
Appendix A
Concrete Art Manifesto

n 1930 the Dutch painter Theo van Doesbourg (a pseudonim for Christian
Emil Marie Küpper) published the Manifesto for Concrete Art, advocating the total
freedom of art from the need to describe or represent natural objects or sentiments.
The Manifesto is reported in Fig. A.1.

The translation of the Manifesto is the following one:

BASIS OF CONCRETE PAINTING
We say:

1. Art is universal.
2. A work of art must be entirely conceived and shaped by the mind before its exe-

cution. It shall not receive anything of nature’s or sensuality’s or sentimentality’s
formal data. We want to exclude lyricism, drama, symbolism, and so on.

3. The painting must be entirely built up with purely plastic elements, namely sur-
faces and colors. A pictorial element does not have any meaning beyond “itself”;
as a consequence, a painting does not have any meaning other than “itself”.

4. The construction of a painting, as well as that of its elements, must be simple and
visually controllable.

5. The painting technique must be mechanic, i.e., exact, anti-impressionistic.
6. An effort toward absolute clarity is mandatory.

Carlsund, Doesbourg, Hélion, Tutundjian and Wantz.
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Fig. A.1 Concrete Art Manifesto, by Theo van Doesburg (1930)



Appendix B
Cartographic Results for Roads

his appendix shows in Fig. B.1 some more roads and their different rep-
resentations with and without abstraction. The representations result from:

• a direct symbolization (initial),
• the cartographic result produced by the hand-crafted expert system GALBE,

specifically developed to generalize road [389, 391],
• the result produced by the set of rules obtained by learning without abstraction,
• the result produced by the set of rules obtained by combining learning and abstrac-

tion.
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Fig. B.1 Different road generalization results, for different roads. The improvements brought by
abstraction are clearly visible



Appendix C
Relational Algebra

n this appendix we recall the basic notions of Relational Algebra for
manipulating relational databases. Relational Algebra has been proposed by Ullman
[540] as a formal tool for modeling relational database semantics.

Relational databases provide operators for handling relations in their extensional
form. Given a set X of variables, a n-ary relation R(x1, x2, . . . , xn) involving the
variables in X is represented as a table with n columns and k rows, where each row
describes an n-ple of individuals of X satisfying R.

The type T of a relation R(x1, x2, . . . , xn) is defined as:

T : X1 × X2 × · · · × Xn (C.1)

where X1, X2, . . . , Xn are the domains from which the individuals bound to x1,

x2, . . . , xn can be taken. The relation R(x1, x2, . . . , xn) is a subset of its type.
A relational database provides a set of operators that allow one to compute new

relations from the existing ones [539]. Operators are usually made available as prim-
itive functions of a query language, which may depend on the specific database
implementation. Relational Algebra provides a formal definition of the semantics of
these operators, which is independent of the syntax of the query language.

Here, we briefly recall the basic notions of Relational Algebra, whereas a more
extensive introduction can be found in [540]. In the following, the list of the basic
operators is reported.

Union

Given two relations R1 and R2 of the same arity, the union R = R1 ∪ R2 is a relation
obtained by taking the union of the tuples occurring either in R1 or in R2.
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PhD MANAGERS
ID SURNAME AGE ID SURNAME AGE

23 Smith 38 72 Adams 50
40 Adams 39 40 Adams 39
132 Ross 32 132 Ross 32

PhD MANAGERS PhD MANAGERS
ID SURNAME AGE ID SURNAME AGE

23 Smith 38 40 Adams 39
40 Adams 39 132 Ross 32
132 Ross 32
72 Adams 50 PhD – MANAGERS

ID SURNAME AGE

23 Smith 38

Fig. C.1 Given the tables corresponding to the relations R1 = PhD and R2 = MANAGERS, we
can construct the tables PhD ∪MANAGERS, PhD ∩MANAGERS, and PhD-MANAGERS

Intersection

Given two relations R1 and R2 of the same arity, the intersection R = R1 ∩ R2 is a
relation obtained by only keeping the tuples occurring in both relations R1 and R2.

Set difference

Given two relations R1 and R2 of the same arity, the difference S = R1 − R2 is
obtained by eliminating from R1 the tuples that occur in R2.

In Fig. C.1 examples of the Union, Intersection, and Set Difference operators are
reported.

Cartesian product

Let R1 and R2 be two relations of arity n and m, respectively. The Cartesian product
R = R1×R2 is a relation of arity n+m, whose tuples have been obtained by chaining
one tuple of R1 with one tuple of R2 in all possible ways.

Projection

Let R1 and R2 be two relations of arity n and m, respectively, with n > m; the relation
R2 will be called a projection of R1 if it can be generated by taking the distinct tuples
obtained by deleting a choice of (n− m) columns in R1. The projection is formally
written as R2 = πi1,i2,...,im(R1), where i1, i2, . . . , im denote the columns of R1 that
are to be kept in R2.

Selection

Let R be a n-ary relation. A selection S = σθ(R) is obtained by selecting all tuples
in R satisfying a condition θ stated as a logical formula, built up using the usual
connectives ∧,∨,¬, the arithmetic predicates <,>,=,≤,≥ and the values of the
tuple’s components.
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PhD
LOCATION

ID SURNAME AGE CITY REGION
23 Smith 38 Rome Lazio
40 Adams 39 Milan Lombardia
132 Ross 32 Bergamo Lombardia

PhD MANAGERS Proj -PhD
ID SURNAME AGE CITY REGION SURNAME AGE

23 Smith 38 Rome Lazio Smith 38
23 Smith 38 Milan Lombardia Adams 39
23 Smith 38 Bergamo Lombardia Ross 32
40 Adams 39 Rome Lazio
40 Adams 39 Milan Lombardia Sel-PhD
40 Adams 39 Bergamo Lombardia ID SURNAME AGE

132 Ross 32 Rome Lazio 23 Smith 38
132 Ross 32 Milan Lombardia 132 Ross 32
132 Ross 32 Bergamo Lombardia

Fig. C.2 Given the relations R1 = PhD and R2 = LOCATION , the Cartesian product of R1 and
R2 contains 9 tuples, obtained by concatenating each tuple in R1 with each tuples in R2. Relation
Proj-PhD is the projection of relation PhD over the attributes SURNAME and AGE, i.e., Proj-
PhD = πSURNAME,AGE(PhD). Finally, relation Sel-PhD is obtained by selection from PhD, and
contains the tuples that satisfy the condition AGE � 38, i.e., Sel-PhD = σAGE�38(PhD)

FATHERHOOD R-FATHERHOOD
FATHER CHILD PARENT CHILD
John Ann John Ann
Stuart Jeanne Stuart Jeanne
Robert Albert Robert Albert

Fig. C.3 Given the relations R = FATHERHOOD, we can rename attribute FATHER as PARENT ,
obtaining the new relation R-FATHERHOOD, i.e., R-FATHERHOOD = ρPARENT←FATHER(R)

In Fig. C.2 examples of the Cartesian product, Projection, and Selection operators
are reported.

Renaming

If R is a relation, then R(B← A) is the same relation, where column A is now named
B. The renaming operation is denoted by R(B ← A) = ρB←A(R). In Fig. C.3 an
example of the Renaming operator is reported.

Natural-join

Let R and S be two relations of arity n and m, respectively, such that k columns
A1, A2, . . . , Ak in S have the same name as in R. The natural join Q = R 	
 S is the
(n+ m − k) arity relation defined as:

πA1,A2,...,A(n+m−k)
σR.A1=S.A1∧R.A1=S.A1∧···∧R.Ak=S.Ak (R× S).
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AFFILIATION RESEARCH

RESEARCHER UNIVERSITY UNIVERSITY FIELD

Johnson Stanford Stanford Law

Ross MIT MIT Physics

Archer MIT MIT Informatics

CMU Informatics

AFFILIATION            RESEARCH

RESEARCHER UNIVERSITY FIELD

Johnson Stanford Law

Ross MIT Physics

Ross MIT Informatics

Archer MIT Physics

Archer MIT Informatics

Fig. C.4 Given the two relations AFFILIATION and RESEARCH, their natural join is obtained by
considering all tuples that have the UNIVERSITY value in common

In other words, each tuple of Q is obtained by merging two tuples of R and S such
that the corresponding values of the shared columns are the same.

In Fig. C.4 an examples of the Natural-Join operator is reported.



Appendix D
Basic Notion of First Order Logics

n this appendix we recall the basic notions of First Order Logic (FOL),
in particular those that have been used in this book. Readers interested in a deeper
understanding of the topic can find excellent introductions in many textbooks (see,
for instance, [496, 545]).

First Order Logic (also known as First Order Predicate Calculus) is a language
used in Mathematics, Computer Science, and many other fields, for describing formal
reasoning. It is an extension of Propositional Logic to the manipulation of variables.
The definition of a logical language has two parts, namely the syntax of the language,
and the semantic.

D.1 Syntax

A FOL language L is a 5-tuple 〈C, X, O, P, F〉, where C is a set of constants, X is a
set of variables, O is the set of logical operators, F is a set of function names and P is
a set of predicate names. All symbols occurring in the definition of L are partitioned
into two sets:

Logical symbols—Logical symbols include:

• Logical connectives: ∧ (conjunction), ∨ (disjunction), ¬ (negation),→ (implica-
tion).
• Quantifiers: ∀ (universal quantifier), ∃ (existential quantifier).
• Parentheses and punctuation symbols.
• An infinite set of variable names. Each variable X takes value in a given domain

ΩX .

L. Saitta and J.-D. Zucker, Abstraction in Artificial Intelligence and Complex Systems, 421
DOI: 10.1007/978-1-4614-7052-6, © Springer Science+Business Media New York 2013



422 Appendix D Basic Notion of First Order Logics

Non-logical symbols—Non-logical symbols include:

• Predicate symbols. A predicate p(x1, . . . , xn), of arity n, describes an elementary
property of, or an elementary relation among sets of objects represented by a set
of variables.
• Function symbols. A function f (x1, . . . , xn), of arity n, associates to a tuple of

objects, represented by the set of variables, a value or another object.
• Constants. These are the identifiers of objects, and can be seen as function symbols

of 0-arity.

As an example, let us consider the following Language L = 〈C, X, O, P, F〉, where:
C = {John, Mary, Ann, Rob, Tom, Billy, Lawrence, Mia} is

a set of constants.
X = {x, y, z, . . . , x1, x2, x3, . . .} is a set of variables.
O = {∧,∨,¬,→,∀, ∃} is the set of standard logical operators.
F = {mother(x), father(x)} is the set of functions. Function mother(x) (father(x))

assign to x his/her mother (father).
P = {married(x, y), grandmother(x, y), siblings(x, y)} is the set of predicates.
The expression power of the language resides in the possibility of combining the

elementary symbols to form complex terms and formulas.

D.1.1 Formulas

Logical formulas are expressions built up over the dictionary defined by logical
and non logical symbols. Well-formed-formulas (wffs) are the ones with the syntax
recursively defined in the following. We must defined terms, and formulas.

Terms

• A constant is a term.
• A variable is a term.
• If f is a function symbol of arity n and t1, . . . , tn are terms, f (t1, t2, . . . , tn) is a

term.

Formulas

• If p is a predicate symbol of arity n, and t1, t2, . . . , tn are terms, then p(t1, t2, . . . , tn)
is an atomic formula.
• If ϕ1 and ϕ2 are formulas, (ϕ1 ∧ ϕ2), (ϕ1 ∨ ϕ2), (ϕ1 → ϕ2), are formulas.
• If ϕ is a formula, then ¬ϕ is a formula.
• If ϕ is a formula and x is a variable occurring in ϕ, then ∀x(ϕ) and ∃x(ϕ) are

formulas.

Only expressions that can be obtained by finitely many applications of the above
rules are formulas.
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Frequently, in the literature an atomic formulas is called a literal. A literal con-
sisting of a non-negated predicate p(t1, t2, . . . , tn) is said a positive literal, whereas
a negated predicate of the type ¬p(t1, t2, . . . , tn) is said a negative literal.

In the language introduced above as an example, terms are, for instance, Mary, y,
mother(x), and father(mother(x)). Moreover, sibling(x, y), married(x, y) ∧
grandmather(x, z), ¬married(y, z), married(mother(x), father(x)), ∃x.sibling
(x, y),∀x ∃y.grandmother(y, x) are all well-formed formulas.

D.2 Semantics

FOL formulas make assertions on generic objects denoted by variables. In order to
let a formula assume a precise meaning in the description of the world, it is necessary
to define an interpretation, in which generic objects, represented by variables, can
be mapped to specific individuals.

An interpretation is a universe U of individuals, together with a set of rules assign-
ing a meaning to formulas with respect to U. More precisely, for atomic formulas
we have:

• Constants identify (are associated to) individuals in U.
• Function symbols are associated to operations in U, which build new objects (or

values) starting from the primitive ones. In other words, the semantic of a function
y = f (x1, . . . , xn) is the set of tuples (x1, . . . , xn, y), where xj ∈ Ωj (1 � j � n),
and y ∈ Ωy, such that f associates y to the tuple (x1, . . . , xn).
• 0-arity predicates are mapped to True or False.
• n-ary predicates are mapped to n-ary relations, i.e, to set of n-ary tuples of objects

existing in U and satisfying the predicate.

In other words, objects, operations, and relations are the extension of constants,
functions, and predicates, respectively. Among formulas, we have to distinguish
between open and closed formulas. Open formulas are those that contain at least one
free variable, namely a variable that is not assigned to a specific value. Closed for-
mulas are those that do not contain free variables. A free variable can be closed
by either assigning to it a specific constant, or attaching to it a quantifier. For
instance, the formula married(x, y) is open, whereas siblings(John, Mary) and
∃x.sibling(x, Ann) are closed ones. Open formulas (called “concepts” by Frege)
have an extension associated to them, whereas closed formulas (called “sentences”
by Frege) have associated a truth value.

Replacing a variable x by a constant A is called a substitution θ = x/A. An
atomic formula q(x/A) is true in U if the constant A belongs to the unary relation Rq,
corresponding to predicate q.1 In analogous way, the atomic formula p(y/B, z/C) is

1 With x/A, x/B, y/C we mean that the variables x, y, and z are replaced by the constant values A,
B, and C, respectively.
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Fig. D.1 Semantics of logical connectives AND (∧), OR(∨), NOT (¬), Implication (→), and
BI-Implication (↔)

true iff the tuple (B, C) belongs to the table defining the binary relation Rp, associated
to predicate p.

The truth of complex formulas can be evaluated in a universe U by combining the
truth of the single atomic formulas according to the classical semantics of the logical
connectives (see Fig. D.1). For instance, the formulaϕ(x, y) = q(x/A)∧p(x/A, y/B)

is true iff A belongs to relation Rq and (A, B) belongs to relation Rp.
By referring to the truth tables reported in Fig. D.1, it is easy to prove that, among

the five connectives ∧, ∨, ¬,→, and↔, only three of them are essential because
implication and bi-implication can be expressed as a combination of the others. For
instance, formula ϕ → ψ (ϕ implies ψ), is semantically equivalent to ¬ϕ ∨ ψ,
while formula ϕ ↔ ψ (ϕ implies ψ and ψ implies ϕ) is semantically equivalent to
(¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ).

D.3 Clausal Form

In wffs quantifiers can be nested arbitrarily. However, it can be proved that any wff
can be syntactically transformed in such a way that all quantifiers occur only at the
most external level, while preserving the formula’s semantics. This syntactic form
is called prenexed form. Moreover, the existential quantifier can be eliminated by
introducing the so called Skolem function.

The prenexed form of a formula can be a universally quantified formula of the
type ∀x1,x2,...,xn .ϕ(x1, x2, ..., xn), whereϕ is a formula with only free variables, which
is built up by means of the connectives ∧, ∨, ¬, and, possibly,→ and↔. Finally,
any formula, built up through the connectives ∨, ∧ and ¬, can be represented in
Conjunctive Normal Form (CNF), i.e., as a conjunction of disjunctions of atoms
(literals). In particular, any FOL sentence can always be written as in the following:

∀x1,x2,....,xn .[(L11 ∨ L12 ∨ . . . ∨ L1k1) ∧ (L21 ∨ L22 ∨ . . . ∨ L2k2) ∧ . . .

∧(Lm1 ∨ Lm2 ∨ . . . ∨ Lmkm)] (D.1)

where Lij denotes a positive or negative literal, with any subset of the variables
x1, x2, ...., xn as arguments.
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Form (D.1) is usually referred to as clausal form (the word clause denotes a
disjunction of literals), and is the one most widely used for representing knowledge
in Relational Machine Learning.

For the sake of simplicity, notation (D.1) is usually simplified as follows:

• Universal quantification is implicitly assumed, and the quantifier symbol is omit-
ted.
• Symbol ∧ denoting conjunction is replaced by “,” or implicitly assumed.

Horn clauses. A Horn clause is a clause with at most one positive literal. Horn clauses
are named after the logician Alfred Horn [262], who investigated the mathematical
properties of similar sentences in the non-clausal form of FOL. The general form of
Horn clauses is then:

¬L1 ∨ ¬L2 ∨ . . . ∨ ¬Lk−1 ∨ Lk, (D.2)

which can be equivalently rewritten as

¬(L1 ∧ L2 ∧ . . . ∧ Lk−1) ∨ Lk ≡ L1 ∧ L2 ∧ . . . ∧ Lk−1 → Lk (D.3)

Horn clauses play a basic role in Logic Programming [299] and are important for
Machine Learning [382]. A Horn clause with exactly one positive literal is said a
definite clause. A definite clause with no negative literals is also called a fact.
DATALOG. DATALOG is a subset of a Horn clause language designed for querying
databases. It imposes several further restrictions to the clausal form:

• It disallows complex terms as arguments of predicates. Only constants and vari-
ables can be terms of a predicate.
• Variables are range restricted, i.e., each variable in the conclusion of a clause must

also appear in a non negated literal in the premise.



Appendix E
Abstraction Operators

ll operators that we have defined so far are summarized in Table E.1. They
are grouped according to the elements of the description frame they act upon, and
their abstraction mechanism. Even though there is quite a large number of them,
several operators can be “technically” applied in the same way, exploiting synergies.
For instance, equating values of a variable can be implemented with the same code for
attributes, argument values in functions and relations, and in a function’s co-domain.
Nevertheless, we have kept them separate, because they differ in meaning, and also
in the impact they have on the Γ ’s.

As it was said at the beginning, the listed operators are defined at the level of
description frames, because they correspond to abstracting the observations that
are obtained from the sensors used to analyze the world. To each one of them a
corresponding method is associated, which acts on specific P-Sets according to
rules that guide the actual process of abstraction.

E.1 Some More Operators

In this appendix some operators are described in addition to those introduced in
Chap. 7. The complete set of available operators can be found in the book’s companion
site.

The introduced operators are by no means intendeded to exhaust the spectrum
of abstractions that can be thought of. However they are sufficient to describe most
of the abstractions proposed in the past in a unified way. Moreover, they provide a
guide for defining new ones, better suited to particular fields.
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Table E.1 Summary of the elementary abstraction and approximation operators, classified accord-
ing to the elements of the description frame they act upon and their mechanism

Operators Elements Arguments Values

Hiding ωhobj, ωhtype, ωhfunarg, ωhrelarg ωhattrval

ωhattr, ωhrel , ωhfunargval

ωhfun ωhfuncodom

ωhrelargval

Equating ωeqobj, ωeqtype, ωeqfunarg ωeqattrval

ωeqattr, ωeqfun, ωeqrelarg ωeqfunargval

ωeqrel ωeqfuncodom

ωeqrelargval

Building ωhierattr, ωhierfun, ωhierattrval

hierarchy ωhierrel, ωhiertype ωhierfuncodom

Combining ωcoll, ωaggr, ωgroup ωconstr

Approximating ρrepl ρrepl ρrepl

ρidobj, ρidtype, ρidfunarg ρidattrval

ρidattr, ρidfun, ρidrelarg ρidfunargval

ρidrel ρidfuncodom

ρidrelargval

E.1.1 Operator that Hides a Type: ωhtype

If X(g) = Γ
(g)

TYPE and y = t, type t cannot be anymore observed in a system, and
objects that were previously of this type become of type obj. We define:

ωhtype(t) =
def

ωh(Γ
(g)

TYPE,t)

and we obtain:
Γ

(a)
TYPE = Γ

(g)
TYPE − {t} ∪ {obj}

The corresponding method methhtype(Pg,t), applied to an observed Pg , replaces
with obj the type of all objects of type t.

E.1.2 Operator that Hides a Value from a Function’s Codomain:
ωhfuncodom

If X(g) = Γ
(g)
F , y = (fh, CD(fh)),v ∈ CD(fh), then the operator

ωhfuncodom(fh, CD(fh),v) =
def

ωh(Γ
(g)
F , (fh, CD(fh)),v)
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removes some value v from the codomain of fh. Then an abstract function is created,
whose codomain is given by:

CD(f (a)
h ) = CD(fh)− {v},

and
Γ

(a)

F = Γ
(g)
F − {fh} ∪ {f (a)

h }

For instance, let us consider the function Price, with codomain CD(Price) =
{cheap,moderate,fair,costly,very-costly}; if we want to remove the
value very-costly, we have to specify, in method

methhfuncodom(Pg, Price, CD(Price),very-costly),

what happens for those tuples in FCOV(f (a)
h ) that contain v. One possibility is that

the value is turned into UN.

E.1.3 Operator that Builds Equivalence Classes of Relations: ωeqrel

If X(g) = Γ
(g)
R and y(a) = R(a), the operator makes indistinguishable all relations R

satisfying ϕeq(R1, . . . ,Rk). Let

ΓR,eq = {(R1, . . . ,Rk)|ϕeq(R1, . . . ,Rk)}
be the set of indistinguishable relations. We define:

ωeqrel(ϕeq(R1, . . . ,Rk), R(a)) =
def

ωeqelem(Γ
(g)
R ,ϕeq(R1, . . . ,Rk), R(a))

The operator ωeqrel(ϕeq(R1, . . . ,Rk), R(a)) generates first the set ΓR,eq, obtaining:

Γ
(a)

R = Γ
(g)
R − ΓR,eq ∪ {R(a)}

It is the method metheqrel(Pg,ϕeq(R1, . . . ,Rk), R(a)) that specifies how the cover
of R(a) has to be computed.

As an example, let us suppose that the set of relations to be made indistinguishable
be define extensionally, as in the case of functions. For instance, let

ΓR,eq = {RIsMotherof , RIsStepMotherof },
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where:

RIsMotherof ⊆ Γ (g)
women × Γ

(g)
people

RIsStepMotherof ⊆ Γ (g)
women × Γ

(g)
people

If we state the equivalence between the two relations, we may keep only R(a) in place
of the two. Again, method metheqrel(Pg,ϕeq(R1, . . . ,Rk), R(a)) shall specify how
the cover RCOV(RIsStepMotherof ) must be computed.

E.1.4 Operator that Builds Equivalence Classes of Values
in a Function’s Codomain: ωeqfuncodom

If X(g) = Γ
(g)
F , Y = (fh, CD(fh)), Veq ⊆ CD(fh), then the operator equates values

of the codomain of function fh and set all equal to v(a). We define:

ωeqfuncodom(fh, CD(fh), Veq,v
(a)) =

def
ωeqval(Γ

(g)
F , (fh, CD(fh)), Veq,v

(a))

An abstract function is defined:

f (a)
h ⊆ Γ

(g)
O × . . .× Γ

(g)
O

︸ ︷︷ ︸

1 ......... th

→ CD(fh)− Veq ∪ {v(a)}

Then:
Γ

(a)

F = Γ
(g)
F − {fh} ∪ {f (a)

h }

Method metheqfuncodom(Pg, (fh, CD(fh)), Veq,v(a)) handles the cover of f (a)
h by

replacing in FCOV(f (a)
h ) all occurrences of members of Veq with v(a).

For the sake of exemplification, let us consider a gray-level picture, in which the
attribute Intensity of a pixel x can take on a value in the integer interval [0, 255]. Let
τ be a threshold, such that:

I(a)(x) =
{

255 if I(x) > τ ,

I(x) otherwise.
(E.1)

In Eq. (E.1) all values greater than the threshold are considered equivalent. An exam-
ple is reported in Fig. E.1.



Appendix E Abstraction Operators 431

Fig. E.1 Example of method metheqfuncodom(Pg, (fh, CD(fh)), Veq,v(a)). The picture on the left
is a 256-level gray picture. By a thresholding operation, all pixels whose intensity is greater than τ
are considered white

E.1.5 Operator that Builds a Hierarchy of Attributes: ωhierattr

If X(g) = Γ
(g)
A , Y = ∅, Ychild = Γ

(g)
A,child , and y(a) = (A(a), Λ(a)), then the operator

works on an attribute hierarchy, where a set of nodes, those contained in Γ
(g)
A,child ,

are replaced by (A(a), Λ(a)). We define:

ωhierattr

(

Γ
(g)
A,child, (A(a), Λ(a))

)

=
def

ωhier

(

Γ
(g)
A , Γ

(g)
A,child, (A(a), Λ(a))

)

and we obtain:
Γ

(a)

A = Γ
(g)
A − Γ

(g)
A,child ∪ {(A(a), Λ(a))}.

The method methhierattr(Pg, Γ (g)
A,child, (A(a), Λ(a))) states how the values in Λ(a)

must be derived from those in the domains of the attributes in Γ
(g)
A,child .

As an example, let us consider the attributes Length and Width. We intro-
duce the abstract attribute LinearSize(a), such that Length is-a LinearSize(a) and
Width is-a LinearSize(a). We have then, ΓA,child = {Length, Width}, and A(a) =
LinearSize(a). The values of the attribute LinearSize(a) are to be defined; for instance,
we may assume that, for an object x,

LinearSize(a)(x) = Max[Length(x), Width(x)].

The original attribute do not enter Γa.
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E.1.6 Operator that Builds a Hierarchy of Relations: ωhierrel

If X(g) = Γ
(g)
R , Y = ∅, Ychild = Γ

(g)
R,child , and y(a) = R(a), then the operator works

on a relation hierarchy, where a set of nodes, those contained in Γ
(g)
R,child , are replaced

by R(a). We define:

ωhierrel

(

Γ
(g)
R,child, R(a)

)

=
def

ωhier

(

Γ
(g)
R , Γ

(g)
R,child, R(a)

)

and we obtain:
Γ

(a)

R = Γ
(g)
R − Γ

(g)
R,child ∪ R(a)

The method methhierrel

(

Pg, Γ (g)
R,child, R(a)

)

states how the cover of R(a) must be

computed starting from those of the relations in Γ
(g)
R,child .

As an example, let RHorizAdjacent ⊆ Γ
(g)
O × Γ

(g)
O and RVertAdjacent ⊆ Γ

(g)
O × Γ

(g)
O

be two relations over pairs of objects. The former is verified when two objects touch
each other horizontally, whereas the latter is verified when two objects touch each
other vertically. We introduce the abstract relation R(a)

Adjacent ⊆ ΓO×ΓO, which does
not distinguish the modality (horizontal or vertical) of the adjacency. In this case we
have ΓR,child = {RHorizAdjacent, RVertAdjacent} and the new relation R(a) = R(a)

Adjacent .

Operator ω(Ψ )
hierrel(Pg, Γ (g)

R,child, R(a)) will establish that, for instance:

FCOV(R(a)
Adjacent) = FOCV(RHorizAdjacent) ∪ FCOV(RVertAdjacent)

The original relations are hidden in the abstract space.

E.2 Approximation Operators

In this section we illustrate some additional approximation operators.

E.2.1 Operator that Identifies Types: ωidtype

If X(g) = Γ
(g)

TYPE and y(a) = t(a), the operator makes all types satisfyingϕid(t1, . . . ,tk)

indistinguishable. Then type t(a) is applied to all objects in the equivalence class.
We define:

ωidtypes(ϕid(t1, . . . ,tk),t
(a)) =

def
ωidelem(Γ

(g)
TYPE,ϕid(t1, . . . ,tk),t

(a))
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The operatorωidtype(ϕid(t1, . . . ,tk),t(a)) generates first the set of ΓTYPE,id of indis-
tinguishable types, and then it applies t(a) to the obtained class. All types in ΓTYPE,id
become t(a), obtaining:

Γ
(a)

TYPE = Γ
(g)

TYPE − ΓTYPE,id ∪ {t(a)}

It is the method methidtype(Pg,ϕid(t1, . . . ,tk),t(a)) that specifies what properties
are to be assigned to t(a), considering the ones of the equated types. For instance, if
the types in ΓTYPE,id have different sets of attributes, t(a) could have the intersection
of these sets, or the union, by setting some values to NA, depending on the choice of
the user.

As an example, we can consider the types chair and armchair and we can
equate them to be both chair(a).

E.2.2 Operator that Approximates Attribute Values: ωidattrval

If X(g) = Γ
(g)
A , Y = (A,ΛA), and Vid = ΛA,id ⊆ ΛA, then the operator makes

indistinguishable a subset ΛA,id of the domain ΛA of A. We define:

ωidattrval((A,ΛA),ΛA,id,v(a)) =
def

ωidval(Γ
(g)
A , (A,ΛA),ΛA,id,v(a))

We obtain an approximate attribute A(a) such that ΛA(a) = ΛA −ΛA,id ∪ {v(a)}, and

Γ
(a)

A = Γ
(g)
A − {(A,ΛA)} ∪ {(A(a), ΛA(a) )}

For the sake of exemplification, let us consider an attribute, say Color, which
takes values in the set:
{white, yellow, olive-green, sea-green,lawn-green,red,
pink,light-green, dark-green, blue, light-blue,aquamar-
ine,orange,magenta,cyan,black}.

We might consider equivalent all the shades of green, and identify them with
v(a) = sea-green. In this case, the true shade of green is no more known (see
Fig. E.2.

As another important example, let us consider the discretization of real num-
bers. Let us consider the interval [0, 100), and let us divide it into 10 subintervals
{[10k, 10(k + 1)) | 0 � k � 9}. Numbers falling inside one of the intervals are
considered all equal to the mean value 10k + 0.5.
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Fig. E.2 Application of method meth(Pg,ωeqattrval
(

(Color,ΛColor), Vid ,v(a)
)

to the figure
on the left. Let Vid = {olive-green, sea-green, lawn-green, light-green,
dark-green}. Objects o1,o2, and o3 have color dark-green, lawn-green, and
sea-green, respectively. After equating all shades of green to sea-green, the color of all
three objects becomes sea-green. [A color version of the figure is reported in Fig. H.16 of
Appendix H]

E.3 Some More Methods

In Chap. 7 the methods associated to some operators have been described. In this
section we give some additional examples, whereas the complete set of methods is
provided in the book’s companion site.

Let us consider the operators that hide an attribute, or a function, or a relation,
i.e., ωhattr ((Am,Λm)), ωhfun (fh), and ωhrel (Rk). Hiding an attribute or a function or
a relation are all instantiations of the same PDT introduced in Sect. 7.2.1 , and then
we group them together in Table E.2, whereas their bodies are reported in Tables E.3,
E.4, and E.5, respectively.

Also at the description level the operators ωhattr((Am,ΛM)),ωhfun(fh), and
ωhrel(Rk) are similar; in fact, they simply hide from the appropriate set the con-
cerned element (attribute, function, or relation), as it was illustrated in Sect. 7.2.1.
But when we must apply them to a specific Pg , some complication may arise. Let us
look first at Table E.2.

Operator ωhattr((Am,Λm)) hides the attribute from the set of available ones, and,
as a consequence, meth

(Pg,ωhattr(Am,Λm)
)

hides the value of that attribute in each
object inPg . Hiding an attribute may cause the descriptions of some objects to become
identical. However, as each object has a unique identity, they remain distinguishable.

As both functions and relations cannot have an attribute as an argument, removing
Am does not have any further effect. For the hidden information, it is not necessary
to store all the tuples hidden in Ag , but only the value of Am for each object.

http://dx.doi.org/10.1007/978-1-4614-7052-6_7
http://dx.doi.org/10.1007/978-1-4614-7052-6_7
http://dx.doi.org/10.1007/978-1-4614-7052-6_7


Appendix E Abstraction Operators 435

Table E.2 Summary of methods meth(Pg,ωhattr(Am,ΛM )), meth(Pg,ωhfun(fh)), and
meth(Pg,ωhrel(Rk))

NAME meth(Pg,ωhattr) meth(Pg,ωhfun) meth(Pg,ωhrel)

INPUT Pg, (Am,Λm) Pg, fh Pg, Rk

OUTPUT Pa Pa Pa

APPL-CONDITIONS Am ∈ Ag fh ∈ Fg Rk ∈ Rg

PARAMETERS ∅ ∅ ∅
MEMORY Δ(P) Δ(P) Δ(P)

BODY See Table E.3 See Table E.4 See Table E.5

Table E.3 Pseudo-code for the method meth
(Pg,ωhattr(Am,Λm)

)

METHOD meth
(Pg,ωhattr(Am,Λm)

)

Let |Og | = N
Δ(P) = ∅
for n = 1, N do

Aa = Ag − {(on, A1(on), ..., Am(on), ..., AM (on))}
Δ(P) = Δ(P) ∪ {(on, Am(on))}
Aa = Aa ∪ {(on, A1(on), ..., Am−1(on), Am+1(on), ..., AM (on))}

end

Table E.4 Pseudo-code for the method meth
(Pg,ωhfun(fh)

)

METHOD meth
(Pg,ωhfun(fh)

)

Δ
(P)
F = {fh}

Oa = Og

Aa = Ag

if CD(fh) = Γ
(g)
O

then Fa = Fg − {FCOV(fh)}
forall fj(x1, ..., xtj ) | ∃xi = fh do

Define f (a)
j (x1, ..., xi−1, xi+1,...xtj )

Fa = Fa − FCOV(fj) ∪ FCOV(f (a)
j )

Δ
(P)
F = Δ

(P)
F ∪ {(fj, xi)}

end
Ra = Rg

Δ
(P)
R = ∅

forall Rk(x1, ..., xtk ) | ∃xi = fh do
Define R(a)

k (x1, ..., xi−1, xi+1,...xtk )

Ra = Ra − FCOV(Rk) ∪ FCOV(R(a)
k )

Δ
(P)
R = Δ

(P)
R ∪ {(Rk, xi)}

end
endif
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Table E.5 Pseudo-code for the method meth
(Pg,ωhrel(Rk)

)

METHOD meth
(Pg,ωhrel(Rk)

)

Oa = Og

Aa = Ag

Fa = Fg

Ra = Rg − {RCOV(Rk)}
Δ

(P)
R = RCOV(Rk)

Hiding a function is a simple operation, per se, but it may have indirect effects
on the set of functions and relations. In fact, if the co-domain of fh is the set of
objects, there may be in Γ

(g)
F or Γ

(g)
R some function or relation that has fh as one of

its arguments. Then, hiding fh, these arguments disappear and new abstract functions
or relations, with one less argument, are to be defined, increasing thus the degree of
abstraction. Hinding a relation has no side-effects.

E.4 Complete List of Operators

As a conclusion, we report here the complete list of the domain-independent operators
available so far.
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Appendix F
Abstraction Patterns

n this appendix two more abstraction patterns are described, for the sake
of illustration. The complete set, corresponding to the full set of operators listed in
Appendix E, can be found in the book’s companion Web site.

In Table F.1 the pattern referring to hiding an argument of a function or relation
is reported.

Table F.1 HIDING-ARGUMENT—Abstraction Pattern that hides an argument of a function or
relation

NAME HIDING-ARGUMENT

ALSO KNOWN Described by Plaisted [419] as “propositionalization”. As it
requires a structured representation, it is less popular than
hiding an element. In Machine Learning it may correspond
to the task of “propositionalization”.

GOAL In Problem Solving and Automated Reasoning it is meant to
speed up inference by providing a sketch of a proof without
variables.

TYPICAL
APPLICATIONS and
KNOWN USE

Very much used in databases, where it corresponds to the
projection operation in relational algebra.

IMPLEMENTATION
ISSUES

Problems with this operator may arise when the unique
argument of a univariate function has to be hidden. In this
case the function becomes a constant. A relation, whose
arguments are all hidden, becomes a Boolean variable with
an empty cover.

KNOWN USES Machine Learning, CSP, Problem Solving, Theorem Proving.
SIMILAR PATTERNS This pattern is related to the Equating Arguments Pattern, and

to Building a hierarchy of arguments.

L. Saitta and J.-D. Zucker, Abstraction in Artificial Intelligence and Complex Systems, 441
DOI: 10.1007/978-1-4614-7052-6, © Springer Science+Business Media New York 2013
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In Table F.2 we provide the template for aggregating objects.

Table F.2 AGGREGATION—Aggregation Pattern that forms new objects starting from existing
ones

NAME AGGREGATION

ALSO KNOWN In Machine Learning the aggregation operator is known as
“predicate invention”, “predicate construction”, or “term
construction”, whereas in Data Mining it is related to “motif
discovery”. In general, it is the basis of the “constructive
induction” approach to learning. In Planning, Problem
Solving, and Reinforcement Learning it includes “state
aggregation” and “spatial and/or temporal aggregation”.

GOAL It aims at working, in any field, with “high level” constructs in
the description of data and in theories, in order to reduce the
computational cost and increasing the meaningfulness of
the results.

TYPICAL
APPLICATIONS

Finding regions and objects in the visual input, representing
physical apparata at various levels of details by introducing
composite components.

IMPLEMENTATION
ISSUES

Implementing the grouping operator may require even complex
algorithms, and the cost of aggregation has to be weighted
against the advantages in the use of the abstract
representation.

KNOWN USES Even though not always under the name of abstraction,
aggregation and feature construction is very much used in
computer vision, description of physical systems, Machine
Learning, Data Mining, and Artificial Intelligence in
general.



Appendix G
Abstraction of Michalski’s “Train” Problem

n this appendix the detailed application of the introduce operators in
Michalski’s “train” problem are reported. The results of the method are described in
Chap. 9. In Table G.1 the method meth

(Pg,ωaggr({car, load},loadedcar)
)

is reported.
The parameters, which are listed in Table G.2, specify how objects are actually

aggregated and how attributes and relations change as a consequence.
Finally, Table G.3 describes the actual algorithm performing the aggregation

abstraction.

Table G.1 Method meth
(Pg,ωaggr({car, load},loadedcar)

)

NAME meth
(Pg,ωaggr({car, load},loadedcar)

)

INPUT Pg, {car, load},loadedcar,

g : Ocar ×On
load → Oloadedcar (n � 0)

g(y, x1, . . . , xn) = if [y ∈ Ocar] ∧ [x1, . . . , xn ∈ Oload]∧
[(xi, y) ∈ RCOV(RInside) (1 � i � n)]∧
[y, x1, . . . , xn] are labelled with the same example] then z

OUTPUT Pa, RPartof ⊆ (Oload ∪Ocar)×Oloadedcar

APPL-CONDITIONS ∃c ∈ Ocar

∃ (different) �1, . . . , �n ∈ Oload

c, �1, . . . , �n are labelled with the same example
(�i,c) ∈ RCOV(RInside) (1 � i � n)

PARAMETERS See Table G.2
MEMORY Δ(P), RCOV(RPartof )

BODY See Table G.3
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Table G.2 Parameters of the method meth
(Pg,ωaggr({car, load},loadedcar)

)

α(x, y)⇒ LCshape(a)(z) = Cshape(y)
LClength(a)(z) = Clength(y)
LCwall(a)(z) = Cwall(y)
LCwheels(a)(z) = Cwheels(y)

γ(x1, x2)⇒ RInside is NA

if ∃ y′ s.t. (y′, y) ∈ RCOV(RInfrontof ) then (y′, z) ∈ RCOV(R(a)
Infrontof )

if ∃ y′ s.t. [(y, y′) ∈ RCOV(RInfrontof ) then (z, y′) ∈ RCOV(R(a)
Infrontof )

Table G.3 Pseudo-code for the method meth
(Pg,ωaggr({car, load},loadedcar)

)

METHOD meth
(Pg,ωaggr({car, load},loadedcar)

)

Let Rpartof ⊆ (Oload ∪Ocar)×Oloadedcar be a new predicate
Let σ = {�1, ..., �n | �i ∈ Oload, (�i,c) ∈ RCOV(RInside) (1 � i � n)}
Oa = Og, Aa = Ag, Ra = Rg

Δ
(P)
O = Δ

(P)
A = Δ

(P)
R = ∅

RCOV(Rpartof ) = ∅
Build up d = g(c, �1, . . . , �n)

RCOV(Rpartof ) = RCOV(Rpartof ) ∪ {(c,d)}
for i = 1, n do

RCOV(Rpartof ) = RCOV(Rpartof ) ∪ {(�i,d)}
end
Oa = Oa − {c, �12, . . . , �n} ∪ {d}
Δ

(P)
O = {c, �2, . . . , �n}

Aa = Aa − {(c,car, Cshape(c), Clength(c), Cwall(c), Cwheels(c))}−
{(�i,load, Lshape(�i)|(1 � i � n)}
Aa = Aa ∪ {(d,loadedcar, Cshape(c), Clength(c), Cwall(c), Cwheels(c))},
Δ

(P)
A = Δ

(P)
A ∪ {(c,car, Cshape(c), Clength(c), Cwall(c), Cwheels(c))}∪

{(�i,load, Lshape(�i)|(1 � i � n)}
forall(y′,c) ∈ RCOV(RInfrontof ) do

RCOV(R(a)
Infrontof ) = RCOV(RInfrontof )− {(y′,c)} ∪ {(y′,d)}

Δ
(P)
R = Δ

(P)
R ∪ {(y′,c)}

end
forall(c, y′) ∈ RCOV(RInfrontof ) do

RCOV(R(a)
Infrontof ) = RCOV(RInfrontof )− {(c, y′)} ∪ {(d, y′)}

Δ
(P)
R = Δ

(P)
R ∪ {(c, y′)}

end
Δ(P) = Δ

(P)
O ∪Δ

(P)
A ∪Δ

(P)
R ∪ RCOV(Rpartof )



Appendix H
Color Figures

n this appendix, some of the figures appearing in the book are reported
with their original colors.

Fig. H.1 Vasilij Kandinsky, Composition VII, 1913. The Tretyakov Gallery, Moscow
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Fig. H.2 Nocturne in Black
and Gold by J. McNeill
Whistler (1875). It is con-
sidered as a first step toward
abstraction in painting

Fig. H.3 K. Malevich’s
Portrait of Ivan Klioune
(1911). The State Russian
Museum, St. Petersburg
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Fig. H.4 Upper (pink+ yellow regions) and lower (yellow region) approximations of a concept X
= Oval, defined as a region in the 2D plane

Fig. H.5 Incas used quipus to memorize numbers. A quipu is a cord with nodes that assume
position-dependent values. An example of the complexity a quipu may reach. (Reprinted with
permission from Museo Larco, Pueblo Libre, Lima, Peru.)
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(a) (b)

Fig. H.6 a Picture of a poppy field. If we only have this picture, it is impossible to say whether
it is concrete or abstract. b The same picture in black and white. By comparison, this last is less
informative than the colored one, because the information referring to the color has been removed;
then picture b is more abstract than picture a

Fig. H.7 A color picture has been transformed into a black and white one. If the color is added
again, there is no clue for performing this addition correctly, if it is not know how the color was
originally removed
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Fig. H.8 Abstraction and generalization can be combined in every possible way. In the left-bottom
corner there is picture of one of the authors, which is specific (only one instance) and concrete (all
the skin, hair, face, ... details are visible). In the right-bottom corner there is a version of the picture
which is specific (only one instance, as the person is still recognizable) and abstract (most details
of the appearance are hidden). In the top-left corner the chimpanzee–human last common ancestor
is represented with many physical details, making thus the picture still concrete; however many
monkeys and hominides satisfy the same description, so that this is an example of a concrete but
general concept. Finally, in the top-right corner there is a representation of a human head according
to Marr [353] (see Fig. 2.13); the head is abstract (very few details of the appearance) and general
(any person could be an instance)

Fig. H.9 A geometrical scenario with various geometrical elements
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Fig. H.10 Example of method meth(Pg,ωhattr ((Am,Λm)). The attribute Am = Color is hidden
from the left picture giving a gray-level picture (right). Each pixel shows a value of the light intensity,
but this last is no more distributed over the R,G,B channels

Fig. H.11 Example of application of the method meth[Pg,ωhattrval((Color,ΛColor),turqu-
oise)]. The value turquoise is hidden from the left picture; a less colorful picture is obtained
(right), where objects of color turquoise become transparent (UN)
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Fig. H.12 The Rubik’s cube can be described in terms of the 26 small component cubes, which give
rise to the description frame Γ . Each arrangement of the cubes generates a specific configuration
ψ; the configuration set, Ψ , is very large. A configuration is a complete description of the positions
of the small cubes, so that it is unique. If Rubik’s cube is observed only partially, for instance by
looking only at one face, the observation corresponds to many configurations, each one obtained
by completing the invisible faces of the cube in a different way; in this case we have a P-Set P ,
which is a set of configurations. The query Q can be represented by a particular configuration to be
reached starting from an initial one

Fig. H.13 Application of method meth
[Pg,ωaggr((figure,figure),tower)

]

. Objects a and
b are aggregated to obtain object c1, and objects c and d are aggregated to obtain object c2. The
color of c1 is blue, because b is larger than a, whereas the color of c2 is green. Both composite
objects are large. The new object c1 is at the left of c2
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Fig. H.14 Examples of four structured objects, used to learn the concept of an “arch”. Each
component has a shape (rectangle or triangle) and a color (blue, red, yellow, or green). They are
linked by two relations, namely Rontop and Radjacent

(a)

(c)(b)

Fig. H.15 a Part of a map at 1/25000 scale. b A 16-fold reduction of the map. c Cartographic
generalization of the map at the 1/100 000 scale. By comparing b and c the differences between
simply reducing and generalizing are clearly apparent
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Fig. H.16 Application of method meth(Pg,ωeqattrval
(

(Color,ΛColor), Vid , v(a)
)

to the figure
on the left. Let Vid = {olive-green, sea-green, lawn-green, light-green,
dark-green}. Objects o1,o2, and o3 have color dark-green, lawn-green, and
sea-green, respectively. After equating all shades of green to sea-green, the color of all
three considered objects becomes sea-green
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