
Welcome to the Permacomputing wiki!

permaflower

Permacomputing is both a concept and a community of practice oriented around

issues of resilience and regenerativity in computer and network technology inspired

by permaculture. ପໄଓ☾☼✫ -☆:*´

There are huge environmental and societal issues in today’s computing, and

permacomputing specifically wants to challenge them in the same way as

permaculture has challenged industrial agriculture. With that said, permacomputing is

an anti-capitalist political project. It is driven by several strands of anarchism,

decoloniality, intersectional feminism, post-marxism, degrowth, ecologism.

Permacomputing is also a utopian ideal that needs a lot of rethinking, rebuilding and

technical design work to put in practice. This is why a lot of material on this wiki is

highly technical.

Most importantly, there is no permacomputing kit to buy. See permacomputing as

invitation to collectively and radically rethink computational culture. It is not a tech

solution searching for a problem.

For more information:

Permacomputing

Principles for people making things

Issues in today’s computing

Resources:

Getting Started - a starter’s manual of some sort

Library - texts and media about and around permacomputing

Projects - selection of projects affiliated with or adjacent to permacomputing

Assessments - review and analysis of existing and established pieces of

technology

Communities - permacomputing communities of practice and related

Events - such as talks, workshops, meetings and seminars

•

•

•

•

•

•

•

•

•

1. Permacomputing

Permacomputing is both a concept and a community of practice oriented around

issues of resilience and regenerativity in computer and network technology inspired

by permaculture.

In a time where computing epitomizes industrial waste and exploitation,

permacomputing encourages a more sustainable approach, maximizing hardware

lifespans, minimizing energy use and focussing on the use of already available

computational resources. Permacomputing asks the question whether it is possible to

rethink computing in the same way as permaculture rethinks agriculture.

Permaculture is the science and practice of creating semi-permanent ecosystems of

nature. The resilience of any such ecosystem is equal to its diversity and

interconnectedness. Permaculture design is a system of assembling conceptual,

material and strategic components in a pattern which functions to benefit life in all its

forms. It seeks to provide a sustainable and secure place for living things on this earth.

At first it may seems paradoxical to connect permaculture and computation. Indeed,

an extractive technology that depends on a wasteful use of finite resources can hardly

be permanent. Therefore, by making this connection, what we are truly asking is

whether or not there can be a place for computer and network technology in a world

where humans contribute to the well-being of the biosphere rather than destroy it?

And if yes, how?

Permacomputing wants to imagine such a place and take steps towards it. It is

therefore both utopian and practical. We want to find out how we can practice good

relations with the Earth by learning from ecological systems to leverage and re-center

existing technologies and practices. A radical reduction of wastefulness is a

fundamental aspect of it: maximize the hardware lifespans, minimize the energy use.

And this is not just about a set of technical problems to be fixed—the attitudes also

need a radical turn. Understandability is aesthetics, virtual does not mean immaterial

and doing things with less is not a return to the past. We want to investigate what a

permacomputing way of life could be, and what sort of transformative computational

culture and aesthetics it could bring forward.

The principles of permacomputing are:

Care for life

Care for the chips

Keep it small

Hope for the best, prepare for the worst

Keep it flexible

Build on solid ground

Amplify awareness

•

•

•

•

•

•

•

Expose everything

Respond to changes

Everything has a place.

Properties of permacomputing systems

The principles concretely manifest themselves in various forms so as to highlight the

following properties:

accessible: well documented and adaptable to an individual’s needs.

compatible: works on a variety of architectures.

efficient: uses as little resources (power, memory, etc) as possible

(minimization).

flexible: modular, portable, adapts to various use-cases.

resilient: repairable, offline first, low-maintenance, designed for disassembly,

planned longevity, lifespan maximization, descent-friendly or design for descent

Some additional concerns are of indirect interest because they impose costs on the

entire end-to-end process of software creation:

it’s bootstrapping from machine code without circular reasoning

(bootstrappable builds)

it’s obvious what source code went into it (reproducible builds)

it’s easy to audit its source code, including all dependencies

2. Principles

These design principles have been modeled after those of permaculture.

These are primarily design/practice principles and not philosophical ones, so feel free

to disagree with them, refactor them, and (re-)interpret them freely. Permacomputing

is not prescriptive, but favours instead situatedness and awareness of the diversity of

context. Said differently, its design principles can be as much helpful as a way to guide

practice in a specific situation, as it can be used as a device to help surface systemic

issues in the relationship between computer technology and ecology.

Also, this is a big work-in-progress :)

Care for life

This is the ethical basis that permacomputing builds on. It refers to the permacultural

principles of “care for the earth” and “care for people”, but can be thought of as the

basic axiom for all choices.

•

•

•

•

•

•

•

•

•

•

•

Create low-power systems that strengthens the biosphere and use the wide-area

network sparingly. Minimize the use of artificial energy, fossil fuels and mineral

resources. Don’t create systems that Jevons paradox.

Care for the chips

Production of new computing hardware consumes a lot of energy and resources.

Therefore, we need to lifespan maximization of hardware components – especially

IC, because of their low material recyclability.

Respect the quirks and peculiarities of what already exists and repair what can

be repaired.

Create new devices from salvage computing.

Support local time-sharing within your community in order to avoid buying

redundant stuff.

Push the industry towards Planned longevity.

Design for disassembly.

Keep it small

Small systems are more likely to have small hardware and energy requirements, as

well as high understandability. They are easier to understand, manage, refactoring

and repurpose.

dependency (including hardware requirements and whatever external software/

libraries the program requires) should also be kept low.

Avoid pseudosimplicity such as user interfaces that hide their operation from

the user.

Accumulate wisdom and experience rather than codebase.

Low complexity is beautiful. This is also relevant to e.g. visual media where

“high quality” is often thought to stem from high resolutions and large bitrates.

Human-scale: a reasonable level of complexity for a computing system is that it

can be entirely understood by a single person (from the low-level hardware

details to the application-level quirks).

Scalability (upwards) is essential only if there is an actual and justifiable need to

scale up; down-scalability may often be more relevant.

Abundance thinking. If the computing capacity feels too limited for anything,

you can rethink it from the point of view of abundance (e.g. by taking yourself

fifty years back in time): tens of kilobytes of memory, thousands of operations

per second – think about all the possibilities!

•

•

•

•

•

•

•

•

•

•

•

•

Hope for the best, prepare for the worst

It is a good practice to keep everything as resilient and collapse-tolerant as possible

even if you don’t believe in these scenarios.

While being resilient and building on a solid ground, be open to positive and

utopian possibilities. Experiment with new ideas and have grand visions.

Design for descent.

Keep it flexible

Flexibility means that a system can be used in a vast array of purposes, including ones

it was not primarily designed for. Flexibility complements smallness and simplicity. In

an ideal and elegant system, the three factors (smallness, simplicity and flexibility)

support each other.

If it is possible to imagine all the possible use cases when designing a system, the

design may very well be too simple and/or too inflexible. Smallness, simplicity and

flexibility are also part of the “small, sharp tools” ideal of the Unix command line. Here

the key to flexibility is the ability to creatively combine small tools that do small,

individual things.

Computing technology in general is very flexible because of its programmability.

Programming and programmability should be supported and encouraged

everywhere, and artificial lock-ins that prevent (re)programming should be

broken.

Design systems you can gradually modify and improve while running them.

Build on a solid ground

It is good to experiment with new ideas, concepts and languages, but depending on

them is usually a bad idea. Appreciate mature technologies, clear ideas and well-

understood theories when building something that is intended to last.

Avoid unreliable dependency, especially as hard (non-optional) dependencies. If

you can’t avoid them (in case of software), put them available in the same place

where you have your program available.

It is possible to support several target platforms. In case of lasting programs,

one of these should be a bedrock platform that does not change and therefore

does not cause software rot.

Don’t take anything for granted. Especially don’t expect the infrastructure such

as the power grid and global networking to continue working indefinitely.

You may also read this as “grow roots to a solid ground”. Learn things that last,

enrich your local tradition, know the history of everything.

•

•

•

•

•

•

•

•

Amplify awareness

Computers were invented to assist people in their cognitive processes. “Intelligence

amplification” was a good goal, but intelligence may also be used narrowly and

blindly. It may therefore be a better idea to amplify awareness.

Awareness means awareness of whatever is concretely going on in the world/

environment but also awareness of how things work and how they situate in

their contexts (cultural, historical, biological etc).

You don’t need to twiddle with everything in order to understand it. balance of

opposites emphasizes observation.

It may also often be a good idea to amplify the computer’s awareness of its

physical surroundings with things like sensors.

Expose everything

As an extension of “amplify awareness”: Don’t hide information!

Keep everything open, modifiable and flexible.

Share your FLOSS and design philosophies.

State visualization: Make the computer visualize/auralize its internal state as

well as whatever it knows about the state of its physical environment. Regard

this visualization/auralization as a background landscape: facilitate observation

but don’t steal the attention. Also, don’t use too much computing resources for

this (updating a full-screen background landscape tens of times per second is a

total overkill).

Respond to changes

Computing systems should adapt to the changes in their operating environments

(especially in relation to energy and heat). 24/7 availability of all parts of the system

should not be required, and neither should a constant operating performance

(e.g. networking speed).

In a long term, software and hardware systems should not get obsoleted by

changing needs and conditions. New software can be written even for old

computers, old software can be modifed to respond to new needs, and new

devices can be built from old components. Avoid both software rot and

retrocomputing.

•

•

•

•

•

•

•

Everything has a place

Be part of your local energy/matter circulations, ecosystems and cultures. Cherish

locality, decentralization. Strengthen the local roots of the technology you use and

create.

While operating locally and at present, be aware of the entire world-wide context

your work takes place in. This includes the historical context several decades to the

past and the future. Understanding the past(s) is the key for envisioning the possible

futures.

Nothing is “universal”. Even computers, “universal calculators” that can be

readapted to any task, are full of quirks that stem from the cultures that created

them. Don’t take them as the only way things can be, or as the most “rational” or

“advanced” way.

Every system, no matter how ubiquitous or “universal” it is, is only a tiny speckle

in a huge ocean of possibilities. Try to understand the entire possibility space in

addition to the individual speckles you have concrete experience about.

Technological diversity, avoid monoculture. But remember that standards also

have an important place.

Strict utilitarianism impoverishes. Uselessness also has an important place, so

appreciate it.

You may also read this principle as: There is a place of everything. Nothing is

obsolete or irrelevant. Even if they lose their original meaning, programmable

systems may be readapted to new purposes they were not originally designed

for. Think about technology as a rhizome rather than a “highway of progress and

constant obsolescence”.

There is a place for both slow and fast, both gradual and one-shot processes.

Don’t look at all things through the same glasses.

3. Issues

There are several issues in today’s computing.

If the information and communications technology (ICT) industry was purposefully

following a harmful agenda, these would probably be their design principles:

disregard for life

disregard for the chips

more is better

assume limitless resources

keep it controlled

outsource the problem

amplify ignorance

•

•

•

•

•

•

•

•

•

•

•

•

•

obfuscate everything

destroy communities

achieve monopoly

While the industry is rarely discussed in this way, there are increasingly well-

documented issues in the dominant computational cultural paradigm which all

together help better explain how such a harmful agenda can emerge explicitly or

implicitly.

Additional topics to explore:

inaccessible: greenwashing, Californian ideology, otherness, pseudosimplicity

incompatible: vendor lock-in, proprietary

inefficient: bloat, maximalism, cryptocurrency, calculation factory,

cornucopianism

rigid: monoculture, siliconization

failing: silver bullet, planned obsolescence, wishcycling, software rot

extractivist: attention economy, capitalism, Big Tech, neoliberalism

4. Getting started

What can I do?

This is a frequent question, and not an easy one to answer.

Permacomputing can take many forms, and every context and situation is different.

For someone, getting started with permacomputing may be:

helping a school to work with recycled computers

learning how to repair and replace components in computing hardware

discussing the use and impact of smartphones in the household, or data centers

in the workplace

working with local farms and collectives to develop low energy weather

prediction

researching how to provide less resource-intensive tools and systems for their

lab or workspace

getting involved with initiatives to create energy efficient and accessible local

libraries of information

engaging with politics and policy making to advance tech and enviromental

regulation in their institution, town, or region

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

helping artists interested to engage with ecological topics using tools and media

in line with this intention

writing their own FORTH for a chip reclaimed from e-waste

Each of these can mix and match, and are also examples from the following categories

of action.

Participating

Join discussions in your institution, union, building, company, or town council, to

figure out new ways to discuss the impact and regulation of the usage and re-use of

computers.

Join a union, join an environmentalist group, join a citizen science lab, etc.

It’s also important that users of hardware and software feel confident enough to

voice their opinion, especially when the development of these projects is done in a

relatively open way. For instance, issue trackers can be important activation sites to

voice struggles beyond reporting technical faults.

Experimenting

Investigate the places in your life or work involving computer use. How much energy

does it use, including accessed network resources? Can it be reduced, replaced, or

removed? What impact does it have on your wellbeing and your community? Is there a

common task you perform online which could be moved locally? How can computer

use for a particular task be phased out?

Approach computer use and acquisition with longevity in mind, considering things like

whether you need to buy new hardware, or could you repurpose an old computer or

device instead? Does it need to use a computer at all?

When developing something new, what are you gonna use to ensure you make

something that does not end up being harmful or wasteful? How will you measure the

impacts of your project, like the resources used to create and run it including energy,

fresh water, and waste heat? Can your new system be self-obviating system?

With computation and computer tech consumerism taking such a big space in so many

activities, it is very likely that a domain, a common/everyday tool, or a practice, in

which you have interest, professionally or not, could become your field of

experimentation. Do you need to acquire new skills? How will you acquire these skills?

Can you afford to learn such skills? Could you figure it out with the help of others?

•

•

Reading and learning

For non-programmers and infrequent computer users, some minimal knowledge of

computing jargon and practices is recommended. However, the question of literacy in

relation to computational culture is often reduced to staying in the loop with the

“latest developments” the tech industry and acquiring technological skills, when we

need to talk more about the other way around.

A lot of the radical thinking in computer science and engineering seems to be too

often stuck on the same old 60-70s countercultural ideas from the United States. We

think that it’s important that people with a strong technological background start to

catch up with decades of the various strands of computational critique discussed in

feminist studies, gender studies, software studies, cultural studies, and also arts and

humanities.

Organizing

Consider starting a local group around permacomputing. You don’t have and should

not try to work on this topic on your own! Talk to local cultural organisations,

hackerspaces, squats, town councils, schools and universities to help organising some

events, workshops, skill-sharing sessions, show&tell, etc. Try to bootstrap a small

permacomputing community. Make use of our terms to get you started with questions

of moderation, make use of the wiki, communicate on the existing lists, chats, or start

your own!

Publishing

Regardless what you do, it will be very inspiring to others if you document it a bit,

both successes and failures. It does not have to be extensive, but it can be a much

more effective way to demonstrate how to activate critical practices in relation to

computer techology. You can do that on your own website if you have one, you can

make zines, something individual or something with others, and of course contribute!

More generally publishing does not need to be only about the projects you are

involved with directly, maybe it is about helping others writing a manual, a cookbook,

a sampler, something relatable and accessible.

Breaking the monoculture

Like any other community of practice that emerged from contemporary computer

tech circles, permacomputing suffers from very poor cultural diversity. How can we

make this space more accessible and inclusive? Like, really, and not just empty words.

How can the privileges that some of us have to be able to dedicate time on such topics

can be generative of activities that can contribute to breaking the tech monoculture

and how can the permacomputing space, including this wiki, can become a platform

for less privileged groups to be represented and supported?

Note: the first version of this document was motivated by, and in part inspired from,

discussions and contributions from participants of the LIMITS 2023 workshop.

THANKS <3

5. Library

this.is.a.work.in.progress :) complete reorganization and new addition is underway *

Texts

Permacomputing specific

Viznut’s original text, 2020.

Discussion on related concepts, Viznut, 2021.

Interpretation of permacomputing, Neauoire, 2021.

Selected quotes on Permacomputing, Sejo, 2022

Permacomputing Aesthetics: Potential and Limits of Constraints in

Computational Art, Design and Culture, ugrnm, mr_ersatz, sandu, viznut, 2023.

Permacomputing and the Dance of Repair Amid the Vestiges of Digital

Obsolescence, sister0, 2023.

The Oceanic provenance of Permacomputing and Computational poetics,

sister0, 2024.

In relation to permacomputing

Summary of related terms, l03s, 2021.

In relation to ICT blogpost, Robert Engels, 2022.

What might degrowth computing look like?, Neil Selwin, 2022.

permacomputing in LeMonde, Nastasia Hadjadji 2024

Alternative perspectives

Woods and Branlat, “Basic patterns in how adaptive systems fail”, 2011

Damaged Earth Catalog

The Damaged Earth Catalog is a growing online catalog of the different terms in

circulation, used by communities of practice, in relation to computing and network

infrastructure informed by ecological ethics, degrowth, resilience, repair, and

minimalism. It is currently developed by l03s as part of her PhD research.

•

•

•

•

•

•

•

•

•

•

•

•

http://viznut.fi/files/texts-en/permacomputing.html
http://viznut.fi/files/texts-en/permacomputing_update_2021.html
https://wiki.xxiivv.com/site/permacomputing.html
https://compudanzas.net/permacomputing.html
https://assets.pubpub.org/yqus2707/pmc_aesthetics-31686649459875.pdf
https://assets.pubpub.org/yqus2707/pmc_aesthetics-31686649459875.pdf
https://networkcultures.org/performanceofcode/2023/09/05/the-dance-of-repair-amid-the-vestiges-of-digital-obsolescence/
https://networkcultures.org/performanceofcode/2023/09/05/the-dance-of-repair-amid-the-vestiges-of-digital-obsolescence/
https://www.autoluminescence.institute/resources/library/intro-oceanic_provenance_permacomputing_codework/
https://computingwithinlimits.org/2021/papers/limits21-devalk.pdf
https://medium.com/data-ai-masters/redefining-our-needs-permacomputing-and-vernacular-computing-ba703bb0f1d9
https://criticaledtech.com/2022/04/08/what-might-degrowth-computing-look-like/
https://www.lemonde.fr/pixels/article/2024/05/13/permacomputing-la-discrete-communaute-qui-experimente-un-numerique-sobre-et-decroissant_6232934_4408996.html
https://www.researchgate.net/publication/284324002_Basic_patterns_in_how_adaptive_systems_fail

https://damaged.bleu255.com

See also the DEC entry.

Films and moving images

These movies, documentaries and audiovisual works can be used to bring context for

the underlying issues that are motivating both practices and discussions about

permacomputing and related.

Non-Fiction

Unser täglich Brot (2005)

Nord-sud.com (2007)

Waste Land (2010)

Blood in the Mobile (2010)

Plastic China (2016)

Fais-le toi-même (2016)

Death by Design (2016)

Low-Tech (2023)

Fiction/Arthouse/Experimental

Core Dump (2018-2019)

Weitermachen Sanssouci (2019)

Neptune Frost (2021)

Talks/Stream

Vivre sa passion sur Tara Tari (2013)

“Fake” Chips? (2020)

From appropriate technology to permacomputing: a glossary of

counternarratives and practices (2022)

On permacomputing aesthetics (2023)

An approach to computing and sustainability inspired from permaculture (2023)

6. Projects

This is a list of projects that share goals and/or values with permacomputing, either

explicitly or because we think they do connect somehow Of course given how the

permacomputing definition and principles leave some room for indidividual and

collective (re-)interpretations, we are aware of the difficulty in framing precisely what

may or may not fit precisely.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://piped.video/watch?v=1Qbd68wyZ3M
https://piped.video/watch?v=k72SFBOZ_lw
https://piped.video/watch?v=OOppK1or6RY&t=3036s
https://piped.video/watch?v=OOppK1or6RY&t=3036s
https://piped.video/watch?v=xgZtnmpNV40&t=4713
https://piped.video/watch?v=T3u7bGgVspM

At time of writing there is no plan to go for ISO certification :) however, we do hope

that the projects who make use of the term permacomputing can be articulated

meaningfully and demonstrate a practice in relation to the permacomputing and

principles.

This is why this section is also an opportunity to review and highlights strengths and

pitfalls of these various projects, and inspire each other. Make use of the Discussion

page of each project for comments and discussion.

The people behind the following projects may have used the term permacomputing to

describe their work, or we see strong and/or potential relevance:

Collapse OS

Gemini

Chifir

Uxn

Civboot

Freewheeling Apps

Mu

Teliva

Projects whose relevance has not yet been fully assessed:

DawnOS

Solar Protocol

It is important to remember that these are attempts at drawing lines at the edge of

one’s computing needs, and personalized systems to address those needs, but are by

no means “permacomputing products”. Permacomputing is about finding these limits,

and not their artifacts.

Historical

PADI

BBC Domesday Project

CARDIAC, by Bell labs

7. Assessments

Permacomputing is also learning to deal with existing technologies, often trying to

find the least evil among bad alternatives. In hardware we can’t afford being too picky

because we’ll want to lengthen the lifespans of already existing pieces of hardware

(even bad ones), but in software we usually have more choice.

•

•

•

•

•

•

•

•

•

•

•

•

•

http://akkartik.name/freewheeling-apps

When assessing software and hardware, we’ll want to focus on technicalities such as

resource use (especially dependency and documentation – mostly because many

pieces of today’s technology fail miserably in these areas.

See also:

Hardware

Computers

single-board computers

Microcontrollers

Peripherals

Software

Programming languages

Operating systems

Protocols

File formats

8. Communities

It’s difficult to speak of Permacomputing as one single community. And why would we

want to? We want to welcome and include as many people as possible in the

discussion.

Discussion

At the moment several groups use the following means to exchange and stay in touch

with each other to discuss permacomputing and related topics:

IRC: #permacomputing channel on libera.chat - permacomputing specific

discussions;

XMPP: lowtech/permacomputing - permacomputing specific discussions;

XMPP: moddingfridays newbie friendly mutual help for electronic repair and

creative modding;

Forum: permacomputing on the SLRPNK Lemmy instance;

Forum: permacomputing on the SDF Chatter Lemmy instance;

Email discussion list: permacomputing /at/ we lurk /dot/ org - permacomputing

specific discussions;

#permacomputing: obvious hashtag that we use on socials (mainstream and

alt);

Note: the IRC channel, XMPP chatrooms, and the list are moderated and you must

agree to our terms. The Forums are also moderated and have their own terms.

•

◦

◦

◦

◦

•

◦

◦

◦

◦

•

•

•

•

•

•

•

https://libera.chat
xmpp:lowtech@chat.disroot.org?join
xmpp:moddingfridays@muc.lurk.org?join
https://slrpnk.net/c/permacomputing
https://lemmy.sdf.org/c/permacomputing
https://we.lurk.org/mailman3/lists/permacomputing.we.lurk.org/

List of communities

The following includes communities that may share some goals, practices or ideas

with permacomputing. For ideas and ideologies that don’t have communities around

themselves, see concepts.

Practical:

Appropriate technology

Collapse computing

FLOSS

Smallnet

See also: projects

Academic:

Computing within Limits

Sustainable ICT

Activism, Policy Making and Legislation:

offline first

right to repair

Green software engineering

Artistic:

Holistic Computing Arts

Small File Media Festival

Algorave

demoscene

solarpunk

Ecological Art and Design

9. Events

This section features workshops, talks, and other permacomputing connected

activities. If you are planning to organize your own event and want to be featured or

would like to link an existing permacomputing activity, please contact us!

Talks

2024/06/26 - The Oceanic provenance of Permacomputing and Computational

poetics, at ISEA2024, Aus, with sister0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://www.autoluminescence.institute/resources/library/intro-oceanic_provenance_permacomputing_codework/
https://www.autoluminescence.institute/resources/library/intro-oceanic_provenance_permacomputing_codework/

2023/12/02 - Practices of Digital Resilience & Permacomputing, at FIBER, NL,

with brendan, cmos4040, l03s, luen, Marie Verdeil, ola, orx, Sunjoo Lee, ugrnm

and unbinare

2023/09/21 - Approach To Computing and Sustainability Inspired From

Permaculture, at Strange Loop 2023, USA, with neau

2023/06/14 - permacomputing aesthetics, at LIMITS23, US/International, with

brendan, dusan, ugrnm and viznut

2023/02/22 - Permacomputing in the academy: how to problematise computer

technology in art and design education, keynote at ETHO/ELIA, UK, with ugrnm

2022/10/28 - Introduction to Permacomputing, at Zine Camp, NL, with ugrnm

and ola

2022/3/10 - permacomputing overview, at Natural Intelligence Lab (FIBER), NL,

with l03s, ola and ugrnm

Courses, workshops and seminars

2024/07/18 - Decolonising digital culturescapes: permacomputing from an

antipodean perspective, at EASST-4S 2024 Amsterdam: Making and Doing

Transformations, with sister0

2023/11/30-2023/12/01 - Networking with Nature: Connecting plants and

second-hand electronics, at Fiber Reassemble Lab 2023, NL, with brendan and

orx

2023/11/17-2023/11/18 - Imagination above Productivity: Resurfacing and

scaling the digital ecosystem around us, at Fiber Reassemble Lab 2023, NL, with

ola

2023/10/13-2023/10/14 - The Cloud is Just my Old Computer: Creating a

permacomputing server, at Fiber Reassemble Lab 2023, NL, with luen and ugrnm

2023/01/7 - permacomputing and Low-power Photography, at The Sustainable

Darkroom, UK, with Felix Loftus

2022/04/01-ongoing - permacomputing in the arts, at the Willem de Kooning

Academy, NL, with ugrnm

Meetings and seminars

2024/12/03-09/07 - Digital Caretaking ☲fireside☲ Talks a series of 12 Online

talks, every second Tuesday, with Shahee Ilyas, Nancy Mauro-Flude, Kate Rich,

Denisa Reshef Kera, Jo Pollitt, Samara McIlroy, Jason James and ugrnm, hosted

by sister0, Tasmania, Australia

2024/02/28 - Permacomputing Meet-Up, Offline.place in Berlin, Germany.

2023/09/20 - Permacomputing Meetup, Saint-Louis, Missouri, US

2023/06/22 - permacomputing seminar, at Royal Halloway University of London,

UK, with Olga Goriunova, l03s, Dave Young and ugrnm

2022/08/20-2021/08/21 - permacomputing wiki edit-a-thon, at Varia, NL

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://whatis.permacomputing.net
https://nomadit.co.uk/conference/easst-4s2024/paper/82638
https://nomadit.co.uk/conference/easst-4s2024/paper/82638
https://www.autoluminescence.institute/events/digitalcaretaking_talks/
https://offline.place

2022-ongoing - Regular permacomputing meetups at Iffy Books, in Philadelphia,

PA, US

TODO: lots of stuff missing: Critical Infra lab launch, etc.

10. Minimization

Minimization is used here to mean the limiting of the use of artificial energy for data

storage and transfer. Compression is a form of minimization, but minimization does

not necessarily means the optimization of data size through compression.

See also:

Bandwidth minimization

Media minimization

11. Design for descent

Designing for Descent ensures that a system is resilient to intermittent energy

supply and network connectivity. collapse computing prioritizes community needs and

aims to contribute to a knowledge commons in order to be able to succeed in case of

infrastructure collapse.

12. Bootstrapping

Bootstrapping has many meanings in the computer world. The most common

meaning is now more commonly referred to as booting (i.e. the process of starting a

computer). Bootstrapping a software or a programming language, however, generally

means making it available on a computing platform starting from a very elementary

level.

Bootstrappability is important for permacomputing for ensuring that arbitrary

software can be run in an indefinite future where computing environments can be

very different.

Bootstrappability is often a problem with programming languages that have been

implemented in themselves (like, a C compiler written in C, or a Rust compiler written

in Rust). Usually, a language is made available on a new processor architecture by

cross-compiling its compiler to it, but if that option is not available, bootstrapping is

needed.

In case of ordinary software, bootstrapping means not only compiling the program

itself but also compiling/bootstrapping all of its software dependency from the

lowest level, including the operating systems. The amount of computing resources

•

•

•

https://iffybooks.net

(especially storage space and computing time) required for bootstrapping can be used

to measure bootstrap complexity.

Binary executables compiled for simple virtual machines can be used to help

bootstrapping. A good idea might be to have a simple, easily retargettable C compiler

available as this kind of executable.

Classical, bare-hardware Forth environments have often been created in a

bootstrapping-like way, where a simple memory editor gradually gains more

vocabulary.

See also:

Where did that prebuilt binary come from?

13. Permaculture

Permaculture is an approach to land management and settlement design that adopts

arrangements observed in flourishing natural ecosystems. First formulated in 1978, it

particularly stands in opposition against industrial agriculture. Permacomputing is

based on the idea of applying permacultural ideas to computing (and “high”

technology in general).

In particular, permaculture inspires permacomputing to:

Recognizing the effects of computing to the biosphere, and trying to find ways

to make these effects positive and regenerative.

Turning waste into resources and constraints into possibilities.

Explorative, imaginative and positive attitudes towards sustainable design, as

opposed to “returning to the past” or “having to tolerate lesser resources”.

Opposition to the mainstream technological industry while offering a tangible

alternative.

Permacomputing isn’t the first attempt to bridge permaculture and computing. Earlier

examples include:

The Permaculture entry on WikiWikiWeb connects it with software design

patterns but does not connect to the ecological reality.

Kent Beck’s talk “Programming as a garden: Permaprogramming” similarly drew

inspiration from the philosophy to software design without the ecological

aspect.

Amanda Starling Gould’s 2017 doctoral dissertation “Digital Environmental

Metabolisms: An Ecocritical Project of the Digital Environmental Humanities”

centers around the ecological aspect but concentrates on end-user activities.

•

•

•

•

•

•

•

•

https://bootstrapping.miraheze.org/wiki/Main_Page
http://wiki.c2.com/?PermaCulture
https://amandastarlinggould.com/research/
https://dukespace.lib.duke.edu/dspace/handle/10161/14457
https://dukespace.lib.duke.edu/dspace/handle/10161/14457

14. Jevons paradox

Jevons paradox refers to the phenomenon where the increase of efficiency in the use

of a resource leads to more use of the resource. Jevons originally noticed in 1865 that

the development of more fuel-efficient steam engines resulted in an increased total

use of coal: the falling cost of coal increased its demand and negated the gains.

See also:

Wirth’s law - a computing-specific variant of Jevons paradox

15. Salvage computing

Salvage Computing is the art of utilizing only already available computational

resources, to be limited by that which is already produced. It’s about figuring out how

to make the best possible use out of the millions of devices which already exist.

Scavenge-friendly electronics are parts that are no longer manufactured, but that are

available by the billions in landfills. Those who can manage to create new designs

from scavenged parts with low-tech tools will be able to preserve electronics.

16. Planned longevity

Planned longevity is the opposite of planned obsolescence: the way of designing

systems, especially hardware, so that it supports lifespan maximization.

Planned longevity is something that should ideally take place in the industry that

produces the hardware. Sometimes, the shortcomings of the industry can be

compensated by changing the firmware of the system or switching to a third-party

software platform.

Chips should be designed open and flexible, so that they can be reappropriated even

for purposes they were never intended for. Complex chips should have enough

redundancy and bypass mechanisms to keep them working even after some of their

internals wear out. (In a multicore CPU, for instance, many partially functioning cores

could combine into one fully functioning one.)

Concepts that support planned longevity:

Design for disassembly

Open hardware

Morseware

•

•

•

•

17. Design for disassembly

Design for Disassembly ensures that all elements of a product can be disassembled

for repair and for end of life. This allows for and encourages repairs, with the result

that a product’s life cycle is prolonged; and it allows for a product to be taken apart at

the end of its life so that each component can be reclaimed. Among other shifts in

thinking and making, this means minimizing materials, using simple mechanical

fasteners instead of adhesives, clearly labeling components with their material type,

and ensuring components can be disassembled with everyday tools.

Unlike the nebulous goal of designing a sustainable product, designing a product for

disassembly is a more concrete, quantifiable approach to ecologically sound making

and to consumption.

18. Dependency

A dependency refers to another piece of technology (software or hardware) a

technology depends on for using. In software, “dependencies” may refer to the entire

network of dependencies or just the software part of it.

The dependencies of a normal computer application include the physical computer,

the energy source (including the grid and all the economic dependencies needed to

maintain it), the operating system, and a set of libraries (some of which may be

bundled with the OS). An increasing number of computer programs also depend on an

Internet connection and an arbitrary server often maintained by the corporate owner

of the program.

Hard and soft dependencies

Nature is full of dependencies but most of them are soft dependencies: animals can

usually find nutrition from a wide variety of other organisms instead of strictly

depending on a specific species. In high technology, however, we are mostly talking

about hard dependencies: computers and cars need to be built from very specific

components produced in very specific factories. Programs often depend on specific

versions of specific libraries, and changes to those libraries may software rot. Hard

dependencies come with a low tolerance for faults and changes.

Documentation can be thought of as a soft dependency. Some kind of documentation

is usually needed in order to fully utilize a program or a device, but this

documentation can come from several alternative sources. It can also be omitted if

the user has already learned the necessary information.

If only one compiler can compile the source code of a program, its compilation

dependency is hard. If there’s a large variety of different compilers that all succesfully

produce a working executable, the dependency is much softer. The same applies to

websites and how compatible they are with different browsers. If only a few high-end

browsers are supported, the dependency is quite hard.

Optional dependencies are soft, especially if they don’t change the features or

behavior of the program. If it is possible to run an application either natively or in a

web browser, the monstrous dependencies of the web browser don’t need to be

taken in account when assessing the application.

Smallness softens: if a program is so short that it can be easily rewritten in another

language by using the source code as a guide, its dependency on the original

programming language softens.

Dependencies & permacomputing

Permacomputing calls for dependency-awareness, both regarding the material

dependencies (the grid, the manufacturing infrastructure, etc.) and the digital ones. In

both cases, the networks of hard dependencies are often several orders of magnitude

larger than they should be, so permacomputing is concerned about shrinking the

networks as well as moving the emphasis towards soft dependencies.

Software dependencies may sometimes include non-open-source pieces of software.

These can usually be tolerated as long as there’s a way to run them in an open-sourced

emulator. Depending on an Internet connection in programs that are not essentially

networking-related, however, should not be tolerated, especially if this means

depending on an arbitrary server.

19. Pseudosimplicity

In mainstream computing, ease of use is usually implemented as superficial simplicity

or pseudosimplicity, as an additional layer of complexity that hides the underlying

layers. Meanwhile, systems that are actually very simple and elegant are often

presented in ways that make them look complex to laypeople.

Feminist (cyberfeminist) critique of simple interfaces and invisibility of underlying

infrastructure says this simplicity is just predisposition for mainstream or stereotype

use.

See also:

Feminist server

20. Scalability

Scalability usually means upscalability: the property of a system to handle a growing

amount of work by adding resources to the system.

In permacomputing, downscalability may be more important than upscalability.

Systems in general are supposed to remain small, so they don’t need to be designed

with upscalability in mind. However, there may often be a need to implement an idea

or an algorithm in a very restricted environments, which creates preference for

downscalable ideas and algorithms.

21. Unix

Unix is a multi-user operating system whose development was started in 1969 by Ken

Thompson and Dennis Ritchie, as well as an entire family of operating systems derived

from the original Unix. Since Unix is also a trademark that only applies to specific

products, terms like "*nix" are often used to refer to the entire family of Unix-

compatible systems (including GNU/Linux). In this article, we don’t bother to respect

the trademark (Linux is a Unix for us).

Unix was originally a mainframe-like time-sharing operating system scalability to much

smaller computers with much more limited processing power and storage space. In

order to keep the system small, elegant and flexible, it was decided to have a set of

“small and sharp” tools that can interoperate with each other via input/output piping.

At later times, Unix gathered bloat, and from the 1980s microcomputer point of view

it was already seen as a huge and complex OS for big computers.

The possibility to reimplement the system gradually, one tool at a time, was a major

reason why Unix was chosen as the basis of the GNU project, even though Richard

Stallman didn’t particularly like it.

Historically, it may be interesting to compare Unix with Forth that was born at the

same time for a somewhat similar purpose (bringing a “mainframe-grade”

environment to a small computer), although Forth is a memory-oriented single-user

system whereas Unix is a disk-oriented multi-user system. A major difference is that

while Unix adopted a lot of ideas and principles from the mainframe world, Forth

actively questioned them in order to get as small as possible. Also, Forth is a

programming language to the core, while Unix consists of many separate tools that

sometimes have a programming language built in.

Advantages of Unix from the permacomputing perspective

The basic idea of having small, flexible and interoperable tools is close to

permacomputing ideals.

•

The use of a high-level language (C) has made it independent from specific

processor and computer architectures. Programs tend to be source-code-

compatible across Unix systems and often even with non-Unix systems.

There are several independent but largely compatible implementations (classical

Unix, GNU/Linux, Minix …), many of which are FLOSS.

Unix-like systems may have relatively low hardware requirements, especially

when talking about “barebones” systems mainly used with character terminals.

Long history of use in a vast variety of different types of devices (embedded,

workstation, server, supercomputer, etc.).

Disadvantages and problems

Modern, “real-world” Unix systems, like most general-purpose operating

systems, suffer from a lot of bloat and unnecessary complexity.

A lot of this complexity is somehow related to legacy compatibility as are many

weird quirks one can find in Unix. One might say that this has resulted from an

excessive prioritization of accumulated tradition over system-level refactoring.

Unix has reached such a dominant position in many areas of computing that it

represents monoculture that narrows down technological diversity.

Despite having a long legacy, Unix is far from a bedrock platform. Software

often needs to be constantly maintained in order to keep it compatible with

various libraries and other changing pieces of the environment.

Binary compatibility between different versions of the same OS may be

surprisingly bad; even C libraries (such as GNU) may change their ABIs in ways

that cause incompatibilities and force recompilation.

Inefficiencies and limitations that can be traced back to the pre-Unix mainframe

ideals:

Preference for sequences of plain-text lines in input and output (as in 80-

column IBM punched cards). Translating between plain-text formats and

various internal representations causes overhead. Large plain-text files are

often cumbersome to operate with.

There are good tools for defining a task (by writing a command line) but

the chances to affect the running of the task are much more limited (as in

the old batch-job culture). Possibilities of building interoperability

between running programs are much weaker than between not-yet-

running programs.

“Waterfall model” in software compilation, producing static monoliths that

are very difficult to arbitrarily change especially when they are running.

This has resulted in a plethora of scripting/configuration languages that

compensate for the inflexibility.

The original Unix shell was designed to be quite minimal, and programmability

was added to it in various ad-hoc ways by later developers. Various scripting

languages have come into use as a response to the messiness of shell scripting.

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

•

Unix can be considered far too large and complex to many tasks it is currently

used for (embedded systems, single-user mobile computers, etc.)

Unix-like operating systems and kernels

BSD

Minix

GNU

Linux

Darwin

Plan 9

22. Balance of opposites

Balance of opposites is important in many permacomputing contexts.

Many people have a tendency to form dichotomies where one side is somehow “the

good one” whereas the other is the “bad” or even “evil” one. Sometimes, the good

side is considered so good that it becomes a silver bullet, something that is supposed

to be universally good in all cases.

Balance of opposites can be used to eliminating this kind of black-and-white

oversimplification. There are very few things or ideas that are either “good” or “evil”

in all possible contexts. Instead of bluntly stating that an idea or a piece of technology

is “the best” or “just evil”, one should try to delineate the contexts where it works and

where it does not.

Yin and yang

Yin and Yang (陰陽) are concepts from Chinese philosophy. Yang is active, controlling

and expanding, while Yin is passive, yielding and contracting. They are not “good and

evil” but complementary opposites that should have a balance, often via cyclic

changes.

In permacomputing contexts, the Yin-Yang dichotomy is sometimes used to contrast

different computing cultures. Modern technological civilization is disproportionally

yang, and this yangness extends to the cultures of computer hacking: total control

over systems (natural or technological) is praised, which easily leads to impoverished

monocultures where a lot of energy is wasted on forcing things into narrow

standards.

Too much yin, on the other hand, may lead to an excessive acceptance of the way how

things are and “have always been”. It likewise easily leads to narrow norms, via

traditionalism. The norms may be hostile to innovation, experimentation and

•

•

•

•

•

•

•

reappropriation. It may also lead to intellectual laziness, where rational analysis is not

even attempted.

Yin and yang hacking

These concepts were introduced in the Permacomputing 2020 text.

In Yang hacking, a total understanding and control of the target system is valued.

Changing a system’s behavior is often an end in itself. There are predefined goals the

system is pushed towards. Optimization tends to focus on a single measurable

parameter. Finding a system’s absolute limits is more important than finding its

individual strengths or essence.

In contrast, Yin hacking accepts the aspects that are beyond rational control and

comprehension. Rationality gets supported by intuition. The relationship with the

system is more bidirectional, emphasizing experimentation and observation. The

“personality” that stems from system-specific peculiarities gets more attention than

the measurable specs. It is also increasingly important to understand when to hack

and when just to observe without hacking.

Yang hacking is quite essential to computing. After all, computers are based on

comprehensible and deterministic models that tiny pieces of nature are “forced” to

follow. However, there are many kinds of systems where the yin way makes more

sense (e.g. the behavior of neural networks is often very difficult to analyze

rationally).

Transgression and immersion

Transgression and immersion are two oppositional ways to creatively relate to

constraints, especially in the kind of digital art forms that appreciate constraints (chip

music, demoscene, pixel art).

Transgression is yang: it attempts to “break” or “push” the boundaries; to get a system

to do something it is not supposed to be able to do; to find new things by exploring

the unexplored possibilities of a given platform. The characteristic sounds and looks

of a system (such as the 1:1 square wave in chip music, or clearly visible pixel

boundaries) are often considered unrefined and unwanted.

Immersion is yin: instead of breaking away from the typical and unrefined, it takes it as

the basis to build on. The 1:1 square wave is now very much wanted. The individual

characteristics of a system are appreciated and explored ever deeper.

23. FLOSS

Free Libre and Open Source Software (FLOSS) is an umbrella acronym used to refer to

software development practices in which the circulation of software source code is

enabled by licensing strategies that promote and simplify the re-use of the code that

would otherwise be limited by the author driven doctrine of copyright laws.

The two major definitions of FLOSS are free software and open source software. They

almost entirely overlap and follow the same principle of providing a definition and a

set of approved licenses that match this definition. These licenses can be either

compatible or incompatible with each others, making composite projects either very

simple, or very complicated. They can however be split into two large families:

(strong, weak) copyleft licenses. Such licenses impose the person making

modification to copyleft material to share their modification under the same

condition/license than the code they modified. The idea is to promote

circulation and virality;

permissive or copyfree/copycentre licenses. Such licenses have much more

simple conditions for reuse, if any, making possible to use such source for closed

source software and proprietary systems.

While a popular method for software production and distribution, FLOSS has been

increasingly scrutinised for its underlying liberal, possibly ultra-liberal ideology that

has been more useful to the for-profit software industry, than it has been useful to

foster the much anticipated digital commons of public interest, as envisioned in the

late 90s and 00s. This is because both free software and open source software

proponents support the idea of permitting the (re)use of FLOSS source code for any

purpose. As a result a growing number of post-free culture licenses have started to

emerge in the late 10s and early 20s to address issues of ethics and exploitation found

in the for any purpose take of FLOSS.

24. Decentralization

Decentralization refers to distributing activity away from a central, authoritative

location.

In computing, a prominent example of offline first or peer-to-peer protocols.

Decentralization supports diversity (including technological diversity) and empowers

users to own the technology and services they use.

Decentralization may also go horribly wrong in ways that work against

permacomputing goals with radically increased energy use, etc. See the

cryptocurrency/blockchain world for examples.

•

•

A useful reflection on the negative aspects of dencentralization is Problems of

Decentralism from The Meaning of Confederalism by Murray Bookchin.

See also:

file collection

offline first

information battery

25. Software rot

Software rot is generally thought of as degradation of obsolescence unless it is

constantly maintained.

A better approach might be to talk about the reliability of the environment the

software depends on. Would you build a house on a bog?

It is often necessary to build on “bogs” (i.e. “actively developed” platforms), but it

might be a good idea to also be compatible with a bedrock platform whose

specifications are static and solid.

Software rot is a big issue for cultures that constantly produce new programs (such as

demoscene) that are not supposed to be constantly maintained after release.

Programs written for classical platforms (such as DOS or NES) usually need no post-

release maintentance at all, while those written for e.g. Linux will likely cease working

in a decade or two. Sometimes, serious media archeology work (such as finding

specific versions of old libraries) is needed to get a program to run again.

26. Big Tech

Big Tech is a name given to the largest technology companies in the United States,

which dominate consumer computing technology around the world. The individual

companies change, but the interests and practices of these companies largely remain

the same, and are at odds with many of the principles of permacomputing.

Big Tech software serves the needs and interests of the company, and their need

for profit, first.

As a result, hardware produced by these companies often follows planned

obsolescence, in order to create more commodities to sell for profit

Software created by big tech tends towards complexity. These are large,

bureaucratic institutions with tens of thousands of employees, and knowledge

about software produced by these companies is centralized within them, both

legally and by virtue of its design

•

•

•

•

•

•

https://theanarchistlibrary.org/library/murray-bookchin-the-meaning-of-confederalism#toc2
https://theanarchistlibrary.org/library/murray-bookchin-the-meaning-of-confederalism#toc2

Big Tech companies may destroy or abandon software that does not align with

their current business goals

Most Big Tech companies follow the model of software as a service.

27. Terms of service / Code of conduct /

Privacy

This document is an adaptation of LURK’s TOS.txt.

General agreements

The permacomputing wiki, IRC, and mailing list, as well as the LowTech/

Permacomputing XMPP chatroom are used by people coming from a variety of

cultural, ethnic and professional backgrounds. We strive for the permacomputing

community to be welcoming to people of these various backgrounds and provide a

non-toxic and harassment-free environment. This document is our iterative 3-in-1

Code of Conduct, Terms of Services and Privacy Statement.

By interactive with the permacomputing community you agree to the following:

Be respectful towards others. This means that we will not tolerate homophobic,

transphobic, racist, ableist and sexist slurs and content, even if intended as a

joke, or as an ironic remark. That also includes demeaning, belittling or

otherwise verbally intimidating communication. In short, any attitudes that may

promote the oppression and/or exclusion of historically marginalized groups will

not be accepted. Users who violate this rule may get warned once, or banned

right away from using our services if their action were clearly ill-intended.

We talk to and with people rather than about people and/or groups. That means

no insinuating, unwelcome, or otherwise toxic comments regarding a person’s

lifestyle choices and practices, antagonizing and incendiary generalizations,

flaming or edgy remarks at the expense of someone or another community. We

understand and appreciate that for some, the internet has became a place to

vent and dump their frustrations. While we welcome sarcasm, critique and the

need to seek support and alliances while expressing defeating feelings, our

services, as well as its local and remote users, are not meant to be your personal

punching ball. Users who violate this rule will get warned once, and then banned

from using our services.

Absolutely no harassment, stalking or disclosure of others’ personal details

(doxing). Users which violate this rule will be unconditionally banned.

•

•

•

•

•

https://lurk.org/TOS.txt

Similarly, refusing to disengage during an escalating argument, or spamming

users with private messages is a form of harassment. Users who violate this rule

will get warned once, and then banned from using our services.

Hate speech, such as, but not limited to: white supremacy, ethnostate advocacy,

discussion of national socialism / nazism will not be tolerated. Users who violate

this rule will be unconditionally banned.

Mass-advertising content is prohibited. However we encourage you to share

calls for projects/papers, new project announcements of yours, upcoming events

and tasteful reminders to your followers of things like Patreon or websites

where they can purchase/support your work.

Media containing sexualized depictions of children (including lolicon) are not

allowed. Users who violate this rule will be unconditionally banned.

Moderation

If you have trouble with someone violating these rules, contact us. Do not hesitate to

reach out, and do not feel feel like you’re being a nuisance when you do, on the

contrary!

Privacy

By using our services you agree that a minimal amount of information about your

connection (IP address) will be kept for debugging and maintenance purposes. You

are welcome to use a VPN or Tor to connect to our services though. We do not actively

store or archive this information beyond the default rotation time of the software we

use. We welcome suggestions and practical information to limit data retention to a

minimum! Contact us if you have good experience with that. Some of our services use

cookies for remembering settings and preferences. We don’t track our users, nor do

we use analytical software (third-party or self-hosted).

USUAL CAPSLOCK BOILER PLATE

THE SERVICES USED IN THE PERMACOMPUTING COMMUNITY ARE PROVIDED “AS IS”,

WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE ADMINS BE LIABLE

FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF

CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH

THE SERVICES OR THE USE OR OTHER DEALINGS IN THE SERVICES.

•

•

•

•

28. Contribute

If you feel like you belong here, you are very welcome to contribute to this wiki!

You can about us by email for an account. Please:

Present yourself briefly;

Include URLs to work/project/socials/etc;

Explain your interest in permacomputing and tell us what/why/how you would

like to contribute to the wiki;

Confirm that you have read the editing and agree to our terms.

Please cover these four points, we won’t reply to vague or incomplete requests.

Really, we won’t. It may take a few days for us to get back to you.

29. sister0

ପໄଓ ⚶ 🜃 🜄 🜁 🜂

salutations

Permacomputing Principles work in progress

Holistic Computing Arts, Citizen Science Fiction, and Somatic Exploration in the womb

of the world

autoluminescence

position statement

collapsible.systems

🜃 🜄 🜁 🜂

30. DEC

Damaged Earth Catalog

About

The Damaged Earth Catalog is a growing online catalog of the different terms in

circulation, used by communities of practice, in relation to computing and network

infrastructure informed by ecological ethics, degrowth, resilience, repair, and

minimalism.

•

•

•

•

https://www.autoluminescence.institute/share/P/Southern_Permacomputing_Principles
https://www.autoluminescence.institute/
https://www.divination.cc/sphere/
https://collapsible.systems/@Nancy

It is currently developed by l03s as part of her PhD research. Entries on this page

should point to the Damaged Earth Catalog wiki, check with l03s for suggesting new

additions. Don’t duplicate entries/work.

https://damaged.bleu255.com

Link to permacomputing

At the moment permacomputing is moving from a set of interrelated ideas and

practices to a more coherent system of thought, as best exemplified with its

principles. It’s a work in progress and different people have different views to it, and

how to best approach its openness/closeness.

To be sure, many people and collectives have independently come up with similar

ideas, so there’s a lot of overlap between permacomputing and other concepts such

as:

Collapse Informatics

Computing within Limits

Degrowth

[Frugal computing]

Salvage computing

etc.

And looking further there are also ideas and movements that have some similarities

but maybe are not as closely related:

Appropriate technology

Begnin Computing

Convivial computing

Feminist Technology

[Green software engineering]

[Heirloom computing]

Liberatory Technology

Low-Tech

[Permaprogramming]

[Permatech]

[Rustic computing]

Small Technology

[Sustainable ICT]

etc.

Is it more fruitful to think about all these ideas as different viewpoints to the same

thing rather than independent “movements” whose borders need to be

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

https://damaged.bleu255.com/Collapse_Informatics/
https://damaged.bleu255.com/Computing_within_Limits/
https://damaged.bleu255.com/Degrowth/
https://damaged.bleu255.com/Salvage_Computing/
https://damaged.bleu255.com/Appropriate_Technology/
https://damaged.bleu255.com/Benign_Computing/
https://damaged.bleu255.com/Convivial_Computing/
https://damaged.bleu255.com/Feminist_Technology/
https://damaged.bleu255.com/Liberatory_Technology/
https://damaged.bleu255.com/Low-Tech/
https://damaged.bleu255.com/Small_Technology/

unambiguously defined? or on the contrary do they carry irreconcilable deviations and

incompatible ideologies or world views?

This is the research and contextualisation that takes place at the Damaged Earth

Catalog and help informs and bring perspectives on the constant becoming of

permacomputing.

31. Collapse OS

Collapse OS is a Collapse computing. It is designed to:

Run on minimal and improvised machines.

Interface through improvised means (serial, keyboard, display).

Edit text and binary contents.

Compile assembler source for a wide range of MCUs and CPUs.

Read and write from a wide range of storage devices.

Assemble itself and deploy to another machine.

Collapse OS was also ported to the UXN virtual machine.

Dusk OS will be a similar OS geared at more powerful devices and aimed at general-

purpose post-collapse uses.

See also:

The official website of Collapse OS

Collapse computing

Civboot

Dusk OS

32. Gemini

Gemini is an application-layer WWW protocol created by Solderpunk in 2019. Gemini

and its document format (Gemtext) are somewhat similar to Gopher but add some

features from modern WWW, such as mandatory encryption, hyperlinks and URLs.

Due to the simplicity of Gemini, there is already a large amount of fully compliant

client software.

It is of course possible to use HTTP(S)/HTML in a simple and restricted way along with

limited web browsers to get similar technical characteristics. However, a separate

protocol makes it possible to have a separate Smallnet space, Geminispace, where

users are guaranteed to only encounter things that are compatible with their simple

Gemini browsers.

•

•

•

•

•

•

•

•

•

•

https://github.com/schierlm/collapseos-uxn
http://collapseos.org/

Relationship to permacomputing:

Low bandwidth, low complexity, low system requirements. These are partially

dictated by the design of the format (no support for inline media, etc.)

Coexistence with Gopher and HTTP/HTML with no intentions to replace either.

The lack of inline media makes it easier to have file collection of Gemtext

documents.

Solderpunk has written about permacomputing, and at least one of the Gemini

clients (Ariane) explicitly refers to permacomputing.

However, Gemini does not address what can be thought as one of the basic

problems of WWW. Documents are primarily addressed by referring to their

servers, so impermanence and broken links can be expected especially as the

typical Gemini server is small and private.

See also:

Project Gemini FAQ (HTTPS/HTML)

33. Chifir

The Chifir computer is the definition of a universal virtual machine designed to host

and archive projects. The example project to be hosted on the vm was Smalltalk-72,

but its design did not reflect how this was to be done, and the lack of I/O made it

unclear that it would even be a viable target for the system.

Relevance to permacomputing

The paper from which this specification originates considers issues of obsolescence.

The Cuneiform Tablets of 2015

Implementation, written in C

34. Uxn

Uxn is a simple virtual machine geared towards graphical applications, with features

reminiscent of classic home computers.

Unlike most “fantasy platforms”, Uxn was designed with an implementation-first

mindset with a focus on creating portable tools and games for salvage computing.

This stack-machine has 32 opcodes, and no registers. Given the stack a b c, the c item

being the last to be added, and the first to be removed, a Program Counter(PC), a

Memory(M), Devices(D) and a Return Stack(rs):

•

•

•

•

•

•

•

•

https://gemini.circumlunar.space/docs/faq.gmi
file:///home/cf/Downloads/pmc/www.vpri.org/pdf/tr2015004_cuneiform.pdf
https://paste.sr.ht/~rabbits/b23e80eaf675c1b704bc704577e503cfd0d8f474

80 a b c M[PC+1] 08 a b?c 10 a b M[c8] 18 a b+c

01 a b c+1 09 a b!c 11 a {M[c8]=b} 19 a b-c

02 a b 0a a b>c 12 a b M[PC+c8] 1a a b*c

03 a c 0b a b<c 13 a {M[PC+c8]=b} 1b a b/c

04 a c b 0c a b {PC+=c} 14 a b M[c16] 1c a b&c

05 b c a 0d a {(b8)PC+=c} 15 a {M[c16]=b} 1d a b|c

06 a b c c 0e a b {rs.PC PC+=c} 16 a b D[c8] 1e a b^c

07 a b c b 0f a b {rs.c} 17 a {D[c8]=b} 1f a

b>>c8l<<c8h

2x a16 b16+c16 4x a b c {rs.b+rs.c} 8x a b c b+c

The implementation of the virtual machine is about https://git.sr.ht/~rabbits/uxn11/

tree/main/item/src/uxn.c. A self-hosted assembler for the Uxntal assembly language

is about https://git.sr.ht/~rabbits/drifblim/tree/main/item/src/drifblim.tal.

Assembled Uxntal applications such as text editors, drawing programs and livecoding

environments are typically about 10-15kb in size.

Relevance to permacomputing

Simplicity of implementation may make Uxn usable as a dependency other than

the VM itself.

The design characteristics call for small applications that use little computing

power.

The general issues with virtual machines apply: running a virtualized program takes

much more processing power than an equivalent native program would. It is therefore

advisable to use VMs only for computationally simple applications.

Parts of the project are geared toward the specification of a Universal Virtual

Computer, such as the Uxn sign language and writing system. It is capable of hosting

Collapse OS.

See also:

Uxn at 100r.co

Uxn at xxiivv.com

35. Civboot

Civboot: a civilizational bootstrapper is a a project which aims to reduce the tools

and knowledge necessary to bootstrap modern civilization as much as possible, with a

•

•

•

•

https://100r.co/site/uxn.html
https://wiki.xxiivv.com/site/devlog.html

focus on computers. It was originally inspired by Collapse OS but is also an educational

tool. As of 2022, it is still at a very early stage.

Civboot’s Git repository

36. Mu

Mu is a minimalist stack of languages built up from machine code. It requires a

processor from the x86 family, and builds up to a memory-safe language without any

additional dependencies (though it can also be bootstrapped from a C

implementation).

Like Forth, Mu was intended to enable people to build interesting programs while

being able to hold the entire system in their head. Unlike Forth, Mu does so while

being well-typed and providing good guardrails that make programs easier to debug.

2/3rds of the LoC are devoted to automated tests.

Performance is not a priority; Mu achieves its goals by focusing on very basic hardware

support. It only supports one screen resolution (1024x768 with 256 colors) and has

only one font (albeit with extensive Unicode support). There’s just one device driver

for hard disk storage: ATA disks in the inefficient PIO mode.

Mu is different from more retro computers like Uxn in assuming lots of RAM and disk.

It uses a 32-bit address space and avoids space-saving tricks in favor of

straightforward code.

Mu is currently dormant. You can create graphical programs that run without an

external OS (albeit only emulated on Qemu so far). You can also create text-mode

programs for Unix-descended systems. It’s currently stalled in need of expertise

debugging real hardware and implementing networking. The mouse driver also needs

work.

Since Mu depends on no features of x86 newer than SSE, it runs on any x86 processor

built in the 21st century. Programs built on Mu are also expected to be resistant to

bitrot since they require fairly basic emulation capabilities. It currently serves as a

time capsule to test these hypotheses.

See also:

An academic paper about Mu

A summary of the Mu compiler on a single page. It’s built in machine code so

needs to be really simple.

•

•

•

https://github.com/civboot/civboot
https://github.com/akkartik/mu
https://github.com/akkartik/mu
http://akkartik.name/akkartik-convivial-20200607.pdf
http://akkartik.github.io/mu/html/mu_instructions.html
https://github.com/akkartik/mu/blob/main/linux/stats.txt

37. Teliva

Teliva is a text-mode platform for disseminating sandboxing applications. In this

respect it resembles a web browser (without markup or a DOM for documents). The

sandboxing model is more flexible than web browsers.

Relevance to permacomputing

It tries to nudge computer owners to think about what permissions they should grant

untrusted applications, and to learn a little bit of programming to do so. It also

encourages owners to look inside application code and provides a trivial edit-run

debug cycle to help them make changes to untrusted applications.

See also:

A talk on Teliva

38. DawnOS

DawnOS is an entire operating system hosted on a One Instruction-Set

Computer(SUBLEQ). The binaries for such a system break down to a much longer list

of machine operations, but they take fewer transistors to run, and can be pipelined

due to their uniform size.

dawnos.txt

DawnOS came with a text file, written by the author, lamenting the current state of

computing:

Imagine that software development becomes so complex and expensive

that no software is being written anymore, only apps designed in devtools.

Imagine a computer, which requires 1 billion transistors to flicker the

cursor on the screen. Imagine a world, where computers are driven by

software written from 400 million lines of source code.

Imagine a world, where the biggest 20 technology corporation totaling 2

million employees and 100 billion USD revenue groups up to introduce a

new standard. And they are unable to write even a compiler within 15

years.

“This is our current world.”

•

https://github.com/akkartik/teliva
https://github.com/akkartik/teliva
https://archive.org/details/akkartik-2022-01-16-fosdem

See also:

A Programming Language With Only One Command and the Anti-Imperialist

Operating System Built on it

39. Solar Protocol

Solar Protocol is a project that connects solar-powered WWW servers from around

the globe, redirecting traffic to a server that has solar power available (i.e. the part of

the globe where the sun is shining).

A problem with Solar Protocol is that it either neglects the energy requirements of

the Internet infrastructure that lies between the solar-powered servers and the users,

or takes them as a constant that only depends on the amount of transferred data.

However, we can be fairly sure that routing a packet across the world takes much

more energy than routing it across a country.

If the power consumption of a server is small to begin with, its “greenness” may very

well get negated by a bad routing decision. It may very well be “greener” to just route

a user to a nearby fossil-powered data center than to a solar-powered server on the

other side of the world.

Taking the network into the equation is difficult because even academic estimations

of the power consumption of Internet routing have varied by several orders of

magnitude. Still, there seem to be no mentions of this issue on the Solar Protocol

website, even though it discusses the energy consumption in the server side and the

browser side. Given the prominence of SP in the media, it is highly unlikely that the

people involved have not heard about this kind of critique.

In 2015, it was estimated in a meta-analysis by Aslan&al. that moving a gigabyte across

a national cable network took 0.06 kWh. This is the same figure as for running a 10-

watt server for 6 hours. Even if the current figures are much lower, they cannot be

ignored as irrelevant if the server network actually serves data instead of mostly

remaining idle.

From the permacomputing point of view, Solar Protocol has a lot of the right spirit

and may work very well as an educational or artistic project. Unfortunately, the

project will remain somewhat problematic until it considers the effect of the Internet

infrastructure.

See also:

Solar Protocol website

Why do estimates for internet energy consumption vary so drastically?

•

•

•

https://esoteric.codes/blog/a-programming-language-with-only-one-command-and
https://esoteric.codes/blog/a-programming-language-with-only-one-command-and
http://solarprotocol.net/
https://www.wholegraindigital.com/blog/website-energy-consumption/

40. PADI

The National Library of Australia’s Preserving Access to Digital Information (PADI)

initiative aims to provide mechanisms that will help to ensure that information in

digital form is managed with appropriate consideration for preservation and future

access.

Its objectives are:

to facilitate the development of strategies and guidelines for the preservation

of access to digital information;

to develop and maintain a web site for information and promotion purposes;

to actively identify and promote relevant activities; and

to provide a forum for cross-sectoral cooperation on activities promoting the

preservation of access to digital information.

See also:

website, on Wayback Machine

PADI’s Notes on emulation, on Wayback Machine

41. BBC Domesday Project

In 1986, the BBC launched an ambitious project to record a snapshot of life across the

UK for future generations, but 16 years after it was created, the £2.5 million BBC

Domesday Project was unreadable. The special computers developed to play the 12"

video discs of text, photographs, maps and archive footage of British life had become

obsolete.

By contrast, the original Domesday Book, an inventory of eleventh-century England

compiled in 1086 by Norman monks, is in fine condition in the Public Record Office

and can be accessed by anyone who can read and has the right credentials.

It has been cited as an example of digital obsolescence on account of the physical

medium used for data storage.

42. CARDIAC

CARDIAC (CARDboard Illustrative Aid to Computation) is a learning aid developed by

David Hagelbarger and Saul Fingerman for Bell Telephone Laboratories in 1968 to

teach high school students how computers work.

The kit consists of an instruction manual and a paper computer.

•

•

•

•

•

•

https://web.archive.org/web/20010609024402/http://www.nla.gov.au/padi/about.html
https://web.archive.org/web/20010625015518/http://www.nla.gov.au/padi/topics/19.html

The computer operates in base 10 and has 100 memory cells which can hold signed

numbers from 0 to ±999. It has an instruction set of 10 instructions which allows

CARDIAC to add, subtract, test, shift, input, output and jump.

INP(Input): take a number from the input card and put it in a

memory cell.

CLA(Clear&Add): clear the accumulator and add the contents of a

memory cell to the accumulator.

ADD(Add): add the contents of a memory cell to the accumulator.

TAC(Test accumulator): performs a sign test on the contents of

the accumulator; if minus, jump to a specified memory cell.

SFT(Shift): shifts the accumulator x places left, then y places

right, where x is the upper address digit and y is the lower.

OUT(Output): take a number from the specified memory cell and

write it on the output card.

STO(Store): copy the contents of the accumulator into a specified

memory cell.

SUB(Subtract): subtract the contents of a specified memory cell

from the accumulator.

JMP(Jump): jump to a specified memory cell.

HRS(Halt&reset): move bug to the specified cell, then stop

program execution.

Relevance to permacomputing

This project, and others like it, were offering a conceptual computer that could be

understood in its entirety by a single person.

See also:

On Wikipedia

43. Hardware

Hardware refers to the material parts of computing equipment, in contrast to

software.

When assessing hardware, we should pay attention to possible sustainability

problems preventing repair, reuse and reprogramming:

Insufficient documentation

Unavailability of obsolescence

DRM locks preventing the running of homebrew software

Intellectual property and closed-source firmware

•

•

•

•

•

https://en.wikipedia.org/wiki/CARDboard_Illustrative_Aid_to_Computation

Not design for disassembly

The world is full of abandoned computer hardware, therefore we shouldn’t be too

picky, and find creative ways to work with even the lousiest pieces of hardware. We

shall approach their problems as something to be fixed with hacking, reverse-

engineering and activism. Reuse of already existing or old hardware can ease the

stress on energetic and mineral-mining impacts of new production (with some

exceptions for power-demanding or toxic devices).

Efforts to create new hardware components in biosphere-compatible and/or local

ways are worth supporting (although that goal is still far away for microchips). We are

particularly interested in what it requires to build specific types of component with

minimal industrial dependencies without destroying the biosphere. Links to succesful

DIY projects are welcome.

Types of hardware components:

ICs

processors (including SoCs)

memory

FPGA

Single-board computers

displays

batteries (including supercapacitors)

human input devices

storage devices

radio devices

sensors and active peripherals

energy sources

How is permacomputing hardware different from IoT?

IoT devices are not specifically produced with sustainability in mind. Often IoT is a by-

product of corporate business models and extractivist attitude and used in the same

way. In permacomputing, hardware, peripheries and energy sources are balanced

together to create supporting networks for ecosystems, designed and grown with

critical care to every part, human-nature surroundings and commons.

-~

See also:

bedrock platform (related to software portability and preservation)

•

•

◦

◦

◦

•

•

•

•

•

•

•

•

•

44. Peripherals

A peripheral is an auxiliary device to a computer, it could be used for storage, printing,

etc.

Printers

Connectors

Power Plugs

Batteries

neau: This entire domain seems to be full of products with obsolescence. It might be

worth listing things by ease of repairability.

45. Software

When assessing software, we should pay attention to:

Is it free from blackbox dependencies such as arbitrary external servers when

running, compiling or installing it? Does it tolerate a lack of network

connectivity?

Is it legally possible to copy, modify and fork the software? (i.e. is it FLOSS?)

What kind of libraries, programming languages and other software components

does it depend on? How mature are these components (i.e. how much software

rot can be expected due to changing interfaces etc.)? How large is the

dependency network?

How much resources does it require to 1) run the software, 2) modify the

software (including recompilation from scratch) and 3) bootstrapping the

smallest possible environment (including the operating system) that can be used

to run and develop the software?

Are there other software that do the same job? How easy would it be to

transition to one of them?

How simple and clearly-defined is the core functionality of the software? How

long would it take to write an equivalent software from scratch?

Software Freedom

Software freedom is the freedom to run the program as you wish, for any purpose, to

study how the program works, and change it, to redistribute copies and your modified

versions so you can help others.

If the new software no longer runs on old hardware, it is worse than the old software.

•

•

•

•

•

•

•

•

•

•

Types of software

operating systems

editors (for media formats)

compilers/interpreters (for programming languages)

networking clients/servers (for protocols)

…

Twee Editors

A twee editor is a [text-editor|text editors] that is the minimum size for a functional

editor, without compression. Twee editors are usually very compact, but at the cost of

accessibility.

46. Programming languages

When assessing programming languages, we should pay attention to:

How complex is the language? How long would it take to learn all the syntactical

details? How long would it take to implement a compiler/interpreter from

scratch?

How mature is the language? Do changes to the specification often break

backwards compatibility? How much hacking does it require to compile and run a

decades-old program in current implementations of the language?

Are there several alternative implementations of the language? (It is generally a

good sign if there are)

What are the bootstrapping them?

What kind of platforms do these implementations target? Is it possible to port a

program to a very small and/or obscure device without switching to another

language?

How fast and compact is the generated code? What are the overheads and

mandatory dependencies like? Does the hello world require bytes, kilobytes,

megabytes or gigabytes of memory if all the dependencies are included?

Asking “what is the most suitable programming language for permacomputing?” is

akin to asking what is “the most suitable plant for permaculture”. The entire question

contradicts itself.

There is a high diversity of possible tasks and programs, and different programming

languages suit them in different ways. Not all software needs to last for decades, run

efficiently or be ultra-secure. However, it is still good if the language does not prevent

this.

•

•

•

•

•

•

•

•

•

•

•

https://texteditors.org/cgi-bin/wiki.pl?Twee_Editors

programming languages

C

Forth

Lisp

Lua

Nim

Hare

Zig

Smalltalk, see The Cuneiform Paper

Go

See also:

Drew DeVault’s blog post about benchmarking compilers by Hello world size

Blog post about a research in energy efficiency of programming languages

47. Operating systems

Plan 9

Oberon

Collapse OS

DOS

48. Protocols

When assessing networking protocols, we should pay attention to at least:

Simplicity of implementation

Resource use (e.g. how much bandwidth is used compared to the actual amount

of transferred information)

Offline tolerance (Does it depend on constant connectivity? How well does it

work in a local network that has no world connectivity?)

Decentralization (How well does it tolerate small servers/peers that are not

always online? Does the design encourage large centralized servers?)

Some protocols:

WWW

HTTP/HTML

Gopher

Gemini

Offline-tolerant messaging protocols

Email

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

◦

◦

•

◦

http://www.vpri.org/pdf/tr2015004_cuneiform.pdf
https://drewdevault.com/2020/01/04/Slow.html
https://www.sendung.de/2022-07-24/programming-languages-energy-efficiency/

Usenet

Fidonet

Offline-intolerant messaging protocols

IRC

XMPP

ActivityPub

Peer-to-peer

BitTorrent

IPFS

Encryption

SSL

Remote access

ssh

mosh

VNC

X11

Wired device-to-device communication

USB

RS232

Hayes command set

Character terminal connections

ANSI X3.64

RTTY

Packet networking

Ethernet

TCP/IP

Wireless networking

Wi-Fi

GSM and its successors (xG)

AX.25

49. File formats

iff

50. Concepts

Concepts and ideas that are needed to discuss permacomputing:

Practical concepts

bootstrapping

decentralization

◦

◦

•

◦

◦

◦

•

◦

◦

•

◦

•

◦

◦

◦

◦

•

◦

◦

◦

•

◦

◦

•

◦

◦

•

◦

◦

◦

•

•

•

digital preservation

documentation

emulation

minimization

Concepts related to design principles

design for disassembly

design for descent

emotionally durable design

planned longevity, or lifespan maximization

personalities of the people interested in permacomputing

self-obviating system

More theoretical or generic

aesthetics

artificial intelligence

algorithm complexity

automation

awareness amplification

balance of opposites

communication complexity

kolmogorov complexity

dependency

ethnomathematics

focality

games

information and energy

otherness

permatechnology

public domain

regenerativity

reuse

scalability

sustainability

technological diversity

unconventional computing

Phenomena of mainstream computing world

attention economy

Big Tech

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

bloat

calculation factory

Californian ideology

capitalism

cryptocurrency

cornucopianism

greenwashing

Jevons paradox

maximalism

monoculture

Moore’s law

neoliberalism

obsolescence

postdigital

pseudosimplicity

retro

siliconization

silver bullet

always online

software rot

utilitarianism

virtualism

wishcycling

51. Collapse computing

Collapse computing or Collapse informatics is the study, design, and development

of sociotechnical systems in the abundant present for use in a future of scarcity.

Civilizational or technological collapse is an extreme example of such a future. The

term “Collapse informatics” was coined by Bill Tomlinson in 2013.

A major project in Collapse computing is Collapse OS, an operating system and set of

tools for restarting computer technology after collapse.

Many Computing within Limits papers from the early years are about Collapse

informatics.

While many may not agree with the collapse scenario or even a future of scarcity, the

practical results of collapse computing are in line with the goals of permacomputing.

Studies of the longevity of hardware components are relevant to lifespan

maximization even without a collapse. Collapse computing is also relevant to

resilience, self-sufficiency and the simplification of technology.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

See also:

Tomlinson’s 2013 article DOI:10.1145/2493431

Unplanned Obsolescence: Hardware and Software After Collapse (PDF, LIMITS

2017) DOI:10.1145/1235

Collapse computing at XXIIVV wiki

52. Smallnet

Smallnet or SmolNet (also known as Small/Smol Internet/Web, etc.) is a movement of

small-scale Internet networking that emphasizes the smallness of the servers

(including low system requirements) as well as that of the user communities. It can be

regarded as a counter-movement to the centralization and bloatedness of WWW.

Examples of Smallnet: * Gemini * Public Unix servers (see also time-sharing) * BBS

communities

53. Computing within Limits

Computing within Limits (or LIMITS) is an annual workshop concerning the role of

computing in human societies affected by real-world limits. As the official website

states, “As an interdisciplinary group of researchers, practitioners, and scholars, we

seek to reshape the computing research agenda, grounded by an awareness that

contemporary computing research is intertwined with ecological limits in general and

climate- and climate justice-related limits in particular.”

The workshop was started in 2015 as a response how Sustainable ICT circles reacted

to ideas such as planetary limits or possible technological collapse. This is perhaps

why many of the papers from the early years are connected with Collapse computing.

In later years, the focus shifted towards “computing systems that support diverse

human and non-human lifeforms within thriving biospheres”, which is very much in

line with what Permacomputing stands for.

Concepts originating from LIMITS include:

Benign computing

Regenerative computing

See also:

The official website

54. Offline first

Offline first, like its name implies, is the design of design for descent.

•

•

•

•

•

•

https://www.researchgate.net/publication/262276832_Collapse_Informatics_and_Practice_Theory_Method_and_Design
https://kurti.sh/pubs/unplanned_limits17.pdf
https://kurti.sh/pubs/unplanned_limits17.pdf
https://wiki.xxiivv.com/site/collapse_computing.html
https://computingwithinlimits.org/

According to Leslie Lamport (1987), “A distributed system is one in which the failure of

a computer you didn’t even know existed can render your own computer unusable”.

55. Right to repair

The Right to Repair movement seeks to ensure that OEMs provide tools,

documentation to their consumers in order for them to perform their own repair.

56. Holistic Computing Arts

Holistic Computing Arts is an artist-centred focus on computing arts that

acknowledges the problem of the mesmeric qualities of vast computations and their

immeasurable possibilities alongside the troubling ethics of participating in the

extractive violence of computing (where over 50 different minerals needed for

computer chips are extracted from the earth, often from unceded lands).

Holistic Computing Arts calls for a reconsidered position on low-emission

computational practices by artists working culturally, socially, and critically with

increased skills in computational media empowered by this awareness of limitations,

which, conversely, increases the potential for creativity.

Holistic Computing Arts workshops focus on how artists can contribute their expertise

to the field rather than being co-opted by the dominant technological and economic

discourses that generally inform and drive the conversation.

The discussion reflects on a computer as being a material in the manner of

conventional art materials; able to influence, modulate, transform and to be our

artistic productions.

Navigating personal computing infrastructure and the incumbent knowledge and

conventions that lead to personal expectations, ranging across customs around

sending and receiving emails, the provenance of hardware, file formats, directories/

folders, the minerals and vessels we keep data in, and the space and lands these may

occupy.

Discussions examine the computer as material media (physical, substantial and

instrumental) capable of permeating and influencing all segments and layers of

contemporary life via our communications, polity, activism, economics, psychological,

etc., and reflects on the necessity of understanding the distinction between

experience with computing arts as a medium (rather than as an editor for text, audio

or visual materials, or third-party social media tools), where the computer performs as

a cultural apparatus, where the partial content and action of the artwork are

generated.

Depending on the experience of participants, for the uninitiated, typically included in

the commentary is:

intimate experiences with computing-inscribed social experiences (family photo

archives)

an exchange of the cultural/agential properties inherent in materials/materiality

of the computing mediums through which we work and archive our ephemera;

working with networks and systems from within carries awareness that we

operate in an interconnected cultural and ecological sphere in which the

computational plays a formative and extractive role; and

appreciating computing as an art medium brings an awareness of ecological

constructions and the social, cultural, and political issues that hover, enabling a

tendency to analyse the systems and dynamics that belie people’s artistic

outputs.

See also:

Holistic Computing Arts Conversation 2023, sister0, 2023.

The Oceanic provenance of Permacomputing and Computational poetics,

sister0, 2024.

VvitchVVave post digital aesthetics symposium, 2019.

Networked Art Forms: Tactical Magick Faerie Circuits, a series of events inspired

by computer culture, artists, programmers and thinkers from the frontline of the

maker aesthetic, devised by sister0, 2013.

57. Small File Media Festival

The Small File Media Festival is a film festival in Canada, focused on short films with

file sizes less than five megabytes.

According to their website, SFMF works in defense of the tiny image. Size matters, and

small is better, tiny is best, which is not merely to argue for a different aesthetics or

narrative structures (that too) but also for an understanding that all media is media

ecology – and as such, directly related to infrastructures with environmental costs.

Official website, sadly, they have a poorly optimized website that fails almost

entirely to display on slow-bandwidth and old browsers. The fact that the main

page is more than half the size of a five-megabyte film somewhat ruins the point

of their activism.

•

•

•

•

•

•

•

•

•

https://www.autoluminescence.institute/resources/reports/holistic_computing_conversation_2023_report/
https://www.autoluminescence.institute/resources/library/intro-oceanic_provenance_permacomputing_codework/
https://www.vvitchvvavve.me/
https://sister0.hotglue.me/
https://smallfile.ca

58. Algorave

Algorave is a livecoding event where people dance to music generated from

algorithms.

Show us your screens

The tagline of the festival has relevance to permacomputing, as it promotes a culture

of openness, where the computer musician may not be the main point of focus for the

audience and instead attention may be centered on a screen that displays the process

of writing source code, so the audience can not just dance or listen to the music

generated by the source code but also observe the process of programming.

It also promotes the creation of file formats for preserving musical compositions,

which may help against obsolescence.

See also:

Demoscene

59. Demoscene

The demoscene is a computer art subculture that creates programmed audiovisual art

in all kinds of programmable devices, often within very tight constraints. Aspects of

the demoscene that may be relevant to permacomputing include:

Media minimization.

Small and optimized program code where bloat and superfluous dependency are

shunned.

The use of limitations and peculiar hardware characteristics as creative

inspiration.

The relationship to old technology. New and old platforms coexist, with old

platforms having been supported as a continuous tradition rather than having

been retro. New things are constantly discovered even on classic platforms.

It is an example of a pre-siliconization subculture that still holds on some of the

pre-siliconization values.

See also:

Commodore 64

Amiga

ZX Spectrum

pixel art

•

•

•

•

•

•

•

•

•

•

60. Solarpunk

Solarpunk is a movement centered on using and being affected by the use of

renewable resources with a focus on decentralization, community activism, social

justice and civic empowerment. A recognition that economic, social, and ecological

injustices are all deeply inter-connected.

Embracing approachable, personal technology and envisioning a world in which the

detritus of consumer culture is appropriated and repurposed toward the

reconstruction of a devastated ecology.

Solarpunk imagery, with a lot of plantlife in a carless urban environment, is getting

more and more recognizable. Since permacomputing is concerned about many

difficult topics such as resource use minimization, scarcity and even collapse, it may be

a good idea to compensate for this by allying with Solarpunk and its bright and

hopeful outwards esthetics.

When embracing Solarpunk, however, there are some pitfalls. First, it is important to

separate it from greenwashing technofuturism (which looks more sterile and

corporate but is nevertheless often called Solarpunk). Second, one should perhaps not

look too closely into the technological details of Solarpunk works (that may have

standard sci-fi tropes such as screens projected in the thin air) but rather take it as a

general mood and mindset.

See also

A Solarpunk Manifesto

61. Contact

The Permacomputing wiki is facilitated by:

ugrnm

viznut

Its content is written by (in order of registration)

neau

thgie

akkartik

aw

orx

dusan

katía

•

•

•

•

•

•

•

•

•

•

https://www.re-des.org/a-solarpunk-manifesto/

luen

suj

cmos4040

giz

pixouls

wakame

decentral1se

clwil

You can reach all of us at once by sending an email to permacomputing / a t /

bleu255 dot c o m

Do you want to contribute something? Great, check editing!

62. neau

Half of Hundred Rabbits, a solar-powered studio operating from aboard a sailboat.

63. ugrnm

hello, I’m one of the admins.

more info + contact: https://bleu255.com/~aymeric

64. ola

dfgrdrgf

65. Bandwidth minimization

Bandwidth minimization is directly connected to the minimization of the use of

artificial energy for networking, so it is of interest to permacomputing.

Ideas related to bandwidth minimization:

Media minimization, including the use of more minimal styles

Offline first design of applications

Peer-to-peer rather than server-mediated communication

Decentralization

66. Media minimization

Media minimization refers to the minimization of the kind of media that is usually

high-bandwidth, such as images and videos.

•

•

•

•

•

•

•

•

•

•

•

•

https://bleu255.com/~aymeric

Media optimization refers to the reduction of file size while keeping the appearance

as close to the original as possible. This often involves twiddling with the optimization

parameters of the compressor and a moderate use of filters to reduce unnecessary

detail.

Another approach starts from stylistic and technical choices that aim at low or

moderate file sizes. For instance, low-color styles with large solid-colored areas

compress rather well (see posters or black-and-white woodcuts for inspiration).

Repetitive pixel patterns may also work well in formats like PNG. High-color pixel art,

however, does not compress that well.

If it is reasonable to run arbitrary code, procedural generation and algorithmic art

provide a wide variety of stylistic choices.

In the midway between media optimization and style-first approaches are extreme

media optimization techniques that lead to particular styles. One possible style is

“ditherpunk” where a very small color palette is used in combination with automated

dithering.

There is still room for a lot of research in automatic extreme media minimization.

Ideally, the result of media minimization should resemble careful artisan work and

look better than the original.

See also:

Aesthetics

Demoscene

Small File Media Festival

67. Virtual machine

A virtual machine is an implementation of a computer on top of another. An

emulator is specifically a virtual machine that simulates a different type of computer

that also exists as real hardware. If the “emulated” computer is similar to the one that

runs the emulator, the commonly used term is virtualization. Virtual machines that

have no real-hardware counterpart (such as the Java Virtual Machine) are usually just

called VMs, but their machine languages are usually referred to as bytecode rather

than machine code.

Virtual machines can be used to ensure compatibility of a software – both across

different types of hardware and in constantly changing software environments (i.e. to

avoid software rot). Very simple virtual machines (ones that may be very slow but can

be implemented in a very short time) are sometimes suggested as a means for very-

long-term software preservation.

•

•

•

Virtual machines designed to run applications usually have the same kind of

dependency and obsolescence problems as modern computer platforms in general.

So, instead of ensuring compatibility, things like the Java Virtual Machine are more

likely to add just another unreliable layer of dependencies. In order to avoid this, the

design of the VM should be frozen and discourage software dependencies.

A general problem with virtual machines is the virtualization overhead, especially if

the instruction set differs from that of the host computer. An emulated program may

require several times the computing resources of an equivalent native program. JIT

translation can be used to reduce this overhead. Static binary translation could be

used to remove (nearly) all of the overhead, but is far more difficult to implement

automatically.

Fantasy platforms are a class of virtual machines designed to be superficially similar

to classic home computers, including immediate and worriless programmability with a

simple programming language. A common design mistake in otherwise constrained

fantasy platforms (such as TIC-80) is uncapped speed that allows the host computer

to run the programs as fast as it can. This encourages programs that “push the limits”

of the VM while actually taking advantage of the speed of the host computer and

wasting a lot more energy for doing the same thing.

Virtual machines:

Uxn

p-code

Chip8

TIC-80

WebAssembly

Languages that are usually compiled into virtual machine bytecode instead of native

code:

Forth

Java

Most scripting languages (Lua, etc.)

68. C

C is a general-purpose programming language created in the 1970s for the system

programming needs of the Unix operating system.

The main benefit of C is that it is ubiquitous and quite mature. There are C compilers

for nearly any imaginable processor architecture, and relatively old code often

compiles quite well.

•

•

•

•

•

•

•

•

Compiled C code is generally quite resource-efficient. The speeds of compiled

languages are often compared to C.

There are also languages whose compilers can produce C code to be compiled by a C

compiler. These languages thus benefit from the optimization features and platform

support of the C compilers:

Nim

V

Interpreted languages implemented in C:

Lua

Perl

Ruby

Python

As a language, C has many problems that subsequent languages have tried to fix with

varying degrees of success. Examples of such languages:

C++

Objective-C

D

Go

Rust

Nim

Compilers:

GCC

Clang

Zig has a C/C++ compiler that produces much smaller binaries (even static ones)

than the mainstream GCC and Clang toolchains.

Open Watcom is a C/C++/Fortran compiler usable for targeting legacy x86

operating systems such as DOS.

Tiny C Compiler is a small (100+ KB) standalone C compiler for “modern” x86 and

ARM targets (i.e. Linux but not DOS).

vbcc is an optimizing C99 compiler particularly suitable for some legacy targets

such as 68000 and 6502.

cproc and other compilers based on the QBE compiler backend.

69. Forth

Forth is a stack-based programming language created in the 1970s by Chuck Moore.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

http://www.openwatcom.org/
https://bellard.org/tcc/
http://www.compilers.de/vbcc.html
https://sr.ht/~mcf/cproc
https://c9x.me/compile/users.html
https://c9x.me/compile

The main benefit of Forth is that it is very small. A classical Forth system takes the

roles of the compiler, the editor and the operating system while completely fitting in

a memory space of less than 20 kilobytes. The smallness also makes it possible to

implement a Forth system from scratch in a weekend.

Forth is often run with a two-stack virtual machine, which makes it much slower than

compiled code, although native-compiling Forth systems are also common. Classical

Forth systems typically also include an assembler that can be used to implement

speed-critical parts of the program.

Most programmers see Forth as quite esoteric in comparison to other languages.

Forth also doesn’t “protect” the programmer from its inner peculiarities – even

though it is possible to create abstractions, it is not advisable to forget what lies

under those abstractions.

Forth has been standardized, but Moore himself hasn’t cared so much about

standardization. The “Redo from scratch” ideal is quite strong in the Forth culture and

exemplified by Moore’s own quest for an optimal set of language elements.

See also:

Thinking Forth (the classical Forth book)

Forth - the Early Years (by Chuck Moore)

Standard Forth system for Uxn

70. Obsolescence

Obsolescence takes place when something is no longer maintained or required, even

if it could still be usable. Planned obsolescence takes place when obsolescence is

actively designed and initiated by the manufacturer/maintainer.

The concept of obsolescence is generally add odds with technological diversity and

often also wasteful especially in the case of planned obsolescence.

Types of planned obsolescence

Obsolescence of desirability: When designers change the styling of products so

customers will purchase products more frequently due to the decrease in the

perceived desirability of unfashionable items.

Obsolescence of function: When an item is produced to break down or

otherwise become non-functional in an abnormally short period of time.

Obsolescence of compatibility: When a product becomes obsolete by altering

the system in which it is used in such a way as to make its continued use difficult.

Common examples of planned systemic obsolescence include not

accommodating forward compatibility in software.

•

•

•

•

•

•

http://thinking-forth.sourceforge.net/
https://colorforth.github.io/HOPL.html
http://www.call-with-current-continuation.org/uf/uf.html

Pseudo-obsolescence of desirability: When planned obsolescence appears to

introduce innovative changes into a product, but in reality does not, often

forcibly outfashioning an otherwise-useful product.

Examples

Non-user-replaceable batteries: Some products, such as mobile phones, laptops,

and electric toothbrushes, contain batteries that are not replaceable by the end-

user after they have worn down, therefore leaving an aging battery trapped

inside the device.

Phoebus cartel: The cartel conveniently lowered operational costs and worked

to standardize the life expectancy of light bulbs at 1,000 hours, down from 2,500

hours, and raised prices without fear of competition.

71. Lifespan maximization

Lifespan maximization is the extension of hardware lifespan by the users. It may be

supported by planned longevity from the manufacturer’s side, but it rarely is.

IC requires large amounts of energy, highly refined machinery and poisonous

substances. Because of this sacrifice, the resulting microchips should be treasured like

gems or rare exotic spices. Their active lifespans should be maximized, and they

should never be reduced to their raw materials until they are thoroughly unusable.

Broken devices should be repaired. If the community needs a kind of device that does

not exist, it should preferrably be built from existing components that have fallen out

of use. Chips should be designed open and flexible, so that they can be

reappropriated even for purposes they were never intended for.

Chips that work but whose practical use cannot be justified can find artistic and other

psychologically meaningful use. They may also be stored away until they are needed

again (especially if the fabrication quality and the storage conditions allow for

decades or centuries of “shelf life”).

Use what is available. Even chips that do “evil” things are worth considering if there’s a

landfill full of them. Crack their DRM locks, reverse-engineer their black boxes,

deconstruct their philosophies. It might even be possible to reappropriate something

like Bitcoin-mining ASICs for something artistically interesting or even useful.

Minimized on-chip feature size makes it possible to do more computation with less

energy but it often also means increased fragility and shorter lifespans. Therefore,

the densest chips should be primarily used for purposes where more computation

actually yields more.

•

•

•

72. Documentation

Tutorials are lessons that take the reader by the hand through a series of steps to

complete a project of some kind. They are what your project needs in order to show a

beginner that they can achieve something with it.

Gets the user started

Allows the user to learn by doing

Ensures the user sees results immediately

Focuses on concrete steps, not abstract concepts

How-to guides assume some knowledge and understanding, and take the reader

through the steps required to solve a real-world problem. They are recipes, directions

to achieve a specific end - for example: how to create a web form; how to plot a three-

dimensional data-set; how to enable LDAP authentication. How-to guides are quite

distinct from tutorials. A how-to guide is an answer to a question that a true beginner

might not even be able to formulate.

Solves a problem

Focuses on results

Allows for some flexibility

Explanations can equally well be described as discussions. They are a chance for the

documentation to relax and step back from the software, taking a wider view,

illuminating it from a higher level or even from different perspectives. You might

imagine a discussion document being read at leisure, rather than over the code.

Explains a decision

Provides context

Discusses alternatives & opinions

In some cases, a discussion that is superficially about a single system may contain

deeper insights that make it closer to wisdom literature. This type of literature may

help pass design wisdom from a generation to another. Textbooks may also come

close to wisdom literature.

Reference guides are technical descriptions of the machinery and how to operate it.

They are code-determined, because ultimately that’s what they describe: key classes,

functions, APIs, and so they should list things like functions, fields, attributes and

methods, and set out how to use them.

Describes the machinery

References material should be austere and to the point.

Structure the documentation around the code

Do nothing but describe

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Reference guides are particularly crucial for hardware. In software, reference

information can be (laborously) derived from the source code or even the binary

executable, but similar analysis for microchips requires specialized equipment and can

be considerably more complex.

73. Feminist server

TODO: Insufficient introduction/context, please expand

A situated technology. It has a sense of context and sees itself as part of an ecology of

practices.

See also:

Feminist Server – Visibility and Functionality

History of Anarchaserver and Feminists Servers

A feminist server ….

Trans*feminist servers…

74. Operating system

An operating system is a piece of software that most crucially handles the

interoperability between hardware and software as well as between different

software programs.

In general, an OS is required in order to run other programs. A program that is written

to use the hardware directly does not require a separate OS, but this severely limits

the possibility of using any other programs in the hardware. Even embedded systems

that are only supposed to run a single fixed application often run on top of some kind

of an OS.

See also:

Operating systems - list of various OSes to be assessed for permacomputing

75. Bloat

Bloat refers to something wastefully and unnecessarily large. In software, it may refer

to the presence of program code that is perceived as unnecessarily long, slow, or

otherwise wasteful of resources, but a considerable amount of bloat originates from

external dependency.

•

https://creatingcommons.zhdk.ch/tag/femke-snelting/index.html
https://alexandria.anarchaserver.org/index.php/History_of_Anarchaserver_and_Feminists_Servers_visit_this_section
https://etherdump.constantvzw.org/p/feministserver.diff.html
https://etherpad.mur.at/p/tfs

One formulation of bloat is Wirth’s law, a variant of Jevons paradox: software is

getting slower more rapidly than hardware is getting faster.

76. Character terminal

Character terminals have been a prominent way of using computers since the early

years. At first, paper-based teleprinters were the most common computer terminals,

but CRT-based video terminals started to replace them in the 1970s. In the 2000s, the

character terminal is most often a terminal emulator program running on a graphics-

capable computer.

Character-based terminals and interfaces from a permacomputing point of view:

Advantages:

A VT100-compatible terminal emulator is quite simple to implement and its

basic hardware requirements are quite low (a couple of kilobytes of RAM are

enough for representing the screen contents).

Even simpler terminals can be usable in the Unix world provided that a

Terminfo/Termcap entry is available. For “VT100-only” software, Screen or

Tmux can be used as a compatibility layer.

The hardware requirements for a server are even lower than for a client. It

requires very little from a computing device to send and receive characters over

a serial connection; even the smallest microcontrollers can do this.

The simplicity (no long packets etc.) makes all the possible failures relatively

easy to notice and diagnose. Even a bad physical connection will show up as

random noise characters unless there’s an error-correcting layer.

Nearly any device with a keyboard and a display can be used as a terminal

emulator as long as it has some kind of a serial or network connection. VT100-

compatible terminal emulators are also available on just about any classic or

modern personal computer platform.

The basic bandwidth requirements are very low (you mostly send and receive

individual characters as individual bytes).

The limited nature of the character-based screen sets a practical upper limit to

the fanciness of the interface, and this helps keep the bandwidth and system

requirements low. The simplicity and manageability of text terminals make many

people prefer terminal-based software even when working on powerful

graphical workstations.

Simple interactive programs are more straightforward to program for character

terminal I/O than e.g. web browsers.

•

◦

•

•

•

•

•

•

Problems:

“Dumb” remote terminal connections set quite high requirements for the

responsivity of the network and the remote computer. The user feels

uncomfortable if there’s even a slight delay between the keypress and the

visible response. Even WWW is far more tolerant to network lag.

Local echo used to be a common terminal feature that could be used to

reduce this discomfort. Seeing the typed character immediately also made

it easier to spot and correct mistakes. Local echo is useful for simple and

rudimentary command line interfaces, but more complex features (such as

tab completion) reduce its usability.

Mosh is a protocol that extends SSH with some more tolerance for

unreliable and laggy network connections by trying to predict how the

typed text will look like on the terminal before the server sends its actual

response.

Block-oriented terminals such as the IBM 2260 and 3270 addressed these

problems already in the 1960s. In a sense, web browsers can be thought of

as successors of block-oriented terminals.

The potential of the hardware used as a text terminal is nearly always

underused. Even “dumb” terminals are usually not so dumb on the inside. The

VT100, for example, is basically a 8080-based microcomputer with far more

potential than just running the ROM-based terminal program.

Unlike many later terminals and terminal emulators, the VT100 does not

have features such as client-side copying, filling or highlighting, or even

arbitrary scroll zones (only full-width zones are supported). Since the

VT100 became the “gold standard”, even today’s terminal-oriented

software such as Tmux are forced to implement their fancy windowing

features by constant character-by-character refreshes.

In general, a lot of relatively basic stuff requires far more bytes than it

ideally should. When using a text editor over SSH over TCP/IP, every single

keypress translates into quite many protocol bytes. Even a website with a

text edit box may be much easier for the network.

Textmode rendering comes from a world where pixels are cheap but memory is

expensive. It is therefore not very good for small screens that could be used

more efficiently with direct pixel addressing and non-monospaced fonts.

Many terminal-based programs make the assumption that the screen is at least

80 characters wide. This makes them impractical on small displays.

Since keypresses are transmitted as individual characters, it is generally not

possible to create UIs that depend on the arbitrary pressing and depressing of

keys (e.g. cursors that move constantly when an arrow key is down and stop

moving exactly when the key is released).

Likewise, it is not possible to support arbitrary combinations of keys (ctrl+A and

ctrl+shift+A both transmit the same byte). The limited key combination support

•

◦

◦

◦

•

◦

◦

•

•

•

•

has made it difficult to implement some common CUI/TUI standards (such as

using shift+arrows to mark blocks of text) on VT100-compatible terminals.

Nearly all ways to display even rudimentary graphics have been somehow

crippled in mainstream text terminals:

Unlike many contemporaries (such as Teletext, Videotex and many early

personal computers), the VT100 has no pseudopixel characters, only box-

drawing and curve-drawing ones. Some pseudopixel characters have been

adopted into Unicode, but their support in fonts has been unreliable.

VT220 and later VTs support user-definable characters but this feature has

been rarely implemented in emulators (no surprise, since the character

matrix size varies by terminal model and display mode).

Some special-purpose VT terminals feature bitmap and vector graphics

(“Sixel” and “ReGIS”), and some terminal emulators (xterm) actually

support them. However, Sixel graphics was defined so that each individual

color needs to be separately transmitted (no proper bitplanes), so it makes

sense only for very low-color images.

Some technical vocabulary:

ANSI X3.64 is a ~1976 control sequence standard for character-based video

terminals. It was criticized for being too complicated for “dumb” hardware and

thus requiring a microprocessor. One of the complications was the use of ASCII

decimal numbers as command parameters (earlier terminals had used single

bytes instead).

VT100 and VT102 are physical, microprocessor-based text terminals

manufactured by Digital Equipment Corporation in around 1978-1983. They

became the de-facto reference implementation of the ANSI standard.

ANSI.SYS on the IBM PC is another influential implementation of the standard.

Notably, it supports the cell-specific foreground and background colors of the

CGA-compatible display controllers. “Ansi art” therefore usually refers to art

made for the IBM PC textmode, including the non-standard pseudographic

characters featured in the IBM PC character set.

ECMA 48 (the last version is from 1986) is a later standard that extends on the

X3.64. It defines ANSI.SYS-style colors but also some potentially useful features

that are very rarely supported in today’s terminal emulators (such as a support

for multiple pages and editable areas).

Text mode is a hardware feature of a display controller, allowing the

representation of the screen as character indexes rather than individual pixels.

The pixel matrices of each character are fetched from a separate character

memory (which can be ROM or RAM or both). Physical text terminals, most 8-bit

microcomputers and IBM PC compatibles have a hardware textmode. In the

game console world, equivalent display modes are referred to as “tile-based”.

•

◦

◦

◦

•

•

•

•

•

Sometimes, text mode is simulated in software (e.g. the framebuffer console on

Linux)

CLI (command-line interface) is based on typed commands. CLIs have been

around since the teleprinter days.

CUI and TUI (character-based UI, text-based UI) are a more graphical type of

character-based interface. They may have things like status bars, cursor-

navigable menus and even windowing or mouse support. A lot of work and

standardization on CUI/TUI took place in the IBM PC world. Unfortunately, many

of the common CUI/TUI approaches are somewhat prohibitive on low-bandwidth

character terminals.

Telnet is a protocol for non-encrypted terminal connections over a TCP/IP

network. SSH is a protocol for encrypted ones (and therefore recommended in

nearly all circumstances). The easiness to sniff the network for Telnet passwords

was the major reason why SSH was adopted.

Pseudographics refers to characters that have been intended for drawing crude

graphical images rather than representing text. Some of these are intended for

drawing of box frames (e.g. U+2500..U+257F in Unicode), while others are for

simulating low-resolution pixel framebuffers (e.g. U+2580..U+259F). UNSCII is a

font that attempts to implement Unicode and legacy pseudographics as

completely as possible.

See also:

Character sets

ANSI X3.64

BBS

77. Bedrock platform

A bedrock platform is a hardware platform or a universal virtual machine that can be

expected to remain compatible with any software that has ever been written for it.

Bedrock platforms can be used to prevent software rot.

Note that this is not a “shopping list” or a list of “allowed” hardware. Bedrock

platform support is simply a way of maximizing the probability that a program can be

run in an indefinite future and a way to keep its dependency reliable. The concept of

bedrock platform is not relevant to e.g. embedded-system-type projects that are

designed for a very specific hardware, or the kind of software that is known to have a

short lifespan.

•

•

•

•

•

•

•

A simple bedrock platform guide based on the IBM PC line:

Can you compile and run the program in FreeDOS?

If yes, you have the bedrock support (just make sure that the compiler and

other needed tools are archived somewhere).

If not, can you create an x86 operating system image that compiles and

runs the program without accessing any external resources?

If yes, you have the bedrock support (just archive the image and/or

everything you’ve put in it).

If you can only run it in these environments but not compile it, it is still far better

than nothing.

Some possible criteria for bedrock hardware:

The hardware has been popular and commonly available at some point of history

(and preferably remains that way).

Every detail of the hardware is well-known and fully documented. (Having a

100% compatible open-source emulator can be considered full documentation)

There have been several independent manufacturers for each component.

Multiple emulators for the platform are commonly available for many different

environments.

There are no copyright issues in regards to the hardware design, firmware IP,

etc.

It is possible to pinpoint a “standard configuration” that is supposed to run all

the programs and can be used for testing software compatibility (usually this

means the original version of the hardware or the de-facto most popular

variant).

Candidates for bedrock hardware:

IBM PC: Widely cloned, remains ubiquitous, every type of common component

has had multiple manufacturers in different parts of the world (with the

exception of OPL2/OPL3 common in classical soundcards). Can be emulated by

open-source software such as QEMU, Dosbox or Bochs. There are also several

different DOS-compatible operating systems, including FreeDOS. Standard

configurations may be difficult to pinpoint.

NES/Famicom: Widely cloned especially in China/Taiwan without any of the

original Japanese components. Huge amount of available emulators, and

running a ROM file with one is very straightforward. No software dependencies

(as there’s no internal firmware ROM).

ZX Spectrum: Simple design that was easy enough to duplicate in Eastern-block

countries even with 100% non-Western components. Clones are still

manufactured, emulators are widely available.

•

◦

◦

▪

•

•

•

•

•

•

•

•

•

•

MSX: Standardized platform, every chip used in MSX-1 computers has had both

U.S.American and Japanese manufacturers. (MSX-2 on the other hand depends

on specific Yamaha chips). Emulators widely available. The firmware ROMs may

pose issues as long as Microsoft exists. Also, there’s no obvious standard

configuration.

Raspberry Pi is an example of a platform that fails the criteria. It depends on a single-

manufacturer SoC chip (Broadcom BCM2835) that doesn’t have full documentation

available. QEMU emulates some versions of the platform to some extent but this

emulation does not cover the undocumented parts of the chip (e.g. running the GPU

firmware code).

For virtual bedrock hardware, the main criterion is that the specification is simple

enough that it can be implemented in a small effort for commonly available

computers, and that the specification is unambiguous and frozen.

Even though optimal resource use is not a major point in bedrock platforms, having

that as well would be ideal. Not only should it be possible to make minimal-overhead

emulators, but to read, static code analysis, decompilation and recompile the code in

order to use it on arbitrary future computers. Writers of bedrock-platform software

may want to make sure that it will be easy enough to e.g. separate code from data

even when analyzing binaries.

The Maxwell’s Equations of Software

Alan Kay has famously described Lisp as the “Maxwell’s equations of software”. He

describes the revelation he experienced when, as a graduate student, he was studying

the LISP 1.5 Programmer’s Manual and realized that “the half page of code on the

bottom of page 13 was Lisp in itself.

Yes, that was the big revelation to me when I was in graduate school—

when I finally understood that the half page of code on the bottom of

page 13 of the Lisp 1.5 manual was Lisp in itself. These were “Maxwell’s

Equations of Software!” This is the whole world of programming in a few

lines that I can put my hand over.

I realized that anytime I want to know what I’m doing, I can just write down

the kernel of this thing in a half page and it’s not going to lose any power.

In fact, it’s going to gain power by being able to reenter itself much more

readily than most systems done the other way can possibly do.

See also:

You have made your bedrock, now lie in it.

•

•

http://www.loper-os.org/?p=55

78. Plan 9

Plan 9 is a fully-featured, clean, compact and uniform operating system built as a

successor to Unix.

Plan 9 is not a product, it is an experimental investigation into a different way of

computing. The developers started from several basic assumptions: that CPUs are

very cheap but that we don’t really know how to combine them effectively; that good

networking is very important; that an intelligent user interface is a Right Decision;

that existing systems are not the correct way to do things, and in particular that

today’s workstations are not the way to go.

Relevance to permacomputing

The Plan 9 system is likely one of the fastest and most complete operating systems

for the Raspberry Pi devices. In comparison with the various compatible Linux and

BSD distribution, it comes already bundled with all the software and documentation

required to understand and expand its inner workings.

“An argument for simplicity and clarity.”

— Rob Pike

79. Silver bullet

Silver bullet is a metaphor for an effective and universal solution for any problem. In

computing, the metaphor was notably used in Fred Brooks’ 1986 essay “No Silver

Bullet”.

The belief in silver bullets is quite popular in computing. Many computing-oriented

people are vocal fanatics of a single programming language, a single operating system

or a single design paradigm, that is better than its “competitors” in every context and

will eventually make them obsolescence.

Since technological diversity is an important idea in permacomputing, silver-bullet

type of thinking should be avoided. Instead of putting ideas or pieces of technology in

a universal linear order of superiority, one should be aware of different contexts. The

strengths in one context may be weaknesses in others. The “best practice” of a

specific context may be an “antipattern” in another context.

Permacomputing is not a silver bullet either.

80. Monoculture

Monoculture is an agricultural term referring to the practice of growing only one

species in a field at a time, but the term has also been adopted to computing. Identical

computers that run identical software are an example of an algorithmic

monoculture. Monocultures tend to be vulnerable because all their elements (be they

plants or computers) share the same vulnerabilities and other weaknesses.

While a strict definition of algorithmic monoculture may require identical computers

and software, looser definitions are also possible. Any kind idea, design concept or

piece of software that is so dominant that it is difficult to envision alternatives may

form a monoculture.

Technological monocultures can be counteracted with technological diversity.

81. Permacomputing 2020

Permacomputing 2020 is a shorthand to Viznut’s essay that introduced the concept

of permacomputing in July 2020. Its original title was “Permacomputing (some early

notes)”.

The original text at viznut.fi

82. Cryptocurrency

Cryptocurrency is a form of decentralization digital currency that uses strong

cryptography for security and verification.

Proof-of-work cryptocurrencies such as Bitcoin are extremely problematic from the

permacomputing point of view. Their market value is closely connected to the amount

of energy used for “mining”, which is currently a huge amount of wasted energy (IEA

estimates ~100 TWh global consumption for 2020; in comparison, all of the world’s

data centers consumed 200-250 TWh that year). The embodied energy from the

production of the vast amounts of computing hardware used exclusively for “mining”

is not included in this figure, and the material life cycles of the hardware will of course

need to be considered as well.

What about only using renewable surplus energy and otherwise useless hardware for

mining, or participating in the PoW-crypto market without participating in mining at

all? It can argued that this is problematic as well, since mere participation in the

market (even by actively discussing the topic and thus keeping the hype up) may help

maintain the value system.

•

http://viznut.fi/files/texts-en/permacomputing.html

Proof-of-stake is the main alternative to the proof-of-work model. It has not yet been

assessed from the permacomputing point of view. (If you have studied this topic,

please consider assessing it and expand the page accordingly)

Blockchain is the type of data structure used by cryptocurrencies. They may be useful

for some purposes of decentralization, but it is doubtful whether they are an optimal

or even good solution for any problem. (If you have studied this topic, please consider

expanding the page)

83. File collection

A file collection is a set of computer files that is deliberately maintained by someone.

In today’s computing, most non-personal files can be considered temporary: they have

been downloaded from somewhere and can always be redownloaded if needed again.

The practice of actual file collection is becoming ever more marginal, but it has a place

in permacomputing for increasing resilience and reducing network dependency.

Before the ubiquity of the broadband Internet, users of personal computers usually

had files of all the software they used (and usually a lot of software they never used),

often on physical floppies or CDs. These collections were cared for, and even the

decision to delete a rarely played PD game could be painful. While people had their

private file collections, there were also public file collections, such as BBSes, which

often served as repositories of commonly needed PD software and much more.

While broadband networking is probably the most important reason for the

marginalization of file collection, another reason may be “software rot if they are not

constantly”updated“. Keeping a computer offline for a long period of time often

brings up large batches of automatic updates; experiences like this may contribute to

the illusion of”file rot".

Today, many people have small personal servers or websites, but they are rarely used

to share any files other than those directly related to the maintainer. However, they

could also easily serve larger collections of files, including copies of all kinds of online

resources the maintainer considers important. A lot of resources are available with

licences that allow unlimited redistribution, but this right to redistribution seems to

be quite underused.

In a file collection culture, nothing that is published is supposed to only stay in one

place. A resource stays in one place only if it is too obscure or uninteresting to anyone

else, maybe even the author. Even the kind of files that in the WWW culture could be

called blog posts or social-media posts get spread to multiple places if they are

considered of any interest at all. From the permacomputing point of view, a file that is

only available on one server has a hard dependency on that server, and hard

dependencies are supposed to be avoided.

In a permacomputing world, servers that host file collections would be just as

common as public libraries. People would primarily use the servers that are

geographically close to them. They would contain all the commonly used software and

documentation (and their complete dependency) along with large amounts of other

freely distributable media (books, entertainment, reference databases such as

Wikipedia, etc.)

84. Information battery

An information battery refers to the “storage” of surplus energy in the form of

information (such as intermediate results of computation) that can be used later to

lessen the need for computation.

The concept was introduced in the context of supercomputing, but it has also been

discussed in the context of degrowth computing in 2022. It mirrors the

permacomputing idea of using surplus energy for slow, computing-intensive tasks.

The concept emphasizes the storage of rather temporary information on a rather

short-term basis. An example of a more long-term use of surplus energy for more

permanent results would be the gradual optimization of software: when initially

compiling a program, the compiler would only do rather lightweight optimizations,

and the heavier and more computing-intensive ones would be postponed to times of

abundance.

See also:

Original 2021 paper by Switzer and Raghavan

85. About

This website is a wiki dedicated to permacomputing.

We want to encourage discussions presenting an inspiring future as well as research

and projects on how they can become reality. Permacomputing starts with

questioning and reducing computer use, a focus on repair, and then designing future

computing with the biosphere and human life in mind.

Is this for you?

Are you looking to understand the effects of computer use in your community,

experiment with projects, create art about alternative futures, and/or join or organize

local groups? Then yes! And there’s more about these ideas in getting_started.

At the same time, we’re not here to help you greenwashing your new “sustainable”

technology startup, green AI, ecological web3 funding, circular crypto carbon credit

•

https://arxiv.org/abs/2108.01035

program, and other nonsensical technosolutionist forms of climate denial and white

[re]centering privilege. For these cases, please go elsewhere :)

Contact us!

The Permacomputing wiki is facilitated by ugrnm and viznut. Its content is written by

(in order of registration): neau, thgie, akkartik, aw, orx, dusan, katía, luen, suj,

cmos4040, giz, pixouls, wakame, decentral1se, clwil, brendan, sister0, kattrali

You can reach all of us at once by sending an email to:

permacomputing / a t / bleu255 dot c o m

HTTP vs HTTPS

It is possible to consult this wiki on port 80, that is to say using http:// instead of

https://. The reason to keep providing such access is to allow modest but capable

computers, as well as simple/legacy browsers, to access the content. Note that when

registering, authenticating or editing, you will be redirected to port 443, https://.

Local/Offline copies

We use ikiwiki as wiki compiler. This wiki exists in fact as a collection of plaintext

source files that are automatically turned into static HTML files whenever an edit is

made to these source files.

Because these plaintext source files and HTLM files are very portable and easy to

copy, you are encouraged to have local copies in order to be less dependent on WWW

or individual server installations.

See cloning to learn how to make local/offline copies.

Install Notes

If you are curious how this was all installed and configured, we took some notes on

installing.

86. Editing

Style

Permacomputing wiki is not Wikipedia, so being neutral or encyclopedic is not among

our goals, and original research is encouraged. However, it is a collaborative project,

so if you want to express an opinion the other editors may not agree with, please use

the relevant Discussion page, and make sure to sign your comment with your handle.

Go to the Discussion page, in the top menu of this page for an example.

Copyediting recommendations

explain the abbreviations before using it (ex. Operations Systems (OS) are

amazing. The OS are actually shit).

make sure the references are explained before using them. (ex. “Unix is a multi-

user operating system whose development was started in 1969 by Ken

Thompson and Dennis Ritchie, as well as an entire family of operating system

derived from the original Unix.” First, explain the original Unix, or rearrange the

sentences where you explain what unix is, then explain that there are multiple

versions, an original and others). Same for people mentioned, quotes, etc.

explain the relevance of a quote.

transition between paragraphs, quotes etc. is key. similar to the rule above,

make sure the paragraphs are transitioning from one point to another.

avoid jargon. if a technical/academic/etc term needs to be used, maybe it needs

its own page as well. (i.e. “it refers to a very specific kind of ‘digital’, a highly

technoprogressivist and industry-defined kind that became prominent in the

‘digital revolution’ hype of the 1990s.” technoprogressivist is not a common

word that could be understood easily, either provide a short explanation or

make a page for it)

check if there are other pages you can crosslink in your text (i.e. you mention

hardware, link the hardware page there)

avoid using brackets (as much as possible), it breaks the reading (and

comprehending) flow (quite a bit) (right?).

avoid passive-aggresive language. rather, explain why some concepts are wrong/

didn’t work/are bad. (i.e. “digital revolution” hype of the 1990s. why was it a

hype?)

make sure all formatting choices are unified in your text. (i.e. https://

permacomputing.net/Principles/ here, the sub-principles are written as a

paragraph first, and then as list. should be the same style).

use formatting sparingly and with purpose.

avoid repetation and redundant words, be concise, simple, clear.

don’t forget to save! :D

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

On attribution, quotes and footnotes

At the current stage of maturity of this wiki, it is often not advisable to write a

comprehensive articles about a topic if someone else has already done it elsewhere.

Put in a link to that external resource instead. (In the future, we will perhaps want to

host copies of all these “dependencies” in the local repository as well, but not yet.)

When introducing a new term, please try to include a proper and non-biased

definition of the topic before proceeding to the permacomputing-specific points of

view. You can use Wikipedia or other sources for this, just make sure you properly

attribute and quote (we are CC0, Wikipedia is CC-BY-SA, so you can’t just copy-and-

paste even from there).

If you rely on other sources for the writing of a section, do not be lazy or mindlessly

copypaste from other sources. In general, do not invisibilize people from which you

took inspiration and/or learned something from. Take the opportunity of

contributing to this wiki to also point to their work and research. You must properly

attribute your source. You have 4 options:

Hyperlinks: Sometimes it’s enough to point to external reference as an

hyperlink if there is not much to discuss. For instance Ursula K. Le Guin has an

interesting take on technology.

Footnotes: Can be handy to drift a bit
1

 but also to give a proper footnote

reference when paraphrasing and referencing the thoughts of someone else.

For instance Ursula K. Le Guin has been critical of a specific usage of the work

technology when misused to only refer to the most recent developments, which

also happen to be the most problematic
2

.

Inline quotes: Use this with footnotes when you want to quote something short

inline. For instance Ursula K. Le Guin offers to understand technology more

broadly as “the active human interface with the material world”
3

.

Block quotes: Finally, you may want to quote entirely a part of someone else’s

writing, in which case, use the block quote formatting, with a footnote for the

reference. For instance here is how Ursula K. Le Guin suggests to reconsider how

we use the word technology:

Technology is the active human interface with the material world. But the

word is consistently misused to mean only the enormously complex and

specialised technologies of the past few decades, supported by massive

exploitation both of natural and human resources. This is not an

acceptable use of the word.
4

•

•

•

•

http://www.ursulakleguinarchive.com/Note-Technology.html
http://www.ursulakleguinarchive.com/Note-Technology.html

Limitations of the footnotes

This it not biblatex/biber. So as you can see in the examples above, you cannot reuse

an existing footnote, and there is not elegant handling of repetition (no Ibid.).

Reference style

When referencing, please use the Notes and Bibliography version of The Chicago

Manual of Style. However, this is not an academic paper, don’t overthink it or spend

ages on it, try to make it work as best as you can, it’s just to have some overall

consistency. No sweat :)

Acceptable content

Basically any topic is allowed as long as it can be discussed from a permacomputing-

relevant point of view and do not break the terms.

Licensing

While editing the Permacomputing wiki, you agree that your contribution will be

published and made available under the CC0 Waiver. If you use images, photos, from

other sources, please make sure to give full credit and if available the license/tersm

under which the image is made available.

87. Dusk OS

Dusk OS is a 32-bit Forth operating system similar to Collapse OS, but more ambitious

in its targets and capabilities. Dusk OS is designed to operate on modern, reclaimed

machinery in situations where the production of new computers is disrupted. It

prioritizes extreme simplicity, currently only about 10,000 lines of code. It is designed

to port existing software written in C, using its own DuskCC “Almost C” compiler.

Dusk OS is currently a work in progress, but is under active development.

Dusk OS project page

Dusk OS Mailing list

88. WWW

The World Wide Web (WWW or simply the Web), invented in 1989, is the dominant

way of using the Internet and also the world’s dominant software platform. It is based

on files located on servers and linking to each other by URLs that usually indicate the

protocols, server address and the path to the file. The protocol is usually HTTP(S) and

•

•

https://www.chicagomanualofstyle.org/tools_citationguide/citation-guide-1.html
https://www.chicagomanualofstyle.org/tools_citationguide/citation-guide-1.html
https://creativecommons.org/publicdomain/zero/1.0/legalcode-plain
https://git.sr.ht/~vdupras/duskos
https://lists.sr.ht/~vdupras/duskos-discuss

the document format is HTML, but other protocols and document formats may also

be used as long as they support URL-based linking.

Problems

Problems of WWW from the permacomputing point of view:

Even though HTTP is a simple protocol and the basic HTML is a simple format, the

current standards are bloated and only a few web browser engines are able to

support them at the commonly required level.

A URL only points to a single server (or a cluster that looks like one), so its usability

depends on the availability of that server. When a server is gone, so are all the links

that point to it. If a server is temporarily offline, there’s no backup plan for locating

the files elsewhere.

The design thus discourages small and temporary servers while encouraging large and

centralized servers that maximize their availability. The design also discourages file

collection (that used to be a common practice when FTP was big).

Attempts to fix the problems

Internet Archive (which is another centralized service) partially solves the problem of

broken links and vanishing files by sometimes providing usable copies of the vanished

files.

The Smallnet movement advocates simpler formats and alternative protocols (such as

Gopher or Gemini) as well as small and personal servers, but hasn’t yet done much to

address the URL problem that makes those small servers unappealing.

Web3 is supposedly an attempt to decentralize the web by using dubious

technologies such as blockchain. The concept/buzzword has so far received a lot of

criticism.

IPFS is a peer-to-peer protocol that makes it possible to put files in a decentralized

space with no reference to specific servers. The URLs are monstrous but at least the

protocol makes decentralized peer-to-peer websites technically possible.

Web & Permacomputing

Overall, the web is not very compatible with permacomputing, particularly due to its

low offline tolerance and its server-specific way of referring to resources.

However, its dominant status often justifies its use at least as a way to ensure some

level of cross-platform compatibility and accessibility in today’s computing world. An

application that only supports a few platforms (such as iOS and Android) is usually an

even worse idea than a web-only application. (For using a web browser as a target

platform for arbitrary software, see web browser)

Some questions to ask when building something on the web:

Is this project something that actually needs the web or networking? If it can run

locally, support running it locally.

What does the site require on the client side? (The size and system requirements

of the smallest browser it can be used with, the energy requirements of the

client-side scripting (if used), bandwidth requirements)

What does the site require on the server side? (Bandwidth, disk space, the

memory/cpu requirements of the server-side scripting (if used))

How easy is it to use the resources offline? (If the site consists of multiple static

files, think about giving the option of downloading the content as a single file)

Are you fine with the idea of people sharing your content on their own sites? (If

yes, put it available under a free content licence and encourage people to spread

it)

Are there ways to use the site with a non-web protocol/client? (Permacomputing

wiki can be edited via Git, for example)

What are you planning to use as a server? Purchasing of dedicated hardware

should be avoided, but using something your community already has is a good

idea. Using a time-sharing account to a small, local webhotel is always a better

idea than buying “cloud computing” from a multinational corporation (even if

you’ll only get 99.9% uptime instead of 99.999%).

Software

A list of moderate-sized web browsers:

Dillo

Links

Lynx

W3C

A list of moderate-sized web servers:

lighttpd

…

Common types of web applications:

wiki

…

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

89. Web browser

A web browser is a client program for accessing the WWW. Its main feature is the

loading of HTML pages over HTTP(S) connections and rendering them. There are

moderate-sized web browsers as well as huge and bloated ones.

Today, many WWW sites are entire applications that depend on complex client-side

programmability with Javascript or WebAssembly. This makes the modern web

browser the most common application software platform. Supporting it may

therefore be useful, even though exclusively supporting such an unreliable target is

not that wise from the permacomputing point of view.

Programs written in C, C++ and some other languages can be compiled into web

browser applications with LLVM-based compilers such as Emscripten and Zig. This

makes it possible to minimize web-specific code and to use the same source code for

native applications.

90. Internet

The Internet is the global network of computer networks that use the TCP/IP protocol

suite to communicate. Sometimes, even wider definitions have been used; for

example, any computer that is reachable by Internet email could be said to be “on the

Internet” even without an IP address.

The Internet routing technology was originally based on military requirements,

i.e. nuclear attack survivability. The possibility for non-hierarchical and decentralized

routing makes the network quite resilient.

However, many other key aspects of the Internet are somewhat centralized (e.g. the

tree-like way of dividing the global IP address space or coordinating the DNS

hostnames). The currently dominant resource access technology, the WWW, is

particularly oriented around centralized servers and thus lacks the resilience of the

underlying network.

Matter and energy

The energy and material requirements of the Internet-related infrastructure are of

particular concern to permacomputing.

TODO: Include information about research on the energy requirements of data

transmission etc.

Other aspects of the Internet

history and culture

services and protocols

alternative ways of networking, both historical and current

91. Paper computer

The design for a simple portable computer that only requires a pen and a piece of

paper.

The computer consists of a sheet of paper that contains both the program as well as a

number of data registers, that will be used to represent the contents of the registers.

To begin, the pen, representing the program counter, is positioned at the line 00 of a

program. The instruction in that line is then processed by the user by either moving

the pen(program counter), modifying the value of a data register or by checking if a

data register has become “empty”(zeroed).

Historical

CARDIAC

WDR

etc..

92. DRM

Digital rights management is a way to protect copyrights for digital media.

When standards and formats change, DRM-restricted content may become

obsolescence. When a company undergoes business changes or bankruptcy, its

previous services may become unavailable.

93. IC

An integrated circuit (IC) or a microchip is a set of electronic circuits (usually

consisting of MOSFET transistors) on a small flat piece of semiconductor material

(silicon). It is currently the dominant technological basis for computers.

Moore’s law and Rock’s law have succesfully described the history of semiconductor

integration for decades: while it has been possible to double the transistor density

every two years, the cost of building a state-of-art fabrication plant has doubled every

four years. This has centralized IC fabrication and distanced it from local and small-

scale production.

•

•

•

•

•

•

Types of ICs:

processor

memory

ASIC (nearly any complex IC that’s not general-purpose can be called

“application-specific”)

logic chips (e.g. the 4000 series and the 7400 series)

TTL

FPGA

…

Making

There are hobbyists who have succesfully produced ICs in garage-like conditions. In

2021, Sam Zeloof produced twelve 1200-transistor chips at home (the first

microprocessor had 2300 transistors), although some second-hand special purpose

equipment such as a maskless photolithography stepper were used.

DIY project information:

Sam Zeloof

HomeCMOS project

The materials that end up in the finished products don’t have to be exotic or

destructive (e.g. silicon, oxygen and aluminum for the bare chip, and plastic/ceramic

and some metal for encapsulation). However, fabrication processes usually use

dangerous substances such as hydrogen fluoride (HF) to keep the chip clean.

Trichloroethylene (TCE) has poisoned groundwater supplies several times, including in

1974 when a leak took place in the MOS Technology Pennsylvania plant. Finding

alternatives to these substances may be more urgent than developing local and small-

scale production.

Zeloof has been able to eliminate some aggressive chemicals such as sulfuric acid

from the process. HF is still mentioned, but CF4 and CHF3 are listed as alternatives for

it.

94. Lua

Lua is a general-purpose high-level language created since the 1990s at PUC Rio de

Janeiro.

Lua provides a sweet spot along three axes:

high-level dynamic syntax with anonymous functions and closures

reasonably high performance by compiling to a virtual machine’s bytecode

•

•

•

•

•

•

•

•

•

•

•

http://sam.zeloof.xyz/category/semiconductor/
https://github.com/homecmos/homecmos-wiki
https://www.lua.org
https://www.lua.org
https://en.wikipedia.org/wiki/Pontifical_Catholic_University_of_Rio_de_Janeiro
https://en.wikipedia.org/wiki/Pontifical_Catholic_University_of_Rio_de_Janeiro

small and approachable implementation with no dependencies beyond C

Lua also provides a framework for graphical applications called LÖVE. LÖVE depends

on the host OS for graphics. On Unix-descended systems, that is approximately the

SDL2 library.

95. Smalltalk

Smalltalk is an object-oriented, dynamically typed reflective programming language.

Kay says their Smalltalk virtual machine for the 8086 was 6 kilobytes of machine code.

ST-72 on the SqueakWiki

Relevance to permacomputing

While the language itself might not apply every aspect of its own design philosophy,

the guidelines drafted out in Design Principles Behind Smalltalk, might in some way or

other align with the values of Permacomputing.

human-scale: If a system is to serve the creative spirit, it must be entirely

comprehensible to a single individual.

bedrock platform: A system should be built with a minimum set of unchangeable

parts; those parts should be as general as possible; and all parts of the system

should be held in a uniform framework.

96. Go

Go is a general-purpose programming language created in 2007 designed primarily for

the needs of server-side networked application programming.

Go is often favoured for its portability, relative simplicity, ease of concurrent

programming, performance and fast build times.

There are several major implementations: gc, gccgo/gollvm, GopherJS and TinyGo.

Go has a published language specification and a v1 compatibility promise which is

useful when considering long-term program maintenance.

The loading of program dependencies is based on URLs. This implies always-on

internet connectivity and typically centralised git repository hosting. A work-around

for this is to use vendoring which supports downloading and bundling all program

dependencies into the source tree.

Go can be bootstrapping with Go itself, or C (via gccgo/gollvm). However, with the

introduction of generics, not all new versions of Go can be bootstrapped with C.

•

•

•

•

https://love2d.org
https://www.libsdl.org
https://wiki.squeak.org/squeak/989
https://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html
https://go.googlesource.com/go
https://github.com/golang/gofrontend
https://go.googlesource.com/gollvm/
https://github.com/gopherjs/gopherjs
https://tinygo.org
https://go.dev/ref/spec
https://go.dev/doc/go1compat
https://go.dev/ref/mod#vendoring

gccgo supports up to version 1.18. It’s also possible to bootstrap from Go 1.4, the last

version written in C.

There are language design decisions which make Go unsuitable for embedded

systems. The TinyGo project aims to provide an alternative.

Go binary sizes are generally acknowledged to be bloat. For example, a binary size of

1.3 MB for 6 lines of code. The design of Go prioritises performance at the cost of

memory, embedding considerable amounts of runtime information in produced

binaries. Passing flags such as -ldflags="-s -w" to go build can aid in size

reduction.

Similar to Rust, Go is largely dependent on Big Tech for resources and funding.

97. TODO

To keep track of things TODO before launching the wiki:

Server

migrate pmc wiki to new server

modify cron zip script to run only if changes made to wiki

ikiwiki

strategy for handling images / decide on policy for images (ditherpunk?)

look into the file upload plugin for images and stuff

tag index plugin

A more wikiwiki layout (top and bottom menu)

Content

section for curriculum postdoc thing (wip)

section on workshop outline “The Cloud is Just My Old Computer”

new properties structure from katía/crunk (wip, will be spread over pmc long

page and the issues with tech page)

laypeople-accessible introduction to permacomputing

switch to index3

98. DOS

Disk Operating System (DOS) is the name of many operating systems starting from

1960s mainframe OSes, but most commonly it refers to Microsoft’s MS-DOS and

compatible systems running on IBM PC compatible hardware. FreeDOS is an actively

•

•

•

•

•

•

•

•

•

•

•

https://go.dev/doc/install/gccgo
https://go.dev/doc/install/source#bootstrapFromSource
https://tinygo.org/docs/concepts/faq/why-a-new-compiler/
https://tinygo.org
https://github.com/golang/go/issues/6853
https://dr-knz.net/go-executable-size-visualization-with-d3.html

maintained DOS-compatible operating system that supports things like USB memory

sticks. DOSBox is a popular emulator for running DOS-based IBM PC programs in

modern operating systems.

DOS is designed to only run one program at a time with minimal external

dependencies. It is thus quite immune to many problems of more modern OSes, such

as software rot. It may well be used as a bedrock platform or as a “bare-bones” system

that may work for basic tasks even when everything else fails. The main compatibility

issue in DOS is that a lot of hardware is commonly used by “banging the bare metal”,

which makes e.g. old sound applications incompatible with modern hardware.

See also:

CP-M

Collapse OS

99. IRC

The Internet Relay Chat (IRC) is a multi-user chat protocol created by Jarkko

Oikarinen in 1988. It was inspired by a similar service called “Relay” on the Bitnet

network.

The “official” permacomputing IRC channel is #permacomputing on the Libera.chat

network.

Permacomputing assessment

Pros:

The protocol is relatively simple (although slightly wasteful on bytes, e.g. the

characters “PRIVMSG #” are repeated for every public message).

It is rather lightweight to the client and the server alike.

There is a large amount of different implementations for a vast variety of

platforms.

It is open and has no owner.

There have been no major changes that would have jeopardized the backwards

compatibility between the servers and the various client implementations.

Client programs from the 1990s can still be used.

Cons:

It is highly dependent on constant unbroken connections on both the server side

and the client side.

Breaking of inter-server connections cause “splits” where messages from

some servers never reach the other servers.

•

•

•

•

•

•

•

•

◦

Similarly, the clients only receive those messages that were sent when

they were connected.

While the lack of a server-side message storage makes the servers more

lightweight, it encourages individual users to maintain persistent connections to

the servers and to keep logs of their own. Thus, the total need for computing

resources ends up being higher than what it would be with server-side

persistence.

The setting up of a constant client connection is often more complicated for a

user than using a website or an “app”.

The nature of purely realtime feeds and the flat structure of the messaging

make it difficult to maintain several discussions on the same channel at the same

time.

The difficulty of participating in “old” discussions easily contributes to the

“fear of missing out” that is a major element of IRC addiction.

Alternatives to IRC

Every now and then, there have been attempts to fix the problems of the IRC, often

by launching entirely new chat services. Examples from the 2010s include Slack and

Discord. These are usually centralized and non-open services owned by companies, so

they aren’t very interesting from the permacomputing perspective.

Perhaps the most promising alternative to IRC at the time of writing is Matrix.

100. iff

Interchange File Format is a generic container file format originally introduced by

the Electronic Arts company in 1985 (in cooperation with Commodore) in order to

facilitate transfer of data between software produced by different companies.

Relevance to Permacomputing

IFF helps minimize problems such as new versions of a particular program having

trouble reading data files produced by older versions, or needing a new file format

every time a new version needs to store additional information.

It also encourages standardized file formats that aren’t tied to a particular product. All

of this is good for endusers because it means that their valuable data isn’t locked into

some proprietary standard that can’t be used with a wide variety of hardware and

software. Above all else, endusers don’t want their work to be held hostage by a

single corporate entity over whom they has no direct control.

IFF helps to break this needlessly proprietary stranglehold that developers have

exerted upon endusers’ works.

◦

•

•

•

◦

101. Digital preservation

Techniques

Migration: Periodically convert data to the next-generation formats.

Emulation: Mimicking the behavior of older hardware with software, tricking old

programs into thinking they are running on their original platforms.

Encapsulation: Encase digital data in physical and software wrappers, showing future

users how to reconstruct them.

Universal Virtual Computer: Archive paper copies of specifications for a simple,

software-defined decoding machine; save all data in a format readable by the

machine.

Useful Concepts

Bitstream Copying: is more commonly known as “backing up your data,” and refers to

the process of making an exact duplicate of a digital object.

Persistent Media: a medium like a gold disk, may reduce the need for refreshing, and

help diminish losses from media deterioration, as do careful handling, controlled

temperature and humidity, and proper storage.

Technology Preservation: is based on preserving the technical environment that runs

the system, including operating systems, original application software, media drives,

and the like. It is sometimes called the “computer museum” solution.

Digital Archaeology: includes methods and procedures to rescue content from

damaged media or from obsolete or damaged hardware and software environments.

Digital archaeology is explicitly an emergency recovery strategy and usually involves

specialized techniques to recover bitstreams from media that has been rendered

unreadable, either due to physical damage or hardware failure such as head crashes or

magnetic tape crinkling.

Analog Backups: an analog copy of a digital object can, in some respects, preserve its

content and protect it from obsolescence, while sacrificing any digital qualities,

including sharability and lossless transferability. Text and monochromatic still images

are the most amenable to this kind of transfer.

Replication: In each case, the intention is to enhance the longevity of digital

documents while maintaining their authenticity and integrity through copying and the

use of multiple storage locations.

Normalization: is a formalized implementation of reliance on standards. Within an

archival repository, all digital objects of a particular type (e.g., color images,

structured text) are converted into a single chosen file format that is thought to

embody the best overall compromise amongst characteristics such as functionality,

longevity, and preservability.

Canonicalization: is a technique designed to allow determination of whether the

essential characteristics of a document have remained intact through a conversion

from one format to another.

102. Emulation

Emulation is a digital preservation technique involving mimicking the behavior of

older hardware with software, tricking old programs into thinking they are running on

their original platforms.

See also:

bedrock platform

virtual machine

103. Emotionally durable design

Emotionally Durable Design is a framework brought forward by Jonathan Chapman.

It proposes attributes that should be considered in designing things. The aim is to

enable us humans to form stronger bonds with the designed things.

The attributes brought forward in the Design-Nine paper are:

Relationships

Narratives

Identity

Imagination

Conversations

Consciousness

Integrity

Materiality

Evolvability

Certain attributes are clearly coming from design, treating things as can be expected.

Others, for example Conversation and Consciousness, are more philosophical. These

attributes are treating things as non-human beings, essentially flattening the

ontological hierarchy between humans and non-humans. This approach is common in

indigenous epistemologies. There is no direct equivalent in western (EU- and US-

•

•

•

•

•

•

•

•

•

•

•

centric) practice, but traces of it can be found in philosophy, for example in the book

Vibrant Matter by Jane Bennett.

My, thgie, personal opinion: The book by Jonathan Chapman is difficult at times, going

into formulations that can be read as classist. I appreciated the practical/designerly

approach to think about non-human ontologies.

Bibliography

Chapman, J. (2015). Emotionally durable design: Objects, experiences and empathy.

Haines-Gadd, M., Chapman, J., Lloyd, P., Mason, J., & Aliakseyeu, D. (2018). Emotional

Durability Design Nine—A Tool for Product Longevity. Sustainability, 10(6), 1948.

https://doi.org/10.3390/su10061948

104. Personalities

Permacomputing Personalities

This non-exhaustive list of archetypes tries to discover and identify different

perspectives for permacomputing. These are “pure”, “extreme” and stereotypical

descriptions, a real person can likely identify with several of them in different

degrees.

The descriptions are also very “opinionated”, especially assumptions about their

motivation. Similar to De Bono’s Six Thinking Hats, they can be used to discuss a topic

from different perspectives.

If you feel that something is missing, you are very welcome to contribute.

Archetypes

The Vintage Computing Enthusiast (VCE)

The Vintage Computing Enthusiast is very interested in hardware that is at least two

decades old. They like to tinker with and restore or computers, maybe they are

recreating older devices on modern hardware using emulators or by putting modern

hardware into older-looking enclosures.

VCEs are motivated by caring, preservation and nostalgia.

•

https://www.routledge.com/Emotionally-Durable-Design-Objects-Experiences-and-Empathy/Chapman/p/book/9780415732154
https://doi.org/10.3390/su10061948

Opinions:

O1: Older hardware should be kept in working condition for as long as possible.

O2: Simpler devices are better than complex ones, because they are easier to

repair, maintain and rebuild.

O3: Older technologies contain knowledge that needs to be kept alive.

The Post-Collapse Prepper (PCP)

The Post-Collapse Prepper believes that current civilization will collapse in one way or

another in the next decade and that some form of computing technology needs to be

kept alive nonetheless.

(see http://collapseos.org/why.html)

Opinions:

O4: Building electronics from scavenged parts will become more important in

the future.

The Cosplay Wastelander (CW)

The Cosplay Wastelander is inspired by a post-apocalyptic, mostly destroyed earth,

with a certain degree of “fictionality”. Examples for the aesthetics include the “Mad

Max” movies or “Fallout” computer games.

They are interested in mobile, ruggedized or dirt/damage-resistant hardware, likely

with an “exposed wires and PCBs” look.

Opinions:

O4: Building electronics from scavenged parts will become more important in

the future.

O5: Ours is just one of many worlds, many others are possible.

The Solarpunk Tinkerer (ST)

The Solarpunk Tinkerer wants to solve the problems of the future from the comfort of

their workshop. They believe that technology and computing will become essential in

maintaining the solar-powered farming machines, automated transport vehicles and

small-scale medicine laboratories that will be used to produce food, materials and

medicine locally instead of relying on global supply chains.

They see logistics, overproduction and growth-oriented economies as current

problems that need to be solved in order to create a sustainable future. In their

opinion, electronics/computing is required so that humanity and nature can coexist.

•

•

•

•

•

•

Opinions:

O6: To build a proper computer, you should need no more than what an average

workshop provides.

The Computer Abolisher (CA)

The Computer Abolisher believes that much of modern technology is a necessary evil

that needs to be overcome. Necessary, because in a future shaped by degrowth,

modern technology is still needed to implenent far-reaching changes to the world. In

the long-term, they want to decrease humanities dependence on computing to nearly

or almost zero.

Opinions:

07: Technology is a means to an end, not a goal in itself.

The Neo-Luddite (NL)

The Neo-Luddite believes modern (computing) technology to be the latest invention

to drive inequality and keep means of production out of the hands of the common

person. While not against technology in principle, they see our current dependence on

huge, expensive factories for computer hardware, large companies who write our

code and technology trends like “cloud computing” as deliberate decisions to

concentrate power.

The NL wants to democratize hardware and software development, including

technologies that make it possible to create hardware locally, to write complex

programs with little (or distributed) manpower.

Opinions:

O8: Computing does neither belong in the ivory towers of research nor a

corporate headquarter.

The Permacomputing Artist (PA)

The Permacomputing Artist takes inspiration from different aspects of Solarpunk,

Permacomputing, Demoscene and related areas. This can take the form of constraints,

from lower resolution displays to energy-saving computing, from file size restriction

to color palette aesthetics. Or maybe describing or visualizing a future in which the

currently researched concepts have found their way into practice.

Opinions:

O5: Ours is just one of many worlds, many others are possible.

•

•

•

•

The Computer Counter Culturist (CCC)

For the Computer Counter Culturist, vintage computing, permacomputing and related

fields offer the opportunity to make statements that question current “majority

culture”. Using older hardware instead of buying the newest device, using devices

consciously instead of photographing and posting every meal, writing Interactive

Fiction (IF) that can be run on fourty year old computers instead of creating games

that require the latest hardware. The focus of the CCC is to call consumerism,

wastefulness, capitalism and similar topics into question.

Opinions:

O9: It is important to show what could be, to inspire people to change things.

Opinions

Based on the archetypes, different “opinions” can be identified. These are statements

that a person can agree/disagree with (to varying degrees).

These statements can also serve to create a map (or grid) of potential research areas /

areas of inquiry.

O1: Older hardware should be kept in working condition for as long as possible.

O2: Simpler devices are better than complex ones, because they are easier to

repair, maintain and rebuild.

O3: Older technologies contain knowledge that needs to be kept alive.

O4: Building electronics from scavenged parts will become more important in

the future.

O5: Ours is just one of many worlds, a lot of others are possible.

O6: To build a proper computer, you should need no more than what an average

workshop provides.

07: Technology is a means to an end, not a goal in itself.

O8: Computing does neither belong in the ivory towers of research nor a

corporate headquarter.

O9: It is important to show what could be, to inspire people to change things.

105. Aesthetics

Aesthetics is relevant to many aspects of computing. Here, we are mostly concerned

of the superficial visual appearances and their technological bases.

A predomidant aesthetic in mainstream computing is maximalism, that is based on

the idea that increased detail, complexity and “fidelity” are the key to “better

graphics”. This kind of preference is highly problematic from the permacomputing

point of view because it creates a preference for energy usage maximization (when

•

•

•

•

•

•

•

•

•

•

uncapped). Permacomputing should therefore strongly prioritize non-maximalist

aesthetic approaches.

The dominant approach on the demoscene is optimalism, or “capped maximalism”. It

often proves that mass appeal can be reached despite tight limitations, but the

aesthetic basis is still maximalist – fitting a maximal amount of content within the

limits, the more the better.

Ideally, the low complexity itself can be a source of beauty: things can look good

because of their smallness, not despite it. If this succeeds really well, even the most

mainstreamy viewer won’t be longing for more resolution or detail.

In user interfaces, the ideal of low complexity may easily lead to the now fashionable

oversimplification, where the internal details are hidden from the user. This is not

what we want. We should rather find ways to keep users aware of what is going

without overwhelming them with the information.

Media minimization techniques sometimes lead to styles such as “ditherpunk” that

require acquired taste and are still more likely to belong to the “despite” category

than the “because” category.

Another example of acquired taste is “Unix brutalism” that uses a lot of monospaced

fonts, program code and other elements typical of character terminals. It should be

noted that despite its “hardcore low-level vibes” it is often a suboptimal way of using

display hardware.

The characteristics of electronic paper (slow update speeds, low saturation, no

flashing, bookiness) may be used as an antithesis for the psychologically intensive

mainstream computer aesthetics – regardless of what kinds of screens are actually

used. Elements may grow in rather than scroll in (more like plants than cars). The

semblance of printed media alludes to a world that is slower and more thoughtful

than the mainstream Internet.

See also:

Permacomputing Aesthetics paper, 2023

Slides from the presentation of the paper

106. Artificial intelligence

Artificial intelligence (AI) refers to machine actions that are perceived by humans as

intelligent. Machine learning is a subset of AI where the “intelligence” is not

programmed in but learned from data by a machine learning model. In current

mainstream usage, these terms are nearly synonymous, but AI in general is a very vast

field of different approaches, most of which are quite obscure to non-experts.

•

•

https://doi.org/10.21428/bf6fb269.6690fc2e
http://low.fi/~viznut/limits-slides/

Dumb and smart programs

Humans instinctively relate to machines and tools either as body extensions or as

autonomous creatures. It is generally not a good idea to require a user to use both

approaches simultaneously. “Smartness” is not wanted in applications that are

supposed to be wielded as tools or instruments, if it makes them more complex and

less predictable. If there are “smart” functions in a tool, they should be clearly

separate from the “wielded” portion, with the option of disabling them completely.

Among the most important software, compilers are programs that are generally

supposed to be rather smart in order to produce efficient code for the target

platform. It is also where a large amount of resource use can often be justified by the

energy that is saved by the efficiency of the produced code.

Green AI

The research, training and deployment of very large machine learning models takes a

radically increasing amount of energy and dedicated hardware in today’s world. This is

why “Green AI” has become a thing.

The tinyML foundation is concerned about small machine learning models that run on

very low power when trained (but may still require a lot of resources to train).

(Please include interesting information/resources about low-power AI/ML, if you have

studied this topic)

See also:

Schwartz&al’s Green AI paper from 2019

Playing Atari with Six Neurons

107. Automation

In automation, the essential question is how much human effort the automation

saves in comparison to the requirements of the automation technology.

Mere laziness does not justify automation: modern households are full of devices that

save relatively little time but waste a lot of energy. Automation is at its best at

continuous and repetitive tasks that require a lot of time and/or effort from humans

but only a neglectable amount of resources from a programmable device.

Permaculture wants to develop systems where nature does most of the work, and

humans mostly do things like maintenance, design and building. A good place for

computerized automation would therefore be somewhere between natural processes

and human labor.

•

•

https://www.tinyml.org/
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/1806.01363

108. Awareness amplification

Awareness amplification is an important purpose of computing as well as a design

principles of permacomputing. In general, it refers to technologies that make the

world (including the local environment) more observable to people, but it also

includes making computers more aware and sensitive of their surroundings.

Observation can be either active or passive. The user may specifically focus on a

specific part of the world or have a background awareness of what is going on in

general. This is a major difference from intelligence amplification that emphasizes an

active and narrow focus on specific objects of information.

When amplifying the user’s background awareness, it is crucial to not steal their

attention. Many user interface designs fail this; a common mistake is to use intrusive

notifications for events that are unrelated to the user’s current focus of attention.

Soundscapes and landscape-like visualizations could offer a non-intrusive alternative.

The more complex a technology is, the more important it is that it dedicates a portion

of this complexity to explain itself. Simple tools such as hammers or bicycles are

pretty much self-explanatory due to their simple and easily observable designs, but

computers need to amplify their own observability in order to be observable at all.

Examples of awareness amplification within core computing:

A non-intrusive visualization of everything the computer knows about its

environment (energy sources, network traffic, data from any additional sensors

the computer is connected to)

A computer that adjusts its operation to what it knows about its environment.

A user interface that makes the computer’s inner workings and material-

energetic conditions easily observable to the user.

More applicative ideas:

A sensor system that increases the observability of the ecosystem the computer

and its users belong to, including the cultivated and constructed parts thereof.

This may help people notice changes and details that beyond the reach of

normal human senses.

Simulations of ecosystems, economic systems and other “subsystems of the

world” can be used in planning as well as in gaining deeper insight to how these

systems work.

Many intelligence amplification applications may also amplify awareness:

automatic information retrieval, mind-mapping and note-taking systems, co-

operative telecommunications environments, etc.

•

•

•

•

•

•

109. Kolmogorov complexity

The Kolmogorov complexity of an information object, such as a piece of text, is the

length of the shortest computer program that produces the object as output. It is a

measure of the computational resources needed to specify the object, and is also

known as algorithmic complexity.

KU(x) = min { |p| | p ∈ Σ∗0, U(p) = x }

U - Universal Turing machine

Σ - tape alphabet

p - program

x - information object (text)

The program (also called minimal description) received in language grammar system

common for both sides triggers generative action on receiver side producing the same

language information as by transmission originator.

Historically, the first scientific concept of information

originates from Shannon (1949) and defines the ammount

of information in the object as bit length of transmission

needed to choose the right object from predefined set of

elements.

This is used in prefix-coding schemes, where the most used

symbols

are encoded with least bits and least used symbols with more

bits.

Kolmogorov computational principle from 1963 can be related to association in

psychology and art. With association, previous experience is recalled from memory by

a short impulse or pretext. Vladimir Boudnik in Explosionalism (1949) states that

image is built layered on previous influences, memories and experiences. Artwork is a

shot which explodes in people’s heads (like infinite stream of associations).

 o U1(p) U2(p) o

/|\ ------------------ > /|\

/ \ p / \

Chaitin complexity is a minor modification of Kolmogorov complexity, which was

discovered independently. We presumed that universal turing machine with alphabet

Σ0, works with blanks on the tape to recognize end of programme. It can be a

problem, because we cannot chain programmes or put data on tape without other

delimiters etc. Chaitin complexity, also called self-delimiting complexity HU(x) of

string x in universal machine U is a length of shortest self-delimiting program p, which

in U produces x.

HU(x) = min { | p | | U(p) = x}

p is self-delimiting programme, that means the end of the

programme

can be recognized by reading only all of its symbols and nothing

else.

As a consequence, such a programme has to be non-prefixed.

Chaitin complexity leads to the definition of algorithmic entropy and information

complexity.

110. Ethnomathematics

Ethnomathematics is the study of the relationships of mathematics and culture, with

a specific focus on the mathematical thinking of indigenous or “non-literate” peoples.

Ethnocomputing is an offshoot of ethnomathematics that does the same thing with

computing. In practice, both ethnomathematics and ethnocomputing are most often

connected with education, with the belief that using familiar concepts from one’s own

cultural background will lead to better learning results.

Ethnocomputing and ethnomathematics are relevant to permacomputing particularly

from the point of view of technological diversity. How we currently conceptualize

computing is a result of specific historical and cultural conditions, and the cultural

basis is actually getting narrower due to siliconization. Ethnomathematics and

ethnocomputing can be used to reveal this narrowness as well as to help imagine a

greater diversity of options. They may also help envision deeper history roots to

algorithmic, computational and mathematical thinking – they’re much older and much

more universal than commonly thought in the eurocentric techno-progressivist

narrative.

NOTE: While cultural appropriation is usually not a big concern in theoretical

computer science topics, it is possible to use ethnocomputing in problematic ways

that make it a concern. One should be careful and respectful when using and

representing computational or mathematical concepts from different cultures.

Some interesting examples:

Many traditional divination systems (I Ching, Geomancy, Ifá) use binary

combinatorics, i.e. give meanings to 3-, 4-, 6- and 8-bit binary sequences.

•

The quipu/khipu recording system of Andean peoples, based on strings and

knots, has been studied as an example of a complex indigenous data structure.

Fractal-like recursion and self-similarity are very prominent in African arts. This is

a central theme in Ron Eglash’s seminal ethnomathematics book “African

Fractals: Modern Computing and Indigenous Design”.

111. Games

Games have been made for computers since the early years. Playful and non-

utilitarian uses are an important aspect of any technology – for example, playing with

hunting bows led to the invention of the musical bow and other string instruments.

Computer games are commonly framed as 1) entertainment (rather than e.g. art or

life-changing experiences), 2) something produced by an “industry” (in the same way

as there is “the film industry”), and 3) something that has high demands on the

hardware resources. Many of the common conceptions are at odds with

permacomputing. One should therefore look into the “margins” (i.e. “independent”

games) for a more diverse view of what computer games can be.

Before siliconization, it was a common idea that any computer is suitable for playing

games – and the most limited computers were actually considered unsuitable for

anything else. This is something worth returning to in permacomputing: target those

platforms that are available to anyone (either directly or via emulation), and especially

those that are no longer preferred for utilitarian purposes. Supporting a bedrock

platform increases the likelihood that the game can be revisited in an indefinite

future.

Maximalist aesthetics is a major driving force for obsolescence and ever higher

hardware requirements. It is a better idea to stick to a less demanding style (e.g. pixel

art) than to adhere to the mainstream gamer idea of “up-to-date graphics”.

In the non-digital world, a “game” is often more like an immaterial idea than a product

(think about the variety of games that can be played with playing cards). The same

approach can be applied to computer gaming as well: Tetris is not really a specific

program/product, but a game that any programmer can implement in a moderate

amount of time. If the logic is defined strictly enough, the different implementations

can be compatible in regards to scoring, competition and skill acquisition. The games

that can be fully described as sets of rules have the longest potential lifespans.

Computer games often blur the distinction between a game and a virtual

environment. Game-playing is a goal-oriented activity, but in a virtual environment it is

not necessary to reach for anything specific. An important aspect of simulated

environments is that their representations of the world can be used to gain insights to

the actual world. This is how games can be used to awareness amplification.

•

•

Common problems

Game programming is often quite careless, as games are traditionally “allowed” to use

all the available resources. Thus, it is common to find things like CPU-hogging

busyloops even in turn-based games, or ridiculously high system requirements in

modern pixel art games.

Running of games often requires emulation. Cycle-exact emulation may be orders of

magnitude more resource-hoggy than “just enough” emulation, so it may be a good

idea to support the fast but inaccurate emulators when targeting classic platforms.

Specific games

These games may be interesting from the permacomputing perspective, either

technically or otherwise.

Another World

There is very little code in Another World. The original Amiga version was reportedly

6,000 lines of assembly. The PC DOS executable is only 20 KiB. Surprising for such a

vast game which shipped on a single 1.44 MiB floppy. That is because most of the

business logic is implemented via bytecode. The Another World executable is in fact a

virtual machine host which reads and executes byte-sized opcodes.

Adventure games from Infocom, Sierra and Lucasfilm are also based on bytecode

virtual machines.

See more:

The Polygons Of Another World

112. Information and energy

Related to: Thermodynamics

Information and entropy relation to energy

We can distinguish 2 types of information in relation to abstract and physical worlds:

Unbound information - possible symbols or states are understood as purely

abstract and not related to any physical system. That is information used in

mathematics.

Bound information - possible symbols or states are identified as microstates of

some physical system

•

•

•

https://fabiensanglard.net/another_world_polygons/

Information to be recorded, transmitted or processed has always some material

carrier and has to be reflected or mapped to some signal. With processing such a

signal the spread of matter or energy in some thermodynamic system is changing. So

any process of computation of bound information is necesarilly followed by change in

thermodynamic entropy.

Information in thermodynamic units as information bound to states of some

thermodynamic system is negative entropy (negentropy).

Getting some information (by observation or measuring), the entropy is going down.

But this observation needs some energy and this energy taken is increasing the

entropy. From second thermodynamic law this observation or getting information

needs always more energy than is the amount that resulting information contains.

Thermodynamic system is a continuous space containing a large amount of particles in

interactions with each other. The rest of physical world is system surroundings.

The thermodynamic system can be one of the next 3 types:

Isolated system, which does not exchange any matter or energy with

surroundings

Closed system, which can exchange energy, but not matter

Open system, which exchanges both energy and matter with surroundings.

First two are only abstract or temporary states of the systems. We even cannot get

any information about state of the isolated system. All computational systems are

open, as computational devices are material, and material is being mined, formed,

assembled, disassembled, so any computation, no matter how abstract and symbolic,

is bound to the material and energy exchange.

When the abstract mathematical or symbolic processing is done in pure mind of the

human, there is an energy and material exchange needed by related biological

processes in the brain.

Energy needed for signal modulation

Landauer’s principle asserts that there is a minimum possible amount of energy

required to erase one bit of information, known as the Landauer limit: E=k_B T ln 2

(k_B is the Boltzmann constant and T is the temperature). For T equal to room

temperature 20 °C, we can get the Landauer limit of 0.0175 eV (2.805 zJ) per bit

erased.

The equation can be deduced from the Boltzmann’s entropy formula S=k_B ln W ,

considering that W is the number of states of the system, which in case of a bit is 2,

and the entropy S is defined as E/T. So the operation of erasing a single bit increases

•

•

•

the entropy of a value of at least k_B ln 2}, emitting in the environment a quantity of

energy equal or greater than Landauer limit.

It puts a fundamental ceiling on the increase in the number of computations per joule

of energy dissipated. Until recently, this increase has been exponential (doubling

every 2 years), so by 2048 we would reach Landauer’s limit. Probably the slowdown

already increased the doubling to 2.6 years, which means there will be more limited

increases in performance per Watt.

113. Permatechnology

Permatechnology refers to permacultural approaches to technology.

Permacomputing can be thought of as a subset of permatechnology, which in turn can

be thought as the technological aspect of permaculture. The concept of

permatechnology can therefore be used as a linking piece that provides a larger

context for permacomputing.

Computing is somewhat peculiar when compared to e.g. transportation technology:

airplanes are not many orders of magnitude faster or more energy-efficient than

sailships, but computers can have this kind of contrast to manual calculation and data

processing. Computing therefore constitutes an interesting extremity of the

technological possibility space.

Another difference is that practically all production of computers is currently based

on somewhat destructive and highly centralized processes, so a lot of rethinking and

rebuilding is required for the type of technology in general.

All of these peculiarities give permacomputing somewhat unique challenges

compared to most other types of permatechnology.

114. Regenerativity

Regenerative design, Regenerative computing

The design of digital technologies (hardware and software) should be determined by

democratic and participatory processes and help regenerate natural ecosystems and

promote social cohesion.
5

Regenerativity principles disrupt and surpass technology design associated with

power accumulation, a polarisation of opportunity and environmental inequalities,

consumption and profit maximalisation.

Regenerate natural ecosystems and social cohesion.

Democratic, co-creative and sustainable.

•

•

Creative problem solving with wide perspective and planet encompassing focus

with humans as integral part.

Evolution from designing objects to designing material flows and systems

serving the common good.

Design process should be as open, participatory and transparent as possible.

Integrate diverse views, needs and issues (not just those of predominantly

highly-educated, middle-class males in urban centres), co-design principles with

active participation from all users are essential.

See also:

Permacomputing research fields and methods;

115. Reuse

Reuse means the use of a piece of technology for new purposes, often ones that were

never envisioned by the original designers. Reusability refers to design that makes

reuse possible.

In hardware, reusability is of utmost importance. In order to maximize component

longevity, it should be possible to reappropriate them to different purposes.

In software, the question of reuse and reusability is more complicated. Software can

be constructed and discarded without waste (it’s just patterns of electrons), so it can’t

be compared to hardware in this case. You don’t need to feel sorry for programming

something redo from scratch, because the replaceability of software is what

computers are all about.

Excessive reuse easily leads to bloat and multiple layers of legacy, as in case of Unix.

Monoculture may also appear if a lot of programming is framed as the reuse of a

single silver bullet. Too much concern for reusability may also make the piece of

software unnecessarily big and complex.

Minimal reuse, on the other hand, may easily lead to “Not Invented Here” kinds of

problems.

The reuse of ideas is less problematic than the reuse of software. Wisdom and ideas

can be accumulated and refined without the risk of bloat or sedimentation.

Keeping ideas simple makes it easier to implement and reuse them. Having a rich layer

of different ideas at the bottom of the dependency pyramid may also help with

creating technological diversity.

•

•

•

•

116. Technological diversity

Technological diversity is the opposite of technological monoculture. It refers to the

diversity of artifacts (software and hardware) as well as that of ideas, philosophies,

paradigms, techniques, languages, mental models, etc.

Diversity comes from the mutually strengthening co-existence of different kinds of

things, including ones that are generally considered “obsolete”, “useless” or “fringe”.

Understanding of history (and not only the mainstream history written by the

“winners”) helps grasp the spectrum of possibilities and see beyond what is currently

fashionable in the mainstream.

The purpose of standards is to facilitate co-existence and co-operation of different

pieces of technology, not to limit their diversity. So, they are more like common

languages than norms. Linguistic diversity is richness, but it is still good for everyone

to master a couple of common world languages. (Monolingualism or a single prestige

language, however, easily leads to impoverished monoculture.)

Gut reactions against technological diversity are often based on mental models where

competition, obsolescence and narrowly defined efficiency are key concepts. Models

where the default purpose of something like a new programming language is

competition against pre-existing languages with the goal of making them obsolete.

Diversity is particularly needed on the low levels of the pyramid, the elementary

technologies and ideas that everything else is built on. A wide variety of different

ways to build computers and design systems may help make the entire pyramid more

resilient.

See also:

unconventional computing

ethnomathematics

117. Unconventional computing

Unconventional computing, also known as alternative computing, refers to

computing with unusual methods. An unusual method may be e.g. an unusual

theoretical model or an unusual physical basis. The term “unconventional computing”

was coined in 1998.

Permacomputing is interested in expanding the lowest layers of the technological

possibility space, especially in order to develop computer technology that better

integrates with natural processes. This, along with the strive for a greater

•

•

technological diversity, makes unconventional computing techniques interesting from

the permacomputing point of view.

Fluidics, using liquids or gases in place of electricity, is probably the most mature

alternative technological basis for computing. A fully working fluidic digital computer,

Flodac, was already built in 1964. Its performance class was similar to relay computers

(tens of cycles per second), but it was mentioned in the paper that clock speeds up to

250 Hz could be reached with similar but more compact circuitry.

Flodac-like logic gates are based on how fluids move within static structures. So,

unlike mechanical and relay computers, Flodac had no moving parts. These structures

could probably be printed with rather rudimantary etching techniques or 3D printing,

unlike semiconductor manufacturing that requires extreme purity of the material and

the etching process.

Optical computing is also quite mature. It has often been envisioned as a way to stick

to the Moore’s law after the limits of silicon microchips have been reached. The

material constraints are different to those of semiconductors, which may also make it

an interesting option from the DIY point of view.

Many unconventional computing technologies such as DNA computing are still at a

very early stage of development (as in “the addition of two small numbers was

succesfully demonstrated”). And even those who aren’t are often unsuitable for

conventional digital computers.

Some unconventional computing techniques use living organisms. The use of

Physarum slime molds has been studied for a long time, and they can e.g. solve

shortest-path problems.

Quantum computing is probably the most hyped type of unconventional computing

because of the ability of a quantum computer to do an operation “in millions of

parallel universes at a time”.

Today, integrated circuits are so dominant that even historically important component

technologies can be considered “unconventional”. These include fully mechanical

parts (like those in mechanical calculators or the Zuse Z1), relays (Z3), electron tubes

(most 1950s computers), discrete transistors (most early-to-mid-1960s computers),

parametrons (some Japanese computers mostly from the 1950s) and Symmag (the

French computer CAB500 from 1957).

See also:

FLODAC - A pure fluid digital computer (Gluskin&al, 1964, PDF)•

https://www.gwern.net/docs/cs/computable/1964-gluskin.pdf

118. Calculation factory

A calculation factory is a computer that works like a factory: it has a relatively static

material and energy requirements with very little concern or flexibility in regards to

the environment they are part of.

Mainframe computers in particular have been thought as factories since the 1950s,

including the idea of minimizing their idle time by having their operators work in

multiple shifts. This kind of thinking carried over to the Internet server world.

Even small computer systems tend to inherit some characteristics from calculation

factories. They often have very poor means to adjust their operation to the changes in

physical conditions. This kind of environment-reactivity is an area permacomputing is

interested to develop.

119. Californian ideology

Californian ideology refers to the dominant ideology of Silicon Valley, as described

by the British media theorists Barbrook and Cameron in their 1995 essay “The

Californian Ideology”. The ideology is very influential because of the ubiquity of

Californian technology products, as well as because siliconization has made it

prominent in computing industries all around the world.

Californian ideology combines growth-oriented and individualistic neoliberalism with

elements from the U.S. counterculture of the 1960s-1970s. It embraces ideas such as

cyber-utopianism, techno-determinism, transhumanism and maximalism. Notably, it

often attempts to constitute holistic world views where computing (as well as

economic growth) has an essential role down to the metaphysical level.

From the permacomputing point of view, Californian ideology can be regarded as a

kind of anti-example – how not to build a holistic world view around computing and

high technology. While some of its root ideas are good (including the use of

computers for self-improvement), they have been banalized by the growth-obsessive

techno-capitalism.

External links:

The 2007 revised version of the original essay

120. Cornucopianism

Cornucopianism refers to cornucopia, “the horn of plenty”. A cornucopian is

someone who posits that there are few intractable natural limits to growth and

believes the world can provide a practically limitless abundance of natural resources.

•

http://www.imaginaryfutures.net/2007/04/17/the-californian-ideology-2/

121. Greenwashing

Greenwashing refers to false claims that a product or activity is environmentally

friendly, especially when the claims are made by corporate PR and marketing

divisions. Unintentional greenwashing may take place when an unjustified belief of

environmental friendliness is actively maintained by well-intended people.

Permacomputing tries to base itself on physical reality rather than beliefs or positive

social signals. Therefore, it is important to avoid being affected by greenwashing, be

that intentional or unintentional. Claims should be questioned, and all the effects of

every dependency should be accounted for. A lot of problems are related to buying

new things (sometimes even if those things are solar panels), so a lot of greenwashing

checks should be made before making purchases or advocating a hardware product.

122. Maximalism

Maximalism is, generally speaking, the idea that more is better. It often incorporates

the idea that qualitative improvements are dependent on quantitative increases –

that “progress” is not even possible without quantitative growth. Maximalism is

prominent in many areas of modern technological civilization but is particularly so in

computing, thanks to Moore’s law.

Maximalist aesthetics strives for the maximization of resolution and detail. This leads

to increased screen sizes and growing bandwidth requirements.

Maximalism leads to an increasing use of artificial energy and other limited resources,

even when the energy efficiency is dramatically improved (see Jevons paradox). This is

extremely unsustainable, so permacomputing prefers to take an anti-maximalist,

“small is beautiful” type of stance that emphasizes qualitative improvements and

technological diversity.

Extropianism, as advocated by the Californian ideology philosopher Max More (sic), is

an extreme philosophical stance based on maximalist ideals. It dreams of things such

as human immortality, quantitative intelligence maximization and an endless

expansion of the maximization-oriented “civilization” into the outer space.

123. Postdigital

Postdigital or post-digital is a somewhat misleading concept but may be useful for

understanding some phenomena in today’s world.

The “digital” in “postdigital” is to be read a bit like the “modern” in “postmodern”: it

refers to a very specific kind of “digital”, a highly technoprogressivist and industry-

defined kind that became prominent in the “digital revolution” hype of the 1990s. This

is also why even some profoundly digital things such as pixel art and digital glitches

have been labelled “postdigital” in artistic circles.

When distancing itself from this kind of “mainstream digitality”, “Postdigital” also

distances from many of the destructive ideas whose abolishment is also relevant to

permacomputing (maximalism, virtualism, obsolescence, etc).

“Postdigital” is also a reaction to the digital oversaturation. Computers are no longer

“inherently cool” (like many people born in the 1970s and 1980s found them), but now

the same kind of coolness can be found in non-digital things such as physical and

analog artforms – or things that are digital in alternative and countercultural ways

(like permacomputing is).

124. Retro

Retro is a Latin word meaning “backwards” and “before”. In computing, it generally

refers to a kind of “time-capsule” computing that tries to re-enact a historical time

period when a hardware platform was “still alive”. Its central driving force is nostalgia.

The concept is problematic from the permacomputing point of view because:

It affirms the industrial definition of “platform death” and that there can be no

genuinely new uses for a platform when it is “dead”.

It separates the current time period from the “old times”, thus creating an

artificial mental boundary.

While historical re-enactment and time capsules have their definite places and

hardware obsolescence).

The concept of Zombie media has a similar problem with affirming the industry-

defined concept of media “death”.

Heirloom computing is another form of time-capsule computing but one that designs

a static artifact that future generations may return to.

Examples of non-retro uses of old computers can be found in the demoscene and

hacker cultures.

125. Siliconization

Siliconization refers to how local technocultural practices all around the world have

been replaced by an imported “Silicon Valley” model, especially since the history.

This phenomenon was particularly prominent in Eastern European countries after the

fall of the USSR. The term was originally used in Romania to refer to how their local

•

•

•

practices (“șmecherie”) were obsoleted at this time. It is also a near-anagram of

“colonization”.

Similar developments also took place in many other countries at this time. In Western

Europe, this era is often connected to the marginalization of the earlier home

computer cultures by a “Wintel” monoculture and the normalization of constant

hardware “up”grades.

The spread of Californian ideology and the technology startup culture are closely

connected with siliconization.

In order to understand the effects of siliconization it is important to remember and

study the pre-siliconization computer cultures – particularly regarding how the

mindsets and values differed from those dominant today.

External links:

Corruption, Șmecherie, and Siliconization: Retrospective and Speculative

Technoculture in Postsocialist Romania

126. Wishcycling

Wishcycling is when people place non-recyclable items in the recycling and hope

those items will end up being recycled.

127. BBS

Bulletin Board System

A Bulletin Board System (BBS) is an online community service based on character

terminal connections – traditionally over landline telephone modems, but currently

most BBSes use Telnet or SSH over the Internet instead. There are also packet radio

(AX.25) BBSes used by radio hams.

BBSes came to existence in the 1970s but were preceded by time-sharing services of

the 1960s. A major difference between a BBS and a time-sharing server (such as a

public Unix system) is that BBS software is usually user-friendlier and specifically

designed for messaging and file-sharing. Also, BBSes have generally been run on much

smaller computers, usually microcomputers with a single modem. Multi-user BBSes

were not uncommon in the “golden years”, but most BBSes only allowed only one

online user at a time. In many places, BBSes declined quite rapidly especially when

broadband Internet connections became available.

•

https://catalystjournal.org/index.php/catalyst/article/view/32905
https://catalystjournal.org/index.php/catalyst/article/view/32905

Some notable features of the BBS culture from the permacomputing perspective,

especially in contrast to the Internet:

Locality. Since long-distance telephone calls are more expensive than local calls,

most modem users have preferred servers that are geographically close to

them. This helped create local variation to the BBS scene and prevent excessive

centralization.

Personality. BBSes generally look and feel like their owners, and visiting a BBS

feels more like visiting someone’s home than a public service. On the Internet,

small messaging forums and Smallnet may sometimes create the same kind of

feeling.

Limited availability. There used to be much more BBS users than BBS nodes, so it

was quite common to get a BUSY signal instead of a connection. Automatic

dialling lists that repetitively called several BBS numbers until a connetion was

made were common. Also, BBSes could become temporarily or permanently

unavailable due to various personal reasons. So, BBS users generally felt joy on

succesful connections, something that does not happen on the Internet where

everything is expected to be constantly available at all times.

Intensity. When online time is limited (and possible even charged per minute), it

needs to be used actively instead of “just idling around”. Non-multitasking

operating systems amplify this. Offline is the default state of mind, and online is

an exception.

Scarcity and sharing. When connection time is a limited resource, users are

generally expected to contribute to the systems by message-based discussions

and/or uploads instead of just passively “leeching” files. Most BBSes

implemented an upload/download ratio system where files were used as

“currency”.

File collection. BBSes typically host all kinds of software and other files useful

for computer users. Also, before the broadband Internet, it was not feasible to

redownload the same files every time they were needed, so it was also

important to curate local, personal file collections.

Decentralization. Because of the file collection culture, nothing that is published

in one place stays in that place. For message forums, there are networking

systems (particularly Fidonet) for creating shared forums between several

BBSes, although system-specific (“local”) messaging cultures are also considered

important.

128. Pixel art

Pixel art is the practice of producing bitmap images by consciously deciding the

position of each individual pixel. Pixel art images often have bandwidth minimization

because of preference for small resolutions and limited color palettes. In modern

computers, pixels tend to be very small, so pixel art is usually upscaled to a larger

•

•

•

•

•

•

•

resolution. This also makes modern pixel art less dependent on a specific physical

resolution.

Pixel art has a long prehistory that makes it centuries or millennia older than

computers (textile techniques such as cross-stitch can be considered pixel art).

Despite this, it is very “digital”, with each pixel directly corresponding to a group of

bits in the storage. The simplicity of the concept also makes it easier to learn than

e.g. 3D modelling or even 2D vector art.

From the permacomputing point of view, pixel art can be a good choice because of its

low system requirements, long tradition and aesthetics anti-maximality. Alternatives

that are worth considering include low-complexity vector art and generative art based

on short computer programs.

129. viznut

http://viznut.fi

130. thgie

Hi, I’m Adrian. Find me here:

https://post.lurk.org/@thgie

https://thgie.ch

131. aw

Hello world

132. wakame

Hi, I’m wakame.

https://tech.lgbt/@wakame

133. decentral1se

🤸 permanent gezelligheid 🤸

 ___ __ __ ___

 | _ \ o O O| \/ | o O O / __|

 | _/ o | |\/| | o | (__

 ||_ TS__[O]|_|__|_| TS__[O] ___|

•

•

http://viznut.fi
https://thgie.ch

| """ | {======||"""""| {======|_|"""""|

"`-0-0-'./o--000'"`-0-0-'./o--000'"`-0-0-'

moar @ my webshit

134. Chip8

CHIP-8 is a virtual machine created by RCA engineer Joe Weisbecker in 1977 for the

COSMAC VIP microcomputer. The Chip-8 language is capable of accessing up to

4KB(4096 bytes) of RAM, from location 0x000 to 0xFFF(0-4095). The first 512 bytes,

from 0x000 to 0x1FF, are where the original interpreter was located, and should not

be used by programs.

The original implementation of the Chip-8 language includes 36 different instructions,

including math, graphics, and flow control functions.

All instructions are 2 bytes long and are stored most-significant-byte first. In memory,

the first byte of each instruction should be located at an even addresses. If a program

includes sprite data, it should be padded so any instructions following it will be

properly situated in RAM.

The computers which originally used the Chip-8 Language had a 16-key hexadecimal

keypad.

135. Rust

Rust is a programming language created in 2010. Rust is a statically typed, multi-

paradigm general purpose language developed by Mozilla. It has applications for both

“high level” programming tasks (such as web applications) as well as low-level systems

programming code. The first stable release was in 2014. Rust has a number of

advantages over C:

Memory safety

Modern semantics and language features

Rust has a number of disadvantages from a permacomputing perspective:

Currently only has a single fully-featured implementation

Limited platform support

Highly complex language and toolchain requires a lot of computing resources,

unsuitable to run on many platforms

Largely dependent on Big Tech for resources and funding

•

•

•

•

•

•

https://d1.hackers.moe
https://www.rust-lang.org/
https://doc.rust-lang.org/nightly/rustc/platform-support.html

136. Redo from scratch

Redo from scratch is an idea that is antithetical to reuse. Instead of modifying an

existing program to fit a new purpose, a completely new program is written from

scratch.

The philosophy of Chuck Moore, the author of Forth, has very strong RFS elements.

Instead of deciding a set of standard pieces to build software from, Moore was ready

to rethink just about any previous decision. What came to be the time-tested core of

the Forth language was based on constant and obsessive rethinking, experimentation

and redoing-from-scratch.

In practical purposes, RFS often has huge risks and problems, starting from the

bugginess typical of new programs. However, it can be heartily recommended as an

artistic or educational practice, as a way to exercise one’s programming skills, or as a

research method for experimenting with completely new ideas.

137. IBM PC

IBM PC is a computer released in 1981 by IBM, as well as an entire series of computers

compatible with it. It is still the dominant computer platform in desktops, laptops and

servers, even though (and maybe because) IBM lost its grip of it by the 1990s. Modern

x86 processors remain software-compatible with the Intel 8088 processor of the

original IBM PC, even though it is no longer possible to run all the software natively.

The operating system of the original IBM PC was Microsoft’s DOS (PC-DOS, MS-DOS)

which was surpassed in popularity by Microsoft Windows in the 1990s.

The ubiquity of IBM PC compatibles as well as the lack of a single corporation that

controls the platform makes it a good candidate for a bedrock platform.

The Wintel platform (consisting of IBM PC compatible hardware and a Windows

operating system) represented a technological monoculture especially in the early

2000s, when non-x86 computers had been marginalized, ARM-based mobile

computers were not yet common, and most applications weren’t yet being targeted

for web browsers.

Sometimes, “PC” is used as a shorthand for “IBM PC compatible”, while sometimes it

refers to a “personal computer” in general. This may lead to misunderstandings and

misconceptions, such as regarding the original IBM PC more revolutionary than it

actually was in the early years.

138. Raspberry Pi

Raspberry Pi is a popular family of inexpensive single-board computers. They are

often used in electronics/computing hobbyist projects including ones whose goals

somewhat align with those of permacomputing.

While the Raspberry Pi is often among the best alternatives for many purposes, a

particular problem with it is that it is designed for disposability rather than longevity.

The cheapness and smallness of the boards may also be deceptive and make it too

appealing to purchase new ones.

Chips

Most of the models are based on Broadcom SoC chips that are insufficiently

documented, even though the large and active user base somewhat compensates on

the problem of closed hardware.

An exception is the Pico whose microcontroller chip (RP2040) was designed by the

foundation itself and has apparently a rather complete register-level documentation.

An interesting feature of RP2040 is its programmable IO (PIO) that is general-purpose

rather than tied to specific protocols and interfaces, while being powerful enough to

e.g. generate video signals.

Alternatives

There are many different single-board computers, some of which based on fully

documented or even open-source hardware. See single-board computer.

139. ikiwiki

!meta robots=“noindex, follow” This wiki is powered by ikiwiki. [[!if

test=“enabled(version)” then=“(Currently running version !version .)”]]

What made us choose this wiki software:

It stores the pages as flat files that can be fully managed via version control (Git)

and can therefore be easily copied. (No hard dependency on WWW or a specific

server)

Ikiwiki compiles static html pages out of markdown and can be used to do this

even without a web server.

Relatively light-weight. (Although it depends on Perl and a bunch of Perl

modules)

•

•

•

http://ikiwiki.info/

Some documentation on using ikiwiki:

ikiwiki/formatting

ikiwiki/wikilink

ikiwiki/subpage

ikiwiki/pagespec

ikiwiki/directive

ikiwiki/markdown

ikiwiki/openid

ikiwiki/searching

templates

140. Cloning

This wiki is meant to be cloned so that you can consult it while being offline. There are

several ways to do it depending on the system you use and the tools you have access

to.

You have access to git

Cloning

It’s as simple as:

git clone https://git.bleu255.com/repos/permacomputing.git

Markdown source files

Once you have done this you can:

open the wiki pages in their native plaintext forms as markdown files;

search through the wiki with plaintext file search tools like grep, rg or equivalent

on your OS;

potentially navigate from pages to pages with the help of plugins in some text

editors and or pagers that support markdown files.

HTML rendering

With the markdown source files you can also easily turn them into a local HTML static

web site for offline browsing. To do that you need to install ikiwiki.

•

•

•

•

•

•

•

•

•

•

•

•

https://ikiwiki.info/download/

ikiwiki --rebuild --wikiname permacomputing --verbose /path/git/

permacomputing /path/permacomputing-html

But that’s not all!

If you call ikiwiki directly to generate HTML files to browse locally you will be

disapointed as ikiwiki links points to folder in which an index.html will be found. This is

fine for an HTTP server as most will default sending the index.html to the browser

upon folder URL request. However, if you browse locally, the web browser will display

the content of the folder instead. Making navigation super annoying. This script to be

run everytime a new static version is built will fix all the href to actually point to the

index.html instead of pointing to the folder.

/path/git/permacomputing/_tools/fix_local_href.sh /path/

permacomputing-html

Now you can point your browser to /path/permacomputing-html/index.html and

enjoy read only offline access to the wiki.

You don’t have access to git

If you do not have access to git on your operating system, you can download a zip

file that contains both the markdown source files and the generated HTML files, with

the paths fixed. The zip file is generated once a week.

pick your fav download tool...

wget http(s)://permacomputing.net/permacomputing.net.zip

fetch http(s)://permacomputing.net/permacomputing.net.zip

curl -O http(s)://permacomputing.net/permacomputing.net.zip

141. Installing

These install notes make the following assumptions: Debian OS, nginx, fcgi-wrap,

stagit. Also these are notes, not all the steps are provided, such as restarting nginx,

enabling https, etc.

Base installation

sudo apt install ikiwiki

sudo mkdir /var/www/damaged.bleu255.com-src /var/www/

damaged.bleu255.com

sudo chown $USER:$USER /var/www/damaged.bleu255.com*

echo "hello" > /var/www/damaged.bleu255.com-src/index.mdwn

mkdir ~/ikiwiki-cfg

ikiwiki --verbose /var/www/damaged.bleu255.com-src /var/www/

damaged.bleu255.com --url=https://damaged.bleu255.com --dumpsetup

~/ikiwiki-cfg/damaged.setup

ikiwiki --setup ~/ikiwiki-cfg/damaged.setup

Configuration changes

IMPORTANT, any changes to the wiki configuration must be followed by this to reflect

changes:

ikiwiki --setup ~/ikiwiki-cfg/damaged.setup

Enable CGI

~/ikiwiki-cfg/damaged.setup

cgiurl: 'https://damaged.bleu255.com/ikiwiki.cgi'

cgi_wrapper: '/var/www/damaged.bleu255.com/ikiwiki.cgi'

/etc/nginx/sites-available/damages.bleu255.com

server {

 listen 443;

 server_name damaged.bleu255.com;

 root /var/www/damaged.bleu255.com;

 index index.html index.htm;

 access_log /var/log/nginx/damaged.bleu255.com-access.log;

 error_log /var/log/nginx/damaged.bleu255.com-error.log;

 location / {

 try_files $uri $uri/ =404;

 }

 # Max size of file upload

 client_max_body_size 10m;

 location /ikiwiki.cgi {

 gzip off;

 fastcgi_pass unix:/var/run/fcgiwrap.socket;

 fastcgi_index ikiwiki.cgi;

 fastcgi_param SCRIPT_FILENAME /var/www/damaged.bleu255.com/

ikiwiki.cgi;

 fastcgi_param DOCUMENT_ROOT /var/www/damaged.bleu255.com/;

 include /etc/nginx/fastcgi_params;

 }

}

Enable git

ikiwiki-makerepo git /var/www/damaged.bleu255.com-src /var/www/

git.bleu255.com/repos/damaged.bleu255.com.git

~/ikiwiki-cfg/damaged.setup

rcs: 'git'

ikiwiki --changesetup ~/ikiwiki-cfg/damaged.setup

~/ikiwiki-cfg/damaged.setup

git_wrapper: /var/www/git.bleu255.com/repos/

damaged.bleu255.com.git/hooks/post-update

git_wrapper_background_command: git push

ikiwiki --setup ~/ikiwiki-cfg/damaged.setup

cd /var/www/damaged.bleu255.com-src

git config pull.rebase false

stagit hooks and stagit diff URLs

cd /var/www/git.bleu255.com/repos/damaged.bleu255.com.git/hooks

ln -s ../../../update_single.sh post-receive

~/ikiwiki-cfg/damaged.setup

diffurl: https://git.bleu255.com/damaged.bleu255.com/commit/\[\

[sha1_commit\]\].html

Limited web access

There are 2 ways to deal with user:pass for web access (if we rule out external auth

like openid):

outsource it to httpd-auth, implies that someone has to maintain the list of users

and their passwd manually

or add a password prompt during account creation, something we’d share with

only trusted people, or people showing interest, etc. We choose this approach

~/ikiwiki-cfg/damaged.setup account_creation_password: pa55w0rd ikiwiki –

setup ~/ikiwiki-cfg/damaged.setup

Support for sending emails

Useful to reset passwords, etc.

sudo apt install libmail-sendmail-perl

~/ikiwiki-cfg/damaged.setup

adminemail: yolo29383@hotmail.com

ikiwiki --setup ~/ikiwiki-cfg/damaged.setup

Stronger passwor hashes

sudo apt install libauthen-passphrase-perl

~/ikiwiki-cfg/damaged.setup

password_cost: 16

Disable OpenID and emailauth

ikiwiki --setup ikiwiki-cfg/damaged.setup --disable-plugin openid

ikiwiki --setup ikiwiki-cfg/damaged.setup --disable-plugin

emailauth

~/ikiwiki-cfg/damaged.setup

disable_plugins: [emailauth, openid]

•

•

Default git commit message when none provided

Ikiwiki and a recent enough version of git allow for empty git messages (the “Optional

description of this change” while editing on the web), that’s nice but it makes stagit

history impossible to browse because it uses such messages as links. To make ikiwiki

provide a default commit message when non given, you can do this:

diff --git a/git.pm.old b/git.pm

index 2bc2500..2198207 100644

--- a/git.pm.old

+++ b/git.pm

@@ -680,21 +680,8 @@ sub rcs_commit_helper (@) {

 $params{message} =

IkiWiki::possibly_foolish_untaint($params{message});

 my @opts;

 if ($params{message} !~ /\S/) {

- # Force git to allow empty commit messages.

- # (If this version of git supports it.)

- my ($version)=`git --version` =~ /git version

(.*)/;

- if ($version ge "1.7.8") {

- push @opts, "--allow-empty-message", "--

no-edit";

- }

- if ($version ge "1.7.2") {

- push @opts, "--allow-empty-message";

- }

- elsif ($version ge "1.5.4") {

- push @opts, '--cleanup=verbatim';

- }

- else {

- $params{message}.=".";

- }

+ # Force a message to commit if none given.

+ $params{message}.="empty web commit";

 }

 if (exists $params{file}) {

 push @opts, '--', $params{file};

142. wiki

A wiki is a user-editable website. The concept was developed initially by Ward

Cunningham and the first implementation was used for the 1995 WikiWikiWeb site.

The program wants everyone to be an author. So, the program slants in

favor of authors at some inconvenience to readers
6

Wikis have been instrumental in making use of hypertextuality and online web editing

through early programmable http interfaces, to form ever expanding collaborative

writing resources, or personal knowledge repositories. Today they come in many

shapes from minimal WikiWikiWeb clones, to variations on the same principles, to

much more complex and bureaucratic editorial platforms like Wikipedia.

143. History

History refers to the study, documentation and narrating of the past. Knowing and

understanding of the past is essential when envisioning, planning and building the

future. The way how history is told affects the ways in which future can be imagined.

Since permacomputing envisions a long-term future of the computing that, it needs to

tell the history of computing in ways that make permacomputing and similar

alternative ways of thinking more relevant.

Problems of mainstream computing history

A lot of things get eliminated from the mainstream narrative for various reasons:

It is essentially “winners’ history”:

The developments in the US are overemphasized in comparison to what

happened in the rest of the world, sometimes even eliminating prior art:

Vannevar Bush’s “Memex” vision was not that original (see Paul Otlet),

Douglas Engelbart was not the first one to invent a mouse (see

Telefunken’s Rollkugel), etc. etc.

The history of computer networking is told in ways that eliminates non-

Internet networks, some of which were still quite prominent in the 1980s.

BBSes are sometimes mentioned as a side curiosity because they are part

of the “consumer history”, but what about BITNET, DECnet, etc.? Even

Minitel is scarcely mentioned even though it had millions of users already

in the 1980s, maybe because it was French and therefore irrelevant.

The history of personal computing very much centers around a Californian

ideology where the young enterpreneurs (such as Steve Jobs) were the

heroes who liberated the world from the evil mainframe culture. This is

sometimes intertwined with a more general “hacker mythos” even though

its approach to liberation was often largely non-commercial.

It is also very much “consumer history” especially from the 1980s onward.

Consumer-grade hardware and their applications (especially games) get a lot of

love, and even a lot of obscure platforms from small countries are documented.

•

◦

◦

◦

•

However, it is often very difficult to even find mentions of prominent

institutional or scientific projects, strange non-US hobbyist subcultures, etc.

There have been conscious attempts to make earlier developments irrelevant or

obsolete, especially in Internet history:

The “Internet years” idea in the late 1990s (“one year in cyberspace is

equivalent to ten years in meatspace” etc.) was perhaps invented because

researchers did not want to do their homework. The pre-WWW Internet

was so long ago in Internet years that it was in a different era that didn’t

need to be studied.

“Social media” was defined in a way that made it possible to start its

history from the 2000s (again, eliminating BBSes, Usenet, IRC, etc.)

In general, each new user generation wants to pretend it invented more

things than it actually did.

Local histories are understudied, especially those of non-Western countries. The

same applies to minorities, women, lower social classes and many other group

that don’t get to be as loud as the affluent white Californian males.

Problems in how the story is told:

The overarching story is that of economic growth and maximization. Hardware

systems are divided into “generations” (that may sometimes be only a few years

in length) that are intended to obsolete the previous generation. Big companies

and their business “achievements” (such as the establishment of monocultures)

get a lot of praise.

This “chain of obsolescence” narrows the technological history down to a one-

dimensional “highway of progress” where there are only two possible directions

(“forward” and “backward”). This makes it difficult to envision other directions

and represent them in ways that don’t sound “backward”.

The concept of “retro” is used to separate some parts of history and technology

into a different world that is only relevant to personal memories. This world is

also the place for “backwards” ways of thinking (such as the appreciation of

small and efficient program code that can’t be justified from business

perspectives, or the acknowledgement of the benefits of earlier

communications systems in comparison to modern social media).

Ideas and examples

Siliconization is a concept that is used in Romania to refer to how their local

technocultural practices (“șmecherie”) were replaced by an imported “silicon

valley” model in the 1990s.

Eriksson and Pargman have suggested the use of counterfactual history as a

tool to imagine computing futures. It is often difficult for students and other

people to even imagine a computing world that is not built around Moore’s law,

•

◦

◦

◦

•

•

•

•

•

•

so for example imagining how computing might have evolved in a low-coal world

can be helpful at making this kind of conceptual leap.

144. Universal Virtual Computer

The specification of an hypothetical computer designed to decode and preserve some

form of computation over time.

Candidates

Lambda calculus is a formal system in mathematical logic for expressing

computation based on function abstraction and application using variable

binding and substitution. See also, Church Numerals.

145. Intelligence amplification

Computers (and many of their predecessors such as mechanical calculators and

tabulating machines) were invented to assist humans in cognitive tasks such as

calculation and data processing. Intelligence amplification takes place when

computer interaction assists the human user in conceptual thinking by e.g. improving

access to information. A lot of today’s common computer applications (including the

WWW) can be regarded as IA, even though the concept became unfashionable in the

1980s.

For permacomputing purposes, IA can be regarded as a subset of awareness

amplification.

The use of punched cards and mechanical devices for “enhancing natural intelligence”

was already suggested in 1832 by Semyon Korsakov and in the 1910s by Wilhem

Ostwald. In these suggestions, each punch card would contain an idea or a “micro-

thought”, and a mechanical device would assist in finding and connecting them.

Emanuel Goldberg (1930) and Vannevar Bush (1945) combined this concept with a

microfiche viewer/searcher.

In Douglas Engelbart’s Augmentation Research Center, these ideas evolved into a user

interface prototype that supported a form of human-computer symbiosis. Hypertext

and many modern GUI concepts originate from Engelbart’s project.

•

146. Research fields and methods

Research methods

Livinglabs

Sustainability research method, experimental/development environment and

ecosystem.

Local initiatives, pragmatic and efficient, balancing social, environmental and

economical considerations. Livinglabs are places to overcome narrow scientific or

engineering specialization and theoretical assumptions and test consequences of

technology next to living ecosystems. All actors - human, animal, plant or microbiome

and researchers are on the same level to resolve positive or negative impacts. Instead

observation of subjects there is principle of co-creation, experiential learning,

prototyping involving communities, inclusive social space for designing and

experiencing their own future.

Artistic research

Creative inquiry, practice as research.

Practice led research is a distinctive feature of the research activity conducted by arts

and humanities researchers, it involves the identification of research questions and

problems, but the research methods, contexts and outputs then involve a significant

focus on creative practice. This type of research thus aims, through creativity and

practice, to illuminate or bring about new knowledge and understanding, and it

results in outputs that may not be text-based, but rather a performance.

Scientific critique, interdisciplinarity

Interdisciplinarity means not only multiple disciplines involved (informatics,

biology…), but also multiple domains of inquiry.

Interpretivist: meaning, constructivist, network, dialogue, interdiscipline

Empiricist: exploratory, conceptual, reflective, discipline-based

Critical: positionality-change, contextual, transdiscipline, perspective, question

Art practice: meta-theoretical, practical, reflexive, post-discipline, visual systems

Art practice also come in coupled with critical, interpretivist and empiricist domains in

theory dimensions:

Create-critique, Meaning-making, Enact-explain

•

•

•

•

•

Research fields

Meta-disciplines of trans-discipline of sustainability:

Ecosystems and computational conditions of biodiversity

Sustainability and toxicity of computation

Biodigitality and bioelectric energy

Table of Contents

Permacomputing

Principles

Issues

Getting started

Library

Projects

Assessments

Communities

Events

Minimization

Design for descent

Bootstrapping

Permaculture

Jevons paradox

Salvage computing

Planned longevity

Design for disassembly

Dependency

Pseudosimplicity

Scalability

Unix

Balance of opposites

FLOSS

Decentralization

Software rot

Big Tech

Terms

Contribute

sister0

DEC

Collapse OS

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Gemini

Chifir

Uxn

Civboot

Mu

Teliva

DawnOS

Solar Protocol

PADI

BBC Domesday Project

CARDIAC

Hardware

Peripherals

Software

Programming languages

Operating systems

Protocols

File formats

Concepts

Collapse computing

Smallnet

Computing within Limits

Offline first

Right to repair

Holistic Computing Arts

Small File Media Festival

Algorave

Demoscene

Solarpunk

Contact

neau

ugrnm

ola

Bandwidth minimization

Media minimization

Virtual machine

C

Forth

Obsolescence

Lifespan maximization

Documentation

Feminist server

Operating system

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Bloat

Character terminal

Bedrock platform

Plan 9

Silver bullet

Monoculture

Permacomputing 2020

Cryptocurrency

File collection

Information battery

About

Editing

Dusk OS

WWW

Web browser

Internet

Paper computer

DRM

IC

Lua

Smalltalk

Go

TODO

DOS

IRC

iff

Digital preservation

Emulation

Emotionally durable design

Personalities

Aesthetics

Artificial intelligence

Automation

Awareness amplification

Kolmogorov complexity

Ethnomathematics

Games

Information and energy

Permatechnology

Regenerativity

Reuse

Technological diversity

Unconventional computing

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Calculation factory

Californian ideology

Cornucopianism

Greenwashing

Maximalism

Postdigital

Retro

Siliconization

Wishcycling

BBS

Pixel art

viznut

thgie

aw

wakame

decentral1se

Chip8

Rust

Redo from scratch

IBM PC

Raspberry Pi

ikiwiki

Cloning

Installing

wiki

History

Universal Virtual Computer

Intelligence amplification

Research fields and methods

About

This publication comes from the Permacomputing wiki https://permacomputing.net,

19 September 2024.

The order of appearance of the pages unfolds from the index page, recursing to the

entire wiki. Script by Delisa Fuller:

run from the root of the repository

from os import listdir, curdir, path

import re

find each wiki link, which is formatted as `[[page_name]]` or

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

`[[some text|page_name]]`

https://permacomputing.net/ikiwiki/wikilink/

capture groups:

0 - link text (if any)

1 - page name

2 - anchor name (if any)

INTERNAL_LINK_PATTERN = re.compile(r'\[\[(.+\|)?(.+)(#.+)?\]\]')

identify all pages in the wiki, which are some combination of

alphanumeric

and underscores, ending in ".md" or ".mdwn"

PAGE_PATTERN = re.compile(r'^\w+\.md(wn)?$')

all files in the wiki

ALL_PAGES = [f for f in listdir(curdir) if path.isfile(f) and

PAGE_PATTERN.match(f)]

match link text to a page filename

#

>>> find_page("Getting Started")

'getting_started.mdwn'

def find_page(link: str) -> str | None:

 link = re.sub(r'\W', '_', link)

 return next((f for f in ALL_PAGES if

f.lower().startswith(link.lower() + '.')), None)

list of files traversed, appended to as new files are

encountered

pages = ['index.mdwn']

current filename to read from pages

index = 0

while index < len(pages):

 filename = pages[index]

 print(filename)

 try:

 with open(filename, 'r') as page:

 for link in

INTERNAL_LINK_PATTERN.findall(page.read()):

 page = find_page(link[1])

 if page is not None and page not in pages:

 pages.append(page)

 except Exception:

 pass

 index += 1

parenthesis could be used as well, sure, or long — em dashes, but if you’re going

to fork the discussion to something that’s too long to fit in the flow of the main

text, and that does not need its own page, then a footnote can be quite handy.↩

See Ursula K. Le Guin, “A Rant About ‘Technology’,” 2004, http://

www.ursulakleguinarchive.com/Note-Technology.html.↩

Ursula K. Le Guin, “A Rant About ‘Technology’,” 2004, http://

www.ursulakleguinarchive.com/Note-Technology.html.↩

Ursula K. Le Guin, “A Rant About ‘Technology’,” 2004, http://

www.ursulakleguinarchive.com/Note-Technology.html.↩

Digital Reset Report, TU Berlin, 2022;↩

Ward Cunningham, “MoreAboutMechanics,” 1996, https://web.archive.org/web/

19961129192942/http://c2.com/cgi/wiki?MoreAboutMechanics↩

1.

2.

3.

4.

5.

6.

http://www.ursulakleguinarchive.com/Note-Technology.html
http://www.ursulakleguinarchive.com/Note-Technology.html
http://www.ursulakleguinarchive.com/Note-Technology.html
http://www.ursulakleguinarchive.com/Note-Technology.html
http://www.ursulakleguinarchive.com/Note-Technology.html
http://www.ursulakleguinarchive.com/Note-Technology.html
https://digitalization-for-sustainability.com/digital-reset/
https://web.archive.org/web/19961129192942/http://c2.com/cgi/wiki?MoreAboutMechanics
https://web.archive.org/web/19961129192942/http://c2.com/cgi/wiki?MoreAboutMechanics

	Welcome to the Permacomputing wiki!
	1. Permacomputing
	Properties of permacomputing systems
	2. Principles
	Care for life
	Care for the chips
	Keep it small
	Hope for the best, prepare for the worst
	Keep it flexible
	Build on a solid ground
	Amplify awareness
	Expose everything
	Respond to changes
	Everything has a place

	3. Issues
	4. Getting started
	What can I do?
	Participating
	Experimenting
	Reading and learning
	Organizing
	Publishing
	Breaking the monoculture

	5. Library
	Texts
	Permacomputing specific
	In relation to permacomputing
	Damaged Earth Catalog

	Films and moving images
	Non-Fiction
	Fiction/Arthouse/Experimental
	Talks/Stream

	6. Projects
	Historical

	7. Assessments
	8. Communities
	Discussion
	List of communities

	9. Events
	Talks
	Courses, workshops and seminars
	Meetings and seminars

	10. Minimization
	11. Design for descent
	12. Bootstrapping
	13. Permaculture
	14. Jevons paradox
	15. Salvage computing
	16. Planned longevity
	17. Design for disassembly
	18. Dependency
	Hard and soft dependencies
	Dependencies & permacomputing

	19. Pseudosimplicity
	20. Scalability
	21. Unix
	Advantages of Unix from the permacomputing perspective
	Disadvantages and problems
	Unix-like operating systems and kernels

	22. Balance of opposites
	Yin and yang
	Yin and yang hacking
	Transgression and immersion

	23. FLOSS
	24. Decentralization
	25. Software rot
	26. Big Tech
	27. Terms of service / Code of conduct / Privacy
	General agreements
	Moderation
	Privacy
	USUAL CAPSLOCK BOILER PLATE

	28. Contribute
	29. sister0
	30. DEC
	Damaged Earth Catalog
	About
	Link to permacomputing

	31. Collapse OS
	32. Gemini
	33. Chifir
	Relevance to permacomputing

	34. Uxn
	Relevance to permacomputing

	35. Civboot
	36. Mu
	37. Teliva
	Relevance to permacomputing

	38. DawnOS
	dawnos.txt

	39. Solar Protocol
	40. PADI
	41. BBC Domesday Project
	42. CARDIAC
	Relevance to permacomputing
	43. Hardware
	44. Peripherals
	45. Software
	Software Freedom
	Types of software
	Twee Editors

	46. Programming languages
	programming languages

	47. Operating systems
	48. Protocols
	49. File formats
	50. Concepts
	Practical concepts
	Concepts related to design principles
	More theoretical or generic
	Phenomena of mainstream computing world

	51. Collapse computing
	52. Smallnet
	53. Computing within Limits
	54. Offline first
	55. Right to repair
	56. Holistic Computing Arts
	57. Small File Media Festival
	58. Algorave
	Show us your screens
	59. Demoscene
	60. Solarpunk
	See also

	61. Contact
	62. neau
	63. ugrnm
	64. ola
	65. Bandwidth minimization
	66. Media minimization
	67. Virtual machine
	68. C
	69. Forth
	70. Obsolescence
	Types of planned obsolescence
	Examples

	71. Lifespan maximization
	72. Documentation
	73. Feminist server
	74. Operating system
	75. Bloat
	76. Character terminal
	77. Bedrock platform
	The Maxwell’s Equations of Software

	78. Plan 9
	Relevance to permacomputing

	79. Silver bullet
	80. Monoculture
	81. Permacomputing 2020
	82. Cryptocurrency
	83. File collection
	84. Information battery
	85. About
	Is this for you?
	Contact us!
	HTTP vs HTTPS
	Local/Offline copies
	Install Notes

	86. Editing
	Style
	Copyediting recommendations
	On attribution, quotes and footnotes
	Limitations of the footnotes
	Reference style
	Acceptable content
	Licensing

	87. Dusk OS
	88. WWW
	Problems
	Attempts to fix the problems
	Web & Permacomputing
	Software

	89. Web browser
	90. Internet
	Matter and energy
	Other aspects of the Internet

	91. Paper computer
	Historical

	92. DRM
	93. IC
	Making

	94. Lua
	95. Smalltalk
	Relevance to permacomputing
	96. Go
	97. TODO
	Server
	ikiwiki
	Content

	98. DOS
	99. IRC
	Permacomputing assessment
	Alternatives to IRC

	100. iff
	Relevance to Permacomputing

	101. Digital preservation
	Techniques
	Useful Concepts

	102. Emulation
	103. Emotionally durable design
	Bibliography

	104. Personalities
	Permacomputing Personalities
	Archetypes
	The Vintage Computing Enthusiast (VCE)
	The Post-Collapse Prepper (PCP)
	The Cosplay Wastelander (CW)
	The Solarpunk Tinkerer (ST)
	The Computer Abolisher (CA)
	The Neo-Luddite (NL)
	The Permacomputing Artist (PA)
	The Computer Counter Culturist (CCC)

	Opinions

	105. Aesthetics
	106. Artificial intelligence
	Dumb and smart programs
	Green AI

	107. Automation
	108. Awareness amplification
	109. Kolmogorov complexity
	110. Ethnomathematics
	111. Games
	Common problems
	Specific games
	Another World

	112. Information and energy
	Information and entropy relation to energy
	Energy needed for signal modulation

	113. Permatechnology
	114. Regenerativity
	Regenerative design, Regenerative computing

	115. Reuse
	116. Technological diversity
	117. Unconventional computing
	118. Calculation factory
	119. Californian ideology
	120. Cornucopianism
	121. Greenwashing
	122. Maximalism
	123. Postdigital
	124. Retro
	125. Siliconization
	126. Wishcycling
	127. BBS
	Bulletin Board System

	128. Pixel art
	129. viznut
	130. thgie
	131. aw
	132. wakame
	133. decentral1se
	134. Chip8
	135. Rust
	136. Redo from scratch
	137. IBM PC
	138. Raspberry Pi
	Chips
	Alternatives

	139. ikiwiki
	140. Cloning
	You have access to git
	Cloning
	Markdown source files
	HTML rendering

	### You don’t have access to git
	141. Installing
	Base installation
	Configuration changes
	Enable CGI
	Enable git
	stagit hooks and stagit diff URLs
	Limited web access
	Support for sending emails
	Stronger passwor hashes
	Disable OpenID and emailauth
	Default git commit message when none provided

	142. wiki
	143. History
	Problems of mainstream computing history
	Ideas and examples

	144. Universal Virtual Computer
	Candidates

	145. Intelligence amplification
	146. Research fields and methods
	Research methods
	Livinglabs
	Artistic research
	Scientific critique, interdisciplinarity

	Research fields
	Ecosystems and computational conditions of biodiversity
	Sustainability and toxicity of computation
	Biodigitality and bioelectric energy

	Table of Contents
	About

