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Nodal sets in mathematical physics
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st i dnl
mmrw iuncions since che daysof Chldi We reent the matrisl n o orm
opelully suited to.4 monspecnlized but mathematially educsted andienc

1 Introduction

When Benst Plorens Priedrich Chladai pblshed the disovesy of bisfunos Klangfuwen in
by - or Naturforscher as
m« \lembly it

1787, e aroused n ot of only nmong bis el
y addressed themselves also nnong the pul
ok oF Fule T Nsherssient Phasis o ;-N come
sew phenomnon posed » ret chuleng tots Frotagonit.
70 years until a 18 model was formulated by Kir
Cempte by Sophie Gernin P
until 1053,
‘The analysis of the Klangfiguren then requires us to find the characteristic vibrations of
plate and to determine their nodes i ot o sling a1
lgemlue probem for the Bilaplacia su to find th s sets ofthe cgeafunction. T
it complicated problems which allows i expliit sclution only for the circular pite (1]
s 505 hncone, st il hasis b pterec to s che conceproai sumogous
Imz echnically simple problem of the vibraing membrane on wiich wo vil o in this
ceniratc on reaults obtained by —clasical methods of Mathematical Physice
ence will oxelude stochatic pproches from consideration which e well presented in other
articles of this collection.

Kirchhotf i spite of
ion. & reabie Lot o s praictions e 1wt ven

2 Vibrating membranes

A compact Riemay
called & membran

ian miild (M, ) of dimenson m possbly wich bounday, OM, vill be
what foll . the menbran s called close. Wo wil e
derabl

o v thonsh

many cases.
“The vibrations we consider are described by the cigenfo
operatos which we atroduce 8 an operator 1 Z3(M, ) whk

fons of the Laplace-Beltrami
s defined for 7 € C*(M) b

ey
= Zﬂx( o ) W
e & 1) denot he ndued metrc

tric operator (note that A becomes

‘) (g)d
on 704, and 8 = deb(g)1. T order to oblain
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usgsive i ou defion) we have to mpose boundary conditons if OM 0 agin, for
simplicity (and frequency of oceurence) we restrict attention to the Dirichlet and the Neusnann
boundary conitons which e o ks ortnal deivative ot the boundary o vanish. The
omainof & ill b genericlly denote by .

of the subscqent s the following special nstance of the Spectral =
e Wi e ot o N5 O ot owd i st evetly, v . oo
generality, by Hilbert 1904.

Theorem 1 There is a sequence (A, ), called the spectral resolution of A, of solutions of
the cigenvalue cquation

Ao=)o, oD, ©
with the following propertics.
(1) The sequence (An)nex increases towards infinit
2) The sequence (ompmen. Jorms on orthonormal bais for L2(Ms).
In particular, & is o self-adjoint operutor with domain D in LA(M,).

We call the finite dimensional vector space
B) = (0 € D2 A0 = o)
the cigenspace with cigenvalue A A is called simple if ts multiplicity
Hhn) = dim E(,)

s equal to one, and otherwise degenerate.
fow we can introduce the nodes or the nodal set of o, as

Niow) = (0a) "' (0) @)

it we talk about the nodal lincs. There is no ambiguity about nodes if A, is simple
bt lhc he dgenerato casey th nodl et may vnry greaty s the unit spicre of E(). Sinco
choices for an orthonormal basis, it is unclear how significant the
kmwledge ¥ (o) for s e et of s co
of f Teors 1 rests on the calulu of e
integral. T paticln
the cigenval

t the Di
. one obtains the following very useful non-recursive characterizai
it e to Coant (5. 551

Theorem 2 Denote by V¥ the sct of k-dimensional subspaces of L(M, g). Then for all ,

L IVol*

P . ’
VB oo fo o &

O of he dmstages in dslog with mobraces o the

existence of large families for which the
ough the sense that
o consist of manifolds with integrable guul(xm flow, they do provide interesting e

to i an intaition an 0 test conjcturs, We rstric 1o the case of cosed
ety discuss the case i 1, the spheree, P iritit vt

e e el o d e e
one-parameter family given by the circles of fixed radius R. For & = ed to find the
S peciodie soutioos of the oquation

(1) + Ma(t) =0,
and get, for all n € N,

£y

(=1 B(An) = {acos(y/Ant) + Bsin(VAut) : o, € C).
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he ol st V(o) i iven by 1 cdisant it o 8% and the st 31\ M) s
exactly n connected components. I what folows, we will call the connected componcats of
ST\ N(3,) the nodal domains of 2, and we deine the muisber NG(s,), the nodal count of
35 the number of nodal domains of 7,

Example 2: Spheres
We cquip the sphere

S™i={z € R™:Js| = 1)  R™
with the metric induced from the Euclidean metric on 771, Next we introduce the space of
homogencous polynomials in m + 1 variables, P* = P¥(Ry.1), and the subspace of harmonic

polynonials,
HE=HR) = o € P2 A0 =0).

he Bk xith &=t Lplooe Bz apemoran . is provided by rhogooal ey

since in polar coordinates, = = for o € P*

Ape »w(vw “2(Agm — k(k+m = D)o(e). ©)
As an easy consequence we find that
HYS™ C Esn(k(k +m—1)),
and that the image of the map rAgess : P2 = P contains the spaces
-

12Dy,

20 and k=20~ 1, respectively. But then it follows inductively that
P = gD, ©
P gl P

is actually orthogonal if we cquip P¥ with the scalar

The direet sum in this decomposit
product

[ er(a(olieals- o)

(01,02

In summary, we find that the spectral resolution of A5 s provided by the data.
Ay=nlntm=1), E(h) = H,S™

Moreover,
wom = (") = ("R ERRTN )

We also see that the cigenfunctions of As.. with cigenvalue A, are polynomials of degree
1~ v/ Their nodal sets, however, are not at all easy to analyze.

-1 4 Ofam-

Example 3: Flat Tori

Ak tora, 7 = T, I the quotient of 7 by s neon ' where ot the st of
jnations of a fixed basis, ()7L, of R™

e Fuhiean poraleep i

N integer
. The torus i then metrically obtained from
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by ppropristely the faces;

ing particular, volFr = voIT.
We introduce the dual lattice, I, b

weﬁw-.mzm.,.,m:{im‘,ez}

where (+7)% denotes the dual basis to (v)72,. (v/.%) = &
o3 (x) = exp(£2ri(y", 7)) (8)
satisfy the eigenvalue equation
Apeot =77y, ®

and a well known completencss argument shows that all cigenvalues of A are given by (8),

% | Fr The growth of s related to a volume

we denote the diameter of Fr- by Rr- and by Bjf(0) the ball of radius
we have

estimate as follows:
Raround 0 in R™.,

vol BR(0) € Nr(45*R%) volFr- < vol B, 5,..(0),

i we wite

Ne(t) = Y uld).
b

Since volFp-volFr =

it follows that

Vol BY'(0)

Nr() = el T + (). (10)

Agin, che ol ses of eneric gentuncions sees hopelessly complcated, o0 o conosience
of the'bigh multiplicity of the cigenvalucs. However, if we restrict attention to the linear com-
e o basic igeufunctions 0., the situation sty nmphﬁ(-: “Their nodal sets in
R™ are o union of bypersurfaces, .. for (0%2°")(z) := sin 2x(y", z) we obtain

(952")7(0) U(zeR"‘ "z =k/2)

and it is easy to see that these are inequivalent mod I precisely for k = 1,....v("), if we put
v(y") = min{(y%,9) > 0:y € I}, an

We note that in terms of the basis representation of ",

T =Yk

) ol thesrntest common i of the intgers b, As n consequence, we sec
that the eigenfunction of T induced by %" has exactly 20(") nodal domains. In this case
we can even compute the volume of the nodal sct since the geomety s so simple: we find with

L(5) 1= vol N(o) (12)

the relation

Loy = valT(2hy"]) = AL /3G,
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3 Eigenvalue estimates

Tho cramples sbov e vy specal e we cnplsisd o, Therere, one
gen ¢ phenomenn olerve there to more geeral mebranes e compactsurfaces wilh
Regative curvature for which the goodesic flow is knows to be ergodic In s secion, we
discus some reis which ae sl o all mebranes i order o s o iy where onr
i 2otor o 0 S stk T B o8 arsiogy s mporisnt govae
el s e to Hormander 16 for compart membranes ad to e 18] fo membranes with
boundary, after a lons history beginning with Hern 1[30] in 1911, It concerns the
il asymptoies s cxemplificd n (10) and reads as oliows.
Theorem 3 For any compact membranc (M, ), we have the asymptotic relation

5 SABLO) s -2
Nt () = 2By o 13

0 2."( ) = S ! a3

We have seen hat the sphee provides an example of & membrane where this cstimate cannot
be improved, but it 15 ok koove what the best possibl esaiader term Jooks e i ot

cases, like membranes with ergodic geodesic flow
The smympitic rlstion (33 eads to a rlaion between the eigeavalue and fts mumber,

N\i";ﬂ, 031z o7,
wamlrd cxunuwx a result mlucmnml b) Pal)a mxd proved in its probably most effective

VoM > Cagg Ay ™2 (1)
‘The relation (13) does not tell us anything about the cigenfunctions, Hormander's proo,
however, does since it i based on the so called spectral function of A which is defined as

calp.ait) = 3 oalp)7aa) (3)

1 ft, Hormander proves that this function satisfes the estimate (10), too, if bras
ot et by K e comllaied s the apcin hodiot neesly
e e the bl this universal etimate i sharp, with the splere. provid
Stsi. 5 ootk smssmearie, mava iy the cstimateof  impls ¢ T some
mprovement for Na. For cised membeance, we ensl ddce the poiwise ety

sup lon(p)| < CudI" ol 121g) (16)

“This estimate can certainly be improved considerably for specifc classes of membranes but the
e extent of tis mprovement s asgly koo, For o horough roiew of this
cvetin,seo

oon o 0 th ol e, I o t b sald that our Knovlodgs
|, because cigenfunctions are much less aceessible in general than
dimensions, the nodal lines are locally isometric to the nodal lines of harmonic polynomials, a
fnct apparently rst proved by Becs (1. In hghes dmensions, o omparahls reslt are kncwo;
bt v do know tha. the (m — 1jdimensonal Hausdorl mensur of N(en) and the (m — 2
dimensional Hausdorff measure of i e, are both

more restricted,
walues. In two

fite s mor eined formation cf. 10, Sc. 3

T writona characteriton of the cgevalues n Theoen 2 allows some vy st
conclusions ourant (1, O G). In ve denote by B (p) the
ball azonnd p of radius ¢ in an arbitrary (vbich 1 bee the Recanasion maatold
M.g).
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Theorem 4 (1) The union of all nodal scts is dense in M. More preciscly, for some constant
Cor and allp & M and n & N,
NEwNBY, 5. () £0. an

0w has at most n nodal domains i.c

(2) Foraitne )
NC(o) <n.

Wonotsthat part 2o he Thesrm basbeen st nproved o St membranes by Pl
(28, Wo bavs sen iy Esaile 1, that NGlon) = 1, but in Example 3 we found
that we may have NC(o, Safitely moy i M o Bat torasof Gapeasion, gresier
e th st s e ot by Loy for the Ssphese 17 At any ot e
o exist an casy correlation bets h cem
quv):mm.m;, it ity bt alo st prsibly inersin oation of the nodal
a fixed cigenvalue when the manifold is imay ncode fner eometric
intormation we will etarn 0 this s i th lat scton of this v

4 The geometry of nodal sets

Since the nodl count does not corrlate wih the igemvalucs we may return to our exampls for
Sinos the th

e e ot e modad e ) ok s ot s e e e mersions]
ase by Brining and Gromes ({3 4]

m 5 Let (M, ) be s smooth closed membrane in dimension two. Then there i  con-
ot G e ot

Liew) = G5 VA, 8)
this estimate extends to memby
3 that . can be formted with
ppe cstimates of the same type, that i,

ith boundary and suitable

4 to see that w
el smomibneee In our

It is ot hare
boundary alue problems,
examples, we can establish with some work also

Llow) < OV, (19)

b, 50 fy i such estimate ol be establishd wnde she s nrel smocihoes oo
tedy wma ot et b st o Hber domcoone. Thee o i
how o dilfren fanctions of the egenvalus amang which e metion here only
e Ellowing vl i the sutace <o, . s Donmelly o Fecrm 10

Theorem 6 If M is closed and di

2, then

L(oa) < CurY

f, however, the assumption of suffcient differentiabil
both the membrane and its metric be real-analytic, th
was shown by Donnelly and Fefferman [11],

i replaced by the requirement that
1 the best possible estimate holds, as

Theorem 7 If M is a real-analytic closed membrane with real-analytic metric g, then there is
a constant Cyy such that for all n € N

Cif VAn < Lon) < CaVAn.

T oty o o b Lo oxt. ompln - syt s by ot xtenion,
notably tforward upper cstimate for the volume of the nodal st of 2 com
Pl poynomial the hardes work consists in making explicit the analogy betvecn 0
polynomiol in m complex variables of degree v suggested by cxamplo 2 above. The sakd
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iequality rests on an integral geometric formula which asserts for a polynomial @ in C™ and
N(0) 1 B1(0) the identity

) /muwnm

whore £ denos the cardnlty o st £ i the (compac) space o s i € and 77
denotes (1 — 1)-di Housdorl e,

"Ths the upper esimate - which seems 50 lusive in the smooth case - i quite plausible
e iy osumpions. The lomer bownd, howerer,is sey dificul t obtain, even mder
these stronger assumptions.

T

done would

like to proceed and to analyze the curvature. This seems to b diffc lready
o flat orus we can e that the curtare s ot ¥ bounded in eigeaspoces of high iy
Consequently, almost nothing is know direction; the following curious result in two
o v Bt ) o e ort i,

Theorem 8 Assume that a membrune M C R admits a sequence of eigenfunctions (o)
‘with the property that all nodel Hacs havs consiont curvatare. Then M 1o contafues 1 e
Jollowing lst:
(1) sectors of circles,
(2) sectors of annuli,
(y; membrunes that arise rom o trianle wilh angles (/2
itely many reflections in a side.

4.%/4) or (/27/3,7/6) by

Ancter sl quston vould b o sk o e tpologcl gt of sl . b o
5 we can s, sih results exist again . A e wel deeloped s
direction was nitisied by Payne i 21) ulm e ether the second cigenfimction of
lage membrace can be closed, snd geve n nsgative snever in the cae dh at the membrane
i in diion symmetic withrspet to e coondimte axen, The queation was setled i the
after several intern ps, by Melas 1992 [u] o e mranes il

¥ comnecia case was pro
sion, arss from the fct that me il of the gl

of M In two igher dimension. We
plicity

Anot
e o by e iy
s s o e A w
of egemvaluey o, (19] o diocuesion of work o this problem.

5 Isospectrality and the nodal count

I 1960, sk oo (8] posdthe o s quetion e aue b the shp of i
His for: ve idea that. the fundamental freq a drum, or
oy ot vibtating sysem: hould chsacieize i up to isometries, . from “bearing® the
system we In spite of its 1, the point that Kac made

= I 0 e ot sl e Gt of e e of Grm ki
Spectrl analyse the protorypica roblemm, cf. for example the report given by Sir
Arthur Schster to the British Association in 1652, s quoted in [12, p. X1

e answer to th ceebrated question i als fon known o be ngatives with  comnter

a
gl o he e mmm o £ s b poiting o meranes (1 et
Vhich are sospetral L, b he sahe spectrun, for the Ln»laneI rami operator but

mutually not isometric. 1-1..: . gl comsrction (of uis) e gven by Saned (35, e
f ol permstaed iy + o by DTk and  Gordon 1
The aples tend m .hs e the expectaion thet, gericlly, ospectrality shoukd

ent in this direction, hoverer, ¢ available o far
1201 o . ke seme b ook fo ddtionaapectrl datn which

%
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In this dire

it mply sospectrlit ection, Smilansky his proposed to use the nodal

il iorion 3, togencs with b comotlers b o coneoborme s
i various cxamples (el ez [15]). As we have seen, the high fluctuations in the
ol count. ndia that these o be e chsiying potetial, the exicat of which
is certainly worth exploting. These anthors even proposcd tht the nodl count lome would
Characteise a sitable cles of ssteme . that one. e count the shape.of a dra” (13, Tn
it of the appen of i ormeltion, s ko troube it froneork o membranes e

. requiring s i

ongt to be consier. This case o

5, a5 we know, notably for the fia. tori (the class of
terxamplecomes fom). and 8 bt test cave s provided
oty npecton o arsnete b o Bt o i ot e e
by Convay et Some (7. Sk e 1] have analysc som. mcbers of this
numericall i i i
considers only the basic functions (8). Bri

anes where Milnor's con

2 and Klasronn (6] have taken up this question and

f the spectrum and the true nodal connt of the basic functions, that is, the knowledge of the
numbers (cf. (3) and (10))
Al V(7') Y ery

il not disingush thm, o oxder o sliere 20 on and introduce certain extremal
values of the nodal count. in mh u.«e.m.mm h ,.umw. tractabe algbraic Teprescntation
and hence can be seen to disting efinig 1

can b sh the at

ot k10 Chinds Wi memory = bty by s conference, e recall that
ls became fanous i bis i fo makin peopl e the o To paraphss the rest of
Brining and cmpied o state (or rather: conjecture) that we can deduce
e e of o ori o g o e s K i Eneden e

Wo ars indebted to the GIF (Germanlcal Foundation o Sl Resenr
supporting our work on no

Development) for
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