.

Approaches to code inter-actions

60

Figure 2.1: GEO GOO (2008) by JODI. This figure is a screen shot from geogoo.net.

However, there are also other voices in the field for whom these kind of art

forms are not equivalent to conceptual art. Insofar as artists in the realm of

net art/software art take into consideration material agency such as “faulty

code,” “crashes,” “incompatibilities” and “viruses” which are specific to the

network or the software, they are different from conceptual artists (Cramer,

2003, n.p). Expanding on this the concern with material agency becomes the

subject of the artworks. Artists explore the materiality of software and

network, expressing and presenting their work in the same form with the

same subject. For example, the piece Biennale.py (2001)18 is a computer

virus distributing as art at the 49th Venice Biennale that intrigued the

matter of software legality. Moreover the work was also distributed as open

source software that was programmed with Python, allowing the ‘variable

names’ to be customised and seen by the public. As such the source code is

recognised as not only “a love poem” but also as code that can perform on its

own once executed (0100101110101101.ORG & epidemiC, 2004, np).

18 The piece Biennale.py (2001) was developed by 0100101110101101.ORG and epidemic. See:
http://epidemic.ws/biannual.html

61

Alluding to artworks that express the agency of code by using code, such

attention to the code’s materiality of indicates an integral concern with code

as both object and subject. This stands in sharp distinction from using code

as a tool to merely present another artistic concept.

It is perhaps necessary to emphasis how software art differs from other art

forms that also have a focus on materiality, for example those filmmakers

who declared themselves as structuralists/materialists. The ability of code to

execute and run in different conditions may produce distinct behaviours

which is unique to software art. The same webpage can be rendered

distinctively by different web browsers 19 and by the condition of the

machine. A further example is Listening Post, which has been discussed in

previous chapter, which takes in dynamic data and presents it in a

multimedia form. Generally, film has hardly moved away from playback.

Although one could argue that film materialists investigate different aspects

of the medium of film presentation via projections, screens and lens or

image production processes with distinctive printers and papers, the

characteristics of software are rules, languages and programmability, most

importantly, however, are the live conditions of the execution processes.

In the realm of software art, code or software is often not considered as a

practical tool but as a thing that expresses itself. As media theorist Tilman

Baumgärtel puts it:

Software art is not art that has been created with the help of a

computer but art that happens in the computer. Software is not

programmed by artists, in order to produce autonomous work,

but the software itself is the artwork. What is crucial here is not

the result but the process triggered in the computer by the

program code (cited in Cox, 2007, p. 150).

19 The artwork Scrollbar Composition (2000) by Jan Robert Leegte would be an illustration of this. He
presented the work in the exhibition Electronic SuperHighway at Whitechapel Gallery in London in
2016, where there were three screens containing three web browsers and each ran the same piece of
code differently. The screens showed different stylistic scrollbars, as well as micro differences of
rendering speeds.

Approaches to code inter-actions

62

This attention to self-expression differentiates the field of software studies

from the growing discipline of digital humanities (DM). In DM, software is

often regarded as a practical tool for sociological or humanistic analysis,

usually in the form of processing large amounts of data for statistical

analysis (Fitzpatrick, 2012, p. 13; Svensson, 2012, p. 41). In the words of DM

scholar John Unsworth, “the computer is used as tool for modeling

humanities data and our understanding of it” (2002). One could argue that

software artworks use technology in creating an expressive form of work.

Indeed, software art does not only place emphasis on using software as a

tool, to make works or generate another expression but is also “using code as

an expression itself” (Andersen & Pold, 2004b). Using the term ‘expression’

draws attention to the argument that code consists of non-neutral

commands, not taking for granted any syntax or even punctuation.

An example of the expression of non-neutral code is a software artwork

called Whitespace20 (2003) produced by Edwin Brady and Chris Morris (see

Figure 1.2). White space is commonly seen in computer programming

language representing horizontal or vertical space. White space is a

character or a series of characters, for example in HTML a white space

symbol is written as ‘ ’. However, the artwork Whitespace is a

programming language without a practical value insofar as it questions the

injustice of white space, a syntax that is often hidden or ignored in computer

programming culture. The artwork ignores any non-whitespace characters

and only gives meaning to various forms of white space,21 ‘Space’ and ‘Tab’

for instance. White space can be seen as a programing standard for

indentation but also as an expression of aesthetic appeal and readability

(Lazaris, 2013). Furthermore the demands of white space vary across

programming languages such as Python, which requires a strict indentation

and space character position for further layers of processing. 22 As such the

20 See the work details, source code and later developed version:
http://runme.org/project/+whitespace/, https://github.com/hostilefork/whitespacers/ and
https://github.com/igorw/whitespace-php
21 See: http://compsoc.dur.ac.uk/whitespace/tutorial.html
22 See: https://www.python.org/dev/peps/pep-0008/#whitespace-in-expressions-and-statements

63

white space may be understood as a transformative force in itself, inter-

acting with code, language and culture. It traverses the material and its

representation in a seamless way. This kind of translation is specific to

software art, distinguishing it from other art forms such as film and

painting, in which instructions can be activated through layers of

computational processes. Paul explains such inter-acted layers of code as

central to software art in the following passage:

In software art, the materiality of the written instructions

mostly remains hidden. In addition, these instructions and

notations can be instantaneously activated; they contain further

layers of processing and are the artwork itself (2003, n.p,

original emphasis).

The work Whitespace, and many other software artworks, are archived at

Runme.org, a software art repository established in 2003. The code is

available for analysis as well as its function as an archive of cultural

activity. Focusing on art and culture, the associated Readme festival,23

which took place at the Marcros-center in Moscow24 (2002), Media Centre

Lume in Helsinki 25 (2003), Rum46 in Aarhus 26 (2004) and HMKV in

Dortmund 27 (2005), promoted this artistic, experimental and expressive

genre and is regarded as an important event that shaped the field of

software studies. Software art expresses a response to the inhabitants of

different kinds of software activities, such as programming, experimentation

and open source culture.28 According to Andersen and Pold, software art

addresses the culture of software, promoting the awareness of the cultural

consequences of software through artistic practices (2004b, p. 12).

23 readme festival promoted the artistic practice of software.
24 See: http://web.archive.org/web/20021212040735/www.macroscenter.ru/read_me/abouten.htm
25 See: http://www.m-cult.org/read_me/report.htm
26 See: http://readme.runme.org/2004/conference.php
27 See: http://readme.runme.org/
28 An exhibition titled Open Source Embroidery: Craft + Code was held in 2008 at the HTTP Gallery
in London.

Approaches to code inter-actions

64

Figure 2.2: Whitespace (2003) by Edwin Brady and Chris Morris. This image is retrieved
from http://www.elistmania.com/juice/10_esoteric_programming_languages/.

Such practices that come with the awareness of software culture have been

also formally established in other annual and well-known institutional

festivals, continually obtaining worldwide attention. For instance,

Transmediale (the festival for art and digital culture) introduced “artistic

software” as a new category in 2001 that has been championed through its

exhibition and symposiums. Furthermore, code gained major attention at

Ars Electronica, one of the biggest digital art festivals, in 2003. There were

three thematic domains29 under the theme of ‘Code—The Language of our

Time,’ they were: Code=Law, Code=Art and Code=Life. Such domains

provided a framework to make explicit the cultural and political

consequences of code, reflecting on the matters such as privacy, copyright,

control, aesthetics and norms that are related to software. Software becomes

29 See:
http://90.146.8.18/en/archives/festival_archive/festival_overview.asp?iPresentationYearFrom=2003

65

a critiquing tool within artworks, with a role beyond merely technical

functions and operations (as illustrated in the artworks Biennale.py and

Whitespace). As the director of Ars Electronica, Gerfried Stocker, reminds

us, this type of art “is always aesthetic research, critical analysis and social

critique of our scientifically, technically conditioned view of the world”

(2003, p. 11).

This focus on criticality through art practice is continued to flourish through

various institutions across the globe such as the Computational Culture

Journal 30 and A Peer-Reviewed Journal About 31 which are both online

journals that offer critical software (art) discourses, and operate in the

United Kingdom and Denmark respectively. Collectives such as Constant32

(based in Brussels since 1997) and Critical Software Thing 33 (an

international group founded in 2015) both address particularly on critical

discourse and social critique of software and computation through

workshops, writings, seminars and artistic practice.

There is no standard way of working within software art inasmuch as

artworks can be presented in many different forms from the sonic to the

visual, from sculpture to installation. Nonetheless, software art commonly

engages with the social, political and critical attention devoted to code and

computational processes in a broad way. There are numerous cases where

self-declared non-artists enter different festivals and exhibitions (Readme is

a case in point) and this can be traced back to the exhibition Cybernetic

Serendipity,34 curated by Jasia Reichardt, at the ICA London in 1968.

I am not going to argue in this thesis whether software art is art given the

nature of the involvement of computation. Whether such art engages with

other dialogues in aesthetics and art philosophy is not central to my thesis.

30 See: http://computationalculture.net/
31 See: http://www.aprja.net/
32 See: http://constantvzw.org/
33 See: http://softwarestudies.projects.cavi.au.dk/index.php/CriticalSoftwareThing
34 The exhibition Cybernetic Serendipity showcased works from artists and scientist-engineer
engineers, exploring the intersection between technology and art (Reichardt, 1968, p. 10).

Approaches to code inter-actions

66

Rather, in this section in particular and in this thesis in general, I seek to

highlight the orientation of software (art) practice in which code is neither a

purely a technical matter, nor a cultural matter. Indeed software (art)

practice may be considered as “entangled material practices” (Barad, 2007,

p. 25) in which the technical and cultural can no longer be considered as

separate categories and this is also the position of the field software (art)

studies in this thesis.

2.2 Software Studies: Three key concepts

The discussion of software art within the field software studies started to

take shape in the 2000s. In his earlier book, Behind the Blip (2003), artist

and scholar Matthew Fuller discusses his collaborative software artwork

The Web Stalker (1997-1998) at length. In his book Fuller suggests that we

pay attention to software not at a general level but at the level of particular

programs or objects to better understand how the dynamic of things “are

networked out into further vectors, layers, nodes of classes,

instrumentalisations, panics, quick fixes, slow collapses, the sheerly alien

fruitfulness of digital abundance” (2003, p. 18). In other words, software can

be studied through artworks or digital objects in a broad sense. Fuller

argues that such investigative approaches to the study of digital objects are

apparently quite different from how we learn about software in science as

they involve social and political implications. In 2003, following Fuller’s

suggested approach to studying specific objects, he published the first book

that used the term software studies in its title—Software Studies: A Lexicon

(edited 2008). All contributing writers were asked to contribute a short

study on a particular digital object such as, algorithm, code, class library,

interface, loop, memory among others, to open up new ways of studying

these terms beyond the technical and with critical and cultural perspectives.

The book was published by the MIT Press and it prompted the software

studies book series35 in August 2008 which foregrounded the importance of

software in contemporary culture. As the MIT Press’ website describes it,

35 See: https://mitpress.mit.edu/books/series/software-studies

67

[t]he Software Studies series publishes the best new work in a

critical and experimental field that is at once culturally and

technically literate, reflecting the reality of today’s software

culture. The field of software studies engages and contributes to

the research of computer scientists, the work of software

designers and engineers, and the creations of software artists.

Software studies tracks how software is substantially integrated

into the processes of contemporary culture and society. It does

this both in the scholarly modes of the humanities and social

sciences and in the software creation/research modes of

computer science, the arts, and design (The MIT Press, 2016).

Software studies is an emerging interdisciplinary field. It connects the

territories of science and the humanities. Over the past two decades,

programmable technology has permeated our environment in all sorts of

areas from education to business, to entertainment, design and art. On the

one hand, the reasons we need to understand software culture is the

pervasiveness with which technology influences culture, human behaviours,

and even how we read, act and participate in this computational world. On

the other, according to Chun, software culture is about knowledge-power

renegotiation within institutions, social and economic systems, and,

arguably, one could begin to engage with software differently (2011b, p. 21).

This is evident in open source software movement, various open data

initiatives,36 establishment of creative commons and ethical companies like

Fairphone.37

 The field of software studies has a specific interest in what David M. Berry

describes as “computationality” (2011, p. 10), Adrian Mackenzie names as

“softwarily” (Mackenzie, 2006, p.1) or what Chun and Manovich refer to as

“programmability” (Chun, 2011b, p. 21; Manovich, 2001, p. 49). This focus,

36Initiatives such as Open Data Hong Kong and Open Data Aarhus which advocate availability of
public data. See: https://opendatahk.com/ and https://www.odaa.dk/
37 See: https://www.fairphone.com/en/

Approaches to code inter-actions

68

however, does not champion new technology and invention, nor promote

scientific knowledge of mathematics and predictive models or similar but

rather is about asking what are the implications of such computational and

programmable logics? In other words, software studies is about having a

critical and broader understanding of software, examining the conditions

that explicate social, cultural, aesthetic and political relations.

Delving into a deeper discussion of the field software studies in which this

thesis is situated, there are three key concepts that are fundamental to

software culture and which provide a basis for further understanding of the

constitution of liveness. In particular, the notion of liveness that this thesis

suggests is indeed highly related to computational processes, where

computer code is important in driving such operations. Those processes

might not be expressed apparently through their mediatised representation.

Arguably, these relatively invisible operations affect how we perceive

computational processes as live events. How have computational processes

remained relatively invisible? How does computation perform beyond

immediate reception? How might we understand generative processes in

computation? The following sections take these questions seriously and

regard them as necessary parameters for the discussion of liveness but they

might not be the only concepts required. However, these three concepts are

salient enough to establish a basis for the further examination and

articulation of liveness as situated within a computational context as will be

discussed in subsequent chapters.

 2.2.1 Invisibility

Code, according to Berry, is material and not immaterial. Although code is

not a physical object and it has no physical properties such that one can

touch it, code is like a “knot” which “ties together the physical” and can be

touched or sensed (Berry, 2011, p. 3). Just like, for example, reading a live

feed on a mobile screen, code in the form of written instructions materialises

and renders data into something noticeable on a physical screen, allowing

69

the reader to experience the liveness of the world through the screen

interface based on her reception of the perceptible content. Therefore, code is

connected with other things, “mediating and constructing our media

experiences in real-time as software” (Berry, 2011, p. 38).

In addition, software becomes ubiquitous as physical machines such as the

personal computer or small devices like watches are now also embedded

with software. Things are constantly changed and highly connected with

other systems. Software studies scholars Rob Kitchin and Martin Dodge

point out that code includes the invisible and distant processes of data flow

across networked infrastructure and databases (2011, p. 9). Such working

processes are operated invisibly, at least to general mass audiences who do

not have much technical knowledge and do not have access to those

machines. Code becomes visible when it generates sensual representation

through data processing and manipulation, such as the LED light blinks on

a motherboard or data visualised on a screen. Before code becomes a

perceptible form many different events have happened and not all of them

are perceptible. Perhaps most importantly, not all functions of code are

rendered visible.

Chun argues that perceptible data is not a mere representation or

reproduction of code insofar a computer has to “generate” such data through

computation (2011b, p. 17). Chun claims that software is a metaphor that

generally misleads us into believing in a separation between software and

hardware, where software “is invisible yet generates visible effects” (2011b,

p. 17). Specifically Chun critiques the metaphor of software that makes us

believe in a synchronised logic between reading and writing and this has

been observed in many interfaces. A case in point is the myth: ‘What you see

is what you write.’ She goes on to argue that this logic has been implied in

the general definition of software in which a task is performed and executed

according to a set of instructions. In other words, for Chun, software has

most often been reduced to instructions, especially instructions in source

code, which are able to generate invisible data, ignoring the entire

computational process. In particular, Chun addresses the execution process

Approaches to code inter-actions

70

which includes compilation or interpretation that is not simply a translation

but involves the calculation of memory, for example, which is not stated in

the source code (2011b, p. 23). As such code is invisible if one takes into

account the execution process and code cannot be reduced to its association

with software only.

Furthermore, Chun points out that “code does not unfold linearly” (2011b, p.

25). The nonlinear behaviour of code gives rise to its dynamic nature, as she

puts it, “[code] has always been regenerative and interactive; every iteration

alters its meaning” (Chun, 2011b, p. 25). Such iteration can be understood in

two ways that operate at the memory level. First is the updating of the code

logic, such as variables and input data, in which a value is subjected to the

live conditions in which the piece of code is run. Code computes, and is based

on, the values that are stored in a memory. Secondly, it is the physical

marks that would be left as ‘traces’ in storage devices through data

processing (Kirschenbaum, 2012). Memory is not unlimited but it is being

allocated technically in a non-linear manner. Therefore, iteration is more

than repeating, alluding to a process of generating differences and variation

in repetition. In view of such micro-processes and detailed examination,

Chun would rather say software is “invisibly visible, visibly invisible”

(2011b, p. 98).

Software is a technical object that participates in complex computational

processes. It is hard for anyone even computer experts, to fully comprehend

and understand such complex processes. Source code that is actually written

by programmers, proprietary software in particular, might only get to be

read by a limited number of people and, according to sociologist and

software studies scholar Adrian Mackenzie, “Code, woven into the

background of transactions, habits and perceptions, does not often become

visible, except in breakdowns, failures and at certain other moments” (2006,

p. 170). On the contrary, some contemporary software is of a large scale in

terms of its number of instructions and the number of people involved in

writing it. For example, an open source operating system like Linux

contains numerous pieces and lines of code that are contributed by tens of

71

thousands of programmers and specialists (Mackenzie, 2005, p. 72). In such

cases, no single professional programmer would be able to understand the

totality of functions and computer code (Bentley, 2003, p. 34; Hayles, 2006,

p. 137; Mackenzie, 2006, p. 170). This highlights the fact that code is often

invisible, not only to users and readers, but also to IT professionals. As

computer scientist Manfred Broy puts it, “software is almost intangible,

generally invisible, complex, vast and difficult to comprehend” (2002, p. 11).

In short, software programs are getting more complex. The issue of

invisibility may also relate to knowability and knowledgeability but not only

the availability of code and the transparency of related code functions and

processes.

According to Berry, code is “largely invisible” because it runs inside a

confined machine and it runs fast (2011, p. 94). In most programing

languages the unit of time measured by the computer are calculated in

milliseconds. Nowadays, with the advancement of hardware, processing

power and memory, running an algorithmic transaction takes less than a

second. ‘Sub-one millisecond’ is the current standard of the stock exchange

system per transaction (Keehner, 2007, n.p). This performance, as described

by Sandy Frucher, the CEO of Philadelphia Stock Exchange, will continue to

be reduced. This speedy processing is not only observed in machine

processing but also in data transmission. The forthcoming technology Li-Fi38

(light fidelity), invented by Professor Harald Haas from the University of

Edinburgh, uses visible light communication (radio waves) to transmit data

at a rate of approximately 10 gigabits per second, which is more than 200

times faster than the average Wi-Fi speed (Anil et al., 2015). As such,

observing running code or transmitting data becomes extremely difficult for

humans. Even by using sophisticated tools, it may not be accessible by

everyone. Consequently, the reliance on what is visible on a screen may

even dictate or direct more future study and everyday activities, reducing

the awareness of what is happening between and underneath layers,

processes and nodes of the plane.

38 A term coined by Harald Haas at the TED Global conference in Edinburgh. See:
https://www.ted.com/talks/harald_haas_wireless_data_from_every_light_bulb

Approaches to code inter-actions

72

This draws much attentions from academics who critically analyse this

speedy phenomenon in contemporary culture (cf. Chun, 2008a, pp. 151-152).

Among these scholars, Berry points out the differences between computation

and human time and suggests slowing down the running time using specific

devices to better observe how code runs from a distance (2011, p. 94). Berry

also establishes the notion of a “grammar of code,” underpinning the

different modalities of code beyond its syntactic form (2011, pp. 51-6). Code

can be in different forms, including source code, prescriptive code (or

executable code), commentary code and everyday code objects (Berry, 2011,

pp. 51-6). The notion of code, for Berry, emphasises the performative aspect

that connects it with capitalist economy (2011, p. 61) and this is especially

worth noting with regard to datafication in contemporary software culture.

Invisibility is also associated with data commodification and capitalism as it

is performed by code. In her recent essay, researcher Renée Ridgway

discusses how customers’ data and their online behaviours have been mined

and captured seamlessly for predictive measurement and profit-making by

businesses, enabling new models of personalisation, profiling and customer

loyalty management. Data mining businesses cannot operate without the

complex logic of algorithms and hidden infrastructures (Ridgway, 2015)

which, when revealed even in the abstract, cause public concern. Giant

platform providers, like Facebook, Weibo and YouTube, consist of enormous

numbers of subscribes or active users and these providers offer web APIs

(Application Programming Interfaces) that foster data mining businesses.

Arguably, those platform providers make false presentations of what their

software means and how it functions and behaves through software

platforms and services offered. There is not much information released to

end users on how and for whom data is queried and mined. Science and

technology scholar and philosopher Bruno Latour would refer to this

phenomenon using his metaphor of the “black box” (1999, p. 304), a box that

does not allow us to know what is inside it. He explains,

[Blackboxing] refers to the way scientific and technical work is

73

made invisible by its own success. When a machine runs

efficiently, when a matter of fact is settled, one need focus only

on its inputs and outputs and not on its internal complexity.

Thus paradoxically, the more science and technology succeed,

the more opaque and obscure they become (Latour, 1999, p. 304,

my emphasis).

This blackboxing, in relation to software, has been critically and tactically

explored in various artistic works. The project Google will Eat itself39(2005)

criticises the neutrality of Google, the economic expansion of market control

and the act of information manipulation, through hacking its internet

advertising system. The way the project is presented is distinctly unlike a

blackbox; the artists use a diagram (see Figure 2.3) to show the components

and conceptual logics of their hidden engine, as well as demonstrating how

each component relates to another and how the engine automatically

triggers invalid clicks to disturb the existing mechanics of the Google

advertising chain. Therefore, code is not only invisible but also largely

imperceptible in terms of its complex relationship with the economy and

political agenda of giant software systems like Google (Parikka, 2010, p.

118). The notion of invisibility addresses the opaqueness of computational

processes that are intertwining with wider economic, political and cultural

forces.

39 Google Will Eat Itself is developed by UBERMORGEN, Alessandro Ludovico and Paolo Cirio. See:
http://www.gwei.org/index.php

Approaches to code inter-actions

74

Figure 2.3: The diagram of Google Will Eat Itself (2005). It demonstrates the detailed
mechanics of the system that is interacted with Google. Retrieved from http://gwei.org

75

2.2.2 Performativity

Software can be understood with reference to a particular program or

platform or operating system. Fundamentally software consists of

mathematical, logical and procedural instructions that are constructed in

language. In programming practice instructions have to be written precisely,

following certain specifications of programming languages, as code. Code is

related to formal language in two ways, first the written components of

programming languages and second in its implementation with symbolic

controls (Cramer, 2013, p. 142). Code is a structured language, regardless of

the written form of high-level or low-level programming languages. Code

comprises symbols, words, grammar, syntax, statements and a strict

structure that shares similar properties with formal languages. The term

“performativity” is commonly used in the field of software studies to

conceptualise software as language (Arns, 2004; Cox, 2013; Galloway, 2006;

Hayles, 2005; Mackenzie, 2005).

Notably, code is not only expressed in its written form but is also

materialised in visible and invisible interfaces and devices performing

various actions and creating events. The notion of the event is specific to

computation and is commonly seen in the programming paradigm in which

a program or software is driven by events through Input/Output (I/O)

operations such as a mouse click. This event-driven design “invokes a

continuation” of a program through different event handlers (Fischer et al.,

2007, p. 134). Figure 2.4 shows an example of code that draws things on a

screen by using a computer mouse in which the program listens, as an event

handler, to the possible movement and actions of a mouse input.

Approaches to code inter-actions

76

Figure 2.4: An example of code that listens to mouse events

In this example, there are several strict structures that one needs to follow,

special punctuation symbols such as the semi-colon at the end of a

statement as well as the pairs of parentheses and curly brackets.

Additionally, the language is human readable and functions, such as the

‘draw’ and ‘setup’ commands, are case sensitive. When this piece of code

runs it constantly registers to mouse events—like whether the mouse has

been clicked/pressed, as well as capturing the mouse coordinate values.

Once the mouse’s X and Y coordinates are captured they will be translated

into a rectangular position that presents itself on a screen. In other words,

running the code means performing actions. In this case, behind the visible

rectangular drawing, the code registers mouse events, captures the

coordinates and draws rectangles based on this information. In this

example, code performs at the most basic level that output something based

on the input.

Extending the basic understanding of code performativity, a subject can be

addressed linguistically in both formal and computer languages. Cox argues

from a linguistic perspective and points towards the ability of code that can

“authoritatively speak to subjects” (2013, p. 3, original emphasis), and in

drawing upon the work of Judith Bulter to assert that code exists in ideology

77

in similar ways to natural languages. For example, Cox demonstrates this in

human language, with the Althusserian phrase “Hey, you there!” (2013, p.

4). Code does not only allow one to speak to a subject but also speaks on a

subject. There are many examples that could help illustrate the

interconnections of language, subjectivity and code. Within the genre of

codework, for instance, artists mix both computer code and text to form

something like a code-poem or manifesto. Pall Thayer’s artwork

Microcodes40 (2009-) best illustrated this (see Figure 2.5). The work consists

of many small pieces of microcode that are written in the programming

language PERL. All of them are both readable in the form of source code and

as the result of an executable program. Codework is for humans to read but

at the same time can be recognised as code language, which means a piece of

code or a program that demonstrates linguistic expressions yet it is not

necessarily executable. According to critic and artist Alan Sondheim,

codework is about “an uneasy combination of contents and structures,” but

not its executability (2001, n.p). Another example of this is the software

library called Femme Disturbance Library41 (2013), which is also a “code

poem” as described by the artists Zach Blas and Micha Cárdenas (2013, p.

565), designed with queer and feminist perspectives that prompts critical

attention to subjectivities, genders and desires which constitute digital

technologies. Such queer femme expressions are embodied and

demonstrated in the artwork (see Figure 2.6). As such, this kind of codework

comes with a “voice” and, according to Cox, connects “with political

expression” (2013, p. 3). In other words, code is not only an expressive

medium but it allows political expression that demonstrates agency and

hence produces meaning through the reworking of “formal logic and poetic

expression” (Cox, 2013, p. 8). Code is able to speak to, and on, certain

subjects.

40 See: http://pallthayer.dyndns.org/microcodes/
41 Femme Disturbance Library is part of the TransCoder project. See:
http://www.queertechnologies.info/products/transcoder/

Approaches to code inter-actions

78

Figure 2.5: Two pieces of Microcodes (2009-) by Pall Thayer’s. This is a screen shot from
http://pallthayer.dyndns.org/microcodes/

Figure 2.6: An excerpt of the work femme Disturbance Library (2012). Reprinted from
Imaginary computational systems, by Z. Blas and M. Cárdenas, 2013, London: Springer.

Copyright 2013 by Springer.

79

In the performativity of human language, actions and subjects are

interwoven. John Langshaw Austin’s Speech-Act theory indicates language

is not only about the description of things or events but also has a

performative dimension where actions are performed and subjects are

involved (1962, p. 21). The analogy of speech, as used by software studies

scholars, addresses the interplay between language (saying) and actions

(doing) within and beyond code. Cox further draws such connection but he

emphasises computer action to be unstable like speech (again drawing upon

Butler). He addresses the unstable relationship in executing code, where

code operations can be “out of control,” especially when the computer

encounters failure or program bugs. Cox argues that this instability is

similar to speech inasmuch as the human interpretation of language is

always transformative (2013, p. 5). In other words, the computer does not

always follow strict instructions and does not produce predictable outcomes

all the time. Being out of control implies unpredictable consequences.

Similarly, Inke Arns suggests “[code] as an effective speech act,” producing

unpredictable effects which goes beyond “technical performativity.” She

explains, “[code] directly affects, and literally sets in motion, or even kills, a

process” (Arns, 2004, p. 186, original emphasis).

In computing ‘kill’ is a command that is used to terminate a computer

process and normally it is provided in operating systems such as Unix and

Linux. In a graphical user interface operating system like Mac OS, ‘force

quit’ is commonly used to kill a piece of software that is unresponsive. This

can be thought of an act of control, regulating computational tasks.

However, not all the computational tasks can be killed directly and

permanently, other forms of killing take place in the form of viruses, bots

and spam. As suggested by Cox, “violence is encoded in software itself,”

which is the same as formal languages whereby “violence is embodied in

language” (2017, in press). The notion of kill is symbolic, alluding to violence

and even death that raises an ethical consideration of language and its

performative acts. Further extending the regulation and control within the

realm of distributed networks, any system can possibly be killed because of

Approaches to code inter-actions

80

the vulnerabilities of computational infrastructure. In recognition of the

‘software violence’ (Cox, 2017, in press) that may impose on both humans

and nonhumans, code possibly produces vital consequences and effects that

are similar to the activity of human speech and act.

In fact code performs in a largely invisible or less apparent way that does

not necessarily appear on a screen. Underneath the analogy of code as

language, code also changes machine’s behaviours through interfacing with

other technical components that should not be undermined. This technical

performativity, using Arns’ word, is the underlying structure and

consequences of how code runs and executes. To explicate Arns’ technical

performativity, it could be said that code produces performative effects

through its physical and technical typology. For example, when a machine

accesses a hard disk or is navigating data archives code essentially changes

computer memory, the computer motherboard’s LED and the computer

performance in general. Literary theorist N. Katherine Hayles explains that

code performs in the way it alters “machine behaviour and, through

networked ports and other interfaces, may initiate other changes, all

implemented through transmission and execution of code” (2005, p. 50).

Although the human is involved in writing code instructions, once the code

has started to execute and run, the machine will take over completely as

“final arbiter” (Hayles, 2005, p. 50).

The distinct executable characteristic of code marks the distinction between

code and language. The performative process of code does not occur in a

human mind and, unlike language, its results do not take the form of

human behavioural effects. Austin gives the example of saying “I do” in the

context of a marriage ceremony (1962, p. 5), illustrating that such doing

actions occur in the minds of humans. Furthermore, Galloway argues

against reducing the notion of performativity to language insofar as the

processes by code instructs a machine “in how to act” are distinct from

formal language narration (2012, p. 71). Therefore, according to Galloway, if

there is a tendency to “see code as subjectively performative or enunciation

is to anthropomorphize it to project it onto the rubric of psychology rather

81

than to understand it through its own logic of calculation or command”

(2012, p. 71, original emphasis).

Similarly, in his essay titled The Code is not the Text (unless it is the Text),

Literary scholar John Cayley puts forward the claim expressed in the title.

Similarly to Galloway, Cayley identifies the condition of running code

wherein the code is not the text. Although code is written by humans and

programming languages consist of both syntactic and semantic dimensions,

“there are divisions and distinctions between what the code is and does, and

what the language of the interface text is and does, and so on” (Cayley,

2002, n.p). In other words, there is a performative separation between the

linguistic layer and executable layer of code which is linked to its

invisibility. As Cayley puts it, “[code] functions, typically, without being

observed, perhaps even as a representative of secret workings, interiority,

hidden process” (2002, n.p). As such, he calls for a different strategy of

reading code that is not comparable to text reading, taking into account

technical performativity and invisible processes. Further to reading

practices, Chun specifically discusses the importance of knowing both the

executable code and the process of its execution. One cannot rely solely on

reading the source code as it has to be understood in conjunction with its

executable form (Chun, 2008b, p. 305-6). Code and language are

intrinsically related but fundamentally different. Informed by Galloway,

Cayley and Chun, this thesis is also positioned to understand code through

its underlying programmable logics, execution processes and operational

procedures, oscillating between the visible and invisible.

Mackenzie turns his focus on code from the code itself as a language towards

the processes and consequences of collective efforts in coding practice. This

contributes to the on-going distribution, development and maintenance of a

piece of software, such as the Linux community. Mackenzie investigates the

open source operating system of Linux, demonstrating how collective

agency, including developers and user communities, reconfigure “the efficacy

of Linux” as a cultural artefact through its continuing advancement (2005,

p. 73). The performativity of Linux then lies on the practices of code and

Approaches to code inter-actions

82

cultures of circulation. It “moves” (Mackenzie, 2005, pp. 76-7) the

relationship of users/viewers/producers to how they use or experience code,

demonstrating agency with a wider effect in social, political and cultural

contexts.

Concerning the materiality and the performativity of code, Mackenzie

suggests coding is only part of mediated practices. Other surrounding

activities, such as those who contribute in “distributing, configuring, and

running and operating system,” should be considered together (2005, pp. 76-

7). Obviously this mediated practice consists of a continuation of different

human and nonhuman activities that contingently shape the performance of

a piece of software. He attempts to expand from the focus on the linguistic

speech-act to the collective processes of circulation and all kinds of mediated

practices that surround code. This performativity of code includes not only

technical and production forces but also the market forces from other

competitors’ proprietary operating system that shape what an operating

system should be in both technical and cultural dimensions (Mackenzie,

2005, pp. 76-7). In other words, code produces performative effects through

its social organisation and market forces. This performative aspect of code is

also addressed throughout this thesis when it comes to examining specific

code objects in subsequent chapters, without losing sight of the

entanglement of the socio-economical and technical aspects of code practices.

2.2.3 Generativity

This section focuses on the particular notion of generativity which is

regarded as the third key concept to software studies. It is important to

discuss this because generativity produces unpredictable processes and

results that are regarded as one of the fundamental concepts in discussing

liveness in subsequent chapters. Generativity is commonly discussed in

relationship with generative art and software art (Arns, 2004, pp. 183-4;

Broeckmann, 2004; Cox, 2007; 2010, p. 20; Cramer, 2003; De Souza, 2010).

The similarity of the two art forms is that artwork runs a set of rules in the

83

form of code and this execution process generates “other forms and

processes” (Cox, 2010, p. 20).

As an example, Cornelia Sollfrank produced an artwork Net.Art Generator42

in 1997 that illustrates socio-technical processes in her work. This long-

standing artwork is an endless generative machine that uses Google image

data bank and customised online software, constantly generating images as

a piece of net art through a user’s keyword search (see Figure 2.7).

Therefore, Sollfrank claims, “Anyone can become a (net) artist” (2003, n.p),

insofar as the machine helps generate an art image. The resulting images

are technically generated by a program that includes “a random-generator

driven collage technique” (Sollfrank, 2003, n.p). This points directly to the

problem of authorship, challenging the traditional understanding of an

artist as the sole author. Indeed, for Sollfrank, the notion of generativity

takes into account the social perspective: the collective efforts in coding

practices (similar to the discussion of Mackenzie’s notion of performativity

that was addressed earlier). According to Sollfrank, the source code of

Net.Art Generator is open, alluding to the fact that anyone can freely modify

and distribute the code (2003, n.p). This open source approach enables an

endless reproduction and regeneration of code through source code re-

modification in a social dimension. Art critic and curator Andreas

Broeckmann refers to the term generativity as a “means for the creation of

machinic and social processes” (2004, n.p).

42 Net.Art Generator (1997) by Cornelia Sollfrank: http://nag.iap.de/

Approaches to code inter-actions

84

 Figure 2.7: A screen shot of the work Net.Art Generator (1997) by Cornelia Sollfrank. An

image is generated based on the keyword “hello” and the selection and combination of four
Google images that I chose on 25 September 2015. Retrieved from

http://nag.iap.de/?ac=create&name=anonymous&query=hello&comp=4&width=600&ext=jp
g

Nevertheless, in many situations the term generativity has been used

mainly to place focus on syntax (Cox, 2007; Cramer, 2003), mathematics and

science (De Souza, 2010) in comparison with the more open agenda of

software art. Artist-academic Philip Galanter who publishes substantial

articles in the area of generative art, has explicitly claimed that the term

“denotes art created by non-human systems” (2016, p. 151). This implies

that the notion of generativity should be primarily focused on systems. Such

a perspective is indeed important to understand how a system functions and

how rules are structured in order that further examination can be built

upon it.

Many artist-academics show that generative art concerns how the works are

made (Galanter, 2016, p. 154; Watz, 2010), examining this issue from the

85

perspective of artistic practice. This perspective focuses on a system in

which it takes control in creating artworks. According to Galanter,

“generative art systems are autonomous,” alluding to a system which does

not require decision making or control by a human during the process of

running or execution (2016, p. 152). In 2003 Galanter defined generative art

as follows:

Generative art refers to any art practice where artists use a

system, such as a set of natural languages, rules, a computer

program, a machine, or other procedural invention, which is set

into motion with some degree of autonomy contributing to or

resulting in a completed work of art (2003, n.p).

Galanter places emphasis on the machine’s conditions of production and the

results which exhibit some degree of autonomy. Generative artworks “must

be well defined and self-contained enough to operate autonomously”

(Galanter, 2003, n.p). The use of the term ‘self’ does not point at any

programmer/artist but to the core of the self-organising processes of a

machine. Those rules include mathematical formulas and logical procedures

that have to be well written in advance and have to conform to the

programming requirements. Therefore, the self-organising processes of code

instructions and procedures, as describe by Arns, “are running

independently from their authors or artist-programmers” (2004 #779, p.

178). This is evident in Net.Art Generator too as Sollfrank explains,

it is no longer the human creator, who arranges the single parts

in order to create new meaning through the relationships

constructed, instead, a machine, the computer program, takes on

the role of the artist (2012, p. 40).

Code is autonomously run in a way that it is able to self organised and self

processed independently. This distinguishes it from other human-machine

performance, such as live coding, where there is the involvement of human

interaction and feedback ‘on-the-fly.’ The production process of generative

Approaches to code inter-actions

86

art is “unsupervised” once code has started to run (GENERATOR, 2002).

Galanter further addresses the notion of control in his second definitive

edition, shifting control from humans to nonhuman organisation and

operation. He offers the following definition:

Generative art refers to any art practice in which the artist

cedes control to a system with functional autonomy that

contributes to, or results in, a completed work of art. Systems

may include natural language instructions, biological or

chemical processes, computer programs, machines, self-

organizing materials mathematical operations, and other

procedural inventions (Galanter, 2008, p. 154).

Indeed, the concept of generativity is central to the field of artificial life (A-

Life) which is also about examining systems—specifically natural systems—

through the use of simulation technology (Bedau, 2003, p. 505). One of A-

Life’s characteristics is the generative and emergent qualities of simulating

nature which are also largely based on the self organisation of computation

and autonomous agents (Penny, 2009). The notion of emergence in A-Life is

about how agents learn through feedback and become smarter as part of an

adaptive system and this requires the understanding of a complex system.

In his book titled Emergence, Steven Johnson explains the adaptive

behaviour of agents. These intelligent agents grow smarter through

“bottom-up systems, not top-down,” which have been seen in the case of

ants, cities and pattern-recognition software (2001, p. 18). This kind of

complex system does not plan its course in advance but evolves through

process.

The notion of generativity is frequently referenced in complexity science to

explain the dynamism of systems in different kinds of generative arts

(Galanter, 2003, 2008, 2016; Hayles, 1990, 1991; Solaas et al., 2010).

Galanter points out that a “[c]omplex system often includes chaotic

behaviour” (2003, n.p), in which the random function is a commonly used

parameter to introduce dynamism in a nonlinear system. Even a small

87

change in a seemingly ordered system can generate large differences,

resulting in a chaotic system that is “increasingly difficult to predict over

time” (Galanter, 2003, n.p). This is commonly referred to as the “butterfly

effect,” a term coined and developed by a mathematician Edward Norton

Lorenz in 1969. Complex systems include multiple to infinite components

and each component interacts with each other. The level of complexity

increases with the number of components. Galanter gives the examples of

weather and stock markets to demonstrate different systems that lead to

unpredictable outcomes and behaviours (2003). A generative program may

consist of many combinations of different rules and conditions which emerge

autonomously. This is how Galanter refers to the notion of generativity in

which control is not solely based on pre-written rules or the author/artist.

The artist cedes control to a system and allows the work to operate

autonomously.

Galanter considers both chaotic behaviour and ordered interactions. The

adoption of the term ‘effective complexity’ serves to emphasis the fact that a

complex system contains “a mixture of both order and disorder” (Galanter,

2016, p. 157). Drawing upon physicist Murray Gell-Mann’s effective

complexity theory, Galanter treats complex systems as living things,

including computational systems. He explains that, “life requires both order

maintaining integrity and persistence, and disorder allowing adaptation,

change, and flexibility” (Galanter, 2010, p. 402). Importantly, effective

complexity “comes with the balance of order and disorder, or expectation

and surprise, built in” (Galanter, 2010, p. 402).

Unpredictability is one of the important aspects of generative art that is

produced by a system. As an example, Generator.x43 is a curatorial platform

that embraces using code as artistic material and creative expression. In

2008, it collaborated with Club Transmediale and presented 15 artworks

that had utilised generative systems and custom software. The works were

presented under the festival theme of “Unpredictability,” investigating

43 See: http://www.generatorx.no/

Approaches to code inter-actions

88

“artistic concepts that imply the surprising and unforeseeable, accidents,

mistakes and coincidences as a means to alter the dynamics of creative

processes and to discover new aesthetic forms” (Generator.x, 2008, n.p). The

festival provides a concrete articulation of what unpredictable aspects might

be generated. Technically, implementing random functions is seemingly one

of the ways to increase the dynamism of a system, creating unpredictable

effects (Schönlieb & Schubert, 2013, p. 8; Watz, 2008). However, it is

important to note that in computational systems, the use of the random

function does not stand for true randomness; it can never perfectly simulate

natural randomness. The word or the function random implies

‘pseudorandom’ instead (Montfort, 2013; Tian & Benkrid, 2009).

Simulating real world systems is one of the applications of generative art

and, as Galanter says, “artists can create form that emerges as result of

naturally occurring processes beyond the influence of culture and man”

(2003, n.p). The word ‘natural’ could be further extended to emergent

“naturally evolving phenomena” in the real world, such as the organic

process of the growth of a tree (Pearson, 2011, p. viii). A common focus of

generative art is its alleged “natural” and “organic” forms which simulates

real world systems and produces an “aesthetically pleasing” result (Pearson,

2011, p. xix). In other words, generativity is thought of, non-ideologically, as

a ‘neutral’ tool or strategy to achieve an organic form as an end product; it is

about the perusal of techniques and the production of a final form.

Therefore, the notion of generativity in generative art is of less interest in

questioning the neutrality of computational processes when compared with

software art, or simply using software as a pragmatic tool to generate a

close-to-real phenomenon.

Such interest in autonomous operations, emerging processes and simulated

results maybe what Arns would describe as “the negation of intentionality”

(2004, p. 178). However, artist and scholar Mitchell Whitelaw argues that a

generative system pays close attention to “entities and relations within

system, with entities and relations outside it.” This ability to connect things

requires critical, prospective and speculative considerations (Whitelaw,

89

2006, p. 140). Cramer and Gabriel also point out that a generative system is

“not as negation of intentionality but as balancing of randomness and

control” (2001, n.p). In the context of generative art, it is the balance

between the randomness and structure of a visual representation that

counts for a good visual effect after all (Olthof, 2009, p. 7). In general, Cox

observes that the notion of generativity is not specifically limited to art but

such an understanding may lock into the emphasis on end-result that is

produced by a generative process rather than keeping the focus of the

process itself (2010, pp. 21-2). Code therefore might risk being considered as

performing a supporting role in generative art to help generate a visually

pleasing artwork but the code itself is inscribed with its own structure and

format, decision making and subjectivity. One of the interests of software

studies is to question the seemingly neutral commands, formats and actions

that are performed by code. Cox instead suggests examining software

culture in relation to generative processes—together rather than in

separation (2010, p. 24). This concern on generative processes also provides

a conceptual approach for how this thesis will unfold in later chapters.

In part, these three concepts—invisibility, performativity and generativity—

inform the understanding of the materiality of code, in which code has to be

read as connections with computational processes, such as generative and

execution processes. The perspective on liveness adopted by this thesis is

supported by how scholars in the field of software studies emphasise

processes rather than surfaces, results or mediatised representation. As

such, computational processes such as data processing, code execution,

algorithmic procedures and network handshaking are crucial when

discussing the phenomena of software that emphasis the processual quality.

Although these three concepts are fundamental there are still situations

which they seemingly cannot fully explain. For example, what makes a

program different when run at one time than another? What are the

implications of the automated and seamless updating of software features,

standards and specifications? Increasingly, with different network

computers that share data content in real-time, how does code operate

Approaches to code inter-actions

90

within such a distributed and live environment? Clearly, these three

concepts undermine the importance of live conditions in which networked

technology plays a significant role in shaping the culture and practice of

software. In relation to this thesis, liveness is not entirely separated from

the concepts of invisibility, performativity and generativity that have been

illustrated above. These concepts set the stage for understanding current

debate in the field of software studies, allowing the notion of liveness to be

brought into the field. The notion of liveness is based on such concepts to

address the opaqueness of code and the performative effects of operational

logics as well as the complexity of computational systems and is further

extended to consider the live dimension of code inter-actions in subsequent

chapters.

2.3 Materialist approach

In the following section a materialist approach is introduced as a conceptual

perspective through which to examine the notion of liveness in the entire

thesis. Conceptually, it is a way of thinking about matter and processes of

materialisation that constitute the understanding of liveness within the

context of software studies. The underlying assumption is that

contemporary software culture is composed of material elements and

processes as a plane of immanence. Things that we experience through

networked devices are generated by complex structures and processes that

are not apparently visible. Media studies scholar Nathalie Casemajor gives

a list of objects of study that are considered by materialist approaches. She

states:

[Materialist approaches] embrace both the material substrates

and abstract programming languages required for data storage,

processing and exchange; code, hardware devices, operating

systems, software, applications, platforms, interfaces,

documents, file formats as well as networking protocols and

infrastructure (Casemajor, 2015, p. 6).

91

As informed by the nonhuman turn that has been discussed in the previous

chapter, those suggested objects do not act alone. Similar to the manner in

which code never executes on its own, executing computer instructions

involves other things such as a computer processor, a compiler, computer

memory, electricity, programming language, human and nonhuman logics

and designs and so forth. All these individual objects play a role and

collectively “emerge” and “make something happen.” Materialist theorist

Jane Bennett calls this as “the agency of assemblages” (2010, p. 24).

A materialist perspective pays attention to the underlying assemblages, or

“material substrates” (Galloway, 2004), which have been increasingly

addressed in the field of software studies or in fields related to it. For

example, literary studies scholar Matthew Kirschenbaum investigates

textual production processes which leave traces on storage devices. Delving

deeply into the physical properties and operations of hard drives,

Kirschenbaum argues that these storage media are considered “as a kind of

writing machine” that inscribes traces (2012, p. 19). Although he mainly

focuses on textual materiality, his notion of “forensic materiality” suggests

any kind of digital media production is fundamentally taking place in the

physical and material world (Kirschenbaum, 2012, pp. 11-2). He argues that

materiality is essential and fundamental to the operation, process and

understanding of digital media.

Extending from general digital media production to a more specific sphere,

Fuller analyses the infrastructure of the web through his own collaborative

artwork The Web Stalker44 (1997). “By material is meant the propensities of

the various languages, protocols, and datatypes of the web.” (Fuller, 2003, p.

53). This material constitutes the actualisation of a browser, forming visual

outcomes for reception. What matters Fuller is not the representational

content however, instead his work reflects on those deep structures of the

web in order to think about everyday web culture: the production of web

interfaces. In a similar vein, Galloway’s work explores the relationship

44 See: http://www.archimuse.com/mw98/beyondinterface/fuller_fr.html

Approaches to code inter-actions

92

between networked computing and the political economy through a close

examination of networked materials: the command and control of protocols,

namely TCP/IP and DNS. He makes apparent that such material forces are

enacted through the process of materialisation (2004, p. 110). Both Fuller

and Galloway critically examine the forces of commands, languages,

protocols and datatypes that are in the form of code, highlighting the

processes of actualisation and materialisation that produce agency.

In his book Cutting Code, Mackenzie also focuses on the relationship

between code, forces and agency. He delves into different systems, namely

Java Virtual Machine and the Linux Kernel, exploring the social relations of

software, including “different practices of production, consumption, use,

circulation and identity” (Mackenzie, 2006, p. 2). Mackenzie asserts, “code

as a material” with agency, where power, law and art are associated with

software (2006, p. 12). Therefore, on the one hand code can be seen as a

technical object, and on the other code can be perceived as material. As such,

code materiality is about agency—social, cultural and/or political forces (also

described as material forces) that surround and shape what code does, and

how code becomes what it is.

From a materialist perspective materiality is more than the study of mere

technical objects and processes. According to scholars in political science,

Diana Coole and Samantha Frost, “materiality is always something more

than mere matter: an excess, force, vitality, relationally, or difference that

renders matter active, self-creative, productive, unpredictable” (2010, p. 9).

This encapsulates the study of objects and processes that are dynamic in

nature, referring to matter as forces that are constantly and contingently

shaping the encountering of things. This thesis emphasises nonhuman

materials and their agency, but this does not mean that it neglects human

participants. Numerous humanistic research approaches towards technology

such as audience analysis, phenomenology and cognitive feedback (which

has had a profound impact on the study of humanities) are clearly also

relevant. To clarify, whilst recognising the collective of humans and

nonhumans that both play an active role in the making of meaning, this

93

thesis emphasises and reiterates the nonhuman aspects of this process. This

perspective is also aligned with the emerging field of software studies in

placing various digital objects and their efficacies, potentialities and

systematic forces at the centre of the argument in order to better

understand the processes of computation and its materialisation. This is

what Bennett would describe as vitality, “the capacity of thing,” in which

things could also “act as quasi agents or forces with trajectories,

propensities, or tendencies of their own (2010, p. viii).

2.3.1 Why code inter-actions?

Following the focus on code and agency, this section introduces the notion of

code inter-actions, highlighting the relations of things in which code does not

act alone. This can be understood through a thinking model which contains

three large material arrangements: code, data and technological networks

(see Figure 2.8). They are not independently examined but constantly inter-

acting with each other. Technically, code is used in its broad sense,

including source code, executable code, scripts and programming languages,

comprising syntax, functions, commands, algorithms, mathematics and

calculations. For technological networks, it includes protocols and

mechanisms of data transmission. Data requires to distribute over a

technological network. Data is equally important as code and technological

networks and is associated with memory, storage, feeds, structure and

streams that can be processed and transmitted from one location to another.

The transmission of data is not only concerned with the macroscopic

dimension (from one machine to another) but also from one node to another,

as well as data that is passing within a code function at a microscopic level.

Together with code, data and technological networks, this thesis brings

together other related fields such as platform and information studies to

examine the underlying complex computational processes and their inter-

actions.

Approaches to code inter-actions

94

Figure 2.8: A thinking model of code inter-actions

To understand contemporary software culture that concerns materiality and

agency, developing a critical perspective towards code is seemingly

essential. The book Interface Criticism (2011) attempts to present a

theoretical framework, pointing to “the working in, between, behind and

beyond the interface” of software culture (Andersen & Pold, 2011, p. 10). The

term interface has been increasingly used in computation, such as human

computer interface, application programming interface, graphical user

interface and physical interface and among others.45 It is even sometimes

used interchangeably with the term code because they are both concerned

with signs and signals, humans and machines. However, the term interface

is heavily associated with the larger community of human-computer

interactions, which centres on the relationship between human and

computer (Andersen & Pold, 2011, p. 19; Emerson, 2014, p. 133; Hookway,

2014).

Fuller, on the other hand, develops a model to illustrate different types of

software, namely critical software, social software and speculative software.

Critical software pays attention to the inner production and operational

process in order to inform “knowing, seeing and doing” of software (Fuller,

2003, p. 23). Social software highlights “an ongoing sociability between users

45 See the glossary Interface in the book Software Studies (Cramer & Fuller, 2008) and the interface
layer chapter in the book The stack (Bratton, 2016, pp. 219-50).

95

and programmers” around coding practices. Therefore, software can be seen

as socio-technical through the model of social software (this has been also

demonstrated in Mackenzie’s investigation of the open source software

Linux). Whilst speculative software is focused on the potential of

programming which intersects with “data, machines, and networks” in

which new creation is made (Fuller, 2003, pp. 29-30). Manovich uses the

term software in his book, Software Takes Command (2013), for him

software (to be precise he uses the term media software) points towards the

cultural aspect of an official market related application or an artefact that is

associated with practice or applied usage as such.

Similar to Fuller’s notion of Critical Software, Chun also place emphasis on

the inner computational processes of software. Instead of using the term

software, Chun considers the difference between software and code and

takes into account the executability of code—the conflation between source

code and compiled code. She firmly asserts that, “software is code” (Chun,

2008b, p. 309; 2011b, p. 27), explaining that source code does not fully

indicate what it does, inasmuch as the procedural logics mostly express the

intention of a programmer. It does not reveal how the code is processed. For

example, the complexity of such execution processes, as Chun explains, is

not a translation from “a decimal number into a binary one, rather it

involves instruction explosion and the translation of symbolic into real

[memory] addresses” that requires “arithmetic calculation” (2008b, pp. 306-

7). Ultimately, code is “based on a conflation of storage with access, of

memory with storage, of word with action” (Chun, 2008a, p. 160). The notion

of code inter-actions specifically references Chun’s notion of code and

Fuller’s concept of critical software which take seriously the inner writing

and execution of code and its’ underlying operative processes that inter-act

with other things. This thesis focuses on code that operates in networked

environments to address various phenomena in contemporary culture.

Therefore, code not only operates within the machine on which it runs

(conflated with memory and storage) but also constantly inter-acts with

networked data and network protocols.

Approaches to code inter-actions

96

In There is no Software, literary scholar and media theorist Friedrich Kittler

observes that at a superficial level software deliberately presents a masked

interface, hiding “the very act of writing” (1995). This can be understood in

two ways: First software as a tool changes the relationship of the act of

writing; Second, software is a blackbox in which users tend to only be

concerned with usability and functioning, hiding the real logic,

imperceptible functions and invisible machine’s operations from users.

Kittler calls for attention to code operations and material substrates: the

fundamental writing processes of code beyond an end product (artefact) as a

piece of software. Code is constantly inter-acting in all layers within a

machine. Informed by Chun, Fuller and Kittler, the thinking regarding code

inter-actions in this thesis is, therefore, further grounded. Indeed, both

Kittler and Chun have criticised the distinction/separation between

hardware and software. Kittler argues that the abstraction of software

essentially hides the nature of machine and computer system. He reminds

us that there are different operating layers in a machine such as the

machine code that communicates within the machine, the software which

runs on top of BIOS and the data processed from external mass memory to

the random access space of a machine (Kittler, 1995). Whilst Chun asserts

that, “software has become a metaphor” which makes us believe things are

separated. Remarkably, the notion of the metaphorical software has made

us believe that what is stated in the source code is what should be

translated and reflected on the surface/representation. Thus software is

mostly reduced to the perception of visible effects that are generated by

invisible software (Chun, 2011b, pp 2-3). The use of code in favour of

software in this thesis is to minimise the misconception of such a dichotomy

with hardware. Additionally, following Kittler and Chun, the notion of code

inter-actions does not only refer to a machine itself but to networks of

machines, in which code executes and inter-acts at multiple scales.

2.3.2 Live inter-actions

The interaction and operation of code, which I refer to as code inter-actions,

97

is different from the focus on human/machine interaction. Although

cybernetic theory and the feedback loops of users’ interaction are commonly

used to explain human/machine relations in the realm of

interactive/responsive art and live coding performances (Andersen & Pold,

2011; Ascott, 1966, 1967; Goodman, 1987; McLean, 2011), this human-

machine focus is less helpful for this thesis, in which nonhuman inter-

actions are more of a focus.

The multiplicity of interactions is explained through the work of Peter

Bentley in understanding interaction from a computer science perspective.

He says, “There are so many separate elements (subroutines, modules, files,

variables) and they interact with each other in so many ways” (Bentley,

2003, n.p). This implies that code does not work within singularity; code

encompasses subroutines that enable modularity and these subroutines

might possibly locate in other modules and file systems which require the

running of code to bring all materials together. For Bentley, simply passing

data through variables, within and across subroutines, is already regarded

as one form of interactions and hence code interacts within itself and other

material objects.

In a similar vein in relation to the discussion of code interaction, Cox, Alex

McLean and Adrian Ward further address the “live running” environment of

a system as follows:

The code is interacting with the user, itself, its environment, and

the systems it has access to via many multi-layered and

mediated interfaces that are available to it. Many of the

components are predetermined, but through the combinations of

interactions combined with the dynamism and unpredictability

of live action, the result is far from fixed as a whole (2004, p.

164, my emphasis).

What they have shown is that code not only interacts within itself and with

others but, more importantly, dynamic and unpredictable forces are coupled

Approaches to code inter-actions

98

through running code in a live environment. Once the code starts running

and brings things into being the whole situation changes from determinate

to indeterminate interactions. Likewise, independent researcher Michael

Murtaugh, who works in the area of software studies, addresses the notion

of liveness more explicitly. The sense of “infinite database,” as he argues, is

the result of noncomputabiliy and liveness of a system, in which

computational decisions are made in real-time. Furthermore, if computation

is introduced in a more noisy channel, then computer operations would

introduce “a greater degree of uncertainty” (Murtaugh, 2008, pp. 145-6).

Informed by this, the historical analysis of the Turing machine may need to

be expanded to reconsider various elements of code running as it inter-acts

with the outside world. Computer scientist Peter Wegner critiques the

classic Turing machine as failing to account for wider assemblages. He

explains, “Turing machines cannot, however, accept external input while

they compute; they shut out the external world and are therefore unable to

model the passage of external time” (Wegner, 1997, p. 83). Having the

capability to inter-act with a dynamic environment is a requirement of what

Wegner refers to as an “interaction machine” (1997, p. 83). Computer

scientist Michel Beaudouin-Lafon further picks up on Wegner’s discussion

by pointing at contemporary conditions of “endless streams” and

“distributed systems” (2008, pp. 263-4) through interacting entities which

allow unpredictable events to occur in a dynamic environment that cannot

be reduced to the credit of an algorithm per se. He notes,

distributed system are now ubiquitous, from the Internet to

computer clusters and multicore chips. Such large and complex

systems can no longer be analysed as a single algorithm but

must be seen as a set of interacting entities (Beaudouin-Lafon,

2008, pp. 263-4).

The notion of interaction above suggests some characteristics of live

conditions including infinite data generations, distributed networks,

dynamic systems and unpredictable results, which emerge through inter-

actions of code. Liveness is not an end result of such inter-actions but it

99

needs to be understood as on-going processes of materialisation. In fact, the

whole notion of code inter-actions not only accounts for the perspective of

computer science in understanding nature but also for the concept of agency

in materialism.

Central to the notion of liveness, the concept of code inter-actions is in part

influenced by feminist theorist Karen Barad and her ontological notion of

“intra-actions” that highlights agency (2003, 2007). As she says,

The neologism “intra-action” signifies the mutual constitution of

entangled agencies. That is, in contrast to the usual

“interaction,” which assumes that there are separate individual

agencies that precede their interaction, the notion of intra-action

recognizes that distinct agencies do not precede, but rather

emerge through, their intra-action (Barad, 2007, p. 33, original

emphasis).

Barad emphasises emergence in the intra-action of things. She describes the

metaphysics of things as phenomena and they “are the ontological

inseparability of agentially intra-acting components” (Barad, 2007, p. 148).

She might describe liveness as a phenomena, inasmuch as there are no

individually constituted agents or pre-existing entities but rather it needs to

be understood as ‘entanglement.’ Ontologically, Barad refers to the

entanglement of material relations that are not only technically and

scientifically specific but also involve mixed factors and domains of

operation that are regarded as social, political, economical and cultural

(2007, pp. 232-3). These material relations, both discursive and non

discursive, produce agency but agency, according to Barad, “is not an

attribute but the ongoing reconfiguration of the world” (2007, p. 141). She

underlines the idea that the entanglement of material relations is dynamic

in nature. The notion of liveness is about an attentiveness to the nature of

entanglement that constitutes how we understand the live dynamic of

computational processes.

Approaches to code inter-actions

100

In this thesis, the entanglement of code is expressed through the term code

inter-action, alluding to the complexity of material relations and their

agencies which is not only limited to code per se. Code may be regarded as a

separate individual entity, a digital object and a material but it could be

further understood as a co-constituted entity, object and material which is

continuously and contingently emerging in, and through, their mutual

interdependence as part of the phenomena itself. This thesis chooses to

primarily focus on the inter-actions and material relations of code, data and

technological networks.

In other words, individuals as things/entities/objects “emerge through and

as part of their entangled intra-relating” (Barad, 2007, p. ix). Informed by

this, we can say it is neither code nor protocols nor databases nor

technological networks that inherent the phenomena of liveness and,

according to Barad, it is “a matter of intra-acting; it is an enactment, not

something that someone or something has” (2007, pp. 232-3, p. 178).

Ontologically, she suggests that intra-actions “are not mere static

arrangements of the world,” and the world as “agential intra-activity in its

becoming” (Barad, 2007, p. 141). Considering liveness as phenomena, an on-

going process of materialisation, this thesis explicates the three vectors

through the agential possibilities of code. Code inter-actions emphasises

entangled, active, dynamic and collective relations: the “agential intra-

activity” that constitutes the phenomena of liveness. Apart from the

understanding of interaction from a scientific paradigm, the use of the term

inter-action, throughout the thesis, also makes reference to Barad’s notion of

“intra-actions,” highlighting the dynamics of entanglement and signifying

the notion of liveness as “things-in-phenomena” (2007, p. 140).

2.4 Methodological considerations

Following the discussion of the conceptual understanding of materiality, this

section shows three overarching methods, examining how code inter-acts

and performs in the world. These methods are central to the methodology

use in the research documented in this thesis. They are ‘close readings’ of

101

code from critical code studies (Marino, 2006, 2014), ‘iterative trials’ of

running code from software studies (Berry, 2011, 2014) and ‘cold gazing’ of

micro-processes from media archaeology (Ernst, 2006, 2013b). The objective

has been to combine these methods in order to examine code beyond treating

it as a text for mere reading and writing but rather to consider the code

running and execution of code and its operative processing.

2.4.1 Close reading in Critical Code Studies

Critical code studies (CCS) promotes the examination of written code,

analysing digital objects through writing and reading (Marino, 2014). This

way of working has gained increasing currency in the field of software

studies through conferences, presentations, discussions on blogs, workshops

and published books (Marino, 2014). The CCS community was initiated in

America with core contributing members that include Nick Montfort, John

Cayley, Rita Raley and Mark Marino, who are primarily interested in

(electronic) literature, especially on how the study of code informs and

changes the practice of writing and reading. CCS pays attention to code as

textual materials and its main argument is that code itself can be

considered to be a “cultural text worthy of analysis and rich with

possibilities for interpretation” (Marino, 2006). This hermeneutic

interpretation enables the discussion of code beyond the domain of computer

science, software engineering and the arts. It demonstrates the

interdisciplinary ambition to translate “humanities hermeneutics into the

conceptual paradigms of computer sciences” (The Humanities and Critical

Code Studies Lab, n.d).

Beyond paying attention to efficiency and aesthetics, close analyses of code

has a broader scope to CCS, including social and cultural interpretation

through which to facilitate a wider discussion on the significance of code

(Marino, 2006). As Marino describes it, code allows one to reflect “on the

relations between the code itself, the coding architecture, the functioning of

the code, and specific programming choices or expressions, to that which it

Approaches to code inter-actions

102

acts upon, outputs, processes, and represents” (2006, n.p). One can read and

interpret specific lines of code even though those lines may never be

executed (such as the comments line).

The usual way to interpret code is to select a particular block from an entire

program, close reading each line of the code “to build a structure that

resonates and operates aesthetically, functionally, and even conceptually

with the other discourse of encoded objects as well as mathematical and

natural language discourse” (Marino, 2006, n.p). The phrase ‘close reading’

resonates with the literary approach of textual reading as discussed in many

scholarly works in the area of digital text studies (Hayles, 2010; Raley, 2012;

Simanowski, 2008). According to Marino, there are “symbols,” “procedures,”

“structures” and “gestures” that exist in code (2006) and these

characteristics allow computer code to be read in a similar way to literary

works. Maurice Joseph Black, in his doctoral dissertation, suggests code is

similar to poetry too, “in terms of structure, elegance, and formal unity”

(2002, p. 131). Additionally, some scholars in CCS suggest code could be

analysed as static material like a printed poem, which could be non-

functioning (such as codeworks as mentioned earlier in the chapter).

Therefore the issue of whether code can be executed is not a primary

concern (Cramer, 2001, 2005; Marino, 2006).

Nevertheless, there are some scholars who argue that reading code is not

the same as reading text and claim that such readings must take into

consideration the specificity of code execution. For example, although Cox,

McLean and Ward also suggest code is somewhat like poetry in terms of its

aesthetic value, the focus on code goes beyond its written form, as they

argue, “the aesthetics value of code lies in its execution, not simply its

written form” (2000, n.p). Similarly, Cayley draws out a distinctive

characteristic of code: the difference between what code does and what code

is about. Even though code and language are related, code is also distinctive

from other pieces of text because of what it is and does (Cayley, 2002, n.p).

For Cayley, the use of hermeneutic interpretation “simplifies the

intrinsically complex address of writing in programmable media” (2002,

103

n.p). What he refers to as “writing” includes texts that are directly

addressed to the machine such as instructional code: the compiling process

of execution. He, therefore, calls for a different strategy for reading program

code as opposed to other formal languages. Although Marino does not want

to limit CCS to literary study, the focus on reading code in a humanistic

tradition still mostly remains the main method for analysing what has been

written in code. CCS focuses on how code communicates with humans and

asks how code expresses itself and generates meaning from the written form

of source code.

2.4.2 Iterative trials in Software Studies

What is largely missing from CCS is the dynamic and live aspect of code.

Berry’s method of ‘iterative trials’ (2011, 2014) explicates another important

dimension: the running of code. He notes:

Code is understood not merely through a close reading of the

text, but by running it, observing its operation and processes it

institutes, introducing breakpoints and ‘print to screen’

functions to see inside the code while it is running (Berry, 2014,

p. 191).

Specifically, Berry suggests ‘trials of strength’ (2011, p. 67) as a way of

observing code running processes. In the trials approach (a process of trial-

and-error testing) each iteration has additional features and fixes (also

known as patches, sprints, release candidates and beta in software

development and design) before a final release version comes out to the

market. Each release contains embedded business requirements and

priorities, programmers’ decisions and their fine-tuning of logics, bug fixes,

and many others factors. Therefore, these iterations demonstrate what

Berry describes as the “real-requirement” (2011, p. 67), encompassing

priorities and decisions from different parties that are changing across time.

Approaches to code inter-actions

104

In Berry’s book, Critical theory and the digital (2014), he further explores

the notion of testing and takes into consideration what he calls “implicit

temporality and goal orientedness” to develop “coping tests” (2014, p. 185).

This coping test not only focuses on the static test but what he means by

“implicit temporality” refers to the code structure “that has a past, a

processing present and a future orientation to the completion of

computational task” (Berry, 2014, pp. 185-6). Such a focus is neither

mechanical, mathematical nor textually oriented but is a complementary

critical approach that “engage[s] with the processual nature of algorithms”

(Berry, 2014, pp. 185-6). Every test run or version released is important in

understanding the processual nature of software as it often generates

glitches and errors. The implication of coping tests, according to Berry, is

that we can learn from software through “breaking it, glitching it, hacking it

and generally crashing its operations” (2014, p. 186). As such, his approach

concerns the operational process of running code and, therefore, the reading

of source code is only a part of the process (Berry, 2014, p. 190).

More specifically, Chun suggests thinking about the difference between

source code and its execution, as what the code produces is never a stable

artefact and often includes failure and disruption. She introduces the idea of

code as “re-source [that] allows us to take seriously the entropy, noise, and

decay that code as source renders invisible” (Chun, 2008b, p. 321). Most

remarkably, in following Chun’s re framing of code as a re-source it becomes

possible to demonstrate that there is a gap between source and execution. In

Chun’s terms, code is “ephemeral,” it is intrinsically conflated with memory

and undergoes constant and unforeseeable degeneration (2008a, p. 301).

This implies that a program crash may not be directly related to syntactic or

semantics errors in the writing of code, it could be due to run-time errors

that the human and/or machine discovers during executing and running

processes. In other words, errors might just happen when a program runs

for a certain period of time and not previously.

This is not to say that Chun does not agree that source code is able to give

us some understanding of computational logic as it is readable but rather

105

that she highlights the other layers at work. It is useful to extend this to a

consideration of code inter-actions, which is how code brings together other

digital objects that exist in different layers of computation during a run-time

environment. Both Chun and Berry’s concept of executing and running code

inform this thesis’ focus on code beyond mere reading and writing, together

with attention to code running and execution, which enables a closer

examination of the deep structure and operative processing of computation.

2.4.3 Cold gazing in Media Archaeology

Taking a very different reading approach to media archaeology from the

German media theory tradition, the method of the ‘cold gaze’ does not focus

on humanistic interpretation, rather it is used to engage with the

mechanical and engineering dimensions of media (Ernst, 2013b; Parikka,

2011, 2012). Wolfgang Ernst is interested in using material processuality to

rethink media history, including mathematical calculation, data structuring

and other forms of material in the field of media archaeology (Parikka, 2011,

p. 50). The cold gaze is considered to be mechanical, and hence has a “lack of

emotion or semantics” (Parikka, 2012, p. 8). This method of cold gazing

describes cold facts but not stories or interpretation, which is to say it is

distinctly object-oriented, nonhuman-focused as opposed to narrative-based

approach. This way of gazing at media objects, as Ernst puts it, “[is]

enumerative rather than narrative, descriptive rather than discursive,

infrastructural rather than sociological, taking numbers into account

instead of just letters and images” (2013b, p. 251).

Media archaeology suggests getting close to media objects in order to

understand cultural memory from technical media—gaining understanding

from different devices, hardware and even software and any other

techniques that facilitate the opening of black boxes, such as circuit bending

and hardware hacking (Hertz & Parikka, 2012, p. 425; Parikka, 2012, p. 15).

Media archaeology makes a theoretical and historical reference to the

‘archaeology’ of Michel Foucault, especially The Order of Things (1966) and

Approaches to code inter-actions

106

The Archaeology of Knowledge (1969) and, to an extent, Walter Benjamin’s

writings on historical materialism. As such, it relates to the inter-relations

of the political and power discourses of things and knowledge. The difference

between media archaeology and media history is that the later focuses more

on historical text and narrative materials, while the former pays attention

to the materiality of media objects, “the real technological conditions of

expressions” which lie underneath the media surface as content (Hertz &

Parikka, 2012, p. 427).

However, this methodology is usually oriented towards hardware

examination. The examined objects are mostly obsolete, such as in Kittler’s

investigation of a gramophone and typewriter and Ernst’s inspection of a

phonographic recording device. Those digital objects examined are mostly

physical objects that one can touch and listen to the sounds made as they

are running. Each physical device or obsolete machine is relatively

standalone, meaning that it rarely operates under, or within, the

technological networks common to how we understand devices nowadays.

The processing of signal is usually operated at the low level of, or close to

that of, a machine.

Nevertheless, software platforms and networked databases are increasingly

playing an important role in social media culture. The constantly changing

conditions of the internet, such as the disappearance of websites, remain a

challenge to many archaeologists who work in the field of media/internet

archaeology (Helmond, 2013) and also those working across media

archaeology into the domain of the arts and digital culture (Parikka, 2012,

p. 124). This temporal dimension—the unpredictable life span of intangible

software or a web page, might be one of the reasons why media

archaeologists rarely use the method of cold gazing. Facebook, for example,

renders the platforms seamlessly as there are at least twice update per day

(Soon, 2014b) and unlike physical objects, there is no public manual or

schematic at all for all the available functions and details of invisible logics

behind the interface of Facebook like tracking and profiling.

107

One of the characteristics of the cold gazing method is its microscopic

examination of time, including processes of data operation and

synchronisation. It investigates how “time is being organized

technologically” (Ernst, 2013b, p. 251). For Ernst, the dimension of time

does not refer to historical time but largely means the micro-temporality of

data transmission and signal processing that is regarded as time-critical.46

In other words, the method of cold gazing in media archaeology emphasises

the importance of the process-oriented internal machine/code operations and

their relation to time, which is relevant to this thesis.

2.5 Reflexive Coding Practice

In addition to the methods of close reading, iterative trials and cold gazing,

this research also employs coding practice to examine computational logics,

procedures and inter-actions. Although the two terms coding and

programming are somewhat similar,47 favouring the use of the word ‘coding’

over ‘programming’ is a deliberate choice in order to emphasise two main

concerns. First, code as a material for creative/artistic expressions beyond

mere focus on technical functions and applications. The term coding has

gained more currency in the sphere of software (art) practices, as evident in

the sphere of live coding, as well as creative coding that highlights the

intersection of art/design and technology (Maeda, 2004; Peppler & Kafai,

2009). Second, the practice of coding is close to what Cox, McLean and Ward

refer to as “art-oriented programming,” and this implies a material-

discursive approach with which “to acknowledge the conditions of its own

making.” This refers to both the “formal qualities of code” as well as to the

“critical discourses” around code (Cox et al., 2004, p. 161). This attention to

materials and discourses is what Barad would call “material-discursive

practice” (2007, p. 244), which is an on-going process of engagement with

and as part of the world.

46 This perspective of micro temporality can be found in Ernst’s writing (in German).
Ernst, W. (2007), Zeit und Code, in D. Tyradellis & B. Wolf (Eds.), Die Szene der Gewalt: Bilder, Codes
und Materialitäten (pp. 175-187).
47 Both the terms programming and coding have their historical roots in the domains of mathematics
and computer science (Blackwell, 2002; Hopper, 1955). Historically, the term programming came after
coding and was more associated with money making skills in America (Billings, 1989, p. 51).

Approaches to code inter-actions

108

Coding is a process-based practice which requires “creative crafting” (Black,

2002; Hansen et al., 2014), substantial thinking and deep reflection

continuously. In the words of artist, hacker and scholar Natalie

Jeremijenko, “we think with things,” and she regards thinking as handwork

and making (or coding, in this context) as intellectual activities. She

explains: “I can’t make sense of the world in theoretical terms without the

materiality of what actually works and the open endedness of how others

interpret, receive and use things” (in Hertz, 2012). This comes close to the

notion of “diffractive art practice,” a phrase adapted from Barad’s diffractive

methodologies (2007) and proposed by Helen Pritchard and Jane Prophet to

reflect on what constitutes practice in their view. For them, practice does

not consist of mere materials but also the reflection, articulation and

diffraction in which “materialities emerge as differentiated events, as they

come together, in relation to one another” (Pritchard & Prophet, 2015, n.p).

What they suggest is that practice is more than reflections that “look back

onto art practice,” (Pritchard & Prophet, 2015, n.p) as there are other

practices involved during the process of making (in this context which is

coding) (Pritchard & Prophet, 2015, n.p).

In the discussion around the merits of artistic research, this thesis also pays

attention to the notion of reflexivity in artistic practice (Borgdorff, 2011,

2014; Rolling Jr, 2014; Sullivan, 2010). Reflexive practice, according to

Graeme Sullivan, “is a kind of research activity that uses different methods

to work against existing theories and practices and offers the possibility of

seeing phenomena in new ways” (2010, p. 110). This is somewhat similar to

diffractive art practice or material-discursive practice as mentioned above,

in which theory and practice come together but not in opposition. For art-

based research scholar James Haywood Rolling Jr, the notion of reflexivity

refers to thinking in and through material, context and practice

continuously (2014, p. 163). The concept of reflexivity has its root in

philosophy and education, putting emphasis on “reflection-in-action”

(Brookfield, 1986; Schön, 1983), reflection on experiences (Dewey, 1991) and

the “reflective learning cycle” (Gibbs, 1988), however these traditions are

109

more based on (semi-)finished objects, incidents or projects as a way to seek

conclusion, or solve problems, or follow a linear and systematic cycle of

reflection that is less concerned with the emergence of knowledge

production, meaning making and the various entanglements of reading,

writing and coding (art) practice. The practice of coding can be seen as a way

of knowing and understanding how things work on an epistemic level, in

which reflexively informs thinking about, and being in, the world. This onto-

epistemological dimension, again references Barad, highlighting the

inseparable practices of knowing and being (2007).

In this thesis, coding as software (art) practice involves a loosely configured

experimental system,48 a concept borrowed from historian of science Hans-

Jörg Rheinbergerh, in which practice can be understood as the intertwining

of technical objects and epistemic things. This characterisation alludes to

“the technical conditions under which an experiment takes place and the

objects of knowledge whose emergence they enable,” as explained by Henk

Borgdorff in the field of artistic research (2014, p. 114). There is a

fundamental difference between reading and analysing someone else’s code

and code written and experimented by oneself.

Importantly, the notion of experimental practice embraces indeterminacy,

which refers to the “not yet crystallised status of the knowledge object”

(Borgdorff, 2014, p. 114). Unlike having fixed routines with clear objectives,

problems, hypotheses or evaluation and without predictable and expected

results or answers derived from what has been known, not yet known, or

still to be known. Coding practice, as a form of experimental process, is

associated with a journey of “instability, indeterminacy, serendipity,

intuition, improvisation, and a measure of fuzziness” (Borgdorff, 2014, pp.

114-6), similar to other kinds of artistic practice, which are regarded as

dynamic and creative. Artworks, according to Borgdorff, to be epistemic

48 Experimental System is originally used by Hans-Jörg, Rheinberger, a historian of science, who
defines it as “a basic unit of experimental activity combining local, technical, instrumental,
institutional, social, and epistemic aspects” in the domain of scientific research (Rheinberger, 1997, p.
238).

Approaches to code inter-actions

110

things49 that “constitute the driving force in artistic research” (2014, pp.

114-6). To conceive art practice as research, artworks can act as a means or

a mode of inquiry, to reach out for things that are unknown or are not yet

known. In this way, the use of coding practice, as a form of experimental

practice, in this thesis is a “discovery-led” process (Borgdorff, 2011, p. 56).

This mode of epistemic inquiry through artistic research does not have the

goal of producing formal knowledge like a new scientific discovery or an

innovative artefact (although some might do so especially in new media art

that utilises technologies) but, crucially, it is a process undertaken in order

to inform and invite what Borgdorff describes as “unfinished thinking” and

is considered as part of the notion of reflexivity. He explains this as follows:

artistic research seeks not so much to make explicit the

knowledge that art is said to produce, but rather to provide a

specific articulation of the pre-reflective, non-conceptual content

of art. It thereby invites unfinished thinking. Hence, it is not

formal knowledge that is the subject matter of artistic research,

but thinking in, through and with art (Borgdorff, 2011, p. 44,

original emphasis).

What he highlights is that there is no fixed boundary of knowledge that art

may produce, shifting the attention to ongoing and unfinished modes of

reflexive thinking and practice. This reflexive process of unfinished thinking

describes not only artefacts that are produced in this thesis but also as an

inspirational concept in thinking through this written manuscript, that it

has informed the last chapter of this thesis with its title of “Unfinished

Thesis.”

The methodology of this thesis is to use a combination of the aforementioned

49 This is similar to how Cox and Jacob Lund argue artistic practice to be a “means to provide
epistemic enquiry” (2016, p. 32). They claim that nonhumans, not only humans, “allow us to perceive
what is knowable or even unknowable” (Cox & Lund, 2016, p. 29). Therefore, these epistemic things
also play a significant role in shaping meaning and producing knowledge

111

methods, including close readings, iterative trials, cold gazing and reflexive

practice to examine code and its inter-actions with and within, material

substrates. I present three of my own artistic research projects in the form

of software (art) practice that are interwoven into the discussion and

articulation of liveness in the remaining three chapters. I have taken a

major role in conceptualising procedures, writing code, implementing and

actualising the projects in exhibition and workshop settings.

In Chapter 3, I undertake a close reading of the Twitter platform and its

API, as well as the code of data query that is required to access and extract

online data in my collaborative artistic work, Thousand Questions. Through

refining the code in the spirit of iterative trials we have developed a version

that emphasis the process of querying data, including accessing, selecting,

filtering and presenting data, to examine the vector of unpredictability.

Additionally, the changing technological landscape forces the code to be

updated and implemented differently and this informs the conceptualisation

of the ‘inexecutable query’ that I will discuss in detail in the next chapter.

In Chapter 4, I use cold gazing method to examine digital signal processing,

packet switching, protocols and data buffering which exhibit the vector of

temporality. I closely investigate the architecture and mechanism of a

central processing unit (CPU), the technical specifications of internet

protocols, as well as the logic of data buffering. Consequently, I offer a

detailed technical description and analysis of how these things are

presented, focusing on the deep operative processes and their implications.

Additionally, I present my coded experimental project, The Spinning Wheel

of Life, as a means of reflection on a perpetual running environment that

invites “unfinished thinking” (Borgdorff, 2011, p. 44) on the temporality of

distributed networks.

Chapter 5 takes the artwork Hello Zombies as its central example, unfolding

the vector of automation. By undertaking a close reading of the code syntax,

the chapter selects a particular block of code from the entire program that

offers a technical explanation of each line, conceptualising them with the

Approaches to code inter-actions

112

notion of automation. This chapter additionally presents a sketch of Alan

Turing’s halting problem in the form of my short written code which further

explains the constituent forces in algorithms.

The three artistic projects as described briefly above are developed in

conjunction with the written component of this thesis. However, these

material practices are not separated from reading, writing and reflecting on

critical discourse around code but, instead, work in a reflexive manner,

continuously thinking in, through and with practice (Rolling Jr, 2014;

Sullivan, 2010). The last section of each remaining chapter, which I refer to

as ‘Notes on Reflexive Coding Practice.’ It is presented through a textual

method of self-narrative written in different font style and together with

various images and screenshots within a defined box, a presentation format

borrowed from technical textbooks which offers material which does not

fully fit into the main chapter but is also not entirely separate from it. These

special sections are not designed to fit in the main flow of the chapter but to

exemplify the notion of reflexivity by documenting research that is

associated with my practice which informs the understanding of liveness in

ways that analysis is not able. This includes evidence of the systematic use

of the methods introduced here, for example the self-narrative text, flow

charts and procedures, contextualisation of the works, some of the notes,

examples of the most recent work and work-in-progress experiments, source

code, programming comments and so forth. On the one hand, reflexivity can

be thought of as being undertaken by a practitioner who reflects

continuously before, during and after actions and allows differentiated

events to emerge through practice. On the other, the documentation

demonstrates some of the processes of how code, materials and artworks

inform and unfold the understanding of things. This is to illustrate how I

think with things and how the materials inform the critical discussion of

software (art) practice. The latter reinstates the materials, things and

processes to the centre of the projects in which they are encountered as

forces which co-produce meaning and knowledge.

The methodology of reflexive coding practice is demonstrated throughout the

113

whole thesis, in articulating, analysising and reflecting on the process-

driven projects, as well as reading, writing, running and executing code that

collectively and contingently informs each other. Therefore, knowledge is

regarded as co-produced by different practices that are somewhat merged

together. As a consequence, the practice component is not separated from

the writing of this thesis and they are interwoven within the chapters as

opposed to being presented as supplementary supporting materials. 50

Similarly, following the same line of argument, my findings are not only

demonstrated in the written text but also in the running of the projects

themselves. The live computational processes of code running carry, unfold

and express the argument of this thesis by themselves that follow the

practice of software art. As explained earlier, software artworks allude to

the software itself is the work, that is the presented artistic projects express

themselves with the live inter-actions of code and exhibit material forces

while executing and running code.

Tellingly, the subjects or objects involved in this research journey do not

consider humans to be the sole actors, and as I hope I have made clear to

this point in the thesis nonhuman entities also play a crucial role in acting

and searching for knowledge. It is equally important to remind the reader

that code also acts upon itself as well as inter-acting with other materials

that are not directly apparent to humans. Code acts and performs through

the process of execution and running. It operates in a continuous manner

that acts and responds reflexively too. In view of that, this chapter seeks to

establish that the execution of code is also a site of knowledge production,

co-emerging with other reading and writing practices.

Considering the issue of whether artworks can generate knowledge, there

are in fact many scholars with a coding practice that clearly demonstrate

that knowledge can be produced in, within and beyond, the artworks

themselves. McLean, for instance, who works in the field of live coding,

wrote his PhD thesis reflecting on his position as an artist-programmer and

50 This may be also commonly seen as the tradition in Denmark.

Approaches to code inter-actions

114

the findings are mutually informed by practice and theory (2011, p. 18).

That said, it is not “ruled by theory,” rather, is embedded in the reading and

writing activity of academic and coding practices (McLean, 2011, p. 119).

Similarly, Daniel C. Howe, together with Helen Nissembaum, developed a

browser add-on project called TrackMeNot51 (2006) which introduced their

concept of obfuscation in order to tackle the problem of surveillance and

data profiling by search engines in a tactical way. As seen in both of their

subsequent practical and scholarly reflections,52 the practical works inform

their reflexive thinking about computer networks and surveillance as

demonstrated in their publications over the years53 (Howe, 2015; Howe &

Nissenbaum, 2009; Howe et al., 2011).

As with different versions of TrackMeNot,54 it is worth noting that the

reflexive production of artefacts also encompass additional features, fixes,

“real-requirement[s]” (Berry, 2011, p. 67), priorities and decisions that

respond to the changing landscape of contemporary software culture. What

Borgdorff referred to as unfinished thinking, therefore, may be extended to a

consideration of the code-based artworks with different versions that are

never considered to be finished artefacts. These unfinished objects express

an unfinished and continual reflection on the world, and therefore, some of

the previous versions of my projects are also mentioned in the last section of

each of the remaining chapters.

In summary, this chapter has introduced reflexive coding practice as a key

aspect of my methodology, in addition to other methods of close reading, cold

gazing, iterative trials and reflexive practice that are employed in order to

pay attention to code reading, writing, running and execution. With the

51 See: http://cs.nyu.edu/trackmenot/
52 Within the following chapter’s footnotes, I have also listed my publications, conference
presentations and exhibition records of the works that demonstrate how thinking has evolved and
emerged with various practices. This serves to demonstrate an ongoing “dialogue” between artists and
their works (Sullivan, 2010, p. 110), or to exhibit Borgdorff’s notion of “unfinished thinking” (2011, p.
44; 2014, p. 117).
53 There are other scholarly works who use TrackMeNot as the central case in their research output
(AI-Rfou et al., 2012; Peddinti & Saxena, 2010).
54 For the artwork TrackMeNot, there are more than 6 releases over 9 years (from 2006-2015). Each
release adds different features and fixes that comply with new web browser versions.

115

materialist approach as an overall conceptual framework, the materiality of

code inter-actions is foregrounded by taking into consideration “interactions”

(Beaudouin-Lafon, 2008; Bentley, 2003; Murtaugh, 2008; Wegner, 1997) and

“intra-actions” (Barad, 2003, 2007) that produce multiple forms of agency.

Additionally, this chapter presents three key concepts that are considered to

be fundamental and related to the understanding of contemporary software

culture. Firstly, invisibility was used to address the materialisation of code

and the opaqueness of computational processes. Secondly, performativity

was used to examine the relationship between code and language as well as

the operational logics of code that produce performative effects and

highlights machine agency as a way to think about the materiality of code.

Thirdly, generativity was discussed to introduce a certain degree of

autonomy in a system. These three concepts together provide a basis on

which to understand some of the current debates in the field of software

studies, in which the three vectors of liveness (namely unpredictability,

micro-temporality and automation) will be further developed upon in

subsequent chapters.

116

117

3

Executing Unpredictable Queries

Allegedly the first digital literary work, Loveletters (1952), was built using

the Ferranti Mark I, the world’s first computer to be commercialized, by

Christopher Strachey at the University of Manchester. It is a computer

program that employed and algorithm developed early on by Alan Turing’s

for generating random numbers. The love letters were generated through a

combination 55 of grammatical rules that referred to adjectives, nouns,

adverbs and verbs as well as random choices of sentence structure (Wardrip-

Fruin, 2011). Predating ELIZA56 natural language processing, a computer

program for the study of computational linguistics, the utilisation of

computation, randomness and linguistics in the 1950s marks the beginning

of the history of software studies. In 2012, David Link, an artist and media

archaeologist, won the first Tony Sale Award with his software artwork

titled LoveLetter_1.057 (2009). Made through reconstructing the algorithms

and executing the original code of Strachey’s Loveletters, LoveLetter_1.0 ran

on a Mark 1 emulator and was able to reproduce and regenerate pieces of

love letters.

Darling Sweetheart

 You are my avid fellow feeling. My affection curiously clings to your

passionate wish. My liking yearns for your heart. You are my wistful

sympathy: my tender liking.

 Yours beautifully

 M.U.C58

Figure 3.1: A love letter from LoveLetters

55 The grammar logic is: “My—(adj.)—(noun)—(adv.)—(verb) your—(adj.)—(noun)” (Wardrip-Fruin,
2011, p. 309).
56 In 1966, the developer of ELIZA, Joseph Weizenbaum, published the article on ELIZA, which was
conceived as the pioneer software written for the study of natural language communication between
human and machine (1966).
57 See: http://www.alpha60.de/art/love_letters/
58 M.U.C refers to Manchester University Computer. Another letter can be found also in Strachey’s
article titled The “Thinking” Machine (1954, p. 26).

Executing Unpredictable Queries

118

The Loveletters was able to generate 318 billion variations with different

combination of words and sentences (Link, 2006) like the example love letter

above. The love letters are the results of computational generative

processes, therefore they are more than representations (Wardrip-Fruin,

2011, p. 302). Loveletters, as digital media scholar Noah Wardrip-Fruin

argues, is an unpredictable manifestation through two hidden elements:

data and processes (2011, p. 306). Wardrip-Fruin is not interested in the

resulting letters as semiotic and poetic representations but more in the

generative processes themselves (2011, p. 306). Such generative processes

produce unpredictable results from accessing the databank of a range of

words and by using Turing’s random algorithm. He explains that Loveletters

includes the data it employed, execution processes and representational

output in the form of a text that together can be considered as a “system”

(Wardrip-Fruin, 2011, p. 307). It is the system that generates unpredictable

love letters.

This chapter investigates the unpredictable vector of liveness, the notion of

unpredictability that is inherent in examples such as this. It takes its cue

from how Wardrip-Fruin analyses computational processes that move

beyond the meaning of their representational output. In particular, it pays

attention to unpredictable manifestation through data processing: how data

is being processed, generated and represented. My collaborative artistic

project If I wrote you a love letter would you write back (and thousands of

other questions) 59 (from hereon referred to as Thousand Questions) is

inspired by the multiple possible variations generated through the

implementation of simple rules running autonomously, in which the system

takes control of generating unpredictable outcomes. The concept of

generativity is key to an understanding of computational processes such as

59 The artwork was co-produced with British artist Helen Pritchard. It was first exhibited at
Microwave International New Media Arts Festival in Hong Kong (2012), as part of Digital Futures, at
the Victoria and Albert Museum (2013), presented in the research workshop Artistic Research at
Kunsthal Aarhus (2015), and most recently the latest version includes a visual component that is
presented in the International Conference on Live Interfaces in Sussex (UK) and Si Shang Art
Museum International Art Conference in Beijing (China) in 2016. In the same year, the work is
selected by and published in Electronic Literature Collection (Volume 3). It will show in forthcoming
Kochi Biennale exhibition in 2017 (India). See the artwork’s documentation:
http://siusoon.net/home/?p=900

119

this, and the notion of unpredictability in logical systems. Instead of

generating love letters the work Thousand Questions takes ‘questions’ from

the internet as text and ‘voices’ them. An example of the questions is ‘If I

wrote you a love letter would you write back?’

On a technical level it uses a web API (Application Programing Interface) to

query data from the internet platform, Twitter. In other words, the notion of

unpredictability is manifested through the real-time query of an API within

a networked and distributed environment. In contemporary conditions data

is generated in real-time and evolved over time. I refer to this kind of data

query as live queries. A live query is implemented as part of a program or a

piece of software and, in the work Thousand Questions as a snippet of code.

In an installation setting it runs continuously, repeatedly executing queries

and retrieving different sets of questions from Twitter automatically, it is

unpredictable because you never know what question will be retrieved. The

project employs the web API that is offered by Twitter, extracting questions

from an infinite pool of possibilities (databank) in real-time as the audience

experiences an endless computer synthesised voice that speaks those

questions that were posted by internet users of Twitter. Instead of using

different combinations of grammar rules and words, as in Loveletters,

Thousand Questions works with dynamic data from the constantly updating

databases which then produce unpredictable vocal manifestations as an

integral system.

As demonstrated in Chapter 1, unpredictability is identified as one of the

important perspectives from which to examine the notion of liveness. What

marks media phenomena live concerns unpredictability. Using my

collaborative artistic project Thousand Questions, which extracts data and

executes queries in a networked environment, this chapter analyses the

notion of unpredictability through a materialist account of executing live

queries. It unfolds the computational process of a query’s execution through

an understanding of its operational and generative logics, similar to

Wardrip-Fruin’s emphasis on a system that comprises data, processes and

output (2011, p. 306-7).

Executing Unpredictable Queries

120

This chapter explores the ‘unpredictable manifestations’ of a networked

system and, more specifically, how the unpredictability of live queries can be

understood through their material encounters. Thousand Questions, a

computer program, is still running today and it operates parasitically with

the internet platform querying data from Twitter, an ever-updating

database. While this chapter focuses on the present use of technology that is

still running and operating, Wardrip-Fruin uses the perspective of media

archaeology to analyse an object (in his case loveletters) from the past: “the

predigital media”, or “more recent past” (2011, p. 302). Through reflexive

coding practice, in particular reading code-related materials, 60 writing

computer code61 and running and executing data queries this chapter aims

to articulate the complex materiality of network conditions and their

computational processes which shed light on the understanding of

unpredictability in contemporary software culture.

3.1 Queries and Databases

In Loveletters both the software and its data62 were stored and run inside

the same machine, the Ferranti Mark I. This was one of the early stored-

program computers, which was based on von Neumann architecture which

enabled both data and instructions to be stored in the same computer

memory. Following his theoretical concept of a ‘Universal Computing

Machine,’ in which tape was used to demonstrate the holding of data and

instruction in 1937, Turing’s revolutionary concept was realised in the

world’s first commercial computer, the Ferranti Mark 1. The promise of a

universal computing machine suggested that a computer could take in,

compute and output data, steps that enabled it to solve problems and

perform assigned tasks by using instructions as symbols and algorithms in

sequential steps (Parisi & Fazi, 2014, p. 116; Turing, 1937). However, many

60 This includes the discussion, library, specification and documentation of Twitter web APIs, Twitter.
databases and accessing methods.
61 Thousand Questions is developed through a Java-based open source software called Processing.
62 This includes all the adjectives, nouns, adverbs, verbs and letter start (Wardrip-Fruin, 2011, p.
309).

121

scholars critique the model of the Turing machine and consider it to be

insufficient to cope with the dynamics of environmental input in digital

networks (Parisi & Fazi, 2014, p. 121; Wegner, 1997, p. 83). More than half

a century after the concept of the Turing universal machine, with the

invention of database management systems, distributed networking, the

internet, World Wide Web, hypertext systems, cloud computing and

blockchain technology,63 the computational world is far more complex. Since

the Web 2.0 era, there are increasing amounts of user-generated content

which is stored in so-called social media platforms, physically located in

server farms. These platforms64 operate across data centres beyond a single

machine, whereby data are held and linked together in a manner which can

be retrieved by a specific query method. This is a system that consists of

input, process and output, internet platforms and networked applications

which can now efficiently inter-act with many other machines, extracting

data from cloud servers and processing it across distributed environments

through live queries. The way storage systems and code instructions work

nowadays are significantly different from the Turing computer, specifically

there are endlessly updated and dynamic feeds on social media platforms in

which a network of computers communicate with each other across time and

space. What would have happened if Loveletters had been comprised of an

infinite data stream operating within a distributed internet network?

In contemporary culture many applications offer data streams or feeds with

infinite stored data sets where their databases undergo a never-ending

update of records. Databases have a significant impact on contemporary

conditions and it is through the storage and analysis of massive amounts of

data (so-called ‘Big Data’) that profiling, targeted marketing, personalised

recommendations and various sorts of predictions and e-commerce become

63 The term blockchain came from the two concepts: block and chain in Bitcoin, an electronic cash
system that is invented by Satoshi Nakamoto in 2008. Blockchain promotes decentralised network by
using a peer-to-peer network protocol that involves participants to validate each transaction. In other
words, blockchains suggest a visible and transparent process whereby actions, such as creating,
transferring, verifying digital assets, are taken by participants of a network. It is a chain of blocks
contains transactions that linked to one another and enforced with cryptography, maintaining a
continuously-growing list of data records as distributed databases (Nakamoto, 2008).
64 An example of a platform is Google where data centers operate around the world. See:
https://www.google.com/about/datacenters/inside/locations/index.html

Executing Unpredictable Queries

122

possible. According to Chun, user habits formulate big data businesses, and

she explains, “Through habits users become their machines: they stream,

update, capture, upload, share, grind, link, verify, map, save, trash and

troll” (2016, p. 1, original emphasis). Browsing, Googling, messaging and

Tweeting, for instance, become our habits and they are storable, traceable

and analysable in the form of data that is kept in databases. Behind all of

these habits the role of databases cannot be underestimated.

Databases do not only enable the storage of data but also the organisation of

data and the retrieval of information. Retrieving from and navigating

databases suggest new cinematic and narrative experiences for users where

data is organised through code. This allows a more dynamic of real-time

computation to occur, showing different content at different time and for

different person. Manovich argues for the “database as a cultural form of its

own” in which it “present[s] a different model of what a world is like” (1999,

p. 80). Therefore the database matters to us as it changes our experience of

the world and digital media, such as computer games, hypertexts, database

cinema and other interactive interfaces. Manovich’s analysis stems from his

notion of narration as “a set of links” that are structured around and within

databases, generating meaning and showcasing new aesthetic possibilities

(1999, pp. 90-4). Mathematically, a ‘set’ refers to set theory in which all

mathematical concepts are based on; “A set is formed by the grouping

together of single objects into a whole” (Hausdorff, 1957, p. 11). In his

article, More parts than elements: how databases multiply, Mackenzie

discusses some of the mathematical and philosophical implications of SET

theory underlying databases (2012). He highlights how set-like operations

create new relations and how data relations can be established through

unions, intersections and complements. Therefore database can be

understood as more than a storage system, rather it is a system about

relations on multiple levels.

There are many discussions of various database models in the realms of

software studies and digital humanities, from mainstream relational

databases (Castelle, 2013; Ramsay, 2004) to other alternative models such

123

as NoSQL (Dorish, 2014), MapReduce (Mackenzie, 2012) and blockchain

databases (O'Dwyer, 2015, 2016). Scholars have investigated various

material aspects of databases including database design, database

infrastructure, database organisation, digital information, technical-social

processes, industry practice and operation. However less attention has been

paid to the concept of query, or data query processing in particular, which is

used for database communication. Data queries are widely implemented at

the level of code to communicate with the database, querying data records.

It is further manifested in todays’ mobile gadgets, sharing buttons and

“social plugins” (Gerlitz & Helmond, 2013).

Query is most commonly understood as a language. The concept of query

was first introduced in Edgar F. Codd’s article, A Relational Model of Data

for Large Shared Data Banks (1970), which addressed the linguistic aspect

of collecting relational data and foresaw its power when incorporated into

other programming languages. He says,

Such a language would provide a yardstick of linguistic power

for all other proposed data languages, and would itself be a

strong candidate for embedding (with appropriate syntactic

modification) in a variety of host languages (programming,

command- or problem-oriented) (Codd, 1970, p. 381).

Codd’s vision has been realised such that querying a database does not need

to take the form of a command-line terminal but can be embedded in many

different forms. Structured Query Language (SQL) is one of the most

popular query languages for communicating with databases, particularly on

relational databases, such as Oracle and MySQL. SQL can be executed,

meaning that it provides instructions for storing, querying and

manipulating data. Although the notion of query has a historical

relationship with SQL and SQL databases (Codd, 1990, p. 7), it should be

understood that query could be also used in different alternative types of

databases beyond the structure of relational databases.

Executing Unpredictable Queries

124

Databases are more about data storage and data relationship. The notion of

query that I address in this chapter is focused on the process of data query

that communicates with different kinds of databases. Computer scientists

Ashok K. Chandra and David Harel define a query as follows:

[a] query language is a well-defined linguistic tool, the

expressions of which correspond to requests one might want to

make a data base. With each request, or query, there is

associated a response, or answer (1980, p. 156).

Therefore the execution of a query is a two-way communication, both a

request and a response.

Set operations have been commonly used to bring data into relations and

relations are expressed and established through executing a query. Set-like

operations can be done through writing statements for managing and

manipulating data in a database. According to Mackenzie, “Any query to a

database takes the form of a ‘SELECT’ command. The syntax of ‘SELECT’

ranges from extremely simple requests for a single row of a single table to

highly complex intersections, unions, and joins spanning many tables”

(Mackenzie, 2012, p. 340). Besides this, the most frequently used query

statement in a commercial context is the ‘SELECT’ query, which is not

updating or inserting data but retrieving it (Tuya et al., 2007, p. 398). A

query is an inquiry into databases and this inquiry does not refer to a

statement only. A query, as a form of code, performs when it is executed and

a result will be returned. A result is a combination of relations that answer

and respond to one’s query statement. With the availability of data records,

a query has the capability to specify, create and identify relations through

this request and respond logic, such as the ‘SELECT’ syntax. These selected

relations are things behind ‘tags,’ ‘playlists,’ ‘(Google) analytics’ and

categorisation and are further manifested into “suggestions, connections,

menus, recommendations, and invitations” (Mackenzie, 2012, p. 340) in

contemporary software culture. Thus queries exhibit a certain material

power that executes the inclusion and exclusion of specific type and range of

125

data, therefore queries are not simply to be regarded as neutral commands.

The terms dynamic queries (Shneiderman, 1994) and visualizing queries

(Consens et al., 1992) have been used to indicate the functional aspect of a

query to visualise databases. In particular, computer scientist Ben

Shneiderman discusses the empowerment offered by dynamic queries that

enable a direct manipulation of a visual outcome where users have more

control. Yet these articles fall short of taking into consideration of the

dynamics of networked technologies. For example the constant update of

databases and distributed networks.

The use of the term live queries in this thesis is not limited to any specific

database models or their technical structures and organisation. Arguably,

live queries allow data to be inquired of, and queried from, centralised,

decentralised or distributed databases via networked technologies. This can

be understood via the network typology that engineer Paul Baran proposed

in 1964. In Figure 3.2, it shows Baran’s three types of networks. Type A is a

centralised network, in which there is only one central node that acts as a

server in which data can be sent to participants. However, participants are

not allowed to communicate with each other. In contrast to type A, a

decentralised network is illustrated as type B. It is commonly used by

telephone systems whereby the network does not need to have “complete

reliance upon a single point” (Baran, 1964, p. 1). Type C, a distributed

architecture is seen as a grid or mesh-like network. The internet is a

distributed communication network, in which the destruction of an

individual node or link will not impact the whole transmission channel. This

model is also implemented in what is known in internet computing as

‘packet switching,’ where messages can be delivered to their destinations via

multiple pathways.

Executing Unpredictable Queries

126

Figure 3.2: Centralized, Decentralized and Distributed Networks. Reprinted from On
Distributed Communications (p. 2) by P. Baran, 1964.

Live queries include different kinds of ways that data is queried from a

database that is centralised, decentralised, distributed or a combination65 of

the above. A structured format of live queries allows data exchange between

sites, platforms, machines and applications in real-time. Data can be

queried, specifically selected, filtered, generated, sent and collected from an

enormous databank that is operated across different database structure.

Taking Twitter as an example, it first uses a relational database MySQL

and gradually moves to NoSQL databases (such as Cassandra and Gizzard),

because the later can handle massive data sets and therefore better support

for time-critical queries (Metz, 2014). Although their latest system, which is

called the ‘Manhattan database system,’ includes private multiple systems

and storage engines (see Figure 3.3), access to the system can be gained

through the web query, which is also known as web API (Schuller, 2014).

65 The blockchain database is said to be a combination of decentralized and distributed models
(O'Dwyer, 2015).

127

Figure 3.3: The Manhattan system of Twitter. Retrieved from

https://blog.twitter.com/2014/manhattan-our-real-time-multi-tenant-distributed-database-
for-twitter-scale

According to media and software studies researcher Taina Bucher, one of

the advantages of API is that changes of database infrastructure would not

impact the format and operation of the data query (2013, n.p). Therefore it

appears seamless to the users of web APIs, as the process of live querying

does not depend on a particular infrastructure and technical arrangement.

As Bucher puts it,

[APIs] separate modules into public and private parts, so

changes to the private part can be performed without impacting

the public (the API itself) part, and therefore minimizing the

dependencies between these two parts (2013, n.p).

This section lays out the general understanding of a query and how it can be

executed independent of database type. The next section will discuss in

more details about the format of query.

3.2 The format of query output

A query is executed in the form of sending an input and receiving an output

within a system. Both query requests and query responses are highly

Executing Unpredictable Queries

128

structured, employing a particular format and mechanism for structuring

data. At a structural level, cultural critic Johanna Drucker argues that a

digital format demonstrates grouping, grammar and rules that have

powerful effects. This kind of format “contain[s] protocols that enable

dynamic procedures of analysis, search, and selection, as well as display”

(Drucker, 2009, p. 11). A query output comes with semantic naming that

describes the data using a set of ‘tags’ for structuring data. In addition,

those tags are the key parameters used for locating specific content when

the system responds to a query output. In other words, a structural format

facilities the dynamic retrieval of data, in which textual processing is

enabled. Through habits of digital search, searching for videos, books, news

or a word meaning for example, formats bring “the object of their inquiry

into being” (Drucker, 2009, p. 11). These search habits are the quest for

knowledge, suggesting formats “must be read as models of knowledge, as

discursive instruments” (Drucker, 2009, p. 11).

Within the context of web queries, platforms or service providers offer a

clear format for not only specifying the request for data, but also how it will

be returned in another way round. Javascript Object Notation (JSON) is one

of the most popular formats used for data exchange between applications. It

is designed for inter-operability, meaning that it is a standardised format

used to exchange data between applications written in different

programming languages 66 (Crockford, 2006, p. 7). Such standardised

formats are used widely, allowing thousands and millions of developers in

the world, who work on different programming languages and platforms, to

retrieve data and process queries. In order words, using a standardised

format that can be easily parsed, like JSON from Twitter, enables wider

distribution, circulation and application of data queries.

In JSON, data returns in four primitive types (strings, numbers, booleans

and null) (Crockford, 2006, p. 1). Within the example of Thousand

Questions, a query request will return more than 20 objects in primitive

66 The languages include ActionScript, C, C#, ColdFusion, Common Lisp, E Erlang, Java, Javascript,
Lua, Objective CAML, Perl, PHP, Python, Rebol, Ruby and Scheme (Crockford, 2006, p. 7).

129

types, including field names ‘text,’ ‘id,’ ‘isTruncated’ and ‘geolocation’ to

name just a few. Below is a sample tweet returned67 from the Twitter

platform using the Twitter API:

tweets=[StatusJSONImpl

{

createdAt=Mon Feb 29 16:21:25 CET 2016,

id=70432560996301217,

text=‘[…]’ ,

source=‘<a href=http://twitter.com/download/android

rel=“nofollow”>Twitter for Android’,

isTruncated=false,

inReplyToStatusId=[…],

inReplyToUserId=[…],

isFavorited=false,

isRetweted=false,

favoriteCount=0,

inReplytoScreenName=[…],

geoLocation=null,

place=null,

retweetCount=0,

isPossiblySensitive=false,

isLanguageCode=en,

contributorsIDs=[….],

urlEntities=[],

hastagEntities =[],

mediaEntities=[],

currentUserRetweetID=-1,

[…]

}
Figure 3.4: An experiment to extract a sample tweet returned from Twitter platform.

Together with the corresponding values of types, they are regarded as

objects. Therefore, an object includes a field name and its value, such as

‘geolocation=null,’ identifying the specific data content in a structured way.

67 The use of the symbol […] indicates sensitive information.

Executing Unpredictable Queries

130

On the one hand the field’s name explains the semantic meaning, and on the

other, the field is well structured in the sense that same field is returned for

every query request. These same returned fields enable data to be

programmed in Thousand Questions, allowing ‘questions’ to be extracted

every time but with different values that were manifested as a perceivable

and unpredictable voice.

To understand the format in a deeper way, it is worth noting that JSON

follows “JSON Grammar,” separating different names and values

(Crockford, 2006, p. 2). This grammar is a set of rules for structuring data.

For example, a pair of left and right curly brackets, the symbols of ‘{ }’,

indicates a ‘begin-object’ and an ‘end-object.’ A further example is a comma

‘,’ that separates each object as a name/value pair. To process a query output

format and be able to acquire appropriate data involves the identification

and extraction of specific data through code. This procedure is called

‘parsing.’ Parsing is an operational and technical method often used to

analyse structured data that follows certain rules and grammar. Given an

output format with different fields or values as indicated in Figure 3.4,

Thousand Questions analyses the output in order to extract the ‘questions’

(that is the field ‘text’, see line 5 in Figure 3.4), among many other fields, for

further processing. Therefore those structures, including namings, brackets

and commas, are things that are essential in automated data processing.

Analysing, searching, selecting, displaying and speaking of queries, the

questions of Thousand Questions, are all automatically run. The structures

in the output format are designed to do something as an indicator. For

example, a comma indicates a value separator, a pair of curly brackets

indicates data objects and the field ‘text’ in the last example indicates the

required field as a tweet with a question mark. These structures and rules

are embedded in a format and have a role to perform and this is what

Drucker describes as “performative” (2009, p. 11). A query, as a form of code,

is conflated with languages, symbols, meanings and actions that is similar

to the performativity that has been discussed in Chapter 2.

A query format is comprised of rules indicating how the data is being

131

structured and how text parsing should be done. According to professor of

culture and technology Jonathan Sterne, a format represents a range of

decisions “that affect the workings of a medium. It also names a set of rules

according to which a technology can operate” (2012, p. 7). To parse data also

means handling a specific set of hierarchies, syntaxes and symbols through

code. From the perspective of coding, there are two structured types—

objects and arrays—in JSON and these require different functions for

parsing data. In the example of Figure 3.5, the excerpt of code is about

parsing a weather query in JSON format. By submitting a query that

specifies geographic coordinates to the platform OpenWeatherMap,68 the

returned result provides a list of cities and the corresponding weather

details as output queries. Since there is more than one city within the

specified zone, the query outputs an array of cities and their corresponding

weather data that are in the types of object and array. How the data is

structured results in using a different function for parsing. In Figure 3.5,

there are two different functions—‘JSONArray’ and ‘JSONObject’—used to

extract different types of data. Therefore a format and its structure change

the way a program should be written. A standard format is not regarded as

an isolated set of rules but rather, the format is an active process because

the rules of a format require certain libraries, functions and code that

enable it to parse and read the output. The notion of format is therefore

more than a static instance, it formulates a set of processes and

infrastructural elements that support such a standardised format. Any

changes in a query format, regardless of any decisions behind it, literally

impact upon coding practices and the running artefacts.

Figure 3.5: Excerpt of code, in Processing Software, for parsing JSON query from

OpenWeatherMap for getting a list of cities’ name.

68 See the detailed API’s parameters and usage: http://openweathermap.org/current

Executing Unpredictable Queries

132

JSON is just one of many formats with a set of specific rules and other

formats such as XML and RSS are also widely used, like podcasting, in the

similar way to JSON. JSON is an increasingly popular format in web

industries (Amyatwired, 2011; Hamp, 2010). Most data returned by

Facebook APIs69 and Sina Weibo APIs70 are written in JSON although some

are in XML too, whilst Instagram only offers JSON format. In the case of

Twitter,71 JSON is the only output format in the Twitter web API v1.1 and

other formats including XML, RSS and ATOM were made obsolete, along

with API v.1, in 2013. A change in format alters operative and

computational processes. For example, the handling of data queries requires

change in both providers and users in the form of code at both structural

and infrastructural levels. The consequences of system upgrades, program

updates and documentation revisions are indeed affecting different practices

in various industries and cultural sectors. Therefore, a change in format is

not a mere technical shift, but additionally, as claimed by Sterne, one which

“may mark a significant cultural shift” (2012, p. 12).

3.3 Query as cultural form

From Raymond Williams’ argument that “television has altered our world”

(1974, p. 9) to Christiane Paul and Manovich’s assertion of the “database as

cultural form” (Manovich, 1999, n.p; Paul, 2007, p. 98), technological objects,

such as television and databases, are associated with many kinds of cultural

and social activities, through which different events are transmitted and

delivered to a screen. I argue that the provision, consumption and execution

of queries are equally paradigmatic cultural forms in contemporary software

culture. Offering Web APIs becomes a standard package of online and social

platforms, at least in the case of the major companies across the Eastern

and Western continents, including but not limited to Google, Facebook,

Instagram, Amazon, PayPal, Sina Weibo, WeChat, Twitter and Youtube.

69 For the Facebook APIs output format and Public Feed API format, see:
https://developers.facebook.com/docs/unity/reference/current/Json and
https://developers.facebook.com/docs/public_feed
70 See: http://open.weibo.com/wiki/Statuses/update/en#Response
71 See: https://blog.twitter.com/2013/api-v1-retirement-final-dates

133

According to Tim O’Reilly, who popularises the term Web 2.0, one of the

important aspects of Web 2.0 services is data management that allows

“remixability”: “remix the data into new services” (2005). This data

remixability not only includes capturing, storing and organising data but

also as media studies scholar Anne Helmond highlights, its redistribution

(2015, p. 6).

One of the cultural consequences is that ‘social plugins’ (Helmond, 2015)

have become commonplace on many websites. Webpages usually come with

a list of social media sharing icons, such as Pinterest, Twitter and

Instagram. This development is particularly apparent across a wide range of

content, from online news platforms to academic online journals and

magazines to many other kinds of websites. When a social media icon is

clicked on these sites the data is updated in the corresponding social media

database and the computed result will display accordingly. The action of a

click executes a query that is underneath the graphical user interface of a

webpage, where the number of shares, likes or favourites is computed by

reading the accumulated acts and writing the new record in another

database. So, for example, an image on a news website is added to a

Pinterest database when someone clicks on the Pinterest symbol. In other

words, an API as a specific form of query demonstrates the capability to

read and write.

In the fields of digital humanities and sociology an API is an important tool

and object of study for social data research and user behaviour analysis. For

instance, media studies scholars Anja Bechmann and Peter B. Vahlstrup

discuss the implications and challenges of using APIs from Facebook and

Instagram (2015). Tyler H. McCormick et al collect and process user data

and tweets using Twitter API for Social Science Research (2015). Under the

influence of digital humanities, institutions72 are also providing workshops

and seminars to researchers from different disciplines, offering information

72 Here are just a few examples: MITH API workshop (2011) by University of Maryland, APIs as
Interfaces to the Cloud (2012) by The Digital Methods Initiative, Cleaning and Exploring Your Data
with Open Refine (2015) by University of Western Sydney.

Executing Unpredictable Queries

134

on the development, usage and critique of APIs. Clearly, the practice of

querying data is becoming an important research topic in data analysis

beyond the discipline of computer science.

With “the rising values of APIs” and with many big and small companies

providing APIs that extract value out of the available data, it is claimed that

offering an API creates “new business opportunities,” enhances “existing

products, systems, and operations,” and develops “innovative business

models” (Mason & McKendrick, 2015, n.p). In parallel the critiques of APIs

in journal articles have been increasingly seen in academia. Together with

media studies scholar Carolin Gerlitz, Helmond analyses the “like economy”

in Facebook via Facebook APIs (2013). Helmond, in another publication,

argues that the politics of data flows in web platforms have been

transformed from open standards to proprietary APIs (2015, p. 22).

Likewise, Bucher suggests that APIs exhibit control and freedom through

her examination of the Twitter API (2012a, 2013). In addition to the widely

available web APIs mentioned so far, Berry discusses how the use of

specialised and private APIs expose some of the relations between

companies like Microsoft and the political economy of software development

(2011, pp. 70-1). An investigation of these APIs, with the capability to read

and write, suggests that this form of query is highly related to different

cultural and industry practices. In other words, studying API queries

enables a better understanding of different platforms and the politics of data

circulation associated with contemporary software culture.

A query can be thought of as an object, both an object of study and an object

in terms of how to use it technically and economically. Fuller suggested that

digital objects are pervasive, and as such identifiable, traceable and

analysable (2004, p. 27). Records kept in databases, including health

records, telephone records and library records. To Fuller, these digital

objects “are in connection with a million relations of dimensionality” (2004,

p. 28). The digital object is about the creation of social and technical

relations, “[making] stable different kinds of sociability and inter-relation

with other elements” (Fuller, 2004, p. 28).

135

Bucher argues that Twitter APIs express “enactive power,” and yet this is

contingent rather than stable (2013, n.p). She argues that a query is a

quasi-object beyond its standard specification. The prefix ‘quasi’ refers to the

social desires in which using objects can bring about the social

organisation’s goals (Bucher, 2013, n.p). In addition to this, control,

according to Bucher, is exercised through the standards, structures and

specific social situations. Therefore, an API may be understood as an active

participant in as well as a component of a set of relations. She explains:

This implies viewing APIs not merely as specifications and

protocols that determine relations between software and

software, but also in the sense of the quasi-object, as protocols

that structure and exercise control over the specific social

situations on which they are bought to bear. Drawing on Roland

Day’s claim that quasi-objects are best understood as historical

projections of power within organizational and epistemic

structures, the argument is made that the kind of work that the

Twitter APIs perform, needs to be situated within the platform

politics of data exchange and transmission (Bucher, 2013, n.p).

Following Bucher, I acknowledge live queries as active participants in a

system that acts and performs with wider cultural consequences. A query

execution includes both technical and social dimensions and thereby has

political significance. From digital objects to quasi-objects, we could say that

a query is an object that creates dynamic social relations that includes the

active participation of nonhuman entities.

In addition to the academic and business sectors, there are increasing

numbers of artists who use queries in their artistic practice. As mentioned

in the last chapter, Net.Art Generator (1997)73 uses Google search query to

73 Ten years after the work was presented in a web page format, Cornelia Sollfrank exhibited the
artwork in a museum space - Kunsthalle Schirn in Frankfurt during 2007-2008, in which the final
setup included a screen that showed the live query processing, running on a physical server machine.

Executing Unpredictable Queries

136

manipulate images of Warhol’s flower paintings. The setup of the artwork

reveals the process of data query by installing a computer with all the

process logs which the audience can see (see Figure 3.6). Another more

recent artwork, Endless War (2011), developed by YoHa with Fuller, is an

installation that reveals the real-time processing of data (Afghan War

Diaries) from Wikileaks. The visual presentation is structured “from a series

of different analytical points of view: each individual entry, phrase matching

between entries and searches for the frequency of terms” (YoHa & Fuller,

2014, n.p). In its gallery installation, the three video screens display the

result of the execution of live queries as text, as well as constantly

performing the execution of queries. In addition, the artists exemplify the

materiality of data processing through exposing the inner workings of

computational and data processing sounds by placing the workstations

close-by (see Figure 3.7). As a result, the installation is a rich receptive

experience that is expressed in both visual and audio forms. Many software

artworks employ computation but in many cases, as Wardrip-Fruin also

points out, computational processes are “invisible on the surface of their

projects” (2011, p. 320). Net.Art Generator and Endless War may be

considered as examples of artworks that make visible the materiality of

query processing.

The change of the presentation shows that Sollfrank started to notice the importance of data query as
part of the resulted Warhol flower images.
See the video documentation: https://www.youtube.com/watch?v=43y2k5j7oIU

137

Figure 3.6: Net.Art Generator by Cornelia Sollfrank. Photo: Nina Pieroth. Courtesy of the

artist

Figure 3.7: Endless War was shown in Hong Kong as part of the exhibitionTracking Data:

What you read is not what we write (2014). Retrieved from http://www.writingmachine-
collective.net/wordpress/?p=489

I have worked with query since 2009. The collaborative project, If I wrote

Executing Unpredictable Queries

138

you a love letter would you write back (and thousands of other questions),

drew thousands of questions based on the key symbol—a question mark—

from the Twitter social media network, synthesising questions in text form

to speech. The project employs query, following the standard and official

Twitter API74 format (using REST Search API) that offers programmable

access to search and extract Twitter data. By using the Twitter web API, the

query in Thousand Questions was written with various criteria and

conditions of data extraction as part of the larger query request. This

includes content search that is comprised of a question mark (?) and that

tweets must be in English. In addition, the returned query output only

includes 50 results (tweets) per request and they are regarded as ‘recent

tweets’ according to the definition from Twitter. A query statement, like

this, consists of multiple parameters.

For the latest development of Thousand Questions, the visual component

includes the returned collective questions. However, they are not in a

readable format. A screen displays only one character per frame until all the

remaining characters are shown (see Figure 3.8). Using text to speech

feature, a woman’s voice75 is heard, speaking all 50 tweets one after the

other. The program repeatedly poses questions, alongside other parameters,

to Twitter once the artwork finishes displaying and speaking all the pending

tweets. Therefore, the experience of such live queries results from inter-

actions between different machines 76 —ongoing cycle of requests and

responses that are both operational, cultural and social. The work makes

query processing apparent by showing the latency and the temporal aspect

of getting questioned tweets and speaking unanswered questions through an

audio-visual experience. The project is meant to be an endless process of

query processing, in which temporality is expressed through the display of

the underscore symbol ‘_’, indicating the unknown waiting of the program

for the next query execution (see Figure 3.9). This unknown can be

74 See: https://dev.twitter.com/rest/reference/get/search/tweets
75 We are using the text to speech feature Mac Operating System. The australian woman is called
Karen who speaks the tweets.
76 The use of machines here refers to the machine that runs Thousand Questions, Twitter’s machines,
and also those social machines that in contact with the Twitter platform.

139

understood in two ways: both the time of query processing and the content of

“unanswered queries” (ELC3, 2016).

Figure 3.8: A screen shot of Thousand Questions

Figure 3.9: A screen shot of Thousand Questions, where the program is waiting for the next

query execution

Executing Unpredictable Queries

140

3.4 The unpredictability of live queries

Query is a form of code, and it inter-acts with databases and network

protocols. Considering the case of Thousand Questions, the query consists of

different text and symbols wherein meaning is attached. Systematically, the

query output contains different fields,77 including but not limited to a

timestamp, a name of an author, an unique identifier, a favourite count, a

retweet count and, sometimes, geographical coordinates. Although rules are

pre-set and fields are highly structured, the process of data query exhibits

dynamic and unpredictable qualities that modulate the sensation of

liveness.

In view of Twitter as a web 2.0 platform, it can be understood as both an

open and closed system. The system is open in the sense that it allows

anyone, including both human and non human agents (such as bots) to post

questions across time and space. It is also a closed system in so far as it can

be considered a black box wherein the processes, algorithms and mechanism

of showing tweets and returning query output are rather opaque. In the

remainder of this chapter I will unfold the complexity of this openness and

closedness of the Twitter platform and those associated unpredictable

events that occur when executing a query. Again, the focus here is not so

much on the meaning of output texts and questions but more a

consideration of the two hidden elements—data and processes—as

suggested by Wardrip-Fruin. These two elements unfold the dynamics of

query execution in a real-time environment.

My focus is on the unpredictability of live queries that results from thinking

and practicing code reflexively. Such an approach responds to questions that

arise from the project. What does it do, and what does it mean when a query

is being executed? We can ask the same question differently, borrowing

concepts from set theory, what are the mathematical operators or symbols

77 See for different fields of a tweet: https://dev.twitter.com/overview/api/tweets

141

doing in a search operation? What do the micro-processes of executing

queries tell us? How do changing formats relate to unpredictability?

Ultimately, what constitutes unpredictability through executing live

queries? These lines of inquiry help establish the logic of unpredictability

that matter, to argue that the execution of queries is a live and

unpredictable process.

3.4.1 Random events

In the previous chapter, the notion of generativity was discussed in relation

to complexity science in order to explain the dynamism of systems. Random

events exist in a complex system, generating chaotic behaviours that are

unpredictable. Following that, this section applies the concept of

generativity to explain the random events in Twitter, which is a highly

generative and complex system. Within complex systems, components

interact with each other in ways that lead to unpredictable phenomena and

the cause is difficult to trace inasmuch as complexity intensifies at each

level of interaction across all components and layers. Generative systems

consist of rules, and Twitter, a complex system, these rules are many and

various and take account of conditions, human and nonhuman activities

which have emerged over time. Professor of the philosophy of science,

Roman Frigg, would describe the tweets as ‘random behaviours’ from a

system perspective. Frigg argues randomness is unpredictable in the context

of dynamical systems and explains, “an event is random if there is no way to

predict its occurrence with certainty. Likewise, a random process is one for

which we are not able to predict what happens next” (Frigg, 2004, p. 430).

This way of thinking about tweets, to borrow from Frigg, stems from “the

seemingly random, stochastic, unpredictable or haphazard time evolution” of

a system (Frigg, 2004, p. 412). Since there are different inter-actions and

dynamic processes at play these also impact the process of live queries. This

section offers some explanation of the complex system of Twitter in order to

gain a general understanding of the system behind query execution.

Executing Unpredictable Queries

142

Using Twitter data to do analysis and prediction is an important area for

research, as observed in the fields of computer science, political science,

media studies and social science (Burghardt, 2015; Gayo-Avello, 2013;

Zaman et al., 2010). Although there are more and more methods for

researching predictive power that is based on data collection, it still seems

impossible to achieve perfect accuracy and/or prediction. There is no perfect

prediction of when a tweet arrived and from where and from whom it

derives. This has been also seen in the political campaigns, such as Brexit

and United States president election in 2016, in which actual voting results

are significantly different from big data analysis and prediction.

To explain further, it is necessary to discuss Twitter as a Web platform that

engenders dynamism. In 1999, Darcy DiNucci, who works in the area of user

experience design, was one of the first to describe the phenomena of having

dynamic media on the web. What makes dynamic media possible is the

standardised web infrastructure of protocols (TCP/IP and HTTP), in which

data can be transported across different devices and screens (DiNucci, 1999,

p. 32). This standardisation implies individuals can access the Web using

different mobile or stationary configurations and hence more data could be

generated due to its increased accessibility. In 2004, O’Reilly and John

Battelle defined Web 2.0, making the distinction between “the web as

platform” rather than site, which was more like a publishing channel (2004).

One of the important concepts of Web 2.0 is idea of participation in which

the role of a user is changed from that of a viewer that of an active

participant. User-generated content became a key component driving new

online business models (O'Reilly & Battelle, 2004). From a system point of

view, Web 2.0 refers to a platform that not only allows one way

communication that outputs dynamic media but also takes input from users

for data processing as part of the computational output.

The term openness is associated with the concept of participation, in which

the platform is open for participation and content generation. Writing in

2015, Helmond further articulated the concept of a platform that is

programmable, enabling a participation which extends from end users to

143

developers. She explains:

In order to become a platform, a software program needs to

provide an interface that allows for its (re)programming...[The

web API] makes a website programmable by offering structured

access to its data and functionality and turns it into a platform

that others can build on (Helmond, 2015, p. 35).

Adding detail to the ideas of O’Reilly and Battelle, Helmond argues that API

is an active agent that changes social media from the paradigm of sites to

platforms (2015, p. 35). I extend this discussion by arguing that

participation can be also achieved through a programmable query.

Within the context of the Twitter platform, there is one important note to

make: not all users of accounts in Twitter are human. Rather it is a

combination of the human and nonhuman that constitute individuals or

users. For instance, nonhuman bots are a growing phenomena on the

internet. An example is the twitter bot project called moth generator (2015),

developed by artists Katie Rose Pipkin and Loren Schmidt, which

automatically generates beautiful moth images on Twitter (with the

account: @mothgenerator). These bots are programmed and tweets are

automatically updated without leaving any browsing logs.78 Although no

exact data specifically about nonhuman bots has been released by Twitter,

the company admits that there are about 23 million automated accounts79

that are regarded as active users as of June, 2014 (Seward, 2014, n.p).

Perhaps, the availability of the programmable query can explain why

Twitter has automated accounts, in which bots are programmed through

logics: automatic tweets are posted through the use of Twitter web APIs. In

other words, participation extends from mainly human to a collective of

human and nonhuman agents. What counts as ‘active users’ or ‘individuals’

78 In contrast with a human, a bot does not tweet like a human. A person usually uses a particular
device, using a specific operating system to access an application or browser to look for interested
tweets. As a result, less data can be traced through these bots.
79 There is no specific indication of automated accounts are equal to nonhuman bots, because spam
may be also count into this value.

Executing Unpredictable Queries

144

might also account for this increasing nonhuman participation, performing

automatic query in the realm of web 2.0 platforms.

Such openness, in part, constitutes the unpredictability of tweets. The

notion of unpredictability refers to how Twitter, as a system, cannot predict

input events, such as when the next tweet will arrive, how many characters

it will contain or what the content of the tweet will be (such input events

directly impact the query results). Following Frigg, tweets are regarded as

random behaviours as it is impossible to predict the next one. Certainly,

there are many factors, both internal and external, on both individual and

collective levels that influence such random behaviours. To help explain this

I have grouped the factors into three main categories: individual behaviors,

external events as well as structure and format which are presented in

Figure 3.10 as a conceptual model to explain the random behaviours from

Twitter (random) input.

 Figure 3.10: A conceptual model of Twitter random input

I now discuss these three categories in more detail. Firstly, individual

behaviours more matters that are individually-specific including, but not

limited to, the personality, language practices, typing habits, peer-influence

and emotions at the time of initiating a tweet. Culture clearly influences an

individual’s language practice. For example, someone who grows up in

Denmark is more likely to use Danish to write tweets. Language is a

145

complex subject that is influenced by daily practices and the surrounding

environment and it is also location-specific. People in Northern China and

Southern China, for instance, would speak and write differently. Behaviour

is a highly complex and specialised subject, as it is also related to sociology,

anthropology, psychology, cultural studies, genetic studies and mind studies

where the different and multiple factors that influence human behaviours

are elaborated. In chapter 1, I discussed unpredictable human behaviour in

the context of a live program show (Gadassik, 2010). It is clearly impossible

to analyse all the factors that influence human behaviours but this section

points out that behaviour is a complex subject with multiple influencers,

and it is made even more complicated in this context given that Twitter has

271 million80 active users. Complexity intensifies at each level of interaction

according to different individual behaviours, contexts and experiences.

Secondly, external events, such as catastrophes, might increase the amount

of tweets. This is similar to the television study as discussed in Chapter 1, in

which Doane describes how crises or catastrophes generate a disrupted

routine and argues that this constitutes the understanding of

unpredictability of television (2006). Gadassik also explains that the

interruption of events to a continuous TV programme, such as “economic

crises, tragic accidents, natural disasters, and human casualties” are

something that make television is a live medium (2010, p. 121). Social media

like Twitter also shares this kind of response to external events. However,

one of the differences between social media and television is that the former

is considered to be a more open platform that supports two-way

communication and interactions, allowing participants to respond, hence

generating more usage. Researchers Jessica Li and H.R. Rao trace the

noticeable increase in Twitter usage during the severe earthquake in

Xinhua, China in 2008 (2010). Therefore, external events are one of the

forces that made the tweets unpredictable. Other than catastrophes and

disasters, there are other external events that can drive the traffic of

Twitter data, such as political campaigns, sports competitions and cultural

80 The statistic is based on the Earnings Report in 2Q, 2014 (Seward, 2014, n.p).

Executing Unpredictable Queries

146

activities—presidential elections, the World Cup and the Oscars.

Additionally, many scholarly works demonstrate that social networks have

emergent properties, where certain topics can become pervasive and ‘trend’

over a period of time (Birdsey & Two, 2015). All these external events may

trigger random inputs to the Twitter platform.

Thirdly, the structure and format of Twitter itself shapes the input of tweets

too. It is arguable that the number of retweets, the number of favourite

counts and the tweets that display on a screen would inform and activate

user actions. Artist-researcher Benjamin Grosser has developed a similar

line of inquiry based on the Facebook platform. His artwork Facebook

Demetricator81 (2012-present), a browser add-on hides all numbers on the

Facebook interface, “illuminates how metrics activate the desire for more,

driving users to want more likes, more comments, and more friends.”

Grosser also argues that metrics, such as the number of likes in Facebook,

directly impacts user participation (2014, n.p). Besides, in terms of the

computational logic of Facebook, the post with more likes or comments will

get more visibility on the Facebook interface where lesser metrics would

result in a lower visibility to others (Dredge, 2014, n.p). Furthermore,

Bucher explains that the visibility of feeds on Facebook is calculated based

on “the multiplication of the affinity, weight and time decay scores,” in

which it is subjected to the interaction between users, the popularity and

the freshness of a post (2012b, pp. 4-5). There are complex invisible logics

that govern a post’s structure. Although Twitter does not use exactly the

same logic as Facebook, filtering is implemented in order to show limited

tweets on a screen at a time. The logic of Twitter does not follow a

chronological order in displaying the latest tweets on screen, it is

algorithmically structured (Newton, 2016). Consequently, the positioning

and visibility of a post may also impact individual behaviour, as scholars

from computing and information science, Tad Hogg, Kristina Lerman and

Laura M. Smith, state, “responding to a post is conditioned on seeing it and

being interested in it” (2013, n.p). Therefore, how the content is being

81 See: http://bengrosser.com/projects/facebook-demetricator/

147

structured visually and algorithmically also contributes to the overall input

of tweets.

Apart from the structure and format that is oriented to visibility and end-

users’ interaction, the specification and documentation of a query might also

impact upon developers’ usage as many third-party applications are built

around Twitter. As the founder and president of technology companies,

Peter Gruenbaum, explains, “Good documentation is important in

encouraging and keeping developers interested in your platform as well as

reducing support costs” (2010, n.p). Good documentation includes sample

code and detailed querying approaches, explanation of authentication and

error handling (Gruenbaum, 2010, n.p). With clear specification and

documentation guidelines, there will be more API connections between

third-party applications and Twitter, hence more data contributing to the

Twitter platform.

There are many factors and perspectives that can help to explain Twitter as

a dynamic system. What has been established so far is that there are

different processes involved that drive the random inputs in Twitter. The

three categories discussed are just part of the whole complex assemblage of

the Twitter platform and my focus has been on the input source. For my

purpose here, the dynamic Twitter platform and its random events shed

light on the questions of live queries that are harvested from Twitter as

unpredictable phenomena. Following Frigg’s argument, the unpredictable

occurrence of an event is regarded as random from a systems point of view

(2004, p. 430). Therefore, Twitter is a dynamic system consisting of

unpredictable occurrences of tweets.

Indeed, these are non-linear consequences that are non-reducible to any

individual tweet and, according to the classic ‘butterfly effect,’ the level of

complexity increases with the number of components (see also Chapter 2,

section 2.2.3). This is not, however, simply calculating the sum as greater

than the parts because the central idea of a complex system is emergence,

which is self-organised. Individual components develop a collective and

Executing Unpredictable Queries

148

emergent pattern through their connection and coordination, evolving over

time (Johnson, 2001). As such, if Twitter is to be regarded as a complex

system then emergence is exhibited through multiple dimensions. This is

not a top-down dimension that entirely dictates the input sources and flows

of inter-actions but a bottom-up, a relatively open system that allows

emergent behaviours to develop and evolve from “low-level rules,” structures

and constraints to “high-level sophistication” (Johnson, 2001, p. 18)—a

distributed connection of human and nonhuman inter-actions.

3.4.2 Noise, entropy and randomness

Shifting from the perspective of input sources to the transmission of data,

the tweets, then we can see the letters and images that comprise tweets

broken down into the basic unit for digital communication, namely binary

digit, also known as bits in information theory as introduced by Claude

Shannon in his article A Mathematical Theory of Communication (1948, p.

1). To understand the dynamic processing of a query we may need in turn to

know how data is being processed beneath the tweets as perceptible textual

materials. Following the discussion of information theory, tweets would not

be understood as consisting of the message per se but of binary digits—

signal—where data is being processed. This is more about understanding

how a piece of information is transmitted from a source to a destination

through signals. Shannon’s perspective removes the semantic aspect of a

message, a text or a tweet.

By making a query request to the Twitter platform or receiving the query

output, data passes through a communication system. As suggested by

Shannon, this includes an information source, a transmitter, the channel,

the receiver and the destination (1948, p. 2). Regardless of any

communication system, both discrete and continuous (e.g. digital network

and analogue television respectively), noise is necessarily present as a force

that interferes with the transmission process (see Figure 3.11). Therefore,

the information, logics, structure, and both request and response of query

149

are operated in a sphere of signals, noise and interference.

Figure 3.11: Schematic diagram of a general communication system. Reprinted from “A

Mathematical Theory of Communication”, by C. Shannon, 1948, The Bell System Technical
Journal, 27, 2.

Noise is an active force that perturbs a signal during transmission. “This

means that the received signal is not necessarily the same as that sent out

by the transmitter” (Shannon, 1948, p. 19). Most importantly, according to

Shannon, “[t]he noise is considered to be a chance variable[...]In general it

may be represented by a suitable stochastic process” (1948, p. 19). Scientist

and mathematician Warren Weaver explains further:

If noise is introduced, then the received message contains

certain distortions, certain errors, certain extraneous material,

that would certainly lead one to say that the received message

exhibits, because of the effects of noise, an increased uncertainty

(1949, p. 19).

There is uncertainty on the receiver side which it may contain something

else, added noise, not exactly the same data as that on the sender side.

There is no perfect prediction which can calculate the degree of discrepancy

that is impacted by the force of interference and the resulting noise. What is

known within an information transmission process is that noise increases

the amount of information, whereby the received information at the receiver’

end is not equal to the sender’s side. In other words, “noise introduces error”

during transmission (Shannon, 1948, p. 20). This is also why noise is

Executing Unpredictable Queries

150

normally considered as error, something that is not expected to receive and

that is different from the sender’s signal. Noise is introduced at any point

during any transmission process, including but not limited to the

transmission within and between users’ computer, the Twitter’s servers,

databases and specifically, for Thousand Questions, the machine that inter-

acts with Twitter.

To understand and measure how information is transmitted with noise it is

necessary to turn to the concept of entropy in information theory. The way

information is processed is subjected to “the amount of freedom of choice” in

selecting a message over a channel in bits (Weaver, 1949, p. 4). A selected

message requires translation and transmission as binary digits via a

channel involving memory registers, relays, switches, electronic circuits,

routers and cables. Such a selection of binary digits, the encoded message,

requires taking into consideration that all the digits as a whole constitutes

the amount of freedom, as Weaver explains:

The concept of information applies not to the individual

messages (as the concept of meaning would), but rather to the

situation as a whole, the unit information indicating that in this

situation one has an amount of freedom of choice (1949, p. 4).

However, the choice here is somewhat unpredictable. The relation between

choice and unpredictability is that: “greater freedom of choice, greater

uncertainty, greater information” (Weaver, 1949, p. 8). Weaver drew upon

physical sciences to explain that the amount of freedom of choice is similar

to “the degree of randomness, or of shuffledness” (1949, p. 5, original

emphasis). In the second law of thermodynamics the notion of entropy is

associated with the surrounding of a system like heat, pressure and

temperature, which is arguably similar to the function of noise in

information processing because both are actively changing the behaviour of

a system in a random manner. Considering the amount of freedom of choice

or the degree of randomness in a system, if a system is more ordered or

organised it is then considered as less random and vice versa.

151

Weaver notes that if the “situation is highly organized, it is not

characterized by a large degree of randomness or of choice—that is to say,

the information (or the entropy) is low” (1949, p. 8). Based on the model of

information theory, the discrepancy between the sender’s and receiver’s end

is caused by the forces of interferences and this can be further explained

through the concept of entropy. In addition to input sources of a complex

system, the entropy of channels’ transmission also contributes to the overall

understanding of unpredictability.

Information theory considers messages as binary signals that transmit over

a channel but it is equally important, as it is for the general understanding

of unpredictability, to examine what constitutes signals, its basic form, the

binary value of either 0 or 1, in digital computers. Algorithmic information

theory concerns not only information and randomness but also computation

as well. It concerns a computer program’s size that “determine[s] the

algorithmic information content of a message” (Klaus Mainzer, p. 194). In

other words, algorithmic information theory studies the inherent structure

of data objects. Similar to Shannon’s information theory, both theories are

interested in the notion of randomness beyond the semantic dimension of a

message. Gregory Chaitin, an algorithmic information theorist, investigates

the structure of data randomness that stems from mathematics, binary

digits and computation. He explains, randomness to be “based on the

observation that the information embodied in a random series of numbers

cannot be compressed, or reduced to a more compact form”(Chaitin,

1987/[1975], p. 4, original emphasis). In Figure 3.12, he gave a simple

example to explain the complex concept with two binary strings.

01010101010101010101

01101100110111100010

Figure 3.12: Two binary strings

Clearly, the first one has a pattern and one can describe it in another

manner such as: ten consecutive instances of 01. On the contrary, the second

Executing Unpredictable Queries

152

one is seemingly random and there is no way to describe it except reading

out the whole series. In the context of code instructions, the first sequence

could be written as “Print 01 ten times” and “Print 01101100110111100010”

(Chaitin, 1987/[1975], pp. 4-5). Computationally, there is no way to reduce

the size of the second series, meaning that it contains almost the same

number of bits of information as the first series which can be compressed. As

such, the second series is regarded as random because it is patternless and

cannot be further compressed (Chaitin, 1987/[1975], pp. 4-5). Informed by

Chaitin’s algorithmic information theory, Parisi considers randomness as

follows:

Not arbitrary complexity, but a form of entropic complexity

defined by an infinite amount of data that cannot be contained

by a smaller program. In algorithmic information theory,

something is random if it is algorithmically incompressible or

irreducible (2013, p. 266).

Unpredictability is one of the results of randomness and when we compared

the two series of strings the first one that is less random can be more

predictable because of the repeatable pattern of strings. In other words, the

more random a string, the more unpredictable its sequence.

Understanding the fundamental character of randomness helps to explain

the translation of computer code to machine code, which is essential in any

kind of computer program. In the case of a compiler,82 a software program

invented by pioneer computer programmer Grace Murray Hopper in 1952

called ‘A-0 compiler,’83 the compiler takes the role of translating “machine-

like pseudo-code into machine code” (1955, p. 3). A compiler has the

capability to link pieces together and to instruct “a generator to produce a

specific input routine” (Hopper, 1955, p. 3). All instructions, together with

data, have to be converted to the form of binary digits, both input to and

82 See Hopper (Hopper, 1955).
83 This A-0 compiler was originally written for the UNIVAC | computer, the first commercial business
computer system in the United States.

153

output from a machine, for computation during the process of compilation

(Chaitin, 1987/[1975], p. 6). A compiler is one of the applications of

algorithmic information theory that handles data compression and

optimises machine code (Chaitin, 1987; Dietz & Mattox, 2005; Kistler, 1997).

In the work of Thousand Questions, developed in the Java programming

language and environment called Processing, when a ‘run’ button is pressed

(it means to execute and run the program), it converts source code (also

called sketch) into Java byte code84 that could be processed by any operating

system and computers with a Java Virtual Machine85 (JVM) compiler. This

enables the Java program to run but technically, the compiler executes Java

byte code into native machine code. The process of data compression is

inevitable.

Thousand Questions runs in real time, querying data that flows into the

program from Twitter continuously. The run-time environment handles

different storage locations. Although the size of variables and program

instructions are known in advance, the actual variable (the data) and the

maintenance of a ‘pointer’86 is only known in run-time. This memory storage

organisation requires data to be converted from human understandable

symbols to binary digits, where the machine writes into memory and reads

from stored memory. Such writing and reading activities involve algorithmic

information in which a piece of information (in the form of binary digits) is

encoded in an optimised way (Machta, 1999, p. 1040). Following Chaitin’s

example in understanding randomness in the realm of algorithmic

information, it may be said that randomness is exhibited at the most basic

84 Java byte code is an intermediary between the source code and the machine code. This Java byte
code is converted by an interpreter whereby it can be run on any computer with the Java runtime
environment installed on it. The runtime environment consists of a virtual machine and its
supporting code. See: http://www.codeproject.com/Articles/30422/How-the-Java-Virtual-Machine-
JVM-Works
85 The use of the word virtual refers a machine does not actually exist, but acts like a machine that is
operated based on the computer architecture and functions of a real computer. A JVM is a software
that can process instructions in the form of a certain machine language calls Java byte code.
Thousand Questions is written in Java using the software calls Processing. Running processing sketch
requires Java Run Time, which is also broadly called Java Virtual Machine. JVM is part of the
Processing software package. See:
https://github.com/processing/processing/wiki/Supported%20Platforms.
86 In computer memory organisation, a pointer does not store value, but stores a reference to another
value instead. See Parlante (Parlante, 1999).

Executing Unpredictable Queries

154

level in Thousand Question: the computation of a string of binary digits, of

zeros and ones. From an algorithmic information theory point of view, if the

string of binary digits is patternless it cannot be compressed and is regarded

as random.

Unpredictability is immanent in programming as described by Parisi in

Contagious Architecture (2013). For her, algorithms do not only mean “a set

of finite instructions” (2013, p. 10) but also “are designed to select,

recombine, and mutate data” (2013, p. 272). Therefore, the queried data

from Thousand Questions is what Parisi might describe as “evolving data”—

“able to adapt and to vary unpredictability according to external stimuli”

(2013, p. 10). But this adaptation is endless, because querying data is a

continuous process without a definite end, unless someone stops the

program or the program encounters an error during run-time that blocks its

continuation. Influenced by Chaitin’s algorithmic information theory on

randomness, Parisi argues that “[r]andomness has become the condition of

programming culture” (2013, p. ix) which is the core of computation in

ubiquitous urban infrastructures and technological networks. Randomness

corresponds to infinite volumes of data in contemporary software culture

and the random quantities included in algorithmic decisions that compute

the compression of data in the form of binary digits. Additionally, such a

notion of randomness and infinite volumes of data lead to what Parisi calls

“unpredictable variabilities” (2013, p. 12). The continuous running of query

and the inter-actions of data, databases and software platforms account for

these unpredictable variabilities that go beyond the semantic aspect of data,

and to understand data in a deep, dynamic and structural way.

In their later article, Parisi and M. Beatrice Fazi continue the discussion of

Chaitin’s algorithmic randomness, highlighting the fact that computation is

always unpredictable and computational processing does not always lead to

a “pre-programmed result” (Parisi & Fazi, 2014, p. 118). As Chaitin

demonstrates, the input and output of data can be different with “an

entropic transformation of data,” where the processed output shows

differences from input instructions, that the output is bigger than the input

155

(Parisi & Fazi, 2014, p. 118). This resonates with Shannon’s information

theory in measuring the probabilities of a sender and a receiver’s message

differences within a channel transmission. What counts as unpredictable,

according to Parisi and Fazi (and drawing upon Shannon and Chaitin) is the

“increasing yet unknown quantities of data that characterize information

processing” (2014, p. 118).

Code inter-acts in many different layers of computation. This section shows

that the inter-actions take place at the deep structural level of

communication channel transmission, data compression and compilation.

Instructions are executed and infinite data are processed in the run-time

environment, in which randomness is inscribed at the extreme deep level of

the computation of infinite binary strings. New ‘questions’ are constantly

queried from the Twitter network in the work of Thousand Questions,

transmitting, compressing, computing, writing and reading the binary

strings that generate immanent unpredictable variabilities.

3.4.3 Operators87

This section moves beyond data transmission and data compression,

focusing on a particular process of query execution. At the material level,

and as discussed earlier, a query employs set-like operations to link or to

group data together. In this way, query is about bringing this relation to the

fore. In this section, I discuss how data brings things into relation using the

case of live queries in Thousand Questions. As explained earlier, the

‘SELECT’ command is one of the most frequently used query statements,

therefore, the discussion mainly emphasises data selection and retrieval and

not so much on data update or deletion through code. Such operations and

relations are important to understand how data is returned and inter-acted

with differently, and further unfold the unpredictability of data relations.

87 An earlier version of this section has been published as ‘Interfacing with questions: The
unpredictability of live queries in the work of Thousand Questions’ in the International Conference on
Live Interfaces (Soon, 2016a)

Executing Unpredictable Queries

156

A query is based on various operators that specify a request. Figure 3.13-

3.14 shows the requested query (from Thousand Questions to Twitter) and

the excerpt of the returned query (from Twitter to Thousand Questions)

which was executed on March 16, 2016 respectively. In addition, Figure

3.15-3.16 shows the two queries that had removed the semantic aspect of

data so as to emphasise the mathematical operators that are involved in

query execution.

Figure 3.13: A requested query in Thousand Questions

Figure 3.14: An excerpt of the returned query in Thousand Questions

Figure 3.15: The erasure of the data content of the requested query in Figure 3.10

Figure 3.16: The erasure of the data content of the returned query in Figure 3.11

To explain, most of the frequent operators found are ‘=’, ‘+’ and ‘-’, with the

occasional operator ‘&’ in the returned query (see Figures 3.13 and 3.15).

The ‘=’ operator refers to the list of specified words that are used to

construct the query. In Figure 3.13, the list is more than just a question

mark (this is indicated as %3F—the URL encoding character),88 but a

88 See: https://en.wikipedia.org/wiki/Percent-encoding

157

combination of words and characters that request Twitter to filter specific

words and characters out89 from its database search. For example, if one

wants the returned tweets without any retweeted90 content, then the syntax

‘-RT’ indicates the removal of retweets. In order words, the mathematical

operators can be said to play an important role in the inclusion and

exclusion of data, identifying what data should be grouped together or

otherwise. By having the mandatory parameter of ‘query’ or ‘q’ (as indicated

in Figure 3.13 and 3.14) together with the ‘=’ operator and the list of values

(the words and characters) constitute a query instruction to Twitter.

Additionally, complexity increases by having the ‘+’ and ‘-’ operators which

indicate the additional words to be paid attention to. The operator ‘+’ refers

to adding different words, while the operator ‘-’ refers to removing certain

words. The two seem to contradict each other but function quite differently.

The operator ‘+’ is also used to separate different words, such that Twitter

knows what the words are that it has to pay attention to. Since some of the

words are to be removed from tweets, as per the program design, therefore

the operator ‘-’ is used instead to signal the function of removal. These are

all complying with the query operators that are specified in the Twitter

specification.91 To put simply, a query, such as ‘?+hello+-world’ means to

search for tweets with a question mark and the word ‘hello,’ but remove the

word ‘world.’ The query parameter and the corresponding values are fixed,

meaning that the query is executed with the same requirement and request

logic every time. Although the condition and the operators used are the

same, the result of the query execution events is unpredictable—results are

different and are subjected to what data is available at both the current and

recent moment. Twitter is a relatively open system in a sense there are

always random events that intervene in the output of the result. The

mathematical operators create a relation that is based on the query of

random events.

89 The blurred parts of Figure 3.13and 3.14 are the words about racial slurs, incitements of racism
and sexual violence. In the work of Thousand Questions, we have filtered out a list of these words.
90 Retweet refers to reposting or forwarding of a message. To filter out retweets In Thousand
Questions is to minimize duplicated content.
91 See https://dev.twitter.com/rest/public/search.

Executing Unpredictable Queries

158

There are other influencing factors that also constitute the indexing

algorithm and sorting of Twitter’s database. Although Twitter does not

publish this information92 or its implementation logic, operators arguably,

contribute to the relation and grouping of data. According to Twitter web

API specification,93 if ‘recent tweets’ are requested, Twitter will then return

current data and data from the past seven days. The past seven days logic is

implemented at Twitter side and it is considered as ‘recent’ that mixes with

the current one. Considering ‘seven days’ to be one of the conditions for API

processing, the ‘day’ criteria is part of the algorithmic logic that filters out

which data is stored beyond that. To implement the condition of ‘the past

seven days,’ the machine has no idea what the past seven days means

logically and mathematically unless an instruction states to subtract the

current date. Such subtracted data defines the scope of the date, thereby the

date parameter is within a specific range for query processing on Twitter. As

such, other mathematical operators may also be used to specify certain

criteria. A case in point is relational operators, including ‘==’, ‘>’, ‘<’, ‘!=’, ‘>=’

or ‘<=’ that stand for “equality,” “greater than,” “less than,” “inequality,”

“greater than or equal to,” and “less than or equal to” respectively. They are

called relational operators 94 because there is always a relation—a

comparison—between two entities (Meysenburg, 2014, pp. 44-5). By using

different operators, the algorithm is able to act—exclude, specify and sort

data—in different ways and hence, directly impact what data to process.

The query with the operators is, therefore, a site of control, of restriction.

Indeed, the logic of the ‘past seven days’ is just part of many other

blackboxed criteria that remain unknown to the public. But for any criteria

in a query, using different operators for data selection are inevitable. More

importantly, the same operators bring different data into relation for every

92 We have made a request to Twitter about the handling of Twitter API through Twitter developer
forum, however, according to Twitter they are unable share the implementation logic. See last section
for the dialogues with the Twitter staff.
93 Thousand Questions uses REST API to search for specific data, the recent tweets. See
https://dev.twitter.com/rest/public/search.
94 See https://en.wikipedia.org/wiki/Relational_operator.

159

query execution as in the case of Thousand Questions. While running the

same program pre-programmed query is executed to fetch new data that

matches the stated criteria. Thus, the output data, as mediated by text and

voice, is presented as a snapshot of querying the database of Twitter.

Although the query execution is deterministic for every computer iteration,

there is a “constant injection” (Hayles, 1990, p.159-160) of new data into the

Twitter database that changes the system dynamics.

Hayles observes information is interwoven with technologies and social

landscapes (1990, p. xiii). By drawing upon physicist Robert Shaw, she

discusses a chaotic model in which data is added from an external input as

‘information.’ In physical systems, such external inputs could be thought of

being like heat—something that produces “random fluctuation” (Hayles,

1990, p. 159-60) that constitutes a complex system. In live queries, random

events may be understood as random fluctuations too, in which

fluctuations/events exist at the “microscopic” level that leads to “macroscopic

chaos” (Hayles, 1990, p. 160). Such a specific adaptation of random

fluctuation from physics to social media and an individual tweet is to make

an analogy, adding up all the microscopic events, the constant injection of

new information as tweets effects the macroscopic system. These amplifying

fluctuations reconfigure the processing of data by taking scale into account

resulting in the macroscopic chaos of Twitter as a complex system.

According to Hayles, chaos emphasises that “couplings between levels are

complex and unpredictable.”

One of the important concepts about a chaotic system is its ability to scale

whilst retaining the same properties at all levels. Fractal geometry in

mathematics, for example, demonstrates the complex relationship between

microscopic parts and the whole which share the same algorithms that

generate fractals, the “complex forms characterized by multiple or infinite

levels of self-similarity” (Hayles, 1990, p. 288). This scaling level

demonstrates the incremental difference that “shifts the focus to complex

irregular forms” (Hayles, 1990, p. 210). Each level is inter-related and

together shape the becoming of unanswered queries in Thousand Questions.

Executing Unpredictable Queries

160

Considering how live queries are conceived in terms of fractal geometry

shows that each iteration of query execution shares the same deterministic

properties, such as the operators and requested parameters. Operators bring

data together by restricting and specifying things; hence a new set of

returned data would form a new relation. Yet scaling in query execution

does not mean exactly the same as fractal geometry in physical science, but

rather to expand and take into consideration how the world is represented

at multiple scales. As Hayles too explains, the world “is rich in

unpredictable evolutions, full of complex forms and turbulent flows,

characterized by nonlinear relations between cause and effects, and

fractured into multiple-length scales” (1991, p. 8). This implies that

unpredictable forces are exhibited at multiple scales.

The relation of queried data is temporal. There are many queries executed

in every moment of time, and a query does not necessarily contain a relation

with another query request, yet a particular pool of data only responds to

the specific query request. When executing the same query again (even in a

very short turn around time), another pool of data comes into relation and

that is subjected to the real-time conditions. Live queries comprise operators

that act to establish a data relation through query execution. The

combination of data and its relations are only specific to a particular query

at a moment of time. The results of live queries are therefore something that

cannot be repeatedly generated.

In physical science, fractal geometry for example, we understood the

relationship between chaos and unpredictability where simple deterministic

systems can possibly produce unpredictable results. In contemporary

software culture, live queries of a data stream are conceived as

unpredictable, insofar as data is understood as random events from a

system point of view. Microscopic fluctuations are entangled with

macroscopic chaos, consisting of operators that act upon and beyond a

chaotic system through code inter-actions.

161

Fundamentally, the query’s operators play a key role in manipulating what

is to be seen and heard through the process of specifying, sorting and

excluding data. In the context of social media, user information becomes

increasingly valuable for targeted marketing. In the examples of online

registration it is observed that many fields are set from optional to

mandatory for data collection. A case in point is Rena Bivens’s research on

the Facebook platform, wherein, since 2008, the gender field became

mandatory with only the option of selecting male and female (2015, p. 9). It

was not until 2014 that Facebook introduced over 51 gender options but

these choices are restricted to users in certain countries. With this valuable

data, marketers can formulate targeted marketing strategies and analyse

corresponding users’ behaviours through the act of query execution.

This ‘queer query’ might even have its historical root in loveletters, which

was developed by queer scholars Strachey and Turing (Gaboury, 2013, n.p).

Executing query may be thought of in terms of queering “the nature of

identity” (Barad, 2011, p. 26) through the act of execution. The historical

work loveletters is important in countering stereotypes at that point in time.

It continuously influences other practitioners and projects, such as our

project Thousand Questions which utlises the queer query. In other words,

executing query may be also understood as executing que(e)ries in many

software platforms, which does not only mean to queer gender but also other

parameters, such as occupation, countries of origin, interests and many

others whereby an identity is (re)derived and (re)defined across time.

Mathematical operators, therefore, are considered as an essential part of a

queer query.

3.5 Inexecutable query in closed platforms

As demonstrated in the previous section, by using various operators one can

add more constrains when extracting the data. In handling a query request,

Twitter also needs to process the query through communicating with the

database privately using various operators. The operators encompass

private logics, business decisions and regulations and any forms of query

Executing Unpredictable Queries

162

(both public and private) should, according to Bucher, be understood as “a

management style, a technique for governing the relations it contains”

(2013, n.p). Twitter, like any other social media platform exercises control

through the act of query execution. From a developer’s perspective, there is

no way to reveal the detailed algorithmic logics of the web APIs. It is like a

blackbox, in which Twitter takes in a query request and returns a list of

data whereby the process between the input and output of data query is

rather opaque. Twitter does not publish any source code for its platform, nor

details of its infrastructure, architecture and system. Therefore, there is no

way for developers to participate in and to understand the operations of the

Twitter platform. Although APIs offer the possibility of and accessibility to

data query and Twitter has provided a degree of openness with its

comprehensive guide95 for developers, containing customer service, blogs,

conferences, forum and documentation that facilitate its usage, Twitter

remains a closed platform from the perspective of artists, developers or

researchers.

In contrast to open source platforms, developers cannot participate in

decision making raising concerns about software features and technical

implementation. In addition, one cannot modify the code and create the

software, or the platform, together. Closedness is used here to refer to the

inability to participate, create and modify software under the software

development life cycle. The platform is closed to the extent that “restrictions

are placed on participation in its development, commercialization or use”

(Eisenmann et al., 2008, p. 1). The visibility of the platform is opaque as

there are different types of restrictions, or limitations upon use. According to

the scholar of technology studies, Jenna Burrel, this opaqueness exists

because of “proprietary concerns,” and she explains, “They are closed in

order to maintain competitive advantage and/or to keep a few steps ahead of

adversaries” (Burrell, 2016, p. 3). This is also how professor of information

studies, Christopher M. Kelty, describes a closed system as more a

proprietary system (Kelty, 2008, p. 143). Giant proprietary platforms,

95 See https://dev.twitter.com/

163

Twitter and Facebook for example, host enormous amounts of public data

but how they manipulate, process and present this data to us is highly

closed.

In Thousand Questions the query requests 50 tweets that are regarded as

‘recent,’ the only condition that is transparent is the period of ‘the past seven

days.’ Imagining tweets are intensively stored and updated, what kind of

tweets have higher priority than other available tweets that are also stored

within the past seven days? What are the decisions that influence the

priority? The closed nature of the system makes it impossible to know the

answers to these and similar questions. Given that there are many

applications, today research and analysis relies on these platforms as they,

in some respects, “organize and model the future” (Day cited in Bucher,

2013, n.p) and this closedness has an important implication. The ecology of

software is manipulated by big players and power is indeed centralised, as

such, and according to Bucher, the “potentiality or openness towards the

future is highly controlled” (2013).

For query data developers have to fully comply with all the standards and

specifications even though there are many changes over time that impact

upon those artworks and industry apps that require the Twitter web API to

function. Thousand Questions is one such artefacts. To put it simply, if the

web API is changed, upgraded or terminated Thousand Questions will cease

to function and so too will other works that rely on Twitter.

In fact we can observe many similar software update cases in contemporary

culture as, for instance, new updates of operating systems, applications,

servers and databases to name a few. A company usually supports legacy

software for a certain period of time but ultimately it has to be made

obsolete. The operating system Windows 95 is a case in point. It was

released in 1995 by Microsoft but the corresponding support ended in 2001

("Windows 95," 2001). Similarly a particular format of a web API can be

made obsolete in time. In the case of Twitter, it once had a major change of

the web API from v1 to ver1.1 in 2013, providing a 6-month grace period.

Executing Unpredictable Queries

164

The new version aimed to fully replace the old one (Espinha et al., 2014, p.

88). Thousand Questions was developed in 2012, initially using v1 but after

2013 it was changed to ver1.1 for its second public exhibition. Without

knowing the API retirement plans it came as a surprise to experience that

the artwork did not perform as expected. If Thousand Questions were not

upgraded to use the web API ver1.1 the query would not be executed.

Using an old and obsolete version of the web API meant that the syntax and

logic were outdated. Any thing wrong (in logic or syntax) would result in

errors and hence the whole program would stop. In the context of live

queries, disruptions thus can be thought of inexecutability—the

malfunctioning of queries and this requires articulating in relation to

closedness and controlling beyond the technical. In the previous chapter, the

notion of disruption has been discussed through Gadassik’s ‘bodily

disruption’ (2010, p. 129) and Doane’s disruption of continuity as the forces

of deadness. In addition to that, inexecutability is more politically and

culturally oriented within a closed system, where control is exercised

through the entanglement of humans and nonhumans resulting in the

unpredictability of the inexecutable. Unlike the unexpected catastrophes

and other external events, disruption can be a centralised and planned

decision where the unpredictable disruption is experienced through running

the query object which will not work as expected. It appears as a technical

problem with errors encountered but requires a more complex

understanding of the notion of inexecutability.

Although unpredictable machine behaviour is encountered when errors

occur at a particular moment, it can be further articulated across time.

Within the specific situation of software updates, there are new features

that come with the new patch while at the same time, some past features

are made obsolete. This implies the possibility for forthcoming disruptions.

Therefore any upgrade or update includes not only the debut of new features

but also the obsolete past and the inexecutable future. The inexecutable

query is conditioned by the new update and this is a relational change. The

change is related to the past features, syntax and policies. Features cannot

165

be just understood as pure technical enhancement but rather as indicators

of the change of the companies’ direction, its business decisions, market

forces and technological infrastructure. As such, inexecutability should be

understood beyond the technical as forces which include a social and

political dimension.

To elaborate further in support of my argument regarding the social-

political aspects of inexecutability we have to examine the change of the

Twitter web API from 2012 (ver1) to 2013 (ver1.1). The change of API,

according to Twitter, includes more rigorous authentication procedures, a

lower rate limit and stricter developer rules. These are all measures for

better tracking and more control that align with the company’s overall

direction.96 As verified by media studies scholar Robert W. Gehl, “Twitter

once had a very open API,” allowing anyone to easily access its data but the

policy has changed since 2012 (2015, n.p). In addition, by using the Twitter

API, one agrees to the terms of services which restrict97 the development of

third party applications (Gehl, 2015, n.p). Considering “code is law”(Lessig,

2006, p. 5), such measures serve to regulate query processing which is

implemented at the level of code. The upgrade is not necessarily a means of

offering more advanced features, it can be perceived as a disruption because

it operates at high levels of unpredictability, uncontrollability and

unknowability across time in which a query is made inexecutable.

In 2015, the Netherlands-based artist duo, Esther Polak and Ivan Van

Bekkum (also known as PolakVanBekkum), developed a project called

Techno Mourning.98 It is a video that was made directly using Google Earth,

documenting 3D graphics made using the Google Earth API but at the same

time announcing that the project would be no longer functioning by 2016.

96 First of all, Twitter requires knowing who accesses and uses the query. Second, a rate limit is
imposed to “prevent abuse of Twitter’s resources”. Finally, consistent experience is something Twitter
wants to ensure. See https://blog.twitter.com/2012/changes-coming-in-version-11-of-the-twitter-api
97 This refers to Robert W. Gehl’s article that shows Twitter’s intention behind the upgrade of API,
which is to centralize their content (2015, n.p). The new policy of having an “API key” is to keep track
of the third party applications’ development.
98 See: http://www.250miles.net/techno-mourning/

Executing Unpredictable Queries

166

Google had announced the deprecation99 of its Google Earth API as early as

December 12, 2014. After this time it did not upgrade anything and the

announcement literally states that the API would “shut down” in 2016

(Google, 2016). There would be no alternative or upgraded solution to

develop any 3D rendered artefacts that are based on Google Earth—the

virtual globe, map and geographical information program.

PolakVanBekkum also documents the list of artistic projects that require

the Google Earth API to function. In the way the artist group raises

awareness of the ever-changing technological landscape, where things can

be stopped at any time and there is no promise of everlasting and workable

digital projects. There are relations and entanglements in the practice of

software and one cannot see digital objects as something standalone,

sustainable or even static.

Similarly, the artwork Net.Art Generator, mentioned in this and the earlier

chapter, could not escape from this notion of inexecutability. Sollfrank,

explains how the whole program of Net.Art Generator has stopped

functioning because of the sudden and seamless change of the Google search

query (personal communication, October 28, 2015). She did not receive any

announcement from Google in advance about the change and has put up a

webpage stating that the work “is currently not operational” (see Figure

3.17). From the artworks that have been mentioned, there are different

decisions that are inscribed at the code level, insofar as the user, developer

and artist have no way to participate in the development process of web

APIs. Therefore, the notion of inexecutable query is also a critique to closed

and proprietary platforms that centralised its decision-making in a black

box.

99 See https://developers.google.com/earth/

167

Figure 3.17: A screen shot of the error page of Net.Art Generator (1997) that was captured

on January 14th, 2016. Retrieved from http://nag.iap.de/

The inexecutable query does not simply mean it is malfunctioning. Instead,

it describes non-neutral code that is inscribed with different business logics,

political decisions and software practices. The inexecutable query impacts

different software (art) practices that require coping with changes of code,

formats and policies as performative effects (see Mackenzie’s discussion in

Chapter 2.2.2). The art projects mentioned above are just two examples of

many other software projects that rely on third-party APIs. Moreover, the

notion of inexecutability allows for critical attention and reflection on the

dynamic qualities and unpredictable consequences of technology, Berry

reminds us “to stop thinking about the digital as something static and

object-like and instead consider its trajectories” (2014, p. 1). In other words,

things are constantly changing in contemporary software culture. Query is

just one of the many digital objects that emphasise this point. Interestingly,

Twitter suggests one has to be looking for change proactively, as it is written

on its development site:

The Twitter platform is constantly evolving and there is

frequent change. If you have an integration that’s no longer

working, be sure and review the [different Twitter supporting

sites] (Twitter, n.d).

Executing Unpredictable Queries

168

From theoretical understandings to industry practices, we are always being

reminded of the dynamics of code and the possibility of inexecution.

Seemingly what makes digital objects live is not the disruptive moment

where things do not function and queries are inexecutable but rather it is

the possibility of inexecution at any time in contemporary (update) culture.

In other words, unpredictable forces are entangled with live queries.

Beyond the possibility of inexecution, it is worth noting that even when a

query is technically well structured, there is still unpredictable force upon

its realisation. Software studies scholar Federica Frabetti traces the

development of software engineering in the 1970s where industrial

production schedule usually lagged behind an estimated plan. Drawing on

the work of Fred Brooks, who was a project manager in IBM, Frabetti

explains that programmers found it impossible to estimate the

unpredictable consequences of change and calculate the possible

consequences of software development (2015, p. 103). She identifies a gap

between “conception” and “realization” in which software is a product as an

ideal concept. However, software is also a “process” of software development

that requires the understanding of system consistency (Frabetti, 2015, p.

104-5), alluding to encountering of wider assemblages that enable a piece of

software to run. Most importantly, in many situations problems “are hard to

detect in the test laboratory” and it is not until something is realised in a

“real environment” that software performs in an unexpected way, as the

actual situations cannot be simulated fully in the lab (Frabetti, 2015, p.

118). Such a situation is unpredictable and it is difficult to predict all the

cases from designing the concept to implementing the software. Frabetti

argues that software is predictable—what she calls “predictability fail”—

where it fails predictably “in unpredictable ways” (2015, p. 114).

Following Frabetti’s notion of software realisation in a real environment,

queries also perform in unpredictable ways. Things might be operating

intrinsically and unnoticeably beyond human perception as, for example,

169

with micro-time execution. When five queries are run 100 in a real

environment sequentially, all having the same query statement

(requirements and parameters from Thousand Questions), the execution

time that Twitter reports back is different: 0.246s, 0.092s, 0.085s, 0.074s

and 0.315s. The real environment of query execution is indeed distributed

and networked, yet it is also highly unpredictable. One of the reasons for the

micro-time differences may be due to many other queries running at the

same time and Twitter is dynamically updating the database from end users

input to many queries’ execution simultaneously. Many other issues, from

hardware and software to data traffic, impact the actual performance of

Twitter. The realisation of data query constitutes the unpredictability of

execution insofar there is no way to predict the actual performance of code

execution.

In conclusion, this chapter has investigated the unpredictability of queries

by analysing Twitter as a complex platform and the corresponding API that

is operatively and technically used in Thousand Questions. The reflexive

coding approach demonstrates how code inter-acts unpredictably at multiple

scales from the dynamic Twitter platform, to the noise, entropy and

randomness in digital processing, to the data processing of mathematical

operators and to the realisation of query execution. Executing queries is a

cultural practice that is widely used in both artistic projects and industrial

applications in contemporary software culture. By paying attention to

execution this chapter has also articulated the possibility of what I call

inexecutable query—that is not only technically inexecutable but which also

exhibits social and political forces that are inscribed at the level of code.

For the argument of this thesis liveness can be understood through this

material account of unpredictability. Examining this vector through

Wardrip-Fruin’s notion of unpredictable manifestation, this chapter expands

the concept by considering technological platforms and networks, as well as

deep data structure and query processing. It demonstrates the entangled

100 The tests were conducted on March 23, 2016, between 11:45-12:00.

Executing Unpredictable Queries

170

inter-actions between code, data, databases and transmission processes with

a specific focus on openness and closedness of the Twitter system. It argues

that there are different forces that constitute the notion of unpredictability,

in which executing queries unfolds some of the complexities of code inter-

actions, exposing both the technical and cultural relationships of live

queries. The next chapter will continue to investigate live processes,

exploring another vector of liveness—micro-temporality—that is also

essential to understand the entanglements of contemporary software culture

at multiple scales.

171

Notes on Reflexive Coding Practice

3.6 Thousand Questions

Figure 3.18: Thousand Questions (2012-2016)

172

By contrast to “hypothesis-led” practice, the artwork Thousand Questions is made using a

“discovery-led” process. This means that the creation process, in part, is based on the

intuition and interest of the artist (Borgdorff, 2011, p. 56). With a background in

information systems, I have always been interested in the process of data scraping,

querying and extraction. Therefore, when I first experienced the artwork Listening Post (as

discussed in Chapter 1) and understood its collection of large amounts of online data that

is updated in real-time, I was drawn into the data scaping and extraction processes that

were configured in the background. A dialogue with one of the artists, Mark Hansen,

revealed the not too surprising fact that Listening Post was designed in the pre-API era (see

below email communication).

hi

the piece was designed in a time pre-api's and pre-rssfeeds. then we

scraped bulletin boards (fetching html programmatically and parsing out the

content) and spidered irc networks. again, the piece was designed before

the era of web services...

M.

(M. Hansen, personal communication, July 6, 2011)

Recognising the offering of APIs is a common practice in the industry, I wondered how

APIs could efficiently process data that use a different approach from Listening Post. My

previous experience and knowledge in information processing and database management

influenced the subject matter—data query—of this chapter. Borgdoff’s reflexive practice

has been useful to me in understanding more about how to account for such influences,

in particular his discussion of artists’ tacit knowledge. He says,

the artist’s tacit understandings and her accumulated experience, expertise

and sensitivity in exploring uncharted territory are more crucial in

identifying challenges and solutions than an ability to delimit the study and

put research questions into words at an early stage (Borgdorff, 2011, p. 56).

Therefore, my tacit knowledge, experience and understanding of data processing also

influence the direction and process of artefact that I produce. This is a self-reflexive

process because the inquiry process, in part, “is directed by personal interest and creative

173

insight” (Sullivan, 2010, p. 110). The focus on data querying became the subject of

interest through which to explore the notion of liveness in the work of Thousand

Questions.

Through the process of creating Thousand Questions, I became dedicated to researching

and investigating how APIs operate and to thinking through why this has become a

cultural practice through many platforms and technology service providers have offered

their APIs. According to Borgdorff, a creation process contributes to what we ‘know’ and

‘understand’ (2011, p. 54) and it is similar to artist Natalie Jeremijenko description of how

“we think with things” (Hertz, 2012). In other words, experimenting and investigating

APIs allows me to think in wider computational ecologies and understand how APIs are

operated, such as how they are offered by companies, used by developers and

communicated between code and machines. Some of the thinking and understanding has

been synthesised and expressed in the earlier sections of this written thesis.

Thousand Questions was first developed in 2012, in collaboration with British artist

Helen Pritchard, exploring the notion of liveness as the first project as part of this thesis

development. It was first exhibited in Microwave International New Media Arts Festival in

Hong Kong (see Figure 3.19).

Figure 3.19: Thousand Questions in Hong Kong (2012)

174

Extending Sullivan’s discussion on using the method of visual strategies in reflexive

practice (2010, p. 108), the first installation was presented with an audio arrangement,

containing a series of Bluetooth headphones that through which visitors hear the

installation speak the tweets. This multiple arrangement of audio devices embodied

meanings, allowing the mix of the live and archived tweets to enter the gallery. Reflecting

on the employment of this audio strategy, I noted that it was a way of ‘thinking with

things,’ in this case data and headphones arrangement, to question the distinction

between live and recycled data, and that it informed my understanding of liveness in

digital media as opposed to other media forms such as television.

While the work was executed in the gallery, it underwent reflexive cycle of processes that

involve creation and critique. According to Sullivan, an artwork’s structure embeds

various dimensions of theory, in particular to the dimension of theory: Create-Critique,

alluding to “theoretical interests are investigated through a cycle of processes involving

creating and critiquing” (Sullivan, 2010, p. 106). In the exhibition, two headphones were

connected to live queries to create new audio tweets that mixed with the other archived

data that were presented through the remaining headphones. In addition to the creation

of tweets, the work also involved a critique on the possible “illusion of liveness” in digital

media (McPherson, 2006, p. 202). Even though live queries were executed in real-time in

the gallery space, this was a mere recycling of data that was framed as live. This recycling

of data pointed at both the live and archived tweets that were mediatised in an audio

form. Therefore, the artwork Thousand Questions encompasses Sullivan’s understanding

of the Create-Critique dimension (2010, p. 106) through running and executing code in

which the creation and critique were held together simultaneously.

Back then in 2012, I was still examining the notion of liveness in relation to the

immersive and bodily experience of how an audience may feel live. This was inspired by

the artwork Listening Post as well as by my textual analysis of different perspectives on

liveness (see Chapter 1, sections 1.1 and 1.3). Therefore, in addition to the arrangement

of headphones, my collaborator and I employed an audio strategy by which the

synthesised voice (text-to-speech) was made to speak with special audio effects such as

‘Detune’ and ‘Reverb’ with the help of the software called AudioHijack (see Figure 3.20).

175

Figure 3.20: Audio effects in Thousand Questions (2012)

At the first public exhibition of Thousand Questions we considered both human and

nonhuman activities to explore how a query is performed in real-time. This is reflected in

the first version of our artist statement:

The network asks us ‘If I wrote you a love letter would you write back? (and

thousands of other questions) in this work. Computational code draws

thousands of questions from online matter into the exhibition space. The

questions are gathered in real-time from the social media site Twitter and

encoded to speech. Listening is a form of decoding, and in this work the

machine constantly undergoes the process of editing, encoding and

decoding texts. What happens when written texts of the network are

converted to speech? How does it feel to listen to the questions of a

machine, when these questions are our familiar tweets?

The computerised voice the audience hears is a collective one, one of both

the human, non-human and distributed. The audio stream frames (if only for

a moment) the chaos of matter in the network as the activity of ‘query’ is

176

performed across a collective of humans and non-humans.

The sequence of questions is open to change by audience’s actions. As

headphones are picked up and replaced, a new sequence of texts is created

- blurring the space between the live and archived text, the linear and the

chaotic.

Like the love letters appeared mysteriously on the noticeboards of

Manchester University’s Computer Department in the 1950’s. These

questions continuously evolve as the machine performs the questions

(perhaps an expanded Turing test) to its listeners (Soon & Pritchard, 2012a).

The last paragraph hinted at the link with the earlier work of Strachey, LoveLetters, and

this has became the starting point for writing this chapter. Through researching the work

LoveLetters, my interest shifted from generative algorithms and linguistic combinations to

questioning the dynamics of Thousand Questions, further it has extended to the

distributed network environment.

Through developing the subsequent chapters of this thesis, and as a result of taking up

different opportunities to present the work again, we decided to get rid of the special

audio effects and simply use the computerised voice as we felt it was distracting for the

audience by to focus on the mediatised immersive audio effects. This decision was also

influenced by more thorough research that shifted my focus on liveness from the

perspective of audience experience to nonhuman inter-actions. This is similar to when

Bordorff suggests: “Contexts are constitutive factors” in art practice (in this case is coding

practice). He continues: “Artworks and artistic actions acquire their meaning in

interchange with relevant environments” (Borgdorff, 2011, p. 54). In reponse to the

change of context and following our new inspirations, we developed the latest version

using both visual and audio strategies, most notably an additional visual component that

demonstrated the waiting of a query, putting the focus of the artwork back on the process

of data querying. By taking this approach the work unfolds the unpredictabilty of data

query in itself in a way that is more apparent. These changes of strategies and settings

demonstrate the reflexive practitioner’s ability to question and review the situation,

context and approach (Sullivan, 2010, p. 110).

Additionally I split the sentences into individual characters with the aim of de-

177

emphasising the linguistic part of the returned query. The resulting visual presentation

allowed the audience to experience some sense of the questions without really knowing

the meaning of the combinations of characters. Our intention was that the newly

configured version may offer a space to speculate on the process of data query. The

overall process of using different strategies and changing the direction of the artwork

through working with materials and coding is, therefore, an example of reflexive practice.

Technically, Thousand Questions was written in Processing, a Java-based open source

software. It utilised an external library called Twitter4J101 to communicate with Twitter

through the Twitter API. The project has been tested, running on Processing ver. 1.5-3.1

with Twitter4J ver. 3.05. The artwork also utilised the text-to-speech feature from the

native Apple Operating System (requires version 10.7 or above) with a particular

Australian woman’s voice, Karen. Since the project requires querying data from Twitter

an Internet connection is required throughout the whole installation.

With regard to the visual design and logic of Thousand Questions, we used a particular

nostalgic font type called ‘MorePerfectDOSVGA’ to simulate, and reference, the old

command line operating system environment, presenting a minimalistic interface for

speculation on the process of data querying. The work first starts with the posting of a

query request to Twitter, going through the process of authentication and selection of

data. Based on the data the program filters tweets, excluding additional spaces and

special symbols like ‘@’ sign and ‘http’ for showing anonymous tweets and removing

URLs. Following this the tweets are further split into single characters and displayed on a

screen. Finally the program calls Apple’s text-to-speech function and vocalises the

unanswered queries as tweets one by one. This cycle loops without an end as such.

The sample queried questions are shown below:

 1. If I wrote you a love letter would you write back?

 2. Do you believe we'll ever find ourselves in this position again?

 3. Utterly freezing sitting in my wet swimsuit. Why do I do this to myself?

 4. If you could do anything this weekend, but would need to be back at work
Monday morning ready to go, what would you do?

101 See: http://twitter4j.org/en/index.ht

178

 5. The Importance of a Positive Work Environment: Are you excited to go to
work everyday?

 6. Ben! What in the world happened?

Figure 3.21: A conceptual stage, the flow chart, of Thousand Questions in 2012

Figure 3.22: An excerpt from Thousand Questions’ source code: Setting up variables and

screen show, and establishing Twitter connection

179

Figure 3.23: An excerpt from Thousand Questions’ source code: Querying Twitter data

Figure 3.24: An excerpt from Thousand Questions’ source code: Splitting tweets into
individual characters

180

Figure 3.25: An excerpt from Thousand Questions’ source code: Processing text-to-speech

Figure 3.26: An excerpt from Thousand Questions’ log: The feedback process

Over the years, this project been developed into different versions. The work was first

created and exhibited in 2012 but it changed over time in response to different contexts

and due to the slightly different questions asked over the years (changes are not only in

the presentation format but also the written code itself). More importantly, the changing

technological landscape also forced us to update and implemented the code differently.

Again, this demonstrates the process of reflexivity. The change of the code and the

environment around the work suggested to us that there are different ways to understand

the phenomena of liveness in new ways (Sullivan, 2010, p. 110). The artwork utilises the

Twitter API but there was once a major update by Twitter that made the work

inexecutable. This is illustrative of a further question around the relationship between

liveness and inexecutability. The way that the piece exhibited the notion of liveness

through inexecutability suggests that we may need to think differently about the notion of

liveness or that we may need to think simultaneously about liveness and deadness. This

informed how the notion of inexecutable query has been developed within the chapter

relating to it. According to Sullivan, having the capacity to open up further dialogues and

debates is an important part of reflexive practice (2010, p. 110).

181

This section also includes the documentation of the creation process which is in a form

beyond scholarly writing and is considered as an important part of reflexive practice.

Documentation can demonstrate how decisions are made with artistic reaonsings as well

as how the results are achieved (Borgdorff, 2011, p. 58). A blog102 was setup in 2012 to

document the process of conceptual development and technical exploration as well as

my reflections over time. The screen shot in Figure 3.27 only shows an overview of the

posts but each contains a more lengthy text. These blog posts are part of my research field

journals and document, for example, different trials of text-to-speech libraries, reflections

on the live presentation of the work as well as the exploration of the meaning of live data

and real-time technology. Some of these have been synthesised for the sake of presenting

more detailed discussion within the relevant chapters of this thesis. Figure 3.28 shows a

mapping sketch on the Twitter platform and the thoughts on the Twitter API.

Figure 3.27: The notes of Thousand Questions in 2012, retrieved from:
http://www.siusoon.net/dat/category/projects/2012thousandquestions/

102 See: http://www.siusoon.net/dat/category/projects/2012thousandquestions/

182

Figure 3.28: The notes of Thousand Questions in 2016, retrieved from:
http://www.siusoon.net/dat/category/projects/2012thousandquestions/

In addition to the documentation through handwritten notes and blog posts, code

comments were made during each “iterative trial” (Berry, 2011, 2014) for major releases.

Code comments are integrated as part of the program of Thousand Questions, written in a

grey color as shown in Figure 3.29. This special note area lists the technical parameters,

outstanding actions and tested notes which document the requirements, priorities,

decisions and fine-tuning of logics, bug fixes and many other factors.

183

Figure 3.29: An Excerpt from Thousand Questions’ source code: General notes

Furthermore, I have also conducted some experiments to understand data query on

different platforms, OpenWeatherMap.org, for example, has been discussed earlier in the

chapter. Figure 3.30 shows the returned query from the platform. This experiment has

informed my understanding of how json works at the level of programming as well as

data structure that is operated as a document. As discussed in Chapter 2, my

methodology involves “experimental system” (Borgdorff, 2014, p. 113) that acts as a

means of inquiry to reach out for things that are not yet known. Trying out queries that

are offered by various platforms offer a deeper understanding on the materials that

facilitates the thinking and research process.

Figure 3.30: An excerpt of a returned query from OpenWeatherMap.org

While I was undertaking this research project I began to want to know more about the

process behind the REST API that is offered by Twitter and questioned whether some

kinds of random sampling have been implemented. This conforms to the discovery-led

process, and speaking of it Borgdorff draws attention to the possibility of encountering

“some unexpected issues or surprising questions” during the discovery (2011, p. 56).

Working as a reflexive practitioner and being sensitive to the investigative materials, it

was essential to know how the returned tweets were indexed through the Twitter

platform. Therefore I went to the site and contacted Twitter’s developers for help. My

184

dialogue with Twitter’s staff is documented in the excerpt below103:

My question on 26 Feb 2016:

I know that streaming API is using random sampling, what about Search

API?

As search API is extracted tweets from last 7 days (include the day of

making queries i believe), therefore returned tweets are in combination of

current and past. However, as it returned 100 tweets per time max, what’s

the logic behind to pick the 100 tweets? Will it count duplicate from

previous request? Has it implement random function to get the tweets from

the data bank?

My follow up question on 27 Feb 2016:

For optimization: I am interested to know what do Twitter means by

optimization, what's the logic behind. How to calculate the relevance -

base on no of favorite counts or other machine learning algorithm?

For the 100 returned tweets, I wonder if there is max limit for the "more

page". (but due to the rules setup by twitter, every extra page is count for 1

request, and there is a rate limit) But it seems that if i made the request

within a short timeframe, the returned 100 tweets with different results. May

be i should made a simultaneous request to understand more the logic.

However, I am thinking if there is randomness and extra logic built in.

Twitter Staff wrote back on 27 Feb 2016:

Unfortunately we are not able to share the details behind the

implementation here.

(A. Piper, personal communication, February 27, 2016)

103 See: https://twittercommunity.com/t/random-sampling-in-search-api/62115

185

This unexpected dialogue (both my questions to and the response from Twitter) informs

my dicussion on the closedness of social media platforms and is articulated within the

chapter earlier.

In short, this section shows how the work Thousand Questions developed and evolved

during the past 4 years through my use of what I call reflexive coding practice.

Simultaneously, I have explained how the practice has also informed and enriched the

chapter’s content. In summary, this project emphasises the running of live processes as

part of the work in itself, executing unpredictable queries.

186

187

4

Executing Micro-temporal Streams

Loading webpages, waiting for social media feeds and streaming videos and

content are mundane activities in contemporary culture. Such mundane

activity includes the involvement of network-connected devices from fixed

desktop computers to portable tablets and smart watches, all involving data

transmission and distribution across multiple sites—referred to as data. In

these scenarios, data is constantly perceived as a stream (Berry, 2011, 2012,

2013; Chatzichristodoulou, 2012; Fuller, 2003), indicating its characteristics

of vast volume, speed of update, continuous flow and delivery. The concept of

streams now characterises the internet rather than web pages (Berry, 2011,

p. 143). Data streams indicate events that are regarded as the latest and

instantaneous versions. The now that we experience through perceptible

streams is entangled with computational logic.

From social media feeds to playback video and mobile applications, users

usually encounter a distinctive spinning icon during the loading, waiting

and streaming of data content. This spinning icon represents an unstable

streaming of the now. A graphical animation known as throbber indicates to

users that something is loading and in-progress, but nothing more. A similar

yet very different form of process indicator, such as a progress bar,

expresses even more information than a throbber. In contrast to a progress

bar, which is more linear in form, a throbber does not indicate any

completed or finished status and progress. It does not explain any

processual tasks in any specific detail. Previously such computer operations

were commonly explained in conjunction with the use of a progress bar

instead, as for example, with statements about the transferring and copying

of specific files and directories, or illustrating installation procedures. A

throbber usually appears in a graphical format, sometimes only with the

additional word ‘loading.’ With a throbber, all that is presented is a spinning

Executing Micro-temporal Streams

188

icon, perceived as repeatedly spinning under constant speed as well as

hinting at invisible background activities for an indeterminate and

unforeseeable timespan. If one looks up the dictionary definition of the verb

‘throb’,104 it is defined as a strong and regular pulse rhythm that resonates

with a throbber’s design and in regards to how it performs on the internet

today. But such design can be seen as an over-simplification of the micro-

operations of networked technology, making one believe that the network is

working with a certain regularity and that all data are queuing, thus

rendering how we perceive liveness in superficial form.

Although a throbber is normally expressed in a graphical format, the

underlying processes are specifically technical and operational. This chapter

is informed by reflexive coding practice through reading, coding and creating

a new throbber to inform my understanding of the computational logics

behind a running throbber. This is explored with and through an

experimental project titled The Spinning Wheel of Life (2016).105 It suggests

a different engagement and possibility of seeing this notable icon and

understanding its related background activities. I employ the method of

“cold gazing” (Ernst, 2013b), as explained in Chapter 2, and coding practice

to reflexively examine the deep internal and material structure of data

buffering and data processing. This chapter and the associated project open

up the cultural and computational logics of data streams which are

constantly rendering the pervasive and networked conditions of liveness.

As demonstrated in Chapter 1, the perspective of temporality is important

in the general discussion of liveness and real-time, in particular, is essential

when it comes to the notion of data streams. The notion of real-time

concerns micro-time that might not be humanly perceptible (which is

different from the concept of real-time in media studies as demonstrated in

Chapter 1), insofar as real-time is operated through many micro-processes

104 See: http://www.oxforddictionaries.com/definition/english/throb
105 The project was first shown as a prototype at Malmö University as part of a workshop and
masterclass on Execution in 2016 and it will be developed further for presentation at
Transmediale2017 as part of a book launch event. See:
http://softwarestudies.projects.cavi.au.dk/index.php/Exe0.1_Winnie_Soon

189

that characterise a data stream. This chapter106 establishes a link between

liveness and temporality in contemporary software culture, with specific

attention to micro-time and micro-processes. In the following, I will

illustrate how a cultural and technical reading and understanding of an

abstracted form of the throbber allows an examination of data streams. It

will first unfold a cultural reading of a throbber and continue with a

detailed discussion and analysis of the underlying operative and technical

processes. Examining these processes may shed light on the understanding

of liveness in contemporary software culture. The final section will discuss

the project The Spinning Wheel of Life in detail.

4.1 A cultural reading of a throbber

With its distinct design characteristic of a spinning behaviour hinting at

background processing, the throbber icon acts as an interface between

computational processes and visual communication. One of the earliest uses

of the throbber can be found in the menu bar of a Mosaic web browser from

the early 1990s which was developed by the National Center for

Supercomputing Applications (NCSA), with the browser interface designed

by scientist Colleen Bushell (Albers, 1996; Roebuck, 2011, pp. 348-9). This

throbber107 contains a letter ‘S’ and a globe that spins when loading a web

page. This kind of spinning throbber, with the company’s graphical logo, can

also be witnessed in subsequent software browsers (see Figure 4.1). While

the throbber spins it visually indicates actions are in progress. These

actions, from a user point of view, could be interpreted as the loading of web

data or connecting to a website by a software browser. From a technical

perspective it involves internet data transmission and a browser that

renders the inter-actions of code. The spinning behaviour stops when a

webpage has finished loading within a browser. A web browser is software

106 This chapter is developed through a series of seminars and workshops, with the theme of
‘Execution’ during 2015-2016, organised by Critical Software Thing. Earlier versions of this chapter
have been published in ISEA2016 Conference Proceedings (Soon, 2016b) and forthcoming book
chapter in Executing Practices (2017) (Soon, 2017). See:
http://softwarestudies.projects.cavi.au.dk/index.php/CriticalSoftwareThing
107 The Mosaic throbber also allows user to click on it to stop loading a webpage (Roebuck, 2011, p.
348).

Executing Micro-temporal Streams

190

able to render and display requested content, making network calls and

requests and storing data locally (Garsiel & Irish, 2011). In this respect, the

spinning throbber represents complex inter-actions of code under network

conditions. A throbber, with its spinning characteristic, can therefore be said

to be rooted in, and specific to, internet culture.

Figure 4.1: Throbber in different browsers. The specific browsers’ image are taken from
Computer History Museum,108 soft32109 and FavBrowser.com110

More recently the throbber icon is no longer only attached to software

browsers, appearing also on different web and mobile applications including

social media platforms in particular. The contemporary throbber transforms

into a spinning wheel111 that consists of lines or circles that are arranged in

radial and circular form, moving in a clockwise direction. A throbber is

mostly produced in the format of an animation, loading each frame one by

one as most of the throbbers that we experience have been preconfigured

during the development of the software. The visual logic of the throbber

image relies on other functions112 that have been implemented in the source

code. In other words, the actual handling of data does not have a direct

relation with how the throbber is animated. Therefore a throbber is

animated and spun, or throbbed, at a constant rate, demonstrating a regular

108 See: http://www.computerhistory.org/atchm/happy-25th-birthday-to-the-world-wide-web/
109 See: http://netscape-communicator.soft32.com/
110 See: http://www.favbrowser.com/the-history-of-internet-explorer/
111 The use of lines that indicates the progress activity of a computer can be found in the early
operating system of Unix that consists of few string characters as ‘[’, ‘—’, ‘\’, ‘|’, ‘/’, ‘]’ (Roebuck, 2011,
p. 349). This is also used in the cover image of this thesis. The last section of this chapter also
documents a Unix Shell script of a throbber.
112 For example, a function handles the loading of an image or video, or a network connection in the
form of code. A throbber is made to appear when a program is still waiting for the content to load fully
or a network connection to establish successfully.

191

tempo. Each individual element of the wheel113 sequentially fades in and out

repeatedly to create a sense of animated motion (see Figure 4.2). These

spinning wheels appear after a user has triggered an action such as swiping

a screen with feeds in order to request the updated information. They also

appear after a user has confirmed an online payment or is waiting for a

transaction to complete. Perhaps most commonly of all a throbber is seen

when a user cannot watch a video clip loading smoothly over an internet

connection. As a result an animated throbber appears as a spinning wheel

on a black colour background occupying the whole video screen while the

video is buffering.

Figure 4.2: Throbber in the form of circles and lines. Image is retrieved from

http://designmodo.com/css3-jquery-loading-animations.

A throbber represents the speed of network traffic which is also tied to our

affective states and perception of time. Emotionally it can be annoying and

frustrating to encounter buffering as it involves interruption (Broida, 2010,

July 14; Stelter, 2011). Things do not flow smoothly and users become

impatient when waiting for an unknown period of time or for something yet

to come. Taiwanese artist Lai Chih-Sheng exhibited his throbber animation,

titled Instant(2013),114 in the Hong Kong Eslite Gallery with a minimalistic

113 Coincidently, the visual design of a throbber is similar to the design of early wristwatches (with
crystal guards) that were made for soldiers in World War I. Both include the concept of a wheel in the
form of circles or lines of petal shape. See: http://www.oobject.com/category/earliest-wrist-watches/
114 See:

Executing Micro-temporal Streams

192

presentation, expressing the relationship between waiting and time. This

waiting is considered unproductive in that it consumes time. As artist-

researcher James Charlton describes it: “It is a gaze that goes beyond the

screen to an event not yet here” (2014, p. 171). The loading time of the

throbber appears wasted and unproductive as it is often associated with the

perception of slowness of a network.

On September 10th in 2014 a campaign called “Internet Slowdown day”115

was launched as part of the ‘Battle for the Net’ promoting net neutrality and

internet freedom. Customised loading icons similar to throbber were put up

on different websites symbolising the potential impact of controlled traffic

that would be implemented by Internet Service Providers in the name of

increasing profit. The campaign argues for internet speed equality across all

websites and that no unequal conditions, such as fast-lane traffic, should be

given to any prioritised website. More than 10,000 corporations such as

Etsy, Kickstarter, Netflix, tumblr and Vimeo, showed support by putting up

self-designed throbber icons. As is evident in this context the throbber has a

significant and symbolic meaning within cultural and political realms.

In contemporary art this cultural icon was remade by artist Aristarkh

Chernyshev, who showed the spinning behaviour through customised LEDs

in a physical installation. The LEDs formulated the word ‘LOADING,’

circulating in a motion directly reminiscent of a spinning throbber.

Chernyshev’s artwork LOADING (2007)116 aimed to present this icon and its

data exchange process as a cultural phenomena, with the cultural icon of the

throbber117 here expressing various dimensions of time—from the loading

time of a browser to the regular tempo of a spinning throbber, to the

https://www.facebook.com/ESLITE.PROJECTONE/photos/?tab=album&album_id=437623016346200
115 For more details, see: https://www.battleforthenet.com/sept10th/
116 See: https://festivalenter.wordpress.com/2009/04/09/electroboutique-by-alexei-shulgin-roman-
minaev-aristarkh-chernyshev/
117 Other artists have also explored the throbber icon. For example artist Gordan Savičić explores the
perception of time through his work Loading, that turns an ordinary windowpane into a screen.
Additionally, Fedora’s artwork team produces a series of throbber images that put emphasis on the
design of spinning.
See: http://www.yugo.at/processing/?what=loading and
https://fedoraproject.org/wiki/Artwork/ArtTeamProjects/Fedora7Remix/Rhgb/Throbber

193

slowness of internet network—in understanding data streams.

All the instances above suggest that the smoothness of network traffic is

important as it relates to user experience, time perception and the

productivity of waiting through daily instances. When watching data

streams we may expect things would flow in a timely, smooth and

continuous fashion that constitutes the notion of liveness. It might be

similar to television liveness in which there is a constant flow of “discrete

segments” (Ellis, 1992/[1982], p. 112) as well as a flow of connection. This

flow of connection means a constant unfolding of reality (Feuer, 1983), or

“alive view” (Health & Skirrow, 1977, p. 54), of the world—a connection

between the viewer and the outside world.

The concept of flow was theorised by media studies scholar Raymond

Williams in 1974, in which the programming of content, one programme

after another, implies continuity to hold their viewers (1974, pp. 80-4). This

concept of flow is fundamental to television studies, suggesting that the

technology of television involves institutional plans of programming, the

delivery of mediatised representation as well as the viewer experience

thereof. As Williams puts it, “[the] phenomenon of planned flow, is then

perhaps the defining characteristic of broadcasting, simultaneously as a

technology and as a cultural form” (1974, p. 80). Even though there is

interruption, what Williams calls the “natural break” of the advertisement

in television, its arrangement is a planned flow with the number of breaks

and the corresponding duration as part of the overall television production

(1974, pp. 90-3). Therefore, television technology consists of a relatively

continuous and steady flow of programming which constitutes the

immediacy effect, or liveness, that is brought to viewers by the flow of

content.

Media studies scholars Stephen Heath and Gillian Skirrow further discuss

the temporal dimension of flow in the television context. They argue that a

live television programme alludes to an equivalence between creation and

transmission, viewing time and time of event (Health & Skirrow, 1977, p.

Executing Micro-temporal Streams

194

53). The organisation of different times maintained the immediacy of a

television programme through the experience of flow. As they summarise:

The immediacy effect is supported by the experience of flow: like

the world, television never stops, is continuous. Programs,

however, organise times within that flow; within the context of

the overall definition of television as ‘live’ and on the maintained

basis of ‘immediacy’ (Health & Skirrow, 1977, p. 54).

However, in the context of digital streams in which the experience of

immediacy is concerned, a data stream is organised through computational

time with different micro-processes that exhibit highly unstable temporality

instead. The interruption of a data stream, such as buffering process that

manifests in the form of a throbber, cannot be planned (as with television)

insofar as it is subjected to its technical conditions at any moment of time.

Additionally, the immediacy of a stream’s narration cannot be simply

understood as a planned sequential flow or as discrete segments of

programmes. The discreteness of streams is not characterised by content but

rather, as I propose in this chapter, by the very nature of digital and

computational processing.

The throbber is widely seen and used in cultural practices but most people

in everyday life do not want to see a throbber on their screens as it

represents slowness and interruption. Application providers present a near

perfect connection in which data flows smoothly as streams, or a stream is

“fully synchronized”118 with ‘excellent’ performance. Arguably the notion of

stream or flow that has been cultivated perhaps makes us forget and become

unaware of the materiality of digital networks. The material nature of the

network exhibits something that is unpredictable, unstable and

discontinuous, which is beyond seemingly ‘natural’ breaks and beyond

118 A press release from Logitech promised the web camera was a product that would “ensure people
experience fully synchronized, high-quality video and audio communications over the Internet” by
working closely with Skype. See: http://ir.logitech.com/all-featured-press-releases/press-release-
details/2005/Logitech-and-Skype-Team-up-on-Video-Logitech-to-Provide-Skype-Certified-Webcams-
and-Headsets/default.aspx

195

visible and apparent interruptions. Beyond different cultural instances

however, the operative and technical dimensions of a running throbber

should not be underestimated, as they can provide a specific perspective for

further understanding how the experience of liveness is being organised

computationally as streams.

In taking into consideration the operative and technical perspectives of

network transmission, media and cultural studies scholar Florian Sprenger

argues that the concept of a stream or a flow is a metaphor. He says:

The network structure of today’s communication channels and of

their information stream is often understood as providing a

direct connection between users and services or between two

communication partners, even though there cannot be any direct

connections on digital networks. The metaphor of the flow

conceals the fact that, technically, what is taking place is quite

the opposite. There is no stream in digital networks (Sprenger,

2015, pp. 88-9).

Sprenger highlights the possible misconception of a flow or a stream,

suggesting that there is a gap between the experienced and operative

streams. He reminds us that two widely used concepts—flow and stream—

in digital media are metaphors that potentially mislead anyone looking to

understand the actual technical processes that take place beneath a stream.

In the following section I develop the notion of ‘discontinuous micro-

temporality’ as a way to rethink the notion of flow and stream beyond and

beneath its continuous immediate experience in networked environments.

4.2 Micro-temporal analysis

Micro-temporality focuses on the detailed processes of computation.

Drawing upon Ernst’s notion of “micro-temporality,” the focus of such

approaches is on the nature and operation of signals and communications,

Executing Micro-temporal Streams

196

mathematics, digital computation and dynamic network events within deep

internal and operational structures (2013b, pp. 186-9). The added prefix

‘micro’ addresses the micro-operative processes that are not apparent to the

immediate human register.

Following Foucault, Ernst’s notion of micro-temporality draws on the

concept of discontinuity (2006). In Foucault, discontinuity offers an

alternative perspective to understanding knowledge beyond its stable form

of narration and representation (1972, p. 3). Both Foucault and Ernst use

discontinuity as a means to examine the gaps, silences and ruptures of

things that go beyond signs or representational discourses. The notion of

liveness, as demonstrated in Chapter 1, is examined through a perspective

of temporality that constructs a sense of liveness and immediacy with real-

time technology. However, the focus on (micro-)temporality in this section is

intended open up the notion of liveness, shifting gradually from a discursive

to a non-discursive discussion of data streams that underlies deep

processual micro-temporality.

To bring together concepts of discontinuity and micro-temporality is to offer

an alternative perspective in examining the conditions of liveness beyond a

planetary scale. Streams can be understood as highly capitalised and as

operating at massive scales under the contemporary conditions of a

globalised economy that is disseminates to every part of the world. In the

words of philosopher Peter Osborne, contemporaneity “is primarily a global

or a planetary fiction” (2013, 26). Alternatively, the notion of discontinuous

micro-temporality highlights the micro-processes and gaps in a stream that

are manifested within the newest presence-oriented feeds and their regular

interruptions by a throbber. The concept of discontinuous micro-temporality

extends our understanding of a seemingly smooth stream and a steady

temporal throbber.

Through his micro-temporal analysis media studies scholar Shintaro

Miyazaki argues that there is rhythmical quality to algorithms (2012). This,

in part, informs an understanding of a throbber beyond a regular tempo.

197

Logically, a throbber is displayed when data is being received, loaded and

buffered beyond an acceptable threshold of latency. Once it is below an

acceptable threshold, content will be shown in lieu of an animated throbber.

Micro-temporality, in the context of streams, can be understood as the

variation and latency of data processing. In order to express the rhythms

and differences of networked data traffic, I have made a throbber with lines

of code that are able to display varying speeds (see Figure 4.3). In Figure

4.3, lines 16 and 25 are the major code syntax that controls the speed of each

display of an ellipse.

Figure 4.3: A code-based throbber

Instead of using an animated image, I have written code to describe all the

visual elements of a throbber, such as position, circles/shapes, colours and

rotations, exploring whether there is a possibility for a throbber to perform

in a different way and questioning why it has to be displayed in a regular

tempo. It is also similar to how Rolling Jr would describe as a “thought

experiment” in which artistic research is developed through “thinking in a

Executing Micro-temporal Streams

198

material,” “thinking through a context” and “thinking reflexively” (2014, pp.

162-3). Such thinking in, and through, code offers the possibility of

regarding the throbber in new ways as well as the ways in which the

production of artworks can inform the research findings (this project is

further developed into an artwork I will discuss later).

To further understand the operational logic behind a throbber, I began to

investigate how data is transmitted through and within the machine and its

networked architecture, taking a techno-engineering perspective to

understand how things operate at an epistemic level. In particular, I engage

with engineering concepts such as socket networking, buffering, buffer

playback, TCP/IP protocol, streaming protocol and packet-switching that are

essential to understand the operative and technical processing of streams.

The following four sections offer an analysis of digital signal processing,

data packets and network protocols, buffer and buffering that lead to the

absence of data.

4.2.1 Digital Signal Processing

As opposed to the continuous-time signals of analogue systems, the digital

adopts the model of discrete-time with independent variables in signal

processing. This model means that each discrete state is countable and

measurable according to a distinct value and can be represented by a

sequence of numbers (Kumar, 2015, pp. 3-5). However, the signals are

discrete in time, alluding to the value between two discrete-time instances is

not defined (see Figure 4.4). Therefore, the flow of data that we experience

through a screen is discrete in its nature. Within digital signal processing

the data stream is discontinuous (discrete) in terms of its time signal.

199

Figure 4.4: Discrete time signals. Reprinted from Digital Signal Processing (p. 18), by A. A.

Kumar, 2015, Delhi: PHI Learning Private Limited. Copyright 2015 by PHI Learning
Private Limited.

Inside a computer machine a processor’s clock119 fundamentally coordinates

the instruction and the processing of data in the form of binary signals. The

clock signal is expressed in a square wave of a clock circuit (see Figure 4.5)

driven by an oscillating signal that is produced by a quartz crystal oscillator

(Burrell, 2004, p. 75). A clock cycle refers to the amount of time between two

pulses of an oscillator and, as indicated in Figure 4.5 the signal changes

from 0 to 1 and then back to 0. Computational time is different from human

time as it has its own rhythm and unit that is beyond human perception.

With the advancement of technology the processing speed of a computer has

been enormously accelerated. In modern 21st Century processors the clock

rate is usually measured in Megahertz (MHz) or Gigahertz (GHz), which

refers to a clock cycle or clock tick. For example, a clock speed of 5 GHz

allows the computer to process 5 thousand million clock cycles/ticks per

second. To run the program in Figure 4.3, for example, it takes less than two

seconds because a computer can run more than an instruction per second.

119 Thanks to Brian House who first introduces the concept of computer clock in the exe0.1 workshop.
See: http://softwarestudies.projects.cavi.au.dk/index.php/Exe0.1_Brian_House

Executing Micro-temporal Streams

200

Figure 4.5: The clock cycle. Reprinted from Fundamentals of Computer Architecture (p. 75),

by M. Burrell, 2004, New York: Palsgrave Macmillan. Copyright 2004 by Palgrave
Macmillan.

Following the von Neumann architecture that was first initiated in 1945,

mathematician and physicist John von Neumann designed a computer

architecture consisting of a processing unit that contained an arithmetic

logic unit, a control unit and a memory unit for performing arithmetical

operations, operational sequence control and data and instruction storage.

This is also known as a stored-program computer. These units are

coordinated by a central clock (von Neumann, 1945, pp. 1-2), executing

computer instructions in a precise manner.

The appearance and disappearance of a throbber is rendered by code,

instructing when a throbber should be displayed on a screen. However,

computer instruction is more than source code. In computer science and

engineering the Fetch-Execute cycle is used to describe how a Central

Processing Unit (CPU) performs code instructions through a series of steps

that are executed within clock cycles (Burrell, 2004, p. 135; Frabetti, 2015,

p. 153). A simple calculation like ‘5+6’ includes further micro-instructions

such as the copying of the memory location, the storing of the instruction

and the individual values of 5 and 6 (in bits pattern format), calculating the

sum of the values and writing the calculated result (cf. Louden & Lambert,

2012, pp. 4-5). The high level instruction breaks into many micro-

instructions by fetching and executing values from and in the memory

space. The micro-instructions are highly ordered. For example, the values of

5 and 6 must be stored before they can be retrieved for the next process. The

201

instruction pointer (also known as program counter) is used to keep track of

the instruction sequence. This pointer is incremented after fetching an

instruction and storing the memory address of the next instruction to be

executed. The computer will continue repeating the cycles which fetch

instructions and data from memory and then execute them one after

another in sequence until the final instruction is reached (see also Frabetti,

2015, pp. 150-9; Snodgrass, 2017, in press). This cyclic process of fetching

and execution is coordinated by the clock in which one fetch cycle might take

more than one clock cycle to complete. The time to finish one fetch cycle is

measured in clock cycles. In short, executing code instructions involves the

reading and writing of memory (memory is used here in a broad sense that

includes the main computer memory, instruction register and memory

buffer register, etc.), generating a sequence of micro-operational steps and

the actual computation. The appearance or disappearance of a throbber on a

screen is not an exception. All of the code instructions are operated across

on/off states, generally known as ‘flip-flops’ and at the level of the quartz-

crystal circuit via logic gates used to store and control data flow.

Underneath a throbber is the inter-action of data, source code, micro-

instructions and many other entities. The reading and writing of memory is

one of the key operations that take place in the CPU. Since the CPU

involves multiple units, there are many components involved in the process

of a fetch-execute cycle. The clock determines the access of memory.

Referring to Figure 4.5, the writing of values in the internal memory can

only be done on a clock edge, either the rising or the falling edge. The

oscillating time between 0 to 1 or 1 to 0 is significantly small when it is

compared to the whole clock cycle. According to computer scientists David A.

Patterson and John L. Hennessy, this is called “an edge-triggered clocking

methodology,” alluding to “any values stored in a sequential logic element

are updated only on a clock edge” (2007, p. 290). In other words, the micro-

temporality of instructions is driven by the internal clock as there are things

that have to be done exactly at a specific time. However, what is important

is that if the memory is not properly stored within a designated clock cycle

“garbage data” (Hyde, 2004, p. 154) will be read instead, causing system

Executing Micro-temporal Streams

202

failure.

This mismatch between writing and reading is an important concept in

understanding what is occurring behind a running throbber. Imagine a

smartphone waiting for a video stream such that the data can be stored in

the computer’s buffer memory for viewing. If the data cannot arrive and

write on the memory on time it is possible that the CPU will read garbage

data. Since there is the logic of buffering as manifested in a throbber display

(the detailed logic of buffering will be discussed in a later section), this

minimises the reading of garbage data. This section starts to introduce the

micro-operations that are happening within a machine. The signal

processing suggests that streams operate in the digital nature of discrete

signals. Importantly, the machine clock forms a basic infrastructural

activity of contemporary technology, organising and maintaining the

sequences and components of computation that are essential in performing

operational tasks through micro-instructions.

Such micro-processes are extremely difficult to perceive as they involve

hidden processes. Just because their micro-temporality falls beneath the

threshold of human sensory perception does not mean that they are

unimportant. Invisibility, as discussed in Chapter 2, is one of the key

concepts in understanding computational culture that is always in process

with us. From mundane computational interfaces to sophisticated platforms,

invisible processes are intertwined with wider cultural forces. This micro-

perspective allows us to be attentive to how time is structured and organised

computationally and differently. Precisely, it considers how computational

time makes critical decisions to determine the operation of things (the case

of clock edges for instance). Therefore, micro-temporality is also about

considering time-critical120 processes. As Ernst puts it, “[time-criticality

refers] to a special class of events where exact timing and the temporal

momentum is decisive for the processes to take place and succeed at all”

120 Ernst discusses the time-critical perspective within micro temporal media, where he argues that
this is different from time-based media. This time-critical perspective is more focused on the
operational and technomathmetical media to understand our culture beyond narration (2013a).

203

(2013a, original emphasis). This section begins to unfold the micro-processes

of computation to understand the temporal dynamic nature of technical

media. The next section will continue to focus on this subject but will discuss

technological network transmission that is the core of a stream’s delivery.

4.2.2 Data packets and Network protocols

A close reading of the Transmission Protocol Specification (RFC 793) and

cold gazing of network traffic help to explicate the micro-temporality of data

packets and network protocols. I have used an open source network packet

analyzer, software called WireShark,121 that monitors and captures network

packets.122 It is able to capture numerous packet information. For my

experiment I used WireShark to monitor a YouTube video. YouTube

implements media streaming technology to deliver a playback video file. A

56 second video clip, for instance, generates a total of 2757 packets that are

captured by WireShark. It is important to highlight that packets are not

delivered in a single instance of time but spread across multiple timeframes

that are barely noticeable123 to the human eyes. This is also why there is a

need to use WireShark to capture all these micro timeframes for a detailed

analysis. In addition, the experiment emphasises the mechanism of TCP/IP

and its data flow processes which are time-critical because they relate to

how data transfers operate geopolitically and are constrained by structures,

infrastructures and “micro-decisions” (Sprenger, 2015) along a transmission

process.

In the late 1960s, ARPANET, the world’s first packet switching network was

introduced laying the groundwork which led to the development of the

internet as it has developed today. The concept of ‘packet switching’ was

fundamental to understanding how data is organised and flows. A data

stream was chopped into smaller blocks as ‘packets,’ which were then sent

121 WireShark is an open source software available for Windows and Unix platform. See:
https://www.wireshark.org/
122 See the last chapter for more detailed steps.
123 The time as indicted in the WireShark was measured in microseconds.

Executing Micro-temporal Streams

204

via a communications channel in and through different routes, rates and

sequences, known as packet switching (Baran, 2002). According to Baran,

one of the inventors of the packet switched computer network, real-time

connections between sender (transmitting end) and user (receiving end) are

an illusion. Instead a sufficiently fast data rate gives only a sense of real-

time connection between a sender and receiver. Fundamentally, the routing

of a data packet transmits through different sites. Although a selected path

is based on “adaptive learning of past traffic,” there are real-time decisions

that have to be made to locate the shortest path124 due to the dynamics of

network conditions. In other words, data travels “via highly circuitous paths

that could not be determined in advance” (Baran, 2002, pp. 43-4).

The Internet includes TCP/IP (Transmission Control Protocol/Internet

Protocol), which are currently the major protocols for networked data

transmission and entail the massive distribution of data over real-time

connections. The internet backbone stems from these protocols. According to

Galloway, protocols are specific technical standards that consist of “a set of

recommendations and rules” (2004, pp. 5-6). Most data streams are

transmitted via a TCP/IP connection, ensuring a reliable delivery through

two major processes: a 3-way ‘handshake’ and ‘fragmentation’ (Galloway,

2004, pp. 40-2; Postel, 1981b). Generally, establishing a communication

channel between two connection points requires the handshaking process

(see Figure 4.6). The data packet is based on a sequence of numbers and

computational logic (i.e. checksum) to reassemble and reformulate the

sequence as the original sender’s message (this is called fragmentation)

(Galloway, 2004, p. 45).

Figure 4.6: Three-way handshake. Reprinted From Protocols (p. 43), by A. Galloway, 2004,

Cambridge, Massachusetts, London: The MIT Press. Copyright 2004 by The MIT Press.

124 For more details about the determination of the shortest path, see (Meinel & Sack, 2013, pp. 350-2)

205

A timer is implemented in the protocols of TCP/IP, maintaining a reliable

connection by keeping track of packets that are transmitted within a certain

time interval. It is an active agent that is implemented across any TCP/IP

connection where a stream is operated, in particular to control the processes

of network establishment and data transmission between a sender and

receiver. Throughout the whole process of data packet transmission, a timer

is set to wait for the return of an “acknowledgement” (referred to as ‘ACK’)

from the corresponding side and “If the ACK is not received within a

timeout interval, the data is retransmitted” (Postel, 1981b, p. 4). As such,

there are always time-checking mechanisms implemented at the level of

network protocol. Therefore, one of the important features of a timer is,

according to Jonathan Postel, the editor of the RFC 793, “[t]o govern the

flow of data between TCPs” (1981b, p. 9)

In addition to a timer, there are different waiting times as expressed in a

series of states of a connection lifetime: ‘LISTEN,’ ‘SYN-SENT,’ ‘SYN-

RECEIVED,’ ‘ESTABLISHED,’ ‘FIN-WAIT1,’ ‘FIN-WAIT2,’ ‘CLOSE-WAIT,’

‘CLOSING,’ ‘LAST-ACK,’ ‘TIME-WAIT’ and ‘CLOSED.’ Most of these states

refer to different waiting times for things to be processed: for example,

waiting for a connection request, matching a connection, confirming a

connection and terminating a connection request. These states will change

before and after certain actions. Using the three-way handshake as an

example (see Figure 4.7), if a client computer connects to a particular

YouTube video link and requests to view the content a ‘SYNC’ request is

sent from A (a client) to B (a server, Youtube) and the connection state at A

is changed from ‘LISTEN’ to ‘SYNC-SENT.’ While B receives the request it

will respond to A with both ‘SYNC’ and ‘ACK’ status in a message and the

connection state for B is changed from ‘LISTEN’ to ‘SYN-RECEIVED.’

Finally A has to respond with an ‘ACK’ status again and then the connection

state is now changed from ‘SYNC-SENT’ to ‘ESTABLISHED.’ When B

receives the message from A the state changes from ‘SYNC-RECEIVED’ to

‘ESTABLISHED.’ The state of ‘ESTABLISHED’ is regarded as “the normal

state for the data transfer phase of the connection” (Postel, 1981b, p. 21).

Executing Micro-temporal Streams

206

The actual content, video for instance, is technically called ‘application data

and can only be delivered in this state. This is the actual implementation of

the three-way handshake process: first to synchronize (with a ‘SYNC’

request), then to acknowledge the receipt of this (with a ‘SYNC’ and ‘ACK’

respond) and finally returning the acknowledgement status (with an ‘ACK’).

This process acts as a base, an established connection, and can be thought of

a trust relationship that can be built upon to allow further data exchange.

This relationship is expressed in human language, such as the greeting

messages, ‘Client Hello’ and ‘Server Hello,’ as indicated in Figure 4.8. The

timer implementation is important in building this trust relationship

because every state change is required to be done at a certain time interval.

This ‘ESTABLISHED’ state is time-critical, whether the application data

can be delivered and received is essentially subject to the prerequisite of this

state and streaming is no exception, where further exchange can be built

upon on the basis of a trust relationship.

Figure 4.7: Data packet analysis I - the screen shot highlights the three-way handshake

207

Figure 4.8: Data packet analysis II - the screen shot highlights the
two greeting messages

Beyond the micro-time dimension, packets are also spread across spaces. As

Sprenger highlights in his earlier quote, “there cannot be any direct

connections on digital networks” (2015, pp. 88-9). This implies that an

actual network connection has more than two parties beyond the sender and

receiver. According to the Protocol specifications (RFC 793 and RFC 791),

there is a field called ‘Time to Live’ (TTL) that limits the lifespan of data

within a connection (Postel, 1981a, p. 14; 1981b, p. 51). Between

transmissions from both ends it is made up of multiple ‘hops’ and a hop

refers to the following,

the leg of a route from one end system to the nearest switching

computer, or between two adjacent switching computers, or from

the switching computer to a connected end system (Meinel &

Sack, 2013 p. 451).

Therefore, data packet routing means that a connection between a sender

and receiver contains multiple switching computers and a route is made up

of multiple hops. TTL is defined as the number of hops that a packet has to

pass through before reaching its destination. This also means that if a

Executing Micro-temporal Streams

208

packet passes through more than a defined number of hops the packet is

discarded, alluding to the time to die as opposed to live. Therefore each

packet has its own lifespan and its own state of life or death. The idea

behind having the TTL field is to prevent any instances of endless

circulating of data packets within the network.

TTL is also indicated in the video streaming experiment (see Figure 4.9).

The usual default value of TTL is 64 and the packet has travelled via 6

switching computers so as to reach the destination (where the value is

indicated as 58 in Figure 4.9). For each switching computer, when it receives

a data packet with a TTL value that is greater than 2, it will pass to the

next and produce the decrement of 1 from the TTL value. A new TTL value

is then sent to the next one. When a switching computer receives a data

packet with a TTL value of 1, it means that the data packet has died. This is

a form of checking mechanism to ensure the message will not route

endlessly. The switching computer (usually in the form of a router) will

inform the original sender if the value has exceeded the range. A forwarding

machine will send back the message to the previous node as

‘ICMP_TTL_TIME_EXCEED.’ Then the previous machine will traverse with

the message ‘ICMP_DEST_UNREACH’ together with the code

‘ICMP_TIME_EXCEED.’ In this backward route each hop will increase the

value of TTL by 1 and send to the destination (the original sender) (Rosen,

2014, p. 37). The checking mechanism and the decision of backward routing

are monitored and executed in real-time.

209

 Figure 4.9: Data packet analysis III - the screen shot highlights the field ‘Time to Live’ for
the data packet that transverses from the Youtube server to a local client computer.

This real-time execution is similar to what Chun describes within the

context of hardware and software systems in which computation responds to

the live conditions. She says,

hard and software real-time systems are subject to a ‘real-time’

constraint—that is, they need to respond, in a forced duration, to

actions predefined as events. The measure of real time, in

computer systems, is its reaction to the live—its liveness (Chun,

2008b, p. 316).

The notion of liveness can be understood as the decisions and reactions that

are required to execute beneath various real-time constraints. From the

timer implementation in protocols to TTL handling, Chun’s notion of real-

time constraints is further extended to technological networks, the complex

connection between machines across distributed space. The example of the

timer and the field TTL highlight the timely responses, transmission and

decisions mechanism within a temporal network. To Chun, liveness is

expressed at the temporal level in which a system is required to react and

Executing Micro-temporal Streams

210

respond according to its user input and output. In the case of technological

networks however, the response may not include direct human intervention

and machines take charge of decisions in real-time and respond in a forced

duration. The liveness of a networked system has to be understood through

its micro-temporality. The micro-temporality of a stream involves decisions,

as well as interruptions, in real-time. Every decision, the routing decision

via multiple hops for example, takes time. Decisions are made not only in

real-time but also at micro-temporal intervals. Therefore, every decision

made within protocols can be thought of as a micro-interruption instead.

The interruption of a transmission process is further elaborated in

Sprenger’s notion of ‘micro-decisions.’ Through the analysis of TTL the role

of the protocol is not simply to route and transmit data but it also computes,

makes decisions and performs actions according to the value and logic that

take place in real-time. As Sprenger puts it,

[there are] constant temporal interruptions, during which

decisions are made about the further transmission of packets,

and it situates the very stability of the network in these

interruptions (2015, p. 86).

He highlights the fact that micro-decisions are made through temporal

interruptions. This also implies the notion of that real-time, as we are able

to understand it, is “never instantaneous” and data is not transmitted via

multiple hops simultaneously. Each individual switching computer, situated

in different continents, takes part in fulfilling the goal of information

reaching the same destination. However, these micro-decisions also

“interrupt the stream of data in order to control its distribution” (Sprenger,

2015, p. 19). One of the characteristics of such micro-decisions is their

effectiveness, insofar as the mechanism is placed and decisions are made

automatically without human monitoring or intervention. Importantly, as

Sprenger remarks,

political and economic considerations have been made in the

211

background to these micro-decisions, because the technical

development of digital networks starts with their

implementation (2015, p. 20).

These micro-decisions are important to make data transmission possible.

Although these are made beyond the human sensory perception, Sprenger

reminds us that the so-called real-time transmission is always interrupted

even if only a nanosecond of time is required. Therefore, the notion of a real-

time connection is never the same as having an instant and direct contact to

the connected world (Sprenger, 2015, p. 21). Such a connection is not a

direct one between A to B but involves other inter-actions, such as switching

computers, which are spatial as well as temporal. These are the active

agents of a connection that can decide whether a packet is to live or to die.

In other words, there are no streams that flow in a smooth and one-way

direction, rather there are unplanned micro-interruptions in multiple, or

even backward, directions within a network connection. When taking into

account the technical details of network architecture and considering the

micro-temporality of so-called streams, I argue that the notion of liveness

and interruption cannot be separated and there is a coupling of the living

and the dead forces. The experience of liveness consists of micro-

interruptions that are not apparent to us. Consequently, the inter-actions of

code execute decisions and produce micro-interruptions that engender the

immanent live experience of watching a stream.

4.2.3 Buffer and Buffering

Further to the understanding of the nature of digital signal processing, the

fundamental component of clock cycle and the protocols of network

transmission, this section focuses on the buffer to elaborate the time-critical

matter of buffering, the time when one sees a throbber on a screen.

A buffer is understood as a temporal storage that usually stores a small

amount of data in physical memory. Code is required to instruct the

Executing Micro-temporal Streams

212

temporary storage of data. As demonstrated in the previous section, every

packet segment that is sent via protocols requires the receipt of an

acknowledgment, allowing the sender side to know which packet segment

has been successfully delivered. This is also a major part of a reliable

protocol, meaning the protocol “must recover from data that is damaged,

lost, duplicated, or delivered out of order by the Internet communication

system” (Postel, 1981b, p. 4). Within a robust data flow control in protocols,

the process of fragmentation with the checksum function that is inscribed in

data packets makes it possible to reformulate a correct sequence that makes

sense of the perceived content. This assembling process involves the use of a

temporary buffer. Baran explains as follows:

On the transmitting end, the functions include chopping the

data stream into packets, adding housekeeping information and

end-to-end error control information to the out-going packets.

On the receiving end, each multiplexing station uses

terminating buffers temporarily assigned to each end addressee

to unscramble the order of the arrived packets, and buffer them

so that they come out as an error-free stream, only slightly but

not noticeably delayed (2002, p. 46).

What is interesting here is the barely noticeable delay time that gives the

perception and illusion of a stream. A number of questions arise. How does

the protocol synchronise such a delay so that things become unnoticeable?

What is flow control (or the end-to-end error control) and how does it enable

reliable housekeeping, as in a sense of packets coming out as an error-free

stream even though there is packet damage, information which is lost,

duplicated or out of order? How do these perpetual and invisible ruptures in

packets enable us to conceive of a stream of discontinuity but not a

perception of continuity? What is the role of the temporary buffer and its

read/write logic, leading to an inscribed stream? Ultimately, what makes the

buffer temporal and produces differences and how does it inter-act?

To address these questions, an investigation of the flow control in TCP

213

architecture is necessary. One of the characteristics of a flow control is that

it regulates the amount of data to be sent for each transmission through the

concept of the ‘Siding Window Protocol Mechanism.’ Window size refers to

the buffer size capacity that indicates the maximum amount of data that

can be buffered. This requires notification to a receiver. The sender then can

only send the amount of data within the indicated window size. The value of

the window size should be decreased every time a new segment of the packet

arrives at the receiver. When the value drops to zero it means that the

receiver’s buffer size is full and the receiver is not able to handle any

additional data at the moment. Unless the receiver has processed the

buffered data and sent an ‘ACK’ message back to the sender the window size

value will be increased accordingly. Theoretically, all the received segment

packets must send an ‘ACK’ message in return. Then a sender can continue

to send the remaining data segment. According to scientist Christoph

Meinel and scholar Harald Sack, who specialise in internet systems and

technologies, “the receiver regulates this maximum number over the sliding

window protocol and adapts this size to fit its processing capacity” (2013, p.

610).

To explain in details Figure 4.10 illustrates the sliding window at the sender

side, including a data segment that is “already sent but unacknowledged”

and “not yet sent but ready to send.” Once the sender receives the ‘ACK’ for

message segment B1-B4 segment C1-C4 will transmit immediately, hence

the sliding window will move to C1 and will cover through D4. In other

words, the sliding window moves as acknowledgement arrives, consequently

segment D will be included in the window. The sliding window adjusts the

rate of data flow.

Executing Micro-temporal Streams

214

Figure 4.10: Sliding Window Protocol. Reprinted from Internetworking (p. 611) by C. Meinel

& H. Sack, 2013, Berlin: Springer. Copyright 2013 by Springer.

Figure 4.11 demonstrates the flow control with the sliding window protocol

more clearly. Assuming host 2 sets a window size W as 1500 and host 1

sends segment within 1-1000 then upon segments arriving at host 2, it

sends an ‘ACK’ message with the value 1000, meaning the previous

segments (1-1000) have been received. At this point host 1 sends other

segments from 1001-1500 to host 2. Since it takes time for host 2 to process

the segments 1001-1500 it sends an ‘ACK’ as 1500 but window size is set as

0, signaling the buffer capacity is full. It also means that host 1 cannot send

any further segments to host 2 as it does not has any additional capacity to

process. After host 2 has processed 1000 out of 1500 segments from the

buffer host 2 sends an ‘ACK’ to host 1 with the new window value as 1000

because the remaining 500 is still under processing. Then host 1 sends

another segment of 1501-2500 to host 2 and, once host 2 receives the

segments, it immediately reports back with an ‘ACK.’ Again the window

value is set to 0 because the buffer is now processing the old 500 segments

as well as the new 1000 segments with its full capacity. The governing of the

flow control takes place within the windows’ restriction and the segment

number in the ‘ACK’ field, and these are all determined during live

processing. This flow control governs how (many), when and what

acceptable data segments can be transmitted. When an error occurs during

transmission it can be recovered by TCP via a retransmission mechanism.

Data is automatically retransmitted125 if no ‘ACK’ is received within a

125 Another function calls ‘checksum’ in TCP that is also used to handle data disruption (cf. Meinel &
Sack, 2013, pp. 134-5).

215

certain time interval.

Figure 4.11: TCP- flow control with the sliding window protocol. Reprinted from

Internetworking (p. 612) by C. Meinel & H. Sack, 2013, Berlin: Springer. Copyright 2013 by
Springer.

The spatial dimension of micro-temporality is further explicated beyond

transmission from A to B or from host 1 to host 2. The movement of slicing

windows that moves across data segments in which spaces are defined as

“already sent and acknowledged,” “already sent but unacknowledged,” “not

yet sent but ready to send,” as well as “not yet sent and not ready to send”

(see Figure 4.10). The window slice moves across these spaces to control the

outward message. Additionally, the dynamic size of a window is subject to

the activity of reading and writing data in buffer memory. Window size is

full when the data has filled the buffer memory and is waiting to be

processed. Size is not a mere all (full) or nothing (empty) indicator but it can

be varied dynamically when buffer data is processed partially or fully. The

window size also impacts the counting logic of what is to be sent and not to

be sent from the sender’s perspective. By referencing the window size from

the receiver the counting logic is automatically adjusted. Importantly, such

sliding window protocols constitute the mechanisms of data flow control in

which there are spatial-temporal assemblages that render a data stream.

Executing Micro-temporal Streams

216

In the process of data buffering there are micro-decisions also take place.

From the previously mentioned decisions of locating an efficient path to the

movement of the window slice and further in relation to which segments of

data to send, all of these decisions are made to control how data is

transmitted. Even though it may not seem significant time is lost along the

journey (Sprenger, 2015, p. 75). This journey involves interruption at

different times and in different spaces, as Sprenger remarks, “[t]he stream

never flows uninterruptedly” (2015, p. 19). This constant interruption

constitutes the notion of micro-temporality that is discontinuous and

includes decision-making processes, controls and regulations that are

programmed at the level of protocol and are inscribed in the stream. When

micro-decisions take account of rules in network environments, a stream

does not unfold continuously, but rather like what philosopher Jacques

Derrida refers to as the “continuous unfolding of a calculable process” (2002,

p. 252).

Buffering is a calculable process in which data is divided into segments and

packets. From the articulation above with the processing of window buffer,

as well as the respective input and output of the buffer, these involve the

activities of storing, reading and processing. It is worth noting that the

activities are not acting on the same bit and piece of data. While some data

is stored in a buffer, other segments of data are being read and processed.

From a system perspective, data is processed at the receiver’s end (as input

data in the buffer) and is stored temporarily and locally until the data is

further processed by the software application (as output data). This also

means that software applications are not required to wait for the entire

media file to be downloaded. ‘Just in Time’ (JIT) delivery is used in

streaming media, allowing for the playback of partially received data

temporarily stored in the client’s buffer (Pereira & Ebrahimi, 2002, p. 260).

In this sense both the playback of buffer data and the receiving of the

remaining data can be made simultaneously (and, in addition to the case of

video and audio, this is also commonly experienced in loading any relatively

217

large size file, such as a PDF or an image126 within a browser). Software

applications, like a browser or media player, have the capability to load or

play the partially downloaded data. The buffer is where software

applications access the input data and process it as output data. In other

words, the processing of data consists not only of the transferring part but

rather, as Ernst reminds us, through “a coupling of storage and transfer in

realtime.” He continues, “[w]hile we see one part of the video on screen, the

next part is already loaded in the background” (Ernst, 2006, p. 108). More

precisely, the viewer is not watching the content as data arrives, instead the

viewer is watching the processed data that has arrived and is stored in the

buffer. This process of temporal storage and playback gives us an

understanding of the relation between buffer and stream, in which there is

latency between data arrival (from the network), data storage (within

internal memory) and data processing (inside a machine). Streaming is

essentially “achieved by buffering the transmitted data before the actual

display” (Meinel & Sack, 2013, p. 780). A throbber is entangled with this

latency, inter-acting with different pieces of data in different ways.

Ideally, the “buffer empties itself at one end just as quickly as it fills up at

the other end,” as described by Meinel and Sack (2013, p. 783). If there is

transmission delay that is within a threshold time t, it is regarded as

unnoticeable in playback. However, if the delay of the individual segment

exceeds the threshold time t a throbber will then display. A program

attempts read and process the buffer but the data hasn’t arrived yet and

this gap and rupture will lead to the appearance of a throbber. When this

occurs we can perceive and experience discontinuous micro-temporality.

Normally a throbber is seen when loading a big chunk of data and is

commonly seen in video sites mostly due to the instability or low bandwidth

of a network which causes a delay in the arrivial of a data segment (i.e. it

exceeds the threshold time t). Buffering is highly related to time as it allows

126 The relation between large file sizes and the buffer has been explored in my previous artistic
project How to get Mao experience through Internet...(2014), see:
http://maoexperiencethroughinternet.siusoon.net/

Executing Micro-temporal Streams

218

different rates to occur simultaneously, decoupling “time dependencies”

between the input and output of data (Laplante, 2000, p. 55). As a result,

data can be consumed and processed at a different rate by program

applications. Data, in the case of streaming, is actively and constantly being

stored (written) and removed (read) in the buffer at different speeds and

rhythms (see Figure 4.12), oscillating between the invisible and visible.

With Parisi’s notion of “temporal variations” (see Chapter 1), it can be said

that the micro-temporality of buffering transforms the space of a buffer that

works with both internal and external data. This buffer space, as a site of

inter-actions, contingently and temporally performs variations.

Figure 4.12: Principle organization of a playback buffer. Reprinted from Internetworking:
Technological Foundations and Applications (p. 783), by Christoph Meinel & Harald Sack,

2013, Berlin: Springer. Copyright 2013 by Springer.

4.2.4 The absence of data

Proceeding from the operative logic of streaming this chapter has

demonstrated that there are calculable processes, data transmissions and

that the reading and writing of the buffer occurs at different rates. The

operative logic is built into the infrastructure of networked technology as

code. What has been written in the buffer will be automatically read and

processed through running code. However, technology does not guarantee

that all the data is written in the buffer. Dropped frames (frames of video

that are dropped during playback) are a relatively common experience in

real-time communications and video streaming. Dropped frames impact

upon the user’s viewing experience because frames disappear within a

perceivable continuous stream. When an audio-visual is played back at the

receiver’s side this introduces gaps in the stream and it produces glitches or

219

jittery audible effects. This is different from displaying a throbber on a

screen, where nothing can be seen on a screen despite the animated graphic.

When experiencing dropped frames, one can still see or hear something but

just not necessarily in good quality.

In some situations the issue of dropped frames is seamless because it does

not create significant quality degradation. Such visible and invisible

dropped frames are caused by packet loss, the absence of certain parts of

data during data transmission across nodes and routers throughout the

journey. Time lost, as mentioned above, includes micro-decision making as

well as interruptions and delays. Indeed, packet loss is highly relevant to

the notion of micro-temporality. According to information and computer

science scholars James F. Kurose and Keith W. Ross, the delay time for

transmitting data not only includes ‘store-and-forward’ in each buffer nodes

but also ‘queuing delays’ that are subjected to network congestion and are

not predictable in advance (2013, p. 25). Packets are required to queue up

and wait for the transfer while the network is congested. Under streaming

conditions, data is constantly transmitted from a sender to receiver across

multiple sites. However, the amount of buffer space is limited at each site,

which means a newly arriving packet potentially has no space to be stored

while the stored packet is still queuing for its next routing. In this situation,

“packet loss will occur-either the arriving packet or one of the already-

queued packets will be dropped” (Kurose & Ross, 2013, p. 25).

The robust design of network protocols consists of an automatic mechanism

to detect and trigger retransmission for packet loss. However, for real-time

conversational applications and media streaming platforms such as Skype

and YouTube delay time for each packet is a critical issue as the

transmission is required to be continuous. Both conversations and live

concerts are unceasing. On the one hand the absence of data is crucial as

packet loss is related to the degradation of quality and it could immediately

impact the visual or audio quality in a live environment. On the other hand,

if data arrives with significant delay the application design at the receiver’s

end is then required to determine if such data will still make sense in

Executing Micro-temporal Streams

220

playback, in particular where conversation and data are constantly played-

back as a stream. In deciding whether the data should be played-back or

ignored, acceptable latency becomes a decision that is inscribed in the

software and platform design.

Serious data loss may even result in the automatic termination of a

connection—which also means the tolerance is unacceptable from the point

of view of software design. The technical consequences of data loss is

nothing new. If one has used Skype or other communication applications

like WhatsApp, weChat or Line it is not uncommon to have the experience of

glitches or jitter effects or a throbber displayed on a screen. What is of

concern here is rather the cultural implications of these absence of data, or

the potentiality of packet loss.

The absent data requires our attention. Firstly, the absence of data might be

caused by a voluntary condition. It is possible for an application to discard

late-arriving data that are within acceptable latency because it is

insignificant to the entire user experience. Secondly, due to buffer capacity,

data loss can occur anytime and at any site during the entire journey of a

data transmission. Last but not least, when the network bandwidth cannot

match the application’s processing rate there will be data loss. For example,

a 50% data loss is encountered when a network has only a maximum

bandwidth of 5 Mbps and the application requires 10 Mbps. When there is

insufficient capacity to handle different rates (the input and output buffer

rates at receiver’s end - see Figure 4.12), and hence, data loss will occur

(Claypool & Riedl, 1998, p. 882). As a result not all data is treated equally

and able to arrive at the destination and take a perceptible form. Even

though the presence of a stream is mediatised as audio and visuals through

a screen there is still a possible absence of data. The absence of data,

although it cannot be mediated in a perceptible form at the receiver’s end, is

somehow interwoven into the presence of a stream in which a conversation

or video playback is kept running. The point is that the mundane activity

that we experience when we load, wait and stream through a screen is

loaded with unperceivable gaps.

221

To explain further I will briefly mention an artwork called The Pirate

Cinema127 (2012-2014), developed by Nicolas Maigret, Brendan Howell and

Jean-Marie Bover, which pays similar attention to absent data, glitches,

jitters and the micro-temporality of the buffer. Situated in a peer-to-peer

sharing network, the artwork reveals the geo-political and legal aspects of

file transfer (torrent). The glitches and jittery audio effects (see Figure 4.13)

clearly show the fragmented bits and pieces of the real-time stream. Instead

of a smooth showing of a stream the work demonstrates patterns of

discontinuity between absence and presence. Perhaps these discontinuous

patterns have something to do with performativity in which realities are

enacted into being and political expressions are performed. Cox discusses

this specific artwork in relation to Sergei Eisenstein’s theory of montage,

where different realities are can be seen as material constructions. These

realities incorporate temporal and disorderly fragments from multiple

spaces and times (Cox, 2015, pp. 8-9) whereby their presence builds upon a

series of absences in a distributed network. In other words, the work is

conditioned by these absences and such a focus on temporalisation is

infrastructural specific and non-discursive, stemming from the materiality

of the distributed network that is running dynamically. According to the

science, technology and society scholars John Law and Vicky Singleton,

when one experiences a reality, “whatever the form of its presence, this also

implies a set of absences” (2005, p. 342). Their notion of presence and

absence, as in this chapter, are understood as an entanglement not as a

separate concept, in which “sets of present dynamics generated in, and

generative of, realities that are necessarily absent” (Law & Singleton, 2005,

p. 343).

127 See: http://thepiratecinema.com/

Executing Micro-temporal Streams

222

Figure 4.13: The Pirate Cinema (2012-2014). Image is retrieved from
https://www.flickr.com/photos/61131081@N03/15548817658/. Copyright 2014 by Nicolas

Maigret.

Similarly, when a stream of data is sent via a distributed internet network

the logic of buffering and data processing are constantly performed through

the presence and absence of data. A display of a throbber presents another

reality, a reality that is conflated with an invisible material infrastructure

and interruptions as well as the absence of material substrates. They are

both micro-temporal as I have already demonstrated. Furthermore, a

throbber and its underlying logic of data buffering involve discrete-time

signaling—the milliseconds of time lost and the absence of data—presenting

multiple realities which lie at the heart of time-dependent logics. Therefore,

reality is not only a matter of continuous flow and the immediacy of a

stream. Taking account of materiality such a notion of reality neither refers

to the symbolic meaning of content, nor the feeling of presence, nor

immediate data delivery but rather to a tension that is expressed between

continuity and discontinuity through the performativity of code inter-

actions.

223

This is to say that when taking into account packet loss, the liveness or

nowness of a stream is also about an absent present. The notion of

discontinuous micro-temporality explicates the invisibility of computational

culture by shifting our attention from the cultural understanding of a

throbber and what is visible on a screen to invisible micro-events that are

running in the background; events are not separated but entangled as

absent/present.

Absent data is rarely mentioned in the commercial products that frame

contemporary digital culture inasmuch as it possibly relates to quality

degradation or may be regarded as unnoticeable. Technically there are some

parts of a stream not necessarily perceptible even though data is

continuously being sent. Within a stream there are these discontinuous

forces constituting a continuous presence. Sometimes the forces seem to be

strong but other times they are weak; in some case they are more visible

and at other times they are unnoticeable. The notion of discontinuity pays

attention to the gaps, ruptures and pauses that are interwoven within the

continuous flow of a data stream. From the display of a running throbber to

its disappearance while a stream is presented, discontinuous micro-

temporality highlights the forces and presence of micro-decisions and micro-

interruptions that reconfigure the liveness of a stream.

4.3 The Spinning Wheel of Life

Such a reflection of invisibility and performativity, underpinned by material

substrates and their time-dependent logics, is made apparent in my artistic

project The Spinning Wheel of Life. The project emphasises the micro-

temporal dimension of code inter-actions that are manifested in the

throbber. The title of the project is borrowed from a ‘wait cursor’ in the

Macintosh Operating System X designed by Apple. The wait cursor is

colloquially known as ‘The Spinning Wheel of Death,’ referring to the

malfunction or failure of a running program or a system that leads to a

screen freezes. The name takes on negative connotations as the problems

are usually difficult to diagnose. The reference to the Spinning Wheel of

Executing Micro-temporal Streams

224

Death invokes problems, failure and interruption. However, The Spinning

Wheel of Life asserts that interruption exists as a reality across multiple

sites where micro-decisions are constantly executed. A packet segment, as

demonstrated, has its own lifespan and its own state in terms of life and

death. However, a stream is potentially infinite insofar as data is

continuously generated and updated. A stream is perceived as a continuous

flow with an unforeseeable end and imperceptible interruptions, yet a

packet segment has a pre-set timespan. The project highlights the

paradoxes and tensions between continuous and discontinuous processes,

between end and endless, finite and infinite states. These relations suggest

a blurring of lines and that constitute the forces of liveness and deadness, a

coupling of the present and absent, the living and the dead.

Figure 4.14-4.19 below document the animated movements of The Spinning

Wheel of Life. The visual reacts to network packets generated from running

a YouTube playlist in real-time. The work consists of a throbber that is

animated at different rates. Each ellipse within the throbber represents a

new data packet arrival. The time for each fading ellipse is adjusted to an

optimal level in which a balance of the visual composition is archived. Since

packets arrive at multiple times and spaces and sometimes a huge amount

of packets arrive at almost the same time the visual throbber yields an

unusual and uneven spinning wheel—from having just a few ellipses to a

full throbber with all the ellipses displayed brightly. Each ellipse fades in

and out along different tempos, subject to the network conditions in real

time. There are different rates, tempos, pulses, pauses and rhythms at

multiple scales—from the operations of the CPU to network routers, from

the transmissions of senders to receivers, from the writing to the reading of

buffers and from continuous streams to discontinuous packets. Time is an

important element in contemporary software culture as it governs how a

signal is processed, how data is transmitted and flows and how micro-

decisions are made. As a result a stream is constantly being interrupted

from the start of data transmission not just at the time one encounters a

throbber animating on a screen. The project makes apparent the underlying

notion of discontinuous micro-temporality.

225

Figure 4.14-4.19: The animated visuals of The Spinning Wheel of Life (2016).

The project is still work-in-progress and would ideally be presented as an

installation consisting of a series of mini setups. Each mini setup (see

Executing Micro-temporal Streams

226

Figure 4.20 for the work-in-progress prototype) displays a throbber on a

screen and is attached to a small speaker that plays a stream of 8-bit music

from the YouTube platform. An internet connection is required to allow the

data to unfold in real-time. The playlist is set to repeatedly run and

configured to block advertisements, a form of non-experiential interruption

or “natural break(s)” (Williams, 1974, pp. 90-3) between songs. The setup

simulates the cultural logic of buffering and its representation in its most

familiar form as a throbber. The project offers an alternative experience in

order to speculate the micro-temporality of code that inter-acts in a live

networked environment. The work does not set out to explain or describe

how things work, instead it enacts the discontinuous micro-temporality of a

throbber through the performativity of code inter-actions.

Figure 4.20: The mini setup and work-in-progress of The Spinning Wheel of Life (2016).

A stream is manifested as continuously updating feeds, passing through

hops and sites, which in part define the now in how we experience the world.

The Spinning Wheel of Life, drawing references from the mundane throbber

and the Spinning Wheel of Death and calls for critical attention towards

these live and mediated processes, not only at a planetary scale but also at

227

the level of micro-temporal operations, including clock cycles, instruction

execution, packet switching and data buffering, which exhibit micro-

decisions and micro-interruptions. The notion of discontinuous micro-

temporality takes into account the micro-processes, gaps and ruptures and,

more importantly, the absence of data that renders multiple realities that

are at work. This sheds light on the understanding of streams in

computational culture; in particular, on how time is processed and organised

to present the now under live conditions.

In other words, the artwork is a reflection on perpetually changing cultural

and social conditions. On the one hand, the existence of a throbber is a by-

product of a commercial application that informs users to wait for an

unknown period of time. On the other hand, through the use of a throbber in

developing various data query services, such as live streaming, big data

analysis, social media platforms, data predictions and transactional

applications, this cultural icon offers a critical space for speculating and

reflecting on how time is being organised and how the now is presented and

made operative. A throbber is a cultural phenomenon that appears in almost

every application that operates within a live computational environment.

The Spinning Wheel of Life is not only a technical or visual object but is also

entangled with other cultural and technical processes that render the

unknowable more knowable. This chapter explicates the computational logic

behind a throbber through the vector of micro-temporality. The next chapter

will continue to investigate live processes, exploring another vector,

automation, which examines the constitution of liveness in contemporary

software culture.

Executing Micro-temporal Streams

228

Notes on Reflexive Coding Practice

4.4 The Spinning Wheel of Life

Figure 4.21: The Spinning Wheel of Life (work-in-progress) (2016)

229

The project of The Spinning Wheel of Life is a discovery-led process (Borgdorff, 2011, p.

56), my initial interest for this chapter was to discuss distributed networks, in particular

how data is organised and transferred through the BitTorrent protocol, a form of peer-to-

peer technology. I was very much inspired by the artwork and performance called The

Pirate Cinema which I mentioned in the previous section because that work reveals some

of the underlying operative processes of peer-to-peer technology. As I started to examine

the technology I was drawn into the organisation of data that the format, which is called

magnet link, uses to guard against corrupted or dummy files. From there I began to

explore the ruptures of communication networks and the throbber icon caught my

attention.

I was intrigued by this minimalistic yet iconic image which has been widely used in

digital culture. In the words of Borgdorff, “[t]he discourses about art, social context and

the materiality of the medium are in fact partially constitutive of artistic practices and

products” (Borgdorff, 2011, p. 56). Therefore, the earlier section that offered a cultural

reading of a throbber was established. At the beginning all I knew about the term

buffering was that it dealt with data in the background. From my own experience when

there is a slow internet connection I have a higher chance of seeing this icon. This was all

I knew. In this chapter, my research was first guided by the image of the throbber then its

visual design and front-end display logic and finally the backend operative mechanism. In

other words, my research and practice on throbber went through the reflexive inquiry

process of “identifying relevant factors, components, or systems” to answer basic

questions such as why? Or what is it? (Sullivan, 2010, p. 110). I first approached the

throbber through visual research, collecting different throbbers on the web and thinking

about the difference between a throbber and a progress bar. I was surprised about how

little detail the throbber icon conveys to users. From there, the investigation led me to

examine the history and the practice around using a throbber. My thinking about visual

language, production and history of the throbber comes close to what Rolling Jr discusses

as part of the reflexive practice, specially “thinking in a language” (Rolling Jr, 2014, p.

163). The visual object, the animated throbber sign, is used as a means to investigate

meaning around the cultural practice of a throbber.

I looked at the source code of websites to understand how a throbber is displayed on a

screen. After understanding that a throbber is normally presented as an animated image

230

through various experiments (see Figures 4.22-4.27), I started to think of ways to design a

throbber differently. In this way, it can be said that the experiment is a “thought

experiment,” alluding to “the creation of possibilities over the proving of certainties”

(Rolling Jr, 2014, p. 162). This led me to use mathematics to describe a moving throbber

and use programming to adjust the speed of a throbber and, ultimately, to control each

ellipse’s appearance which I have discussed in the earlier section (see Figure 4.3).

Through coding practice, I demonstrate the process of “thinking in a material” via

experimentation (Rolling Jr, 2014, p. 163) that informs my understanding of how a

throbber can be created differently beyond otherwise an animated image that only

expresses a regular tempo.

Figure 4.22: Experiment on how a throbber displays on a browser

231

Figure 4.23: Experiment on a throbber display with HTML, CSS and JS script

Figure 4.24: A slightly modified version of the Unix shell script

232

Figure 4.25: First screenshot of running the Unix shell Script

Figure 4.26: Second screenshot of running the Unix shell Script

Figure 4.27: Third screenshot of running the Unix shell Script

After further experiments, I gradually shifted my attention from peer-to-peer file

organisation to internet data organisation because this is the basis on which today’s

technology, like blockchain databases and many other peer-to-peer networks operate. I

started to think about the notion of temporality through context, interrogating the

technical infrastructure of our social structures (Rolling Jr, 2014, p. 163). I looked into

internet data packets by using a simple ‘tcpdump’ command in my terminal application.

Then I further experimented with different parameters of the command in order to capture

more of the data logged behind data transmission (see Figures 4.28 – 4.29).

233

Figure 4.28: Experiment with the command ‘tcpdump’ for networked data analysis

Figure 4.29: Experiment with the parameters of ‘tcpdump’ for networked data analysis

234

Figure 4.30: Experiment with watching Youku video with data analysis. Video link:

http://v.youku.com/v_show/id_XMTI1NTU4OTA0NA==.html?from=s1.8-1-1.2

Figure 4.31: Log analysis for the Youku video in relation to Figure 4.30

However, I did not understand them very well and this prompted me to a “cold gazing”

(Ernst, 2006, 2013b) of the technical specification of internet protocols as well as the

logic of Baran’s packet switching. With Ernst’s concept of micro-temporality in mind, I

started to focus on the micro-time and micro-processes in networked data organisation.

235

From the terminal experiments the field ‘TTL’ (Time to Live) caught my attention, first

because of its peculiar name. Later it proved to be very useful, as demonstrated in the

earlier discussion, in thinking through the notion of liveness and deadness. Through

connecting to a video streaming site, I discovered the limitation of the terminal command

of ‘tcpdump’ with less decoded and organised information, and this prompted me to use

the software Wireshark for packet analysis. The micro-temporal analysis in section 4.2 is

a detailed description and analysis of the technical intrastructure of data streams, and this

is what Rolling Jr describes as “thinking through a context” (Rolling Jr, 2014, p. 163). The

context that I have applied is more oriented towards technological infrastructure.

Figure 4.32: A screen shot of Wireshark for packet analysis (with a focus on window size)

The project, The Spinning Wheel of Life, is being slowly and gradually developed to draw

attention to the micro-temporality of streams. Due to the high internet bandwidth and the

heavy data transmission required for streaming videos I intentionally chose a streaming

playlist that required less data packets. Since I want to develop a rhythmic throbber

which is not running at a constant speed, the decision to use an 8-bit audio stream allows

for longer temporal pauses in data transmission while the stream is playing back. This is

because there is not much data to transfer within an audio clip. The temporal rhythms

236

between data transmission and playback can be arranged in a more revealing and clear

manner.

RSG’s Carnivore library was used to track networked data. From there I decided to

maintain emphasis on the matter of time processing, instead of the actual data/content of

a data stream. Therefore, the visual presentation of The Spinning Wheel of Life contained

only the movement of ellipses. 	

Figure 4.33: Tracking networked data:

Experiment the Carnivore library by RSG in Processing

237

Figure 4.34: Tracking networked data with log:

Experiment the Carnivore library by RSG in Processing

Figure 4.35: The log for networked data experimentation

238

The setup of the work is not a straightforward implementation. There are many other

things to consider, such as how the work is displayed, which audio list is played, what

hardware to use, how big the screen is and how many of them to use if the work is going

to be shown as an installation.

Figure 4.36: Initial setup concept of The Spinning Wheel of Life

239

Figure 4.37: Concept stage of The Spinning Wheel of Life

Figure 4.38: Concept stage of The Spinning Wheel of Life.

240

In April 2016, I had a chance to show this work-in-progress as part of the execution

workshop,128 organised by the Critical Software Thing Group. The workshop encouraged

participants to present practice-based prototypes with the theme of execution for

discussion. Presenting the earlier version of this project has opened up further discussion

about time and execution (such as the clock cycle discussion) as illustrated in the earlier

sections. The artist’s statement relating to the project highlights the micro-processes that

are running behind a visible and notable throbber icon:

The project challenges the perception of a throbber that is usually

understood as a transitional object, waiting for content delivers on a screen.

By having a music stream that runs in the background, the throbber appears

not because of waiting for data arrival but, instead, it spins as the machine

receives data and stores them in a buffer for immediate retrieval. There are

micro processes that are merely being noticed. Commonly, a throbber

expresses the unknowable waiting time that spins at a constant rate. In The

Spinning Wheel of Life, the project explores a different dimension of time—

the “micro-temporality” of data transmission and data processing through

subverting the usual functioning of a throbber. Beyond the negative

connotations of waitings, frustrations and annoyance, how might we reflect

on a throbber, also known as the spinning wheel of death, which has

become a cultural object and used commonly in contemporary software

culture? (Soon, 2016c).

Due to hardware limitations the work was shown on a Mac laptop computer with

headphones. Figure 4.39 shows that the work crashes with the Mac’s built in animated

icon: ‘The Spinning Wheel of Death.’ This incident also demonstrates the coupling forces

of the living and the dead.

128 See: http://softwarestudies.projects.cavi.au.dk/index.php/*.exe_(ver0.2)#30_April:_Masterclass

241

Figure 4.39: Concept stage of The Spinning Wheel of Life.

I was not satisfied with this version mainly because the use of a Mac computer cannot

fully express the concept of micro-temporality. As I have argued earlier, the throbber

presents multiple realities that lie at the heart of time-dependent logics and these logics

exhibit different rates, tempos, pulses, pauses and rhythms at multiple sites and scales as

assemblages. Therefore, I was keen to show it with a more transparent hardware setup

where audiences could see through the motherboard or computer and by seeing the

blinking LED lights that indicate the operation of the CPU and the micro-time gap

between the electronic board and the screen. To this end the latest version (see Figure

4.20) reveals all the wires and electronic circuits of an electronic motherboard that

connects with a screen. The project is to be shown in Transmediale 2017 and the

experimentation with different forms of the setup is ongoing. This reflexive

reconfiguration of the work and its setup demonstrates how I think reflexively. As Rolling

Jr describes, “thinking reflexively, an exercise in continuous, practice-based experiential

learning” (2014, p. 163).

242

Technically, The Spinning Wheel of Life is written in Processing. It utilises an external

library called Carnivore129 which was developed by the Radical Software Group (RSG) to

monitor data network traffic. Since the project requires monitoring network traffic an

internet connection is required throughout the duration of the installation.

Ideally the installation consists of multiple mini setups. Each mini setup displays a

throbber on a 7 inch screen and a designated streaming audio is played through a small

speaker attached to a mini computer (a Raspberry Pi 3). Since the work requires access to

the network layer, a root access130 is required to run the program. Additionally, a web

browser is required to access a YouTube playlist and I have chosen an 8-bit video game

play list131 because each track will be small enough in size to make apparent the captured

packets in a more visible way.

The program constantly listens to a range of IP addresses in real-time. Each display of an

ellipse correlates to the arrival of a network packet. A series of the ellipses will then

reassemble to form an animated throbber.

Figure 4.40: An excerpt from The Spinning Wheel of Life (work-in-progress)’s source code:

The ellipses design

129 See: http://r-s-g.org/carnivore/
130 The command to open Processing is ‘sudo ./ processing’
131 See: http://bit.ly/1ppETHQ

243

Figure 4.41: An excerpt from The Spinning Wheel of Life (work-in-progress)’s source code:

Setting up IP addresses and the Carnivore library.

Figure 4.42: An excerpt from The Spinning Wheel of Life’s log: The feedback process

244

With respect to documentation, instead of setting up a blog as I did for Thousand

Questions, created a tab called notes in my program which documents my updates of it I

(see Figure 4.43). After the project’s first presentation at Malmö University in 2016, the

source code was uploaded to GitHub, a web-based code hosting platform for version

control. From thereon a testlog file has been created on the platform to continue the

documentation of this project (see Figure 4.44). Similar to the Thousand Questions that

discussed in the last chapter, documentation is made in the form beyond scholarly writing

and is considered as an important part of reflexive practice.

Figure 4.43: An excerpt from The Spinning Wheel of Life’s source code: General notes

from 2015 to 2016

245

Figure 4.44: A screen shot of the notes from Apr 2016 to present. Retrieved from:

https://github.com/siusoon/The-Spinning-Wheel-of-Life/blob/master/testlo

In short, this section shows how the experimental and work-in-progress project The

Spinning Wheel of Life is being developed and the investgative process of a throbber that

informs and enriches the chapter’s content. In addition, the discussion in this section

demonstrates the applied approach of Rolling Jr’s reflexive framework, alluding to

thinking in a material, thinking in a language, thinking through a context and thinking

reflexively.

This project, similar to the previous artwork Thousand Questions, emphasises the

processes that are running live as part of the work, those that exhibt the assemblage of

forces, contingently reconfiguring through material relations. Specifically, The Spinning

Wheel of Life dynamically executes micro-temporal streams.

246

247

5

Executing Automated Tasks

This chapter examines the third vector which constitutes the notion of

liveness: automation. The term automation is associated with the execution

of tasks in computation. Paper tape and punch cards were commonly used

as data storage in the early form of computational data processing from the

1950s to 1980s, encompassing different patterns of punched holes for batch

processing. The concept of batch processing alludes to the automation of a

batch of inputs without “user intervention” (Fitzpatrick, n.d.) or “end user

interaction” (IBM, 1990). Although the cards were prepared in advance and

put in the machine by human operators, it was the machines that executed

the reading of the cards and processed the inputs. Recently the term

automation has also frequently appeared in the hype around machine

learning, data mining and artificial intelligence in contemporary software

culture (Burrell, 2016; Kephart & Chess, 2003; Morris, 2015). In commercial

sector systems such as automated recommendation engines, push

notifications and automated reporting are increasingly important as

business and technological solutions for targeted marketing and profit

makings. 132 Automated systems enable real-time computation and the

tracking and querying of data, responding to live environments with pre-set

algorithms that are automated and executed by machines. From historical

to contemporary practices of data processing, it would seem that the notion

of automation is crucial in understanding software culture.

The notion of automation concerns efficiency. One of the major benefits of

batch processing is that tasks can be scheduled to run in a less busy time

132 See some examples here:
(1) Push notification engine by Swrve: https://www.swrve.com/product/push-notifications
(2) Mass Notification by Everbridge: http://www.everbridge.com/products/mass-notification/
(3) Recommendation engine that is offered by Predictry: http://predictry.com/
(4) Automating complex reporting tasks through Google Analytics APIs:
https://developers.google.com/analytics/solutions/reporting

Executing Automated Tasks

248

interval and can be run in batches. Given the fact that a program can

handle more than one transaction batch processing reduces the need to run

the same program in many times. The concept of “automatic coding” was

introduced by Hopper in 1955, allowing a computer to “replace” any

programmer so as to achieve “the reduction of the computer time” (1955, p.

2). Her profound invention of a compiler was aimed at reducing the amount

of time needed to prepare for machine translation of code but, more

importantly, compilers check for mistakes and are able to detect them before

actual running. This reduces the time needed for debugging before the

program is ready for “production running” (Hopper, 1955, p. 1). The notion

of automation commonly implies efficiency133 insofar as it relates to reducing

or replacing human labour or optimising processing time.

More broadly automation can be seen as a way to examine software culture.

Manovich proposes a list of “general tendencies” 134 of understanding

software culture, in which automation is one of those principles (2001, p.

27). The term automation stresses the operational aspect of code inter-

actions that are repeatedly executed, including the “creation, manipulation,

and access” of media and data (Manovich, 2001, p. 32). In contemporary

culture, media materials have been archived digitally that change the way

with which materials are being organised, stored and accessed. Accessing

and querying platform databases have been previously discussed in Chapter

3, but automation is more than that because it allows tasks to be automated

operatively and repeatedly without much human intervention. As in the

artwork Listening Post (see Chapter 1) online materials are constantly

extracted and turned into new forms of expression by free-standing

machines. By accessing and taking in different data inputs, the output can

then be calculated, manipulated and produced in multiple varieties.

Therefore, automation lies at the heart of the act of repetition: the ability to

execute things repeatedly and automatically. Since automation involves

133 The term automation also refers to “automatically controlled operation of an apparatus, process, or
system by mechanical or electronic devices that take the place of human labor” ("Automation," n.d.).
134 In Manovich’s earlier work, he proposes five “principles of new media” that could be understood as
“general tendencies of a culture undergoing computerization”: Numerical Representation, Modularity,
Automation, Variability and Transcoding (2001, pp. 27-48).

249

computational creation and production, there are built-in logics and

algorithms that can take different inputs and, consequently, producing

different outputs. As such, the act of repetition implies a process of

generating differences.

According to some philosophers and scholars, the repetitive aspect of

automation implies difference (Chun, 2008a, 2008b, 2011a, 2011b, 2015,

2016; Deleuze, 1968; Derrida, 1978). In relation to the execution of code and

the nature of information circulation Chun points out that code is

fundamental in understanding repetition and its differences. She says that

code “is undead writing, a writing that—even when it repeats itself—is

never simply a deadly or living repetition of the same” (Chun, 2011b, p. 177,

original emphasis). Chun’s employment of the notion of “undeadness” draws

attention to repetitions, changes and differences at the micro level of “inner

writing” (2008a, p. 165). For her, the inner writing of code is about the

activity of writing on computer memory and it is a “degenerative” process,

alluding to things are not “always there” (Chun, 2008a, p. 148). Indeed the

notion of undeadness does not merely refer to loss or degenerativity but,

importantly, the endless updating and refreshing of information proliferates

the “enduring ephemerals” to prevent loss (Chun, 2008a, p. 149). What is

live, as Chun suggests, is about undeadness—the endless updating and

circulation of information, as well as “the ever-updating, ever-proliferating,

and increasingly incompatible software and hard technologies” (2011b, p.

138). This chapter raises some important questions concerning liveness and

automation: How is the act of repetition automated by computation? What

are the implications of repetition in connection with liveness and

undeadness? How has automation, in connection with liveness and

undeadness, reconfiguring our understanding of software?

In view of the fact that there are many computational activities which are

automated and run in a real-time environment the notion of automation is

increasingly important in examining contemporary software culture which

emphasises the latest or newest phenomena, especially the urgency of

updates or upgrades when one interfaces with operating systems, platforms,

Executing Automated Tasks

250

applications and devices. The alert or the notification of an update is instant

and timely, automatically categorising one’s currently in-use system or

application as an old version. Sometimes these old versions do not even

work as expected (see also the notion of the inexecutable query in Chapter 3,

section 3.5). Chun discusses the characteristics of the old and new that are

conditioned by constant requests for updating in detail. She says:

New media, if they are new, are new as in renovated, once again,

but on steroids, for they are constantly asking/needing to be

refreshed. They are new to the extent that they are updated. [...]

New media live and die by the update: the end of the update, the

end of the object. Things no longer updated are things no longer

used, useable, or cared for, even though updates often ‘save’

things by literally destroying-that is, writing over-the things

they resuscitate (Chun, 2016, p. 2, original emphasis).

Within software (update) culture there is even no upfront prompting to

update, rather things are processed automatically behind a screen. This is

particularly observed in social media platforms where new features are

released quietly until users discover them (the gender feature in Facebook,

as mentioned in Chapter 3, is a case in point). Additionally, without logging

out of a platform or an application, data is continuously processed in the

background without an end time. Computation operates automatically and

continuously through repetition in which differences are produced, yet it

does so without a clear end point or final state because the next update is

underway. This points towards a sense of endlessness in contemporary

update culture. Arguably automation has contributed to a reconfiguration of

the notion of liveness by blurring the distinctions between new and old, life

and death, start and end. From visible interfaces and their user interactions

to background processes and their code inter-actions, updates are highly

automated and that requires our attention.

Although it is common to associate automation with wider social and

political consequences, an example being the cultural theorist Tiziana

251

Terranova who suggests that “post-capitalist” software practices have

changed the nature of automation (2014, n.p), this chapter is less concerned

with issues related to human labour (important although they are) and will

more specifically investigate forms of automation in code inter-actions.

Instead of emphasising specific economic or social aspects, this chapter aims

to illustrate some of the material operations and processes of automation to

illuminate its relation to liveness. The concern with micro-time and micro-

processes is carried over from the last chapter to this chapter. However, this

chapter shifts attention away from the various micro activities of machines

and network protocols to the micro processes of running algorithms in which

to perform the undead writing that made automation possible. Special

attention is paid to the time in which an algorithm is endlessly run and how

tasks are automatically executed (a more detailed explanation of algorithms

follows in a later section). This chapter is concerned with algorithms in

terms of automation. It unfolds the discussion through my artistic project,

Hello Zombies, which specifically explores the phenomena of spam

automation that invades our internet network. Such an examination of

spam as automated agents further considers the increasingly commonplace

phenomena of other agents such as bots, auto software updates and alert

notifications.

This chapter is structured to examine the relationship between undeadness

and automation at the level of code and extends this to algorithms by a close

reading of code written for Hello Zombies. This follows the tradition of close

reading in critical code studies which extracts selected blocks of code for

further investigation and analysis (see Chapter 2, section 2.4.1, for details

on the method of close reading code). Additionally, this chapter maintains a

focus on running and executing code, alluding to how code is always in

progress (implying undeadness) and its inter-actions are held together

contingently.

Executing Automated Tasks

252

5.1 Spam as automated agents135

Hello Zombies explores spam production and automation. Spam appears

everywhere on the internet from downloaded emails to server-based blogs,

forums and social media communications. In 2014 statistics showed that the

proportion of spam almost reached 70% of entire email traffic.136

Most spams that show up in an email’s inbox is automatically programmed

with a customised body of content and a peculiar email address.137 In day-to-

day form-filling from paper to electronic registration workflows, supplying

an email address is a mandatory field, therefore an email address is equally

important to a mobile number as a way to contact another person. In

addition, email addresses come with standard naming conventions; a

domain usually belongs to or has a connection with a particular

organisation. Sometimes a domain not only describes the nature of an

institution but also indicates a geographic location through the last two

characters. A recipient is usually unaware that the sender’s address can be

easily customised in an email, regardless of its authenticity or whether it

exists in a network. Therefore spammers can easily tailor sender addresses

to transmit messages and consequently new identities138 are created in the

network. New spam emails are created everyday but they are also caught

and blocked by spam filtering algorithms. On the one hand sender addresses

are actively ‘living’ and distributed in the network, continually monitored by

algorithms; while on the other they consume numerous resources of the

network and are regarded as “waste” (Gabrys, 2011, p. 67; Parikka &

Sampson, 2009b, p. 4) and “unwelcome” (Burrell, 2016, p. 7) entities to be

traced and trashed. Once an email address is blocked the spammer creates

other new identities by using another fake and customised email address.

135 An earlier version of this section has been published in elsewhere (Soon, 2015a, 2015b, 2015c).
136 See the Spam Report (2014): http://securelist.com/analysis/monthly-spam-reports/58559/spam-
report-february-2014/
137 Examples of such email addresses are naomiwhitfield274@trash-mail.com and *****@gmail.com.
Spam email addresses can be found in stop forum spam: http://www.stopforumspam.com/downloads/
138 However, many of the email addresses do not exist in the network and are easily identified as
spammers. The sender address appears to stand as a proper identity and as such is ready for others to
reply to.

253

Both addresses are not real (without a valid owner that one can reply to) but

an address is important to invade the network without getting filtered by

other email systems and to function as an email that aims to arrive in an

inbox folder. In other words, the spammer’s email address can be considered

as the living dead because once they are identified they need to produce

another one. Most spammer email addresses are not real. This reproduction

process is endless. As a result, the lifespan of a peculiar spammer address is

ephemeral. This state of the living dead resonates with the notion of

undeadness because it relates to something ephemeral that is “neither alive

nor dead, neither quite present nor absent” (Chun, 2011b, p. 133). With its

changing identities, which are endlessly generated and disseminated

through distributed networks, spam can also be seen in this way.

5.1.1 Hello Zombies

Hello Zombies was an installation made in 2014 that explored how code

inter-acts with the mail server to create spam (see Figure 5.1). The work

was exhibited as part of the group exhibition, “Tracing Data: what you read

is not what we write” which was staged at the Connecting Space laboratory

in Hong Kong.139 The setup of the work was like an assembly line: each

machine and the corresponding computer script were responsible for doing a

particular job, breaking down the production processes into various

constituent parts. The project contained three software programs that ran

simultaneously and automatically and no human intervention or physical

interaction was required. Each machine played a distinct role to execute

pre-defined tasks.

139 For the concept statement of the exhibition, Tracing Data, see: http://www.writingmachine-
collective.net/wordpress/?page_id=76

Executing Automated Tasks

254

Figure 5.1: Hello Zombies (2014)

Spam are considered “unwanted visitor[s]” (Parikka & Sampson, 2009a, p.

101) in so far as they are unsolicited by and have no use value for either the

network or the recipient while occupying enormous amounts of network and

storage resources. In some instances, however, spam produces artistic or

poetic values. As Galloway and Eugene Thacker note, “with a string of spam

emails, many of them containing non-sense text that, from another

perspective, forms a strange poetics of spam” (2009, p. 253, original

emphasis). These strange values can also be observed in many artistic

works, for example ee spammings (2010)140 by Martin Krzywinski and Spam

Heart (2010)141 by David Jhave Johnston in which both artists work with

spam to explore their use of rhetorical linguistic devices. Spam poems are

one of the outcomes of Hello Zombies but these poems were not sent to any

normal users. The spam poems were sent back to spammers through an

automated system that consists of an assembly line. I will go on to describe

each of the constituent programs that together provide the automation.

The first program was written in a programming language called Python. It

140 See: http://mkweb.bcgsc.ca/fun/eespammings/
141 See: http://www.glia.ca/2010/spamHeart/

255

acted as a job scheduler (also known as ‘cron job’142 in programming terms)

that fetched a list of spammers from a site called stop forum spam.143 A body

of content was then sent to these extracted email addresses one by one and

the process was shown on a computer screen (see Figure 5.3). The email’s

body included a poem that was composed with my collaborator Susan

Scarlata, an American poet. There were a total of 47 poems written in

advance through which spam emails were collected over a period of 6

months. An example of an email is as follows: 144

To naomiwhitfield274@trash-mail.com

Hello, How are you?

This is not a commercial spam email, but a poem instead.

<#JUST RENT THE DATA>

Can it forensic? The apple is too full? Carrier locations arise

from what? When was it sent? Which encrypted customers? IQ's

up the what? Configure this. Just rent the data.

Thanks for reading.

Sent by a Writing Machine

e:readme@hellozombies.net

Figure 5.2: A spam poem in Hello Zombies (2014)

142 See: https://en.wikipedia.org/wiki/Cron
143 Stop Forum Spam is a platform that offers lists of spammers and allows public contributions
through their website and the offered APIs. Many other plug-ins are also based on this platform to
offer spam filtering services, such as a php extension called Stop Forum Spam for MyBB.
See: http://www.stopforumspam.com/
144 It was noticeable that the grammar of an email spam was sometimes not quite right but we
decided to use the original spammer’s words to compose a poem.

Executing Automated Tasks

256

Figure 5.3: Sending out poems in Hello Zombies (2014)

The second program was also written in Python. It periodically checked if

there was any new email and automatically deleted email in the Hello

Zombies’ mail server. The mailbox mostly contained the bounce back emails

from the spammer’s server as well as spammer’s occasional replies. The

program presented the emails on a screen (see Figure 5.4). The first and

second programs together demonstrated the autonomous mechanism of

writing and reading of code as emails and the resulting processes of

consumption, production and distribution of email addresses.

257

Figure 5.4: Receiving emails in Hello zombies (2014)

Harvesting data with active email addresses is arguably one of the most

challenging parts for massive emailing. Security is continuously enhanced in

email systems and filtering rules, where the web checking logic that

differentiates robots and humans is becoming ever more sophisticated. As a

result computer networked agents such as web crawlers and web bots use

different techniques such as web data mining,145 spoofing attacks and

dictionary attacks to harvest close-to-live addresses that are able to pass

through all the scanning and filtering logics used by email servers and reach

the valid end. On some occasions a real email address is stolen through

spoofing attacks and spammers “get names and addresses through

compromised email accounts, which give them access to contact lists”

(Yeaton, 2013, n.p). Whilst in dictionary attacks, spammers use obsolete and

invalid addresses to generate a new receipt address by slightly amending

the username and replacing the old email domain (such as the change of

email address from james1@hinet.net to james@hotmail.com) as close-to-live

addresses (Clayton, 2004). Harvesting email addresses has a substantial

business value and code contributes significantly to the process of spam data

quantification and automation. The focus on these technological and

145 See different techniques of harvesting email addresses: http://www.private.org.il/harvest.html

Executing Automated Tasks

258

business logics is manifested in the third program, emphasising both the

forces of the living and the dead as part of the automated mechanism.

The third program was written in PHP and its function was also related to

the activity of reading and writing. This program read the extracted file

from the first program and wrote all the email addresses on a webpage. The

browser rendered the source code such that it was displayed as rolling text

and hyperlinks. The webpage full of the spammer’s addresses, consisting of

the living dead identities, was displayed on one of the computer screens and

was projected onto the wall as well as on the other physical computers that

formed the whole installation (see Figure 5.5). The display of such densely

packed addresses illustrated the sheer scale of spam and went beyond

automatic processing to reveal the mechanism of reproduction in which

spam reproduces itself through different identities with distinctive email

addresses.

Figure 5.5: Running addresses in Hello zombies (2014)

259

The whole installation can be considered as an automated system that

processes information like spammer addresses and spam poems with a

common goal. The goal is to continually produce and reproduce information

through displaying spam on a screen, sending out poems and fetching

spammer’s email addresses. These processes of production and reproduction

define the three programs as an integral automated system.

Spam acts as automated agents that become part of a wider systemic

organisation that is self-regulated. The notions of cybernetic control and

feedback systems can further explain this self-regulated organisation. One

of the core concepts of second-order cybernetics is reflexivity, informed by

John von Neumann’s study of automata theory, “an automation was any

system that processes information as part of a self-regulating mechanism”

(Aspray, 1990, p. 189). Part of this is the way spam is being monitored by

various anti-spam techniques and reporting systems. One of the apparent

objectives of sending spam is to invade a mailbox successfully where emails

are displayed in the ‘Inbox’ folder and not categorised as ‘Junk.’ The

customisation of the subject line, the body of the content as well as the email

address become important as part of the overall logic of spam reproduction.

This logic underpins the ability of automated agents to reproduce and

modify their actions; spammers become smarter or more intelligent to carry

out a specific task at the expense of filtering techniques and the mailboxes’

storage space. These agents like many other similar agents that exist in

network culture function within automatic and self-regulatory systems.

Following the discussion line of second-order cybernetics and automated

agents, it becomes important that a system contains other external systems

as well as the internal organisation. It is similar to how media studies

scholar Jussi Parikka describes the ecology of a system that takes into

consideration “couplings of systems and environments and the self-

organization of complexity” (2015, n.p). The materiality of a system, a spam

system in particular, is based on the operative and inter-active logics of

production and reproduction that are self-regulated. The attention to the

materiality of technical objects enables the examination of our techno-

Executing Automated Tasks

260

culture beyond the discourses or representations attached to them (Parikka,

2015, n.p). Using computer viruses as his object of study Parikka describes

the operative logics as follows:

Viruses do not merely produce copies of themselves but also

engage in a process of autopoiesis: they are building themselves

over and over again, as they reach out to self-reproduce the very

basics that make them possible, that is, they are unfolding the

characteristics of network culture. [...] This viral activity can be

understood also as the recreation of the whole media ecology,

reproduction of the organizational characteristics of

communication, interaction, networking and copying, or self-

reproduction (2015, n.p).

Reproduction in spam is more than the technical repetition of mail

generation as it also incorporates the inter-actions of code and various

components within a wider system and media ecology that is always

becoming and is reflexively operating as “life-like processes of self-

organization, distributed processing and meshworking” (Parikka, 2015, n.p).

Such concerns over ecology and processuality are expressed in the

manifestation of the three programs of Hello Zombies: harvesting email

addresses in parallel to the business and economic logic of obtaining email

assets; sending out poems in relation to the productive and reproductive

characteristics of network culture; checking and deleting mails as part of the

self regulatory system. Spammer addresses in spam production are carefully

constructed in the real world such that fake identities resist two-way

communication and hide the real server’s sources. Since the sender address

field is mandatory in an emailing system this compulsory field may be

regarded as a “loophole” by allowing the input of fake identities (Soon,

2015c, n.p). Spammers mostly didn’t reply in Hello Zombies and the mail

system kept receiving the bounced back emails from the fake server

domains. The system automatically executed a mail retry mechanism.

261

The small programs implemented in Hello Zombies do not only demonstrate

spamming as systemic processes that obey the instructions given to them.

Although, technically, the artwork is comprised of input and generative

processes, more importantly, such activities are deployed by automation—

the continuing execution of code—that occurs in its deep and operational

structure including all the processes like harvesting, composing, sending,

checking and deleting emails that are inter-acting with other material

substrates. As previously mentioned, one of the important characteristics of

a second-order cybernetic system is that it is self-regulatory, this goes

beyond an understanding of code as written instructions which governs the

behaviour of agents that a machine needs to obey. Indeed the implication of

automation is about agency and actions through code execution. Despite

automated production and reproduction which follow rules and procedures,

a self-regulatory system also enables and disables certain actions

automatically. These actions have implications as part of the algorithmic

design.

In society instructions (or laws) are something that government entities and

citizens follow. The establishment of a law and the execution of it are not

automatically run. Chun argues that the characteristic of executable code

makes code distinct from law:

code is—has been made to be—executable, and that this

executability makes code not law, but rather every lawyer’s

dream of what law should be, automatically enabling and

disabling certain actions and functioning at the level of everyday

practice (Chun, 2008b, p. 309).

With regard to spam what kind of actions have been automatically enabled

and disabled? This question relates to automatically filtered emails, “where

a legitimate message is categorized as spam (a ‘false positive’)” (Burrell,

2016, p. 7). According to Burrell, some spam filtering algorithms are solely

based on the words they contain in order to learn and adapt their

assessment in categorising spam and thereby possibly censor emails

Executing Automated Tasks

262

incorrectly (2016, p. 8). Some may be correctly classified as spam but many

others are mislabeled. This suggests that the algorithms employed are not

fully capable of interpretative acts. A consequence of this is the discarding of

potentially important emails which end up in the ‘Junk’ folder instead of the

‘Inbox.’ Extending this to a wider cultural context the decisions made by the

algorithms of a self-driving car, for example, may cause injury or even

death. This dual executability (on both code and human) automatically

enables efficient self-driving but possibly disables human lives. Putting

spam in the wrong folder may seem insignificant when compared to the risk

of a human life, however Hello Zombies invites audiences to think about

possible intrinsic nonhuman decisions within an automatic system, a system

that operates without human involvement while it runs continuously and

repeatedly in the society that we live.

Hello Zombies turns off all spam filtering applications in the mail server.

Mail reading and sending scripts (as mentioned in the description of the

three programs above) are incorporated into the installation in order to

consider the agency of code and algorithm. The artwork keeps sending out

poems and receiving spammers’ replies as a continuous loop, a loop that has

no definite end. To further understand the notion of repetition and loops in

code and in the use of algorithms within the context of automated systems,

the remaining part of the chapter will address the specific syntax and

function of code as well as the logic of algorithms. These topics demonstrate

how repetition is deeply implicated in executing automated tasks and how

automation acts decisively that forms as a third vector in examining the

notion of liveness.

5.1.2 Loop

In computer programming, the concept of a loop is highly related to

repetition, control and automation. Mathematician Augusta Ada Byron

Lovelace first introduced the concept of a loop in the early nineteenth

century. She recognised that there were repeatable operations in the early

263

conceptual design of the computational machine that was regarded as “the

first automatic, general-purpose computing machine ever designed” (Kim &

Toole, 1999, p. 76), known as Charles Babbage’s Analytical Engine.146 The

concept of a loop, which she called a ‘cycle,’ was conceived in 1834 in her

notes147 on the Analytical Engine which set a precedent for the direction in

which digital computers would be later developed. Her notes include (in the

form of a diagram) the program procedures, also called the Bernoulli

numbers program, of the Analytical Engine. The diagram utilises two loops

to indicate the repetition of a set of instructions with conditions (Kim &

Toole, 1999, p. 78), minimizing duplicate efforts to write the repeatable

operation again. Arguably, the concept of a loop in modern coding practice is

highly influenced by her insights into the handling of repeated machine

operations, which depict the essence of repetition and condition in a cycle.

Modern high-level programming language includes a loop function, allowing

a fragment of source code to be repeatedly executed (Nakov et al., 2013, p.

211).

There are different implementation styles of a loop in modern coding

practice such as ‘for loops’ and ‘while loops.’ In general, a loop is a repeated

execution that continues until a given condition is met. In theory a computer

program can execute an infinite loop, meaning a condition is never met.

Figure 5.6 shows a simple example that demonstrates a while loop with

three lines of code and its output the result on a screen. The first line refers

to the assignment of the variable ‘time’ with the value ‘true.’ The bracket in

the second line implies ‘time is true.’ The whole second line would then read

as, ‘while the variable ‘time’ remains ‘true’ do something.’ This action is

indicated in the third line which is to print out the phrase ‘hello world.’

Indeed the program never stops and keeps printing the line ‘hello world’ on

a screen. A similar infinite while loop is also implemented in Hello Zombies

(see Figure 5.7).

146 The Analytical Engine was never implemented because of funding issues (Kim & Toole, 1999, p.
76).
147 The typed version of the article and her notes are put up by John Walker from Fourmilab, see:
https://www.fourmilab.ch/babbage/sketch.html

Executing Automated Tasks

264

Figure 5.6: A While loop in Python and its result in the Mac OS’s terminal

 Figure 5.7: An infinite loop in Hello Zombies

Referring to Figure 5.7, the condition of the ‘while loop’ is expressed in a

boolean state—true or false—and this determines how long or how many

times the loop body will be repeated (the loop body refers to the lines below

‘while (True)’ in Figure 5.7). In the conceptual model of a Turing machine,

each loop must specify “a finite number of conditions” and the configuration

of these conditions “determines the possible behavior of the machine”

(Nakov et al., 2013, p. 231). In other words, at least in theory, a loop

contains an exit. Whether the machine meets the exit criteria depends on

the condition and actual program execution. Therefore if the condition in the

loop is always true the machine will keep running which implies there is no

way to exit the loop. This kind of loop, as illustrated in Figure 5.6 and 5.7, is

considered an “infinite loop” (Ernst, 2009, n.p; Hofstadter, 1980 [1979], p.

157) or as a “strange loop” as cognitive science and comparative literature

scholar Douglas Hofstadter describes it as depicting “the concept of infinity.”

265

It is “a way of representing an endless process in a finite way” (Hofstadter,

1980 [1979], p. 23). This sense of endlessness is set out in Hello Zombies as

illustrated through the while loop where the condition is discretely finite

(true or false) yet it is endlessly processed.

Within the loop body of the above example (in Figure 5.7), the source code

instructs the computer to run a particular function called ‘main()’ and to

take a 10 second break. These simple lines setup a repetitive structure in

which a spam poem is sent out to every extracted spammer address. The

loop body ‘main()’ executes these extracting and sending routines, resulting

in an excess of communication. This never-ending loop is executing

repetitively and endlessly because the condition is always true. In addition,

the loop is controlling the flow of sequence routines, in particular when and

how the loop body is executed. Therefore its repetition is related to preset

conditions and controls. Put simply, while a particular condition is met then

a sequence of instructions will be continuously executed as routines. It stops

only when the condition is no longer satisfied.

To complicate the idea of a condition even more, a “bounded loop”

(Hofstadter, 1980 [1979], p. 149) is introduced in Figure 5.8 to illustrate the

process of ‘abortion.’148 This bounded loop consists of a ‘for’ statement and an

‘if-else’ statement that are related to getting each spammer address from a

list of emails in the form of a text file. The ‘for’ statement specifies the

pointer of a specific address, making sure it will not ask for more than the

listed records. The ‘if-else’ statement ensures that every piece of data is a

valid email address that comes with the symbols ‘@’ or ‘.’ through moving the

pointer. It will only continue to process via a function called ‘sendmail’ if it

passes this check (see line 3 of Figure 5.8). Hofstadter describes a bounded

loop as follows:

[Loops] perform some series of related steps over and over, and

148 This is a computational term which means to interrupt a computation process. The term ‘abortion’
has a violent connotation, similar to other computational terms such as killing and execution in
formal language use.

Executing Automated Tasks

266

abort the process when specific conditions are met. Now

sometimes, the maximum number of steps in a loop will be

known in advance; other times, you just begin, and wait until it

is aborted (1980 [1979], p. 149).

The characteristic of a bounded loop is that abortion will occur (at some

point) when specific conditions are met. An abortion occurs through n times

of loop processing which might be known or unknown in advance. If the

program knows how many email address are in a list in advance the

variable n is known as it will loop for n times. The use of a specific ‘for-loop’

syntax specifies the range of pointers.

Figure 5.8: Bounded loop in Hello Zombies

The concept of a loop is fundamental to understanding computational logic

and procedures in software (art) practices because it allows conditions and

repetitions to run within a confined loop. The projects Thousand Questions

and The Spinning Wheel of Life (discussed in Chapters 3 and 4 respectively)

also used the concept of the loop in their implementation. In generative art

code generates ‘self-familiar’ patterns which repeat themselves to form

larger structures while each step and each pattern exhibits only tiny

changes and movements (Cramer, 2003; Pearson, 2011). Artist-programmer

Casey Reas, for example, has explored this kind of recursive generative art

form.149 Technically, “recursion means that a function can call itself within

its own block” (Reas & Fry, 2014, p. 354). This self-familiar arrangement is

achieved by the implementation of a recursion function in which a small

change is implemented repeatedly. This small change implies having the

same logic but just in a slightly different calculated value such that self-

149 See: http://www.festivalforte.com/festival-forte/generative/

267

familiar patterns can be generated. This is considered as one of the ways in

which the act of repetition produces differences.

To explain recursion further, Figure 5.9 shows a procedural diagram of

making a 3-layer cake by computer science scholar David Schmidt. In order

to make a 3-layer cake one needs to make a 2-layer cake and add one more

top layer. But to make a 2-layer cake requires adding a top layer to a 1-layer

cake. Each iteration is highly dependent on the other and follows the same

procedure, thus the initial aim of having a 3-layer cake requires that it is

broken down into a few similar steps. Therefore the concept of recursion

exhibits repetition, which is similar to a loop and produces differences.

Inspired by everyday natural phenomena such as snowflakes, tree branches

and blood vessels a fractal structure is a typical example of recursion,

“continuing downward in scale” (Pearson, 2011, p. 157) and producing self-

similar repetition. Both concepts of recursion and loop require repetition but

their subtle difference is that the former emphasises the combined result of

all the iterations. Each iteration is based on the previous step to compute

and develop the present as well as the next pattern.

Figure 5.9: The concept of recursion in making a 3-layer cake. Reprinted from Programming
Principles in Java (p. 350), by D. Schmidt, 2003. Copyright 2003 by David Schmidt

As such, loops allude to the complexity of repetition: to similarities and

differences. Although a machine executes the apparently same written line

of code, it can produce self-similar structures (as in the case of generative

Executing Automated Tasks

268

art) or it can take in a different input to produce various outputs through

data processing (as in the case of the bounded loop in Hello Zombies). Just

reading the source code is not enough to tell the difference (the repetition is

the same in the syntax and written format) because the differences only

unfold through the execution and realisation of code that the machine

computes in time. In her article titled The Enduring Ephemeral, or the

Future Is a Memory, Chun proposed a phrase: “code as re-source” (2008b, p.

307), addressing the gap between source code and its execution. This notion

of re-source suggests code to be a process rather than a stable written form

(Chun, 2008b, p. 321). As demonstrated by the use of the infinite loop,

bounded loop or recursion in software (art) practice, these processes can be

run endlessly and changes can be made in a very subtle way. It is, therefore,

through running and executing code that computational is realised and

emerged over time.

In the earlier discussion of the Fetch-Execute Cycle (in Chapter 4, section

4.2.1), the read/write process of memory was seen to play a significant role

in computation, generating micro-instructions as a sequence of operational

steps. Chun highlights the fact that computer memory is impermanent and

volatile because of its “constant degeneration” (2008a, p. 148) and further

reminds us that repetition is more than simply speed and, subsequently, we

need to think beyond speed to the ways in which constant repetition is also

related to stability and ephemerality (2008a, pp. 148-53). She explains how

the notion of ‘ephemeral endure’ is entangled with the unstable and

ephemeral computer memory as well as the endless act of forwarding,

updating and circulating of data. My point is that, technically, these acts are

run through many different kinds of loops in computational systems. Within

the live dimension of code inter-actions within loops, regardless of what the

pre-set conditions in a loop actually are, these endless acts are regarded as

processes that constitute the ephemeral endure. An automated loop does not

at all guarantee that things are stable.

5.1.3 Open or die

269

The syntax of ‘open or die’ can be used as a further example of a way to

address the instability issue in computation. Following the von Neumann

architecture model of 1945, a CPU interacts with memory, executes

arithmetic instructions (via the Fetch-Execute Cycle), and performs

input/output (I/O) operations. These I/O operations do not necessarily render

data that is stored within the machine (such as user input on a mouse click)

but also enable an exchange of data with the external world (von Neumann,

1945, p. 3).

Code inter-acts with different kinds of data, stored within a machine or

outside of it. Figure 5.10 shows one of the I/O operations which is

programmed with PHP in Hello Zombies.

Figure 5.10: I/O operations in Hello Zombies

The significant syntax is ‘fopen() or die()’ in line 3 which points evocatively

to the dichotomy of the living and the dead within the context of an I/O

operation. For this particular line of code, ‘$myfile = fopen($filename, “r”) or

die (“Unable to open file!”);’ means that the computer will open the

designated file, read the file and place the ‘file pointer’150 at the beginning of

the file. However, if there is any error during accessing the file, for example,

if the file is protected, unavailable or corrupted, the program will then stop

immediately without running the rest of the program. As a result, an error

message is shown on the webpage of Hello Zombies as indicated below as an

illustration:

150 This file pointer is not something one can observe directly in a programming environment. It is
used as a marker to indicate the position of data records in a file as part of the input reading
operation. It can be adjusted, reading from the beginning or from the end of the file for example.
Besides this a pointer can be moved while it is being read to indicate the current pointer location (See:
http://www.onlamp.com/pub/a/php/2002/12/12/php_foundations.html).

Executing Automated Tasks

270

Warning: fopen(list_output/list.txt) [function.fopen]: failed to open stream:

No such file or directory in

/home/freehandhk/domains/siusoon.net/public_html/test/index.php on line

54 Unable to open file!

Figure 5.11: An error result

As such and this is my point, the syntax ‘die’ here serves syntactic, semantic

and performative functions. The function ‘die()’ is scripted in PHP, an open

source scripting language that is used for web development. Following a

strict syntax associated with the language in which if there is any message

required to display when a program encounters an open file error, it must be

specified within brackets. On a semantic level, as stated in the PHP manual

documentation,151 the function of ‘die’ is equivalent to the function of ‘exit,’

meaning the current script will be terminated after outputting a predefined

message.

Within the design of PHP, the function of ‘die’ is regarded as the alias of

‘exit’ and as a ‘master’ function. Indeed the syntax of ‘die’ and ‘exit’ also

occur in other programming languages such as Perl and C. Functionally

speaking, as indicated in the documentation, both ‘die’ and ‘exit’ are

equivalent in PHP. However there are also very subtle differences, as for

example the memory space occupied by the one character difference between

them. Additionally and more importantly, if there are any cleanup activities

performed by PHP in the future to remove redundant syntax, an alias (in

this case the function of ‘die’) is regarded as secondary when compared with

the master (in this case the function of ‘exit’). As a result, potentially the

syntax of ‘die’ may be removed and made obsoleted. Consequently this

function (‘die’) will no longer be supported in the future version, implying

that this would possibly impact the whole ecology of programming practice

(this is similar to the notion of the inexecutable query discussed in Chapter

3, section 3.5). It can be said that if choosing between the syntax of ‘die’ and

‘exit’ the latter is recommended as it is regarded as the ‘master.’

151 See: http://php.net/manual/en/aliases.php

271

According to the Oxford Online dictionary, the word ‘master’ historically

meant, “a man who has people working for him, especially servants or

slaves.” It is a noun which denotes a particular gender. It also means that a

master with power “has complete control of something” ("Master," n.d.). This

gender and power hierarchy is not only implemented at the syntactic and

semantic level but it is also performed through the activities around it (the

potential clean up activities and PHP’s stated priorities that favour the

master versus the alias for example). Therefore, the notion of the syntax ‘die’

not only refers to the failure to open a file in a functional way but also to the

inherent gender and class structure that may give rise to potential changes

in the future. Performativity, therefore, cannot be understood as mere

“technical performativity” (Arns, 2004, p. 186). The conflation of both the

linguistic and execution layers exhibit performative acts (see the discussion

of language and performativity in Chapter 2, section 2.2.2) and these acts

may not expose an immediate impact (such as a file being open or not at a

given moment) but rather result in on-going effects on programming

practice in general.

The syntax of ‘die()’ demonstrates error handlings within code. The handling

of errors is always inscribed in code writing regardless of how they are

actually encountered. This specific syntax demonstrates how deadness is

deeply embedded in high-level programming language. These dual states of

the liveness and deadness of code are inevitable in software (art) practices.

It is worth noting that the concept of deadness does not refer to the literal

syntax of ‘die’ but applies to different forms of disruption and obsolescence

(see Chapter 3), interruption and absence (see Chapter 4), errors and

malfunctions which constitute the notion of liveness. As argued in the

previous chapters, disruption is always implied in executing query and

liveness is about the possibility of inexecutable at any time in contemporary

(update) culture. In addition, the occurrences of micro-decisions and micro-

interruptions within networked protocols engender the immanent

experience of streams as part of the networked culture. Both forces, the

living and the dead, constitute the notion of liveness. These forces co-

Executing Automated Tasks

272

existed. Even though it may be in a live condition in which a program runs

smoothly, its death is always implicit (as for the discussion on ‘open or die’

syntax). Both arguments, unlike the syntax and semantics of ‘open or die’

which promote the distinctive split, represent a coupling of forces that has to

be understood as an entanglement that constitutes the very phenomena of

liveness. I argue that liveness always implies deadness. From the inner

writing of code to its actual realisation of code execution, liveness and

deadness are not two separated concepts, but they are entangled in their

material relations. The forces reiterate the very nature of liveness that

appears to echo Barad’s idea of “things-in-phenomena” (2007, p. 140),152 in

which liveness is a phenomenon that exhibits an on-going dynamic process

of materialisation.

In executing queries and streams, as articulated in the previous chapters

and further emphasised in this chapter through additional examples of the

various programs developed for Hello Zombies, liveness implies instability

and unpredictability in contemporary software culture. What is added in

this chapter is the thinking of ephemerality through the notion of

undeadness and the execution of automated systems. Instead of the

distinctive split of the ‘open or die’ in which a program will terminate upon

failure, the next section will demonstrate how a system can still

continuously run even an error is encountered, attaining the enduring

ephemeral.

5.1.4 Try and catch exceptions

Exception handling can be used in software (art) practice to allow constant

repetitive events to run continuously regardless of errors that occur during

run-time. The mechanism of handling exception is widely built into current

programming languages such as C++, Java and Python. Some run-time

errors are critical and will make a program to stop immediately while some

are less critical and a program can still be made to run continuously. It

152 See Chapter 2, session 2.4.2.

273

depends on how a program is designed to handle these errors. These ‘run-

time errors’ are different from language errors (also classified as

‘compilation errors’) in which errors cannot be detected in advance but only

through running the program in real-time. Programmers possibly anticipate

them. For example in the case of Hello Zombies, it is possible that the

spammer list file may be corrupted resulting in an error during the retrieval

process. Therefore, an error may be anticipated but no one knows when will

it occur or whether will it occur at all. Since there are many different

possible failures which can occur within a machine, from CPU and hardware

failure to memory allocation issues as well as network and protocol

communication problems, it is impossible for a program to handle and catch

every specific error (Louden & Lambert, 2012, p. 424). Therefore, it can be

said that countering run-time error is something operative between the

predictable and unpredictable states.

The handling of run-time errors can be traced back to the Ada programming

language that was originally developed in 1983. The project was led by Dr.

Jean Ichbiah in France and the name was chosen in honor of the pioneer of

programming Ada Lovelace (1815-1852). Ada is an object-oriented and real-

time programming language. It was also a widely used programming

language until the introduction of other programming languages as C++ and

Java which are designed for real-time systems. Advanced exception

handling, for example handling different types of exceptions and their

detection, handling and propagation (Chapman et al., 1993, p. 149), is one of

the major contributions of Ada. This was acknowledged by Lawrence

Collingbourne, the editor of the book Ada: Towards Maturity, he states,

One of the major contributions Ada has made to programming

has been to recognise that errors do occur at run-time and

therefore to provide a way of handling these by means of

exceptions (Collingbourne, 1993, p. 2).

Prior to Ada exception handling was implemented in the language P/L in

the 1960s. According to computer science scholars Kenneth C. Louden and

Executing Automated Tasks

274

Kenneth A. Lambert,

Exception handling is an attempt to imitate in a programming

language the features of a hardware interrupt or error trap, in

which the processor transfer control automatically to a location

that is specified in advance according to the kind of error or

interrupt (2012, p. 424).

This is one of the programming designs used to ensure “security and

reliability” in which a program is able to “recover from errors and continue

execution” (Louden & Lambert, 2012, pp. 423-4). In other words, exception

handling can be regarded as crucial in automated systems in which tasks

can still possibly be run and execute continuously. In Python exception is

handled by the syntax called ‘Try and catch exceptions’ in which a form of

control is established as it governs the flow of a program when errors are

encountered. To explain further, an exception contains two parts; First is

the ‘abortion’ of the partial current computation and it causes a jump from

one program point to another; Second is the handling of the exception which

may allow certain functions/statements to be run and respond to exceptions

raised. Below is an example of an exception in Hello Zombies which is an

extension of Figure 5.7.

Figure 5.12: Try and catch exceptions (1) in Hello Zombies

Figure 5.12 indicates a ‘while loop’ within a ‘try and catch exception’

structure. It means that the program will keep trying to run unless there is

an interruption from the press of a keyboard button. In this case, a ‘try and

catch exception’ exits a constructed ‘while loop’ when an exception is caught

even though it was supposed to be a continuous ‘while-loop.’ Once a

keyboard button is pressed the program jumps out of the block of the ‘while

loop.’ The handling of such an exception in Figure 5.12 means it will exit the

275

entire program with the syntax ‘sys.exit(1)’ that was preset in the last line.

More explicitly, in this case, pressing the keyboard button would stop

sending spam poem to a spammer. The last line indicates what a program

should do after catching an exception. This exception refers to an ‘abortion’

that is made by a human to stop, or ‘kill,’ the running of the program. The

corresponding exception handling, in this case to exit the program, is also

considered as a means by which to control the continuation or stopping of a

program during run-time. Additionally, an interruption by pressing a

keyboard is listened by the program during the whole running time. This

literally means whenever a keyboard button is pressed the program will

stop accordingly.

Figure 5.13 (an extension of Figure 5.8) shows another type of exception

that is set up to catch the nonhuman exceptions that would make the

program run continuously instead of stopping the program. This exception

has nothing to do with human interruption but is related to the live

conditions of a networked environment. For instance, there may be errors

when getting a spammer address list or reading the file list or problems

with network protocols such as POP3 emailing or TCP/IP networking. This

type of exception frequently appears in the source code of Hello Zombies as

it exchanges data from/to the outside environment. To further clarify this

example, exchanging data means sending out/check emails through the

POP3 protocols, reading an internet file for the poem selection or extracting

spammer addresses through internet protocols.

Figure 5.13: Try and catch exceptions (2) in Hello Zombies

These exceptions cannot be detected or checked prior to running the

Executing Automated Tasks

276

program insofar as the statements or expressions are syntactically correct.

Errors detected during run-time and exceptions are caught. The ‘try’ and

‘except’ keywords (as shown in both Figures 5.12 and 5.13) indicate the

possibility of an error occurring but this does not mean it will necessarily

happen during execution and cause vital disruption. To explain further, the

‘try’ syntax specifies the expression and instruction. Semantically it implies

the execution of this block of code with uncertainty because it may fail:

errors may be detected during execution. If there is no exception occurs, the

‘except’ clause is omitted automatically. However, if an exception occurs

during the running of the program the rest of the clause within the ‘try’

block is then skipped and the ‘except’ clause takes over. To keep the code

running (after executing the ‘except’ block) the program will continue to run

the rest of the code. If the program is set to repeat itself it will then run the

‘try’ block again. The idea of the program design behind Hello Zombies

comes with an assumption that an error may be recovered automatically, for

example an unstable internet connection or server failure at a particular

point in time.

With this technical explanation of the ‘try and catch exception’ we can

understand how a program is made to continuously run and made to be

operative at the level of code with the syntax ‘try and catch exceptions.’

Unlike the specific I/O error that demonstrated earlier with the syntax of

‘open or die,’ there are other types of error that cause exceptions such as

run-time and network errors and type errors. The syntax ‘pass’ can be used

in Python to indicate the bypassing of any non-defined procedures when an

exception is caught. Therefore, it is possible to catch an exception without

specific procedures for handling it and hence to bypass it. When a loop is

operating within the block of a ‘try and catch exception’ it might be

considered to be close to what Chun describes as “a battle of diligence

between the passing and the repetitive” (2008a, p. 167). The computational

logic automatically bypasses and handles exceptions and this enables the

continuous running of a program with a very specific form of repetition.

Such tensions again fit the notion of the enduring ephemeral. However, such

procedures and control are made invisible to audiences and end users as the

277

program keeps skipping, looping and executing. What remains is a program

that is continuously trying to perform smoothly in which code inter-acts with

protocols, files, lists, data and so forth. ‘Try and catch exceptions' illustrate

how ephemerality is made to endure in a live networked environment.

In computer science exceptions arose as a mechanism for handling errors

during run-time and for efficient debugging. However, central to my concern

with code inter-actions related to ‘try and catch exceptions’ is also the

additional reflections on continuous processing and automated execution

that are expressed both in the inner writing of code and that are evident in

wider cultural matters like spam production, virus attacks and the update

and upgrade culture of software and platforms. These matters are

automated in a continuous manner that is set out as a series of norms which

define the criteria for exceptions under specific conditions. In her article

Crisis, Crisis, Crisis, or Sovereignty and Networks, Chun discusses the

production of norms and exceptions in the context of crisis. She argues that

“crises are new media’s critical difference: its norm and its exception”

(2011a, p. 92) and yet, “crises do not arguably interrupt programming”

(2011a, p. 99). Apparently Chun’s concept of uninterrupted exception is

similar to the programming syntax of ‘try and catch exceptions’ used as one

of the strategies to keep a program running continuously. Imagine web

platforms like Facebook and Google services, the seamless background

update of new interfaces,153 new features and, perhaps most significantly,

data mining strategies and new tracking mechanisms of which users are not

fully aware of. Similarly the constant automated call for operating system

upgrades and app updates in mobile devices create new cultural norms of

interfacing with software, applications and devices. From a technical

perspective outdated clients and versions of software might be regarded as

exceptions as they do not fit into the new environment, resulting in the

suspension of services.154 Not until a user updates or reinstalls a new

153 The Wall Street Journal reported on a new feature of Facebook which tracked a user’s cursor. See
the article titled “Facebook Tests Software to Track Your Cursor on Screen”:
http://blogs.wsj.com/cio/2013/10/30/facebook-considers-vast-increase-in-data-collection/?mod=e2tw
154 It is indeed fairly common to experience outdated software versions and clients that are forbidden
from running. See examples in the areas of game and social media:

Executing Automated Tasks

278

version can the user be considered to be a normal user. Such rules and

exceptions create new norms that “are intriguingly linked to technical codes

and programs”(Chun, 2011a, p. 99).

A further reference can be made to Giorgio Agamben’s political and

philosophical understanding of “the state of exception” (1998) in which the

sovereign has full power to set out, apply and suspend a norm. With regard

to the software culture of constant update/upgrade, some of the legacy

clients might still be eligible for limited services but many of these clients

are suspended and excluded from further participation. What is eligible, or

not, is constantly shifting over time. Yet Agamben suggests that the notion

of exception is more than just an exclusion but something that operates in

between inclusion and exclusion: “The exception is what cannot be included

in the whole of which it is a member and cannot be a member of the whole in

which it is always already included” (Agamben, 1998, p. 21). Those excluded

parties still remain as “members” but different layers of control and services

can be implemented and provided to these excluded members by software

sovereignty. Thinking through the logic of ‘try and catch exceptions,’

exceptions may be caught and handled with another pathway that deviates

from the norm but is regarded as the rule in itself. New standards and

policies are set out through the constant and seamless update of systems,

platforms, applications and devices. In response to this a suspension is a

deferred, “[deferring] the future it once promised” (Chun, 2011a, p. 98). 155

Rules and exceptions are both implemented at the level of code and are

conflated to be almost indistinguishable. In Hello Zombies the ‘try and catch

exception’ falls under the scope of a larger structure of a loop. Therefore, the

computational process repeats itself extremely fast, at a speed that is

beyond human perception of micro-processing time. But we are reminded

that an exception is also a way to set out the norms.

(1) http://forums.na.leagueoflegends.com/board/showthread.php?t=621651
(2) http://crackberry.com/psa-dont-sign-out-instagram-or-youll-be-right-back-where-you-started
155 This is poetically expressed in the Gilbert and Sullivan opera The Mikado (1885) through the lyrics
written by William Schwenck Gilbert: “Defer, defer, To the Lord High Executioner.” See the song
“Behind the Lord High Executioner:” https://www.youtube.com/watch?v=u1qd3bwv3N4

279

Exceptions in programming can be understood in terms of the state of

exception, limiting, suspending, interrupting and deferring future

possibilities via code execution and justified in terms of security or

maintaining the norms of sovereign rule. Code is put into action using words

with executive power, as Chun asserts, “[c]ode as law as police, like the state

of exception, makes executive, legislative and juridical powers coincide”

(2011a, p. 101). Thus, code expresses nonhuman agency and “embodies the

power of the executive” (Chun, 2011a, p. 101).

Exceptions and loops are programmed to enable and disable certain

activities in the process of maintaining the perpetual running of code. Code

inter-acts with exceptions, both at the level of programming and in states of

exception, rendering the undeadness of code through the multiple meanings

of the term execution across the realms of computer science, contract law

and death. This subsection of ‘try and catch exceptions’ explains exceptions

in a technical manner and demonstrates the possible implications of a state

of exception that runs automatically. In this way, an examination of the live

dimension of code inter-actions demonstrate how undeadness is exhibited

beyond inner memory writing through running code syntaxes, such as

‘loops,’ ‘open or die’ and ‘try and catch exceptions,’ in computation which

explicates cultural implications.

5.2 A sense of ending in algorithms

While the previous section explained the continuation of running code by

analysing specific syntaxes, an account of how tasks are automated and how

code is related to tasks is still missing. Algorithm is a more abstract term

that is not dependent on any specific programming language or syntax but

describes a step-by-step procedure used to achieve certain tasks through

computation. The understanding of the notion of any given task may be

different between human and machine. For instance, the general task for

Hello Zombies is to demonstrate autonomous reading and writing activities

in relation to spam. In order to achieve this human task this has to be

broken down into many different steps. Figure 5.14 shows the high-level

Executing Automated Tasks

280

logic of Hello Zombies and indicates the procedures, processes and

conditions of the three programs. The diagram is structured in such a way

that a machine could understand the procedures in detail when they are

further transformed into program code.

Figure 5.14: A high-level flowchart of Hello Zombies

The flow chart in Figure 5.14 shows a breakdown of tasks representing

procedures, step-by-step progression and algorithms. It is not a detailed flow

chart that includes every possible step but rather it demonstrates high-level

processes for visual understanding that gives a general idea of how tasks

are broken down. It is independent of any programming language as it

concerns procedures but not coding’s syntax. Computer scientist Robert

Kowalski specifies that an algorithm consists of both logic and control

components (1979). An algorithm generally refers to “the knowledge to be

used in solving problems” and “problem-solving strategies” to achieve a

computational task (Kowalski, 1979, p. 424). The logic also includes a

“relational component” for things like data processing handling (Kowalski,

1979, p. 425). Figure 5.15 shows the various components involved in an

281

algorithm which influence how it behaves.

Figure 5.15: Decomposition of algorithms. Reprinted from “Algorithm = Logic + Control,” by

R. Kowalski, 1979, Communications of the ACM, 22(7), p. 425. Copyright 1979 by ACM.

Among the various components of an algorithm, direction might be

technically understood as a way to derive a sequence. Kowalski offers two

different directions: ‘bottom-up’ and ‘top-down,’ controlling the efficiency of a

running algorithm (1979, p. 425). This implies that algorithms consist of

both spatial and temporal dimensions. In the context of this thesis, this

would also imply that liveness has a direction.156 Reaching an ending is

directional implying movement from one stage to another, from a defined

problem to a solved problem, from start to stop and from a state of living to

inevitable death. To move beyond liveness as something human-oriented, a

more pertinent question might be: How does an algorithm achieve its task?

Is there a sense of ending in live running algorithms? Given the possibilities

of different implementations of loops and, in particular, the possibility of an

infinite loop, is there an end? What are the implications if there is no

definitive end?

Indeed, in his article On Computable Numbers, With an Application to the

Entscheidungsproblem (1936), Turing demonstrated a mathematical proof

156 The use of the vectors in this thesis implies forces with direction (see Chapter 1 for the vector and
force discussion).

Executing Automated Tasks

282

that there are problems which cannot be solved computationally (the

mathematical proof is demonstrated through contradiction). Theoretically

there should be “an end after a finite number of steps” (Turing, 1937, p. 247)

but in fact the computer cannot decide whether an arbitrary program will

end or will not end. To put it another specific way, a computer cannot solve

this question: Can a program (Program A) process and read another

program and its input (Program B) and decide if that program will halt

provided that the answer/output to this question is either Yes or No. Turing

proved that this problem is undecided and unsolvable. One of the reasons is

that an output of the Program B can enter into a self-constructed repetition,

an infinite loop, in the Program A that makes it never cease and contradicts

the output result ‘Yes’ in the Program B. Similarly, the Program A could

processes the Program B and its outputs and despite arriving at a ‘No’ result

but the Program A actually performs the halting (Booher, 2008, p. 3). These

scenarios suggest that there is a contradiction between a program’s output

and performance.

Figure 5.16 illustrates this halting problem with a sketch in the form of

Python code simulating the conditions in which Program A contains the

Program B. The function ‘DoesItHalt’ in line 8 assumes that there is a

procedure defined for processing the other program and its input (in this

case Program B) which can determine if another program can be halted, or

will otherwise loop infinitely, outputting the result (‘Yes’ or ‘No’) in lines 9

and 13 respectively. Lines 10-11 show that the program will continue to loop

even though the result of the assumed function ‘DoesItHalt’ outputs the

result as ‘Yes’ (as indicated in line 9). In a similar vein, the program will

halt if the output result is ‘No.’ This example is further illustrated in a

graphical form in Figure 5.17 which explains the input, output and the

contradiction between the output and the actual performance of the

program. Turing called this problem the Entscheidungsproblem (German for

“decision problem”157) and he asserts, “Entscheidungsproblem cannot be

solved” (Turing, 1937, p. 262).

157 See: https://en.wikipedia.org/wiki/Entscheidungsproblem

283

Figure 5.16: An idea sketch158 of Turing’s halting problem in Python.

Figure 5.17: The construction of N. Reprinted from The Tao of Computing (p. 172), by H M.
Walker, 2013. Copyright 2013 by CRC Press

The implication of the problem is that there are things that are impossible

to solve and cannot be decided but what is relevant to this chapter, and to

the overall argument of this thesis, is that the undecidability to halt shows a

contradiction between liveness and deadness at the material level (code and

algorithms) in computation. Results and actions (loop or halt) contradict

each other. In this way, not only does the endless running of algorithms

signify a coupling of living and the dead, but it also draws attention to the

contradiction itself, conceptually as well as computationally. Turing’s

halting problem suggests that computer systems have blind spots: how code

is written and performed can be contradictory with each other.

There are numerous scholars who draw upon Turing’s work and discuss this

158 This is a much simplified version of Turing’s halting problem in which he offered the detailed steps
of solving the halting calculation (Turing, 1937). Figure 5.16 cannot be run in Python because the
‘DoesItHalt’ function has not yet been defined. In the last section of this chapter there are some other
exploratory sketches that can be compiled and executed in which the function can generate either
True or False results.

Executing Automated Tasks

284

notion of “ending” (or ‘halting’) in relation to computation (Chun, 2011a,

2011b, 2016; Ernst, 2009; Parisi & Fazi, 2014) but not enough attention is

paid to the computational contradictions and their implications in software

studies. In his essay “...Else Loop Forever”. The Untimeliness of Media,

Ernst takes the perspective of media archeology to examine this sense of

ending at the level of medium. Informed by information theory, a medium is

a transmission channel with a sender and a receiver, a beginning and an

end, an input and an output. Ernst explains that a channel “always

remembers the input and anticipates the output” (2009, n.p). This sense of

ending exists and it is highly related to time. As Ernst states, it is

“temporally ephemeral” in nature (Ernst, 2009, n.p).

A sense of ending can be interpreted as a perceived sense of time towards an

end or towards the completion of the running of an algorithm or process.

Theoretically when it comes to an end or completion of a task the program

stops. In terms of computation a sense of ending can be understood as how a

computer decides when will be the time to achieve an end, signifying that a

set problem is solved. Ernst formulates this question as: “can a problem be

solved [within] a limited time or not?” (2009, n.p) He indicates that through

a close reading of the Turing machine it is impossible to solve these kinds of

questions which are associated with the matter of time. His question is a

transformative rephrasing of Turing’s halting question, as Ernst claims it is

“a time-critical question” (Ernst, 2009, n.p) yet it is also a question which

produces a yes or no answer. Ernst’s question concerns the sense of ending

in an algorithm as it is associated with time, infinity and temporal

processuality. Ernst draws on a theoretical understanding of the Turing

machine that is based on the model of finite automation in which it is

assumed that there is endless storage tape available. Despite the possibility

of running out of tapes, Ernst describes these kind of infinite loop as

displaying endlessness on a computational level: it “loop[s] forever” (2009,

n.p). There is no absolute end throughout the computational process and the

fundamental structure of repetition changes the way we sense an end in

computation. As Ernst explains, “[t]he configuration of a loop, the iterative

principle, and recursive procedures are the predominant chronotropes in

285

computing time” (2009, n.p). His attentiveness to computational time leads

to the notion of ephemerality in which although the notion of endlessness

describes the act of looping forever, it is also ephemeral as “the temporal

aura” is lost over time with repetition (Ernst, 2009, n.p). This ephemeral

characteristic resonates with Chun’s use of the term ephemeral and her

concept of undeadness in which memory in digital media is not stable and,

unlike storage, undergoes constant degeneration. Instead of focusing on

automated tasks, both Chun and Ernst’s notion of ephemerality share a

similar perspective on the lost in computation at the level of memory and

temporality respectively.

Referring back to Figure 5.14, the high level flow chart of Hello Zombies,

three different programs are built with loops which automate the tasks of

sending out poems, checking emails and fetching spammers’ address list.

These automated tasks can be understood as not constituting a full

completion because the programs, in theory, never halt. It is said to be not a

full completion because the programs, once started and executed, send some

poems out, check and delete some emails and fetch some lists of spammers.

Various tasks are completed over time but no definite duration can be

indicated as to how long do the programs will take to complete all of the

tasks. The notion of automation alludes to the sense of endlessness with the

implementation of infinite loops that exhibit the loss of the “temporal aura”

(Ernst, 2009, n.p) in the work of Hello Zombies. An end is never attained, at

least in theory, therefore what constitutes an end is never clear in the Hello

Zombies project. To put it differently, the function and result of the endless

running becomes the task in itself: the task is to execute tasks endlessly. On

the one hand, the programs are implemented using the infinite loops

function which results in a loop which will run forever; on the other, the

project reflects on the contemporary condition of the endless reproduction of

spam and extends this to the dynamic network processes that constitute the

continuation of the drive to the overall concept of ‘undeadness’ (Chun,

2008a, p. 165). in contemporary software culture.

From the previous discussion of the reproduction of spam to the

Executing Automated Tasks

286

contemporary phenomena of internet messages that are created and

forwarded endlessly, different temporalities are produced that consequently

change the value of data in contemporary software culture. The value of

data points at the latest information, as in a news feed or in the updating of

a conversation in social media that reflects the current reality of the world.

Printed newspapers and magazines used to charge a certain amount for

offering a worldview of the now. Similar content is observed in the digital

world but what is different is that latest or most recently updated

information is usually free. In the digital world it is the archive, the old,

which is considered to be a valuable asset (Chun, 2011a, p. 98). Commonly

many online service providers have adopted the model of charging for access

to archives or for big data extraction. In particular this kind of endless

forwarding and response to the old creates business and research values

that investigate user bahaviours, trending topics and data prediction. As

Chun reminds us, “Repetition produces value” (2011a, p. 98).

What executable code has automated is not only computational tasks but

also human decisions that produce value through the different temporalities

of data. This has been discussed in Chun’s article, Crisis, Crisis, Crisis, or

Sovereignty and Networks, in which she addresses the rapid response of

computation to our actions that automate decision-making (2011a, p. 98).

Instead of focusing on time and monetary value, perhaps one of the more

pressing issues in contemporary culture is the increasing phenomenon of

machine learning algorithms. The queries of data mining, personalisation

and machine learning are based on large amounts of stored data to make

automated decisions. In particular, machine-learning algorithms are

commonly required to solve “classification tasks.”

Spam filtering is a case in point as it utilises machine learning algorithms,

taking different information from an email such as a header information

and the body of the text, to categorise an email as spam, or not (Burrell,

2016, p. 5). Algorithms are set to not only query massive quantities of data,

but also to “learn on training data” that train a spam classifier (Burrell,

2016, original emphasis). Machine learning algorithms can then assign a

287

“weight measure” for certain words that are used to classify spam emails

(Burrell, 2016, p. 7). As a result what has been automated are the processes

of adaptive learning and decision-making used to classify the inclusion or

exclusion of things that are not entirely human-oriented. If we think about

the sense of ending in algorithms, this endlessness can be extended from the

configuration and principle of loops and infinite loops to never ending

automated decisions. Culturally (and crucially) these decisions are

recommended and enacted in search engines, posts, bookselling and many

other e-commerce sites and daily transactions in contemporary culture

which classify what should be visible or otherwise, relevant or irrelevant. As

a consequence knowledge is shaped invisibly and distributed unevenly.

Indeed these automated decisions can be quite unpredictable and do not

necessarily follow our wishes. Drawing upon the philosophy of Alfred N.

Whitehead (1968, 1978) and a deep understanding of the Turing machine,

Parisi and Fazi discuss the notion of completion in conjunction with

unpredictability. The drive towards completion needs to account for “the

exceptional condition of instability and malleability of the computational

rule” (2014, p. 110). In this sense, running an algorithm does not guarantee

it will reach an end even though there are well-defined rules and procedures

as “completion in computation cannot always be attained” (Parisi & Fazi,

2014, p. 117). Within the context of computation they suggest that what has

been overlooked is actualisation which involves more than code and

memory, algorithms and automated decisions. For them what makes

computation dynamic is the process of “an actual occasion” (Parisi & Fazi,

2014, p. 117). They explain:

An actual occasion is always a spatio-temporal relation between

elements in process; it is indeed an occasion, its own eventuality

determines its own prehensions, and, consequently, its own

constitution (Parisi & Fazi, 2014, p. 117).

They suggest that the understanding of algorithms requires the need to re-

conceptualise them as “forms of process” (Parisi & Fazi, 2014, p. 112); which

Executing Automated Tasks

288

they refer to as actualities. Central to this, and following a Whiteheadian

perspective, it is “a process of concrescence” that determines the actual

occasion (Parisi & Fazi, 2014, p. 112). Data is highly involved in the process

of the becoming of an actual occasion. It is not merely being reused or

forwarded as the same thing but rather data is something that is “re-

processed by the actual occasions under new conditions” (Parisi & Fazi,

2014, p. 114). Any sense of completion is both physical and conceptual,

involving the actual processing of data and its structure and variation on

the one hand and, on the other, entangling the incomputable condition that

informs “the unknown condition of an algorithmic occasion” (Parisi & Fazi,

2014, p. 118). The re-conceptualisation of algorithms is regarded as dynamic

in light of their notion of actual occasion which emphasises unknowable

parts. Therefore, as they are keen to stress, a sense of an end includes the

entanglement of the knowable and unknowable.

Through Turing’s proof of the halting problem, the hybridisation of known

and unknown phenomena, as I argue, exhibits contradictory forces through

running algorithms. Such algorithmic entanglement can be illustrated

through bots which are not only coupled with the forces of the living and the

dead, but also contradictory forces on the same plane of immanence that are

manifested as unpredictable acts; examples may include the Microsoft

Twitter chatbot, TayTweets, 159 that expressed racist language and the

physical robot, Promobot,160 that escaped from a testing lab and appeared in

public. These are just two examples that demonstrate the actualisation of

algorithms in which knowable, unknowable and contradictory forces are

entangled with machine learning algorithms, causing unpredictable

outcomes. What is important is that automated decisions are not just being

made at the behest of the humans who preset them but that nonhuman

159 TayTweets is a Twitter chatbot implemented by Microsoft as a research project in 2016. It caught
much news attention because it took less than 24 hours for this chatbot to reply in racist tweets. See
one of the news: http://www.theverge.com/2016/3/24/11297050/tay-microsoft-chatbot-racist
160 Promobot, also called Promotional Robot, is a physical robot created by Russian scientists. It is
designed for companies to interact with customers. In 2016, the robot unexpected escaped from a
research lab in Russia and appeared on the road causing traffic chaos in the city centre. See:
http://www.dailymail.co.uk/sciencetech/article-3643119/Robot-run-Watch-bizarre-moment-self-
learning-android-escapes-testing-area-causes-havoc-roads.html

289

agents are taking an increasingly primary role in capturing and analysing

data from which they can learn to adjust decisions over time. Consequently,

these unpredictable decisions can be contradictory to human wishes and the

code in itself.

In this chapter the use of various nonhuman agents such as spam,

update/upgrade notifications and bots, has been described in order to

emphasise the tendency for the increasing use of automated strategies in

software (art) practice. This automation is achieved in part by the activities

of (undead) reading and writing in various repetitive acts. The focus of this

chapter has been on the manner in which repetition unfolds complex

computational logics beyond human perception and is central to the notion

of automation. Citing the examples of ‘loop,’ ‘open or die’ and ‘try and catch

exceptions’ this chapter has not only considered repetition in terms of

differences, it has also clarified how algorithms can be considered to be both

knowable and unknowable as part of an entanglement of complex forces.

My claim is that the artistic work Hello Zombies explores the assemblage of

forces that help us to scrutinize the notion of liveness in computation. It also

demonstrates how spam functions within an automatic and self-regulatory

system. However, spam is just one of the many automated agents in

contemporary culture. Other agents are active as well such as bots that are

being automated by self-learning algorithms, continuously running and

inter-acting with the networked and physical environment, constituting

contradictory forces that require our attention as it produces unpredictable

outcomes.

The notion of liveness is also about deadness. They are entangled and, when

it comes to addressing the dynamics of liveness in computation, further

reflection on deadness is inevitable. The notion of deadness considers

disruption and interruption in computation at both macro and micro levels.

These aspects have been previously discussed in Chapter 3, through the

notion of the inexecutable query and in Chapter 4, with regard to micro-

decisions in protocols and absent data in streams. In this chapter the

Executing Automated Tasks

290

discussion has been extended to include ‘open or die’ syntax, exceptions and

the sense of ending in algorithms. Chun’s notion of undeadness is

particularly useful for this thesis as it emphasises the ever-changing

conditions that arise from repetition in contemporary software culture

(2011b, p. 138). Her attention to the process of execution and memory and

what she calls the “undead of information” captures live conditions as

something ephemeral in which the living and the dead are entangled. This

chapter has used the notion of undeadness to describe the specific syntax

and automation of code and extended the concept to include not only the

coupling forces but also the contradiction of liveness and deadness at the

material-level of computation through an understanding of algorithms at a

historical, technical and cultural level.

291

Notes on Reflexive Coding Practice

5.3 Hello Zombies

Figure 5.18: Hello Zombies (2014)

Executing Automated Tasks

292

I first approached Hello Zombies in February 2014. Without losing sight of the research in

and through art practice, the project took nine months to realise and the first proposal

was sent to Writing Machine Collective,161the exhibition organiser, on May 2, 2014. The

proposal was finalised after a site visit to the venue in Hong Kong on September 16,

2014, a series of test arrangements and a discussion with the exhibition’s research

director, Hector Rodriguez. The context of the exhibition was that it especially focused on

both research and practice. After the site visit, the final installation setup changed

significantly as I discovered that when a projector was put on the floor and spammer

addresses were projected on the wall there were some unexpected abstract visualisation

effects produced on the floor that gave a sense of dynamism (see Figure 5.20). Attention

to the materiality of the medium is one of the characteristic of artistic practice (Borgdorff,

2011, p. 49).

Figure 5.19: Testing out different sculptural forms at City University of Hong Kong in

2014

161 This organisation is particularly focused on practice-based research, which is not just only on the
artwork and its presentation.

293

Figure 5.20: Site visit in 2014

In relation to the central concept of automation in this chapter, I wanted to base the work

on my previous project, Readme.SpamPoem,162 to develop a generative artwork such that

it became an autonomous piece, without the need for direct human interaction. The work

can run and express by itself as it unfolds in time. Driven by my intuition and interest

(Borgdorff, 2011, p. 55; Sullivan, 2010, p. 110), I identified spam as an interesting subject

to help me developed my thinking about both generativity and automation in

contemporary software culture.

I developed a blog163 to document my thinking processes and reflections, references,

technical references, experiments and so forth. This documentation, as I have discussed

in my two previous artworks, is an important part of reflexive practice. There were a total

of 58 posts from March 17, 2014 to April 25, 2016. Throughout this period, I explored

different topics in relation to automation, such as procedurality, mutability, processuality

and temporality. According to Borgdorff, artistic experiments, as opposed to scientific

experimental systems, offer the ability “to continuously open new perspectives and unfold

new realities” (2014, p. 117). This openness makes room “for not-knowing, or not-yet-

162 The previous project was more focused on spam language and culture, as well as the autoreply
feature in email system. See: http://siusoon.net/home/?p=1184
163 See: http://generativeaesthetics.blogspot.dk

Executing Automated Tasks

294

knowing” (Borgdorff, 2014, p. 114) that directs the thinking of the work Hello Zombies in

keeping with the concept of thinking with objects and materials. The blog also refers to

practical research materials on spam filtering logics, spam production and generative text

display and setup. I also wrote about my experiments with different technologies to

understand how Hello Zombies can be implemented such as the programming languages

Jquery, PHP, Python as well as different operating systems including Raspberry Pi and

Mac OS.

Figure 5.21: A blog was setup to document my own reflections. Retrieved from:

http://generativeaesthetics.blogspot.dk/

The details of how the programs work together have been already described in the earlier

section of this chapter with the flow chart. An earlier version of the flow chart was

created on August 25, 2014 and the high level logics were confirmed around the same

time (see Figures 5.22-5.23). These system logics indicate that coding practice does not

only include source code or the outcome of the code execution, but other processes and

materials are also regarded as being part of the work (see the discussion of Burnham’s

curated exhibition in Chapter 2, section 2.1).

295

Figure 5.22: A high level draft of the flow chart

Figure 5.23: High level logic of the programs

As I was about to submit the final artist statement relating to the work, I was given the

opportunity to participate in the Transmediale research workshop164 in Hong Kong with

164 See: https://transmediale.de/content/call-for-participation-phd-research-workshop-datafied-
research

Executing Automated Tasks

296

the theme of Datafied Research. This was an excellent chance to reflect on what I had

been doing, contextualising the artwork further in a written format. I first wrote a 2000

text about spam and the concept behind the project a month before the exhibition (later

this was submitted and published in the Tracing Data proceedings along with

contributions from the other participating artists). The text was then reduced to 1000

words for the Transmediale newspaper which was published during the exhibition. Later

the text was expanded to around 4000 words for a peer-reviewed online journal which

was published after the exhibition. I was also given the opportunity to talk about this

project at Transmediale 2015 which took place in Berlin with the theme of Capture All.

All the text that I submitted explored spam as a datafied phenomenon in contemporary

software culture. In particular with this work, publication/research and artistic practice

are highly intertwined, and they play a constitutive role in the process of continuous

discovery in which practice and theory inform each other reflexively (Sullivan, 2010).

Through participating in the workshop, I also developed the artist statement that went

alongside the artwork during the exhibition. The artist statement is important in media

artwork and for me it is part of the artwork that expressed the idea behind and somehow

illustrated the context and logics. Here is the exhibition version of the artist statement:

We are with you everyday, we live in the Internet with peculiar addresses

and enticing titbits, but you call us “spam”. We wander around the

network, mindlessly, and you wanted to trash us, but we are still

everywhere. We are just the children of your economic and social system,

but you ignore and avoid us. We are not dead, we write, we create.”

—This artwork examines these nonhuman zombies as a cultural

phenomenon that produces quantified data and network identities. Through

running the automated living machines, the artwork intervenes the network

by writing spam poems to zombies and reading networked replies

continuously. This project explores zombies of the living dead that bring

forward social, technical, capitalistic and aesthetic relations in everyday

lives (Soon, 2014a).

Some of the concepts I explored in the Transmediale workshop such as quantification and

the living dead, have now, in later versions, become part of the artwork. Expanding the

text allowed me to refine my concept and expand my argument. One of the most

important concepts was that of the living dead which was further developed in this

297

chapter and throughout this thesis. Therefore, such reflexivity of theory and practice are

not in opposition, but rather are considered as entanglement that co-produce knowledge

(Barad, 2007).

In the exhibition setting, all of the screen’ outputs, especially the one sending out poems

and checking the server’s emails, were designed to demonstrate the operative data

processing. Figures 5.24 and Figure 5.25 show a screen that is packed with text, where

the received emails were displayed consecutively and the screen scrolled down

automatically in the exhibition setting. The program was also setup to experiment with

any replies from the spammer and to think about the loophole as well as the concept of

waste within an email system. In other words, artistic practice can act as a means or a

mode of inquiry, to reach out for things that are unknown or are not yet known.

According to Borgdorff, “[t]he openness of art is what invites us, again and again, to see

things differently” (2014, p. 118). This is evident in the recent writing and reflection about

this work by digital poetry scholar David Jhave Johnston, he invites readers to think about

the notion of surplus that embedded in sending and handling emails in the work of Hello

Zombies (2016, p. 190).

Figure 5.24: Reading network replies in Hello Zombies

Executing Automated Tasks

298

Figure 5.25: Sending poems in Hello Zombies

In addition to the email sending and receiving, through paying special attention to the

display of the spam email addresses, the work highlights the network identities of spam

and their unique characteristics on the web which allow them to be replied to (in the

physical installation, the audience could not click anything as there was no keyboard

available). The final implementation of the artwork used old-fashioned HTML rolling text

that utilised the ‘MARQUEE’ syntax and set the hyperlinks of each of the address with the

corresponding email. As a result the screen outputs a densely packed field of hyperlinks

rolled over time. This implementation led me to think about the meaning of spammer

addresses and their characteristics which were also discussed in the earlier section of this

chapter.

299

Figure 5.26: Rolling Spammer addresses in Hello Zombies

Figure 5.27: Densely packed spammer addresses in Hello Zombies

Executing Automated Tasks

300

Figure 5.28: The excerpt of the source code on presenting email addresses on a screen

The work itself went through different iterations. The errors that I encountered during

running the program prompted me to think further about methods for avoiding errors

during run-time and live exhibition. Informed by this, this chapter further develops the

section called ‘Try and catch exceptions.’ As discussed in Chapter 2, reflexive coding

practice involves a loosely configured experimental system that embraces instability and

indeterminancy (Borgdorff, 2014, p. 115). Experimental systems in artistic practice are not

to validate hypotheses or seek absolute facts or findings, but rather they are the reflexive

intertwining of technical objects and epistemic things. Attention to material agency, such

as crashes, faulty code, incompatibilities and in this case errors, is always of interest to

artistis in software (art) practice (Cramer, 2003, n.p). This also aligns with Berry’s method

on iterative trials in which errors may be seen as a form of understanding and knowing

machine operational processes (Berry, 2014, p. 186) (see Chapter 2, section 2.4.2).

301

Figure 5.29: The highlight of a connection error in running the programs of Hello

Zombies

Figure 5.30: The highlight of a network error in running the test programs of Hello

Zombies

Executing Automated Tasks

302

Since the programs were coded to handle many repetitive tasks, exploring the use of a

loop was necessary in so far as it was able to use the same logic but to process different

data. This also prompted me to seek a better understanding of the relationship between

the syntaxes used in Hello Zombies and the concept of automation. The three syntaxes,

which I explained in the previous sections, namely, loops, open or die, try and catch

exceptions, are informed by coding practice and an understanding of how these functions

are built and used and any corresponding implications. In addition to this, the work

allowed me to speculate on the logic of spam and the potential application of automated

systems that matter to us.

Finally, the remaining part of this section will show key excerpts of the three programs in

Hello Zombies that constitute an automated system (the full source code is also available

on the USB storage device submitted with this written thesis). In short, this section

demonstrates that the art practice of Hello Zombies offers epistemic enquiry through

reflexive practice. The live running work reflexively and continuously invites “unfinished

thinking” (Borgdorff, 2011, p. 44) via executing automated tasks.

Figure 5.31: An excerpt of the source code on sending poems

303

Figure 5.32: An excerpt of the source code on checking server emails

Figure 5.33: An excerpt of the source code on fetching spammers’ address lists

304

305

6

Unfinished Thesis

This final chapter operates somewhat like a conclusion for the entire thesis

but declares itself unfinished, inviting readers to engage in unfinished

reflection and endless process of material relations. It is inspired by

Borgdorff’s “unfinished thinking” in, through and with reflexive art practice

(2011, 2014). That there is no ending as such and should also be considered

in the light of the “strange” and “infinite” loops that I discussed in the

previous chapter (Ernst, 2009, n.p; Hofstadter, 1980 [1979], p. 157). This on-

going updating of the thesis and running of things is perfectly in keeping

with the logic of dynamic computational culture. Given that things are

constantly changing, updating and emerging, I am presented with the

problem of how to mark the end of this thesis which would otherwise

operate in contradiction to concepts such as unfinished thinking and

endlessness (Ernst, 2009, n.p). Perhaps this contradictory force can be seen

as an expanded halting problem for my research process as a whole. This

thesis, like any other thesis, is in progress—it will “loop forever” (Ernst,

2009, n.p). Informed by how code is written which executes in a dynamic

manner, this written text may be considered to run within a loop that

engages its readers differently. The entanglement of material processes and

the surrounded critical discourse is always in a state of becoming, always

unfinished and always in progress. The thesis invites the reader to engage

in unfinished reflection that simply cannot reach a definitive end.

With a distinct focus on the live dimension of code inter-actions, a

materialist framework has been developed, demonstrating how it might be

used to analyse, address and respond to the ubiquitous, complex, and

computational nature of liveness. These live phenomena include the

increasing execution of data queries, instantaneous transmission of streams

and seamless running of automated agents and they are symptomatic of this

Unfinished Thesis

306

datafied, accelerated and ever-updating culture under contemporary

conditions.

This thesis has been developed through a materialist examination of live

phenomena by taking into account real-time programmable technologies in

networked environments. I have used a range of methods which brought

together diverse fields including ‘iterative trials’ from software studies,

‘close reading’ from critical code studies, ‘cold gazing’ from media

archaeology and ‘reflexive practice’ from artistic research to foreground

what I have referred to as ‘reflexive coding practice.’ Central to this

methodology is close attention to reading, writing, running and executing

code which allowed a deep reflection upon and understanding of how code

operates and inter-acts with things beyond mediatised representation. By

using the method of reflexive practice, I have demonstrated how theory and

practice inform each other through my three artistic and experimental

projects. The practice of coding can be seen as an effective way of

understanding how things work at the epistemic level, in which reflexivity

informs thinking about the world. Epistemic thinking also plays a

significant role in shaping meaning and producing knowledge. The projects

were discussed in Chapters 3-5 alongside an analysis of relevant phenomena.

At the end of each of these chapters, I have articulated a more subjective

register to account for the conceptual background and coding practice in

order demonstrate that the emergence of knowledge production and

meaning making are co-produced by the reflexive entanglement of practice

and theory.

Within the discussion of software (art) studies in this thesis, I first offered a

detailed overview of the field in Chapter 2 and this led to present three main

concepts—namely invisibility, performativity and generativity—and these

served to both unfold some of the theoretical debates in the field of software

studies as well as to support further discussion of the concept of liveness.

Through the notion of code inter-actions, live phenomena have been

examined in which attention has not only been paid to their technical,

operational and functional attributes but also to consider their cultural

307

implications through analysing the assemblages of force that constitute the

phenomena of liveness. This thesis has undertaken a close examination of

material substrates, code operations and technical infrastructure beyond

how they are generally made visible and perceptible. These relatively

invisible code inter-actions affect how we perceive computational processes

as live events and constitute to the overall notion of liveness that has been

discussed throughout the whole thesis. More importantly the opaqueness of

computational operations is intertwined with wider economic, political and

cultural forces that require our attention. The live phenomena, references

from Barad, are contingently materialised and configured through a process

of entanglement (2007, p. 140).

6.1 Contribution

The main objective of this thesis is to develop a more nuanced

understanding of liveness in the field of software studies. Building upon

previous understandings of liveness derived from performance, software and

media studies (as demonstrated in Chapters 1 and 2), a materialist

framework was presented through three vectors—unpredictability,

temporality and automation—which together illuminated the discussion of

liveness. They responded to the central question of this thesis, chapter by

chapter: How does a materialist framework of liveness reconfigure our

understanding of software and expand the discussion of what constitutes

liveness? Undertaking live queries as an object of study, Chapter 3 explored

the inter-actions between code, databases and technological networks and

argued that live queries are active participants that exhibit performativity

through their data structures, formats, execution and cultural practices. The

chapter analysed the unpredictability of live queries by examining the deep

structural level of communication channel transmission, data compression

and compilation. I argued that randomness is inscribed at the deepest level

of computation in infinite binary strings, data processing and querying

which generate unpredictable variability. The chapter also identified the

performative mathematical operators as a site of restriction and control.

They are able to act—identify, exclude, specify and sort data—in different

Unfinished Thesis

308

ways and hence directly impact what data are processed. In contrast to the

notion of openness that is related to Twitter as a participatory platform, the

idea of the inexecutable query addressed the closedness of Twitter’s APIs

that limit the participation in its development and understand the logics of

data processing. The concept of inexecutability thereby should be

understood in relation to the notion of closedness which is beyond technical

errors and incompatibility. The constituent forces include market, social and

political forces where live queries are operated at high levels of

unpredictability, uncontrollability and unknowability in contemporary

software culture. This chapter, together with the project Thousand

Questions, served to demonstrate how code inter-acts unpredictably at

multiple scales through executing queries. It argued that material forces

constitute the unpredictable qualities of liveness.

Chapter 4 addressed the perceived gap, already identified through the

textual analysis of liveness in Chapter 1, to offer a detailed analysis of the

micro-processes and micro-temporalities behind the running of the abstract

symbolic form of the throbber. Influenced by Ernst’s notion of micro-

temporality (2013b, pp. 186-9), this analysis drew upon a techno-

engineering perspective (cold gazing) to examine digital signal processing,

the fetch-execute cycle, the clock cycle, packet switching mechanisms,

network handshaking processes, Sliding Window Protocol mechanisms, data

buffering and dropped frames to discuss the detailed processes of

computation behind a running throbber, paying attention to the time-

dependent logic and the micro-temporality of code inter-actions. Drawing

upon Sprenger’s notion of ‘micro-decisions,’ the chapter further explored the

interruption of deep operative processing which is beyond the linear and

continuous flow of streams. Within this analysis the idea of discontinuous

micro-temporality was established to rethink the metaphors of the flow and

stream in networked environments. A stream is perceived as a continuous

flow with unforeseeable and imperceptible interruptions. The notion of

discontinuous micro-temporality takes into account the micro-processes,

gaps and ruptures and, more importantly, the absence of data that renders

realities in which multiple layers are at work while loading a live stream or

309

fetching a live feed. Together with the project The Spinning Wheel of Life,

this chapter served to highlight the paradox and tension between continuity

and discontinuity, between end and endless states as well as presence and

absence to understand how streams are processed and organised

computationally, and how they exhibit micro-temporality that leads to real-

time rendering of a pervasive and networked condition of liveness.

Chapter 5 explored the notion of liveness through the vector of automation.

Focusing on the act of repetition in automation, this chapter presented spam

as one of the automated agents in which automated systems enable real-

time computation and querying of data without human intervention. It

recognised that the act of repetition does not simply automate tasks but also

includes the process of generating differences and coping with instability

and contradiction. Building upon previous understandings of inexecutable

queries and the micro-interruption of streams, this chapter further drew on

Chun’s notion of undeadness to examine the sense of endlessness in

computation, highlighting the ephemeral nature of code inter-actions.

Through the analysis and articulation of the code syntaxes—‘loop,’ ‘open or

die,’ ‘try and catch exceptions’—it argued that the entanglement of living

and dead forces are central to the understanding of liveness. More

fundamentally, by drawing upon Alan Turing’s halting problem (1937, p.

247), these entangled forces were seen to be in part contradictory in regards

to how an algorithm is written and performed.

The implication of the problem of ending is that there are things that are

impossible to solve and cannot be decided, but what is relevant in this

particular chapter and to this thesis’ overall argument is undecidability

which implies the contradictory relation of liveness and deadness at the

material level—code and algorithms—of computation. In this way, not only

does the endless running of algorithms signify a coupling of living and the

dead, but it also draws attention to the contradiction itself, conceptually as

well as computationally. The artistic work Hello Zombies explored this

assemblage of forces and extended from spam to other automated agents as

a means of scrutinizing the notion of liveness in computation, in which

Unfinished Thesis

310

repetition can be endless (looping forever) and exhibit instability, exceptions,

contradictions and without a finished or completed state, like this thesis

itself.

Although the focus of this thesis has been the notion of liveness, both

deadness and undeadness became useful counterparts as this thesis

developed as a means of capturing the inherent unstable and dynamic

nature of contemporary technology. Although it is beyond the scope of this

thesis to engage in detailed discussion of phenomenology, the coupling of life

and death, liveness and deadness (and undeadness) seems intrinsic, with

deadness being the inexecutable, absence, or end, of liveness. While liveness

and deadness may commonly be viewed as mutually exclusive dualism,

undeadness suggests a more complex mattering and entanglement between

these states that can be examined through code inter-actions.

This research has contributed primarily to a widening of the focus of critical

attention in software (art) studies through a close analysis of data queries,

data streams and automated agents. It does so through an examination of a

distinctive focus of the live dimension of code inter-actions, presenting the

vectors of unpredictability, micro-temporality and automation. This thesis

has developed what I call “reflexive coding practice” to examine these live

phenomena and it is an applied approach to computational processes and a

means by which to reflect on cultural issues through experimentation and

practice. Furthermore, the thesis expands the debate in media and

performance studies, providing technical description and analysis in relation

to the concept of liveness. In overall terms, the research contributes to our

understanding of software by expanding our understanding of liveness in

contemporary culture. This includes a nuanced examination of liveness

beyond immediate human reception.

Indeed the three vectors addressed in the thesis are not considered to be the

definitive or fixed parameters for examining liveness, instead this study

remains necessarily unfinished and the vectors are simply offered as one

way amongst many to present an overall argument at this point in time.

311

From the coupling and entanglement of living and dead forces to

assemblages of material forces, the overall argument of the thesis has

served to assert that liveness can be examined through code inter-actions, in

which the continuous process of executing and running of code inter-acts

across various computational layers at multiple scales. Executing liveness is

conditioned by such an assemblage of forces, which are not a static

arrangement of things but a relationship between collective inter-actions in

which things come to live as “things-in-phenomena” (Barad, 2007, p. 140).

Beyond analysing a particular type of web query, a specific throbber icon

and a peculiar spam agent, the examination of liveness and deadness (or

even undeadness) has implications on wider cultural phenomena such as the

update culture in various types of query, software and platforms, immediate

streams and feeds as well as for the various automated agents that help us

to understand some of the dynamics and complexity of contemporary

software culture.

6.2 Future directions

In keeping with the spirit of unfinished thinking, I will end by suggesting a

number of future research directions that the thesis’ overall argument can

be expanded into. Informed by Turing’s halting problem (see previous

chapter, section 5.2) this may mean that the thesis is contradictory in itself

as it halts but at the same time offering future directions to continue the

process as a loop.

First, the analysis of the notion of unpredictability in Chapter 2 only covered

Western social media platforms. It is observed that the social messaging

software WeChat in China has increasingly gained worldwide attention.

This software connects payment transactions and services across cities

which make it a powerful and efficient tool that is used by more than 800

million active users per month,165 making it more than double the size of

Twitter users. However, weChat is a highly centralised platform like other

165 See: https://www.statista.com/statistics/255778/number-of-active-wechat-messenger-accounts/

Unfinished Thesis

312

internet services in China with a sophisticated censoring system. This

means that both bots and humans can delete users’ messages and suspend

users’ accounts automatically as part of the daily regulatory process. All the

services that weChat provides, including but not limited to its security

system, censorship system, transaction and payment systems and all sorts

of communication systems, are integrated into one mobile application,

offering live updates, intense query execution, rigorous monitoring and

immediate operations that work on the network layer yet they are

distinctively connected, political and complex in its infrastructure. In view of

this highly censored and connected system, an understanding of the

unpredictable qualities of liveness can be more comprehensively examined

by covering a wider internet sphere to address the extra layer of complexity.

However, such an analysis may require fieldwork in China in order to

examine, and reflect upon, the apps culture which is far beyond the limited

timeframe of the development of this thesis.

Secondly, there scope for developing a deeper discussion of other forms of

technology beyond distributed networks. In Chapter 4, the focus was mainly

on the temporality of the internet as well as its distributed mechanism.

However, other alternative and emergent technology are highly relevant, in

particular to the Peer-to-Peer (P2P) network, such as blockchain technology,

BitTorrent protocol and real-time communication protocols (such as

WebRTC), also connect machines together but using an entirely different

networking approach. Including additional networking typologies may offer

an expanded understanding of temporality through a different register of

other complex forms of data distribution. During the latter stages of this

research journey I have discovered an open source P2P software, called Web

Torrent,166 which could be used in the future by applying reflexive coding

practice to examine the sophisticated and complex forms of networked

technology.

Thirdly, as mentioned in Chapter 5, the adaptive quality of machine

166 See: https://webtorrent.io/

313

learning is now being widely implemented in financial services, the medical

industry and many others sectors in which data can be iteratively processed

and learnt by algorithms. Machine learning, a field that is at the

intersection of computer science and statistics, is highly dependent on large

amounts of data that produce probabilistic outcomes, focusing on

predictability through computational and learning processes. Although the

notion of unpredictability has already been discussed in Chapters 3 and 5,

this thesis has mainly focused on the concept “unpredictable manifestation”

(Wardrip-Fruin, 2011, p. 307) as well as unexpected categorisation through

machine learning in spam filtering. Future research can address a

statistical perspective on the predictability of machine learning so as to

think through how predictability and unpredictability emerge that exhibits

different forces of liveness. Machine learning as suggested by Mackenzie is a

different programming practice, as he puts it, “Machine Learning still has to

be programmed by someone, but is programmed differently” (2013, p. 395).

In the future I would be interested in exploring statistical programming

languages, such as R and Python, which involve using statistical methods to

understand how predictive works are processed, created and inter-acted

with differently at the level of code. By using deep-learning methods, in

which code is run in real-time, networked data can constantly be fed back to

the system as a feedback loop that can learn and adapt. This kind of

adaptive behaviour contains highly complex statistical logics and algorithms

that require a more in depth discussion and understanding on the deep level

of machine learning through coding practice. Further research on the

predictive dimension and machine learning logics may inform our future

understanding of data-driven culture and a more comprehensive study of

automation.

Throughout this thesis, while I have not focused on issues of gender and

race per se, I have deliberately included queer projects and postcolonial

perspectives where possible as part of the artwork selection and discussion.

As a result of subjective experience, and a deepening political awareness

throughout this research, I have registered the contributions made by

women to the historical development of computer technologies and coding

Unfinished Thesis

314

practices. Many of these have made a profound impact on technological

development but are still too rarely recognised. As part of this, for instance,

I mention Lovelace’s fundamental loop concept and Hopper’s contribution to

the invention of the compiler. However I recognise that I might have

developed this discussion in greater detail but again I consider this to be

part of a larger and ongoing process of returning to, and reflecting upon,

materials and materialisms, not least through more attention to the

feminist new materialism of Barad. Promoting gender and race equality and

diversity is especially important in STEM-related fields and I regard myself

having a responsibility to cultivate a more open environment when

disseminating knowledge in the field of software (art) studies both in my

research and teaching practice.

Together with the three artistic projects presented herein, this thesis does

not add up to an end in itself, or indeed a conclusion as such but rather

should be considered as part of an ongoing and unfinished process. Like the

argument that runs through it, running text and code to execute ongoing

arguments and statements and calling for a critical awareness of code inter-

actions simply cannot end as this is a technical and conceptual impossibility.

This is not only meant to loop forever (to borrow Ernst’s formulation) but

also in consideration of code and text as a form of “undead writing” (Chun,

2008a, p. 149), preventing the loss of critical attention to computational

processes. It is a reminder that even though text and code are repeatedly

run, they never produce identical results but emerge through unfinished

and undead processes that together execute forms of liveness.

315

Bibliography

0100101110101101.ORG, & epidemiC. (2004). Contagious Paranoia:

0100101110101101.ORG spreads a new computer virus. Retrieved from
http://www.digitalcraft.org/iloveyou/biennale_part_2.htm

Abhyankar, A. S., & Schuckers, S. C. (2004). A wavelet-based approach to detecting
liveness in fingerprint scanners. Proc. SPIE 5404, Biometric Technology for
Human Identification. Retrieved from
http://dx.doi.org/10.1117/12.542939

Agamben, G. (1998). Homo sacer : sovereign power and bare life. Stanford, Calif.:
Stanford University Press.

AI-Rfou, R., Jannen, W., & Patwardhan, N. (2012). TrackMeNot-so-good-after-all.
ArXiv.

Albers, M. C. (1996). Auditory cues for browsing, surfing, and navigating.
Proceedings of the 3rd International Conference on Auditory Display (ICAD
1996), Palo Alto, California.

Amyatwired. (2011). Thousand of APIs Paint a Bright Future for the Web. WIRED.
Retrieved from https://www.wired.com/2011/03/thousand-of-apis-paint-
a-bright-future-for-the-web/

Andersen, C. U., & Pold, S. (2004a). Introduction. In O. Goriunova & A. Shulgin
(Eds.), Read_me : Software Art & Cultures. Århus: Digital Aesthetics
Resarch Centre : University of Aarhus.

Andersen, C. U., & Pold, S. (2004b). Software Art and Cultures - People Doing
Strange Things with Software. In O. Goriunova & A. Shulgin (Eds.),
Read_me : Software Art & Cultures (pp. 394 sider). Århus: Digital Aesthetics
Resarch Centre : University of Aarhus.

Andersen, C. U., & Pold, S. (2011). Interface Criticism: Aesthetics Beyond Buttons.
Aarhus: Aarhus University Press.

Anil, B. C., D, J., & Chayadevi, M. L. (2015). A Survey onf WIFI and LIFI
technologies. International Journal of Computer Technology and
Applications, 6(6), 1047-1051.

Arns, I. (2004). READ_ME, RUN_ME, EXECUTE_ME: Software and its
discontents, or: It's the performativity of code, stupid. In O. Goriunova & A.
Shulgin (Eds.), Read_me : Software Art & Cultures. Århus: Digital
Aesthetics Resarch Centre : University of Aarhus.

Ascott, R. (1966). Behaviorist Art and the Cybernetic Vision, Part One. Cybernetica:
journal of the International Association for Cybernetics (Namur), 9(4), 247-
264.

Ascott, R. (1967). Behaviorist Art and the Cybernetic Vision, Part Two.
Cybernetica: journal of the International Association for Cybernetics
(Namur), 10(1), 25-56.

Aspray, W. (1990). John von Neumann and the origins of modern computing.
Cambridge, Mass.: MIT Press.

Auslander, P. (2005). At the Listening Post, or, do machines perform? International
Journal of Performance Arts & Digital Media, 1(1), 5-10.

Auslander, P. (2008). Liveness : performance in a mediatized culture (2. ed.).
London, New York: Routledge.

Auslander, P. (2012). Digital Liveness: A Historico-Philosophical Perspective. PAJ:

Bibliography

316

A Journal of Performance and Art, 102, 3-11.
Austin, J. L. (1962). How to do things with words. Oxford: Clarendon.
Automation. (n.d.). In Merriam-Webster Online. Retrieved from

http://www.merriam-webster.com/dictionary/automation
Baker, C. (2014). The Missing Body: Performance in the Absence of the Artist.

Lethbridge, Alberta: Minuteman Press Leduc-Nisku.
Barad, K. (2003). Posthumanist Performativity: Toward an Understanding of How

Matter Comes to Matter. Journal of Women in Culture and Society, 28(3),
801-831.

Barad, K. (2007). Meeting the Universe Halfway : Quantum Physics and the
Entanglement of Matter and Meaning (Reprint. ed.). Durham: Duke
University Press.

Barad, K. (2011). Nature's Queer Performativity. Qui Parle, 19(2), 121-158.
Barad, K. (2012). Intra-actions. Mousse Magazine, 76-81
Baran, P. (1964). On distribution communications: Introduction to distributed

communications networks. Available from
http://www.rand.org/content/dam/rand/pubs/research_memoranda/20
06/RM3420.pdf

Baran, P. (2002). The beginnings of packet switching: Some underlying concepts.
IEEE Communications Magazine, 40(7), 42-48.

Barcena, M. B., Wueest, C., & Lau, H. (2014). Security Response. Available from
https://www.symantec.com/content/dam/symantec/docs/white-
papers/how-safe-is-your-quantified-self-en.pdf

Barker, M. (2012). LIVE TO YOUR LOCAL CINEMA: The Remarkable Rise of
Livecasting. Hampshire: Palgrave Macmillan.

Beaudouin-Lafon, M. (2008). Interaction Is the Future of Computing. In E. Thomas
& D. W. McDonald (Eds.), HCI Remixed: Reflections on Works That Have
Influenced the HCI Community (pp. 263-266). Cambridge, Massachusetts,
London: The MIT Press.

Bechmann, A., & Vahlstrup, P. B. (2015). Studying Facebook and Instagram data:
The Digital Footprints software. First Monday, 20(12). Retrieved from
http://firstmonday.org/ojs/index.php/fm/article/view/5968/5166

Bedau, M. (2003). Artificial life: organization, adaptation and complexity from the
bottom up. Trends in cognitive sciences, 7(11), 505-512.

Bennett, J. (2010). Vibrant Matter : A Political Ecology of Things. Durham, N.C.:
Duke University Press.

Bentley, P. (2003). The meaning of code. In G. Stocker & C. Schöpf (Eds.), Code:
The language of our time (pp. 33-36). Linz: Hatje Cantz.

Bernardo, B.-L. (2009). Emergence and evolution of ATM networks in the UK,
1967�-2000. Business History, 51(1), 1-27.

Berry, D. M. (2011). The Philosophy of Software: Code and Mediation in the Digital
Age. Basingstoke: Palgrave Macmillan.

Berry, D. M. (2012). The Social Epistemologies of Software. Social Epistemology,
26(3-4), 379-398.

Berry, D. M. (2013). Introduction: What is Code and Software? Life in Code and
Software: Mediated Life in a Complex Computational Ecology. Open
Humanities Press.

Berry, D. M. (2014). Critical Theory and the Digital. New York: Bloomsbury
Academic.

Billings, C. W. (1989). Grace Hopper: Navy Admiral and Computer Pioneer. Enslow

317

Publishers, Inc.
Birdsey, L., & Two, Y. M. (2015). Twitter Knows: Understanding the emergence of

topics in social networks. Proceedings of the 2015 Winter Simulation
Conference, 4009-4020.

Bivens, R. (2015). The gender binary will not be deprogrammed: Ten years of
coding gender on Facebook. New Media & Society.

Black, M. J. (2002). The art of code. (Doctoral dissertation). University of
Pennsylvania, Pennsylvania. Retrieved from
http://search.proquest.com/docview/305507258

Blackwell, A. (2002). What is programming. Paper presented at the 14th workshop
of the Psychology of Programming Interest Group,

Blas, Z., & Cárdenas, M. (2013). Imaginary Computational Systems: Queer
Technologies and Transreal Aesthetics. AI and Society, 28(4), 559-566.

Bolter, J. D., Maclntyre, B., Nitsche, M., & Farley, K. (2013). Liveness, Presence,
and Performance in Contemporary Digital Media. In U. Ekman (Ed.),
Throughout: Art and Culture Emerging with Ubiquitous Computing.
Cambridge, Massachusetts, London: The MIT Press.

Booher, J. (2008). Computability: Turing Machines and the Halting Problem. Notes
for a PROMYS talk about Turing machines, the halting problem, and the
arithmetic hierarchy. Retrieved from
http://stanford.edu/%7Ejbooher/expos/computability_promys.pdf

Bookchin, N., & Shulgin, A. (1999). Introduction to Net.Art (1994-1999). Retrieved
from http://www.easylife.org/netart/

Borgdorff, H. (2011). The Production of Knowledge in Artistic Research. In M.
Biggs & H. Karlsson (Eds.), The Routledge Companion to Reseach in the Arts
(pp. 44-63). Oxon: Routledge.

Borgdorff, H. (2014). Artistic Practices and Epistemic Things. In M. Schwab (Ed.),
Experimental Systems: Future Knowledge in Artistic Research. Leuven
University Press.

Bratton, B. H. (2016). The Stack: On Software and Sovereignty. The MIT Press.
Broeckmann, A. (2004). Runtime Art: Software, Art, Aesthetics. In the catalogue of

the exhibition RUNTIME Art, Zagreb: Gallery VN. Retrieved from
http://web.archive.org/web/20040614202632/http://runtimeart.mi2.hr/
TextAndreasBroeckmann

Broida, R. (2010, July 14). Stop Frustrating Pauses in YouTube Videos. PCWorld.
Retrieved from
http://www.pcworld.com/article/201089/Stop_Frustrating_Pauses_in_
YouTube_Videos.html

Brookfield, S. D. (1986). Understanding and facilitating adult learning : a
comprehensive analysis of principles and effective practices. San Francisco:
Jossey-Bass Publishers.

Broy, M. (2002). Software Engineering From Auxiliary to Key Technology. In M.
Broy & E. Denert (Eds.), Software Pioneers (pp. 10-13). Springer Berlin
Heidelberg.

Bucher, T. (2012a). Programmed sociality: A software studies perspective on social
networking sites. (Doctoral Dissertation). University of Oslo, Oslo. Retrieved
from http://www.scribd.com/doc/148539178/Bucher-Ph-D-diss -
download

Bucher, T. (2012b). Want to be on the top? Algorithmic power and the threat of
invisibility on Facebook. New Media & Society, 0(0), 1-17.

Bibliography

318

Bucher, T. (2013). Objects of Intense Feeling: The case of the Twitter API.
Computational Culture(3).

Burghardt, M. (2015). Introduction to Tools and Methods for the Analysis of
Twitter Data. 10plus1: Living Linguistics(1), 74-91.

Burnham, J. (1970). Notes on art and information processing. In the catalogue of
the exhibition SOFTWARE, New York: Jewish Museum. Retrieved from
https://monoskop.org/images/3/31/Software_Information_Technology_
Its_New_Meaning_for_Art_catalogue.pdf

Burrell, J. (2016). How the machine ‘thinks’: Understanding opacity in machine
learning algorithms. Big Data & Society, 3(1), 1-12.

Burrell, M. (2004). Fundamentals of Computer Architecture. New York: Palgrave
Macmillan.

Cameron, D., & Carroll, J. (2009). Encoding Liveness: Performance and Real-Time
Rendering in Machinima. DIGRA '09 - Proceedings of the 2009 DIGRA
International Conference: Breaking New Ground: Innovative in Games,
Play, Practice and Theory, Brunel University. Retrieved from
http://www.digra.org/wp-content/uploads/digital-
library/09291.37018.pdf

Carlos, L. (1998). introduction: Performance art was the one place where there
were so few definitions Performance: Live Art since the 60s. Thames and
Hudson.

Casemajor, N. (2015). Digital Materialisms: Frameworks for Digital Media Studies.
Westminster Papers in Communication and Culture, 10(1), 4-17.

Castelle, M. (2013). Relational and Non-relational Models in the Extextualization
of Bureaucracy. Computational Culture(3).

Cayley, J. (2002). The Code is not the Text (unless it is the Text). electronic book
review. Retrieved from
http://www.electronicbookreview.com/thread/electropoetics/literal

Cayley, J., & Howe, D. C. (2015). Show us the pictures: 'Some Thing We Are'
[Artwork]. Vancouver: ISEA 2015. Retrieved from
http://thereadersproject.org/installations/sutp.html - sutp

Chaitin, G. J. (1987). Algorithmic Information Theory. Cambridge: Cambridge
University Press.

Chaitin, G. J. (1987/[1975]). Randomness and Mathematical Proof Information,
randomness & incompleteness : Papers on algorithmic information theory.
Singapore: World Scientific. (Reprinted from: Scientific American 232, 47-
52, May 1975).

Chakraborty, S., & Das, D. (2014). An Overview of Face Liveness Detection.
International Journal on Information Theory (IJIT), 3(2), 11-25.

Chandra, A. K., & Harel, D. (1980). Computable Queries for Relational Data Bases.
Journal of Computer and System Sciences, 21(2), 156-178.

Chapman, R., Burns, A., & Wellings, A. (1993). Worst-case Timing Analysis of
Execption Handling in Ada. In L. Collingbourne (Ed.), Ada: Towards
Maturity (pp. 148-164). Amsterdan, Oxford, Washington, Tokyo: IOS Press.

Charlton, J. (2014). Post Screen Not Displayed. In H. Ferreira & A. Vicente (Eds.),
Post-Screen: Device, Medium and Concept (pp. 170-182). Lisbon: CIEBA-
FBAUL.

Chatzichristodoulou, M. (2012). Cyberformance? Digital or Networked Performance?
Cybertheaters? Or Virtual Theatres? … or all of the above? Paper presented
at the Cyposium: cyberformance symposium, Retrieved from
http://www.cyposium.net/selected-presentations/chatzichristodoulou/

319

Chu, H. (2007[1996]). The Sound of Market《股‧市‧聲‧動》 [Artwork]. Hong Kong:
Microwave International New Media Arts Festival. Retrieved from
http://www.microwavefest.net/festival2007/artists/artist07.html

Chun, W. H. K. (2008a). The Enduring Ephemeral, or the Future Is a Memory.
Critical Inquiry, 35(1), 148-171.

Chun, W. H. K. (2008b). On "Sourcery," or Code as Fetish. Configurations, 16(3),
299-324.

Chun, W. H. K. (2011a). Crisis, Crisis, Crisis, or Sovereignty and Networks.
Theory, Culture & Society, 28(6), 91-112.

Chun, W. H. K. (2011b). Programmed Visions : Software and Memory. Cambridge,
Mass.: MIT Press.

Chun, W. H. K. (2015). Networks NOW: Belated Too Early. In D. M. Berry & M.
Dieter (Eds.), Postdigital aesthetics: Art, Computation and Design (pp. 289-
315). Palgrave Macmillan.

Chun, W. H. K. (2016). Updating to Remain the Same: Habitual New Media. The
MIT Press.

Cisco Systems. (2013). An Innovative Business Model for Cloud Providers [White
paper]. Retrieved from
http://www.cisco.com/c/dam/en_us/about/ac79/docs/sp/An-Innovative-
Business-Model-for-Cloud-Providers-Whitepaper.pdf

Claypool, M., & Riedl, J. (1998). End-to-End Quality in Multimedia Applications. In
B. Furht (Ed.), Handbook of Multimedia Computing. Boca Raton, London,
New York, Washington, D.C: CRC Press.

Clayton, R. (2004). Stopping Spam by Extrusion Detection. CEAS. Retrieved from
https://www.cl.cam.ac.uk/~rnc1/extrusion.pdf

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 13(6), 377-387.

Codd, E. F. (1990). The Relational Model for Database Management (2nd ed.).
Addison-Wesley Publishing Company, Inc.

Collingbourne, L. (1993). Editorial. In L. Collingbourne (Ed.), Ada: Towards
Maturity. Amsterdam, Oxford, Washington, Toyko: IOS Press.

Consens, M. P., Cruz, I. F., & Mendelzon, A. O. (1992). Visualizing Queries and
Querying Visualizations. SIGMOD RECORD, 21(1), 39-46.

Coole, D., & Frost, S. (2010). Introducing the New Materialisms. In D. Coole & S.
Frost (Eds.), New Materialisms: Ontology, Agency, and Politics. Durham,
London: Duke University Press.

Cox, G. (2007). Generator: The Value of Software Art. In J. Rugg & M. Sedgwick
(Eds.), Issues in Curating Contemporary Art and Performance. Bristol,
Chicago: Intellect Lrd.

Cox, G. (2010). Antithesis : The Dialectics of Software Art. Århus: Digital Aesthetics
Research Center.

Cox, G. (2013). Speaking Code: Coding as Aesthetic and Political Expression. The
MIT Press.

Cox, G. (2015). Real-time for Pirate Cinema. Ljubljana: Aksioma - Institute for
Contemporary Art.

Cox, G. (2017, in press). RuntimeException()- Critique of Software Violence. In H.
Pritchard, E. Snodgrass, & M. Cyzlik-carver (Eds.), Executing Practices.
Autonomedia.

Cox, G., & Lund, J. (2016). The Contemporary Condition: Introductory Thoughts on
Contemporaneity and Contemporary Art. Aarhus: Sternberg Press.

Cox, G., McLean, A., & Ward, A. (2000). The Aesthetics of Generative Code.

Bibliography

320

Retrieved from http://generative.net/papers/aesthetics/
Cox, G., McLean, A., & Ward, A. (2004). Coding Praxis: Reconsidering the

aesthetics of code. In O. Goriunova & A. Shulgin (Eds.), Read_me : Software
Art & Cultures. Århus: Digital Aesthetics Resarch Centre : University of
Aarhus.

Craighead, T. (2012). A live portrait of Tim Berners-Lee (An early warning system).
Bradford: National Media Museum. Retrieved from http://thomson-
craighead.net/tbl.html

Cramer, F. (2001). Digital Code and Literary Text. Retrieved from
http://www.dichtung-digital.org/2001/10/22-Cramer/index2engl.htm

Cramer, F. (2003). Ten These about Software Art. Retrieved from
http://cramer.pleintekst.nl/all/10_thesen_zur_softwarekunst/10_these
s_about_software_art.txt

Cramer, F. (2005). Words Made flesh: Code, Culture, Imagination. Rotterdam: Piet
Zwart Institute.

Cramer, F., & Fuller, M. (2008). Interface. In M. Fuller (Ed.), Software Studies \ a
lexicon. The MIT Press.

Cramer, F., & Gabriel, U. (2001). Software Art. Netzliteratur. Retrieved from
http://www.netzliteratur.net/cramer/software_art_-
_transmediale.html

Crisell, A. (2012). Liveness and Recording in the Media. Palgrave Macmillian.
Crockford, D. (2006). The application/json Media Type for JavaScript Object

Notation (JSON). Retrieved from https://www.ietf.org/rfc/rfc4627.txt
Davis, W. (2007). Television's Liveness: A Lesson from the 1920s. Westminster

Papers in Communication and Culture, 4(2), 36-51.
De Souza, P. (2010). Rethinking the Dissension between Software and Generative

Art. The International Journal of Technology, Knowledge and Society, 6(5),
13-26.

DeLanda, M. (1995). The Geology of Morals: A Neomaterialist Interpretation. Paper
presented at the Virtual Futures 95 Conference, Warwick University
Retrieved from http://www.t0.or.at/delanda/geology.htm

DeLanda, M. (2003). 1000 Years of War. CTheory interview with Manuel de Landa.
ctheory.

Deleuze, G. (1968). Différence et répétition. (Disputats, Paris). Presses
universitaires de France,, Paris.

Deleuze, G. (1988). Spinoza: Practical Philosophy. San Francisco: City Lights
Books.

Deleuze, G., & Guattari, F. (1987). A thousand plateaus capitalism and
schizophrenia. Minneapolis: University of Minnesota Press.

Derrida, J. (1978). Writing and difference. Chicago, Ill.: University of Chicago
Press.

Derrida, J. (2002). Acts of religion. New York: Routledge.
Dewey, J. (1991). How we think. Buffalo, N.Y.: Prometheus Books.
Dietz, H. G., & Mattox, T. I. (2005). Compiler Optimizations Using Data

Compression to Decrease Address Reference Entropy. In B. Pugh & C.-W.
Tseng (Eds.), Languages and Compilers for Parallel Computing: 15th
Workshop, LCPC 2002, College Park, MD, USA, July 25-27, 2002. Revised
Papers (pp. 126-141). Berlin, Heidelberg: Springer Berlin Heidelberg.

DiNucci, D. (1999). Fragmented Future. Print, 221
Doane, M. A. (2006). Information, Crisis, Catastrophe. In W. H. K. Chun & T.

321

Keenan (Eds.), New Media Old Media: A History and Theory Reader (Vol. 1,
pp. 251-264). New York, London: Routledge.

Donati, L. P., & Prado, G. (2001). Artistic Environments of Telepresence on the
World Wide Web. Leonardo, 34(5), 437-442.

Dorish, P. (2014). No SQL: The Shifting Materialities of Database Technology.
Computational Culture, (4). Retrieved from
http://computationalculture.net/article/no-sql-the-shifting-
materialities-of-database-technology

Drahansky, M. (2011). Liveness Detection in Biometrics. In G. Chetty & J. Yang
(Eds.), Advanced Biometric Technologies. InTech.

Dredge, S. (2014, Jun 30). How does Facebook decide what to show in my news
feed? Retrieved from
http://www.theguardian.com/technology/2014/jun/30/facebook-news-
feed-filters-emotion-study

Drucker, J. (2009). SpecLab digital aesthetics and projects in speculative
computing. Chicago: University of Chicago Press.

Eisenmann, T. R., Parker, G., & Alstyne, M. V. (2008). Opening Platforms: How,
When and Why. Harvard Business School. Retrieved from
http://www.hbs.edu/faculty/Publication Files/09-030.pdf

ELC3. (2016). If I wrote you a love letter would you write back? Retrieved from
http://collection.eliterature.org/3/work.html?work=if-I-wrote-you-a-
love-letter

Electroboutique. (2005). Electroboutique. works [Artwork]. Retrieved from
http://www.electroboutique.com/works/4

Ellis, J. (1992/[1982]). Visible Fictions: Cinema: Television: Video (2 ed.). London,
New York: Routledge.

Emerson, L. (2014). Reading writing interfaces : from the digital to the bookbound.
Minneapolis: University of Minnesota Press.

Ernst, W. (2006). Dis/continuities: Does the Archive Become Metaphorical in Multi-
Media Space? In W. H. K. Chun & T. Keenan (Eds.), New media, old media :
a history and theory reader (pp. x, 418 sider). New York ; London: Routledge.

Ernst, W. (2009). '...Else Loop Forever': The Untimeliness of Media. Paper
presented at the I1 Senso della Fine conference, Urbino, Italy Retrieved
from https://www.medienwissenschaft.hu-
berlin.de/de/medienwissenschaft/medientheorien/downloads/publikati
onen/ernst-else-loop-forever.pdf

Ernst, W. (2013a) Ernst on Time-Critical Media: A mini-interview/Interviewer: J.
Parikka. Machinology. Retrieved from
https://jussiparikka.net/2013/03/18/ernst-on-microtemporality-a-mini-
interview/

Ernst, W. (2013b). Media Archaeology: Method and Machine versus History and
Narrative of Media. Minneapolis: University of Minnesota Press.

Espinha, T., Zaidman, A., & Gross, H. G. (2014). Web API growing pains: Stories
from client developers and their code. 2014 Software Evolution Week-IEEE
Conference on Software Maintenance, Regineering and reverse Engineering
(CSMR-WCRE), Belgium: CSMR-WCRE 2014.

Etzkowitz, H., Kemelgor, C., Uzzi, B., Neuschatz, M., Seymour, E., Muley, L., &
Alonzo, J. (2000). Athena Unbound: The Advancement of Women in Science
and Technology. Cambridge: Cambridge University Press.

Feuer, J. (1983). The Concept of Live Television: Ontology as Ideology. In E. A.

Bibliography

322

Kaplan (Ed.), Regarding Television: Critical Approaches (pp. 12-22).
Washington, DC: University Press of America.

Fischer, J., Majumdar, R., & Millstein, T. (2007). Tasks: language support for event-
driven programming. Paper presented at the Proceedings of the 2007 ACM
SIGPLAN symposium on Partial evaluation and semantics-based program
manipulation, Nice, France

Fitzpatrick, D. (n.d.). Batch Processing. Retrieved from
http://www.computing.dcu.ie/~dfitzpat/content/batch-processing

Fitzpatrick, K. (2012). The Humanities, Done Digitally. In M. K. Gold (Ed.),
Debates in the digital humanities. Minneapolis: Univ Of Minnesota Press.

Foucault, M. (1972). The Archaeology of Knowledge and the Discourse on Language.
New York: Pantheon Books.

Frabetti, F. (2015). Software Theory : A Cultural and Philosophical study. London:
Rowman & Littlefield International.

Frigg, R. (2004). In What Sense is the Kolmogorov-Sinai Entropy a Measure for
Chaotic Behaviour?—Bridging the Gap Between Dynamical Systems Theory
and Communication Theory. The British Journal for the Philosophy of
Science, 55(3), 411-434.

Fuller, M. (2003). Behind the blip : essays on the culture of software. New York
London: Autonomedia;Pluto.
Fuller, M. (2004). Digital Objects. In O. Goriunova & A. Shulgin (Eds.), read_me:

Software Art & Culture (pp. 26-41). Aarhus: University of Aarhus.
Gaboury, J. (2013). A Queer History of Computing. Rhizome.org. Retrieved from

http://rhizome.org/editorial/2013/feb/19/queer-computing-1/
Gabrys, J. (2011). Digital Rubbish: A Natural History of Electronics. The

University of Michigan Press.
Gadassik, A. (2010). At a loss for words: Televisual Liveness and Corporeal

Interruption. Journal of Dramatic Theory and Criticism, XXIV(2), 117-134.
Galanter, P. (2003). What is Generative Art? Complexity theory as a context for art

theory. In GA2003–6th Generative Art Conference Citeseer.
Galanter, P. (2008). What is Complexism? Generative Art and the Cultures of

Science and the Humanities. GA2008, 11th Generative Art Conference,
Milan, Italy Generative Design Lab.

Galanter, P. (2010). Complexity, Neuroaesthetics, and Computational Aesthetic
Evaluation. Paper presented at the 13th Generative Art Conference
GA2010, Politecnico di Milano University, Italy

Galanter, P. (2016). Generative Art Theory. In C. Paul (Ed.), A Companion to
Digital Art (pp. 146-180). Wiley-Blackwell.

Galloway, A. R. (2004). Protocol : how control exists after decentralization.
Cambridge: MIT Press.

Galloway, A. R. (2012). The interface Effect. Cambridge, UK: Polity Press.
Galloway, A. R., & Thacker, E. (2009). On Narcolepsy. In J. Parikka & T. D.

Sampson (Eds.), The Spam Book: On Viruses, Porm and Other Anomalies
From the Dark Side of Digital Culture. Hampton Press.

Garsiel, T., & Irish, P. (2011). How Browsers Work: Behind the scenes of modern
web browsers. Retrieved from
http://www.html5rocks.com/en/tutorials/internals/howbrowserswork/

Gayo-Avello, D. (2013). A Meta-Analysis of State-of-the-Art Electoral Prediction
From Twitter Data. Social Science Computer Review, 1-31.

Gehl, R. W. (2015). Building a Better Twitter: A Study of the Twitter Alternatives
GNU social, Quitter, rstat.us, and Twister. The Fibreculture Journal, (26).

323

Retrieved from http://twentysix.fibreculturejournal.org/fcj-190-
building-a-better-twitter-a-study-of-the-twitter-alternatives-gnu-
social-quitter-rstat-us-and-twister/

GENERATOR. (2002). GENERATOR [Exhibition]. Retrieved from
http://generative.net/generator/

Generator.x. (2008). Generator.x 2.0: Beyond the Screen. Retrieved from
http://www.generatorx.no/20071130/generatorx-20-call/

Georgi, C. (2014). Liveness on stage : intermedial challenges in contemporary
British theatre and performance. Berlin, Germany ; Boston, Massachusetts:
De Gruyter.

Gerlitz, C., & Helmond, A. (2013). The like economy: Social buttons and the data-
intensive web. New Media & Society, 15(8), 1348-1365.

Gibbs, G. (1988). Learning by doing: A guide to teaching and learning methods.
FEU.

Goodman, C. (1987). Digital visions : computers and art. New York: Abrams.
Google. (2016, Mar 30, 2016). Google Earth API Developer's Guide. Retrieved from

https://developers.google.com/earth/ - troubleshooting
Goriunova, O. (2012). Art Platforms and Cultural Production on the Internet. New

York: Routledge.
Goriunova, O., & Shulgin, A. (2004). Read_Me Today. In O. Goriunova & A.

Shulgin (Eds.), read_me: Software Art & Culture (pp. 17-22). Aarhus:
University of Aarhus.

Grosser, B. (2014). What do metrics want? How quantification prescribes social
interaction on Facebook. Computational Culture, (4). Retrieved from
http://computationalculture.net/article/what-do-metrics-want

Gruenbaum, P. (2010, August 12). Web API Documentation Best Practices [Blog
post]. Retrieved from http://www.programmableweb.com/news/web-api-
documentation-best-practices/2010/08/12

Hamp, S. (2010, Aug 11). Is JSON the Developer's Choice? Retrieved from
http://www.programmableweb.com/news/json-developers-
choice/2010/08/11

Hansen, M., & Rubin, B. (2000-2001). Listening Post [Artwork]. London: Science
Museum. Retrieved from
http://www.sciencemuseum.org.uk/visitmuseum/plan_your_visit/exhib
itions/listening_post

Hansen, N. B., Nørgård, R. T., & Halskov, K. (2014). Crafting code at the demo-
scene. Paper presented at the Proceedings of the 2014 conference on
Designing interactive systems, Vancouver, BC, Canada

Harrison, E. (2009). Toy Town. Retrieved from
http://www.ellieharrison.com/index.php?pagecolor=3&pageId=project-
toytown

Hausdorff, F. (1957). Set theory. Providence, R.I.: American Mathematical Society.
Hayles, N. K. (1990). Chaos bound : orderly disorder in contemporary literature and

science. Ithaca, N.Y.: Cornell University Press.
Hayles, N. K. (1991). Chaos and order : complex dynamics in literature and science.

Chicago, London: University of Chicago Press.
Hayles, N. K. (2005). My mother was a computer : digital subjects and literary texts.

Chicago: University of Chicago Press.
Hayles, N. K. (2006). Traumas of Code. Critical Inquiry, 33(1), 136-157.
Hayles, N. K. (2010). How We Read: Close, Hyper, Machine. ADE Bulletin(150), 62-

Bibliography

324

79.
He, Y., Hou, Y., & Wang, Y. (2010). Liveness iris detection method based on the eye's

optical features. Proc. SPIE 7838, Optics and Photonics for
Counterterrorism and Crime Fighting VI and Optical Maerials in Defence
System Technology VII SPIE.

Health, S., & Skirrow, G. (1977). Television: A World in Action. Screen, 18(2), 7-59.
Helmond, A. (2013). The Algorithmization of the Hyperlink. Computational

Culture, (3). Retrieved from http://computationalculture.net/article/the-
algorithmization-of-the-hyperlink

Helmond, A. (2015). The Web as Platform: Data Flows in Social Media. (Doctoral
Dissertation). Universiteit van Amsterdam, Amsterdam. Retrieved from
http://www.annehelmond.nl/wordpress/wp-
content/uploads//2015/08/Helmond_WebAsPlatform.pdf

Hertz, G. (2012). Garnet Hertz - Interview with Natalie Jeremijenko. In G. Hertz
(Ed.), Critical Making: Conversations (pp. 40). Garnet Hertz.

Hertz, G., & Parikka, J. (2012). Zombie Media: Circuit Bending Media Archaeology
into an Art Method. Leonardo, 45(5), 424-430.

Hill, C., Corbett, C., & Rose, A. S. (2010). Why So Few? Women in Science,
Technology, Engineering, and Mathematics [Report]. Retrieved from
https://www.aauw.org/files/2013/02/Why-So-Few-Women-in-Science-
Technology-Engineering-and-Mathematics.pdf

Hofstadter, D. R. (1980 [1979]). Gödel, Escher, Bach: An Eternal Golden Braid.
New York: Vintage Books.

Hogg, T., Lerman, K., & Smith, L. M. (2013). Stochastic Models Predict User
Behavior in Social Media. SocialCom, 2(1), 63-68.

Hookway, B. (2014). Interface : A Genealogy of Mediation and Control. Cambridge,
Massachusetts: MIT Press.

Hopper, G. M. (1955). Automatic Coding for Digital Computers. Paper presented at
the The High Speed Computer Conference, Louisiana State University
Retrieved from
http://www.mirrorservice.org/sites/www.bitsavers.org/pdf/univac/Hop
perAutoCodingPaper_1955.pdf

Howe, D. C. (2015). Surveillance Countermeasures: Expressive Privacy via
Obfuscation. A Peer-Reviewed Journal About, 4(1). Retrieved from
http://www.aprja.net/?page_id=2283

Howe, D. C., & Nissenbaum, H. (2009). TrackMeNot: Resisting Surveillance in Web
Search. In I. Kerr, V. Steeves, & C. Lucock (Eds.), Lessons from Identity
Trial: Privacy, Anoymity and Identity in a Networked Soceity Oxford: Oxford
University Press.

Howe, D. C., Toubiana, V., LSubramanian, L., & Nissenbaum, H. (2011).
TrackMeNot: Enhacing the privacy of Web Search. ArXiv.

Hyde, R. (2004). Write great code Volume 1 : understanding the machine. San
Francisco: No Starch Press.

IBM. (1990, 2010). What is batch processing? Retrieved from
https://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.
zconcepts/zconc_whatisbatch.htm

Jacucci, G., Wagner, M., Wagner, I., Giaccardi, E., Annunziato, M., Breyer, N., . . .
Schuricht, S. (2010). ParticipArt: Exploring participation in interactive art
installations. 2010 IEEE International Symposium on Mixed and
Augmented Reality - Arts, Media, and Humanities.

325

Jeremijenko, N. (1995). Live Wire [Artwork]. Retrieved from
http://tech90s.walkerart.org/nj/transcript/nj_04.html

Johnson, S. (2001). Emergence : the connected lives of ants, brains, cities, and
software. London: The Penguin Press.

Johnston, D. J. (2016). Aesthetic Animism: Digital Poetry's Ontological
Implications. MIT Press.

Jones, A. (2012). The Now and the Has Been: Paradoxes of Live Art in History. In
A. Jones & A. Heathfield (Eds.), Perform, Repeat, Record Live Art in History.
Bristo, Chicago: Intellect.

Keehner, J. (2007). Milliseconds are focus in algorithmic trades. Reuters. Retrieved
from http://www.reuters.com/article/us-exchanges-summit-algorithm-
idUSN1046529820070511

Kelty, C. M. (2008). Two Bits: The Cultural Significance of Free Software. Durham,
London: Duke University Press.

Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing.
Computer, 36(1), 41-50.

Kim, E. E., & Toole, B. A. (1999). Ada and the First Computer. Scientific American,
76-81.

Kirschenbaum, M. G. (2012). Mechanisms : new media and the forensic
imagination. Cambridge, Mass. ; London: MIT Press.

Kistler, T. (1997). Dynamic runtime optimization. In H. Mössenböck (Ed.), Modular
Programming Languages: Joint Modular Languages Conference, JMLC'97
Linz, Austria, March 19–21, 1997 Proceedings (pp. 53-66). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Kitchin, R., & Dodge, M. (2011). Code/space : software and everyday life.
Cambridge, Mass.: MIT Press.

Kittler, F. (1995). There is No Software. Ctheory.net. Retrieved from
http://www.ctheory.net/articles.aspx?id=74

Kluszczynski, R. W. (2010). Strategies of interactive art. Journal of Aesthetics &
Culture, 2. Retrieved from
http://www.aestheticsandculture.net/index.php/jac/article/view/5525

Knotts, S. (2013). METAL TV: Composers Lab Shelly Knotts. Retrieved from
https://www.youtube.com/watch?v=SbW9Bhp3JZU

Kowalski, R. (1979). Algorithm = logic + control. Commun. ACM, 22(7), 424-436.
Kumar, A. A. (2015). Digital Signal Processing, Second Edition. Delhi: PHI

Learning Private Limited.
Kurose, J. F., & Ross, K. W. (2013). Computer Networking: A Top-Down Approach.

Pearson Education.
Laplante, P. A. (2000). Dictionary of Computer Science, Engineering and

Technology CRC Press.
Latour, B. (1996). On actor-network theory: A few clarifications. Soziale Welt, 47(4),

369-381.
Latour, B. (1999). Pandora's hope : essays on the reality of science studies.

Cambridge, Mass.: Harvard University Press.
Law, J., & Singleton, V. (2005). Object Lessons. Organization, 12(3), 331-355.
Lazaris, L. (2013). Using White Space for Readability in HTML and CSS.

Smashing Magazine. Retrieved from
https://www.smashingmagazine.com/2013/02/using-white-space-for-
readability-in-html-and-css/

Lessig, L. (2006). Code v2. Basic Books.

Bibliography

326

Li, J., & Rao, H. R. (2010). Twitter as a Rapid Response News Service: An
Exploration in the Context of the 2008 China Earthquake. The Electronic
Journal of Information Systems in Developing Countries, 42(4), 1-22.

Link, D. (2006). There Must Be an Angel: On the Beginnings of the Arithmetics of
Rays. In S. Zielinski & D. Link (Eds.), Variantonlogy 2: On Deep Time
Relations of Arts, Sciences and Technologies (pp. 15-42). Cologne: Walther
König.

Live Art Development Agency. (n.d). What is Live Art. Retrieved from
http://www.thisisliveart.co.uk/about/what-is-live-art

Louden, K. C., & Lambert, K. A. (2012). Programming Languages: Principles and
Practice (3rd ed.). Boston: Cengage Learning.

Machta, J. (1999). Entropy, information, and computation. American Journal of
Physics, 67(12), 1074-1077.

Mackenzie, A. (2005). The Performativity of Code: Software and Cultures of
Circulation. Theory, Culture and Society, 22(1), 71-92.

Mackenzie, A. (2006). Cutting Code: Software and Sociality. New York: Peter Lang.
Mackenzie, A. (2012). More parts than elements: how databases multiply.

Environment and Planning D: Society and Space, 30, 335-350.
Mackenzie, A. (2013). Programming subjects in the regime of anticipation: Software

studies and subjectivity. Subjectivity, 6(4), 391-405.
Maeda, J. (2004). Creative code. London: Thames & Hudson.
Maigret, N. (2014). The Pirate Cinema - A cinematic collage generated by P2P users

[Artwork]. Retrieved from http://thepiratecinema.com/
Manovich, L. (1999). Database as symbolic form. Convergence, 5(2), 80-99.
Manovich, L. (2001). The language of new media.
Manovich, L. (2013). Software Takes Command. Bloomsbury Academic.
Marino, M. C. (2006). Critical Code Studies. electronic book review. Retrieved from

http://www.electronicbookreview.com/thread/electropoetics/codology
Marino, M. C. (2014). Field Report for Critical Code Studies. Computational

Culture, (4). Retrieved from http://computationalculture.net/article/field-
report-for-critical-code-studies-2014%E2%80%A8 - fn-1946-1

Mason, R., & McKendrick, J. (2015). The Rising Value of APIs: MuleSoft's
Predictions for 2016 [Whitepaper]. Retrieved from
https://www.mulesoft.com/lp/whitepaper/api/rising-value-apis

Master. (n.d.). In English Oxford Living Dictionaries. Retrieved from
https://en.oxforddictionaries.com/definition/master

McCormick, T. H., Lee, H., Cesare, N., Shojaie, A., & Spiro, E. S. (2015). Using
Twitter for Demographic and Social Science Research: Tools for Data
Collection and Processing. Sociological Methods & Research.

McIntyre, R. B., Lord, C. G., Gresky, D. M., Frye, G. D. J., & Bond Jr, C. F. (2005).
A Social Impact Trend in the Effects of Role Model on Alleviating Women's
Mathematics Stereotype Threat. Current Research in Social Psychology,
10(9).

McLean, A. (2004). Hacking Perl in NightClubs. Perl.com. Retrieved from
http://www.perl.com/pub/2004/08/31/livecode.html

McLean, A. (2011). Artist-Programmers and Programming Languages for the Arts.
(Doctoral Dissertation). University of London. Retrieved from
http://yaxu.org/thesis/

McLean, A. (2014). Making programming languages to dance to: live coding with
tidal. Paper presented at the Proceedings of the 2nd ACM SIGPLAN

327

international workshop on Functional art, music, modeling & design,
Gothenburg, Sweden

McPherson, T. (2006). Reload: Liveness, Mobility and the Web. In Wendy Hui K.
Chun & T. Keenan (Eds.), New Media Old Media: A History and Theory
Reader (pp. 199- 208). New York, Oxon: Routledge.

Meinel, C., & Sack, H. (2013). Internetworking: Technological Foundations and
Applications. Berlin: Springer.

Metz, C. (2014, Feb 4). This is what you build to juggle 6,000 tweets a second.
WIRED Business. Retrieved from http://www.wired.com/2014/04/twitter-
manhattan/

Meysenburg, M. (2014). Introduction to Programming Using Processing, Second
Edition. Crete: lulu.com.

Miyazaki, S. (2012). Algorhythmics: Understanding Micro-temporality in
Computational Cultures. Computational Culture, (2). Retrieved from
http://computationalculture.net/article/algorhythmics-understanding-
micro-temporality-in-computational-cultures

Montfort, N. (2013). 10 PRINT CHR. Cambridge, Mass.: MIT Press.
Morris, J. W. (2015). Curation by code: Infomediaries and the data mining of taste.

European Journal of Cultural Studies, 18(4-5), 446-463.
Murphie, A. (2013). Convolving Signals: Thinking the performance of

computational processes. Performance Paradigm, (9). Retrieved from
http://www.performanceparadigm.net/index.php/journal/article/view/1
35

Murtaugh, M. (2008). Interaction. In M. Fuller (Ed.), Software studies : a lexicon
(pp. 143-148.). Cambridge, Mass.: MIT Press.

Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. bitcoin.org.
Retrieved from https://bitcoin.org/bitcoin.pdf

Nakov, S., Dimitrov, D., Germanov, H., Stoynov, M., Valkov, K., Bivas, M., &
Yosifov, Y. (2013). Fundamentals of computer programming with C#: Sofia.

Newell, C. (2009). Place, authenticity, and time: a framework for liveness in
synthetic speech. (Doctoral Dissertation). The University of York, United
Kingdom.

Newton, C. (2016). Here's how Twitter's new algorithmic timeline is going to work.
The Verge. Retrieved from
http://www.theverge.com/2016/2/6/10927874/twitter-algorithmic-
timeline

Norman, S. J. (2016). Senses of Liveness for Digital Times. Paper presented at the
IETM Amsterdam, IETM Amsterdam Plenary Meeting [Opening Keynote
Speech]. Retrieved from https://www.ietm.org/en/themes/senses-of-
liveness-for-digital-times

O'Dwyer, R. (2015). The Revolution Will (not) be Decentralised: Blockchain-based
Technologies & the Commons. COMMONS TRANSITION. Retrieved from
http://commonstransition.org/the-revolution-will-not-be-decentralised-
blockchains/

O'Dwyer, R. (2016). Blockchains and Their Pitfalls. In T. Scholz & N. Schneider
(Eds.), Ours to Hack and to Own: The Rise of Platform Cooperativism, A new
vision for the future of work and a fairer internet. OR Books.

O'Reilly, T. (2005). What Is Web 2.0. Retrieved from
http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html

O'Reilly, T., & Battelle, J. (2004). Opening Welcome: The State of the Internet

Bibliography

328

Industry. Web 2.0 Conference, Hotel Nikko, San Francisco, CA. Retrieved
from http://web2con.com/presentations/web2con/intro_tim_john.ppt

Olaiya, F. (2012). Application of Data Mining Techniques in
Weather Prediction and Climate Change Studies. International Journal of

Information Engineering and Electronic Business, 4(1), 51-59.
Olthof, T. (2009). (GENERATIVE) VISUAL ART IN FLEX4/AS3. Retrieved from

http://www.timenolthof.nl/projects/tutorials/GenerativeArtTutorial/Ge
nerativeArtTutorial.pdf

Oracle. (2012). An overview of Research Tracking: Research Candidate Management
and Thesis Processing [White Paper]. Retrieved from
https://www.uwplatt.edu/files/its/PASS/Upgrade_Schedule/Bundle26/
Research_Tracking_Benefits_Document.pdf

Owicki, S., & Lamport, L. (1982). Proving Liveness Properties of Concurrent
Programs. ACM Transactions on Programming Languages and Systems,
4(3), 455-495.

Palmer, D. (2008). Participatory Media: Visual Culture in Real Time. VDM
Publishing.

Pan, G., Wu, Z., & Sun, L. (2008). Liveness Detection for Face Recognition. In K.
Dalac, M. Grgic, & M. S. Bartlett (Eds.), Recent Advances in Face
Recognition. InTech.

Pan, H., Tilakaratne, C., & Yearwood, J. (2003). Predicting the Australian Stock
Market Index Using Neural Networks Exploiting Dynamical Swings and
Intermarket Influences. In T. D. Gedeon & L. C. C. Fung (Eds.), AI 2003:
Advances in Artificial Intelligence: 16th Australian Conference on AI, Perth,
Australia, December 3-5, 2003. Proceedings (pp. 327-338). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Parikka, J. (2010). Ethologies of Software Art: What Can a Digital Body of Code
Do? . In S. O'Sullivan (Ed.), Deleuze and Contemporary Art. Edinburg
University Press.

Parikka, J. (2011). Operative Media Archaeology: Wolfgang Ernst's Materialist
Media Diagrammatics. Theory, Culture & Society, 28(5), 52-74.

Parikka, J. (2012). What is media archaeology. Cambridge: Polity Press.
Parikka, J. (2015). The Universal Viral Machine: Bits, Parasites and the Media

Ecology of Network Culture. ctheory. Retrieved from
http://www.ctheory.net/articles.aspx?id=500

Parikka, J., & Sampson, T. D. (2009a). Bad Objects. In J. Parikka & T. D. Sampson
(Eds.), The Spam Book: On Viruses, Porm and Other Anomalies From the
Dark Side of Digital Culture. Hampton Press.

Parikka, J., & Sampson, T. D. (2009b). An Introduction. In J. Parikka & T. D.
Sampson (Eds.), The Spam Book: On Viruses, Porm and Other Anomalies
From the Dark Side of Digital Culture. Hampton Press.

Parisi, L. (2013). Contagious Architecture: Computation, Aesthetics, and Space.
Cambridge: MIT Press.

Parisi, L., & Fazi, M. B. (2014). Do Algorithms Have Fun? On Completion,
Indeterminancy and Autonomy in Computation. In O. Goriunova (Ed.), Fun
and Software. New York, London: Bloomsbury Publishing.

Parlante, N. (1999). Pointers and Memory. Retrieved from
http://cslibrary.stanford.edu/102/PointersAndMemory.pdf

Patterson, D. A., & Hennessy, J. L. (2007). Computer Organization and Design: The
Hardware/Software Interface (3 ed.). Burlington: Morgan Kaufmann.

Paul, C. (2002). Whitney Artport Comissions: CODeDOC [Exhibition]. Retrieved

329

from http://artport.whitney.org/commissions/codedoc/
Paul, C. (2003). CODeDOC II. In the catalogue of the exhibition Ars Electronica

2003, Linz: Ars Electronica. Retrieved from
http://90.146.8.18/en/archives/festival_archive/festival_catalogs/festiv
al_artikel.asp?iProjectID=12323

Paul, C. (2007). The Database as System and Cultural Form: Anatomies of
Cultural Narratives. In V. Vesna (Ed.), Database Aesthetics. Minneapolis

London: University of Minnesota Press.
Pearson, M. (2011). Generative Art: A Practical Guide Using Processing. New York:

Manning Publications Co.
Peddinti, S. T., & Saxena, N. (2010). On the Privacy of Web Search Based on Query

Obfuscation: A Case Study of TrackMeNot. In M. J. Atallah & N. J. Hopper
(Eds.), Privacy Enhancing Technologies: 10th International Symposium,
PETS 2010, Berlin, Germany, July 21-23, 2010. Proceedings (pp. 19-37).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Penny, S. (2009). Art and Artificial Life - a Primer. Proceedings of the 6th
European Conference (ECAL), Sprinter, Berlin. Retrieved from
http://simonpenny.net/texts/Resources/a_life.pdf

Peppler, K. A., & Kafai, Y. B. (2009). Creative coding: Programming for personal
expression. The 8th International Conference on Computer Supported
Collaborative Learning, Rhodes, Greece.

Pereira, F., & Ebrahimi, T. (2002). The MPEG-4 Book. Prentice Hall.
Phelan, P. (1993). Unmarked : the politics of performance (Paperback. ed.). London:

Routledge.
Postel, J. (1981a). Internet Protocol - Darpa Internet Program Protocol Specification

(RFC 793) [Specification]. Retrieved from Information Sciences Institute:
https://tools.ietf.org/html/rfc791

Postel, J. (1981b). Transmission Control Protocol - Darpa Internet Program Protocol
Specification (RFC 791) [Specification]. Retrieved from Information Sciences
Institute: https://tools.ietf.org/html/rfc793

Pradhan, D. K., & Harris, I. G. (2009). Practical design verification. Cambridge,
UK: Cambridge University Press.

Pritchard, H., & Prophet, J. (2015). Diffractive Art Practices: Computation and the
Messy Entanglements between Mainstream Contemporary Art, and New
Media Art. Artnodes, 15. Retrieved from
http://journals.uoc.edu/index.php/artnodes/article/view/n15-pritchard-
prophet/2710

Prophet, J. (2001). "TechnoSphere": "Real" Time, "Artificial" Life. Leonardo, 34(4),
309-312.

Raley, R. (2009). List(en)ing Post. In F. J. Ricardo (Ed.), Literary Art in Digital
Performance: Case Studies in New Media Art and Criticism. New York,
London: The Continuum International Publishing Group Inc.

Raley, R. (2012). Distracted Reading. ELMCIP Anthology. Retrieved from
http://anthology.elmcip.net/materials/syllabi/Raley-2012-US.pdf

Ramsay, S. (2004). Databases. In S. Schreibman, R. Siemens, & J. Unsworth (Eds.),
A Companion to Digital Humanities. Oxford: Blackwell.

Reas, C., & Fry, B. (2014). Processing: A Programming Handbook for Visual
Designers and Artists (2 ed.). Massachusetts Institute of Technology.

Reichardt, J. (1968). Cybernetic Serendipity: the computer and the arts. In the
catalogue of Exhibition Catelogue, London, New York: Studio International

Bibliography

330

Rheinberger, H.-J. (1997). Toward a history of epistemic things : synthesizing
proteins in the test tube. Stanford, Calif.: Stanford University Press.

Rheingold, H. (1991). Virtual Reality. Summit Books.
Ridgway, R. (2015). Personalisation as currency. A Peer-Reviewed Journal About

Datafied Research, 4(1). Retrieved from
http://www.aprja.net/?page_id=2283

Roebuck, K. (2011). Virtual Desktops : High-impact Strategies - What You Need to
Know: Definitions, Adoptions, Impact, Benefits, Maturity, Vendors. Dayboro:
Emereo Publishing.

Roffe, J., & Stark, H. (2015). Deleuze and the non/human. Houndmills,
Basingstoke, Hampshire: Palgrave Macmillan.

Rolling Jr, J. H. (2014). Artistic Method in Research as a Flexible Architecture for
Theory Building. International Review of Qualitative Research, 7(2), 161-
168.

Rosen, R. (2014). Internet Control Message Protocol (ICMP) Linux Kernel
Networking: Implementation and Theory (pp. 37-61). Berkeley, CA: Apress.

Sanden, P. (2013). Liveness in modern music : musicians, technology, and the
perception of performance. New York: Routledge.

Scannell, P. (1996). Radio, Television and Modern Life. Oxford, Massachusetts:
Blackwell Publishers Inc.

Schön, D. A. (1983). The reflective practitioner : how professionals think in action.
New York: Basic Books.

Schönlieb, C.-B., & Schubert, F. (2013). Random simulations for generative art
construction – some examples. Journal of Mathematics and the Arts, 7(1),
29-39.

Schuller, P. (2014, Apr 2). Manhattan, our real-time, multi-tenant distributed
database for Twitter Scale [Blog post]. Retrieved from
https://blog.twitter.com/2014/manhattan-our-real-time-multi-tenant-
distributed-database-for-twitter-scale

Seward, Z. M. (2014, Aug 11). Twitter admits that as many as 2 million of its active
uers are automated. QUARTZ.online. Retrieved from
http://qz.com/248063/twitter-admits-that-as-many-as-23-million-of-
its-active-users-are-actually-bots/

Shanken, E. A. (2002). Art in the Information Age: Technology and Conceptual Art.
Leonardo, 35(4), 433-438.

Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System
Tehnical Journal, 27, pp. 379-423, 623-656.

Shneiderman, B. (1994). Dynamics Queries For Visual Information Seeking. IEEE
software, 11(6), 70-77.

Simanowski, R. (2008). Close Reading in the Realm of Static and Dynamic Texts.
Digital Humanities Quarterly, 2(1). Retrieved from
http://digitalhumanities.org/dhq/vol/2/1/000018/000018.html

Simanowski, R. (2011). Digital art and meaning reading kinetic poetry, text
machines, mapping art, and interactive installations. Minneapolis:
University of Minnesota Press.

Snodgrass, E. (2017, in press). Ecologies of the executable. In E. Snodgrass, H.
Pritchard, & M. Tyzlik-Carver (Eds.), Exeuting Practices. Autonomedia.

Sofaer, J. (2002). What is Live Art?Joshua Sofaer Art. Retrieved from
http://www.joshuasofaer.com/2011/06/what-is-live-art/

Solaas, L., Watz, M., & Whitelaw, M. (2010) Generative Practice. The state of the
art/Interviewer: J. Levine. (Vol 57), DiGICULT | Digital art, Design and

331

Culture, Online. Retrieved from http://www.digicult.it/digimag/issue-
057/generative-practice-the-state-of-the-art/

Sollfrank, C. (2003). A small artist makes the machine do the work! Retrieved from
http://net.art-generator.com/src/projekt_engl.html

Sollfrank, C. (2012). Performing the Paradoxes of Intellectual Property. A practice-
led Investigation Into the Conflicting Relationship between Copyright and
Art. (Doctoral Dissertation). University of Dundee, United Kingdom.

Sondheim, A. (2001). Introduction: Codeword. ABR, 22(6).
Soon, W. (2014a). Hello Zombies [Artwork]. Retrieved from

http://siusoon.net/home/?p=1273
Soon, W. (2014b). Post-digital approach: Rethinking Digital Liveness in ‘The Likes

of Brother Cream Cat’. A Peer-Reviewed Journal About Post-Digital, 3(1).
Retrieved from http://www.aprja.net/?p=1814

Soon, W. (2015a). Zombies as the living dead. Datafied ResearchL A peer-Reviewed
Newspaper.Aarhus, Berlin: Digital Aesthetics Research Center, Aarhus
University and reSoource transmediale culture Berlin/Transmediale.
Retrieved from http://www.aprja.net/?page_id=2133

Soon, W. (2015b). Zombies in Spam Culture. Tracing Data: What you see is not
what we write Proceedings, 86-94. Retrieved from
http://www.writingmachine-collective.net/wordpress/?p=704

Soon, W. (2015c). Zombification: the living dead in spam. A Peer-Reviewed Journal
About Datafied Research, 4(1). Retrieved from
http://www.aprja.net/?p=2471

Soon, W. (2016a). Interfacing with questions: The unpredictability of live queries.
Proceedings of the 2016 International Conference on Live Interfaces,
Sussex, United Kingdom: the Experimental Music Technologies (EMuTe)
Lab, University of Sussex, in collaboration with REFRAME Books, Falmer,
UK. Retrieved from
http://reframe.sussex.ac.uk/reframebooks/archive2016/live-interfaces/

Soon, W. (2016b). Microtemporalities: At the Time of Loading-in-progress.
ISEA2016 Hong Kong Cultural R>evolution, Hong Kong: School of Creative
Media, City University of Hong Kong. Retrieved from
https://isea2016.scm.cityu.edu.hk/openconf/modules/request.php?mod
ule=oc_program&action=summary.php&id=249

Soon, W. (2016c). The Spinning Wheel of Life (work-in-progress) [Artwork].
Retrieved from http://siusoon.net/home/?p=1407

Soon, W. (2016, in press). Executing queries as a form of artistic practice.
International Art Conference.

Soon, W., & Pritchard, H. (2012a). Thousand Questions [Artwork]. Hong Kong:
Microwave International New Media Arts Festival 2012. Retrieved from
http://microwavefest.net/festival2012/ - !/if_i_wrote_as

Soon, W., & Pritchard, H. (2012b). thousands of other questions [Artwork].
Retrieved from http://www.siusoon.net/home/?p=900

Sprenger, F. (2015). The Politics of Micro-Decisions: Edward Snowden, Net
Neutrality, and the Architectures of the Internet. Lüneburg: meson press.

Stallabrass, J. (2003). THE AESTHETICS OF NET.ART. Qui Parle, 14(1), 49-72.
Stelter, B. (2011). Debate Web Stream Does Not Flow Smoothly for All [Blog post].

Retrieved from http://thecaucus.blogs.nytimes.com/2011/10/11/debate-
web-stream-does-not-flow-smoothly-for-all/?_r=1

Sterne, J. (2012). MP3: The meaning of a format. Durham, London: Duke

Bibliography

332

University Press.
Stocker, G. (2003). CODE - the language of our time. In G. Stocker & C. Schöpf

(Eds.), Code: The language of our time (pp. 10-14). Linx: Hatje Cantz.
Strachey, C. (1954). The "Thinking" Machine. Encounter, 25-31.
Sullivan, G. (2010). Art practice as research : inquiry in the visual arts (2. ed.).

London: SAGE.
Svensson, P. (2012). Beyond the Big Tent. In M. K. Gold (Ed.), Debates in the

digital humanities (pp. xvi, 516 s.). Minneapolis: Univ Of Minnesota Press.
Taboada, M. (2004). The Genre Structure of Bulletin Board Messages. Text

Technology, 13(2), 55-82.
Tanimoto, S. L. (1990). VIVA: A visual language for image processing. Journal of

Visual Languages and Computing, 1(2), 127-139.
Tanimoto, S. L. (2013). A perspective on the evolution of live programming.

Proceedings of the 1st International Workshop on Live Programming, San
Francisco, California: IEEE Press.

Tate. (2014). BMW TATE LIVE: On Liveness: Pre/During/Post. Retrieved from
http://www.tate.org.uk/whats-on/tate-modern/talks-and-lectures/bmw-
tate-live-on-liveness-preduringpost

Terranova, T. (2014). Red Stack Attack! Algorithms, Capital, and the Automation
of the Common. In A. Avanessian & R. Mackay (Eds.), #Accelerate# : The
Accelerationist Reader. Falmouth: Urbanomic.

The Humanities and Critical Code Studies Lab. (n.d). About | The Humanities and
Critical Code Studies Lab. Retrieved from http://haccslab.com/?page_id=2

The MIT Press. (2016). Software Studies. Retrieved from
https://mitpress.mit.edu/books/series/software-studies

Tian, X., & Benkrid, K. (2009). Mersenne Twister Random Number Generation on
FPGA, CPU and GPU. Paper presented at the Proceedings of the 2009
NASA/ESA Conference on Adaptive Hardware and Systems,

Tumasjan, A., Sprenger, T. O., Sandner, P. G., & Welpe, I. M. (2010). Predicting
Elections with Twitter: What 140 Characters Reveal about Political
Sentiment. Proceedings of the Fourth International AAAI Conference on
Weblogs and Social Media, Culture & Society.

Turing, A. M. (1937). On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, s2-
42(1), 230-265.

Tuya, J., Suárez-Cabal, M. J., & la Riva, C. d. (2007). Mutating database queries.
Information and Software Technology, 49(4), 398-417.

Twitter. (n.d). FAQ. Retrieved from https://dev.twitter.com/faq/basics
Unsworth, J. (2002). What is Humanities Computing and What is not? Retrieved

from http://computerphilologie.uni-muenchen.de/jg02/unsworth.html
Vasulka, S., & Demeyer, T. (n.d). Image/ine - V2_Institute for the Unstable Media.

Retrieved from http://v2.nl/archive/works/image-ine/?searchterm=real-
time

von Neumann, J. (1945). First Draft of a Report on the EDVAC (Contract No. W-
670-ORD-4926)[Report]. Retrieved from
http://www.wiley.com/legacy/wileychi/wang_archi/supp/appendix_a.pd
f

Wardrip-Fruin, N. (2011). Digital Media Archaeology: Interpreting Computational
Processes. In E. Huhtamo & J. Parikka (Eds.), Media Archaeology:
Approches, Applications, and Implications (pp. 302-322). University of

333

California Press.
Watz, M. (2008). Re: Internet #007: Technological Mimesis. Retrieved from

http://cont3xt.net/blog/?p=253
Watz, M. (2010). Closed systems: Generative art and Software Abstraction.

Retrieved from http://mariuswatz.com/wp-
content/uploads/2012/03/201005-Marius-Watz-Closed-Systems.pdf

Weaver, W. (1949). Recent Contributions to The Maathematical Theory of
Communication. In C. E. Shannon & W. Weaver (Eds.), The Mathematical
Theory of Communication (pp. 3-28). Urbana, Chicago: University of Illinois
Press.

Wegner, P. (1997). Why interaction is more powerful than algorithms.
Commmunications of the ACM, 40(5), 80-91.

Weizenbaum, J. (1966). Computational Linguistics. Commuincations of the ACM,
9(1), 36-45.

Weltevrede, E., Helmond, A., & Gerlitz, C. (2014). The Politics of Real-time: A
Device Perspective on Social Media Platforms and Search Engines. Theory,
Culture & Society, 0(0), 1-26.

Whitelaw, M. (2006). System stories and model worlds: A critical approach to
generative art. In O. Goriunova (Ed.), Readme 100: temporary software art
factory (pp. 135-154). Dortmund: Hartware-Medien-Kunst-Verein

Williams, R. (1974). Television : technology and cultural form. London: Fontana,
Collins.

Windows 95. (2001). In Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Windows_95

Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual
Environments: A Presence Questionnaire. Presence: Teleoperators and
Virtual Environments, 7(3), 225-240.

XCEED. (2014). Radiancescape [Artwork]. Retrieved from
http://www.xceed.hk/work/radiancescape/

Yeaton, M. (2013). What is email spoofing all about? MIT News. Retrieved from
http://news.mit.edu/2013/email-spoofing-whats-it-all-about

YoHa, & Fuller, M. (2014). Endless War [Artwork]. Hong Kong: Connecting Space.
Retrieved from http://www.writingmachine-
collective.net/wordpress/?p=489

Zaman, T. R., Herbrich, R., Van Gael, J., & Stern, D. (2010). Predicting information
spreading in twitter. Computational Social Science and the Wisdom of
Crowds Workshop (colocated with NIPS 2010) Citeseer. Retrieved from
https://www.microsoft.com/en-us/research/publication/predicting-
information-spreading-in-twitter/

Zemmels, D. (2004). Liveness and Presence in Emerging Communication
Technologies. Retrieved from
http://david.zemmels.net/scholarship/Comm7470.html

Zer-Aviv, M. (2004). Rhizome | The Web is a Living Organism. Rhizome.org.
Retrieved from
http://rhizome.org/artbase/artwork/27784/?ref=search_title

334

335

Software (art) projects cited

0100101110101101.ORG & epidemic. (2001). Biennale.py [Software]. Retrieved
from http://epidemic.ws/biannual.html

Blas, Z and Cárdenas, M. (2012). femme Disturbance Library [Codeart].
Brady, E., & Morris, C. (2003). Whitespace [Software]. Retrieve from

http://runme.org/project/+whitespace/
Cayley, J., & Howe, D. (2015). Read for us…And show us the pictures [Installation].

Retrieved from http://thereadersproject.org/installations/sutp.html#sutp
Chernyshev, A. (2007). Loading [Sculpture].
Chu, H. (1996). The Sound of Market [Installation].
Chung, B. (2015). 50. Shades of Grey [Installation]. Retrieved from

http://www.magicandlove.com/blog/artworks/50-shades-of-grey/
Electroboutique. (2005). Lyric economy [Installation]. Retrieved from

http://www.electroboutique.com/works/4
Grosser, B. (2012-). Facebook Demetricator [Software]. Retrieved from

http://bengrosser.com/projects/facebook-demetricator/
Hansen, M., & Rubin, B. (2000-2001). Listening Post [Installation].
Harrison, E. (2009). Toy Town [Installation].
Howe, D. C & Nissenbaum, H. (2006). TrackMeNot [Software]. Retrieved from

http://cs.nyu.edu/trackmenot/
I/O/D. (1997-1998). The Web Stalker [Software].
Jeremijenko, N. (1995). Live Wire [Installation].
JODI. (2008). GEO GOO [Website]. Retrieved from geogoo.net
Johnson, D. J. (2010). Spam Heart [Website/Software]. Retrieved from

http://www.glia.ca/2010/spamHeart/
Kyzywinski, M. (2010). ee spammings [Electronic Literature]. Retrieved from

http://mkweb.bcgsc.ca/fun/eespammings/
Lai, C-S. (2003). Instant [Installation]. Retrieved from

https://www.facebook.com/ESLITE.PROJECTONE/photos/?tab=album&albu
m_id=437623016346200

Leegte, J.R, (2000). Scrollbar Composition [Installation]. Retrieved from
http://www.scrollbarcomposition.com/

Link, D. (2009). LoveLetter_1.0 [Installation].
McLean, A. (2004). Feedback.pl [Software].
Sollfrank, C. (1997). Net.Art Generator [Website/installation]. Retrieve from

http://nag.iap.de/
Thomson & Craighead. (2012). A live portrait of Tim Berners-Lee (an early warning

system) [Installation]. Retrieved from
http://www.ucl.ac.uk/slade/slide/tbl.html

Maigret, N. (2014). The Pirate Cinema [Website/Installation/Performance].
Retrieved from http://thepiratecinema.com/

Polak, E & Bekkum, I.V. (2015) Technomourning [Website/Video]. Retrieved from
http://www.250miles.net/techno-mourning/

Prophet, J and Selley, G. (1995). Technosphere [Installation].
Ripkin, Rose & Schmidt, Loren. (2015). Moth generator [Bot]. Retrieved from

https://twitter.com/mothgenerator
Savičić, G. (2009) Loading (The Beast 6:66/20:09) [Installation]. Retrieved from

http://www.yugo.at/processing/archive/index.php?what=loading

Software (art) projects cited

336

Thayer, P. (2009-). Microcodes [Software]. Retrieve from
http://pallthayer.dyndns.org/microcodes/

Soon, W., & Pritchard, H. (2012-2016). Thousand Questions [Installation].
Retrieved from http://siusoon.net/home/?p=900

Soon, W. (2014). Hello Zombies [Installation]. Retrieved from
http://siusoon.net/home/?p=1273

Soon, W. (2016). The Spinning Wheel of Life [Software/Installation].
Strachey, C. (1952). Loveletters [Software/Print].
UBERMORGEN., Ludovico, A & Cirio, P. (2005). Google Will Eat itself

[Software/Print]. Retrieved from http://www.gwei.org/index.php
Vasulka, S., & Demeyer, T. (1996-2001). Image/ine [Software].
XCEED. (2014). Radiancescape [Installation]. Retrieved from

http://www.xceed.hk/work/radiancescape/
Zer-aviv, M. (2004). www.is-a-living.org [Installation].

	screen-cover02_cropped
	soon_FINAL3

