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A trace formula for the nodal count sequence

Towards counting the shape of separable drums
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Abstract. The sequence of nodal count s considered for separable drums.
el s oace ol o s scqenee o ol m[urmalm
of the deun. This statemcnt i demontrated i et o the Laplac-Bels
operator

S it s T of two parts:
moth (Vey k) prt whic depends ool gomotia parametrs, and
o g par which the cassal perodic arbis o the torusandtheir

revealed.

1 Introduction

Mor than 200 years ag hen Bt Florens i Chlad found the sound e which

e bear bis e, b i o cut the atern . by the number oflns or

he mmber of domains defined by the fnes 1. We are happy o dedicatsa o of vork to

T Chlndu whose 2500 birthday v seebrate s veu which ollow .
ork inspired research in physics and in mathematics

siderably acvasced the haowlole on reoonance s wave phcacn

anew concept in the res

ly connected domains where the sign of the wave function does not change:
We consider drums (or jards) as the cigenprobl

—An(x) = B¥(x) )
of the

e ondered Ey < By The cgenfuction 4, cores
characteried by the mumber v of its nodal domains. Th
Spectre, wave couations, and nodal scs s vell ko aud requenly ssed o
various branches of physics a

| mathematics (sce (2] fo a et review). The reation hetwoon
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the nodal count e hespectrum s ighlighied by Stuesaciltion theor it states

exactly n I higher dimensions

Connt peoved st oo of ol donnmx 2 e e mentineion csmt el
{3 More recealy. statstcal propertics of the nodal count. have been nvestig

shown that the fluctuations in the nodal count sequen (o diopley um\'clsal fentors

tatistical

T and the Seheomen

connections

ith percolation theory

approach also lead to surprisi
Loewner evolution [5, 7).
Nouvercl and slyticalevkencelowd o he bl that the equencs ofwodel coute ko
lard contaia » Iot of brmatlon sbot the dy o the goomot beyond the
ce between integrable an "Thi lend o the question [, “Can one cou
the abape of & dru " This s o rc eoemmiion of sh. o gction b e 0] Con. o
hets e shape of & v Moce ey, e gueston b dosste et of sl o
he gcometry of & drum (compact Riemmannian surface)? The independence of
coutin ques

n from Kac' q\lnlwn 1 been ahown in that nodal comting can
distinguish betw isapetral ayseme (8 1], For sepotabe syt raco formula fo
the nodal (mmlu\g sotuence has b ctablishid that cxpicity shows the dependence

o the gomety of the surac i b thesmooth (Weyl L) and the i

s, the nodal coust trace formla i sl n strucue o the comeponding

eace vt [ 15]. The sequence of nodal counts doce not involve any speetray
i {apeat froms thearder)yet he nodal connt trsce I‘urmuln  conains al nformation
onp Thus it i towards ‘connting”

e Shape of such surface

In his paper e i o more detiled account of the ol cout. traco formulue for conves
smoaoth surfaces of revolution and for simple tyo-dimensional tori. Generalizations to other
Ricmanaion manifolds m tvo of more dimensions ate possible, rovided the wave squation i
separable.

2 The cumulative nodal count
I the et o the Lapsc-Belk et o copacs Rlemaanin mamd e id of
acics we may order the. that E, < E,

ordered seque il b eenpen i dcion Lot (K] denote the
eger smalle than K € R, then we defin the cumulative nodal count

degene
v, then form

largest

®
W)=Y m  for K>0 ®

To generalize this definition to degenerate spectra one has to uniquely choose a basis o
v fncions i the deeoercysgerapace ud o decide o the e i which e apper
in the nodal cor . There to do this. For
separable sy:tems i et o o L papes e peemc 1 hocm e e (real)
tbe vave functonssppent I product form. Thi sl does pot e t0 st 3

que ordes with Chosin can
 modifing the deinition of he comulative nodal countin the followi way. Fes e the
ey

EE)

3 un6(E - B ®

which i independent of the order of the nodal counts. Here, ©(z) is Heaviside's step function.

“This comes at. the price that now the function is based on information obtained from both the
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o the latte, ws use the -sraoothed spectral counting fuaction
NAE)= Y 0B~ E). @
where ©,(x) is a continuous, symmetric and monotonically increasing function with
me((r) -6

for finite €, N, (E) monotonically increasing func-
i Which o e e, ek 1) o e s of AL (B = - T we ehe s
modified cumulative nodal count by

() = lig é(EL(K)) ®

podegncrats systems sl to the il defntion (2) 1 1 o il
shift () = C (K + 3). In the it ¢ — 0 the contribution of a g-times degenerate cigenvalue

n + 3) Kl vasar at
the central index K by the st of
the modal counts within the deeneracy class We will derive  race formuln or his modiied
cumnlative nodal count (omiting ‘modified i the sequel)

= By = o =

3 A trace formulae for the cumulative nodal count

i i V)
Gy s s (o e el s syt o ey v L ol
I gt succes. n the case of separable s, we will show that the same mcthods tha
wre used for spectral f\mcuous can Ivr apphcxl to !|vecml nodal munhng function &E) nlnd\
vl et trace forme o (K
ngredients ofthe derivation of specral trace ormula fo spectral functions aee
he Posson sommation ormula (fo it )

1'21(,»7 5 / S dn L (1 (0) + )]

:NZ /M F)EmN dn — ;l/(nn)»v»/(u.)j (©)
and saddle point approximations to the resulting integrals

3.1 Simple tori

et s start with thesmplr caseof . - s seprsentd s ectangle with sde et
and b and periodic boundacy cond (0.4) = ¥(a,y) and ¥(r,0) = w(z,b). This leads

=)= o

for m,n € Z (cosines apply for m,n > 0 and sines for negative m, ). The corresponding
eigenvalues take the values

n(z.)

®)

Bun = [+
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to the checkerboard like structure of the nodal set, it is straight forward to count the
b give

nodal domains in the waveunction 15, which
Vi = (2n] + 60,0)(2im] + 8n.0) )
The only free parameter of the nodal count sequence for tori is the aspect ratio 7 = a/b

because the mumber of nodal domains is ivarian o resaling of the lengt)
pplying mation formula (6) to the spectral counting function

S 6E-Eum) (10)

555 / 1/ dms(ls—qz..)?[7+

P

)iy

all appearing integrals can be performed exactly. Here we are only interested adin
o oot o e ot o A oiTaory ekl i
ives

+o(Et) a2)

N(E):AE+‘/—AE%ZM
=4

Th el oot AE a obtaloed trom the tom N 0in (11) and A = ab/(4r)
is proportional to the area of ss. The sum in 12 runs over £ = (N, M) € Z2\(0,0) (in
e ety s v i mclude (0.0 mls stated otherwise). Those s sz
oclltory uncionsof . 1 5 (D)7 is the length of a periodic geodesic
(periodic orbit) with winding .,m.,\,.m--u. a).

Onc e v () ol He o naltic espresion fr the intgral would be
ot of seach, bt highes ordes corseetions to the leading remu con b Sbaincd systematically.
The leading asymptotic contributions are given by

sx+:;“_‘<_z_ﬂm(L,f—:)+o(m. (a3)

T

HE

‘We now have the leading asymptotic expressions for both #(E) and A'(E). The next step
ol e o et N (E) = K i the dependence of () onthe spectum. Hovever,
th leding orders f o rae formuln (12) fr thespctral counting unctons do nof define
 manifely monotonialyincreasing function, Sl e may think of the cxat s

o sl The eing rder of s i o oty b btsied o
the trace forumin (12)

L"

K_ 42l ol f N

By =5 - 2y E D (e +O(K) 1)

Here, [, +/VA is the re-scaled (dimensionless) length of a periodic orbit. The above step
defnitely oeds & more detaled Justificat we can only refe to the numercal ests

that we will give below
We may now replace £ by E(K) in (1) to oty
nodal count ¢(K) = &(E(K)). The latter can be writt

the leading orders of the cumulative

() = T(K) + conK) as)
with  smooth part

T(K) = K7+ O(K) (1)
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and an oscillatory part

D+o) an

() = K3 S apsinVE

r

where we introduced the amplitudes

()

Note, that the smooth part i independent of the geometry of the torus. However, the oscillating
part depends explictly on the aspect ratio 7 = a/b and can distinguish between different
seometrics.

When tring o ellte ighe ardr cottctons to th ladin tema i the oot s
sl o i s s o e e it T st 3
et lenin orde products ofsun ove peioic orbis appens and i s m longessraigh
Torward to disccrn the stmooth from the onclatory par

3.2 Surfaces of revolution

o elcomsics e il i e s e ot G
() for -1, 1] about the -us, Wo st ur attntion to smaoth (snalytie)
ot Lo sfacs. T more e fullunmg assump
© Toe et () = m:) i m-,.mk in 1 = (=11, and anihes ot
i o i o TH oqrment araokcs ot the e
ot v i b et whese 4 b e o e s of s, T Pt
M has no boundary.
) The second derivative of (x) is strictly negative, 50 that f(z) has a single maximum at
reached the velue fme: T repirement Garanios couvesiy of M.
Surfaces which satisfy th ients above are convex, mild
revoloon. Below we will dd a furthe tec rement that will exclude the sphere
among other surfaces - generic mild deformations of ellipsoids will not be affected.
et o the e v from e Eocl ) s given by

45 = (14 @) dit 4 S, (19)

e, whe

of ellipsoids of

where the primme denotes differentiation with respect to 7, and @ is the azimithal angle.

32.1 The wave equation on  surface of revolution

s a drum we have to discuss the solutions of the wave

Considering a surface of revoluti
equation

~Bai(z.0) = Ev(z,0) 0)
where the Lapl (19) for
is given by

L _0/z58, 1 &
T 0 o() 02 TR 00 e
where o(z) = y/T+ J'(x) )

Soutons 9(z.0) o (20) can b foud for  disrotespectoum ofcigemalues o
ontly et 3 periode b8 o nom St on 1 S aton (0
separable and the solutions can be.

itten o0 product

¥(z.6) = mb) Gu(2) (22)
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here m € 2 o cnsure 2r-periodicty i . In theseperation asats (22)we choose 10 e the
cosine for m > 0 and the sine for m
Fon . e, (31 o e o th anlinry difcentio equation

L df@a, oo
ot d aley ar

36m() = Eém(z) (29

7@y

the eigenvalues Eyp and i
Ep - Sturmys oscillation theorem th

ofnetions
uplics

i s of the St
Gnn@), W 0,
o

he nodal pattcrn ofthe wave v, (z,0) = () (m) i that of a checkerboard typical
to separable systems and contins

owill type Let v denote the
1.2,... and By <
n nodes.

Ynam = (04 )2l + 60) [eN)
sodal dommas.
322 The semiclasical approach to the spectrum

o roseed furthe wo olso e to kion the sigenvalus En Bty > L the ltter cn be
e by the semiclassical eigenvalues using the Bobr-Sominerfeld approximation (13)

B, H(n+,‘ n)ﬁ.rn m)  neN, mezZ (25)

where H(n,m) is the classical f the acti bles, and )
is omogeneousof oxe 0. Neglctng h(n,m) in me soquel, amouns to introdcing an ciro
which is bounded by s indicated by the action variables m and n
in (25) coincide ansatz above. Note, that in

heges m . used 1 the sepat

egrabilty leads » .
However classical integrability does not imply quantum separability. In our approach we use
the propety of quantum, separable drums tha the odal sts v » chekerboard sructore
‘i gl ot the e o uodl &
action variables n m (basically a pmlurr)
integrabi
separable.

e csscal Humitonian H(nm) e bo obtained o thecbseraton that the clascal
trajectories are the on the surface. The lntter can be derived from the Euler-Lagrany
Varttional principle with the Logeangian

ot spproneh o e gonbeised i o s for which e o eqotion

HE e )

e (e ftor 14 front ofthe sared vty i
o i, The oo et s

I conserved and vm:lulluscnulhcﬁnt action variable m = 2 [ pudd
Th momentum conpugate t0

where a dot above denotes time deriva
consistent. with ot choice of encrgy

1 ' (2)?]
=L+ re

(1)
and the conserved Kinetic energy is obtained by a Legendre transformation

E= Hpez.m) = pai + pii— L )
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We may mow ntroduce the action varable 7,
, =
(i) = o f o) o= L [ e (9)

VIEFGP - wl L+ PP/ (=) (30)

points where E/(z)1 = 0 with 2 € e <

xist only if E > (m/ fuuax)?- The classical Hami

the action-angle represontation is btained by ivertig (20) o cxpress the encrgy in tcrms of
‘The classical Hamiltonian H (n,m) is a homogenous function of order 2

H(n, Am) = XH(n,m). (31)

o the discnusion of the chusicl dynaticssnd the sructre ofphse spece [  thereore
1. Any oth

Sufficient to Any other energy can be obtained from simple rescaling
{and trajctories remain the same upto a rescaing of the time). All dynamic content i thie
stored in the function

nm) = n(E = 1,m) @)

hichdes v I the (1) laneand s one o e i i bocks of the sni-
ical theory which will be used throughout this work. We shall st thercfore its relevant.

o

() is defined on the interval —fie < m

ey ) ) o o the defiion (25).

n the interval 0 < m < fyas the unction n(m) is monotonically decreasing from its

il v o 1(0) tonlm = o

e function n(m) s ot sl

o g Do) ree 1o e the et

“They are eated

tegral T instead of the angular

I L 33)
= )
Let us now tur to perodic motion on the surface of revoluton. Periodic goodescs spear if

the gl velociics

o, L OH(mn)  9H(m.n) 9
" on " om’
have o rational atio. Since 242 = — = thi s cquivalent to the condicion
)

for M, N # 0. The integers r = (M, N) € Z\(0,0) are the
directions.
The classical motion is considerably simplified if the twist condition [15]

ding mumbers i the 0 and =

for 0<m< fum (36)

is obeyed. This excludes, for example, the sphere but includes all mild deformations of an
ellipsoid of revolution, We will assume the twist condition for the rest of this work. It guarantees
that there is a unique s to (35) which we will call m,

e, that 1/ (om) i a finte range that we wil denote by 2. A solution to (35) only cxists
if ~M/N € £. Periodic motion with wi O 50 or with M A 0N
are not described by solutions of (35). The first cast describes a pure rotation

the
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O-divection at constant = where mo < a1 = s and the sccond case M = 0 is
periodic motion through the two poles at fixed angle 0 mod = such that myy o

The lengtl of a periodic geodesic can be obtained by observing that £ = v2/4 is a constant
of motion the metic length L = § vt/ of  periodic geodesi is iven by

=2 | Nn(my) + Mm| 37)
Returning to the spectrim, we note that the lading terms i the trace formula fo the spectral
counting function N(E) O(E — Eym) can be obtained by using (25) and Poisson's
summation formula (15,

N(E)= AE + E* Y N(E) 38)

where
n(m) dm = ||M|/47 (39)

and || M| is the area of the surface. The oscl\l-!mg parts contain integrals

S
N ey nm—
N [ T )

W will calclate these to leading order
‘The stationary phase coudition turts ot 1o be identical to equati ribes
e morion, Ao coeqncs the Saionry et the s e
of ofabtng £ e b et i e cluscally eecsible domin ~M/N € 0. For

SM/Ng R T doe nok v  stationary poin o eontrbates anls 1 highe cvders
0 1/VE Eveeanly o o, n sniomrs i appresimaton 15

ng the satonacy phase spprasmation
(3 D

Ne(B) = ()Y +o(EY) “n

2Nl

where n = n'(m
tions of the terms with cither N =
and will not be considered here.

() whic s the s fo sl e of . The
o0 it VN § 0 v of bher nder i /55

3.2:3 The cumulative nodal count

We have now all ingredients to derive an asymptotic trace formula for the cumulative nodal
count

oK) = &(B(K))

Z Z Vi © (B(K) = Eyn,n) (42)

Tnverting the asympiotic trace formula (38) fo the spectral counting function A(E) = K

one dbiains
B =X (%)’Z”"’wrm )

o leading order in 1/K.
Tonction ,45, can b obtaned s an asymptotc teace formul by the same approsch
thatwo wsed o nE = E(K)- K/A

suchs that

oK) = €K/ A) + & (K| AJSE + O(E'E?) (49)
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i we neglect all orders smaller than O(K). In almost complete analogy to the
{rsce ormln (1) for smpl tor 1isenn e expreascd 2 .

() = FK) + cou(K) (9)
of a smooth part 7(K) and an oscllatory past, co (). Defining

o dm dn |t a6

Alsmmar = (&

as the action
expressed as.

oments (averaged over the arca under the curve I) the smooth part can he

(k) M[fu '—",:d +0(K) “n

fonal term o K%/2 which
in tori (9) and surfaces of

‘hich, compased t the trsceformule of the tars (15), e
back to the different way of counting nodal domains

e tra
ootion (3 kvt th enclnson o o e v

« =Kt apsin =
el ) = KE 3 arsin (1 + 5 + O(K) (48)
~Fen
with the ampli
ar = (-1 enlme) = 20 w
and rescaled length
(50)
iodic geodesic r with —4f € Q. Note, that for m, = 0 or m, = & fue nnly one half of
the uauonmy phase m(enal contnhulzs and the mnplxmde ay has to d by 1/2.

pal mumbers, then the amplitdes o o o
€ 0 also have t altiplied by 1/2.

¢ w,,..,.» e rlation betwesn the

ry So far, similar relations has
e T apecral omeions. Vet the comuiaive nodsl comt doc ot contin aw specur
informtion par fom the odesing inerited trom th spctrum and sill h acilltory part
an b writien as o sum ver all diferent periodic godes

For cllipsoids defined by the rotation of the

f@) = RVI= 2 (51)

ius finas = R at. the equator the curve n(m) can be expressed explicitly in
orals.

with maimal

4 Application of the trace formula and comparison to numerical results

We have tested the approsimations in the above calcul
systems for wehich we buill p  Inege data base which will be denoted a3 data sets (a) o ().
e chose two different clipoids of revolution with R = 2 (fo data st () and /= 1/2 (for
data so (b)), These parameters provide us with data it (2 22)and ke
(R = 1/2) ellipsoid. We also considered two different tori with 72 = 2 (for data set (c)) and
V3 (for data set (d)). For rational 3 the spectrum contains growing musber theoreti
Gogemeracies which are abecat in the rrtionl case. Our parameters cover both cas

‘umerically on four different
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1094
1059
RK)  Jur
1009 oot
104
B el A e e e
10 10° 10°

K
Fig . Tho ntgriad o R(K) (lontl ot plt e po s bosn it o boter
visibiliy) fo the two cllipsoids (data set. (x) w 2 and data set (b) with 7= 1/2), and the two
oo (5 i T e S e i 73 2 o o b e .

=t olipichs ke Sk - gpnlun: s gsetimcicns borw oy xS
which we constructed the sequence of nodal counts, For the tor obtaining the spectrum and the
componding gefun ions s staight orward - i ot mamerics e el the owest 4

Tn i the uctting part the smerialy comprted e(K) were it to ot e
Mot surpisingly, the mumercally btained oo leadin

Lin
mm,.mm, ) ftted
inthesmooth parts of the Corraponing trace formuiae
The more citial tests, which e ill present hre,ivolve the fuctutions deeibed by the
asciltors pst of th race  formuac. The lter s b obvaind el by subrating
e bes polymomin it o ).
= e f o the catory pac f the trce e v us b the pportany 1o
iscuss some aspects of the fuctuations of the cumulative nodal count sequence.

4.1 The integrated variance

he sinplst inesuteof the Muctintion s th vainnc gven by thesauared aclletory part
averaged over some interval - or its integral

w0~ [ ™ A ol 2

Substituting the trace form
tribution can be expected from the diagonal pairs. Neglecting all non-diagonal

K ol =

I this expression consists of a double sum over periodic geodesics.

2

RK
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tive el counts 4 forth oo i (ot

= 1/2), and the two tori (data set (c) with *

o rom th s ot 47 (o th el
‘mmerical data,

g, . Alties s A S0
4 (b) with R

e i B T
and (17) (fo the tor). Points represent th

i scnles s 7. Tissnlng b boen tesod e th roslace v i, 1. Clay
the expeted pomsy o b encid for el g ms of 8 index. K. The
prefcton 5 oo th dingons e expecte to it the numeriel dat.
e sonegionss v wil s ot et comidertiy

4.2 The length spectrum

T gt s . g o e of e e, A e cbvrtc st

provided o ompaing o ength spsstrun which s duin roghly 9 e Foure st

feplarrhibso i o v el o e P oo

iy o i e it vl o i
i racics all namercal nodal comt sences e Foe — o Gon

B3 appeapeie wey e wi Lt T ot vl whih o o sl i

e als mdliply with x5/ ouch that the snpliude of & peridic geodese s ndope

 Grsinn

on f

at of .
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10|
resm
00|
msa
- 100

T

pr for the kv spcta of the cun

3. Real and imagina sive nodal count (34) for the

forus it itionnl = V2 inta et (0) wear the [N = 2 || = 3 peak. (ith el enth

Iy = 12.415). The black ful lne is bisined om the rce B

i TN 2o 155, The e dmhd
tl, There s a phase <hift of /2 between the r

both in a single graph.

et mmericaly
o iy pres o e ke b piting
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Altogether we define the length spectrum by

S0 z’r?/x i K 2eque(K = K)o SN, (54)

‘The final multiplication with 1
a large range of lengths L.
I for the cumulative

s ot necessary but improves visibilty of peaks in a plot over

todal count predicts pronounced peaks at the scaled
periodic godesis. For the ol valu of the lengthspectrum these
¥ nicely in Fig. 2 which shows a remarkable agreem cal
the theoretical predicions
Nob il theshcloe slon o the gt spocte e sl b7 e o fl bk b
ts ph where the real and imaginary parts of the length spectrum
£ st (0) are. plotted near the peak correponding to periodic
h winding numbers (||, |M])
is excellent agreement

it of t 1 data with

‘provides further support for the validity of the approximations
which wore used in che derivtion of the (o verstan of (he nodal connte trace T
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