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. Fractal geometry has emerged as one of the most exciting frontiers in the
: fusion berween mathematics and information technology. Fractals can be seen
£ in many of the swirling patterns produced by computer graphics, and they have
O ok become an important new tool for modeling in biology, geology, and other nat-
e - ural sciences. While fractal geometry can indeed rake ue inte the far reaches

~of high-tech science, ifs patterns are surprisingly common in traditional African

designs, and some of its basic concepts are fundamental to African knowledge

A ; systems. This book will provide an easy introduction to fractal geomerry for
\) ' people without any mathematics background, and it will show how these same
() _ caregories of geometric pattern, calculation, and theory are expressed in
Y African cultures.

; Muthematics and culture

. .\? ' + . .

- For many years anthropologists have observed that the patterns produced in dif-
o . . .
N : ferent cultuves can be characterized by specific design themes. In Europe and Amer-
ol ica, for example, we often see cities [aid out in a grid pateern of straight streets

and right-angle corners. Another grid, the Cartesian coordinate system, has

long been a foundation for the mathematics used in these socieries. In many works
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Introduction

of Chinese art we find hexagons used with extraordinary geometric precision—
a choice that might seem arbitrary were it not for the importance of the num-
ber six in the hexagrams of thelr fortunetelling system (the I Ching), in the - anatomy
charts for acupunceure (lifi- -qi ot “six spirits”), and even in Chirese qrchltecture 1
Shape and number are not only the universal rules of measurement and logic;
they are also cultural tools that can be used for expressing particular social ideas
and linking different areas of life. They are, as Claude Lévi-Strauss would put it,
“good to think with.”

Design themes are like threads running through the social fabric; they e
fess a commanding force than something we command, weaviny these strands
into many different patterns of meaning. The ancient Chinese empires, for
example, used a base-10 counting system, and they even began the first univer-
sal metric system.? So the frequent use of the number 6o in Chinese knowledge
systemns can be linked to the combination of this official base 10 notation with
their sacred number six. In some American cities we find that the streets are num-
bered like Cartesian coordinates, but in others they are named after historical
figures, and still others combine the two. These city differences typically corre-
spond to different social meanings—an emphasis on history versus efficiency, for
example. ' .

Suppose that visitors from another world were to view the grid of an
American city. For a city with numbered streets, the visitors (assuming they could
read our numbers) could safely conclude that Americans made use of a coordi-

_nate structure. But do these Americans actually understand coordinate mathe-
matics? Can they use a coordinate grid to graph equations? Just how sophisticated
is their mathematical understanding? In the following chapter, we will ind out-

selves in a similar position, for African settlement architecture is filled with remark-
able examples of fractal structure. Did precolonial Africans actually understand
and apply fractal geometry!? '

As I will explain in this chapter, fractals are characterized by the repeti-
tion of similar patterns at ever-diminishing scales. Traditional African settle-
ments typically show this “scl{-similar™ characteristic: circles of circles of
circular dwellings, rectangular walls enclosing ever-smaller rectangles, and
streets in which broad avenues branch down to tiny footpaths with striking geo-
metric repetition. The fractal structure will be easily identified when we com-
pare aerial views of these African villages and cities with corresponding fractal
graphics simulations. ‘

What are we to make of this comparison? Let’s put ourselves back in the
shoes of the visitors from another planet. Having beamed down to an American

settlement named “Corvallis, Oregon,” they discover that the streets are not num-
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Fractal geometry

bered, but rather titled with what appear to be arbitrary names: Washington, Jef-
ferson, Adams, and so on. At first they might conclude that there is nothing mathe-
matical about it. By understanding a bit more ahout the cultural meaning,
however, a mathematical pattern does emerge: these are names in historical suc-
cession. It might be only ordering in terms of position in a series (an “ordinal”
number), but there is some kind of coordinate system at work after all. African
designs have to be approached in the same way. We cannot just assume that African
fractals show an understanding of fractal geometry, nor can we dismiss that pos-
sibility. We need to listen to whart the designers and users of these structures have
to say about it. What appears to be an unconscious or accidental pattern might
acrually have an intentional mathemartical component.

Overall, the presence of mathematics in culture can be thought of in
terms of a spectrum from unintentional to self-conscious. At one extreme is the
emergence of cornpletely unconscious structures. Termite mounds, for example,
are excetlent fractals (they have chambers within chambers within chambers)
but no one would claim that termites understand mathematics. In the same way,
patterns appear in the group dynamics of large human populations, but these lzm;
generally not patterns of which any individual is aware. Unconiscious structures
do not count as mathematical knowledge, even though we can tise mathematics
to describe them. ‘

Moving along this spectrum toward the more intentional, we next find
examples of decorative designs which, although consciously created, have no
explicit knowledge attached to them. It is possible, for example, that an artist
who does not know what the word "hexagon” means could still draw one with
great precision. This would be a conscious design, but the knowledge is strictly
implicit.? In the next step along our spertrum, penple make rhese comnonents
explicit—they have names {or the patterns they observe in shapes and numbers.
Taking the intention spectrum one more step, we have rules for how these pat-
rerns can be combined. Here we can find “applied mathematics.” Of course
there is a world of difference between the applied math of a modern engineer and
the abplied math of a shopkeeper—whether or not something is intentional tells
us nothing about its complexity. _

Finally we move to “pure mathematics,” as found in the abstract theories
of modern academic marhematicians. Pure math can also be very simple—for
example, the distinction between ordinal numbers (first, second, third) and car-
dinal numbers (one, two, three) is an example of pure math. Bur it would not
be enough for people in a society simply to use examples of both types; they
would have to have words for these two categories and explicitly reflect on a

comparison of their properties before we would say that they have a theory of
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the distinction between ordinal and cardinal numbers. While applied mathe- b each societ
o matics makes use of rules, pure math tells'us why they work—and how to fﬁnd ‘ metric prac
new ones. ' . - - o Africa (Ce
’ i , _ ' ' examples),
—— This book begins by moving along the spectrum just described. We will start by . African-in
showing that African fractals are not simply due to unconscious activity. We will Chag
then look at examples where they are conscious but implicit designs, followed ‘ design. Th
by examples in which Africans have devised explicit rules for generating these | we cannot
patterns, and finally to exarmples of abstract theory in these indigenous knowi- ‘ In contrass
edge systems. The reason for taking such a cautious route can be expressed in tenﬁ_s ‘ ' thetic frac
‘of what philosopher Karl Popper called “falsifiability.” Popper pointed out that ' i that way.”
_everyone has the urge to confirm their favorite theories; and so we have to take sans’ repo
precautions not to limit our attention to success-—a theory is only good if you ' Second, tt
try to test it for failure. If we only use examples where African knowledge sys- concepts ¢
terns successfully matched fractal geometry, we would not know its limitations. , have diffu
There are indeed gaps where the family of theories and practices centered around _ may have
fractal geometry in high- tech mathematics has no counterpart in traditional Africa. . are never
Although such gaps are stgmﬁcant they do not invalidate the comparison, but . Part
rather provide the necessary qualifications to accurately characterize the indige- ' ods and sy
nous fractal geometry of Aftica. : L edge syste
' AT the reade:
new conc
Querview of the text
tecture, b
Following the introduction to fractal geometry in the next section, in chaptet ' : . ing, and
2 we will explofe fractals in African settlements. It will become clear that the , . C iectmigue
explanation of unconscious group activity does not fit this case. When we talk concepts
to the indigenous archltects they are quite explicit about those same fractal -Ch:
features we observe, and use several of the basic concepts of fractal geometry in African
discussing their materia desngns and associated knowledge systems. Termites fetlowshi
may make fractal arch1tectures. hut they do not paint abstract modéls of the - the idea
. structure on s walls or create symbols for its geometric properties. While these would ne
mtroductory e émples won't settle all the questions, we will at least have estab- Int
lished that these architectural designs should be explained by something more of Africa
than unintentional social dynamics.' : ' . tions! Cl
In chapter 3 we will examine another explanation: perhaps fractal settlement ' . rems. Wi
patterns are not unique to Africa, and we have simply observed a common charac- to the fr:
teristic of all non-Western architectures. Here the concept of design themes ~ Senghor’
become important. Anthropologists have found that the design themes found all good ¢

in each culture are faitly distinct—that is, despite the artistic diversity within and othe
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Fractal geometry

each society, most of the culture’s patterns can be characterized by specific peo-

metric practices. We will see that although fractal designs do occur outside of

Africa (Celtic knots, Ukrainian eggs, and Maori rafters have some excellent

examples), they are not everywhere. Their strong prevatence in Africa (and in
African-influenced southern India) is quite specific.

Chaprter 4 returns to this exploration with fractals in African estheric
design. These examples are important for two reasons. First, they remind us that
we cannot assumne explicit, formal knowledge simply on the basis of a pattern.
In contrast to the fractal patterns of African sertlement architecture, these aes-
thetic fractals, according to the artisans, were made “just because it looks pretty
that way.” They are neither formal systems {no rules to the game) nor do the arti-
sans’ teport explicit thinking (1 don't know hoéw or why, it just came to me”).
Second, they provide one possible route by which a particular set of mathematical
concepts came to be spread over an enormous continent. Trade networks could
have diffused the fractal aesthetic across Africa, reinforcing a design theme that
may have been scattered about in other areas of life. Of course, such origin stories
are never certain, and all too easy to invent.

Part 11 of this book, starting with chapter 5, presents the explicit design meth-
ods and symbolic systems that demonstrate fractal geometry as an African know!-
edge system. As in the introduction to fractals in the first chaprer, I will éésumé
the reader has no mathematics background and provide an introduction to any -
new concepts along with the African versions. We will see that not only in archi-
tecture, but in traditional hairstyling, textiles, and sculpture, in painting, carv-
ing, and meralwork, in religion, games, and practical craft, in quantitative
techniques and symbolic systems, Africans have used the patrerns and abstract

£ Lo ment -
Paraciao geomnaetny.

L

concepts o
_Chapter 10, the last in part 11, is the result of my collaboration wich an
African physicist, Professor Christian Sina Diatta. A sponsor for the Fulbright
felowship that enabled my fieldwork in west and central Africa, Dr. Diatta took
the idea of indigenous fractals and ran with it, moving us in directions that 1
would never have considered on my own, and still have yer to explore fully.
In the third and final part of this book we will examine the consequences
of African fractal geometry: given that it does exist, what are its social implica-
tions? Chapter 11 will briefly review previous studies of African knowledge sys-
terns. We will see that although several researchers have proposed ideas related
to the fractal concept—Henry Louis Gates’s “repetition with revision,” Léopold
Senghor’s "dynamic symmetry,” and William Fagg’s "exponential morphology” are
all good examples—there have been specific obstacles thar prevented anthropologists

and others from taking up these concepts in terms of African mathematics.
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Chapter 12 covers the political consequences of African fractals. On the
one hand, we will find there is no evidence that geometric form has any inher-
ent social meaning. In settlerent design, for example, people report both oppres-
sive and liberatory social experiences with fractal architectures. Fractabversus
nonfractal (“Euclidean”) geometry does not imply good versus bad. On the
other hand, people do invest abstract forms with particular local meanings. To
take a controversial example, recent U.S. supreme court decisions declared that
voting districts cannot have “bizarre” or “highly irregular” shapes, and several of
these fractal contours have been replaced by the straight lines of Euclidean
form. If fractal settlement patterns are traditional for people of Aftican descent,
and Buclidean settlement patterns for Europeans, is it ethnocentric to insist on

“only Euclidean voting district lines?

Chapter 13 will examine the cultural history of fractal geometry and its
mathematical precursors in Europe. We will see that the gaps are not one-sided:
just as Africans were missing certain mathematical ideas in their version of
fractal geometry, Europeans were equally affected by their own cultural views
and have been slow to adopt some of the mathematical concepts that were long
championed by Africans. Indeed, there is striking evidence that some of the
sources of mathematical inspiration for European fractals were of African
origin. The final chapter will move forward in time, highlighting the con-
temporary versions of fractal design that have been proposed by African
architects in Senegal, Mali, and Zambia, and other illustrations of possible frac-
tal futures. '

But to understand all this, we must first visit the fractal past.

A historical introduction to fractal geometry

The work of Georg Cantor (1845-1918), which produced the first fracral; the
Cantor set {fig. 1.1), proved to be the beginning of a new outlook on infinity. Infin-
ity had long been considered suspect by mathematicians. How can we claim to
be using only exact, explicit rules if we have a symbol that vaguely means “the
number you would get if you counted forever”? So many mathematicians, start-
ing with Aristotle, had just banned it outright. Cantor showed that it was pos-
sible to keep track of the number of elements in an infinite set, and didso in a
deceptively simple fashion. Starting with a single straight line, Cantor erased the
middle third, leaving two lines. He then carried out the same operation on
those two lines, erasing their middles and leaving four lines. In other words, he
used a sort of feedback loop, with the end result of one stage brought back as the

starting point for the next. This technique is called “recursion.” Cantor showed
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Fractal geometry 9

that if this recursive construction was continued forever, it would create an
infinite number of lines, and yet would have zero length.

Not only did Cantor reintroduce infinity-as a proper object of mathe-’
matical study, but his recursive construction could be used as a model for other
“pathological curves,” such as that created by Helge von Koch in 1904 (figs. 1.2,
1.3). The mathematical properties of these figures were equally perplexing.
Small portions looked just like the whole, and these reflections were repeated down

to infinitesimal scales, How could we measure the length of the Koch curvel If

output at each
stage of process

Take a line : Erase the middle

Bring each of the resulting
lines back in and do it again

—— — — —— —— — —
- - - - - - LT
FIGURE I.1

_ The Cantor set
1n 1879 Georg Cantor came up with the idea of repeatedly subdividing a line ro illustrate
the concept of an infinite set. This looping technigue is called recursion. By specifying that the
recursion continues forever, Cantor was able to define an infnite set.
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FIGURE 1.2
: The Koch curve, o ,
Helge von Koch used the same kind of recuisive loop as Cantor, but he added lines instead of
erasing them. He began with a triangular shape made of four lines, the _“._seed'."'He._ﬂwn replaced
each of the lines with a reduced version of the original seed shape. *
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Koch curve variations
There is nothing special abourt the particular shape Koch hrst used. For example, we can make
similar shapes that are more flat or more spiked fising variations on the sted shape (a). Nor is there
anything special about trifngles—any shapé can’undergo this rectirsivé replacement process.
Mathematician Giuseppe Peano, for example, experimented with rectangular s¢ed shapes such as

those in (b).
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we hold up a six-inch ruler to the curve (fig. 1.4) we get six inches, but of
course that misses all the nooks and crannies. If we use a smaller ruler, we get
greater length, and w1th a smaller one even greater length, and so on_to infin-

ity. Obviously this is not a very useful way to characterize one of these curves.

A new way of thinking aboutr measurement was needed. The answer was to plot

these different measures of ruler size versus length, and see how fast we gain length
as we shrink the ruler (fig. 1.5). This rate (the slope) tells us just how caipk_led
or tortuous the curve is. For extremely crinkled curves, the plot will show that
we rapidly gain length as we shrink the ruler, so it will have a steep slope. For
relatively smooth curves, you don’t gain much length as you shrink the ruler size,
so the plot has a shallow slope.

To mathematicians this slope was more than just a practical way to char-
acterize crinkles. Recall that when we fitst tried to measure the length of the Koch
curve, we found that its length was potentially infinite. Yet this infinite length
fits into a bounded space. Mathematician Felix Hausdorff (1868-1042) found that
this paradox could be resolved if we thought of the pathological curves as some-
how taking up more than one dimension, as all normal lines do, but less than two
dimensions, as flat shapes iike squares and circles do. In Hausdorff's view, the Koch
curve has a fractional dimension, approximately 1.3, which is the slope of cur
ruler—versus length plot. Being pure mathematicians, they were fascinated with
this idea of a fractional dimension and never thought about puttingit-to prac-
tical use. o

The conceptual leap to practical application was created by Benoit Mandel-

brot (b. 1924), who happened upon a study of long-term river fluctuations by British -

civit servant H. E. Hurst. Hurst had found that the yearly floods of rivers did not
have any one average, but rather varied over many different scales—there were
flood years, flood decades, even flood centuries. He concluded that the only way
to characterize this temporal wiggliness was to plot the amount of fluctuation at
each scale and use the slope of this line. Mandelbrot redlized that this was
equivalent to the kind of scaling measure that had b-eg_n,“used for Cantor's patho-
logical curves. As he began to apply computer graphics {figs. 1.6, 1.7), he found
that these shapes were not pathological at all, but rather very common through-
out the natural world. Mountain. ranges had peaks within peaks, trees had
btanthes made of branches, clouds were puffs within puffs—-even his own body

was full of recursive scaling structures.

The fractal simulations for natural objects in figure 1.7 were cre’lted just

like the Cantor set, Koch curve, and other examples we have already seen, with

a seed shape that undergoes recursive replacement. The only difference is that

some of these simulations require that certain lines in the seed shape do not get
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Measuring the length of fractal curves
Thenew curves of £antor, Koch, and others represented a problem in measurement theory.

The length of the curve depends on the size of the ruler. As we shrink the ruler down, the length
.ipproaches mﬁmty
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A better way to measure fractal curves
Our experiment in shrinking rulers wasn't a total waste. In fact, it turns out that if you keep track
of how the measured length changes with ruler size, you get a very pood way of characterizing the
curve. A relatively smooth fractal won't increase length very quickly with shrinking ruler size, but
very crinkled fractals will. {a) This smooth Koch curve doesn't add much length with shrinking
ruler size, so the plot shows only a small rise. (b) Since a small ruler can get into all the nooks and
crannies, this more crinkled Koch curve shows a steepes rise in measured length with a shrinking
ruler. (e} An extremely tortuous Koch curve has a very steep slape for its plot.
Note for math sticklers: These figures are plotted on a logarithmic graph.
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Fractal geometry 15

replaced. This is illustrated for the lung model at the bottom of figure 1.7. The
lines that get replaced in each iteration are called “active lines.” Those that do
not get replaced are called “passive lines.” We will bg using the distinction between
active and passive lines in simulations for African designs as well.
Mandelbrot coined the term “fractal” for this new geometry, and it is now
used in every scientific discipline from astrophysics to zoology. It is one of the
rost powerful tools for the creation of new technologies as well as a revolutionary

approach to the analysis of the natural world. In medicine, for example, fractal

South Africa Smooth Koch curve

Fractol dimension = 1.00 Fractal dimension = 1.1

Rough Koch curve

Greas Britain
Fractal dimension = 1.3

Fractal dimension = 1.25

Tortuous Koch curve

Norway
Fracta! dimension = 1.5

Fractal Jimension = 1.52

FIGURE 1.6

Measuring nature with fractal geometry
Although the curves of Cantor and others were introduced as abstractions without physical
meaning, Benoir Mandelbrot realized thar their scaling measure, which he called “fractal
dimension,” could be put to practical use in characterizing irregular shapes in nature, The classic
example is the measurement of coastlines. Even though it is a very crude model, we can see how
the variations of the roughness in the Koch curve are similar 1o the variations in these coasts.
Note that the fractal dimension is our plot slope from figure 1.5; the coastlines were measured in

the same way.
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_ Simulating nature with fractal geometry

In his experiments with computer graphics, Mandelbrot found that fractal shapes abound in
nature, where continual processes such as biological growth, geological change, and atmospheric
turbulence result in a wide variety of recursive sealing structures (a). The recursive construction of
these natural shapes is basically the same as that of the other fractal shapes we have seen so far. In
sotne examples, like the lung model (b), certain lines of the original seed shape do not participate
in the replacement step; they are called “passive lines.” The ones which do go through
replacement are catled “active lines.” Each step is referred o as an “iteration.”
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Fractal geometry

dimension can be used as a diagnostic tool. A healthy lung has a high fractal dimen-
sion, but when black lung disease begins it loses some of the fine branching—a
condition that can be detected by measuring the fractal dimension of the X ray.
For this reason, Benoit Mandelbrot was récently named an honorary member of
the French Coal Miners Union.

Of course, no revolution is without its counterrevolutionaries. It was not
long before some scientists started objecting that Mandelbrot was ignoring the
presence of the natural objects that could be described by Euclidean geometry,
such as crystals or eggs. 1ts true that not all of nature is fractal—and this will be
an important point for us to keep in mind. Some writers have mistakenly
attempted to portray Africans as “more natural”—a dangerous and misleading
claim, even when made by well-meaning romanrics. Since fractals are associated
with nature, a book about “African fractals” could be misinterpreted as support
for such romantic organicists. Pointing out that some Euclidean shapes exist in
the realm of natute makes it easier to understand that African fractals are from
the artificial realm of culture. Before moving on to these African designs, let's

review the basic characteristics of fractal geomerry.

Five essential components of fractal geometry

RECURSION

We have seen that fractals are generated by a circular process, a loop in which
the output at one stage becomes the input for the next. Results are repeatedly
returned, so that the same operation can be carried out again. This is often referred
to as "recursion,” a very powerful concept. Later we will distinguish between three
diffeient types of secursion, but for now just think of it in terms of this iterative
feedback loop. We've already seen how iteration works to create the Cantor set
and the Koch curve. Although we can create a mathematical abstraction in which
the recursion continues forever, there are also cases where the recursion will “bot-

tom out.” In our generation of the Koch curve, for example, we guit once the lines

get too small to print. In fact, any physically existing object will only be fractal-

within a particular range of scales.

SCALING

If you look at the coastline of a conrinent—take the Pacific side of North Amer-
ica for instance—you will see a jagged shape, and if you look at a small piece of
that coastline-—say, California—we continue to see similar jaggedness. In fact,
a similar jagged curve can be seen standing on a cliff overlocking a rocky Cali-

fornia shore, or even standing on that shore looking at one rock. Of course, that’s

7
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only roughly similar, and it’s only good for a certain range of scales, but it is aston- the b{
tshing to realize how well this works for many nacural features. It is this “scal- dimen
ing” property of nature that allows fractal geometry to be so effgg.\tive for
modeling. To have a “scaling shape™ means that there are similar patterns at dif-

. Looking for
i ferent scales within the range under consideration. Enlarging a tiny section will —

produce a pattern that looks similar to the whole picture, and shrmkmg down | As we

the whole will give us something that lopks like a tiny part. compe
fractal

SELF-SIMILARITY . our ﬁr-
Just how similar do these patterns have 1o be to qualify as a fractal? Mathe- lish th
maticians distinguish between statistical self-similarity, as in the case of the coast- applie

line, and exact self-similarity, as in the case of the Koch curve. In exact turn t.
self-similarity we need to be able to show a precise replica of the whole in ar i indige

least some of its parts. In the Koch curve a precise replica of the whole could
be found within any section of the fractal (“strictly self-similar”), but this isn't
true for all fractals. The branching fractals used to model the tungs and acacia
tree (fig. 1.7), for example, have parts {e.g., the stem) that do not contain a tiny
image of the whole. Unlike the KocHtcurve, they were not generated by replac-
ing every line in the seed shape with a miniature version of the seed; instead,
we used some passive lines that were just carried though the iterations without
change, in addition to active lines that created a growing tip by the usual

recursive replacement.

INFINITY

Since fractals can be limited to a finite range of sc:'\les it may seem like infinity
is just a historical artn‘act at best a Holy Grail whose quet‘.t “allowed mathematicians
serendipitously to stumble across fractals. It is this kind of omission that has made
many pure mathematicians rather nonplussed about the whole fractal affair,
and in some cases downright hostile {cf. Krantz 1989). There is no way to con-
nect fractals to the idea of dimension without using infinity, and for many math-

ematicians that is their crucial role.

FRACTIONAL DIMENSION

How can it be that the Koch curve, or any member of its fractal family, has infi-
nite length in a finite boundary? We are used to thinking of dimension as only
whole numbers—the one-dimensional line, the two-dimensional plane—but
the theory of measurement that governs fractals allows dimensions to be fractions.
Consider, for example, the increasing dimension of the Koch curves in figure 1.6.

Abave the top, we could o as close as we like to none-dimensional Jine. Below
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Fractal geomerry

the botrom, we could make the curve so jagged that it starts to fill in two-

dimensional areas of the plane. In between, we need an in-between dimension.

Looking for fractals in African culture

As we examine African designs and knowledge systems, these five essential
components will be a useful way to keep track of what does or does not match
fractal geometry. Since scaling and self-similarity are descriptive characteristics,
our first step will be to look for these properties in African designs. Once we estab-
lish that theme, we can ask whether or not these concepts have been intentionally
applied, and start 10 look for the other three essential components. We will now
turn to African architecture, where we find some of the clearest illustrations of

indigenous self-similar designs.
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Architecture often provides excellent examples of cultural design themes,
because anything that is going to be so much a part of our lives—a structure
that makes up our built environment, one in which we will live, work or play—
is likely to have its design informed by our social concepts. Take religious archi-
tecture for example. Several chuichies have been Luilt using a triangular floor
plan to symbolize the Christian trinity; others have used a cross shape. The
Roman Pantheon was divided into three vertical levels: the bottom with
seven niches representing the heavenly bodies, the middle with the 12 zodiac
signs, and on top a hemispherel symbolizing the order of the cosmos as a
whole.! But we don't need to look to grandiose monuments; even the most mun-
dane shack will involve geometric decisions—should it be square or oblong?
pitched roof or flat? face north or west’—and so culture will play a role here
as well.

At first glance African architecture might seem so varied that one would
conclude its structures have nothing in common. Although there is great diver-
sity among the many cultures of Africa, examples of fractal architecture can be

found in every corner of the African continent. Not all architecture in Africa

" is fractal—{ractal geometry is not the only mathematics used in Africa——but its

repeated presence among such a wide variety of shapes is quite striking.
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Fractals in African settlement architecture

In each case presented here we will compare the aerial photo or architec-
tural diagram of a settlement to a computer-generated fractal model. The frac-

tal simulation will make the self-similar aspects of the physical structure more

_ evident, and in some cases it will even help us understand the local cultural mean-

ing of the architecture. Since the African designers used techniques like itera-
tion in building these structures, our virtual construction through fraceal graphics

will give us a chance to see how the parterns emerge through this process.

Rectangular fractals in settlement architecture
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If you fly aver the northern part of Camercon, heading toward Lake Chad a]on'g
the Logone River, you will see something like figure 2.1a. This aerial photo shows

the city of Logone-Bimi in Cameroon. The Kotoko people, who founded this city

‘centuries ago, use the local clay to create huge rectangular building complexes.

The largest of these buildings, in the upper center of the photo, is the palace of
the chief, or “Miarre” (fig. 2.1b). Bach complex is created by a process often called
“architecture by accretion,” in this case adding rectangular enclosures to preexisting
rectangles. Since new enclasures often incbrporate the walls of two or more of
the old ones, enclosures tend to get larger and larger as you go outward from the
center. The end result is the complex of rectangles within rectangles within rec-
tangles that we see in the photo.

Since this architecture can be described in terms of self-similar scaling—it
makes use of the same pattern at several different scales—ir is easy to simulate using
a computer-generated fractal, as we see in figures 2. 1c—e. The seed shape of the model
is a rectangle, but each side is made up of both active lines {gray) and passive lines
{black). After the first iteration we ser how a small version 6f=the original rectangle
is reproduced by each of the active lines. One more iteration gives a range of scales
that is about the same as that of the palace; this is enlarged in figure 2.1,

During my visit to Logone-Birni in the summer of 1993, the Miarre kindly
allowed me to climb onto the palace roof and take the photo shown in figure 2.1f.
[ asked several of the Kotoko men about the variation in scale of their architecture.
They explained it in terms of a combinarion of patritocal household expansion,
and the historic need for defense. "A man would like his sons to live next ro
him,” they said, “and so we build by adding walls to the father’s house.” In the
past, invastons by northern marauders were common, and so a larger defensive
wall was also needed. Sometimes the assembly of families would outgrow this
defensive enclosure, and so they would turn that wall into housing, and build an
even larger enclosure around it. These scaling additions creared rhe tradition of

self-similar shapes we srill see today, although the population is far below the

21



a. An aerial view of the city of Logone-Birni in Cameroon.
The largest building complex, in the center, is the palace
of the chief. '

Photo courtesy Musée de I'Homme, Paris,

c. Seed shape for the fractal

- simulationr of the palace.

"The active lines, in gray,
will be replaced by a scaled-
down replica of the entire
seed.

H

d. First three iterations of the fractal simulation.

b. A closer view of the palace.
The smallest rectangles, in the
center, are the royal chambers.

e. Enlargment of the third

iteration,

FIGURE 2.1
Logone-Birni

(fipre continues}

g The guti,
royatb insignia,
painted on the
valace walls.
By permission

2f Lebeuf 1969,
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h. The spiral path taken by visitors to the throne.
By permission of Lebeuf 1069. ‘

FIGURE 2.1 (continued)
Inside Logone-Birni
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original 180,000 estimated for Logone-Birni’s peak in the nineteenth century. At
that time there was a gigantic wall, about 10 feet thick, that enclosed the
perimeter of the entire settlement. -

The women I spoke with were much less interested in either patrilineage
or military history; their responses concerning architectural scaling were primarily
about the contrast between the raw exterior walls and the stunning waterproof
finish they created for courtyards and interior rooms. This began by smoothing
wet walls flat with special stones, applying a resin created from a plant extract,
and then adding beautifully austere decorative lines.

The most important of these decorative drawings is the guti, a royal insignia
{fig. 2.1g). The central motif of the guti shows a rectangle inside a rectangle inside
a rectangle; it is a kind of abstract model that the Kotoko themselves have cre-
ated. The reason for choosing scaling rectangles as a symbol of royalty becomes
clear when we look at the passage that one must take to visit the Miarre (fg. 2.1h).
The passalge as a whole is a rectangular spital. Each time you enter a smaller scale,
you are required to behave more politely. By the time you arrive at the throne
you are shoeless and speak with a very cultured formality.? Thus the fractal
scaling of the architecture is not simply the result of unconscious social dynam-
ics; it is a subject of abstract eepresentation, and even a practical technique applied
to social ranking.

To the west near the Nigerian border the landscape of Cameroon becomes
much greener; this is the fertile high grasslands region of the Bamileke. They too
have a fractal settlement architecture based on rectangles {fig. 2.2a), but it has
no cultural relation to that of the Kotoke. Rather than the thick clay of Logone-

Birni, these houses and the attached enclosures are built from bamboo, which.

is very strong and widely available. And there was no mention of kinship,

defense, or politics when 1 asked about the architecture; here | was told it is pat-

terns of agricultural production that underlie the scaling. The grassland soil and

climate are excellent for farming, and the gardens near the Bamileke houses typ-

ically grow a dozen different plants all in a single space, with each-taking its char-
acteristic vertical place. But this is tabor intensive, and so more dispersed
plantings——rows of corn and ground-nut—are used in the wider spaces farther
from the house. Since the same bamboo mesh construction is used for houses,
house enclosures, and enclosures of enclosures, the result is a self-similar archi-
tecture. Unlike the defensive labyrinth of Kotoko architecture, where there
were only a few well-protected entryways, the farming activities require a lot of
movement between enclosures, so at all scales we see good-sized openings. The
fractal simulation in figures 2.2b,c shows how this scaling structure can he mod-

eled using an apen square as the seed shape.
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FIGURE 2.2
Bamileke settlement

(a) Plan of Bamileke settlement from about 1960. {b) Fractal simulation of Bamileke architecture.

In the furst iteration {“seed shape"), the two active lines are shown in gray. (¢) Enlarged view of
fourth iteration.

{a, Beguin 1952; reprinted with permission from orsToM).
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Circular fractals in settlement architecture

Much of southern Africa is made up of arid plains where herds of cattte-and other
livestock are raised. Ring's;haped livestock péns, one for each extended family,?
can be seen in the aerial photo in figure 2.3a, a Ba-ila settlement in southern Zam-
bia. A diagram of another Ba-ila settlement (fig, 2.1d) makes these livestock enclo-
sures (“kraals”} more clear. Toward the back of each pen we find the family living
quarters, and toward the front is the gated entrance for letting livestock in and
out. For this reason the front entrance is associated with low starus (unclean, ani-
mals), and the back end with high status (clean, people). This gradient of sta-
tus is reflected by the size gradient in the architecture: the front is only fencing,
as we go toward the back smaller buildings (for storage) appear, and toward the
very back end are the larger houses. The two geometric elements of this struc-
ture-—a ring shape overall, and a status gradient increasing with size from front
to back—-echoes throughout every scale of the Ba-ila settlement. .

The settlement as a whole has the same shape: it is a ring of rings. The set-
tlement, like the livestock pen, has a front/back social distinction: the entrance
is low status, and the back end is high status. At the settlement entrance there
are no family enclosures at all for the first 20 yards or so, but the farther back we
go, the larger the family enclosures become.

At the back end of the interior of the settlement, we see a smaller detached
ring of houses, like a settlement within the settlement. This is the chief’s
extended family. At the back of the interior of the chief’s extended family ring,
the chief has his own house. And if we were to view a single house from above,

we would see that it is a ring with a special ptace at the hack of the interior: the

“household altar.

Since we have a similar structure at all scales, this architecture is easy to

model with fractals. Figure 2.3b shows the first three iterations. We begin with

“a seed shape that could be the overhead view of a single house. This is created

by active lines thnt make up the ring-shaped walls, as well as an acrive line or
the position of the altar at the back of the interior. The only passive lines are
those adjacent to the entrance. In the next iteration, we have a shape that could
be the overhead view of a family enciosure. At the entrance to the faniily enclo-
sure we have only fencing, but as we go toward the back we have buildings of
increasing size. Since the seed shape used only passive lines near the entrance
and increasingly larger lines toward the back, this iteration of our simulation has
the same size gradient that the real family enclosure shows. Finally, the third iter-
ation provides a structure that could be the averhead view of the whole settle-

ment. At the entrance to the settlement we have only fencing, but as we go toward
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the back we have enclosures of increasing size. Again, by having the seed shape
use only passive lines near the entrance and increasingly larger lines toward the
back, this iteration of our simulation has the same size gradlent that the'teal settle-
ment shows.

I never visited the‘Ba—i_la myself; most of my information comes from the
classic ethnography by Edwin Smith and Andrew Dale, published in 1920.
While their colontal and missionary motivations do not inspire much trust,
they often showed a strong commitment toward understanding the Ba-ila point
of view for social structure. Theit analysis of Ba-ila sectlement architecture
points out fractal attributes. They too nated the scaling of house size, from
those less than 12 feet wide near the entrance, to houses more than 40 feet wide
at the back, and explained it as a social status gradient; “there being a world of
difference between the small hovel of a careless nobody and the spacious dwelling
of a chief” (Smith and Dale 1068, 1 14)

It is in Smith's discussion of religious beliefs, however, that the most strik-
ing feature of the Ba-ila’s fractal architecture is illuminated. Unlike most mis-
siorraries of his time, Smith was a strong proponent of respect for local religions.
He was rio relatlvlst-——understand:ng and respect were strategies for conver-
sion—but his dellght in the tndlgenous spiritual strength comes across clearly in
his writings and provided him with insight into the subtle relation of the social,

sacred, and physical structure of the Ba-ila architectural plan.

In this village there are about 250 huts, built mastly on the edge of a circle four
hundred yards in diameter. Inside this circle there is a subsidiary one occupied
by the chlef his family, and cattle. It is a village in itself, and the form of it in
the plan is the form of the greater number of Ba-ila villages, which do not attain
to the dimensions of Shaloba's capital. The open space in the center of the vil-
lage is also broken by a second subsidiary village, in which reside important mem-
bers of the chief’s family, and alse by three or four miniature huts surrounded
by a fence: these are the manda a mizhimo (“the manes' huts™) where offerings
are made to the ancestral spirits. Thus early do we see traces of the all-pervading
religious consciousness of the Ba-ila, {Smith and Dale 1968, 113)

In the first iteration of the computer-generated model there is a derached
active line inside the ring, at the end opposite the entrance. This was motivated
by the ring comprising the chief’s family, but it also describes the ocation of the
sacred altar within each house. As a logician would put it, the chief’s family ring
is to the whole settlement as the altar is to the house. It is not a status gradient,
as we saw with the front-back axis, but rather a recurring functional role between
different scales: “The word applied to the chiel’s relation to his people is kadela:

in the extracts given above we translate it ‘to rule,' hut it has this only as a sec-
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Fracials m African settlement architecrure

ondary meaning. Kulela is primarily to nurse, to cherish; it is the word applied
to a woman caring for her child. The chief is the father of the community; they
are his children, and what he does is lela them” (Smith and Dale 1968, 307).

This relarionship is echoed throughout family and spirirual ties ac all

* scales, and is structurally mapped through the self-similar architecture. The

nesting of circular shapes—ancestral miniatures to chief’s house ring to chief's
extended family ring to cthe great outer ring—was not a status gradient, as we saw
for the enclosure variation from front to back, but successive iterations of lela.

A very different circular fractal architecture can be seen in the famous stone

_ buildings in the Mandara Mountains of Cameroon. The various ethnic groups

of this area have their own separare names, but collecrively are often referred to
as Kirdi, the Fulani word for “pagan,” because of their strong resistance against
conversion to Islam. Their buildings are created from the stone rubble that
commonly covers the Mandara mountain terrain. Much of the stone has natural
fracture lines that tend to split into thick flat sheets, so these ready-made
bricks—along with defensive needs—helped to inspire the construction of their
huge castlelike complexes. But rather than being the Euclidean shapes of Euro-
pean castles, this African architecture is fractal.

Figure 2.4a shows the building complex of the chief of Mokoulek, one of

the Mofou settlements. An architectural diagram of Mokoulek, drawn by French.

researchers from the orsTOM science institute, shows its overall structure (fig. 2.4b}.
It is primarily composed of three stone enclosures (the large circles), each of which
surrounds tightly spiraled granaries (small circles). The seed shape for the sim-
ulation requires a circle, made of passive lines, and two different sets of active
lines (Ag. 2.4¢). Inside the circle is a scaling sequence of small active lines; these
will become the granaries. Outside the circle there s a large active line; this will
replicate the enclosure filed with granaries. By the fourth iteration we have cre-
ated three enclosures filled with spiral clusters of granaries, plus one unfilled. The
real diagram of Mokoulek shows several unfilled circles—evidence that not
everything in the architectural structure can be accounted for by fractals. Nev-
ertheless, an importans feature is suggested by the simulation.

In the first iteration we see that the large external active line is to the left
of the circle. Bur since iz is ar an angle, the next iteration finds this active line

above and to the right. If we follow the iterations, we can see that the dynamic

construction of the complex has a spiral pattern; the replications whorl about a

central location. This spiral dynamic can be missed with just a static view—I cer-
tainly didn’t see it before [ tried the sirulation—but our participation in the vir-
tual construction makes the spiral quite evident.? The similarity berween the small

spirals of granaries inside the enclosures and this large-scale spiral shape of the

z9



FIGURE 2.4

Mokoulek
{a) Mokoulek, Cameroon. The small buildings inside the stone wall are granaries. The rectangular
building {top right) holds the sacred altar. {(b) Architectural diagram of Mokoulek. (c) First three
iterations of the Mokoulek simulation. The seed shape is composed of a circle drawn with passive

lines (black) and with gray active lines both inside and cutside the circle. (d) Fourth iteration of
the Mokoulek simularion.

{a and b, by permission from Seignobos 1982.)
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Fractals in African settlement architecture

complex as a whole indicates that the fractal appearance of the architecture is
not merely due to a random accumulation of various-sized circular forms. The
idea of circles of increasing size, spiraling from a central point, has been applied

at two different scales, and this structural cohérence is confirmed by the archi-

£

tects’ own concepts.

In our simulation the active line became located toward the center of the
spiral. The Mofou also think of their architecture as spiraling from this central
location, which holds their sacred altar. The alar is a kind of conceptual “active
line” in their schema; it is responsible for the iterations of life. Seignobos (1982}
notes that this area of the complex is the site of both religious and political author-

ity; it is the location for rituals that generate cycles of agricultural fertility and

ancestral succession. This geometric mapping between the scaling circles of the

architecture and the spiritual cycles of life is represented in their divination
(“forrunetelling”) ritual, in which the priest creates concentric circles of stones’
and places himself at the center. As in the guti painting in Logone-Birni, in which
the Kotoko had modeled their scaling rectangles, the Mofou have also creared
their own scaling simulation. '

By the time ] arrived at Mokoulek in 1994 the chief had died, and the own-
ership of this complex had been passed on o his widows. The new chief rold me
that the design of this archirecture, including that of his new complex, began with
a precise knowledge of the agricultural yield. This volume measure was then con-
verted to a number of granaries, and these were arranged in spirals. The design
is thus not simply a matter of adding on granaries as they are needed; in fact, it
has a much more quantitative basis than my computer model, which I simply did
by eyeball. .

Not all circular architectures.in Africa have the kind of centralized

location that we saw in Mokoulek. The Songhai village oF.Lahbézanga-inJMa‘li

(fig. 2.5a), for example, shows circular swirls of circular houses without any
single focus. But comparing this to the fractal image of figure 2.5b, we see that
a lack of central focus does not mean a lack of self-similarivy. It is important to
remember that while “symmetry” in Euclidean geometry means similarity within
one scale (e.g., similarity between opposite sides in bilateral symmetry), fractal
geometry is based on symmetry berween different scales. Even these decentral-
ized swirls of circular buildings show a scaling symmetry. .

Paul Stoller, an accomplished ethnographer of the Songhai, tells me that
the rectangular buildings that can be seen in figure 2.5a are due to Islamic influ-
ence, and that the original structure would have been completely circular.

Thanks to Peter Broadwell, a computer programmer from Silicon Graphics Inc.,

"we were able to run a quantitative test of the photo that confirmed what our eyes
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FIGURE 2.5
Labbezanga ‘
(a) Aerial view of the village of Labbezanga in Mali. (b} Fractal graphic.
{2, phote by Georg Gerster; b, by permission of Benoit Mandelbrot.)

were telling us: the Songhai architecture can be characterized by a fizctal dunen-
sion similat to that of the computer-generated fractal of figure 2.5b.9

This kind of dense circular arrangement of circles, while occurring in all
sorts of variations, is common throughout inland west Africa. Bourdier and
Trinh (1985), for example, describe a similar circular architecture in Burkina Faso.
The scaling of individual buildings is beautifully diagrammed in their cover
illusteation (fig. 2.6a}, a portion of one of the large building complexes created
by the Nankani society. As for the Songhai, foreign cultural influences have now
introduced rectangular buildings as well. In the Nankani complex the outermost
enclosure (the perimeter of the complex) is socially coded as male. As we move
in, the successive enclosures become more female associated, down to the cir-
cular woman's dégo (fig. 2.6b), the circular fireplace, and finally the scaling
stacks of pots (fig. 2.6¢).

Using a technique quite close to that of the Kotoko women, the women

of Nankani also waterproof and decorate these walls. The recurrent image of a
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triangle in these decorations (see walls of dégo) represents the zalanga, a nested
stack of calabashes {circular bowls carved from gourds) that each woman keeps
in her kitchen (fig.'2.6d). Since these calabashes are stacked from large to smail,
_they (and the rope that bolds them) form a'triangle—thus the triangular
decorations also represent scaling circles?jus; in a more abstract way. The small-
est container in a woman’s zalanga is the kwmpio, which is a shrine for her soul.

‘When she dies, the zalanga, along with her pots, is smashed, and her soul is released

to eternicy. The eternity concept, associated with well-being, is symbolically

FIGURE 2.6
Nankani home
{a) Drawing of a Nankani home. (b} The woman’s main room {dégo)
inside the Nankani home. (c) A scaling stack of pots in the fireplace.
(d) The zalanga.
(a, Bowrdier and Trinh 1985; courtesy of the authors; b--d, photos from
Bourdier and Trinh 1985, by permission of the authors.} d
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represented by the coils of a serpent of infinite length, sculpted into the walls
of these homes.

From the 20-meter diameter of the building complex to the o.27fieter
kumpio—and not simply at one or two levels in between, but with dozens of self-
similar scalings— the Nankani fractal spans three orders of magnitude, which is
comparable to the resolution of most compurer screens. Moreover, these scaling

circles are far from unconscious accident: as in several other architectures we have

examined, they have made conscious use of the scaling in their social symbol- -

ism. In this case, the most prominent symbolism is that of birthing. When a child

is born, for example, it must remain in the innermost enclosure of the women's

- dégo until it can crawl out by itself. Each successive entrance is—spatially as well

as socially—a rite of passage, starting with the biological entrance of the child
from the womb. It leaves each of these nested chambers as the next iteration in
life's stages is born. The zalanga models the entire structure in miniature, and its
destruction in the event of death maps the journey in reverse: from the circles
of the largest calabash to the tiny kumpio holding the soul—from mature adule
to the eternal realm of ancestors who dwell in “the earth’s womb.” There is a

. conscious scheme to the scaling circles of the Nankani: it is a recursion which

bottoms-out at infinity.

Branching fractals

While African circular buildings are typically arranged in circular clusters, the
paths that lead through these settlements are typically not circular. Like the
bronchial passages that oxygenate the round alveoli of the lungs, the routes that
nourish circular settlements often take a branching form (e.g., figure 2.7). But
despite my unavoidably organicist metaphor, these cannot be simply reduced to
unconscious traces of minimum effort. For one thing, conscious design criteria
are evident in communities in which there is an architectural transition from cir-
cular to rectangular buildings, since they can choose to either maintain or erase
the branching forms.

Discussion concerning such decisions are apparent in the settlement of Banyo,
Cameroon, where the transition has a long history (Huraulr 1975). | found that
few circular buildings were left, but those that were still intact served as an
embodiment of cultural memory. This role was honored in the case of the chief’s
complex and exploited in the case of a blacksmith's shop, which was the site of
occasional tourist visits. Afrer passing approval by the government officials
and the sultan, 1 was greeted by the official city surveyor, who-—considering

the fact that his raison d'&tre was Euclideanizing the streets—showed surprising
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FIGURE 2.7
Branching paths in a Senegalese settlement

{a) Aerial photo of a traditional settlement in northeast Senegal. The space between enclosure
walls, serving as roads and footpaths, creates a branching pactern. (b) A branching fractal can be
created by the background of a scaling set of circular shapes. '
(a, courtesy Institut Geographique du Senegal.)

appreciation for my project and helped me locate the most fracral area of the
city (fig. 2.8a). At the upper left of the photo we see a portion of the Euclidean .
grid that covers the rest of the city, but most of chis area is still fracra! The loca-
tion of this carefully maintained branching—fanning out from a large plaza
that is bordered by the palace of the sultan and the grand mosque—is no
coincidence. By marking my position on the aerial photo as | traveied through
(fig. 2.8b), | was later able to create a map by digitally altering the photo image
{fig. 2.8¢). This provides a stark outline—Ilooking much like the veins in a
Jeaf—of the fractal strucrure of this transportation network. I may have plunged
through a wall or two in creating this map, but it certainly underestimates the
fine branching of the footpaths, as I did not attempt to include their extensions
into private housing enclosures.

How does the creation of these scaling branches interact with the kinds of
iterative construction and social meaning we have seen associated with other

examples of fractal architecture! A good illustration can be found in the
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Position 1—outside palace Position 2—road

FIGURE 2.8

Branching paths in Banyo
{a) Aerial photo of the city of Banyo,
Cameroon. {b) Successive views of the
branching paths, as marked on the photo above.
The clay walls require their own roof, which
comes in both thatched and metal versions
along the walkway in the last photo. (¢} Aerial
photo of Banyo with only public paths showing.
(a, conrtesy National Institute of Cartography,
Cameroon.)
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FIGURE 2.9
Streets of Cairo
{a) Map of streets of Cairo, 1808. (b) Fractal simulation for Cairo streets. {c) Enlarged view
of fourth iteration.
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branching streets of North African cities. Figure 2.9a shows a map of Cairo, Egypt,

irt 1898. The map was created by an insurance company, and I have colored the

streets black to make the scaling branches more apparent. Figure 2.gb shows its’

computer simulation. Delaval (1974) has described the morphogenesis of Saha-
ran cities in terms of successive additions similar to the line replacement in the
fractal algorithms we have used here. The first “seed shape” consists of a mosque
connected by a wide avenue to the marketplace, and successive iterations of con-
struction add successive contractions of this form. _

Since these fractal Saharan settlement architectures predate Islam (see
Devisse 1983), it would be misleading to see them as an entirely Muslim inven-
tion; but given the previous observations about the introduction of Islamic
architecture as an interruption of circular fractals in sub-Saharan Africa, it is impor-
tant to note that Islamic culeural influences have made strong contributions to
Alfrican fractals as well. Heaver (1987) describes the “arabesque” artistic form in
North African architecture and design in terms that recall several fractal con-
cepts {e.g., “cyclical rhythms” producing an “indefinitely expandéble" struc-
ture). He discussed these patterns as visual analogues to certain Islamic social

concepts, and we will examine his ideas in greater detail in chapter 12 of this book.

Conclusion

e

Throughout this chapter, we have seen that a wide variety of African settlement
archirectures can be characterized as fractals. Their physical construction makes

use of scaling and iteration, and their self-similarity is clearly evident from com-

parison to fractal-graphic simulations. Chapter 3 will show that fractal architecture

ts not simply a typical characteristic of non-Western settlements. This alone does
not allow us to conclude an indigenous African knowledge of fractal geometry;
in fact, I will argue in chapter 4 that certain fractal patterns in African-decora-
tive arts are merely the result of an intuitive esthetic: But as we have already seen,
the fractals in African architecture are much more than that. Their design is linked

to conscious knowledge systems that suggest some of the basic concepts of frac-

tal geometry; and in later chapters we will find more explicit expressions of this

indigenous mathematics in astonishing variety and form.
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CHAPTER

Fractals

1n-

——cross-cultural

———comparison

——The fracral serttement patterns of Africa stand in sharp contrast to the Carte-
sian grids of Euro-American settlements. Why the difference? One explanation
could be-the difference in social strucrure, Euro- American cultures are organized
by what anthropologists would call a *state society.” This includes not just the

modern nation-state, but refers more generally to any society with a large

many state societies, as well as an enormous number of smalier, decentralized
social groups, with little political hierarchy-—that is, societies that are organized
“bottom-up” rather than “top-down.”! But if fractal architecture is simply the
automatic result of a nonstate social organization, then we should see fractal sertle-
ment patterns in the indigenous socierties of many parts of the world. In this chap-
ter.we will examine the sertlement patterns found in the indigenous societies
of the Americas and the South Pacific, but our search will turn up very few frac-

tals. Rather than dividing the world between a Euclidean West and fractal

themes in organizing its built environment. African architecture tends to be frac-
tal because that is a prominent design theme in African culture. In fact, this cul-

tural specificity of design themes is true not only for architecture, but for many

~ political hierarchy, labor specialization, and cohesive, formal controls—whatis ~

. sometimes called “top-down” organization. Precolonial African cultures included .

non-West, we will find that each society makes use of its particular design

39



40 Introduction

other types of material design and cultural practices as well. We will begin our
survey with a brief look at the design themes in Native American societies, which

included both hierarchical state empires as well as smaller, decentralized tribal
cultures.

Native American design

The Ancestral Pueblo society dwelled in what is now the southwestern United
States around 1100 c.E. Aerial photos of these sites (fig. 3.1) are some of the most
famous examples of Native American settlernents. But as we can see from this
vantage point, the architecture is primarily characterized by an enormous circular
form created from smaller rectangular components—certainly not the same shape:
at two different scales. This juxtaposition of the circle and the quadrilateral (rec-
tangle or cross-shaped) form is not a coincidence; the two forms are the mest impor-
tant design themes in the marerial culture of many Native American societies,
including both North and South continents.

As far as architecture is concerned, there are no examples of the nonlinear
scaling we saw in Africa. The only Native American architectures that come

close are a few instances of linear concentric figures (fig. 3.2a). Shapes approx-

imating concentric circles can be seen in the Poverty Point complex in north-

FIGURE 3.1
Euclidean geometry in Native American architecture
(2) Aerial photo of Bandelier, one of the Ancestral Pueblo settlements {starting around 1100 C.£.)
in nothtwestern New Mexico. (b) Aerial photo of Pueblo Bonito, another Ancestral Pueklo

settlement (starting around gso ¢.&.}. Note that they are mostly rectangular at the smallest scale
and circular at the largest scale.

(a, photo by Tom Baker; b, photo by Geovg Gerster.)
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ern Louisiana, for example, and there were concentric circles of tepees in the
Cheyenne camps. The step-pyramids of Mesoamerica look like concentric
squares when viewed from above. But linear concentric figures are not fracrals.
First, these are linear layers: the distance between lines is always the same, and

thus the number of concentric circles within the largest circle is finire. The non-

linear scaling of fraceals requires an ever-changing distance between lines,

FIGURE 3.2

Linear concentric forms in Native American architecture
(2} Native American architecture is typically based on quadrilateral grids or a combination of
circular and grid forms. The only examples of scaling shapes are these linear concentric forms. In
the Poverty Point complex, for example, concentric circles were used, and concentric squares can be
seen if we luok at the Mexican step pyramids from above. These forms are betrer characterized as
tuclidean than fraceal for two reasons: (b) First, they are linear. Here is an example of 2 nonlinear
concentric circle. While the linear version must have a finite number of circles, this kgure could
have an infinite number and still fit in the same boundary. (¢) Second, they only scale with respect
10 one point (the center). Here is an example of circles with mare global scaling symmetry.
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which means there can be an infinite number in a finite space (fig. 3.2b). Sec-
ond, even nonlinear concentric circles are only self-similar with respect to a

single locus (the center point), rather than having the global self-similarity of
fractals (fig. 3.2¢). : '

The importance of the circle is detailed in a famous passage by Black Etk
(1961), in which he explains that “everything an Indian does is in a circle, and
that is because the Power of the World always works in circles, and everything
tries to be round.” But he goes on to note that his people thought of their world
as “the circle of the four quarters.” A similar combination of the circle and quadri-
lateral form can be seen many Native American myths and artifacts; it is not their
only design theme, but it can be found in a surprising number of different soci-
eties. Burland {(1965), for example, shows a ceremonial rartle consisting of a wooden
hoop with a eross inside from southern Alaska, a Navajo sand painting showing
four equidistant statks of comn growing from a circular lake, and a Pawnee buffalo-
hide drum with four arrows emanating from its circular center. Nabokov and
Easton {1989) describe the cultural symbolism of the tepee in terms of its com-
bination of circular hide exterior and the four main struts of the interior wood
supports. Watets (1963) provides an extensive illustration of the culbtural sig-
nificance of combining the circular and cross form in his commentary on the Hopi
creation myth. ‘

The fourfold symmetry of the quadrilateral form has lead to some sophis-
ticated conceptual structures in Native American knowledge systems. In Navajo
sand painting, for example, the cruciform shape represents the “four directions”
concept, similar to the Cartesian coordinate system. While orderly and consis-
tent, it is by no means simple (see Witherspoon and Peterson 1995). The four
iNavajd difections are also associated with corres.ponding sun positions (dawn,
day, evening, night), yearly seasons {spring, summer, fall, winter), principal
colors (white, blue, yellow, black), and other quadrilateral divisions (botanical
categories, partitions of the life cycle, etc.). These are further broken into inter-
secting bipolarities (e.g., the east/west sun path is broken by the north/south direc-
tions). Combined with circular curves (usually representing organic shapes and
processes), the resulting schema are rich cultural resources for indigenous mathe-
matics (see Moore 1994). But, except for minor repetitions {like the small circular
kivas in the Chaco canyon site of fig. 3.1) there is nothing particularly fractal
about these quadrilateral designs.

Many Mesoamerican cities, such as the Mayans’ Teotihuacan, the Aztec’s
Tenochtitldn, and the Toltec’s Tula, embedded a wealth of astronomical knowl-
edge in their rectangular layouts, aligning their streets and buildings with heav-
enly objects and events (Aveni 1980). J. Thompson (1970} and Klein (1982)
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Fractals in cross-cultural comparison

describe the quadrilateral fipure as an underlying theme in Mesoamerican geo-
metric thinking, from small-scale material construction techniques such as

weaving, to the heavenly cosmology of the four serpents. Rogelio Diaz, of the

Mathemartics Museum at the University-of Querétaro, points out that the skin

patterns of the diamondback rattlesnake were used by the Mayans to symbolize
this concept (hig. 3.32).

Comparing the Mayan snake pattern with an African weaving based on the
cobra skin pattern (fg. 3.3b), we can see how geometric modeling of similar nat-
ural phenomena in these two culrures results in very different representations.
The Native American example emphasizes the Euclidean symmetry within one
size frame (“size frame” because the term “scale” is confusing in the context of
snake skin). This Mayan pattern is composed of four shapes of the same size, a
fourfold symmetry, But the African example emphasizes fractal symmetry, which
is not abour similarity between right/left or up,/down,.but rather similarity
between different size frames. The African snake pattern shows diamonds wichin
diamonds within diamonds. Neither design is necessarily more accurate: cobra
skin does indeed exhibir a fractal pattern—the snake’s “hood,” its twin white
patches, and the individual scales themselves are all diamond shaped—and yet
snake skin patterns {thanks to the arrangement of the scales) are also charac-
teristically in diagonal rows, so they are accurately modeled as Euclidean struc-
tures as well. Each culture chooses to emphasize the characteristics thar best fit
its design theme. o .

There are a few cases in which Native Americans have used scaling geo-
mertries in artistic designs. Several of these were not, however, part of the ra-

ditional rep.ertoire.2 Navajo blankets, for example, were originally quite linear;

-it was-only oo examining Perstan rugsthat Navajo weavers began to use more
a

scaling styles of design (and even then the designs were much more Euclidean
than the Persian originals; see Kent 1985). The Pueblo "storyteller” hgures have
some scaling properties, but they are of recent (1960s) origin. Pottery and cala-
bash (carved gourd) artisans in Africa often create scaling by allowing the
design adaptively to change proportion according to the three-dimensional form
on which it is inscribed (see “adaptive scaling” in chapter 6), but this was quirte

rare in Narive American pottery until the rg6os.

Finally, there are three Native American designs that are both indigenous -

and fractal. The best case is the abstract figurative art of the Haida, Kwakiutl,
Tlingut, and others in the Pacific Northwest {Holm 1665). The figures, primarily
carvings, have the kind of global, nonlinear self-similarity necessary to qualify
as fractals and clearly exhibit recursive scaling of up to three or four iterarions,

They also make use of adaprive scaling, as illustrated by the shrinking series of

.
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FIGURE 3.3
Snakeskin models in Native American and African cultures
() Rogelio Diaz of the Mathematics Museum at the University of Querétaro shows how the skin
pacterns of the diamondback rattlesnake were used by the Mayans to symbalize a cosmology based
on quadritateral structure. (b) The Mandiack weavers of Guinea-Bissau have also created an
abstract design based on a snakeskin pattern, but chose to emphasize the {ractal characteristics.
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Fractals in cross-culural comparison

figures on the diminishing handles of soup ladles. Researchers since Adams
{1036) have pointed to the similarity with early Chinese art, which also has some
beautiful examples of scaling form, and its style of curvature and bilateral sym-

metry could indeed be culturally tied-to these New World designs through an

ancient common origin. However, 1 doubt thar is the case for the scaling char- .

acteristics. The Pacific Northwest art appears to have developed irs scaling
structure as the result of competition between artisans for increasingly elaborate
carvings (Faris 1083). Although some researchers have attribured the competi-
tion pressure to European trading influences, the development of the scaling designs
was clearly an internal invention.

The other two traditional Native American designs do not qualify as frac-

tals quite as well. One involves the saw-tooth pattern found in several basket

and weaving designs. When two saw-tooth rows intersect at an angle, they cre-

ate a triangle made from triangular edges. Burt these typically have only two iter-
ations of scale, and there is no indication in the ethnographic literature that
they are semantically tied to ideas of recursion or scaling {see Thomas and Slock-
ish 1082, 18). The other is an arrangement of spiral arms often found on
coiled baskets. Again, this is sell-similar only with respect to the cenrer poirt,
but there are some nontinear scaling versions {that is, designs that rapidly get
smaller as you move from basker edge to center). However, these designs
generatly appear to be a fusion between the circular form of the basker and the
cruciform shape of the arms: again more a combination of two Euclidean
shapes than a fracral.

One of the most common examples of this fusion berween the circle and

the cross is the “bifold rotation” pattern in which the arms curve in opposite
directions, as shown in figure 3.4a. Fipure 3.40 shows the figure of 2 bar from-

Mimbres pottery with a more complex version of the bifold rotation. Euclidean

symmetry has been emphasized in this figure; for example, the ears and mouth
of the bat have been made to look similar to increase the bilateral symmetry, and
the belly is drawn as a rectangle. Figure 3.‘4c shows the figure of a bat from an
Adfrican design; it is a zigzag shape that expands in width from top to bottom, rep-
resenting the wing of the bar. Here we see neglect of the bilateral symmetry of
the bat, and an emphasis on the scaling folds of a single wing. Again, the Native
American repr‘esentation makes use of its quadrilateral/circular design theme, just
as the African representation of the bat emphasizes scaling design.

There is plenty of complexity and sophistication in the indigenous georm-
etry and numeric systems of the Americas (see Ascher 1991, 87-94; Closs 1986;
Eglash 1998b}, but with the impressive exception of the Pacific Northwest carv-

ings, fracrals are almost entirely absent in Native American designs.
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Pima basket Southwestern pottery matif

{a) The circular and quadrilateral forms were often combined in Native American designs as a
fourfold or bifold rotation.

{b) This image of a bat, from a Mimnbres pottery in Southwestern
Narive American tradition, shows an emphasis on circular and
quadrilatecal form. The ear and the mouth, for example, are made
to look similar to emphasize bilateral symmetry, and the belly js
drawn as a rectangle. It also shows the wing bones as a bifold
totation pattern.

(¢) This African sculpture of a bat, from the Lega society of Zaire, pays
littte attention to the bilateral symmetry of the bat’s body but gives an
emphasis on the scaling symmetry of the wing folds, shown as an
expanding zigzag pattern.

FIGURE 3.4
The bifold rotation in Native American design
(az Left, from Miles 1963. Ceneer, from Southwest Indian Craft Arts by Clara Lee Tanner. Copyright
1968 by the Arizona Board of Regents. Reprinted by permission of the University of Arizona Press.
Right, courtesy Don Crowe. b, from Zaslow 1977, courtesy of the author. ¢, courtesy of Daniel Biebuyck.)
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"2/5;') Fractals in cross-cultural comparison
™
= Designs of Asia and the South Pacific
(3 g

Several of the South Pacific cultures share a tradition of decorative curved and
spiral forms, which in certain Maori versions—particularly their rafter and tat-

foo patterns—would certainly count as'fracral (see Hamilton 1977). These are

strongly suggestive of the curvature of waves and swirling water. Classic Japan-
ese paintings of water waves were also presented as fractal patterns in Mandel-
brot’s (1982) seminal text {plate C16). These may have some historic relation
to scaling patterns in Chinese art {see Washburn and Crowe 1988, fig. 6.9}, which
are based on swirling forms of water and clouds, abstracted as spiral scaling’

structures. While both the Japanese and Chinese patterns are explicitly associ-
ated with an effort to imitate nature, these Maori designs are reported to be more

. _ about culture—in particular, they emphasize mirror-image symmetries, which are
,s[ern pottery motif

associated with theu' culrural themes of complimentarity in social relations

(\merican designs as a (Hanson 1083).

In almost all other indigenous examples, however, the Pacific lstander pat-
terns are quite Euclidean. Settlement layout, for instance, is typically in one
or two rows of rectangular buildings near the coasts, with circular arrangements
of rectangles also occurring inland (see Fraser 1968). The building construc-
tion is generally based on a combination of rectangular grids with triangular
or curved arch roofs. Occasionally these triangular faces are decorated with tri-
angles, but otherwise nonscaling designs dominate both structural and deco-
rative patterns. 3 ’

Again, it is important to note that this lack of fractals does not imply a lack
of sophistication in their mathematical thinking. For example, Ascher {(1991)
has analyzed some of the algorithmic properties of Warlpiri (Pacific Islander) sand
drawings. Similar structures are also found i Afiica; where they are cailed-
lusoria. But while the lusona tend to use similar patterns at different scales (as '
we will see in chapter 5), the Warlpiri drawings tend to use different patterns at
different scales. Ascher concludes that the Warlpiri method of combining dif-
ferent graph movements is analogous to algébraic combinations, but the African
fusona are best described as fracrals.

Complicating my characterization of the South Pacific as dominated by

Euclidean parterns is the extensive influence of India. It is perhaps no ceinci-

dence that the triangle of triangles mentioned above is most common in Indone-

o sia. In architecture, a famous exception ro the generally Euclidean form is that
) 'j’?csign

(- jtra Lee Tanner. Copyright
Ly of Arizona Press.

‘ Jour&esy of Daniel Biebuyck,)

of Borobudur, a temptle of Indian religious origin in Java. Although northern India
cends toward Euclidean architecture, explicit recursive design is seen in several

temples in southern India—the Kandarya Mahadeo in Khajuraho is one of the

i
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clearest examples—and is related to recursive concepté in religious cosmology.
These same areas in southern India also have a version of the lusona drawings,
and many other examples of fractal design. Interestingly, these examples from south-
ern India are the products of Dravidian culture, which is suspected to have sig-

nificant historical roots in Africa.

European designs

Most traditional European fractal designs, like those of Japan and China, are due

to imitation of nature--a topic we will take up in the following chapter. There
are at feast two stellar exceptions, however, that are worth noting. One is the
scaling iterations of triangles in the floor tiles of the Church of Santa Maria in

Cosmedin Rome (see plate 5.7 in Washburn and Crowe 1988). I have not been

able to determine anything about their cultural origins, but they are clearly

artistic invention rather than imitation of some natural form. The other can be
found in certain varieties of Celtic interlace designs. Nordenfalk {1977) suggests

that these are historically related to the spiral designs of pre-Christian Celtic reli-

gion, where they trace the flow of a vital life force. They are geometrically -

classified as an Eulerian path, which is closely associated with mathematical knot

theory (cf. Jones 1990, 99).

Conclusion

Fractal structure is by no means universal in the material patterns of indigenous
societies. In Native American designs, only the Pacific Northwest patterns show
a strong fractal characteristic; Euclidean shapes otherwise dominate the art and
architecture. Except for the Maort spiral designs, fractal geometry does not
appear to be an important aspect of indigenous South Pacific patterns either. That
is not to say that fractal designs appear nowhere but Africa—southern India is
full of fractals, and Chinese fluid swirl designs and Celtic knot patterns are
almost certainly of independent origin. The important point here is that the frac-
tal destgns of Africa should not be mistaken for a universal or pancultural phe-
nomenon; they are culturally specific. The next chapter will examine the

question of their mathematical specificity.
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Before we can discuss the fractal shapes in African settlement architectures as
geometric knowledge, we need to think carefully about the relation between mate-

rial dLSlgnS and 1@5@:1“(:&1 undersmn_img Designs are best seen as pDSlthﬂLd

tional patrerns, created acu%tal]y as the by-product of some other dcnwty
In the middle of the range are designs that are intentinnal but purely intuitive,
with no rules or guidelines to explain its creation. Ar the upper end of the range,
we have the intentional application of explicit rules that we are accustomed to
associating with mathemartics. The following sections will examine the fractal

designs that occur in various positions along this intentionality spectrum.

Fractals from unconscious activity

An excellent example of unintentional fractals can be found in the work of Michael

Batry and Paul Longley (1980), who examined the shape of large-scale urban sprawl
surrounding European and American cities (fig. 4.1}, While the blocks of these

cities are typically laid out in recrangular grids, ar very large scales——around 100

square miles—we can see that the process of population growth has created an

irregular patrern. This type of fractal, a “diffusion limired aggregation,” also

4G
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FIGURE 4.1 Ce
Urban sprawl in London nature, -
Large-scale urban spraw! . | selves fr
; generally has a fractal i as those
structure, The urban sprawl § those
fractals only exist at very designs
large scales—about 100 sq. . - . based o
miles—and result from the ¢
unconscious accumulation £ come
of urlinn popularion dyramics. - ... . . H
At levels o!’lconsc_lous intent j trum? T
{e.g., the grid of city blocks),
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kilometers. - . . '
ilo eters. - - in Eurgy
{Reprinted with permission from . :
Batty et al. 1989.} of mim
- foolish
: sitnply
by-proc
T
: L abstrac
occurs in chemical systems when particles in a solution are attracted to an elec- ‘ the con
trode. Fracta! urban spraw! is clearly the result of unconséious social dynamics, 3 is still l
not conscious design. At the smaller scales in which there is conscious planning, : in the
European and American settlement architectures are typically Euclidean. mon t
L form o
. _Fractals from nature: mimesis versus modeling 3. , style ar
: ‘ e : : SRR that th
It might be tempting ro think that the contrast between the Euclidean-designs ‘ o patte
of Europe and the Fractal desngns of Africa can be - explained by the important role L a copf
of the n'ltura[ environment in African societies. But this assumption turns out ‘ : ¢
to be wrang; if anything, there is a tendency for xpd;genous societies to favor Euclid- : : design
ean shapes. Physicist Kh. 5. Mamedov observed such a contrast in his reflections L fractal
on his youth in a nomadic culrure: i
. : geners
My parents and countrymen . . . up to the second world war had been o cre:
nomads. . . . Qutside our nomad tenrs we were living in a wonderful kingdom itive ¢
of various curved lines and forms. So why were the aesthetic signs not formed 3 tinctl:
from them, having instead preserved geometric patterns . . . 7 [{]n the cities 2550C]
EAReTY
where the straight-line peometry was predominant the aesthetic signs were formed
. . - . i shape
. with nature playing the dominating role. . . . [T]he nomad did not need the
“portrait” of an oak to be carried with him elsewhete hecause he could view all excep
sorts of oaks every day and every hour . . . while for the townsfolk their inclina- art tra
tion to nature was more a resutt of nostalgia. {Mamedov 1986, 512-513) only 1
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Intention and invention in design

‘Contrary to romantic portraits of the “noble savage” living as one with
nature, most indigenous societies seem quite interested in differentiating them-

selves from their surroundmgs It is the mhabrtants of large state societies, such

as those of modern _Europe; who yeam 4o mimic the natural. When European

based on mtmlcry of natural form are relatwely rare; t}w@p_@pﬁl}_@
come from the realm of culrure.

“How should we place such nature-based designs in our intentionality spec-
rrumn! That depends on the difference_ between mimesis. and modelmg\&nisis)
ﬁ&ﬁ@}pp} to mirror thormugc ofa par{rtular object, a goal explicitly stated
by Plato and Aristotle as the essence of art, one that was subsequently followed
in Europe for many centuries (see Auerbach 1953). A photograph is a good example
of mimesis. A photo might capture the fractal image of a tree, but it would be
foolish ro conclude that the photographer knows fractal geometry. If artisans are
simply trying to copy a particular natural object, then the scaling is an unintended
by-product. )

The most important attributes that separate mimesis from{ modeling

abstraction and gener'rliz'\tion.Qbstraction is an attempt to leave out many of

the concrete details of the sub;ect by creating a srmpler figure whose structure-

is still roughly analogous to the orlgmalw—often called a styhzed" representation:

in the arts(Generallzat—\means selecting an analogous structure that is com-

mon to altl examples of the subject; what is often referred to as an underlymg

form ot law.! For example, Mandelbrot (1 081) points 1o the European Beaux. Arts:

sry]e as an atiempt not merely to imitate nature, but to “guess its laws.” He notes

that the interior of the Paris opera house makes use of scaling arches-within-arches;,

“aparrern that generalizes some of the scaling characteristics of nature, butis not

a copy of any one particular natural object.

Since the ultimate generalization is a mathemattcal model,,why didn’t
design practices such as the Beaux Arts style result in an early development of
fractal geometry? For Europeans, such lush ornamentation was presented—and
generally accepred—as embodying the opposite of mathematics; it was anieffort
to create designs that could only be understood in irrational, emotional, or intu-
itive terms. Even some movements against this attempt, such as the use of dis-
tinctly Euclidean forms in the high modern arts style, simply reinforced the
association because it only offered a reversal, suggesting that “mathematical”
shapes (cubes, spheres, etc.} could be esthetically appreciated. With rare
exceptions (e.g., Thompson 1917), mimesis of nature in pre-WW 11 European

art traditions merely furthered the assumption that Euglidean geometry was the
ekl

only true geometry.?
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The difference between\xj\m}r\t}‘e/sns and modelmg provides two different posi- ized in t
tions along the intentionality spectrum. The least intentional would be merely wing. Tl
holdmg a mirror to nature-—for example, if someone was just shooting a cam- scaling p
era or painting a realistic picture outdoors and happened to include a fractal object crete de’
(cloud, tree, erc.). This mimesis does not count as mathematical thinking. More Th
intentional is a stylized representation of nature. If the artist has reduced the nat- : meaning

ural image to a structurally analogous collection of more simple elements, she has ’ ; 7 of imitas
created an abstract model. Whether or not such abstractions move toward more | living ¢l
mathematical models is a matter of local preference. 2 are repre:

The two examples of African representations of nature we observed in reflection
the previous chapter certainly show. that the artisans have gone beyond - butitis
mere mimesis. The Mandiack cobra pattern we saw in figure 3.2. shows a strictly h : .
s‘{;‘s—t;ﬁz—ft—l'::ﬁscallng pattern. This textile design conveys the scaling property '* ) The fractal e
of the natura! cobra skin pattern—diamonds at many scales—in a stylized or _
abstract way. We can take this idea a step further by examining another i Just as w
Bwami bat sculpture (fig. 4.2). This spiral pattern is also a stylized repre- - tional, a;
sentation of the natural scaling of the bat's wing, but it.is a different geometric l the resul
design than the expanding zigzag pattern we saw in figure 3.4¢. It is more styl- ‘ ‘ tion of nn
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Intention and invention in design

ized in the sense of being further abstracted from the original natural bat’s

wing. This provides further evidence that the sculptors were focused on the

crete details.

Ly

scaling properties—the generalized underlying feature—and nor particular con-

e

The greatest danger of this book is that readers might misinterpret its

meaning in terms of primitivism. The fact that African fractals are rarely the result
e e

by

of of imitating natural forms helps remind us that they are not due to “primitives

e ——

ltvmg close 1o nature.

" But even for those rare cases in which African fractals

il oilisiamkel M
reﬂecnon. The geometric thmkmg thiat goes into tb_gs,eﬁc;)_c,gmples may,b_e_sjmglg,
18 BEOmEL 1king that goes Into t 1ples ma nple,

but it is quite intentional.

fractal esthetic

Just as we saw how designs based on nature range from unconscious to inten-

tional, artificial designs also vary along a range of intention, with some simply

the result of an intuitive inspiration, and others a more self-conscious applica-

tion of rules or principles. The examples of African fractals in figure 4.3 did not

appear to be related ro anything other than the artisan's estheric intuition or
Appeat 10 be thiated 19

sense of beauty. As far as | could determine from descriptions in the literature
[ manlebid

and my own fieldwork, there were no explicit rules about how to construct these

!

designs, and no meaning was attached to the particular geometric structure of

the figures other than looking good. In particular, 1 spent several weeks in

Dakar wandering the streets asking about certain fractal fabric patterns and jew-

elry designs, and the insistence that these patterns were “just for looks” was so

adamant that if someone finally had offered an explanation, 1 would have

viewed it with suspicion.

Since some professional mathematicians repore that their ideas were pure

intuition—a sudden flash of insighe, or “Ahal” as Martin Gardner puts it—we

shouldn't discount the geomerric thinking of an artisan who reports “1 can’t rell

you how I crearted that, it just came o me.”

intentional designs. On the (}ther hand,

Estheric patterns clearly_qualify as
il L e

- e
mathemanca[ | ideas behind these patterns; they wall have to remain a mystery y unless

something more is revealed abo_ut their meaning or [11(;4[[1,3:111 s construction tech-

niques, It is worth noting, however, that they do contribute to the fractal design

theme in Africa. Esthetic patterns help inspire practical designs, and vice versa.

Since ancient trade nezworks were well established, the diffusion of esthetic pat-

terns is probably one part of the explanation for how {ractals came to be so wide-

spread across the African continent.
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FIGURE 4.3
Esthetic fractals

{a) Meurant (quoted in Reil 1996} repotts
that the Mbuti women who created this
fractal design, a bark-cloth painting, told
hirm the design was not "telling stories,”
not was it “representing any particular
object.” {b) Scaling patcerns can be
found in many African decorative designs
that are reported to be “just for beauty.”
Upper left, Shaowa Raffta cloth; lower left,
Senegalese tie dye; right, Senegalese
pendant.

(a, courtesy Georges Meruant.b: Upper loft,
British Musewm; lower left, from Musée Royal
de UAfrigue Cenwal, Belgium; right, photo
courtesy IFAN, Dakar.}
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FIGURE 4.4
The quincunx fractal
A customer in Touba, Senegal, selects a fractal quincunx pattern for his leather neck bag. The
quincunx is historically important because of its use by early African American “man of science”
Benjamin Banneker.

Of course, there are plenty of African designs that are strictly Euclidean,
but even these can occur in “fractalized” versions. One particularly interesting
example is the quincunx (fig. 4.4). The basic quincunx is a pattern of five squares,
with one at the center and one at each corner, The design is common in Sene-

gal, where it is said to represent the "light of Allah.” The quincunx is hi;tori—

to the early African / Amencan man ofsc:ence” Benjamm Banneker Smce evi-
dence shows that Bannckers gmndf’ather (Bannaka) came from Senegal, the
quincunx is a fascinating possibility for geometry in the African diaspora {see
Eglash 1997¢ for details). Because of the fractal estheric, this religious symbol
is often arranged in a recursive pattern-—five squares of five squares—as shown
in higure 4.4 in the design for a leather neck bag.

Finally, there are also exam’ples of the fractal esthetic in common house-

non~smols are structured differently from chairs, which are structured

differently from couches. Bur in African homes one often sees different sizes
of the same shape (fig. 4.5). A similar difference has been noted in cross-culrural
comparisons of housing. Whereas Euro-Americans would never think to have
a governer’s mansion shaped like a peasant’s shack (or vice versa), precolonial
African architecture typically used the same form at different sizes {as we saw
for the status distinctions in the Ba-ila sectlement in chapeer 2). It is unfortunate
fpthat this African structural characreristic is typically described in terms of a
" Iack—us the absence of shape distinctions rather than as the presence of a scal-

'\ing design theme.



FIGURE 4.5

The fractal esthetic in houschold objects
African stools, chairs, and henches are often created in a scaling series.
{Photo courtesy of Africa Place, Inc.}

Conclusion

We now have some puidelines to help determine which fractal des1gn5 should count
as mathematics, which should not, and which are in‘between. Figure 4.6 sum-
marizes this spectrum. Fractals produced by unconscious activity, ot as the unin-

e e P JRUTR

e
tentional by-product from some other purpose, cannot. be atmbuted to mdzgenous
e

U
concepts. But some artistic activities, such as the creation of styhzed repreqen—

[,

Unintentional Intentional [ntentional
but implicit and explicit
I 1 ' |
Unconscious activity Canscious wse of nawural scaling Construction techniques
s urban sprawl estylistic abstraction of natural scaling
Accidental fractals Esthetic design Krnowledge systems
*“mirror” portrait of nature sintuitive fractal design theme :
(mimesis; e.g., photography)
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Intention and invention in design

tations of nature or purely esthetic designs, do show intentionalactivity focused
on fractals. Such examples may be restricted in terms of geometric thinking—

the-actisans may only repore that the design suddenly came to them in a flash of
A

intuition-but these are clearly distinguished from those which are unconscious
oraccidental. The following chapters will consider examples that are not only
intentional, but also include enough explicit informartion about design techniques

and knowledge systems to be easily identifiable as mathemasical practice and ideas.
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CHAPTER

—Geometric
——algorithms

—— The word (“algorithm?} derives from the name of an Arab mathematician,
Al-Khwarizmi (c. 78—5—850 c.u.}, whose book Hisab al-jabr w'al-mugabala (Cal-
culation by Restoration and Reduction) also gave us the word "algebra.”

[ ') ........
T the modern term \Q'-gonthj ‘]ppllES to any formally specified pr procedure. A peo- .
! memc a!gortthm gweb exphmt lI‘lStIUCt!O for genemtmg a Q'lruc;_uhr set ofsp':' '

{ ')

4 'WO INCIZENOUS |

. demgns the 45-degree:angl _truct' ns of the Mangbetu and the lusona draw-
o ings ngs of the Chokwe

¢ . o e

Geometry in Mangbetu design

The Mangbetu occupy the Uele River area in the northeastern pare of the
Democratic Republic of Congo (formally Zaire). Archaeological evidence shows

[ Y

iron smeltlng in the area since 2300 B.C.E., but the M'mgbetu coming from drier

SRR

..

O



62 African fractal mathematics

/ societies of the area: Bantu-speaking peoples such as the Buda, Bua and Lese, and‘ '
{ Ubangian-speaking peoples such as the Azande, Bangba, and Barambo. Around
18c0a number of small chiefdoms were, consolidated into. the fiest Mangbetu kmg- '

dog} Although it tasted only two generatlons a tradition of courtly prestige con-
tfi‘l'wued even in small villages and spread to many of the Mangbetu’s trading partners.
This combination of cultural diversity, exchange, and prestige resulted in a
thriving artistic tradition.

A detailed account of Mangbetu history and traditions can be found in’
African Reflections: Art from Northeastern Zaire, Schildkrout and Keim (1ggo) begin
their analysis by showing that the most famous aspect of Mangb_el;u.art the

naturallstac Jook,” was actually quite rare in the traditional Mangbetu society
of the nineteenth century. During a research expedition to the Congo in 1914
(the origin of the photos used here), mammalogist
Herbert Lang became fascinated with lifelike carvings
of human figures, and as word spread that he was pay-
ing high prices for them, more of these carvings were
produced. Other collectors came to buy {hese p!eces,_and

eventually the economic rewards for producmg natu-

ralistic Mangbetu art became so strong that it replaced
other styles,
fu-—‘w—""—"-——— N
Schildkrout and Keim show that originally the
most important esthetic was not naturalism, but abstract

" geometric design. The i_gdigenom fascir

fice and abstraction was jgi

e et b e e ot e

their preconceptions of Afrlcans as nat

“chlldren o the forest became a self fulﬁlhné -éxpecf

tation. But Sut the artifacts and photographlc records from
th_e#1914 expedition provide us with excellent examples
of traditional Mangbetu patterns, as well as an oppot-
tunity to infer some of their techniques.

Figure 5.1 shows the decorative end of an ivory
hatpin. Like the architecture and esthetic patterns we
have seen, this is cleariy a smlmg deSIgn but the pre-

. —
cision of the partern suggests th'lt there m'ly be a more

It b e vt n e i b R B

FIGURE 5.1

Mangebetu ivory sculpture
(Transparency no. 3935, photograph by Lynton Gardiner, couttesy
American Museum of Natural History.)
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Geometric algorithms

formal geometric process at work. Similar design can be seen at work in the Mang-

bety’ s geometric style of personal adornment. Figure 5.2a shows a Mangbetu hair-

style popular durmg the time that this carving was.created {about 1914), which
featured a disk angled to che vertical at 45 degrees. Men often wore a hat with
the top flattened, forming the same angle, as seen in figure 5.2b. Just as a plane
cuts diagonally through the top of the heads in the ivory sculprure of figure 5.1,
real Mangbetu headdresses also terminated in a 45-degree angle.

This was only one part of an elaborate geometric esthetic based on mul-

tiples of the 45-degree angle. Figure 5.2b shows an ivory hatpin, endmg in a disk

perpcndtcular to it, inserted perpendicular to the hat. To its right, a small ivory

arrow pinned to the hat points horizontally, thus forming an angle of 135 degrees

45-d degree angle Thls adornment style ‘included artificial elonganon of the head
which is clearly visible in the phatograph in figure 5.2b. Elongation was accom-
plished by wrapping a cloth band around the head of infants; the woman in

figure 5.2a is weaving one of these bands. Head elonpation resulted in an angle

of 135 degrees between the b'u,k of the head and the neck

FIGURE 5.2 '
Geometric design in Mangbetu personal adornment

{a) Mangbetu woman weaving headband. (b) Mangbetu chief.
{a, negative no. 111919, photograph by H. Lang, courtesy American Museum of Natural History;
b, negative no. 224105, photograph by H. Lang, courtesy American Muserwm of Narural History.}
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While the Mangbetu geometric conception of the body may have inspired
the 45-degree-angle design theme, those designs were certainly not limited to simple

: e,
mimicry of anatomy.'We cati clearly see this in their musical instrum@hnts. The

e e by

dram in figure 5.3, for example, has its upper surface cut at a 45-degree angle
to the vertical. The stringed instrument shown in figure 5.3b has a resonator that
meets the vertical tuning stem at a 135-degree angle. Even in the case of anthro-

pomorphic designs, the artisans elaborated on the human form in ways that show

b

FIGURE 5.3
(Geometric design in Mangbetu musical instruments

(a) Dirum. (b) Harp.
(a, negative no. 171806, photograph by H. Lang, cowrtesy American Musewm of Natural History;
b, courtesy Rietherg Musetm Zurich, photograph by Wettstein and Kanf.)
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Geometric algorichms

For example, there is an anthropomorphic decorative motif at the end of the
tuning stem shown in figure 5.3h, bur these human heads are not simply mim-
icking human form. In figure 5.2b we sdw that the Mangbetu had a 135-degree
angle between the back of the head and the neck. The carved heads in figure
5.3b have a go-degree angle between the back of the head and the neck. Such
distortions indicate active geometric thinking rather than passive reﬂecnon of
natur—é—l'a;.r;;t.b-rmcal anglLs (which, recalling the artificial head elongation, were
not 5o natural to begin with).
There are also purely abstract designs that make use of multiples of 45 degrees,
.as we see in figure 5.4. Modern Mangbetu report that the creation of a design
reflected the artisan’s desire to “make it beautiful and show the mtelhgence of
“.the creator” (Schildkrout and Keim 1990,

100). This suggests another reason for arti-

les of

bt i e

sans to adhere to angles thar are multi

o g P o - e R

45__degr{,ea if there e were no rules to follow,

then it would hwe bem dxfﬂcult 10 compare

dLSlgﬂb and demonstrate one’singenuity. By

restnctmg the anmssublc qngles to a small

set, they were better able to display their
geometric accomplishments.

Combining this 45-degree-angle con-
struction technique with the scaling prop-
erties of the ivory carving in figure 5.1 can
reveal its undulymg structure. The carving
has ehree interesting geomeinic featues: -
First, each head is larger than the one abov
it and faces in the opposive direction. Sec-

i ond, each head is framed by two lines, one
formed by the jaw and one formed by the
hair; these lines intersect at approximarely
go degrees. Third, there is an asymmerry:
the left side shows a disrinct angle about

20 degrees from the vertical.

FIGURE 5.4
Mangebetu ivory sculpture

(Transparency no. 3020, photograph by Lynton Gardiner
cunttesy American Musewm of Narwral History. )

v

applications of geometrical thinking.

!
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FIGURE §.5 ‘
Geometric analysis of an ivory sculpture - 0, =6,




Al Ny e

FIGURE 5.0

Geometric relations in the Mangbetu iterative squares structure
Since 8, and 0, are the alternate interior angles of a transversal intersecting two paralle] lines,

8, = 6,
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All of these features can be accounted for by the structure shown in fig-

‘ute 5.5. This sequence of shrinking squares can be constructed by an iterative

process, bisecting one square to crsgt_e”t}j.e‘length of the "e}ide_l_fo?'th_e next
s‘iﬁ_ﬂre, as indicated in t edlagrar—n We will never know for certain if this iter-
ative-squares construction was the concept underlying the sculpture's design, but.
it does match the features identified above. In the ivory sculpture, the left side
is about 20 degrees from the vertical. In the iterative-squares structure, the left

side is about 18 degrees from the vertical, as shown in figure 5.6. Here we see

/that the construction algorithm can be continued indefinitely, and the result-

“ing structure can be applied to a wide variety of math teaching applications, from

simple procedural construction to trigonometry (Eglash 1998a).

Lusona

The Chokwe people of @'gola"‘)had a tradition of creating patterns by drawing
lines ﬁcgueﬁd_:lusona"mthﬁesagﬁd Gerdes (1991) notes that the lusona sand
d;awings show the constraints necessary to define what mathematicians call an
“Eulerian path”: the stylus never leaves the surface and no line is retraced. The

lusona also tend to use the same pattern at different scales, th

is, successive iter-

ingle geometric algorithm. Figure 5.7 shows the first three iterations

of one of the dozens of lusona that were recorded by missionaries during the nine-

ations of a

et

teenth century, when the lusona tradition was still intact.

As in the case of the Mangbetu 45-degree constructions, the restriction to

an Eulerian pach provides the Chokwe with a means to compare designs within

a single framework, and to show how increasing complexity can be achieved within
a4 SINgIE Halnew ot

these constraints of space and logic. But unlike the tompetitive basis for com-

parison that the Mangbetu describe, the Chokwe made use of these figures to cre-

ate group identity. The reports indicate that the lusona were used in an age-grade

initiation system; rituals that allowed each me ber to achieve the status of

reaching the next, more senior level of identity. By using more complex lusona,

the iterations of social knowledge passed on in the initiation become visualized

by the geometric iterations. In chapter 8 we will see other examples of iterative
scaling patterns in initiation rituals. This tradition of group identity through knowl-
edge of the lusona was also deployed by the Chokwe as a way to deflate the ego

of overconfident European visitors, who found themselves unable to replicate the

lusona of many children.

Conclusion

These two examples, the Mangbetu ivory carving and the lusona drawings, help

us sec that African ractals are not just the result of spontaneous intuition; in some

cases ’
mathe
matica

an intt

sal cot
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Successiv
increasing
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cases they are created under rule-bound techniques equivalent to Western

mathematics. And their cultural significance makes it clear that all mache-
fi_’f*@ for the next matical activity—no matter in which society it ig found—is produced through \l
_\Lf;.-x'ain if this iter- an inte;a_ctj(_)“n between the freedom of loeal human invention and the univer-
k are's design, but sal constrainss we discover in space and Togic.
r.‘—_ .re, the left side

¢ ‘ucture, the left

f 6. Here we see

#mand the result-
£
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FIGURE 5.7

Lusona
(a) These figures, “lusona,” were traditionally drawn in sand by the Chokwe people of Angola.
Successive iterations of the same algorithm were sometimes used to produce similar patterns of
increasing size. {(b) The fArst and third iteracions of another lusona algorithm carved into a
wooden box lid.

©_intuition; in some {a, based on drawings in Gerdes 1995.)
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Recall that in both examples the Lq@‘ Ef:ng't" was crucial to the devel-
opment of their scaling geometry. For the Mangbetu's design it was the constraints
of straight-edge construction with angles at multiples of 45 degrees: For the
Chokwe’s lusona it was the constraints of an Eulerian path. But in each case the
choice of particular obje:'gg_ily_c;_gqns;rqingq_deciding which of the infinite laws
of space and logic we are concerned with—was established by and for the s cial

relations of the community. In the case of the Mangberu it was artistic compe-

tition, and in the case of the Chokwe it was age-grade identity. In other words,
the invention and discovery compenents of mathematics are inextricably linked
through social expression.

Philosophic perspectives on the relation of culture and mathematics will
be further discussed in part 11, but to do so we need a fuller portrait of African
fractal geometry. The next chapter will examine African conceptions of the most

fundamental characteristic of fractals: nonlinear scaling.
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CHATPTER

———Scaling

——We have already seeri many examples of scaling in African designs. In the settle-
ment architecture of chapter 2, for example, the computer simulations clearly show
that we can think about these patterns in terms of fractal geometry. How do the
African artisans think about scaling? Is it just intuition, or do they use explicis
mathematical practices in thinking about similarity at different sizes? By exam-
ining varieties of designs with differen: scaling properties, snd comparing these -
with the artisans’ discussions of the patterns, we can gain some insight into scal-

ing as a mathemarical concept in AfTican cultures.

Power law scaling in windscreens from the Sahel

Th @s a brmd band of arid land be[ween the Sahara Desert 'md the rest

o of sub- Saharan Afnca Since there are few trees and a great deal of millet cul-
“['“')I tivation, it is not surprising that artisans use millet stalks to weave fences, walls,
‘_j_—-) and other consiructions. But the consistent use of a nonlinear scaling pattern in
) these straw screens {fig. 6. Ya) i :s a blt odd Rather than uniform lengths, the rows
) of millet straw get shorter and shorter as they go up. In the United States we are
-\"'-") used to the image of “the white picket fence” as a symbol of unchanging, linear

repetition, yet here the fences are distinctly nonlinear. While I was in Mali on



b Windscreen under construction

in Mali.

Step 2:Weave
the new bundles
in back of the
first-layer
bundles.

Step 1: Lay a new
bundle across eight
of the frst-layer
bundles.

FIGURE 0.1
An African windscreen

(a) The diagonal lengths of these rows from bottom to top:L=16 12865533212
This pattern is quantitatively determined by the African artisans. Here we see how the bundles of
straw are first laid in long diagonal rows, then a row at the opposite angle is interlaced in hack of
it. The length of each diagonal row—how high up you go before doing the interlace step—is
determined by counting a certain number of diagonals to be crossed. In the first layer (c} we go
over cight, then six, then fous, then three.

Each bundle is about 2 inches across the diagonal, which is why the lengths go as double the
number of crossings. The odd numbered lengths are created by splitting the bundles in two.

Why do the lengths repeat in pairs as we go toward the top? There is a discrete approximation to
the continuous nonlinear scale that the African artisans follow.
{a, photo by permission of Gardi 1973.) (figure continues)
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the outskirts of the capital city of Bamako, 1 had the opportunity 1o interview
some of the artisans who create these screens and was provided with a striking
example of indigenous applicarion of the scaling concept.

The artisans began by explaining that in “fertile areas” such as the forests
of the south, t};:;creens are not made wn:h smhng rows but r'lther w1th rows of
long, umform tength. This is because the long rows use less straw and take less
time to make. But here in the Sahel, they sdid, we have strong winds and dust.
The shortest rows are the ones that keep out dust the best, because they are the
tightest weave. But they also take more materials and effort. *We know that the
wind blows stronger as you go up from the ground, so we make the windscreen
to match—that way we only use the straw needed at each level.”

The reasoning the artisans reported is equivalent to what an engineer

would call a “cost-benefit” analysis; developing the maximum in function {keep-
_Anaiysis; p P

ing out dust) for a minimum of cost (effort and materials). My primary interest

here is in showing that the scaling concept in Africa can be much more sophis-

ticated than just an observation, “the same thing in different sizes.” The creation

Assuming decrease in wind
h penelration is reciprocal of length;
/\ ' o =1
Gradiant wind (wind engineers: o =1/3)
» Vg = V constant
_Vg—b— L] Y
- 04 4
_______ <06 |
Boundary-layer wind T . .
— V- V=V S og 1 .
’ < .
_... hd
~ -1.0 4
0. *
Power law: V(h A
=V, () Log ()
n
d e

FIGURE 6.1 (continued)

(d) The relation berween wind speed and vertical height as shown in the Wind Engineering
Handbaok. {e} The African windscreen makers say that they have scaled the rows of straw 10
match the change of wind speed with height, If we assume, just for simplicity, that the decrease in
wind penetration is the reciprocal of the length, then we can ger che African estimate for o by
measuring the slope of row length versus height on a log-log graph. This gives o = 1, whereas the
engineers use & = Y5—naot bad for a ballpark estimarte.

Note that the graph is in a very straight line, except where the discrete nature of the screen
(the screen makers must count in whole-number units due to the straw bundles) forces an approxi-
mation by repeating the same length twice.



B ST

74

African fractal mathematics

of the windscreen as an optimal design required matching the scaling variation
of wind speed versus height to a scaling variation in lengths of straw. By trans-

ferring this concept between two completely different domains, the-.arrisans

~ RS

have demonstrated that they understand scaling in the abstract; indeed, the design -

-"Lssent:ally plots the relation of wind speed to helght on a straw graph.

Although 1 was concerned only with the overall relation of scaltng and
reasoning, I measured the rows just to see how close they came to what a West-
ern engineer would develop for an optimal match with wind speed. If the straw
screen had linear scaling, then each row would decrease in length by the same

amount (e.g., 12 inches, 10 inches, 8 inches, etc.). But the rows decrease less and

less with height; it turns out that the screen design shows a close fit to what is’

called a "power law”-—that is, it scales according to an exponent {fig. 6.1¢).
Figure 6.1b, reprinted from the Wind Engineering Handbook, shows the equation
of wind speed with height most commonly used by engineers—also a power law.
So the Sahel windscreen is not only a practical application of the abstract scal-
ing concept, it is also a fairly accurate one. Of course, one might object that the
indigenous engineers did not actually set up the algebra and perform the opti-
mizing calculation. But 1 asked three American mathematicians how they would
set up these equations to determine the optimal design, and all three said the same
thing: “l wouldn't solve it analyticaily, I'd just graph the eq.uations on the com-
puter and see where the functions peaked.” Whether we make our graphs on a

compuler screen of a straw screen doesn’t matter, as long as we get the right answer.

Stretchmg space in kente cloth

T

If someone in America were asked to think of an African texrile, kente clor_hml]d

be the most likely image. Its combination of strong colors

e S A e e Akt e e

ciations with ancient km_gdoms of West. Africahas made it a favorite for imports.

rs,.bold designs, and assa-
But most of the imported kente cloth is created by automated machine, and while
1 would fiercely defend it as “authentic,” the need for pattern repetition in
automation has eliminated a wonderful scaling transformation that can be seen
in the older patrerns created on hand looms (Ag. 6.2a). The scaling.change is not
just small and large versions of the same thing; rather, it is as if the design was
drawn on a rubber sheet, which was half stretched and half contracted. In
Ghana [ traveled to the village of Bonwire, where hand-loom weaving is still prac-

ticed, and asked the artisans there why this scaling transfermation was created.

The weavers replied that they think of the compressed version as the orig- Y

inal pattern, and said they call it “spreading” when they create the stretched ver-

sion. The reason they gave for the ﬁpn.admg pattern can b(.at be understood wt[h

L
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FIGURE 6.2

Kente cloth

(a) In this traditional kente cloth design, stretched and compressed versions of the same pattern
appear. The weavers call this “spreading” the patzern. (b) Why are weavers spreading the pattern?
They say that our eyes give "heavy looks” to the face, and only “light looks” to the rest of the body.
This is what neurobiologists call “saccadic” eye movements. Unlike “tracking” eye movements,
which are continuous, saccadic movements are discrete and tend to leap about. Since kente cloth
was traditionally worn as a toga over the shoulder, the pacr near the face was given a compressed
pattern, and the part along the bedy a stretched pattern, o match the scaling of the saccadic eye
movements. {c} The compression of space is used in marhematics to model scaling patterns, like
thar of the saccadic eye movements. Mathematicians call this a “contractive affine transformacion.”
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the following experiment. Hold your finger in front of your face, and without mov-
ing your head, track the finger with your eyes as you move it slowly across the
visual field. Now try the same thing again, smoothly tracking the visual field, but
without the finger to guide your eyes. You'll find that it can’t be done! Your eye
moves involuntarily in little jumps, called “saccadic” movements. When a per-
son comes into your visual field, those same saccadic movements densely cover
the face, and then make a few glances at the body (fig. 6.2b). The weavers in Bon-
wire reported the same idea: “When you see a person you give heavy looks to the
face, and light looks to the body:” They explained that the purpose of the scal-
ing change is to match this visual scaling: the compressed part of the pattern is
the cloth worn over the shoulder, and the stretched part is worn down the
length of the body.

The nnthematlcal term for this operation is “contractive affine transfor-

be used for creating fr fractals through a methocl called

“itetated function systems (see Wahl 1995, 156-157). In kente cloth there is

no iteration—the operation is done only once—but it does show active | hml(
mg about a scaling transformation. As in the case of the wmdscreen the weavers
are taking a rather abstract observation about a time- -varying quantity and map-

ping this model into a material design.

Logarithmic spirals

In chapter 3 (fig. 3.2) we examined the contrast between nonlinear concentric

circles and [inewr concentric circles. In the same way, nonlinear spirals are easy

ral, also cqlled an Archemedean splral in honor of the Greek mathematician who

favored it, is in t the shape of a coiled rope or watch spring. Each revolutton brings

you out bche (just as each layer in the linear concentric citcle

was the same thickness). For that reason, a linear spiral of a finire diameter can

[ —— e e e g,

have only a finite number of turns. A nonlmear splml of ﬁmte diameter can lﬂve

an mﬁmte number of turns, because even thoug,h there is less 'mcl less space remain-
mg as one goes toward the center - the cllstance between each I"CVOlUUOn can get
smaller and smaller.

A good example of this nonlinear scaling can be seen in the logarithmic
spiral {fig. 6.3b). Loganchmlc splrals are typlcal structures in two different cat-

r.QHLl:h. Theodore Cool(s The Cuwe of l_tfe 1914), for

example, shows dozens of logarithmic spirals from every branch of the evolutionary

vanetles of orggm_v e

tree: snail and nautilus shells; the horns of rams and antelope; algae, pinecones,
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FIGURE 6.3
Spirals

(a) In the linear spiral of Archimedes, there is a
constant distance between each revolution.
Ginly a finite number of turns can i in this
fintte space. (b) In the logarithmic spiral, there
is an increasing distance between each
revolution. An infinite number of turns can fit
in this finite space.

=118

/ and sunflowers; and even anatomical parts of the human ear and heart. Many
researchers have speculated on why this is so; their answer s typically that liv-
ing systems need to keep the same proportions as they grow, and so a scaling curve

allows the same form to be maintained. | prefer to think of it as recursion: if we

 look at the chamberu.d nautilus, for example, we can think of each new cham’
_l;:;'as the mxt mmnon throug,h the same scaling algorithm.

On the other h'md logwmhmlc spirals are also found in fluid turbulence.
We become aware of this when we watch a hurricane from space, or simply admire
the switls of water along a riverbank. Explanations for these fluid curves are much
fess speculative, since we can write equations, for turbulence and show them pro-
ducmg loganthmlc spirals in computer simulations (as we will see in chapter 7).
But the Euro-American tradition is not the only one interested in simulacra, The

artists of what is now Ghana—particularly those of the Akan socieey—long ago

/" abstracted the logarithmic spiral for precisely these two categories. Their sym-

/
{

bols for the life force {hig. 6.4a) are clearly related to the “curves of life,” and icons

for Tanu, the river god (fig. 6.4b), show the logarithmic swirls of turbulence.
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FIGURE 6.4

Logarithmic spirals
(a) Several Ghanaian iconic hgures, such as this goldweight, link a spiritual force with the
structure of living systems through logarithmic spirals. This example is particulacly striking since
it shows how $pirals can be combined with bilateral symmetry to create other self-similar shapes
(the iarge diamond shape created by the meeting of the large spiral arms is repeated on either side
by the small diamond at the meeting of the small spiral arms}. (b) This fgure, again based on
logarithmic spirals, appears an the temples of Tanu, the river god, and links this spiritual force to
the geometric structure of fluid turbulence. :
(a, photo courtesy Doran Ross )

Lo

in

(a) Logarithmi

ina three-dim.

how discrete st

increment leac

{b) Overhead -

golibweight, (¢

pobdweight cris

g bhoto from ¢,
k. photo courtes
Liniversity. ) .

. . . . . . ~
Again, we need to avoid the assumption that the Ghanaian log spirals are
e e ole mimetic “reflections” of nature, and examine how they. are used and ]

ply : , EI

" designed. The Akan and other societies of Gll'}‘a_g_gt‘gr_'«;ggg_c.i_g“p

\id

7,

ollection of specific

icons that several researchers have compared to a written language. But rather than
’c.:."orr-lpose:d of the vast number‘nfsymbols we call “words,” the Ghanaian symbolic
vocabulary is much smaller, and each symbol refers not to a single word but an
entire social, religious, or philosophical concept. Moreover, in many cases the

structure of the symbol is not arbitrary {as Gregory Bateson said, “There is noth-

ing ‘sevemsl?'?&i&the—numeral 7"), but rather is shaped so that each icon's geo-
metric structure recalls the concept it represents. In other words, they are not
only abstractions in the sense of being stylized, but also generalizations in the sense
of the designers’ intent to find an underlying structure thar all examples have in

common. For this reason we can accurately describe the Ghanaian fog spiral icons

as geometric models for. the phenomena of organic growth and fluid curbulence.
ir gea-

Some aspects of these designs illustrare a conscious reflection on th

metric properties. Figure 6.4a, for example, not only displays the log spiral’s Euclid-
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Scaling

ean symmetry—for we can see how clockwise and counterclockwise spirals com-
pare~—but also experiments with other kinds of scaling symmetry: note that the
targe diamond shape created by the meeting of the large spiral arms is repeated
on both sides by the small diamond at the, meetmg of the small spiral arms. Can
this scaling be continued in further iterations? | will leave that question as an
exercise for the readers.

'l:bf__ﬁ; are hints that the precolomal Ghanaian designers were headed

toward a quantrtétwe approach in thelr log splral deSIgns Figure 6.5a shows

the sculpture of a water buffato in which they have inscribed uniform discrete

steps. 1 don't think rhis was motivated by numeric measures, but rather the
reverse. By cutting these steps we can clearly gauge the nonlinear nature of the
spiral—the way steps of a constant increment show an increasing amount of
curve generated—and this practice could have led to guantitative measures.

Another move in that direction would generalize such discretized logarichmic

“%is repeated on either side
(a} Logarithmic scaling can be demonstrated
in a three-dimensional curve by showing
how discrete steps of the same vertical
increment lead to rapidly increasing area.
{b} Overhead view of pyramid-shaped
goldweight. (¢} Logarithmic plot of
goldweight triangle lengths.

(a, photo from the Mewopolican Museum of Art.
b, phmo courtesy Geargc Anthur, Marshall ¢
University.)

FIGURE 0.5
Logarithmic scaling
in Ghanaian designs
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FIGURE 0.6

Adaptive scaling with triangles
(a) Antelope headdress created by the Krumba of Burkina Fasa. (b) Mask sold in Accra, Ghana, -
based on design used in the Sakara-Bounou religious dances. (c) Representation of the water spirit
creaced by the Baga of Guinea. (d) Sculpture from the Congo. (e} A Kikvyu wooden shield.
The wood has a nenlinear curve toward the center, and the trinngles are scaled to match.
{a, conrtesy Musée de I'Homme, ¢, Metropolitan Muserim of Art; phote by Eliot Elisofon. d, Detroit
Museum of Are. ¢, British Museum; from Zaslavsky 1973.)
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Scaling

scaling to forms other than spirals, and that did indeed occur, as we can see in

figure 6.5b, one of the Akan gold weights. A A plot of the length of these triangles'

(fig. 6.5¢) indicates that reasonable accuracy was achleved in thls rndrgenous
Rl

logarrthmlc scahng practice. '

3

Adaptive scaling

P ——

o

( )‘

“‘~‘-'3ld in Accra, Ghana, -
_) ion of the water spiric

R - wooden shield.
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So far this chapter has focused on questions of intentionality, precision, and mathe-
matrcal reasoning in Afncan scaling designs. Adaprive scalmg has little mathe-
mancal sophrsrrcatron but it too is an important part of the African fractal desrgn

theme By adapting the scale of a pattern 1o fit various forms, a number of

- esthetic and practical effects can be achieved. These examples fall into two cat'\

egories. In conformal mappi g, the pattern simply firs along the contours of a con-

crete, preexisting structure. In global mapping, the patrérn is distorted by

e

compression ot expanston—as we saw happen along one dimension in kente

—rat

cloth—according to a more universal, abstract transformation.

Figure 6.6 shows several examples of conformal mapping on triangies. My
search of the facial markings of antelope of the western Sudan did not turn up
anything like the scaling pattern of figure 6.6a; these triangles are decorative
additions, sized to fit into the shape of the sculpture. Other examplesA(ﬁg. 6.6b—e)
show a series of triangles conforming to the scaling contours of a mask, a sin-

" uous curve, a carved human figure, and a shield. Figure 6.7a shows ¢onformal

mapping in the hairstyle Americans call “corn-rowing”; its simulation is shown
in figure 6.7b. The Yoruba name for this style is ipako elede, which means the
nape of the neck of 0 boar—hecause the boar's bristles show a similar nonlinear

scaling. Frgure 6.7¢ shows a hairstyle that combines conformal mapping with

“iteration. Adaptive scaling of circles can be seen in the Senegalese textile in

*figure 6.7d.

A practical application of conformal mapping appears in figure 6.7¢, an

aerial photo of the Nkong- mondo quarter in the city of E thern

member nf rhe neighborhood, Mr. Sosso, the houses were constructed along a nar-

rowing ridge, and the scaling was simply conforming to the natural landscape.
However, the oldest inhabitant of this Bassa neighborhood, Mr. Bellmbock,
told me thart the pattern was created because people wanted neighbors of 2 sim-

ilar economic class next door so that the r e size reflected an eco-

ge mh

t, from poorest to. \VL’ll[hlEbt Mr. Bellmbock lived in the smaliest

nomic gradi

C gra
house, and Mr. Sosso in the largest, so I would not discount the possibility that!
there was an economic scaling as well.

8x
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FIGURE 0.7 It
Adaptive scaling based on various shapes produc

{a, b) A Yoruba hairstyle, Ipako Elede, adapts the scaling of the braids to the nenlinear contours of : L
the head. {c} This hairstyle begins by braiding a small horseshoe shape in thétop center, and then i abstrac
tracing the contour in increasing perimeters—a combination of adaptive scaling and iteration. examp!
{d) Fitting circles between intersecting curves creates a scaling series in this textile design from mon of

Guinea. (e) An aerial photo of the Nkong-mondo quarter in the city of Edéa in southern : )
. . Cameroon, where we see a scaling series of houses. F ping be
{a, from Sagay 1983. ¢, from Sagay 1983. d, photo courtesy IFAN, Dakar.) . - that ap
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" FIGURE 6.8

Mapping from the plane

to a spherical surface
{2} Mapping bars of infinite
length from the plane to a sphere.
(b} A Yoruba hairstyle, Koroba
Chockes™). . L L
(b, froan Sagey 1983.)
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w_Faling and iteration.

s texrile design from
déa in southern

It is possible ro misread these examples of conformal mapping as being the
product of artisans who are strongly guided by concrere forms rather than
abstract thought. But adaptive scaling can also be seen in more abstract
mon operation in Western geometry, the maost frequent example being a map-
ping becween the plane and a sphere (fig. 6.8a). Figure 6.8b shows a hairseyle

that appears to have a planar design mapped onto a spherical surface. Figure 6.0

provides an even more abstract illustration, the inverse of the previous mapping—

now going from spherical to rectangular—and utilizing three dimensions instead




African fractal mathematics

~of two. In this Chokwe sculpture, the entire human figure is distorted as if its
spherical volume had been mapped to a cubic volume; the resulting nonlinear
scaling is dramatically illustrated by the discrete steps in the headdress. Art his-
torian William Fagg (1955) made a similar suggestion about other African
designs, which he compared to the drawings of natural glrvbwth by biologist
D'Arcy Thompson: “ believe that the morphology of African sculpture may be

usefully studied . . . by reference to mathematics. . . . For example in certain masks

" FIGURE 6.9
Mapping from a spherical volume

_to a rectangular volume .
{(a) Bastin (1992, 68) shows that this Chokwe crawn,
the Cipenya-Mutwe, is made up of linear bands in real
tife. The nonlinear scaling we see in this sculpture can
be explained as the inverse of the transformation we saw
in figure 6.8a. Rather than shrinking as we move from
the center to the margins, the inverse mapping causes
expansion from center to margins. This is nat only the
inverse of the previous mapping, but also operates on
three-dimensional volume rather than surface. Similar
transformaticns are used in nevroscience te model the
ways that tactile receptors are mapped from body to b
brain, since there is a much greater density of sensory
neurons at the extremes. (b) The reason for chis transformation is to invoke the impression of
power and stability (Chanda 1993). The meaning has nothing in particular 1o do with geometric
mapping, other than achieving the desired effect, but it is interesting to note that the transfor-
mation is uniformly applied to all external areas, even to the extent of deforming the forehead.

(a, courtesy Jacques Kerchache and Misenum of Mankind, London. b, courtesy Muserm of the Philadelphia
Civic Center.)
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for the Gelde society the natural . .. physiognomy is ‘blown up,’ so to speak, in
a way which could be plotted on 2 set of flaring exponential coordinates.”
(1917, 43)-

e,

Conclusion

and method While it is not dlfﬁcult to invent explanatlons basecl On unconscious
social forces%for example, the flexibility in conforming designs to material sur-

faces as expressions of social ﬂe)clblllty—l do not thmk that any such explana-

thn can account for this (diversity. From optimization engmeermg. to modeling

organic lafe to mapping between different spatial structures, African arrisans have

ge of tools, techmques and des:gn pmctlces based on the

African numeric systems also share ma y_fractal charac

‘?'ISEECS.




CHATPTER

Numeric

systerms

So far we have focused on geometric structures rather than numeric systems. The

only exception was in the windscreen, where the nonlinear scaling was created

by counting a specific sequence of dlagonal straw rows. But there are many

other instances in which the African 'tpprmch to fractal geometry makes use of

" humberss

Nonlinear additive series in Africa

86

The counting numbers {1,2,3 . . .) can be thought of as a kind of iteration, but
only in the most trivial way.! Tt is true that we could produce the counting num-
bers from a recursive loop, that is, a function in which the output at one stage
becomes the input for the next: ?(nﬂ =X, + 1. But this is a steictly linear series,
increasing by the same amount each tlme—rthe numeucﬁ_g_ch_]mvalent of what we
saw in the linear concentric circle and linear spiral Addmon ean, hawever, pro-

o™

duce nonlinear series,” and there are at least two ex’nmpies of nonlme’n additive

series in African cultures The tnanguhr numbeas (1.,3.6, 10, 15 ) are used in
a game called tqrumbetﬂ in east Africa (Zaslavsky 1973, 13 1). Figure 7.1 shows

how these num[wers are clenved From the shape oftrmng!es of increasing size, and

how the numeric series can be created hy a recursive loop. As in the case of cer-
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number 4

of stones: 3 6 i0 15

number . .
of iterations: 2 3 4 5

A game called “tarumbeta” in East Africa makes use of che triangular numbers, starting with 3
(3,6, 10,15 ... ). In this game, one player calls out a count as he removes stones consecutively,
left to right and bottom to top, while the other player, with his back turned, must signal whenever
the first stone in a row has been removed. ‘

The stones in each triangular array can be built up in an iterative fashion, that is, the next
triangle can be creaced by adding another layer 1o any side of the previous triangle. The number to
be added in each additional layer is simply the number of iterations. For each iteration i, and rotal
number of siones N, we have:

Nij, = N; + i (starting with Ny = 0)

1 =0 +.1 (acivial array, not used in the game}

ie e In other words, the next number will be given
"6=3 +3 . by the last number plus the iteration count:
0= 6 +4
‘ Npext ———»
15=10+5

Neurrent
v

. - Increase count

i

| of itesaiions by &

FIGURE 7.1
The triangular numbers in an East African game

tain formal age-grade initiarion practices (see chapters 5 and 8), the simple
versions are used by smaller children, and the higher iterations are picked up with
increasing age. While there is no indication of a formal relationship in this instance,
there is btl” an underlying paratlel berween the iterative concept of aging com-

mon 10 many African culturea—each individual passing through multiple turns

——

of the “life cycle —dnd the iterative nature of the trmnguiar number series.

Another nonhnem additive series was foumT in arclneologmal evidence from

North Africa. B’ldawy (1965) noted what appears to be use of the Fibonacci series

in the layout of the temples of ancient Egypt. Using a slightly different approach,



The Fibonacci series

(L, 1,2,3,5,813. .. ) was

found by Badawy (1965)

in his study of the layour

of the temples of Egypt.
His analysis was quite
complex, but it ishot
difficult to create a simple
visualization. Here we see
the series in the successive
chambers of the temple of
Karnak. _

The Fibonacci series is
produced by adding the
previous number to the
current number to get the
next number, starting with
I +1 =2, For each iteration
i, the number N in the series
is given by:l

Niwp =Ny + N,

that is,

Nnexe = Neureent + Neprevious

1 2
2 3
J = 5
5 8
8 3

[ B S A T
+

=1

N |
previous

Nedreent

e,

Gray rectangles added

for measurement

The Fibonacci series in ancient Egypt

FIGURE 7.2
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Numeric sysiems

I found a visually distinct example of this series in the successive chambers of
the temple of Karnak, as showi in figure 7.2a. Figure 7.2b shows how these num-

bers can be generated using a recursive loop. This formal scaling ptan may have

-been derived from the nonnumeric Versions of scaling architecture we sce

throughout Africa. An ancient set of balance weights, apparently used in Egypt,

Syria, and Palestine circa 1200 B.C.E., also appear to employ a Fthonacei sequence -

(Petruso 1985). This is a particularly interesting use, since one of the striking
mathematical properties of the series is that one can create any positive integer
through addition of selected members—a property that makes it ideat for appli-
cation to balance measurements (Hoggatr 1969, 76). There is no evidence that
ancient Greek mathematicians knew of the Fibonacci series. There was use of
the Fibonacci series in Minoan design, but Preziosi {1¢68) cités evidence indi-
cating that it could have been brought from Epypt by Minoan architectural
workers employed at Kahun.

Doubling series in Africa

Some accounts report that Africans use a p1 lmmve number system in which

P,

they count by multlples of two. It is true that many cases of Afncan arithmetic

artifacts from a forgotten past They have surprising mathematlca] significance,

not only in relation to African fractals, but to the Westem history of mathemarics
and computing as well.

The presence of doublmg as a cultural [heme oceurs in many different African

souem_a md in many d:ffc,ren[ bOC[d! LlOln‘llnS conm.ctmg the sacredness of twins,

e 0

- i e —— o Pt s an e

Ewin bellows and the double i r,ron hoe gwen m brldewealth (hg 7. 3) F}gure 7.4a ‘

shows the Iahango bone whlch is around 8,000 years old and appears to show a
doubling sequencé, Doubhng is fundamental to many of the counting systems of

Africa in modern times as well. 1t is cotnmon, for example, to have the word for

+ areven number 2N mean "N plus N” (e.g., the number 8 in the Shambaa lan-

guage of Tanzania is "ne na ne,” literally “four and four”). A similar doubling takes
place for the precisely articulated system ofnumber hand gestures (fig. 7.4b), for
example, “four” represented by two groups of two fingers, “and ¢ ‘eight” by two groups
of four. Petitto (1982) -found that doubling was used in multiplication and
division techniques in West Africa (fig. 7.4¢). Gillings (1972) derails the per-

sistent use of powers of twb in ancient Egyptian mathemarics as well, and

Zaslavsky (1973) shows archaeclogical evidence suggesting that ancient Egypt's

use of base-2 calculations derived from the use of base-2 in sub-Saharan Africa.
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Doubling practices were '1]90 used hy African descendants in the Ameri-
cas. Benjamin Banneker, fm exa mplc made unusual use of douhhng in his cal-
culatlons which may have derived from the teachings ofhns AfricanTather and
grandfather (Eglash 1997¢). Gates (1988) examined the cultur'tl significance of
doubling in West African religions such as vodun and its transfer to “voodoo”
in the Americas. [n the religion of Shango, for example, the vodun god of thun- \
der and lightning is represented by a double-bladed axe (fig. 7.54), used by \

Shango devotees in the new world as well (R. Thompson 1983). Figure 7.5h shows /

kb

{c) Doubl
muitiplicat
For exa
doubling 2
i .| When the
i renched sc
renched (2
of two. Wr
renched £l
is left over
underlineu
Despite

£ . | mental ap¢

“{aand b, fro
FIGURE 7.3

Doubling in African social practices

(a) This figure is used hy women in Ghana to encourage the the
birth of twins. (b} A double iron hoe is sometimes used as part giou
of the bride price ceremony. (¢} The double bellows of the .

biacksmith. (d) Double vision; a common theme in several . eight
African spiritual practices, often implying that ane can see dpect
hoth the material world and the spirit world. becar
(b, Marc and Evelyn Bernheim from Rapho Guithonette; courtesy .

of Uganda Netional Museum, ¢, phote courtesy TFAN, Dakar. g

d, fron Berjonnear and Sonnery 1o87.) d atior
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N
s in the Ameri-
ubling in his cal- ( 7} {a) The Ishango bone, estimated to be aver 8,000 years old, shows
{wﬁ\frican father qnd what appears to be use of doublmg, 3+3=6,4+4=8,10=5+5.
(. Aral significance of =, -
'f_.nbfer o voedoo‘ =l
{ -odun god ofthum'
/g, 7.58), used by ==l
3 Figuee 7.5b shows % o
=0
=

{b) Even numbers are
typically represented by
doubling in the precisely
articulated system of
African hand gestures.

@Heu I

{c} Doubling was traditionally used by railors in West Africa when doing large mental
multiplications; it is essentially based on what we would call factoring.

For example, 3 x 273 (3 raken 273 times”) would be calculated by successwely
Cdoubling 3 (6, 12, 24 .. . ) while keeping track of the counterpart in powers of two (2, 4,8 ... ).
When the next power of two would overshoor 273, he then has to memorize the number
reached so far through doublings of 3 (768}, while subtracting the power of two that was
reached (273 — 256 = 17). Then he searts again, doubling 3, and keeping track of the powers
of two. When the next power of two would overshoot 17, he again memorizes the number
reuched through doublings of 3 (48) and subtraces the power of two (17 - 16 = 1). Since one
is feft over, he just needs to add an additional 3. Tlu answer is then given by [he sum of the
wnderbied werms: 768 + 48 + 3 = 819, o '

Despice the complexity of the method, the m;lors were quite fast af performing these silent
mental aperations.

FIGURE 7.4

Doubling in African arithmetic
(wund b, from From Zaslavsky 1973.)

the use of a doubling sequence in the structure of a Shango temple and in reli-
pious ceremonies (ritual choreography aligning two priests, four children,
ecight legs}. A curaror ar the Musée Ethnographique in Porto Novo, Benin, who
specialized in Shango explained 1o me thal: these doublmg structures were used
l)u.duse the pod of lightning required a pormut of [he forked structumirt—
ning bolt. The model is particularly interesting in ‘that the lcngths of each iter-

arion are shortened, so that one could have infinite doublings in a finite
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(a) Shango, the god of
lighining, is part of the vodun
religion of Benin and was one
of the importagt components
in the creation of the voodoo’
religion in the New World.
Here we see the double-bladed
“thunder axe,” with anather
double blade within each side.

{(b) Shango temple and initintion. Here we see

the doubling sequence carried out further,

using the hilateral symmetry of the human body
itself in the last iteration. This is used to symbolize
the bifurcating pattern of the lightning bole.

FIGURE 7.5
Doubling in the religion of Shango
{a, courtesy IFAN, Dakar. b hoth center photos, courtesy IFAN, Dalar; lonver right, courtesy Dave
CTO“'I(’)‘, 1UW’UJ,S[UTH’]g?.{:‘,‘.Cl’)JT‘l.}
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space—a true fractal. The self-similar structure of llghmmg has been a favonte'

example for fractal geometr

it et e e AR LIPS

texts (see ‘Mandelbrot 1977) “The doubling

sequence used o model the fractal structure of. lightning in Shango would not

give an accurate value for the empiricalfractal dimension—-real lightning tends
to branch much more than doubling allows for—bur it's enough to know that the

vodun representation offers a testable quantitative madel.

The most mathemancally / significant aspect of doubling in African reli- reli-
ke o aeme

S
glon occurs in the divinarion {* for[unetell
L

g") cechmques of vodun and s reli-

Zious relatwes (Eglash 1997b). The t famouilfq cllvmatlon__ystem (f1g 7 6) is based

on tossmg palrs of flat shells or seeds split in two. Each lands open-side or closed-

side (like “heads or tails” in a coin toss). They are connected by a doubled chain

-te make four pairs. Each group of four pairs gives one of the 16 divination sym-

bols, which tell the future of the diviner’s client. The Ifa system is what a
machematician would call "stochastic,” that is, it operates by pure chance. But

a closely related divination system, Cedena, has a nonstochastic element—it is

closer to what mathematictans call * determmlsuc chaos

e e A sa A A

My introduction to cedena, or sand dlvmatlon took place in Dakar, Sene-

e e —— st o s

gal where the local Isiamtc culture credits the Bamana {also known as Bambara)
with a potent pagan mysticism. Almost all diviners had some kind of physical
d?fgr‘mlty—— ‘the p price pand for their power.”3 One diviner seemed quite willing
to teach me about the system, suggesting thar it “would be just like school.” The
first few sessions went smoothly, with the diviner showing me a symbolic code
in which each symbotl, represented by a set of four vertical dashed lines drawn
in the sand, stood for some archetypical concept (travel, desire, health, etc.) with

which he assembled narratives about the future. But when 1 iinally asked how

e derived rhe symbels- in particalai, the meaning of some of the patterns

drawn prior to the symbol writing—they all laughed at me and shook their
heads. “That's the secret!” My offers of increasingly high payments were met
with disinterest. Finally, | tried to explain the social significance of cross-culrural
mathematics. I happened to have a copy of Linda Garcia'’s Fractal Explover with
me and began by showing a graph of the Cantor set, explaining its recursive con-
struction. The head diviner, with an expression of excitement, suddenly stopped
me, snapped the book shut, and said “show-him what he wants!”

As it turns out, the recursive construction, of Lhe Cantor_set was_just the

—_
nght thing to show, because the Bamana divination is also based on recursion

{hg. 7.7). The divination begms with four honzontal dashed tines, drawn rapidly,
so that there is some random variation in the number of dashes in each. The dashes
are then connected in pairs, such that each of the four lines is left with either

ane single dash {in the case of an odd number)} or no dashes {all pairs, the case

93
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One open, one closed: 0 + 1 = add

One clased, the other closed: 1 + [ = even

One open, one closed: 0+ 1 = odd

One open, the ather open: 0 + 0 = even

c

FIGURE 7.5
Binary codes in divination

{a) This Nigerian priest is telling the future by Ifa divination, in which pairs of flat shells or seeds
split in two are tossed with each landing open-side or closed-side. They are connected by a doubled
chain to make four pairs, giving a total of 16 divination symbols. In this version of Ifa (used in the
Abigha region of Nigeria) they use two doubled chains and consider the cast mare accurate if there
is a correlation between the two sets. (b) Here we see a chain using split seeds. Each half lands
either “closed” (meaning we see the rounded outside) or “open” (meaning we see the interior).
By using open to represent 0 (double lines), and closed to represent 1 (single line}, we can see how
the divination symbal is ohtained. (¢} The divination chain is interpreted as pairs summing to odd
(one stroke)} or even (two strakes).
{a, photo by E. M. McClelland, courtesy Rayal Anthvopological Institute.)
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,of an even number). The narrative symbol is then constructed as a column of four

1’ 3
/ vertlcal marks, with double vertical fines’ reprESentmg an even number of dashes

J and smgle lmes representing an odd number. At this point the system is similar
\

to the famous Ifa.divination: there are two possrble marks in four positions, so
16 po:,ublt_ 5ymbola Unlike Ifa, howwer the random symbol production is
rt.peaced four times rather than two. The difference is quite significant. Each of
the Ifa symbol pairs are interpreted as one of 256 possible Odu, or verses. The
Ifa diviner must memorize the Odu; hence, four symbols would be too cumber-
some (65,536 possible verses). But the Bamana divination does not require any
verse memorization; as we will see, its use of recursion atlows for verse self-assembly.

As in the addirtive sequences we examined, the lelmtton code is gener-

ated by an iterative loop in which the output of the operat:on IS used as the input

for the next stage. In this case, the operation is addmon modulo 2 ( ‘mod 2" for
short), which simply gives the remainder after dn;lslon by two. Thls is the same
evenjodd distinction used in the parity bit operation thar checks for errors on
contemporary compurer systems. There is nothing particularly complex about
":':'_:'L‘f clased: 1 +1 = even mod 2; in fact, | was quite disappointed at first because its reapplication
i destroyed the potential for a binary placeholder representation in the Bamana
f) divination. Rather than interpret each position in the column as having some
3 meaning (as would our binary number rorx, which means one 1, one 2, zero 4s,
(3 and one 8), the diviners reapplied mod 2 1o gach row of the first two symbols

Tosed: 0+ 1= odd

and to edch row ow of the last two. The results were thei assembled into two new
symbols, and hod 2 was applied again to generate a third symbol. Another four

symbols were created by reading the rows of the original four'as columns, and

mod 2 was again recursively applied to generate another three symbols.

£ The use (Jf an, iterative loop pas:;mg outputs of an operatlon back as
| () = LE—— -
wropen: 0+ 0 =cven - - e . - e
2 inputs for the Xt stage, was a shock to me; | was at least as STaken aback by the
- T T B
K sand symbols as the diviners had been by the Cantor set. It woukl be naive to
D) claim that this was somehow a leap outside of our cultural barriers and power
) differences—in fact, that’s just the sort of pretension that the last two decades
) of reflexive anthropology has been dedicated against—but it would also be

T ethnocentric 1o rule out those aspects that would be attributed to mathematical
£y paics of Rat shells or seeds

7 are connected by a doubled
(.., version of Ifa (used in the

.Y cast more aceurate if there
“riig seeds. Each half lands

i. ) ag we see the interior).

. cingle line), we can see how
""“_":ted as pairs summing ro odd
Sy _

4

collaborarion elsewhere in the world: the mutual delight in two IECLII‘HOI\

U
fanatics discovering each other. And the 7 appearance of the symbols

two groups of s&ven —the Rosicrucian’s mystlc number—-added some numer-
ological iéing on the cake.
The following day 1 found that the presentation had not been complete:

an additional two symbols were lefr out. These were also generated by mod 2 recur-

— B , o o
L sion using the two bottom symbols 1o create a fifteenth, and sing that last
‘A_,/':

oy

‘
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symbol with the first symbol to create a sixteenth (bringing the total depth of

recursion to five iterations}. The ﬁfteenth symbol is called ‘thi is world and the

sixteenth is “the next wor[d 50 there was good reason to separate them from

the others. The final part of the system—creating a narrative férm the sy symbols —

was still unclear, but I was assured that it could be learned if 1 carefully followed

———

their instructions. | was to give seven coins to seven lepers, place a kola nuz on

T TR TN TR T T
X TR T T Ny 7

i1
m

i | i I {e} After this, the original four
are read sideways to create four
maore symbaols, and the entire

1 process is repeated, producing

3 | another group of seven. In the

final step, the first and last from

each group &f seven are paired off

i to generate the final rwo symbols.’

L

{a) Four sets of random dashes are drawn. {b) Each of the dashes is paired, and the oddfeven results
are recorded. (c) The process is repeated four times, resulting in four symbols. Each row of the first
two symbols and the last two symbols are paired off to generate two new symbols. (d) The two
newly generated symbols, now placed below the original four, are again paired off to generate a-

FIGURE 7.7

Bamana sand divination
]

seventh symbol.

{
f

a pile{
whicly
in the:

.ing bor

inatiot
symbo
then [
the pa

L]

a respe
bod har
symbo
be loc:
“desire
ously t
the be
sulted,
drawi
genera
randot
hut Cé
althou
“perio
12.5yn
numb:
before

/
the “¢
19708,
algorit
tion w
Eurofy
result.
that m
like pc
istic cl
bers fr

case fc



r\world and the
fcwate them from

o the symbols—
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«.Fr this, the original four
-+ sideways to create four
""'fymbols, and the entire
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a pile of sand next to my bed at night, and in the morning bring a white cock,

which would have o be sacrificed to compensate for the harmful energy released |
. . i

in the telling of the secret. I followed all the instructions, and the next morn- |

ing bought a large whire cock at the marker. They held the chicken over the div-

ination sand, and | was told to eat the bitter kola nut as they marked divination

~ symbols on its feet with an ink pen. A little sand was rhrown in its mouth, and

then I was told to hold it down as prayers were chanted. There was no action on

the part of the diviner; the chicken simply died in my hands. !

While still a bit shaken by the chicken's demise {as well as experiencing
a respectable buzz from the kola nut), | was t told the remaining mystery. Each sym-

bol has a “house” m whlch it belongs—wfor examp!e the posmon of the sixteenth

be located mwt_l)elr own house “Thus the sixteenth symbol generated m:ght be
“desire,” so we would have desire in the house of the next world and so on. Obvi-
ously this still leaves room for crearive narration on the part of the dwmer but
the beauty of the system is that no verses need to be memornzed or books con-

sulred; the system creates its own complex variety.
oe eystin on g

The most elegant part of the method is that it requires only four random

drawings; after that the entire symbohc array is quickly self- generated Self-

[ S

generated variety is s important in  modern computing, where it is called “pseudo-

Lo

random number generation’ (f[g. 7.8). These algorithms take little memory,

P e

—

but can generate very long lists of what appear to@om numbers,
“period” of the algorithm}. Although the Bamana only requ:re an additional
12 symbols to be generated in this fashion, a maximura- length pseudorandom
symbals
before it begins to repeat.

A similar system for self—generated variety was ‘developed as a model for
the * chaos of nonlmear dynamlcs by Marston Morse (1892 1977). Before the
19-705 mathematicians had assumed that besides a few esoteric exceptions {the
algorithms for producing irrational numbers such as ¥2), the output of an equa-
tion would eventually start repeating. That assumption was partly based on

European cultural ideas abour free will:-complex behavior could not be the

¥

result of predetermined sysiems (see Porter 1986). bt was not until the 19605- 705;'

that mathematlcnans reahzed chat even sxmp]e common equauons descnb*ng thmgs
hke populanon growth or ﬂuld ﬂow could result in what they called “determin-

istic chaos ——an output th'\t never repears, giving the appearance of random num-

.bers from a nonrandom (deterministic) equation. Morse developed the minimal

case for such behavior.
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. | l | [BRE! FIGURE 7.8 ; .
8 (]) ll 11 Pseudorandom number generation 5 ' from ¢
0001 from shift register-circuits ben J
1000 {a) If we think of the owo-strokes as zero and bi d!
0100 single stroke as one, the Bamana divination, 1c dc
0010 system is almost identical to the process of geom,
a 1001 pseudorandom number generation used by digital mes
0110 circuits called “shift registers.” Here the circuit ]
1100 takes mod 2 of the last two bits in the register toan
0110  andplaces the result in the fitst position. The . COnm
1011 other bits are shifted to the right, with the last ' is har
0101 discarded. ’ ¢
1010 This foue-bit shift register wilt only produce of pla
1101 15 binary words before the cycle starts over, but
]110 the period of the cycle increases with more bits hist
(2" - 1). For the entite 16 hits (four symbols of o
four bits each) that begin the Bamana 10 to
SN CLK divination, 65,535 binary words can be produced : 10 Se
before repeating the cycle.
D: . 74LS95 peating the . . ‘ tion.
In {b) Electrical circuit representation of a four-bit
Q, Oy Qc Q shift register combined with exclusive-or to multi
a ~b ¢ d perform the mod 2 operation. While schaol- of do
teachers are making increasing nse of African . :
culture in the mathematics classroom, few have .
. explored the potential applications to i) ; to Eu
b technolegy education. . ‘ introt
it wa.
, alche

The construction of the Morse sequence begins by counting from zero in : . man
binary notation: 000, 00T, 010, 011 . . . - jt then takes the sum of the digits in i other
each number- c+o+o=o,nto+1 =1, etc.—and finally mod 2 of each By m
sum. The result is a sequence with many recursive pro erties,? but of endless ' :

e asequence ¥ many recursive propetty b endt socie
variety. Morse did the same “misteading” of the binary number as did the : ity. T
i .
/ Bamana—although he did not have an anthropologist scowling at him for ‘
. polog g ; In ch
! ignoring place value—and he did it for the same reason: combined with the ofa®
- mod 2 operation, it imaximizes variety.

In my reading of divination literature 1 eventually came across the dupli- . pract
cate of the Bamana technique 5,000 miles to the east in Malagasy sikidy (Suss- N have
man and Sussman 1977), which inspired a study of the history of its diffusion. me, v
The strong similarity of both symbolic technique and semantic categories to what short
Europeans termed “geomancy” was first noted by Flacourt (1661}, but it was not )

peans term g Y ¥ Flagol ! those
Gl Trautmann (1939) that a serious claim was made for a common source for - they
this Arabic, European, West African, and East African divination technique. The solf-s

Arahic, European, West A e B A T T e ] :
commaenality was confirmed in a detailed formal analysis by Jaulin (1966). But ‘ sive |

wher,

where did it originate!
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(Sli_i;gr.{%‘r (1980) provides a v_veil‘documemed history of the diffusion evidence,

from thefirst specific written record—a ninth-century Jewish commentary by Aran |
ben Joseph—10 its modern use in Aleister Crawley’s Liber 777. The oldest Ara- l
bic documents (those of az-Zanti in the thirteenth cencury) claim the origin of
geomancy {ilm al-raml, “the science of sand”) chrough the Egyptian god Idris (Her- |
mes Trismegistus); while we need not take thart as anything more than z claim l
to antiquity, a Niletic influence is not unreasonable. Budge (1961) attempts to |
connect the use of sand in ancient Egyptian rituals to African geomancy, bur it ;!
is hard to see this as unique. Mathematically, however, geomancy is strikingly out{i

of place in non-African systems.

10 to be the most sacred of all numbers; the Knbbalahs Ayin Sof emanates by

10 Sefiror, and the Christian West counts on its “Hindu-Arabic” decimal nota-
'7»"." N

tion. In @ on the other hand, base-2 calculation was ubiquitous, even for

e

multlphcqnon and division. And it is here that we, ﬁnd the cultural connorations

s 51gmﬁcance

The lm_pllcatlons of this trajectory—from Sl.lb Saharan Afnca to North Afrlca

to Europe—-are quite significant for the hlSEE)l’y of mathematICS Followmg the
introduction of geomancy to Europe by Hugo of Saﬁtalla in twelfth- -century Spain,
it was taken up with great interest by the pre-science mystics of those times—
alchemists, hermericists, and Rosicrucians (fig. 7.9). But these European geo-
1nanc¢rs——Ray1nond Lull, Robert Fludd, de Peruchio, Henry de Pisis, and
others—persistently replaced the deterministic aspects of the system with chance.
By mounting the 16 figures on a wheel and spinning it, they maintained their
society’s exclusion of uny connections berween decerminism and unpredictabil-
ity. The Africans, on the other hand, seem to have emphasized such connections.
In chapter 1o we will explore one source of this difference: the African concept
of a "rrickster” god, one who is both deterministic and unmechcmble T
T OWE video recordmg | made of the Bamana divination, I noticed that the
practitioners had used a shortcut method in some demonstrations {this may
have been a parting gift, as che video was shot on my last day). As they first taught
me, when they count off the pairs of random dashes, they link them by drawing
short curves, The bhOl‘[‘LlIE method then links those curves with larger queves, rmd

those below. w;th even !ruger curves. Thls up51de down Cantor set shows chac

P SR o

they are not snmply applymg mod 3 agam and agaln ina mmdless fashlon "The

sive process, and as a, n(Jntradlthﬂ"ll Anvenrign {(there is no record of its use else-

b
where} it shaws active mathemancal practice. Other African divination practices
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Geomancy ' patt
African divination was taken up under the name “geomancy” by European mystics. This chart was 3 that
drawn for King Richard 11 in 1391. B ‘
' (From Skinner 1980.} : ; iy O_r
| ‘ . repl
can be linked to recursion as well; for example Devisch (1991) describes the Yaka
: diviners' “self-generative” initiation and uterine symbolism. ks ' the
i Before leaving divination, there is one more important connection to mathe- f of 5.
| matical history. While Raymond Lull, like other European alchemists, created self
wheels with sixteen divination figures, his primary interest was in the combi- : mac
natorial possibilities offered by base-2 divisions. Lull's work was closely exam- B lool
ined by German mathematician Gottfried Leibniz, whose Dissertatio de arte ' prec
combinatoria, published in 1666 when he was twenty, acknowledges'Lull's work a st
as a precursor. Further exploration led Leibniz to introduce a base-2 counting § app
system, creating what we now call the binary code. While there were many other f “Hc
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influences in the lives of Lull and Leibniz, it is not far-fetched to see a histor-
ical path for base-2 calculation that begins with African divination, runs
through the geomancy of European alchemlsts, and is fmally translated into bmary

calcu!anon where it is.now applied in-every dlg:tal circuit from alarm clocks

“to supercomputers.

In a 1995 interview in Wired magazine, techno-pop musician Brian Eno
claimed that the problem with computers is that “they don’t have enough African
in them.” Eno was, no doubt, trying to be complimentary, saying that there is
some intuitive quality that is a valuable attribute of African culture. But in doing
so he obscured the cultural origins of digital computing and did an injustice

to the very concept he was trying to convey.

Discrete self-organization in Owari

H Kf
“win mystics. This chart was

e

(j; describes the Yaka
1\],
4 ").nnectiori to mathe-
Erl)aichemists created
J' « was in the combi-
{< was closely exam-
"—se Dissertatio de arte
{ leedges Lull’s work
. % a'base-2 counting

+:re were many other

Figure 7.10a shows a board game that is played throughout Africa in many dit-
ferent versions variously termed ayo, bao, giuthi, lela, mancala, omweso, owart, tei,
and songo (among many other names). Boards that were cut into stones, some

of extreme antiquity, have been found from Zimbabwe to Ethiopia (see Zaslavsky

1973, fig. 11-6}. The game is ph ed by scoopmg pebble or seed counters from

has only one or two counters already in it, whlch allows the player to caprure

these counters. In the Ghanaian game of owari, players are known for utilizing
a series of moves they call a “marching group.” They note that if the number
of counters in a series of cups each decreases by one (e.g., 4-3-2-1), the entire

pattern ean be replicated with a righeshift by scooping from the largest cup, and

that if the pattern is left uninterrupted it can propagate in this way as far as needed

for a winning move {fig. 7.10b). As s1mple as it seems, this concept of a self-

replicating pattern is at the heart of some sophlstlcated mathem tical concepts
wﬁjc;f\_n von Neumann who played a pivotal role in the developmem of
the modern digital computer, was also a founder of the mathemarical theory
ofself»orgamzmg systems. lnmaily, von Neumann's theory was to be based on
self-reproducing physical robots. Why work on a theory of self-reproducing
machines? | believe the answer can be found in von Neumann’s social out-
look. Heims’s {1684) biography emphasizes how the disorder of von Neumann’s
precarious youth as a Hungarian Jew was reflected in his adult efforts to impose
a strict mathemacical order on various aspects of the world. In von Neumann's
application of game theory to social science, for example, Heims writes that his

“Hobbesian” assumptions were “conditioned by the harsh political realities of

101
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FIGURE 7.10
Owari

{a)} The owari board has 12 cuf)s plus one cup on each side for captured counters. This board is

hinged in the center, with a beautifully carved cover {see fig. 7.14}. {b) Scoup from the first cup,

and plant one counter in each succeeding cup. (c) The Marching Group is replicated with a -l
right-shift. Repeated application will allow it to propagate around the board. E=l=.,
' l—>l ]
amas
FTT
his Hungarian existence.” His enthusiasm for the use of nuc]ewr weapons against BB
the Soviet Union is also attributed to this experience. A period-
of pseudc
During the Hixon Symposium (von Neumann 195 l) he was asked if com- (i.c., a pe
puting machmes could be built such that thLy could repair themselves if df\m- o
4
aged in air raids,” and he replied that “there is no doubt that one can destgn -
b
machines which, under suitable circumstances, will repair themselves.” His E -
g HENE
; work on nuclear radiation tolerance for the Atomic Energy Commission in i L L.
. . . . . . HEEEE
1954—1955 included biological effects as well as machine operation. Putting SMEEE
: ; -]
: these facts together, | cannot escape the creepy conclusion that von Neumann's b
: interest in self-reproducing automata originated in fantasies about having a 3
more perfect mechanical progeny survive the nuclear purging of organic life
on this planet.
Madels for physical rohots turned out to be too complex, and at the sug- : A const:
gestion of his colleague Stanislaw Ulam, von Neumann sertled for a graphic ab- : i internal
acefl di

straction: “cellular automata,” as they came to be called. In this model (Ag. 7.113a),

each square in a grid is said to be either ative ar dead {that is, in one of two pos-
e T .

______ v e e 7 A i 1 oo s Py e,

si ie states). The ltemtlve rules for changmy, the state of ANy one square a are b’lsed

SR S Y




In the cellular automaron called *
of two states: live or dead. Here we see a live cell in the cenier,
cells in its eight nearest neighbors. The state of each cell in the
determined by a set of rules. In “classic” life (the rules first proposed by John Horton

Conway), a dead cell becomes a live cell'TF it has three Jive nearest neighbors, and a
cell dies unlegs it has two or three live neighbors.

‘the game of life,” each cell in the grid is in one

surrounded by dead
next iteration is

This initial condirion produces a fixed pattern afeer four jterations, The pareerns occurring before
it settles down to stability are called the “transient,”

This stable pattern flips back and forth between these
two states. This is called a *period-2” pattern.

¢ Tpounters. This board is
TP
T Scoop from the first cup,

. ‘rﬂ‘, is repiicated with a
i:))ard.
o

~ear weapons against

A period-4_pattern. Periods of any length can be produced, as we saw in the
of psewdorandon number generation. Deterministic chaos, in which rhe p
(i.e., a period-infinity pectern, like the Morse sequence), is also possible.

previous examples
‘ atrern ne\(cr repeats
Tie was asked H com-
rr.')themsrélves if “rlam-
" thar one can design
i themselves.” Flis
¢ yegy Commission in
%, “l’
7y operation. Putting
VoS
..that von Neumann’s
Pt

[

“asies abour having a

\"'ﬁjrging of organic life

Iteration 133

leeration 182

- aplex, and ar the sug- A constunt-growth pattern, shown in high resolution, looks similar 1o the cross-section of an
iternal organ. The rules: a dead eclt becomes a live cell if it bas chree live

; rraphic ab- h iy i, ,
<tled for a gray acell dies enly if it has seven or eight live neighbors.

nearest neighbors, and
¢ this model (Ag. 7.110),

- is,in one of two pos-
!

FIGURE 7.1}

'y one square are based Cellular automata
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e

on the eight nearest neighbors (e.g., if three or more nearest-neighbors are full,

the cell becomes full in the next iteration). At first, researchers ca:_tjg:d out on. H

RN

these cellular automata experiments on checkered tablecloths with poker chips in sl
(a) Paired s
and gray Ce|!<

., become live”
< refractory lay

- O create a SL.

and dozens of human hetpers (Mayer-Kress, pers. comm.), but by 1970 it had been

developed into a simple "omputer program (Conway’s "game of life")‘ which was

/- Scientific American. The “game of life” story was an mstq;;r}:u—i and computer screens \
all over the world began to pulsate with a bizarre array of patterns (fig. 7.11h).
As these activities drew incréasing professional attention, a wide range of mathe-
matically oriented scientists began to realize that the spontaneous emergence

of se]f -sustaining patterns created in certain cellular automata.were excellent

e ST

models for-the kinds of seif- f-organizing patterns t that had been so. elus:ve in stud-

ThAh et
]

ies of fluid ﬂow and blologlcal growth.

" Since scalmg structurés are one of the hallmarks of both fluid turbulence
and biological growth the occurrence of fractal patterns in cellular automata
attracted a gredt deal of interest. But a more simple scaling structure, the log-

arithmic spiral (fig. 7.12), has garnered much of the attention. Even back in the

{1950 mathematician Alan Tuzing, whose theory of computation provided von
“Neiimann with the inspiration for the first digital computer, began his research
on “biological morphogenesis” with an analysis df logarithmic spirals in growth

patterns. ‘Mark s (1991} notes that the application areas for ceilular automata

-l
models of spiral waves mclude nerve axons, the retina, _the surface of fertilized

Bivalve
(From Haec

e.gg:s‘, the’ cerebral cortex heart tissue, ‘and aggregatmg shme molds. In the text
for catas, the first comprehensnve ‘software for experimenting with cellular
automata, mathematician Rudy Rucker (1989, 168) refers to systems that pro-
duce paired log spirals as “Zhabotinsky CAs,” after the chemist who first observed
Doyt it
such self-organizing patterns in artificial media: “When you look at Zhabotin-
sky CAs, you are seeing very striking three dimensional structures; things like
paired vortex sheets in the surface of a river below a dam, the scroll pair stretch-
ing all the way down to the river bottom. . . . In three dimensions, a Zhabotin-
sky reaction would be like two paired nautilus shells, facing each other with their
lips blending. The successive layers of such a growing pattern ‘would build up very

o~
C

like a fetus!”

Figure 7.13 shows how the owari marching-group system can be used as a

one-dimensional ceflular automaton 1o demonstrate many of the dynamic phe- .

—r—

nomena produced on two-dimensional systems.’ Earlier we noted that the

. . {d} Recursive ti
Alkan and other Ghanaian societies had a remarkable precolenial use of loga- ) Recursive i

rithmic spirals in iconic representations for living systems. The Ghanaian four-

fold spiral (fig. 6.4a) and the four-srmed computer graphic in figure 7.12b are
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{a) Paired spirals emerge from a three-state cellular ayromarion. Black cells are live, white cells are dead,
and gray cells are in a refractory or “ghost” state. The rules: Any dead neasest neighbors of a live celt
become live in the next iteration, and any live cell goes into the ghost state in the next iteration. The

refractory layer acts as a memory, providing the directed growth (i.e., the breaking of symmetry) needed
tw create a spiral partern. i

{b) This four-armed logarithmic spiral from Markus (1091) was produced by a
six-state cellular automaron in which a sequence of ghost states corresponds
to increasingly dack shades of gray. The system makes use of a very high-
resolurion grid as well as some randowm noise to prevent the tendency for

the patterns to follow the grid shape (as in the square contours of the spiral
above). Compare with the Ghanaian fourfold spiral in figure 6.4a.

+ Bivplve shell.
(Erom Haeckel 1904.)

Mushroom cut in half. North African sheep.
(From Cook 1914.)

(c) Paired logarithmic spirals often occur in natural growth forms.

W) Recursive line replacement, as we saw for other fractal generations, can also produce such paired spirals.

FIGURE 7.12
Spirals in cellular automata
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a one-dimensional cellular avtomaton. One

dimension is not necessarily a disadvantage; in fact, most of the professional
mathematics on cellular automata (see Wolfram 1984, 1986) have been done on
one-dimensional versions, hechuse it is easier to keep track of the results. Tley can
show all the dynamics of two dimensions. =

~ The pasterns noted by traditional owari players offer a great deal of insight into
self-organizing behavior. Their abservation of a class of seif-propagating patterns,
the “marching group,” provides an excellent starting point.

We can view the owari board as

O00000 000000

34215532543 111—4222—333 1—>442 2531142211332

DHOOOO OHOHOOO
3 4 2 1 3 T3 itErAtions ——= 4 3 2 1
7-5433—34411-4552-332114311

an example of a constant pattern. Here we see counters in

The marching group is
heir marching formation simply by repeating

the initial sequence 3421 convergeont
the “scaop from the left cup” rule through 13 iterations.
Just as we saw in rwo-dimensional cellular automata, transients of many different
tenpths <an be produced. Transients of inaximum length are used as an endgame ractic
by indigenous Ghanaian players, who call it “slow motion"—accumulating pieces on
your side to prevent your opponent from capturing them. In nonlinear dynamics, the

constant pattern is called a “point attractor,” and the transients would be said o lie

in the “basin of attraction.” ‘ .
The matching group rule can also produce periodic behavior (a “limit cycle” ot

“periodic attractor” in nonlinear dynamics terms). Here is A period-3 system using

only four counters:

211222031211

Which leads to marching groups, and whicl ones lead to periodic cycles?

R Total number RBehavior
o o of counters  {after transients)
' 1o b;darching
The numbers which lead to marching groups— % ;\;::2;1;%
1,3,6,10,15. .. —should fock familiar to readers: 4 . Period 3
it's the triangular numbers we saw io tarumbeta! 5 s Perind 3
The period of cycles in between each marching 6 .. Marching
group is given by one plus the iteration level of the g """" EC::::{Il 4
previous triangular number reached. 9 ... :P;ri(;tl :
10 e Marching
[ S Period 5
(Note: Some sequences will be truncated for !1% """"" gi:::ﬂ g
13, 14, and 19 since there are more counters 4 Perind 5
§5 ... Marching

than holes.)

FIGURE 7.13
Qavari as one-dimensional cellular automaton
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quite distant in terms of the rechnologies that produced them, but there may

P

- ?3011. One

{ f;'essional

' seen done on

. lules. They can

well be some subtle connecrions between the two. Smce cellular automara

model the emergence of such patrerns in modezn scwntlﬂc studies ofhvmg sys-

Lan " T

tems, and certain, Gh’mann log spiralvicons were also intended as generahzed

medn,l:, for orgamc growth it is not unreqbonable to consider the pOSSibll[I:y that

"7 of insight into
ting patterns, the self organizing dynamlcs observab[e in owari were also linked to concepts

ofbno]oglcal morphog,enusns in nadmonal Ghanaian knowledge systems.

Rattmys classic volume on the Asante culture of Ghana includes a chap-
ter on oward, but unfortunately it only covers the rules and strategies of the game.
Recently Kofi Agudoawu {1991) of Ghana has written a bockler on owari “ded-

icated 1o Africans who are engaged in the formidable task of reclaiming their her-

itage,” and he does note its association with reproduction: wari in the Ghanaian

]

.Jqll-r>4552—>33211—>4321

Cf‘ve see counlters in
,-_-'-}mply by repeating

language Twi means "he/she marries.” Herskovits {1930}, noting that the “awari

“iof many different’

35 an endgame tactic

“nulating pieces on

mear dynamics, the
“would be said ro lie

L 3

;\";j “limit cycle” or
vod-3 system using

wadic cyeles?

“Himber Behavioe

- Jurs (afrer transicnts}
. .Marching
Period z
Marching
Period 3
Period 3
Marching
Period 4

"":i::?iﬁi’,‘d‘: | FIOURE 714 ,
R Marching Logarithmic curves and owanri
........ Period 5 The cover of the hinged owari board
-------- Period 5 we saw in figure 7.10 shows concentric
"""" Ir:t:::ﬁ g circles emanating from the Adinkra
Lo Murching icon for the power of god, “Gye

Nyame.” A similar icon; without the
logarithmic curves, is attributed to a
closed fist as a symbol of power. The
Gye Nyame symbol thus appears 1o be
a pair of logarithmic curves'held in a
fist: God holding the power of life.

L.lmaton

v
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game played by the descendants of African slaves in the New World had retained
some of the precolonial cultural associations from Africa, reports that awari had

a distinct “sacred character” to it, particularly mvolvmg the carying of the

e F———_s

board. Owari boards with carvings of loganthmlc sptrals (ﬁg-q 14) can be com-
mc—);ly found in Ghana today, suggesting that Western scientists may not be the
only ones who developed an asscciation hetween discrete self-organizing patterns
and biological reproduction. It is a bit vindictive, but I can't help but enjoy the
thought of von Neumann, apostle of 2 mechanistic New World Order that
would wipe out the irrational cacophony of living systems, spinning in his grave
every time we watch a cellular automaton—whether in pixels or owari cups—

lenng forth chaos in the games of life.

Conclusion

el ey N

Both tarumbeta and owari's ari’s marching:group, dynamics are govemed by the tri-

e st e T s L A A b

angular nu numbc:rs There is nothing special : about ¢ the triangular number series—

p——_

can be founcl in the numbers that form

et S T

snrmiar nonlinear _growth properti

successwely larger rectangles, pentagons, 9 pes. Nor is there anythmg

;;—menual about the powers of two we found in dlvmatlon—mmllar apertodic prop-
erties can be produced by applications of mod 3, mod 4, etc. What is spec1ai is

STy s,

the underlying concept of recursion—the ways in.which a kind of math

i oA T

feedback loop can generate new structures in space a and.new dvnamlcs in trime.
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In the next chapter, we will see how this underlying process is found in both prac-

tical applications and abstract symbolics of African cultures.

ama

Recur:
matiot
terns t
definii
in thit
to con
action
and nv
egarie
and g
Afric:

Three typs

The |
deter
stary
ceilin

doghs



f_‘_wb’orld had retained
!""1)1'!:5 that awari had
“he carving of the

o,

“~.14) can be com-
" tst5 may not be-the

[
i

- prganizihg paterns

help but enjoy the
! :)World Order thart
“inning in his grave
t':{:7-:3‘.15 or owari cups—
&

3

s
£

ﬁcwemed by the. tri-

CHAPTER

—Recursion

:"j 'nuembers that form

" _or is there anything

. :'_")‘i!ﬂr aperiadic prop-
Sy What is special is

Recursion is the motor of fractal ggometry; it is, here that the basic_transfor-

N
matlons—whether numeric or qutlal%are spun into whole cloth, and the pat-
e e i

torns thar emerge oFten telt the story of thelr wh[rlmg blrth We will begm by

'-ajind of mathematical
(AW dynamics in time.

ns found in both prac-

e W

deflmng three types of recurrlr‘n‘] While it is p0351ble to categorize the examples

et TS

in this chaptu sofely on the basis of these three types, it is more illuminating

) to combine the analysis with cultural categories. It is in examining the inter-
) " action between the two that the use of fractal geometry as a knowledge system,

‘ ) and not just unconscious social dynamics becomes evident. The cultural cat-

i)

LD

k)

Q) :

- Three types of recursion w

L

. The least powerful of the three js cascademrecurmon in which there is a pr&@

::‘). determined sequence of similar processes. For example, there is a children’s

story in which a man buys a Christmas tree, but discovers it is too tall for his

ol cetling and curs off the top. His dogs find the discarded top, and put it in their

- doghouse, but they too discover it is too rall, and cut off the top. Finally the
J

109




IIO

African fractal mathematics

mice drag this tiny top into their hole, where it fits just fine—the recursion
“bottoms out.” Note that these were all independent transformations; it is only
by coincidence, so to speak, that they happened to be the same. Figure 8.1a shows

the numeric version of cascade recursion, in which we divide a number by two

E—

in each part of the sequence, ’(hls is nat a very powerful type of recutsion, for

e s
two reasons First, it requlres that we know how many transform'\tlons we W'!nt

;Second we have to know wh'lt tmnsformﬂt!on to m"zke 'thead oftlme and [h’l[‘

is ot always posmble elther Recall for ex1:nplc the peneration of the
——

Fibonacci series we saw in ch'lpter 7 (fig. 8.1b}. Although the generation is just

using addition, it cannot be created by a recursive cascade, because the

. amount to be added in each transformation changes in relation to previous

“results. Generating the Fibonacci series requ\res a feedback loop or, as mathe-

maticians call it, iteration.

SOTR—— e a1

In iteration, there is oniy one transfs

process creates an output, it uses thlS result as rhe input for the nex iteration,

as we' ve seen in generatmg fr'lcmis A p'ntlcul'lrly important variety of itera-
tion is “nesting,’ " which makes use of loops within loops. Hofstadter {1g80,
103-1 25;?1?&1\; illustrates nesting with a story in which one of the characters
starts to tell a story, and within that story a character starts to read a passage from
a book. But at that point the recursion “bottoms out”™: the book passage gets
finished and we start to_ascend back up the stories. Nested loops are very

r ]

common in computer progr'\mmmg, and we can [“U‘?tl"lte tI'llS —]1 a progr'lm

for ot drawing the architecture of. Mgkoulek (ﬁo 8. 1c) we examined.in f‘h’lpter

The Batila architecture we saw in chapter 2 can also be simulated this way, using

-one loop for the rings-within-rings, and another for the front-back scaling

gradient that makes up each of those rings. In chapter 6 the first corn-row hair-
style (ipako elede) showed braiding as an iterative loap; the second corn-row
example added another iterative loop of successive perimeters of hraids.? tis

common for computer programs to do such nesting several layers deep, and keep-

ing track of a[l those loops v Wlthm loops can. be. quite a chore;..

The thlrd type of recursion is “self- reference We are all familiar with the

way that symbols or icons can refer to )methmg the stars and stripes flag refers

to America, the skull-and-cross- bones fabel refers to poison, the group of let-

ters c-a-1 refers to an animal. But it's also potmb]e for a symbol to refer to itself.

Kellogg's cornflakes, for exmnple once came in a box that featured a picture of
a family sitting down to breakfast. In this picture you could see that the family

had a box of Kellogg's cornflakes on their hreakfast table, and you could see that
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Recursion TIT

this box showed the same picture of the family, with the same box on their table,

and so on to infinity (or at least to as small as the Kellogg company’s artisans
could draw).

T

Self- reference is best known for its role in logic

B VAP

para ox. If for example,

pose you accuse yourself of lying? This is the paradox of Epimenides ofCrete, who
declared that “all Cretans are liars.” If he’s telling the truth, he must be lying,

but if he’s lying, then he’s telling the tuth. The role of self-reference in logical

— e e A e AP v, ]
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WHILE &-count < 4 do:
= draw enclosure
WHILE g-count < 12 do:
» draw granery
s rorate toward center
- shrink granery size
"« increase g-count by 1
END of g-count's loop
« reser g-count to O
«+ rotaie coward center
« shrink enclosure size -
» increase e-count by 1
eND of e-coune’s loop.

FIGURE 8.1

Recursive cascade versus iteration

{a) A recursive cascade, in which the same transformation (division by two) happens to be used
w each part of a sequence. This requires knowing how many times the transformatin should
happen ahead of time. It also requires that the transformation is independent of previous results.
{b} The Fibonacci sequence is produced by adding the previous number to the current aumber to
get the next number, stacting with 1 + 1 = 2. In the Fibonacci sequence we add a different amount
w cach iteration—we could not knew how much each ransformation should add ahead of time,
saurecursive cascade would not do the job. {c¢) In some cases it is necessary to put an iterative
loap inside another iterative loop (“nesting”). Here is an example of nesting in a computer
progeam for drawing the architecture of Mokoulek we examined in chapter 2. [t is written in what
programmers calt “pseudocude,” a mixture of a programming language and ardinary English. The
hest loop draws three large enclosures, and the inner loop draws 12 graneries inside each enclosure.

 Variable “e-count” eracks the number of enclosures, and g-count tracks the number of graneries.




12 African fractal mathematics

paradox has been 1mport'mt for mathematical theory, but it has also been put to
: pmcucal use in computer programming. Most programmmg has little routines called
“procedures,” and often a procedure will need to call other procedures. In self-

iy

referentlal programmmg the procedure calls itself.

Practtcal fractals: recursion in construction techniques

F In his discussion of the metal-working techniques of Africa, Denis Williams gives
{ a poetic description of recursive cascade in the eden brass sculptures of the |
Yoruba: “The image proliferates like lights in a bubble: one edan bears in its hp
another, smaller version of itself, which bears in turn a smallet in its lap, and this
bears another in its lap, etc.—a sort of sculptural relay race” (1974, 245). While
the edan sculptures are unique to the Yoruba, recursive construction techniques
are quite common in Africa. For example, Williams goes on to note that much
Aftican thetalwork, unlike European investment casting, uses a “spiral rechnique”
to build up structures from single strands (whether before casting, as in the lost
Qﬁivntec'h'r-{i.d-:n’é:TMCrwqrds as wire), resulting in "helical coils formed from
smaller helical coils.” A wig made from metal wires (fig. 8.2a) shows a similar
1te}aml£;;r€-”c_c:;;gtru.lctlon using coils made of coils. In chapter 6 we saw some
examples of African hair styles in which either adaptation to contours or
abstract spatial transformation resulted in a scaling pattern. The fractal braids
shown in figure 8.2b have nothing to do with the shape of the head; they are
rather the result of successive iterations that combine strands of hair into
& braids, braids into braids of braids, and so on. Figure 8.2¢ shows anorher wig,
' this one for a sculptuie, ihat features braids of many scales.

Thls collection of sculpture met'llwork, :md h'urstylmg sounds like a

tion: all exqmplLs used a smgle transform'ltlon-—st'\ckmg, br'ndmg, cotlmgm—

—
that was applied” seveml tlmes Lookmg at the !;el’ltIOI‘l between the basic

franstormation and its fmal outcome can help us dlstmgmsh 'unong different rypes

- iR 2 2

. N e -——-"“‘"—"
oo of recursion. The braiding pattern of flgure 8. :z.b for example is based on iter-
- ation, because the way each stage is braided depends on the braids produced in
previous stages; they are braids of braids. The braids in figure 8.2¢, on the

other hand, are of different scales simply because each stage uses different

b amounts of single-hair strands—a cascade of predetermined transformations.
Similarly, the coils of coils indicate iteration, because the-output of one stage
becomes the input for the next.

Recursive constructlon _te_chmquew are also .used for the decorative

designs of African artisans. In our discussion of the fractal esthetic in ch"lp—
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Recursion

ter 4, we examined decorative patterns which did not provide evidence for a
formal geomerric method. That doesn't mean no formal method could possibly
exist; it’s just that none could be readily dlscerned from the design itself, and
the artisans did not report anything beyong intuition or esthetic taste. But there
are some designs thar do indicate an explicit recursive technique from the pat-
tern itself, Figure 8.2e shows a Mauritanian textile with two such scaling pat-
terns. Intentional application of iteration as 2 construction technique is
indicated by the way the X fractal’s seed shape is shown on either side, and
by having iteration carried out on two completely different seed shapes in the
same piece. The triangle fractal (close to what mathematicians call the “Sier-
pinski gasket”) is also found in Matiritanian_stonework (fig. 8.2f). A three-
dimensional version from Ghana (fig. 8.2h) may have been inspired by these
designs.

Both of the above are examples of additive construction, as we saw in the

Koch curve of chapter 1, but Csubtractive iterations, as we saw for the Cantor
e

set, are also found in Afrman_gjgcorauve fractals (ﬁg 8.21). Carvmg deSIgns

e

include applications of iterative construction, particularly for calabash deco-
rations (fig. 8.21). A geometric algorithm for producing nonlinear scaling
through folding was invented by the Yoruba artisans who produced the adire
cloth of figure 8.2n. It is not merely a metaphor to refer to a specified series
of folds as algorithmic; in fact, one of the classi@%‘dragon curve,”
was discovered in 1960 when ;}:ml-leighway expemth
tterative paper folding {Gardner 1967). The a 1direﬂﬂ?$ilso-sb9ws4bc\_gpli_

e
cation of reﬂecnon 5 etry at every-scale from single-stitch rows, wl-uch are

reﬂected on etther side of the fold edges, to the'e éntire Fabnc which is created

[

So far we have only d:scu:,sed the tt,chmml method employed but of course

styleb for anmple embed Iayels of socml labor with each iteration, a way to

ist and stylee). Figure 8.3a shows a Fulani wedding blanket, in which spiritual

can also be associated with mcreasmg iterations, as we find for brass casting
and beadwork in the grasaldnd areas of Cameroon {fig. 8.3b,c}. The scaling iter-
ations in one of the brass sculptures (fig. 8.3d) was reported to be symbolic as
well: it showed three generations of royalty. But kinship groups are nor just

static entities; they change across time, and in the following two sections we

L will see that African represenrarions of such temporal processes often involve

‘recursion.

——
invest physical adornment with social meaning (such as frlendshlp between styl-
e e

7
energy is embedded in the pattern through its iterative construction Presuge‘

113



FIGURE 8.2
Recursive construction techniques i
{a) Coils of coils are used to create this metal wig from Senegal. (b) A scaling cascade of bra
a mask from the Dan societies of Liberinand Cate d'lvoire. (¢) lterative braiding in this hair
from Yaounde, Cameroon, la tresse de fil, can be simulated by fractal graphics. {d) Thrce itera
of the tresse de fil simulation. ‘ ‘ ot
{h, from Barbier-Mueller 1988.)

8.2

(fireve 7‘
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{fgure continues)

FIGURE 8.2 {conitinued)
{terative construction
in Mauvritanian decoration

~-te) Recursive construction with triangles and

X-shapes in Tuareg leacherwork. The X-shape

is related to the quincunx discussed in chaprer 4.
(f} Designs using several iterations of triangles
can also be found in Mauritanian stonework.

() The use of triangles in this nomadic
architecture from Mauritania may be one

reason for the popularity of the design. Unlike
rectangles, triangles can create a rigid frame
using flexible joints—an important feature in

a landscape where long poles are scarce and
lashing is the most commen joinery. (h) A single
iteration of a three-dimensional version of the
recarsive triangle construction, created by Akan
artists in Ghana.

(e, from Jeffersom 19737 f and g, photos courtesy
IFAN, Dakar; h, from Phillips 1905, fig. 5.103.)

{figure continues)




116

FIGURE 8.2 (continued)
Scaling pattern from subtractive iteration
front of a painted studio hackdrop, Cape Coast, Ghana, 1860.
hought of as two iterations of scaling subtraction (that is, erasing).
hick strips intersect, we get large

(i) A Fante woman posing in
(j) The Fante pattern can be €
Strips are erased from an all-black Lbackground. Where the t

suares, and where the rhin strips intersect we get small squares.

_ (i, photo from the National Museum o

Representing recursion as a process in time: part 1, luck and age

A simple example of African rgpreswgﬂor\ as a time-varying progess

ree designs that depict wishes for carches

is shown in figure 8.4, where we see th
<k ‘or good luck in fishing can

of everlarger (ish. Since the experience of bad fu
aily basis, it is easy to see how a big fish could becamne an icon far
signs the artisans take the concept a step further. Good

I

es in the myths of

e
occuronad
good luck. But in these de
fortune is not in terms of a singular chance event, as one ¢

IS ——

the Native American rrickster.d The wish is for an iteratiye process—that each
(ish i5 to be successively larger than the last ane.
While these good luck icons are often a mare informal part of culrural prac- \

,
e taken much more seriousty. Anthropologists )

* tice, other recursive processes ar

f African Art, Smithsonian Institution:} - - {figure continues! . .. .

Seed sh
lin

(k) The
wooden
neck. (i
This is |
simulat
iteratio
(k, comn



@f‘uast, Ghana, 186a.

“raction (that is, erasing).

@time'varying process
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{"‘}a step further. Good

" ees in the myths of

s process—that each

*,
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*- part of cultural prac-

-asly. Anthropologists
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Seed shape, with active Fourth iteration.
lines i gray.

Fourth icetatinn enlarged, with adaptive sealing
(mapping from a sphere o a plane) applied 10
m march the adaptive scaling of the calabash design.

FIGURE B.2 {continued)

Iteration in carvings
{k) The Bakuba of Zaire created several carvings that feature a self-similar design. This Bakuba
wowden bottle makes use of hexagons of hexagons as well as adaptive scaling as it narrows into the
neck. (I} Chappel (1977) records a wide vartety of ealabush designs, many with scaling ateributes.
This is probably the best example of iterative construction in these carvings. The design
simulation not only requires recuirsion but adaprive scaling as well. (m) Seed shape and fourth
Jieration; fourth iteration enlarged, with adaptive scaling applied.
;f_l, courtesy Musée Royal de U'Afrigue Central, Belgium.) (figuzre continues)




FIGURE 8.2 (continued)
Adire cloth: scaling from iterative folding

(n) This Yoruba adire cloth is actually two separate pieces attached along the horizontal midline.

The dye pattern is created by sewing along folds before dye is applied and then removing the

threads so that the white lines are jeft where the dye did not penetrate; {0) The Tolding method is

based on reflection syminetry across 3 diagonal. It is easiest 10 understand by making a paper model.

The adire artisans have not only
developed an algorithm for generating
this nonlinear scaling series, but have
done so in a way that maximizes efhicient
production: all folds fatl along the same
two edges, 50 only two edges need be
sewn. Your paper model can imitate this
effect by running a heavy felt marker
along the two edges, so that the ink
bleeds through all the layers (you can

cheat by inking each fold as you unfold
it). Note that the white lines in the adire
are criple-—this, too, s created by a
reflection symmetry, sewing next to the
fold to create the two outer lines {one on
each side of the fold), and sewing right
on the edge of the fold to create the

center line.
(n, photo from Picton and Mack r979.}

First, cut out a paper recrangle with width nwice the height,

and fold it in half, making a square.

Third.,
matk points
at Vi and 4 of
the suter sides

of the triangle.
These points can be

it e L

decermined by falding, if
one wishes to maintain the .
arigami equivalent of compass and Fourth, fold from the corners on Finally, fald in the small k.
straight-edge construction, bt doing opposite sides aloog the line hepween over lapping corner on each
the V3 and Y% marks. side. - A
-1

it by eyehall works just fine.




Yorm

/ >1e horizontal m‘idiine.
““hen semoving the

.. The folding method is
0o  making a paper model.

——

R
R
R
i
FIGURE 8.3
Making meaning
through iterative
construction
{a) This Fulani
wedding blankert from
Mali is based on
diamonds thar scale
from eicher side as
we mave toward the
center; a pattern that is
easily simulared using a
fractal (se@ diagram)
The weavers who
created it report that
spiritual energy is
woven into the pateern,
and that each successive iteration shows an increase in
this energy. Releasing this spiritual energy is dangerous,
and if the weavers were to stop in the middle they would
risk death. The engaged couple must bring the weaver
food and kola nuts to keep him awake uniil it is inished.
{b) The prestige bronze of Foumban, Cameroon, uften
makes use of self-similar iterations. (¢} Prestige is also
symbolized by the lubor and artistry required to produce
the many iterations of bead pateens for this elephant
mask. (d) According to Salefou Mbetukom, the leading
castor of Foumban, this sculpture shows the succession of

kings in the royal family.
(¢, from agence Hoa-{Qui.)

. Finally, fold in the small
% overlapping corner on cach %
side.
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have always been interested in the contrast between the elaborate political and

economic hierarchy of European socicties and the relacively “classless” (some-

times even rulerless) structure of many precolonial African societies. [f it is not
political and economic structure that governs their society, then what does?

One part of the answer is age. All human cultures differentiate between chit-

L e Y . P

FIGURE 8.4

If wishes were fishes
(a) Scaling scales: this Bamana tattoo,
created with henna, is said to represent the
scales of fish. [t is good luck, signifying ever-
larger fish catches. (b) This is an “abbia,” a
carved gambling chip from Cameroon.
Given the high stakes of the game, it could
be a more apgressive symbolism than just
luck, e.g., “just as you have swallowed others,
i will swallow you.” Other chips appear to
carry the iteration out several more levels,
although they are less recagnizable as fish ().
(d) This print with four iterations of fish is
from nocthern Ghana. It was reported to be
a fertility symbol.
(d, photo courtesy of Traci Roberts and

Ann Campbell. } d
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(- \
. rate political and dren, adults, and elders, bue in ‘many Afncan societies the dwnsnons are much
s vclassiess (some- more elaborate and structured. In these age grade sy ems, all commumty mem-

N

Sieties. If ivis not bc,ra born within a given number of y years will move together through a series

of nmal initiations. In clmpter 5 we saw, one examp]e in which these initiation

:,tagcs appe'\red to be accompamu;l by an iterative scaling geometry, the lusona.

“then what does?
e between chil-
Figure 8.5a shows anotlmr geometric visualization of age-grade initiation: a hexag-
onal mask created by the Bassari of the Senegambian and Guinea-Bissau region.

Although the mask is only a linear-concentric scaling of hexagons, and thus

not a fractal, it does suggest an iter:

ive process, and we might well suspect a link

AT I
S

between stages in age- grade and stages in nteranon The initiation process is a

(.lo:.ely guar(led secret, so it is not :,unply a matter of asking Bassari experts, but
dunng my visit with the Bassari in 1904 |  found that the meaning of other

about the meamng of the m'lsk Desplte the extensive migrations from the vil-

DUQ

Ty
[
e’
o™

fages 1o cities (Nolan 1986}, there is still strong participation in the age groups

and transition rituals. The “forest spirie” Annakudi, for example, seems to be

undaunred by the city of Tambacounda, where a local age group hosted him at

a well-atrended dance during my stay. Indeed, 1 found the sterectype of traditional

elders and irreverent youths 1o be somewhat reversed (which was explamed to

e e e st

-~

FIGURE 8.5
Scaling hexagons in a Bassari mask
fa) The Bassari initiation masks frequently fearure scating hexagons in the center. This appears to
linear scaling. (b)Y One of the Bassari elders demonstrates the traditional string talleys, with
ots in groups of six.
h, photo from agence Hoa-QuifMichel Renaudem: )
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African fractal mathematics

. me as an effect of the strong hierarchy of secret knowledge the youth are often
more wary about breqkmg taboos because they are less certain about boundaries

and consequences}. This is not to say that there is any overt presence of fe'lr In,

™
fact, it is the positive aspects of the secrets that are stressed, as became obvxous |

when ‘elders gleefully refused my questions while emphasizing the wonderful

“.nature of the information they could not divulge.

The number.six is a prominant feature of Bassari mathematics in many
areas of their life. They have a popul'\r game for example, played with pebbles
on a sand pattern, which nakes use of two axes with six holes in each line. In
their traditional calendar there are six months per year, each of 30 (6 % 5) days,
with an initiation about every 12 (6 X 2) years (to a total of nine initiations).
Each of these rites of passage involves a 1engthy education in a new level of
trad:tlonal knowledge The most important is the passage to adulthood which

——

lasts for six days In addition to these time measures, the number six also '\ppears

various counts, often used knots grouped by six. The Bassari elder who demon-

strated these tallies to me {fig. 8.5k} told me that he did not know much about

rraditional forms of calculation, but he did know that in precolonial times it was

performed by specialists who were trained in the memarization of sums. This prac-
tice may explain the origins of the famous African American calcularing
prodigy, Thomas Fuller. In 1724, at the age of 14, he was captured—quite
possibly from the geographic areas that included the Bassari’—and sold into
slavery in Virginia, where he astonished both popular and professxon | audiences
with his extraordinary calculating feats (Fauvel and Gerdes 1990).

-F:na!‘ry, there is the Bassari divination system Although thE_'ELihe“S are

Each cast prov1des the answer to a spe(:lﬁc questlon (or venﬁmuon of a previ-
ous question) relevant to the client’s problem; the final sixth cast shows the prob-
lem as a whole. If we compare this divination to the initiation system, the

number six can be seen as a marker for information clusters, a ;}uns:mauon

e T T

. point which, like the tally system, allows the dlstlnctlons th']t maintain a com-

e s e e e e Y e e e e A

prehenswe structure And like the initiation, each cycle of six provides an

e*cpnndmg view of the whole. Thus it seems likely that the thng hexagons of

[

the initiation mask represent this six-stage iteration ofknow\edge

- Nonhne'xr smllng iterations can also be found in African initiation masks
Figure 8.6a shows a Bakwele mask in which bath size and curvature have a non-
linear increase with each stage. My guess—1I have not found any cultural
descriptions that can confirm this—is that it sugpests “to open your eyes” as a

metaphor of knowledge, and thus maps the scaling iterations of the mask to iter-

ations of kaom
used in the
buwami (Biebu
and during th
ber. Both the
of stages in i
a8 4 sequence

resent scaling

() Rembe mask, 1
associntion, the b
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Recursion

ations of knowledge gained in initiation stages. Figure 8.6b shows a Bembe mask
used in the first of a three-stage initiation for a voluntary association, thé

bwami (Biebuyck 1973). Before the ceremony, the mask is hidden behind a screen,

and during the ritual the sereen is gradually lifeed by a high-ranking senior mem-

ber. Both the relation between the number of eyes in the mask and the number

)
— -, JENEEST R,

of stages in 1mtntx0n as well as this methoc{ of vtsmaliy exposing the | pattun

as a thC[UCI'\CB ag:nn subge:;t intentional use of a smlmg gt,ometr\c des1gn to 1ép-

123

FIGURE 8.6
Nonlinear scaling in initiation masks

Bembe :
) embe mask, from western Congo, used in the first of a three-stage initiation for a volunmry

ciation, the bwami, {b) Mask used in initiation by the Bakwele of Conge.

phote couriesy Gene Isaacson; b, courtesy Musée de 'Homme )
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Representing recursion as a process in time: part 11, kinship and descent

tems are pnm'mly b'\sed on gCI‘EtIC ties ( ‘blood rel’ntlons

aithwgh most societies also have: “f:ctwe kin (e.g., adoption) wluch are just

as real—uklmhlp isa cultural phenomenon. Deqcent is also cultumlly b":sed Most.

PO M S

Western European and American societies think of descent as blologlcai but
that is because most of them have bilateral descent, in which both patents
are used to establish kinship. Unilineal descent, where a kin group traces their
lineage through one sex only, is actually more common {in about 60 percent of
the world’s cultures). A" @ isa um!meal kmshlp group. whose members report

that the‘y are descended from a common dista

estor, often a mytholog:cal

flgure ((E!‘}is often h'we _important 1el1g1?us and polmml functlor}s, although
tlmey are typmally preqd out across mqnmlllages and usually prohibit marriage
'Dell:e";ﬁ-aammembers
We have already seen how the Bamana use recursion to generate a binary
,code in their divination; here we will look at their representation of descent as i;
recurston The antelope figure in Bamana iconography is associated with both ]
ihuman and agncultunl fertility. In the chi wara association, which is open to !
| both men and women, the 'mtelope appears in a striking headdress (fig. 8.7a), f
'whlch represents the recursion of reproduction: mother and child. When seeing [
one headdress individually, the scaling seems trivial, but with several examples | |
together the extracrdinary insistence on self-similarity becomes apparent. Th_ls ‘
|cqn acts as the s seed transformation in an iterative loop:. the child becomes a .
mother, who hias a child, who becomes'a momer and so on. Figure 8.7b shows
the descent carried to a third iteration.
In chapter 2 we saw several examples in which descent was tied to scal-
ing architecture. The Batammaliba, who live in the northern parts of Ghana,
Benin, and Togo, have developed an elaborate system for this refationship
(Blier 1987). Figure 8.8 shows a diagram of their two-story house, based on the
¥ circle of circles found ir much of the West African interior. In front of the house
lies the first of two scaling transformations. It is the “soul mound a circle of
cylinders representing the spisits of those currently hvln;_, in El'\t house and
physically structured like a scaled-down version of the house architecture. As
the current family gives way to a new generation, the soul mound undergoes a ida) The chi wara fif

second transformation in which it is divided into a single cylinder and is m““'fj“ the fAigure
. icw ol reproductic

moved inside. A scaling sequence of these single cylinders—one for each gen- ‘(” nf',hcv n'eﬂ from r

eration—can be seen wrapped around the central tower inside the house.
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Recursion and reproduction in Bamana sculpture

{a) The chi wara figure, used in ritual dances for agricultural fertilicy, shows a striking self-simitarity:

Mihough the hgures vary widely, each one is similar 1o itself. This can be atrribured to che B'm‘mln\;.
ew of reproduction os cyclic iterations. (b) Here the cycle is carried out to three it(:ra[ionsc

8 upper left, from the de Hewenon Collection, Musewm of African Art, Smithsonian Insticution; up,;mr

R P 3 ' -]y " : ;
¥ v t, courtesy Musée de "Homme; lower, from Carnegie Institute 1970. b, courtesy Musée de I'Homme.)
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FIGURE 8.8
Recursion in Batammaliba architecture
(a) Diagram of the Batammaliba two-story house. In
front of the housc lies the “soul mound,” representing
the spirits of those currently living in the house.
(b} Inside the house, single mounds representing

Here only one such array is shown, but typically there
are several in the same househokd.
{a, from Blier 1987.)

’"‘\} —N . : \\
! k=)

Blier’s diagram indicates that the size of the ancestral mounds increases from
youngest to oldest, and she notes that this reflects the Batammaliba's idea of a
spiritual power in proportion to age. S0 far it would appear that there are only

two scaling cascades—one to shrink houses to soul mounds, and another to

“divide soul mounds inta cylinder rows—and no iterative loop. But if the largest

mound reptesents the oldest, then recent mounds would be increasingly
threatened by vanishing scale. How would the first descendant have known how
large to make the first mound? Blier notes that many of the symbolic features
of the architecture are replastered with odditional layers of wet clay on ritual
occasions, and we can surmise that this applies to the ancestral mounds as
well. Thus an i[emtigg_}ﬂ(}_qp.!_i_l_1__wh'i_c_1} each new ancestor adds power o the older
ones by increasf‘t‘;‘g their mound's size, would be at work in the scaling sequenge

we sce accumulating around the central tower.

ancestors ave found in the scaling arrays, with the size of
the ancestral mounds increasing from youngest to oldest.
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( The Mitsogho society of Gabon includes several religious associations that
~are housed in the same temple (ebandza). Figure 8.9a shows the central post of
an ebandza featuring scaling pairs of human figures. As in the chiwara figure, there
is only one iteration; the significance lies i s iy tl this ﬁgure as the seed transformatjon

i

for a reqursive process. Thc_ use of a cross shape may b/g_gi et Chnsnan mﬂuence,

'bu[ the bilateral scaling is quite indigenous, as we see in the classic Bakwele sculp-
ture {fig. 8.9b) elsewhere in Gabon. Most important, the ebandza post provides
a visualization for the iterative concept of descent that is widely used in this cul-
ture area. This is beautifully described by Fernandez (1982} in a detailed ethnog-
raphy of the Mitsogho's neighbors and cultural relarives, the Fang.

Although the Fang are patrilineal, they believe thar the active prin:_cipie
of birth—a tiny human (what was called a “homunculus” in early European med-
ical theory)—is contained in the female blood. The idea of the new existing within
the old, and vice versa, is a strong cultural théme. For example, in one ritual the
mother places a newborn child on the back of her oldest sibling to symbolize

continuity of the lineage. Fernandez (1982, 254) notes that the rebirth con-

cept is so strong | rhat 'Fang fathers often mlled their ‘infant_sons ata, the

famitiar form of. fdther’ [t many of the Fang and Mntsogo religious practices,
t\I;ems};lnt is explicitly described as traveling a vertical cyclic path. Ancestors
rise from the earth to become bom agam and by proper living they can rise
higher with each rebirth. .

These cyclic iterations are visualized in the Nganga dance of the Bwiti
religion (fig. 8.9c}. Even in Christian-animist syncretism, btbhgz_t_l ch:_;l‘r_z_l_c_t_ers
are reinterprered as cyclic re remthe African gods Zame and Nyingwan

become . Adam and Eve, who become Cain and Abel {understood as male and

female), who become Christ and the Virgin Mary. Fernandez notes that these

cycles are not mere repetition, but rather iterative transformations: “The
spiritual-fraternal relation of Zame and his sister is converted into the carnal
relation of Adam and Eve which degenerates into the materialistic and divisive
relation of Cain and Abel which then is regencrated as the immaculate and
filial relationship of Mary and Jesus” (p. 339). According to Fernandez, these
degenuatson/regeneranon differences are visualized as honzontal versus
vemcal " which could explain the dlternatson in the ebandza posts. In ﬂpply—
ing this cyclic conception to the ebandza strucrure {fig. 8.9d), we can see the
descent model in its full fractal expansion.

The Tabwa, who occupy the eastern section of the Democratic Republic
of Congo (Zaire), have also developed several geometric figures to serve as mod-
els for their conceptions of kinship and descent. Maurer and Roberts (1987, 25)

explain that in the Tabwa origin story, an aardvark’s winding tunnel results in

3]
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I
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FIGURE 8.9
Recursive kinship in Gabon
{a) The central post of the ebandza termple in western Gahon suggests an iterative descent
concept. This is actually 2 museum reproduction. {b) Bakwele masks from eastern Gabon show
similar hilateral scaling.
(a, from Perrois 1986; b: left, from Perrois 1986: right, Merropolitan Museim of Art; from Zaslavsky
1973.) {figure continues)
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FIGURE 8.0 (continued)
, Recursive descent in Gabon
(¢} In many of the Fang-and Mitsogo religious practices, the
spirit is expliciely described as traveling a vertical cyclic path.
Ancestors rise from the earth to be born again, and by proper
living they can rise higher with each rebirth. These cyclic
iterations are visualized in the Nganga dance of the Bwidi
religion. (d)} We can apply the explicit mapping of cyclic
generarions given by the Nganga dance to the iterative posts of
the ebandza temple and see the descent madel in its full fraceal

i expansion. The implication of infinite regress is discussed in
¥ chapter g.
r (¢, from Fernandez 1982}

£

[

i

¢

a “bottomless spring” from which emerges the first human, Kyomba, whose
descendants spread in all direcrions from this central point. This spread is visu-

alized by the mpande, a disk cut from the end of a cone snail, which is worn as

a chest pendant (fig. 8.10a). The central point is drilled out, representing the emer-
gence of Kyomba from the deep spring, and the logarithimic spiral of the shell

© 2 ierative descent . ] ) i o
‘end symbolizes the expansion of kin groups from this origin.5

,)m eastemn Gabon show ’
L3 . . - . .

One way to represent these expanding iterations through time is to take a
series of portraies as the structure changes: projections at different points along
the time axis. Figure 8.10b shows the first step toward this design: a more linear

version of the mpande disk, in which an Archimedean spiral fits berween a series

i



130 African fractal mathemarics

of triangles (which represent the wives of the guardian of the ancestors). In
figure 8.10c we see that the linear spiral has become concentric squares, but
they are now portrayed in-a scaling sequence, suggesting a eligrieé ofl?ortraits of
the kinship spiral as it expands through time. Similar scaling squarte sequences,
carried out to a great number of iterations, can be seen in the staffs of their
northern neighbors, the Baluba {fig. 8.10d).

FIGURE 8.10

Tabwa kinship representations
{a) The mpande shell worn by Chief Manda Kaseke Joseph. {b} A more linear version of the
mpande disk, in which an Archimedean spiral fits hetween a series of triangles {which represent
the wives of the guardian ancestors). {¢} The linear spiral has become concentric squares, but they
are now portrayed ina scaling sequence, suggesting a series of porteaits of the kinship spiral as it
expands through time. (d) Similar scaling of square sequences can be seen in the seadfs of their

. northern neighbors, the Baluba.

(a—c, from Roberts and Marver 1985, d, Musewm fiir Vollerkinde, Franifure.)
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Recursion

Recursive cosmology

,\,A(% squares, but

In all the descent representations we have examined, kinship groups trace them-

Of portraits OF selvestoa mythological ancestor at the beginning ofthe world, and thus we move

,1

: V‘are sequences, |

¢ staffs of their

the Dogon as descnbad by ernch ethnogmpher Marcel Griaule (1965). His work

began during the 1930 Dakar-Djibouti expedition, where he first made contact
with the Dogon of Sanga in what is now Mali. In 1947 his studies took a dra-
matic turn of events when one of the Dogon elders, Ogotemméli, agreed to intro-
duce Griaule to their elaborate knowledge system. Clifford (1983) prowdes a
detailed review.of the strong reactions to Griaule's resulting ethnography.
While many of the critiques were really about the fmhngs of modernist anthro-
pology in geneml——the tendency to prefer a static past over the present, or a
singular “tradition” over individual invention—there were also those who
simply did not believe that such elaborate abstractions could be ihdigenous
For the Ffogop the human Sh"lpL is not only a biclogical form ‘but maps

meaning at all Tevels: “The fact that the universe is pro;ected in the same

Thanmer on a series of different scales—the cosmos, the village, the house, the
mdlvndual—provadeb a profoundly unifying element in Dogon fife” (Duly 197¢).

Tl\e/ﬁog/on house is physic: illy structured on a model of the human form with

a large reccangle for the body, smaller rectangles on ea arms, a “door.

[R— e

for the mouth and so on. The Dogon v1llage however, represents the human

form with a symbo]nc structure rather than a geametric structure: it is not phys-
ically arranged as a human shape, but various buildings are assigned meaning
according to their socinl function {che smithy stands for the head, the menstrual

ludi’u as honds, amdsoroni) 7T ITE‘ ase Ul two dlfﬁ.r(_nt '

o Pl e AP

ms of reprascumtiun

Tflg 8.112).

A threefold scaling appears in several aspects of the Dogon religion, and

> — it is here that we find an indication rhat the Dogon are using more than just
) d

"'r».'}Lar version of the
1lu; {which represent”
Zentric squares, but they
woohe kinship spiral as it
(' the staffs of their

a cascade. Griaule {1965, 138) summarizes Ogotemméli's creation story:

“God . .. had three times reorganized the world by means of three successive
Words, each more explicit and more widespread in its range than the one
before it.” But these reorganizations are not merely layering one on top of the
other; rather the ourput of each reorganization becomes the input for the next.
The earth gives birth to the first spirits; these “Nummo” regenerate ancestral
beings into humanlike repriles; the reptile-ancestors are again reborn as the first
&) true hwmans. Within rebirth, th(, thrccfold iteration is again cnacu_d In the first

T T
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{a) In the Dogon cosmology, the structure of the human form is
created from human form.

{h) The symbolism of the stacked pots,
représenting the breath of life, within the‘,_
feteus, within the womb. We can use an
jterative drawing procedure to better
understand how this kind of scaling can
result from a recursive loop. Suppose we
have a routine that can draw the circle of
the pot given a diameter, and one that can

draw a lid.

While diameter 2 minimum dos
Draw a circle of size diamerer
1 size = minimum, draw a lid
Shrink diameter by %3

End of “while” loop.

This procedure first checks to see if we are
past the smallest diameter possible. If not,
it draws a pot, shrinks the diameter value
by %4s, and then goes back to the start of
the while loop. [n other words, the output
of one iteration—a given diameter—

becomes the input for the next iteration.

(¢) Dogon recursive image of mother and

child.

FIGURE 8.11
Scaling in Dogon religious icons
(a, from Laude 1073; courtesy Lester Wimderman; ¢, from Carnegie Institute 19705 conrtesy of

Jay C. Leff.)
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regeneration, for example, each ancestral being enters the earth's womb, which
turns each of them into a fetus, which allows the breath of life (nummo) to enter.

The co»mologlcal narrative suggests thar m the Dogon view the birthing

processes at all smles are, in some sense, iterations through the same transfor-

matmn, “and that the:n, e re. actually nested loops,

o

\X/hy should the Do;,on require such deep iterative nesting? 1 suspect that

chere are two motivations/ F:rst there is an insight into modeling the world

recursion is an important fcature in biologlcal morphogenesns as well as in

envuonmmtal and social change. Thesecond is the cuituml context of thls

“knowledge "elders neeci to ensure that the younger generanon respects their
'lLl[hOYIty, ‘which can only be done by giving them gradual access to the source

—
of this” power which is knowledge. @wledgt_ 8 te?‘n in which endless exe-

gesis is possible makes the initiation process a llfetlme activity. But havmg S0
much explanatory elbow room also prcsems a problem with translanng such
narratives into mathematics.? We had to be careful with translations for more
formal practices, such as interpreting the Bamana divination system as a binary
code, or adire cloth as a geomerric algorithm. A marrative is not a quantitative

or geometric pattern, and its amblgmty requlres “all the more:care in produc-

mg & mathematical translatlon that does not embelllsh mdlgenous concepts

structural anthropologist like Claude Lévi-Strauss would do—and the narra-
tive as an indigenous model, such as the Dogon’s system for representing their
own abstract ideas. The best way to limit our transtation to ideas that the Dogon
themselves are trying to convey is to compare these abstractions of the narra-
tive wicth other, more formal Dogon systems. This means rmssm;, some. ideas

that do not have such formal counterparts, but it is bet{er to err on.the

-in this context

——— oo

Thc nmruin[ th:‘l;,ns of the Dngon are more restricted than the narrative

in terms of their iterative depth The best case is probably in the iconography

B N,

of the granary, where Ogotemmell explains a stack of three pots: the largest rep-

&

S A G VR RO

[x

-resents the womb; the one on top of it, creating its lid, represents the fetus; and

the lid of that pot is the smallest pot, containing a perfume that represents the

breath of life (Griaule 1965, 39). The smallest pot is capped by a normal lid; at

s

o

this point the recursion “bottoms out.” This is not merely a stack of different sizes;

in the Dogon view the womb creates the preconditions that give rise to the fetus,

which is the precondition for the entry of the breath of llfe The recursion is empha-

[ S

sized in the way that each new pot begins before the prewous pot ends {hg. 8.11b},

+ 1970; couttesy of that is, one pot’s lid is the next pot’s body {Griaule 1965, 199). In the sculprure

in figure 8.11¢ the mother’s breasts become the child’s head—again, a new one
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begins before the previous one ends. As we saw in the chi wara sculpture of the
Dogon's Bamana neighbors, reproduction is modeled as recursion.

The Dogon view of a cosmnos structured as nested human-form is quite
similar to certain ancient Egyptian representations. Figuts 8.12 shows a relief
from a tomb in which the cosmos encloses the sky, which encloses the earth.
It is interesting to note that there are again three iterations of scale. A three—)
iteration numeric loop is indicated for the Egyptian god of wisdom, Thoth. He
is referred to as Hermes Trismegestus, which means “thrice great- Hermes," but
he is also referred to as “eight times great Hermes.” Why both three and eight?
It makes sense if we think in terms of those common elements of African nuneric
systems, recursion and base-two aritlumetic. Thrice great because while an
of;:!‘i.ﬁ)éry human may rise as high as the master of masters, Hermes Trismegestus
is the master of masters of masters {three iterations); thus we can surmise “eight

times great” refers to 2% = 8.

[

FIGURE 8.12
Recursion in the cosmology of ancient Egypt
Geb, the Earth, enclosed by Shu, space, enclosed by Nut, the stellar canopy.
{From Fourter 1821 .)
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Recursion

Many of the processional crosses of Ethopia also indicare a threefold iter-
ation (fig. 8.13). Although the crosses are now used in Christian church pro-
ceedings, Perczel (1981) reports that relared designs can be found on ornaments
excavated from the city of Axum in n'orrhern"E'fhopia in the second half of the
first millennium B.C.E., 50 we should n(;’t assume that the threefold iterarion was
originaily related to the Christian trinity, although a connection may have

occurred later {(fig. 8.13b). Could there be a common history behind all chese oceur-

rences of triple iterations in the religious icons of the Sudan and Norcth Africa?

T think the common use of FCCLII‘::IOI‘I itself is due to a mutual mﬂuence but the

occurrence oftnple 1terat_10n may be only due [o Lhe Sl!ﬂllarlty of circumstances
rather than diffusion. For DneMEl"img, given the materials the artisans are work-
ing ng with, minute scales are difficult, so that the tendency to be limited to three
iterations may simply be a practical consequence of the craft methods. It may also

be that if one wishes to get the concept of iteration across, two is too few, while

more than three is unnecessary (which is why modern mathematicians often rep-
&w -

resent an infinite series by the first three elements, e.g., “1,2,3 . ..”). On the other
hand, there are cases where many such “unnecessary” iterations are made in the
most difficult of craft materials. Figure 8.14 shows an ancient Egyptian design,
carved in stone, representing the origin myth in which the lotus flower {its petals-

within-petals illustrated by a multitude of scaling lines) begins the self-generating

- creation of the material world.

“

I'eﬂLC[ on 1tself is at the he 1[ of bo:h the lnmts of mathemancql compumnon

as well as our subjective experlcnce of consctousmss But there are relatively

trivial applications of selforeference as well (one can alwayb use a blowtorch to

light a candle). Self-reference first came to the attention of mathematicians in
simple examples of logical paradox; for example, the “liar’s paradox” we exam-
ined earlier. To see how self-reference can be more than just a logician’s joke,

sim ole cascade could

let’s examine how it works in programming. Ree calt thay

T

any.t t[”\l'l,SfOt’m"l[lOnS were, needcd ahead

not be.used.if we did-not know. how

Of’[’lmt The same problem occurred for the Batammaliba ancestml mounds; since
the first descendant did not know how many would be needed, the system has
to allow for iterative resizing. We also saw the possibility of nested iterati\;e loops,
iHustrated by the rwo-loop drawing program for Mokoulek architeciure. But sup-
pose we didn’t know how many nested toops we were going to need? In the same

way that the recursive cascade could not deal with an unknown number of icer-

I35



{all lines are"
active lines)

Seed shape

Second iteration

Third tteration.

FIGURE 8.13
Fractals in Ethiopian
processional crosses

{a) Fractal simulations for Ethiopian
processional crosses through three tterations.
(b) Ethiopia converted ta Christianity in
333 c.k., and in the thirteenth century King
Lalibela directed the construction of churches
to be cut from massive rocks in one of the
mountain regions. The church of St. George
{at right) shows a triple iteration of nested
CTOSSEs!
(a, all Ethiopian processional crosses from Portland
Museum in Qregon; photos courtesy of Csilla
Perczel, b, photo by Georg Gerster. )
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FIGURE B8.14
The lotus icon in ancient Egyptian cosmology

ations, nested iteration has trouble with an unknown number of loops.1? Here
is where self-reference can help out. An example of self-reference in program-
ming is illustrated for the Dogon pot stack in figure 8.15.

We know that the Pogon pot stack can be drawn with a single i iterative

e

lO()pmi[ does nor Tequire self-reference. But the task can be agcompl:shed by

self- reference and we mlg,ht snmtlarly '1sk it thele '1re ca

of sca]mg in Afrtcan

demgna i which self-reference plays a role regardless of whe[her it is required.

ln Eumpean hlb[l)r\/, self-reference beg,ms with the story of Eptmemdea of

Cirete, the “liar's paradox.” Similar utilizarions of narrative self- reference (o cre-

are uncereainey can be found in certain African trickster stories. For example,’

in an Ashanti story of Ananse (who became “"Aunt Nancy” in African Ameri-
can folklore), a man named “Hates-to-be-contradicred” is tricked into con-
tradicting himself. Pelron {1980, 51) notes that the application of such
self-referential paradox is a theme in many Ananse stories; "Thus Ananse
rejects truch in favor of lying, but only for the sake of speech; remperance in
favor of gluttony for the sake of eating; chastity in favor of lasciviousness for
the sake of sex.” The following rale is not nearly as spatse but carries the fla-

vor of self-referential paradox quite well:

One of the most common of all stories in Africa describes the encounter of a
man and a human skull in the bush. Among the Nupe of Nigeria, for instance,
they tell of the hunter who trips over a skull while in pursuit of game and
exclaims in wonderment, “What is this? How did it ger here? “Talking

In the origin story of ancient Egypt the fotus flower was often used as an image of the unfolding of
the universe, its petals-within-petals signifying the expansion of scales. This is a very stylized
representation used in the capitals of columns in temples.

{From Fourier 1821.)
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FIGURE B.15 ture.
Drawing the Dogon pot stack by self-reference be ¢k
The symbolism of the stacked pots represents the breath of life, pOW

within the fetus, within the womb. We have aready seen how this

' can be drawn using an iterative loop; now let’s see how it can be’
drawn using self-reference. heac
~ Suppose »:-le have a routine that can draw the semicircle of the a he

pot given a diameter.
Oth
Procedure DRAW.JOT the

If size = minimum, draw a lid.
Else
Draw a circle of size dinmeter
Shrink diameter by 3
DRAW.POT
End of “else” clause
End of procedure

Notice that this procedure first checks to see if we are at the
smallest diameter possible. If not, it draws a pog, shrinks the
diameter value it by 245, and then calls itself—an application of
self-reference. Now the program has to execute a DRAW-POT
procedure again. The recursion will “hottom-out” when it finally
draws a lid. The program then skips to the “End of procedure” line
and can finally pop back up to the place it teft off after executing
the previous DRAW-POT call.

brought me here,” the skull replies. Naturally the hunter is amazed and .
quickly runs back to his village, exclaiming about what he has found. Even-
tually the king hears about this wonder and demands thar the hunter take him
/ to see it. They return to the place in the bush where the skull is sitting, and
the hunter points it out to his king, who naturally wants to hear the skull’s
essage. T he-hunter repeats the question: “How did you get here!” but the
- skull says nothing. The king, angry now, accuses the hunter of deception, and
orders his head cut off on the spot. When the royal party departs, the skull
speaks out, asking the hunter “What is this? How did you get here?” The head

L
[
|
1
'

replies, “Talking brought me here!” (Abrahams 1983, 1)

Self-reference is also visunlly portrayed in some African desipns. Figure 8.16a

shows another abbia carving from Cameroon, seen also in the nested fish earlier

in chis chapter. But this abbia carving is an icon for itself—it is an abbia of abbia.

i o According to the Cameroon Cultural Review {inside cover, June 1979}, its mean- ’
' ing is “reproduction.” Another example of self-reference from Cameroon is
shown in figure 8.16b, a life-size bronze statue of the king of Foumban. Here we (a) The
see the king smoking his pipe, the bowl of which is a figure of the king smok- . an icon |
ing his pipe, the howl of which is a figure of the king smoking his pipe. Like the ti;‘;:i

Kellogg's carnflakes hox described earlier, the visual self-reference instantly (s drawi

Inliana L

leads to infinite regress. But it could be more than just humer in rhe bronze sculp-

LN
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Recursion

ture. Since the pipe is a well-known symbol of royal prestige in Foumban, it may
be that the artisans were making purposeful use of the infinite regress: “The king’s
power is never-ending.” -

Figure 8.16¢ shows a Bamana headdress, thart is, a sculpture worn on the
head during ceremonies. Fagg (1067) suggests that this enacts self-reference:
a headdress of a person wearing a headdress of a person wearing a headdress.
Others (¢f. Arnoldi 1977) have described this as a symbol of fertility spirits, but

the two interpretations may not be mutually exclusive. Returning to the

FIGURE 8.16
Self-reference in African icons
a) The abbia carvings from Cameroon show a wide variety of images, but this abbia carving is
icon for itself—it is an abbia of abbia. (b) A life-size bronze statue of the king of Foumban.
re we see the king smoking his pipe, .the bowl of which is a Agure of the king smoking his pipe.
) Bamana headdress. ‘
) drawing based on abbia pictred on the cover of Cameroon Cultural Review, 1970; ¢, photo couriesy
B Lniversity Musezm of African Art.)
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140 African fractal mathematics
Bamana's close cultural relatives the Dogon, we see self-reference suggested by - ' dition
Ogoternmélli's description of how the eighth ancestor, “who was Word itseff,” was Seneg:
; able to use Word (that is, the breath of life) to self—generate into the next itec- in anc
) ation of humanlty In ex"tmmmg the self-similar iterations-of the Dogon mother chemi
; and child in figure 8.11¢, we noted a structural characteristic that can be ‘ of the
expressed in the phrase “a new one begins before the old one ends.” This would ' : which
also describe the structure of the pipe in the statue of the king of Foumban, which Moses
we know to be explicitly self-referential. Perhaps the self-referential version of B s of He
the Dogon pot stack was the correct one after all. were 1
thant
Iconic representations of recursion ‘ 7 F:ons«
U icon
The abbia of abbia, as a symbol ofgeproductlon, ™is imore than just an appli-- simila
cation of self-reference; it representsmemgagcep,;"ttse!f If recursion is really a to the
- conscious (that is, self-conscious!) aspect of African knowledge systems, then

we should expect such representations, rather than just instances in which the _ and st
concept is applied. Figure 8.17a shows the application of recursion in the tra- 1096)
syster
; edge s
one ¢
unlik
for tk
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vodu
L desce
' ' the ¢
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L : abstr
; ‘ a 3 of w
‘ FIGURE 8.17 assut
Reflux “pow

(a) This sketch from the notebook of a nineteenth-century ethnographer in southern Seregal )
shows an indigenous apparatus for the distillation of liquor from palm wine using a scaling cascade. y o
(b) Ancient Egyptian alchemists drew this snake symbol to represent their reflux technique. ’ o erc.-

A tube comes out of a heated pot and reenters after caoling. This cyclic refinement was used in
the creation of dyes and perfumes, but it also symbolized the alchemists' goal of reAnement of the
human soul. ‘ cira

{a, photo courtesy IFAN, Dakar; b, drawing based on Taylor 1930.) ) fere
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Recursion

ditional distiflation of palm wine into liquor in the Casamance region of
Senegal. Such distillation techniques were developed to sophisticated levels
in ancient Egypt, where the process became an iterative loop which modern
chemists call a “reflux” apparatus. Figure 8.17b showsthe iconic representation
of the reflix system in the oldfest known alchemical writings (first century c.6.),
which are attributed 1o Maria {who wrote under the name of Miriam, sister of
Moses), Cleopatra (not the famous queen}, Comarius, and the mychic figure
of Hermes Trismegestus {Thorh). Taylor {1930) notes that although these
were written in Greek, “the religious element . . . links them ro Egypt rather
than to Greece,” and he suggests that the most hkely ongm is from the tradi-
tions of the ancient Egyptian priesthood.!! In these writings we find the reflux
icon assoctated with the aphorism “as above, so below,” recalling the self-
similar scaling cosmology we have seen in sub-Saharan Africa, as well as its links
to the recursion of self-fertilization.?

Of course, one can go too far in qrtnbutlng ]lnl\s between ancient Egypt
and sub- Saharan Afrsca (see Oritz de Montellano 1993, Martel 1004; Lefkowitz

1996) ThClB

system from sub-Saharan Afrlca. and for the | persn:,tent use of recursion in knowl

edge systems across the Affican continent. But it would be unwise to assume that
one can attribute more specific features to diffusion. In particular, it is highly
unlikely chat the same figure of a serpent biting its tail, appearing as an icon
for the god Dan in the vodun religion of Benin {fig. 8.18a) could have derived
from the Egyprian image, or vice versa. As we shall see, fhe me'mmg of the

ek

vodun icon has nothmg to do with the Egyptlan Te lux Concept

[

In Au;,usr 1004, th,mks 1o the nid of Martine de Sousa (one of the African
descendants of the famed Francisco de Souza), | was granted an interview with
the chiel of the Dan temple in Ouidah, Benin. Both the chief and his wife were
guite responsive to my interest in the peometric femnres of Dan’s represenmtions

and identified the sinusoidal icon in tron (hg. 8. 18b) as “Dan at W(Jlk in the world,”

pomrlng out that he creates order in wind and water. The cydnc Dan was more

—_—

abstract, existing in a ciomatn where he was in communication wath other godb

N

o?vodun Mauponl (1981 29) also found that Dan {Pangbe) was there

AL
assure the regularization of the forces,” and Blser (1995) summarizes his role as

“powers of movement through life, and nature’s blessings.” Regutar phenomena
in nature—~the periodic aspects of weather, warer waves, biological cycles,

ete.——are attributed to the action of Dan.

circular form of D"m as-a more ab:,tmct spmrual force maps ne*uly on 1o the dif-

ference bLtween the

waves in
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b
noise {external temperature changes)
input (desired + If > 0 switch on furnace p Output {new room
termperature) If < 0 switch off furnace temperature)

The thermostat that regulates temperature in a house is a negative feedback loop. The word “negative”
is used because we subtract the current room temperature from the desired temperature set by the
thermostat control. Over time this will tend to produce cycles of heat and cold.

' T noise {foad bumps)
input (desired + If > 0 steer right g output (new road position)
position on road) If < O steer left

Driving a car can also be modceled by a negative feedback loop. The driver attempts to stay in the center
of the fane, and will correct to adjust for bumps. Again, given enough bumps,;we will tend to see cycles
of swerving to get back to the center.

C

FIGURE 8.18
The vodun god Dan
In the vodun religion of Benin, the snake god Dan represents the cyclic order of nature. Dan's
shape reflects this idea in two ways. As an abserace force, he is represented as a feedback loop {(a).
As a concrete manifestation, his hady is always oscillating in a periodic wave {b). This same idea
of a periodic time series from cyclic feedback is also used in Wesrern models of nature ().
(a, photo courtesy IFAN, Dakar.)
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Recursion

water and cirrus clouds, daily fluctuations in heat and light, the biannual rainy
seasons, etc —-and the abstract idea of an iterative loop that generates these wave-
forms The association can be derived from the kind of empmcal observation

one. gets in everyday occurrences. A.lopsided wheel will produce undulatory

tracks in sand; friends who periodically give gifts are in a “cycle of exchanpe,”
and so for[h. What did take great insight and intellectual labor however, was

abbzmct umvelsaliy apphcab!e categories, represented by icons wnth the appro-

pl’l'l[E geome:nc St[’LlC[UFE

L A

The mathematical equwa]ents in nonlinear dynamics are limit cycles and

[P,

——

point attracfors»—the results of what engineers call a negatwe feedbad{ loop

We have already seen such characﬂtenzations in cellular automata and owari,
where spatial patterns remain bounded within a cycle or frozen in a static pat-
tern. Figure 8.18c shows some commonplace examples of negative feedback loaps,
and how they act to keep the behavior of systerns bounded or stabilized, even

in the presence of noise. But the vodun system would not be complete if ir could

only account for regulanty——what causes deviation in the first place’ Hence
the role ofLegba god of chaos Figure 8.19a shows another 1ron icon, the forked

s e

path of Lj:gba “god {of the crosaroads As explained to me by Kake S. Alfred
rm»:'r‘{anon priest of vodun in Cotonou, Benin, Legba is represented by the
fork because “the answer could be yes or no; you dom’t know which path he will
take.” For divination, in which a “path” {question} is often pursued for further
questions, the image becomes one of endless bifurcations. Ar the Palais Royal
in Porto Novo, Benin, I was told that the shrine to Legba was placed at the
threshold because his force was so disruptive that it woukl undo both good and
evil, creating a purification at the entrarces Yake also explained that while the
music of Dan was slow and regular, the music of Legba was both fast and slow—
signifying his u:‘nplcc.hctable nature—an observation 1 was able to confirm by
r'ee_()rtilng the drummmg, that was used to call each god at the temple of Dan in
Quidah.!? As the converse to Dan, the bifurcating uncertainties of Legha are
hke a positive feedbdck loop, amplifying deviation and noise {fig. 8.19b).

Cont:asts between a neg.mve feedback loop, cr(_atlng bt"lblll[y, and the pos-

itive feedb'lck of uncontrollc.d disorder aré-also featured in the n:on:c cﬁrvmgs
of the Baule. Vogel (1977 513) notes that the Baule chief is chosen by consen-
505, 4nd that in all important decisions he serves as mediator in public meetings
rather than as an autocrat. The Baule carving in figure 8.20a shows two caimans
(relatives of the atligator) biting each other’s tails. It is said to represent the chief
and the people in balance-—~if one bites, the other will bite back. It nicely

recalls the kinds of negative feedback loop models that are often proposed in West-
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noise (road bumps)

FIGURE 8.19
Legha

{a) The vodun pod Legba represents the forces of disorder.
Vodun divination priests explain this icon as'the path to the
furure: with Legba there is no way toknow which path will be
taken. Since one crossroad leads ro another, the resulting image
is one of bifurcating unknowns, the uncertainty multiplying with
each crossroad.

input {desired
position on road)

i » O steer teo far right
If < O sleer too far left

—p OUiput {new road position)

In contrast to negative feedback, which will help stabilize a system, positive feedback will destabilize ic.
A drunken driver, for example, can overshoot the center line and create increasingly large oscillations,

eventually running off the road.
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Recursion

FIGURE 8.20
Feedback loops in Baule iconography

{a} This Baule carving shows two crocodiles biting
each other's tails. 1t is a symbol showing the chief and

¢ycle of balance. (b) Baule door. Holas (1952, 49-50)
slescribes this as a civcuft fermé of fécondité (closed

fre71) identify these unimals as symbols of “incrense.”
W7 Y Y

ern polineal theory, but this flowcharr is a pﬁrely indigenous invention. So, too,
is the Baule positive feedback loop of figure 8.20b, showing rhat “power creates
the appetite for more power”—-little fish are eaten by bigger fish, who then
become even bigger fish. The fish-within-fish abbia from Cameroon we saw

earlier may have had similar connotations.

Conclusion
—

Recursion can befound. in almost every corner of African material culture and

design, from construction techniques to esthetic design, and in cultural repre-

sentations from kinship to cosmology. Most of these are specific enough to

allow us to distinguish between the first two types of recursion—cascade versus

L C : . . -
cven




African fractal mathematics -

1ter’1tlon—'md in some cases the third type, self- reference is '11';0 made exp11c1t

iterative loops are nested, but these are rarely more than LWo loops deep, so it

- would not appear that the application of self-reference is motxvatery the com-
plexity of the computation. The only potential exception is the cosmologtml nar-

rative of the Dogon, and this narrative is too vague to serve as a m'xthemqtlml

foundatlon There i is, however, another route to the limits of computation. As

T

we e will find in chapter 10, the combination of negative and positive feedback

indicated by certain recursion icons prov:des another pf\th to the Reights.of

e —— e

A ——— T
putational complexity, one we w:il e\{plore in det’ul But ﬁrqt we need (o take

ashort detour through’ 1nﬁgﬁ1jy.' -

—_—————

—— The fir
that A
advanc
wrong
scieen
fraceal
partich
an imp
to the

T
as the
infiniry
be a leg
maticis
ated th
conside
sufficie.
ity. Ma:

withot



2 |

rj)also made explicit
(‘j}ases in which the
"7 loops deep, so it
(Tjvated by the com-

"a cosmological nar-

12

v 35 a8 mathem'xtical

>, uf computation.’
o positive feedback
he heights of cor-
€7ht, we need to take
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CHAPTER

—— The first time I submitted a journal article on African fractals, one reviewer replied

that Africans could not have “true” fractal geometry because they lacked the
advanced mathematical conceprt of infinity. On the one hand, that reviewer was
wrong abour fractals at a pragmatic level. If he or she saw a fractal on a computer
screen it would be taken as a “true” example, and in fact no physically existing

fractal ts infinite in its scales; at best it will have o bottom ourt into subatomic

particles. On the other hand, it raises an interesting question. Infinity has been

an important part of fractal mathematics in Europe; so how does that compare
to the use of infinity in Africa?
To the ancient Greeks, infi

was associated with what they thought of

as the horrors ofi mfimte regress. Aristotle tamed this problem by ”r.e-defmmg

infinity: it was a limit that are could tend roward, but ir was not considered to

be a legitimate object of mathematical inquiry in itself. Most European mathe-
maticians keprt to this definition until the Cantor set, Europe’s first fractal, cre-
ated the proper definition of an infinite set, thus allowing infinity itself 1o be
considered. We will discuss this in more detail in chapter 13, but for now it is
sufficient to note that this distinction does not shape African concepts of infin-
ity. Many African knowledge systems using lp.f"l’nlty in MOF'L progressmn
without timit do nos hesntate to represent it with iconic symbols sugg,c_stmg

e . AR . —— e —
.. . e
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“the infiaite” in its Cantorian senseas a completed whole. This is by no means
a more sophisticated or elaborated definition than that of pre-Cantorian Euro-
, pean mathematics; it is tarely linked to much more than either a parrative or a
' ' geometric visualization. But far from being nonexistent, these culturally specific
representations show a strong engagement with the same concepts thwt coupled
infinity and fractals in contemporary Western marhematics.

The most common African visualizations for infinity are snail shells. The

e ———

y B'\\ub.\ for ummplc usc ‘%pll’dl and snails (g 9.1), and the' ]uh bise the ‘;p|r1l
\end of a sea snail, which forms a dnnkmg cup that can only be used by the chlef
Unhke the ancient Greek associations with troubling paradox and p'\thulo&,y. the
Afncan infinite is typically a positive a association, in this case to invoke prosperity
without end. If these infinity icons were only meant to ¢ commummte this desire
they would fit ‘Aristotle’s definition: a process without end But the splrltual ele«
ment of these icons adds another requirement: the icons need to convey the sense

that they are drawing on the power of infinity itself, Snall shells are used because

of the scaling propertles of thelr 1ogar1thmlc spirals; one can clearly see the poten-

tial for the spml to continue. wu:hout end despxte its containment in a finite space—

mdeed it is only because of its containment in a finite space that there is a'sense
of having gained access to or grasped at the infinite;
We have already seen another example of an infinity icon in the Nankani

architecture discussed in chapter 2. There the coils of a serpent of infinite

FIGURE §.]
Baluba use of snail shells
to symbolize infinity

endiess growth.
(Collection Tristan Tzare, Pavis; photo lw Eliot

Elisofon.)

Davidson (1971, 120) describes this as a fertility-
figure, and notes that the snail shells represent
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length, sculpted into the house walls, made use of the same association between
prosperity without end, and a geometric length without end. he conscious
creation of this infinity concept is more clear than in the case of the snail shells
because one cannot actually see the infinite coils of the snake. And unlike the
naturally oceurring shebls, the packing bf this infinite length'into a fnite space
(thie Nankani describe it as cmlmg back on 1tself indefinitely™) cannot be mis-
taken for mere mimicry of nature; it is mther the artifice of fractals\This snake
icon does not exist in isolation; we saw thatthe Nankani map out a scaling pro-
gression that passes through their architecture, the zalanga and the fcumplo
which provides a recursive pathway to this concept of infinity.

In chapter 8 we discussed the Mitsogho and Fang iterative model of
descent. Fernandez (1982, 338) notes the contrast to Christian theology: “The
question as to whether God was one or many may have bothered the mission-
aries in their contacts with Fang more than the Fang themseives. Holding Chris-
tian beliefs in the "Uncreated Creator” and ‘Unmoved Mover,” missionaries were
challenged by the ‘infinite regress’ of the geriealogical model employed by the
Fang—their belief that the God of this world is one of a long line of gods and
like man has his own genealogy.”

The Fang theory of infinite regress is a complete, coherent view; it does not
need further amendment, for the Christian theory of uncreated creator is no more
free of contradiction—and perhaps less so.\Of course, as Fernandez himself
warns, one cannot simply proclaim that a particular African narrative is just another
work of theology or philosophy—or, for that mat}—er, mathematics. Recent works
such as Mudimbe’s Invention of Africa (1988) have shown that such rranslations

to specific European disciplines are always partial, highly interpretive, and in dan-

ger of misrepresenting the lmhgumue. view. Yér Mudimbe is also respectful of the

wark thae has been done. Of par ticular relevance here are his citations of African
theologian Enpelbert Mveng.

Mvel;r\g included several notes on infinity in his scudies of the relation
between the African and Christian views. His beautiful vext, L Art d’ Afrique Noive

{1964}, contains diagrams {(pp. 100-103) showing what he termed “radiarion

.nnphﬁc:'\twe sm]mg patterns in African are and music_that he interpreted as

representations of a transcendental path ro mfmlty "Une fois de plus, nous
Jdécouvrons que le mouvement rythmique, dans notre art, n'est autre chose
gqu'une course vers 'infini” {Once again, we discover that the thythmic move-
nent in our are is none other than the pach toward infinity) (p. 102}. Facher
Mveng was a wonderful inspiration during my research in Cameroon, both for
his deep cultural knowledge as well as for his courageous work as a cross-cultural

mecliator. During our last meeting we discussed Mudimbe's book, and | promised
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'. : to send him a copy. Shortly after doing so a reply came from the American
Cultural Center in Yaoundé: Mveng had been murdered “under suspicious e

circumstances’—apparently the result of opposition to his cross-cultural
P ep

activism. He has finally taken the course vers I'infini. -~
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CHAPTER

10

mathematrcrans the term is p_rqg_rag[y'cl_ef:rr_cd, and it gives us a new way o

\' . . . -
approach mathematics in African material culture. In chapter 7 we saw how cer-

gencmtcd by arecursive loop Such numeric systems clearly rmnslate into the

Wesrcr_n.gl.r_:fip_r_trpnb of what it means ro “compute.” But the ranslation was less
clear for some of the physically recursive structures in African material cultire.

Can a system of physical dynamrcs be sard o compute"? Mathem’rtrcal cosm-

ot et . s S e 1 e et b s s a st

plexity theory, whrch is based on fractal geometry, provrdes a way to measure

the computation embedded in physrcal structures rather than just symbol syb'

rcms By looking at African ma aterial culture in the framework of complexrry

rht:ory, we can better understand rhe presence of fracral geomeriy as an African )

knowledge system..

Analog computing

By the mid<1060s-it was clear to many researchers that digital computers would

be the wave of the future. But before then, analog computers held their own, and

thcy may yet I make a comeback. In drglta] systems, mform'ltlon is represented by

+
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gy

pl\ysmally atbitrary symbols. As Bateqon (1972) said, “There is nothing seveni

about the numeral seven.” The geom

structure. of a digital symbol has little

ot nothmg todo with its meaning, which is simply assig) I
vention. In ana[og systems, the phy51cal structure of the’ SIgnal changes in pro-

portion to change< in the mformf\tlon it represents. 1 Rather than being arbitrary, -
“the BH;(SIc:al structure is a direct reﬂectlon of its mformanon Loudness in human
speech is a good example of analog representation. As | get more excited, [ speak
louder: the physical parameter changes in proportion to the semantic parame-
rer. This is not true for the digital parts of speech, such as the average pitch {(“fomat
frequency”) of each word. In English the word “cat” has a higher pitch than the
word “dog,” but that does not infer a relation in meaning—in fact, the difference
is reversed in Spanish, since “gato” has a lower average pitch than “perro.” This
same analog/digital distinction oceurs in neu al signals, In the frog retina, f01:
example some neurons have a firing rate in proportion to the speed of small mov-

ing images (Grusser and Grusser-Cornehls 1976). That is, the faster a fly moves
across the eye, the faster the pulses of the neuron: an analog systemn. A d1g1tal

example can be found in the motor neurons that ﬁmg open the crayﬁsh claw. Here

a_s;eélﬁc ring pattern (off-on- -on-off} switches the claw to this defense reflex
(Witson and Davis 1965).

So far we have only examined how analog systems can represent infor-

mation; figure 10.1 shows a simple example of how analog computing works.
Although most computer scientists eventually settled on digital systems, ana-
log computers were quite popular up until the 1960s. Even when they began to
die out as practical machines, there was an increasing awarengess that much of

our own brain operates by analog computing, : and this_led some. scientists

toward the development of what are now called “neural pets™-—computing

devices that mimic the analog operations of natural neurons (fig. 10- 2). By the

rid- 19805 neural nets and related analog devices had achieved enough success .

{(and dtgltal computers had run into enough b'irners) to begin to compare | “the
two. There was an odd moment of analog optimism, when a few brash claims
were made about the potential superiority of analog computing (see Dewdney
1085; Vergis et al. 1985), but these assertions were eventually proved incor-
rect {Blum, Shub, and Smale 1989; Rubel 1989). As it turns out, analog sys-
tems have the same theoretical limits to computing as digital systems.*
Although the studies did not result in releasing the known limitations, they
did produce a new framework for thinking about computing in physical dynam-
ics: complexity theory.

Before this time, mathematicians had defined complexity in terms of

randomness, primarily bﬂsed on the work of Soviet mathematician AN
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FIGURE 10.1
Analog computation

Dewdney (1985) shows a great variety of simple physical devices that demonstrate analog
computing. This device, created by J. H. Luerh of the U.S. Metals Refining Company, solves the
folowing optimization problem: a refinery must be located to minimize its costs. I transportation
in dollars per mile of ore, coal, and limestone are values of O, C, and L, and distances of these
sources are o, ¢, and |, then the refinery should be located at the point where 0O + ¢C + 1L is at
aminimum. The holes through which the strings pass are ar the source locations, and the weights

on the ends of the strings are proportionate to O, C, and L. The brass ring attached tc the strings
quickly moves to rthe optimal location on the miap.
{Coirriesy A. K. Dewdney.)

Kolmogorov and Americans Gregory Chaitin and Ray Solomonoff. In this def-
inition, the complexity of a signal {either analog or digital) is _r_n_g.-‘qs';};‘rgd» lby the
length of the shortest algorithm requited to produce it (fig. 10.3). This means
rhatpe?ch;cinc numbess {such as 2727272 .. .) will have a low algorithmic com-
plexity. Even if the number is infinitely long, the algorithm can simply say,

“Write a decimal point followed by endless reperitions of 27,” or
P y endless repetitions of '27,’” or

shorger:
,Q{{L}_“ Truly rand(?j“ numberE_(e.g_u_n;gnsut‘_;ipg of numbers oroduced by rolling

........ N AR

Cdic_gl will have the highest algorithmic compié;:"ity posmble, ;in”cg_their énly

algorithm is the number.itself—for.a

nite lengrh, you get infinite com-
plexity. In analog systems a periodic signal such as the vibration from a single
g - Attt it i bt N i kS

guitar string or the repetitive swings of a pendulum would have the lowest algo-

rithmic complexity, and random noise such as static from a radio that has lost
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its station (what is often called “white noise™} would have the highest algo- bo-

[N L S I a O—

rithmic complexity. . as tl

;- : One problem with defining complexity in terms of randomness is that it does jus£
: ' not match our intuition. While it's true that the periodic signal of a ticking dorr
metronome is so simple that it becomes hypnotically boring, the same could be not

said for white noise—in fact, | sometimes tune my radio berween stations if | izec

want to fall asieep. But if | want to stay awake | listen to music. Music some- - .

LUSIC some put?

how satisfies our intuirive concept of complexity: it is predictable enough to fol- - that

low a[ong, but surprising enaugh to keep us pleasantly aetentive. Mathenaticinns
eventually caught up with their intuition and developed a new measure in
which the most complex signals are neither completely ordered nor completely

disordered, but rather are halfway in between. These patterns (which include

almost every type of [mtrumental music) also h"lppen to be fractals—in fact, as

wewillsee, the new complexny measure exactly comcndes w1th the measure of

amplitude

fractal dlmens10n

. “The first step in this direction was through studies of cel cellular automata. Recall

from chapter 7 that computer scientists in the early(1 gBosjmd started 0 thmk

4
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FIGURE 10.2

Neural nets
(1) Suppose we balance a ball on a teeter-tatter. Unless the ball is'at the precise center, the
teeter-totter will start to slope roward one side, which will cause the ball to roll even farther
toward that side. In other words, there are two stable states, and anything ifn between (except fora

complexiry
nonrandorr
signal, alth
s waves in

tiny neutral poinc) will get caughe up in the positive-feedhack loop leading rapidly to a stable state. wavelength
(b) This is an electrical circuit that works much like the teeter-totter. Each trinngle is an amplifier {b) The sar
with two outputs, one normal and the other (black circle} an inverted output. Since the inverted how much

output is connected to the input of the other amplifier in each, they will balance out like the ball
at the exact center of the teeter-totter, but rapidly flip to one of the two stable states in which the
amplifier is at its maximum (“saturated”). That means that this circuit can solve a simple rask:
which of two numbers is larger? By putting an initial charge proportionate to one of the two
numbers at each inpur, the system rapidly flips ta the sarurared stalile state favored by the larger
number. Linking thousands of these simple amplifiers rogerher allows computer scientists to make
sophisticated machines for pattern recognition an<l other artificial intelfligence tasks.

frequency.

bacon fryin
Agin, this
density plo:
wavelenprh
{e) In sumr
(¢, courtesy
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as that seen in living orgamams Physmm S[ephen Wolfram began to wonder'
just how comphcmed is it? Clearly, living systems are more complex than ran-

dom noise, so he knew that the old complexity meastre of Kolmogorov would

nal of a ticking

. e same could be not do. But Wolfram had studied a good deal of computer science, and he real-

‘veen stdations if | ized that the way in which different types of recursions are used. 1o measure com-

sic. Music some-

J)lt: enough to fol-

that we dtvrded recursion into three typ(,s cascades iteranonb and seif—ruference.

Mathemaricians

new mMeasure in

L7 nor completely
{'} {which include
o
)
{‘ “scrals—in fact, as 3 2
; 2
e :Eh the measure of 3
3 time b frequency
Ll
3 e
= EY
E. 2
c
L
. time d frequency
0
i ouiput FIGURE 1G.3
3 oY ) r\h-v . . . .
R rotmogorov-Chuatbin cornjnextty melsure
e {a) Whedher icis in digital or analog signats, complexity can be
a Cmensured interms of the information content. The first such
) measuze was that of Kolmogorov and Chairin, who thought of g
et complexity in terms of randomness. The sine wave is abour as =
(pprecise center, the nonrandom as we can get. Here it is given as a time-varying E
- R . . L]
11w roll even farther signal, although the same would apply to a spatial pattern, such
tu/g in between (except fora a5 waves in water or sand (in which case we could measure it as
e . randomness

-wivelengeh, which is simply the reciprocal of frequency).
{b) The same signal in a spectral density plot. This tefls you
= Doy much power is at each frequency. In the case of the sine wave, all the signal power js at one
frequency. {¢) White noise is a completely random signal, such as that produced by the sound of

" bacon frying. By the Kolmogorov-Chairin definition, white noise is the most complex signal.

i Again, this would alse apply to a spatial pattern, such as dust sprinkled on a table. {d) Spectral

- density plot for white noise. Becuuse it is completely random, there is an equal liketihood of any

L wavelength occurring at any time, 5o the signal's power is equally distributed across the spectrum.
(<) In summary, the Kolmoporov-Chaitin complexity measure is simply a measure of randomness.
{e, couertesy R. F. Voss. )} '
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These correspond approximately to the three formal categories of recursion

used in computer science, which we will now examine in detail.

Three types of recursion: the Chomsky hierarchy

!,
A

inputtape { a | b a a b a b b

Inarec tem, present| behavior depends on past behavior. It ts the capa-

blhty of this access to memory that defines the relative difference in recursive

power. The scaling m%mde for example, could not produce the Flhnn'\ca\

sequence, because it could not recall previous members of the sequence. Simi-

tional power,

ar distinctions are used in computer scicnce t rank compt
three types of 'lbstract machmes referred to as ‘Chomskys hierarchy.” These
abstract m'lchmes are compqred by their ability to recognize certain categories

of character strlngs A machme that can recognize periodic chamcter strings

'such as 'Ib"lh'! " " oceurs at the lowest level of the hierarchy: the lete State

Autom'\ton (FSA) An examp'le of the FSA s é‘mwn in ﬁgure 10. 4

AtV

What would it be like to be an FSA? Since the FSA ]ns no memory stor-

[ERER T

age, the expenence would be somewhat analogous t
e e "

a book can deduce timt ﬁhe has rewd its conten@, although she does not know

what the previous chapters were about. An( FSA h’l‘i only a

hecausé its present state cannot reveal a nythmg abou[ its past, other than the *%

fact chat it must have passed through one of the sequences of states that termi-.

L' pdie Tl present state. . - e e

nto )

)

plicit memory, T

FIGURE 10.4
The finite state
antomaton

read only

The finite state automaton
(FSAY has a list of transition

Transition table rules thart tell it how to change
from one siate to the next,
Current symbal depending an its current state
Current state on input tape New state ‘ L .
‘ and the symbol it is reading on
S, a 8, the input tape. It has no mem-
s, b Sy ory, other than that. imp]ieclll\y,
< . a its curent state. This FSA will
~2 ’ V2 end up in the “accept™ state 5,
=) b S if the tape ends after an even
number of h's.
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The set of palindromic strings {e.g., aabbaa) isag good example of the hm—

itation. of the FSA it lacks the abrl:ty to memorize the f:rst half of t_he string
and therefore cannot compare it with the second The least powerful machme

capable of this memory storage is the Push® Down Autom'rton (DA}\ illus- To iy

trated in ﬁgure 10.5. The stack memory of the PDA is usually compared to the>
spring-loaded tray stack often used in cafeterias; once a symbol is read from mem-
ory it is gone. As a knowledge analogy, we might think of a reader who accu-
mulates stacks of books but gets rid of each book after it is read. This is a
temporary explicit memory, since the PDA can make two different transitions
given the same state and mput depending on its past. It is important to under-

stand rhat greater recursive capability does not necessarily.imply larger mem-

oty storage; it means an 1mproved ablhty to mteracr wn:h memory. Size only matters

o gt A e

msofar as it restricts the interaction.

Sy

Although the PDA can recognize all sets of strings recognized by an FSA,

as well as many others, there are still (infinitely) many sers of strings that it can-

not recognize.f For examplej, it cannot recognize the set of all strings of the form

S i T

NbN N (where we have N repetitions of a, followed by the same for b and ¢),

because it has to wipe out its memory in the process of comparing the number
of @’s and b%s, leaving no information for checking the numberof ’s.
At the top of the hierarchy (fig. 10.6), the Turing Ma__hmé (TDI ) can T

recognize all | computable funcrions, It is simply a PDA with unrestricted mem-

SR

ory, but because of this capability it can achieve full self- reference the abil-

____ i PP T

ity 1o analyze its.own program. Again, it is not a difference in memory size,

but in memory : access—unlike the PDA stack the TM memory interactions

FIGURE 10.5

The push-down

read only automaton
: ) The push-down automaton
read/write | 4 (PDA) has a list of transition
rules, but these make use of an
b |- explicit memory storage as well
Transition table - as internal states.
b
a
“Stack” memory. This allows new syinbols b
1o be pushed down on top of the stack, but
symbols can be read only by popping them b
off the top, and each one popped is fost.
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inpu[ tape a b a a b a b b FIGURE ]_0.6

- The Turing machine
The Turing machine has an
unconstrained memory, it.can

read/write (moves in both directions)

; ' . . unplement any algortthm that can

possibly exist.

Transition table

‘ after it is read. To continue the text analogy, if the FSA ‘is a person who accom-
“plishes tasks with no books, and the PDA is a person whose simple tasks are
limited to books that are removed after they are read, then the TM would be
able to collect and recall all books, in any order. Unfortunately this does not
solve all of our problems, because the unbounded nature of the TM means
that it foolishly accepts some tasks that ré'quiré" .n ihfinite library. This is called
the “halting problem,” and Turing himself proved that it is unavoidable.

A et

Mathematician Rézsa Péter showed that one can define a restucted set of pro-

grams that are haltahle (which she called the set OF “primitive res recurqwe

functions"), but in doing so we would always sacrifice some of the TM 5
computing power.

These three machines, FSA, PDA, and TM, illustrate the . ascent up the

h*___‘_y hierarchy. They differ in having implicit memory, temporary. exphc:t

memory, and permanent explicit memory. By looking at memory as the basts for

the recursive loop in these systems—that is, as the clement that governs the abil-

ity of the system to perform interactions between its present input and past behav-

ior—we can see that the dlfferences in computati

depends on the dlfferences m recurswe power.

nal power for these machines

e

Measuring analog complexity with digital computation

_ =,
P Now let’s return to lfram and his cellular automata. After running thousands

of trials, Wolfram found that all cellular automata generally divided into four spe-

L cific classes. Classes 1 and 2 were those that either died out, or went into a peri-

odic cycle. Chss 3.was Just the opposite: it was uncontroltled growth that fed to
apparently mndom behavior, like white noise. But class 4 which 1nc|_gded the
game of life” cellular automaton, had somethmg that Wolfmm (Iescrlbed as “com-
plex”

Wolfram found that this highest complexity also demanded the highest com-

behwmr not as random as white noise, but not as borlng as A pcrm(hc cycle
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Complexity

putability: while pure order and pure disorder could be recognized by an FSA,
the patterns of the complex behavior required a Turing machine.

Mathematical physicist James Crutchfield (1989) found an even

“simpler example of recursive computatidn in a physical system. Crutchfield

U

used the population equation made famous by biologist Robert May (1976):
Pn+1 = PR(1~ Pn) {where P is a populacion number, scaled so that it is between
0 and 1, and R is the birth rate). May found that when R is low, the popu-
lation is simply a periodic cycle, switching back and forth between the
same sequence of levels. As you increase R, the length of the cycle (that is,
the number of different population levels you pass :through before returning
to the first one) increases extremely fast. At R =.3.1, the population isin a
two-level cycle, at R = 3.4 in a four-level cycle, and at R = 4.0 the cycle length
is ar infinity: deterministic chaos. Crutchfield was able to measure the com-
putability of these chaotic fluctuations and found results similar to those of
Wolfram: both completely periodic waves and completely disordered waves
were computationally quite simple, bur those in berween, with a mix of
order and disorder, had a high degree of computational complexity. The
simple equation examined by Crutehfield required only a PDA, but other
researchers (Blum, Shub, and Smale 198¢) demonstrated that more complex
analog feedback systems would be capable of signal complexity equivalent to
TM computability.

Figure 10.7 shows how these complex waveforms, called “1/F noise,” com-
pare to periodic and white noise waveforms. This is easiest to see in the spec—]
tral density plots. A periodic signal has all its power at one wavelength, while

a white-noise signal has the sume power at all wavelengths. 1/F noise is a com-

- . - . i
“premtise-hoiween the iwo—Dhiased so that it has the greatest amounr of power;

at the longest w'avelength, and the least at the shortest. For this reason, I/F noise!
is fractal; it has fluctuations within fluctuations within fluctuations. When we(
think of the length of these waveforms in terms of memory, we can begin to
see a connection to computational power. If a system had the same behavior OVEIg
and over again, it would be too fixed on memory. If it randomly picked a new!

§
behavior every time, then it would be too free from memory. Bur useful behav- |

jor is generally a mixture between the two. For example, think of somci(hmg,

unusual you did woday—moving socks 1o a new side of the drawer, or eating pret;
zels instead of crackers. Whatever it was, chances are it was preny trivial. If w;é
rook the same whimsical approach to major life-events each day—"today | think
I'll move to Spain, or get pregnant, or become a podiatrist”—we would be in;

|
trouble. QOur life is typlcqily drmng,ed as I/F noise: hlgh power events should be

long term changes, am] iow -POWeT events :.hOuId be short-term changes 3n fact

139
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Crutchfield-Smale complexity measure
(a=b) Periodic noise: A simple signal. (c~d) White noise:

From the viewpoint of the Crutchfield-Smale measure, =

this is also of low complexity. An FSA, for example, ki

could define this noise by making all state transitions E"'

equally probable. {e~f} Fractal noise: The most complex 3

signals in the Crutchfield-Smale measure are “scaling } 1 I

noises” in which there are fluctuations within flucru- periodic fractal random
4 noese nmse nose

ations. These signals have the greatest amount of their
power in the lowest frequencies (longest wavelength).
Since power is the reciprocal of frequency, it is often referred to as 1/F noise. (g} In summary, the
Crutchfield-Smale complexity measure is a reflection of the fractal dimension. The “most fractal”
{e.g., dimension of 1.5) will be the most complex, and the function decreases with bath higher and

lower dimensions.
{c and e, courtesy R. F. Voss.)
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Complexity

many of the analog waveforms produced by intelligent human behav:or appear
to be 1/F signals {Voss 1988; Eglash 1993).

As more scientists began to think of comp)extty in terms of computation

. and I[F noise, they began 1o '1ccurnul'u.¢ emmp]es that suggested thar this was

what it meant to have a _self—orgﬂmzmg system. In the evolution of life, for

mstanco most of the genetic information stores long-term events, such as the
physiology that underwent change in life’s evolution from warter ro land. More
short-term adaptations, such as skin color, take up very little of the genetic mate-
rial. Here again, we have somerthing like 1/F noise, with long-term events tak-
ing up the buik of the system, and short-term events taking up proportionately
less. Physmsts Per Bak and Chao Tang (Bak and Chen 1991) found several

examples ofsnmple physical self- -organizing systems that produced l/F noise. In
forest fires; forexample; very dry woods would spread ‘fire in an orderly circle,
while fires in wet wood would be too sporadic or random, and thus die our. But
in-between fires spread in a fractal pactern, with most of the fire in long-length
patches, less of the fire in medium patches, even less in smaller patches, and so
on. In water we have orderly crystals and disorderly liquids, but in between we
can get the fractal patterns of snowflakes.

Since we are familiar with ‘our own recursive interactions with memory,

we have a good intuitive sense

r why lfF noise should accompany complex

beh'\v:or and clearly it can characterize many varieties of selfforgamzlng sys-

tems— erha s all of them if we use the proper deﬂnmon But how does this hap-
-pe P Props P
pen? What is the mechanism that makes it work? Comploxxty theorists have not

hesitated to suggest implications of their work forculture;here 1 would like to

suggcst the teverse: that certain aspects of African culture can provide impor-

mathematics models we have seen, thls part of my research was much more of
a collaboration, much closer to my sense of the “participant simulation”
method—although if truth be known I had to be dragped kicking and scream-
ing much of the way.

Christian Sina Diatta: an African physicist looks at culture

“Rhab.” “Phantom.” “Rhab!” *Phantom!!” A strange dialog flew across the com-

itut de Technologie Nucleaire Appllquee at Senegal’s Uni-
versity of Dakar. I was seated with Professor Chnsnan Sina Dnatra director of
the lab, wa:chmg the pulsating forms of cellular 1t automata flow about the SCreen.

Dt Dlatta was the local sponsor for research under the United States’ Fulbright

el[owshlp program, and was eager to discuss his own ideas, His physics lab was

161
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an inspiring place to be. | had already been able to sit in on a graduate student’s

presentation; after having witnessed the same ritual in the physics department

‘at the University of California at Santa Cruz it made for a a fascinating bit of cross-

cultural compatison. I tried to make myself useful by settingup a demo of an elec-
trical circuit that produced deterministic chaos (“Chua’s circuit”) and installing
various types of software for simulations of nonlinear dynamics. It was ene of these
software demos, Rudy Rucker's cavas, that caused our multilingual exchange.

As noted in chapter 7, some of Rucker's most interesting programs are those

he calls* Zhabotmsky CAs” which can pn)duce paired log qpu als In addition

to the two.states of live cell and dead cell these cellular automata require at
least one ghost state, Smce someene had previously mentioned the mdlge-
nous term for. ghost, :rhab, it seemed like an opportunity for creative transla-

tion. I explained (in French, the official language of Senegal) that after 'état mort

{the dead state) the cell went to I'état rhab. To my surprise, Diatta corrected

thab back to the French: “phantom.” We went back and forth a couple of times
before I realized that it was not just my poor pronunciation. Only fater did
| discover my blunder: Diatta was not fram thz Islamic Wolof majority (in whose
language rhab occurs) but from one of the animist mirority groups, the Jola.
Using Walof was no more of a cultural translation for him than it would have
been to use English.

This was only the start of my mistranslations. Although Dr. Diatta was
greatly enthusiastic about my work on fractals in African architecture, he
seemed disinterested in the fractal generation software. But he persistently

brought up African architecture durmg the cellular automata demes. [ found this

to ex lore the mtentson al stde of theqe desn ns. Cellylar automata create pat-
P g pa

PRSP LY

terns not by preplanned de51gn. but r'{ther by the interactions of its aggregate

c:ells From my point of view, having fractal architecture as the result of ¢ aggre-
gate self-organization destroyed the possibility of intentionality. By focusing on
cellular automata as nn architectural model, Diarta scemed to be undoing afl
my carefully prepared research. His enthusiasim was unbeatable, however, and

I began to study aerial photos of his place of origin, the Jola settiements south

of the Casamance River, Figure 10.8 shows the settlement of Mlomp, not far from’

Diatea’s hometown; its paired fog spiral structure could have come right out of
Rucker's Zhabotinsky CAs. ]

A trip to the Casamance was clearly called for. 1 was fortunate in finding
Nfalty Badiane, a Jola graduate student who had done his master’s thesis on indige-
nous architecture of rthe southern Casamarnce, as a guide. Nfally's background is

ideal for an anthropologist: raised among the Islamic majority in Dakar, he is both

t of my research on African fractals was

{a) Mlomp.
(a, conurtesy:
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stranger to and member of the Jola society. As we traveled the delta area of the

the pu
Casamance River, using cars, trucks, canoes, and anything else that moved, his gates.
warnings about the secrecy of]ola religious knowledge were repentedly confirmed. inter.
Secular information about techmcal methods of house constsuction, plecolomal work:
and postcolonial sho::t'd*clr}?nges kinship groups, and m .Y,,other }
Jola sq;_qg;ytggqg:_‘{gajd;li_{é@hggﬂ:ﬂpg (Eglash et al. 1994)."We were told that the .
circular building complexes were not preplanned, nor were the broad curves of '
* these complexes in each neighborhood, but that they could not tell us anythmg
about the sequence of construction because, unlike the Wolof, “we do not have
a griot loral historian] in Jola society. " The splml structure visible in the photo
was mainly due to the c?refully mamtamed sacred fore:twsu;rmoundmg each local
nelghborhood But the mechanisms for creating such coherent structures over
e Bty eenis e o Lo
such an enormous range of scales remained hidden. A tantalizing glimpse of the
jola 5 saf:'réwgﬂgeﬂ&ﬁé‘tr‘y: l;g“;evtr led us"t“é' s:;p:::t that there was a conscious ele- w_
ment to the CA-like settlement structure. First, there was the symbohsm of the NOV
- chief’s drinking vessel: a spiral shell. Second,\'Nf;ﬁEhad seen the interior of one
of the settlement altars, a and said that it consisted of a spiral passage.
The best clue we found was from Diatta himself, who described a log spi’
" ral path in certain rituals that rook place in the sacred forest. But how to rec- a
( oncile this self-conscious modeling with what appeared to be the emergence
\ of the settlement structure through aggregate self-organization? 1 finally con-
. : fessed my disturbance to Diatta, and asked him how [ might understand the appar-
' ent contradlctton He suggested yet another simulation: the Joh funemi r:tua!
- during cur-visit, but were not allowed to attend. Diatta descrlbed the ritual in
' detail. The body of the deceased wus placed on a platform, and posts at cach of )
the four corners are held aloft by pallbearers. If critical knowledge is thought
to have been held by the deceased (e.g., as in the case of a murder), a priest asks
questions. The pallbearers, reacting to the force of the deceased, move the plat- ' {b) We ca
‘ form to the right for yes, left for no, and forward for “onknown.” ) l’”’c_ﬁ-“ﬁi”g
.i P The simulation for this ritual (g, 10.0b) is base_dﬁ?_n an an’mlog feedback ; | icl:"}::'::?_
f, '_network We don’t need to make any assumptions about whethex ‘the p'\llbmr- ¥ vectors of
L ers are exetting force due to conscious opinions or subcanscious beliels; it is only _  threeam
i conpnecter
' necessary to assume that they exert force in proportion to this motivation. other two
Since they can both exert force and sense it from others, this would theoretically to both e
allow the summation of knowledge among the participants to be expressed in the | : Z‘{')‘l::r:(;:‘

most effective way possible. In fact, the technique is more effective than a vote,

since voting can lead to the paradox of a minarity opinian win if there are more

than two options. The information emerged from the bottam-up interaction of

- Y
o
;o
S
il
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: delra area of the the parts, yet it was also intentional in the sense that this mechanism for aggre-

gate self-organization of knowledge had been consciously designed. This was not
intentionality as I knew it; i¢ sounded more like the description of a neural net-
work in computer science:

4

e that moved, his
“tatedly confirmed.

“fu-ttion, precolonial
" other aspects offy .

¢ ot ; : Ifa programmer has a neural network model of vision, for example, he or she
can simulate the pattern of light and dark falling on the retina by activat-

ing certain‘input nodes, and then letting the activation spread through the
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African fractal mathematics

connections into the rest of the network. The effect is a bit like sending
shiploads of gééds into a few port cities along the scacoast, and then letting
a zillion trucks cart the stuff along the highways among the intand cities. But
if the connections have been properly arranged, the network will soon setile
into a self-consistent pattern of activation that corresponds to a classifica-

tion of the scene. “That’s a cat!” (Waldrop 1992, 289-90}

The tHg}_(__y_VPar_t_irs_"Vifﬂ_t}'_x_e connections have been propetly arranged.”
Clearly it could be arranged for four people, but could it for this city of Mlomp,
with dozens of local neighborhoods and hundreds of people in each? And
Mlomp is not an anomaly. While we saw a more explicit formal system in the
construction of several (ractal settlement architectures in chapter 2, there are also
many African settlements that have a large, diffuse fractal structure {see Denyer

1978, 144). Self-organizing mechaniss that arrange. such vast aggregations

into coherent patterns would have to be more global and less explici

One key mechanism in complexity theory is memory; the theory predicts

that self-organizing systems will utilize 1/F distributions. in_memory length. The

R

lukasa, a visual “memory board” developed by the Baluba of Congo (Zaire), shows
just such fractal scaling (fg. 10.10). The memory system of the lukasa is partly

based on digital (that is, physically arbitrary) coding, such as color, but Roberts

(1996) notes that much of the lukasa is a “geometry of ideas,” mappmg_tﬂhg_p_egdgd

?EEF:‘E‘.!.“_S;FIF‘?W“ Lo analogpug_hiﬂsﬁtp_r‘i“t‘:_a_'l"f: }‘)___trs. Although there is considerable
interpretive and coding variation, there is a tendency to have single beads rep-
resenting individuals, groups of beads representing royal courts, and larger bead
arranpements showing the sacred forests that have been growing over many

generations. This visualization of a 1/F-like distribution of memory suggests at

least the possibi

lity of indigenous awateness of scaling properties in maintain-
e T
T The strongest candidate for a mechanism underlying self-organization is
the complementary pair of indigenous fecdback concepts. we examined in
chapter 8. In the vodun religion of Benin, we found Dan representing the sta- -
bilizing force of -negatlvefeedback,and legha representing the disruptive
force of positive feedback. Similar feedback pairs were found in the Baule
door carvings; the caimans biting each other’s tails are a symbol of negative
feedhack, and the fish eating ever {arger (ish represent positive feedback. This
combination of opposing feedback foops also appears to be at the heart of the
‘conditions that sustain self-organizing structures. Of course, mast.self-organizing

systems will have more than twa loops; but in every case | have examined, at

‘least one of each is present, and it is through this inreraction that sustained

complexity can arise.
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~Returning to the most basic example of complex behavior, May's popula-

tion equation, we have two components. On the one hand, there is popul’ntmn, :

growtb Pn+1 = PR, Next year’s populatlon will be this year’s populatlon times™

the growth rate. As long as R is a positive number, this widl be a positive feed-

back loop. But the other part of the equation, mult:plymg by (1 ~ P}, wasa nega

ative feedback loop, acting like an epidemic that klllé more people with larger N

-

populallon size. 5 Together they create determunsttc chaos the positive feedback
keeps expandmg the population, and the negative feedback keeps it within )
bounds. This works for other chaos equations as well. Figuré 10.11 shows a
chaos equation called the "Rossler attractor” modeling a car with two drivers.
S One is drunk and overcompensates by steering too far with each correction; the /
¢ other is sober and pulls it back on the road when the drunken oscillations get
, too large. Because it always steers back toa sllgbtly d:fferent position, the oscil-
) lations never repeat-—deterministic chaos.8
We can see the same combination of negative and positive feedback cre-

ating self-organization in n aggregate systems. The * game of life” cellular automa-

ton offers a particularly clear illustration of this phenome*xon If we give a rule

set that makes birth too easy (e.g., the cell goes to the “live” state if there is one
or more nearest neighbors alive), then there is too much positive feedback and
we get a rapidly spreading disk. If we make death too easy (e.g., the cell goes to

the “dead” state if there is one or more nearest neighbors alive), the screen goes

FIGURE 10.11
Rassler attractor as feedback in automobile driving

The Réssler attractor is a set of three simple equations whaose ouvtput is dererministic chaos, thatis, .

a signal with variable oscillations which remain bounded but never repeat the exact same pattern.
How can such a simple system produce infinite variation? An automobile driving model can help
us see what these equations are doing. '

{(a) Positive feedback. First, there is a part of the system that provides a positive feedback loop;
this acts like a drunken driver who swerves farther and farther off the road. Note that the car is not
properly aligned with the direction of travel; this skidding is the nonlinear relationship between
road position X and steering angle Y.

{b) Negative feedback. The other part of the system is a negative feedback loop; given a swerving
input, this cautious driver steers back roward the center of the road. “Caution” is represented by
the third variable, Z. )

{c} Combination of negative and positive feedback. Here we see the complete Réssler system at
work. The “caution” variable Z controls the facial expression (diameter of eyes and mouth, angle of
eyebrows}. Note thac after the oscillation gets large enough, the negative feedback kicks in, and we
go back toward the center of the road. Because the car never steers back to exactly the same
position on the road, the behavior never repeats. 1f, for example, you looked at the number of
increasing oscillations that occur before the negative feedback dampens it back toward the center,
it would appear to he completely random, with na predictable pattern. Yet the patrern is entirely
deterministic (that is, determined only by this set of equatians); it could be predicted if vou knew
the initial conditions with infinite precision,
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Small
neg:
blank in a few generations. The “classic” life rule set{found by John Horton Con-

way in 1970) is often rgferred‘_tqnaﬁ “3-4" life because it takes 3 nearest neigh-

bors to give birth, but 4 results in death. Conway discovered that this combination

i aof ne’gativ.g_an.d positive feedback maximized the complexity of behavior. Sim-
ilarly, when Per Bak found _emp'lrical data for self-organization in physical sys-
tems—Torest fires, earthquakes, avalanches, etc.—he noted that it occurred only

at a “critical state” in which there was a balance between noise-suppressing mech-
anisims—which would correspond to negative feedback-—and the positive feed-

back of noise-amplifying loops.

1t is unfortunate that so much of the classic research on African social mech-

anisms came from functionalist anthropology, since they made an almost exclu-

sive emphasis on the role of negative feedback in achieving equilibrium. When

it comes to CONscious knowledge systems, African societies do not exclusively

focus on balance, harmony, and stasis. The complimentary roles of Dan and Legba,

of order and disorder, are much more common, as we se¢ in this passage: “In the

mind of the Bambaras the air, wind and fire . . . are indispensable elements of

the world’s onward movement. But as these principles may be active in an
uncontroled, that is, unruly and often excessive manner, Nyalé is considered

to be a profuse and extravagant being. . . . So by her very nature Nyalé is, to a
certain extent, a factor of disorder. That is why it is said that Bemba . .. took .

away her 'double’ to entrust it ta Faro . . . whose essential attribute is equilib-

rivm” (Zahan 1974, 3)-

A similar pairing occurs in the Dogon religion, where Amma, the high god,
creates the Nummo to enact order, and accidentally creates the disorderly

Ogo; together the two generaie Life as we know it. In the repertoire of dynam--,

et dagle e -

ical concepts occurring in several African knowledge systems, there is recognition

i . msm e -

: . of the useful tension between equilibriur and disequilibrium, the dance between

order and chance that results in self-organized complexity. And just as Stuart

Kauffman has shown a bias towar

J order in evolution's “edge of chaos,” the highy
/god ensures that the trickster can act only sporadically, thus creating more puwcr)
\_toward long-term order in these African cosmologies.

Although fractals resulting from geometric algorithms.are usually seen as

static structures, they too can be viewed as the cthinnti()pngf_feeczi__lg_z__\__q_lg loops.

A seed shape with a huge number of tiny line segments (fig. 10.12a) will

P

to be shape-preserving under self-replacement iterations; here deviations due to

replacement are damped—ithe difference between a line segment and the seed

ST

Fr

i

shape is usually not important!(and the resulting graph will have a low frac-

tal dimension, i.e., tending toward 1.0). But for seed shapes made up of only

a few large lines (fig. 10.12b), the difference hetween a line segment and its
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Eep!ﬁz_l_gglm.en_t shape will be very important. Large deviations tend to be ampli- from

fied in a quick positive feedback, sometimes explosively growing out of bounds aslc

in only a few iterations. Figure 10.12b hasbeen scaled down to fit on the page, trum

/ ; but the actual fractal graph will quickly grow out of bounds and blacken the tal, ¢
screen entirely (i.e., a fractFa_Lclimension close to 2.0). Figure 10.12¢ shows a

fractal dimension close t@jl 5, the “most fractal” measure, which results from bloct

a balance between the negz‘!“t‘ive feedback of small segment shape preservation ian a

and the positive feedback of large segment replacement deviation. colos

There is no quantitative measure of fractal dimension in precolenial indic

African knowledge systems. But the idea of a spectrum progressing fram more
orderly to less orderly is vividly portrayed in certain material designs. The best
examples are in the raffia palm textiles of the Bakuba (fig. 10.13a). These tend to
Shg!m@[igd.is:__t_i,.f_i_r.n.g.,éf.éxié_9&9@3?51,and..aa@_r_igd.i,c-tili_ng—qf,ts_ﬂ moving from order

to disorder—along the other. Similar geometric visualizations of the spectrum

e e

FIGURE 10.1 3
From order to disorder in a Bakuba cloth
{a) The Bakuba often create cloth designs that stay fairly constant along the vertical axis, but
gradually change along the horizontal axis. [n many cases, the horizontal transformation suggests
an order-disorder range. (b) Computer scientist Clifford Pickover created this pattern to show
how a specirum {rom order to disorder could be visualized by allowing o random variable to have
increasing influence on the graph's equation. Thus it, tao, makes use of periodic tiling along the :
vertical axis and aperiodic along the horizontal. b )
(a, from Meurant 1986, by permission of the author; b, from Pickouver 1990, by permission of the author.)
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from order to disorder have been used in compurter science (fig. 10.13b). As far
as ] can tell, the Bakuba weavings never reach more than halfway across the spec-

trure—they are typically moving between 1 and 1.5, that is, from periodic to frac-

tal, rather than stretching all the way tq pure disorder.’?

L know of only one African textile that takes this last step, and that is the
block print shown in figure 10.14. This pattern is reminiscent of the ritle of Niger-
tan author Chinua Achebe’s famous novel, Things Fall Apare. Given the anti-

colonial context of Achebe'’s writing, it might be tempting to read it as an

indication that white noise only comes with white people, bur at least in terms

173

FIGURE 10.14
Block print textile
This print from West Africa sugpests the full spectrum from order to disorder.
(From Sieber 1972.)
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of the lndlgenous knowledge system such assumptions are unfounded. 8 There
is, for ‘example, a form of music 1nd1genous to MNigeria th':t has something like

a white noise distribution of-sounds. Akpabot (1975) describes “the random music

i of the Birom,” a flute ensemble designed to allow each musiciEin to express mdl'

V:dual feelmgq through whﬁtever ldlosyncratlc noise (or even silence) | he or she

ghmc;ch)ses resulting in “an mdetermmue process {in which] the sounds produced ’
by the players are not chstructed by a conscious attempt to organize the rhythms /
and harmonies” (p. 46). Pelton (1980) refers to the Nigerian (Yoruba) trickster /

Eshu as the “lord of random,” and notes that there is a coupling between the

’ :_‘},\_‘\';—\

spiritual/cultural power

orderly work of Olirun and this unpredictable spirit, similar to the negative

feedback/positive feedback combinations we noted earlier. The characteriza-

tion of extreme disorder might well be applied 1o the experience of colonial

tule, but we should not assume that the concept was unknown before then. A ’ Y Akan
summary of selected African coinplexity concepts is shown in figure 10.15; note f (Ghana):
that the central peak of spiritual power is analogous to the central peak of com-

putational power in the Crutchfield-Smale complexity measure.

Conclusion

This chapter is only the bare outline of what I hope will be future areas of
reseatch, examining the relations between technical, cultural, and political Vodun

{Benin,
systems through the new frameworks offered by, comple\uty theory For the Nigeria,

moment, we will have to Timit ourselves to the few fragments that my Senegalese ‘ fl\,:rs],fgfq} B
: dig ak

colleagues pointed out so dllrgentlyﬁ:lrs this does not. negate t the previous

examples of exp11c1t algorithmic désign in African, fractals,9 but it do..s suggest - - - D

ast in of settlement archltecture they can.arise from angther
source as well The creation of fractal sertlement patterns through aggregate self-
organization, while unlike the planned structures we saw in chapter 2, do not seem Dogon
ta be the result of unconscious social dynamics ('15 we saw_for the urban sprawl (Mali):

of European cities in chapter 4). This may be due to 1 dlfferex between African

concepts of mtentlon which can apply to a group, pro;\

created over several

generatlons versus the Westem focus on an individual performing immediate

action in defmmg mtennon'lhty Most important, there are indications that this ‘ N

pattern creation thmugh group activity is supported by conscious mechanisms : 5"
|
spec1ﬁc to self-organization as defined in complexity theory. Boch the scaling

/ distribution of interactions with memory and the spectrum from order to dis-

’\ order have at least some graphic counterparts in African designs. The best can-

.\ . . + . . . . .
didate for a conscious mechanism is the combination of negative and positive

feedback. We did not examine every possible case of deterministic chaos and
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African fractal mathematics

ageregate self-organization, but it would appear that the combination of neg-

ative and positive feedback loops, which form the basis of several Afrlcan knowl-

edge systems, also form'a key mechanisty of general self: orgamzmg systems.
As noted in the first chapter, it is just as important to find what is miss- ‘

ing as it is to find what is present. While four of the five basic concepts of frac-

tal geometry——scalmg, self-similarity, recursion, and mﬁmty—-'nre all potent
aspects of African mathematlcs a quanutatwe neasure  of dimension (the Hausdorf-
Besicovitch measuré) is complete[:,v abscnt Thére is a weak sense of a complexity
spectrum of order—dlsorder, which would covary with the Hausdotf-Besicovitch
measure, but that spectrum is neither quantitative nor (to my knowledge) ever
compared to a concept of dimension in any indigenous African §ystem. This is

an enormous gap in the Afrlcan knowledge of fractal geometry, espemally since

'the dimensional measure is. often considered the most valuable component by

contemporary. researchers in the fleld

£

On the other hand, we also need to appreciate all knowledge systems in

their own right and African fractals have a sur—prisingly strong utilization of

(1977) the mdex fists “recursion’ only twice, and the terms iteration, self ,

refererce, self-organization, and feedback are entirely a

nt. As we will see,
this ﬁbsence isno accident; it reﬂects a European historical trend. But why have

Europeans tradltlonally placed such little importance on recursion, and why was
it so strongly emphasized in African fractals? In part 1 of this book we will take
up such cross-cultural comparisons in derail.
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CHAPTER
—Theoretical
—frameworks
1n

—cultural studies
—of knowledge

Parts 1 and 11 of this book emphasized the geomerric, symbolic, and quantita=X

tive aspects of African fractals. Soe cases were more speculative than others—

_‘_——/

a difference that I hope was clearly indicated—but even in the use of mythic

narrative, | generally restrained conclusions to those that had geometric or quan-

titative counterparts. In other words, the claims made in parts 1 and 11 should

i — e ,____\J

. be falsifiable in the sense of Karl Popper; the data either supports the hypothe-
\ sis or refutes :[.l But the chapters tn this last section will switch to topics in cul-

multidimensional to be reduced 1o Formal representanons they can only be

approaclud by explormg their | mterpretanve e_pth Poetry an reveal as much
netr .
truth about the world as any science; we only need to‘keep in mind that it is a

different way of gomg about it. Whlle the phl]osophy. poht:cs and poencs of

POpperlan pObI[lVlbln cannothareas we cannot llve w1thOut

Ee——— e T e

N
Given that one can make a good case for at least fourof the five basic ele-
ments of fractal geometry in African mathematics, what should we make of it

{
in terms of culture? To ask this question effecrively we need to avoid two pit-

falls. The first is the possnbihty of ! overde[elmmed’ explananons {or Afrlmn

- A —— e L

—"\__
fracmls ewp!dmuonb That seem 1o be wqmng for us before we've even b(,gun
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Implications

to examine the evidence. The, second is the d1ff|culty of sustaining skepticism
in a racia lly charged er\wronment (Ehe posstblllty that we might shy away from
critloue over fears that expressing a negative view could be taken as having an
ethnocentric or racist mot:vat:or}x Both failings are equally damaging. Recently,
researchers have drawn attentlon to the ways chat theories of knowledge
(epistemology) can sneak uhexamined into cultural portraits. If we are to avoid
the trap of seeing African fractals as an indication that Africans are “closer to
nature,” ot concrete rather than abstract thinkers, or unified in a singte homo-
geneous cu]ture then we need to know a. blt about the origin of these mis-
conceptions. "The first step in that{ [’JIOCCE}IS to examine tlu. cptstu‘noloblul

frameworics th"lt are '1pphed to the study of culture

T, e i s A . ]

The unity/diversity debate and thin description

s,

A(:cordmg to Muchmbe/(»lg88) the concept of a unitary, tr'\dltton'ﬂ ‘African CUI

conquest w1th the myth of the primitive, and subsequently by ﬂntlcolonnhstq seek-
ing to consolidate their opposition. A similar critique is provided by\\ppmh (1992},
‘wha suggests that the chfferences mnong_varamls Afnc'm societies were much o0
broad to allow any genemltz tlgn§ (p. 25): “Surely differences in religious ontol-
ogy and rltml in the organization of politics and the family, in relations between
the sexes and in art, in styles of warfare and cuisine, in language—surely all these
are fundamental kinds of differences?”

Appiah and Mudimbe promate various kinds of solickarity in contemporary
Africa (as well as internationally in the diaspora); they only caution that this

cubtural unity is of rehuvely recent origin, and that attempts to see an, Afr:c'm

—
“essence” "orai umﬁed Afnc*m culture precedmg major. Europe'm mtervennon
il

deflned categories, which is certaml\,f self- defermng b"ms for antiracist
movements. From Appmh s antiessentialist paint of view one cannot discuss
precolonni “African culrure;" only “African cultures.”
___/'——"—““
On the other extreme of the unity versus diversity debate lies 1 the Afro-
centric position. While its proponents '\hn  agree that there was no- single,

e e et

homogeneous Afnc/r-;-n—?:_ffhure, they emph_‘z_x‘s__lge the sf1ngc1 elemcnts Asante
and Asante’s African Crlture: Rhythms of Unity (1985), for example, begins by
_ stating that while black unity cannot be based on genetic grounds, broadly shared

cultural undercurrents were found throughout the diverse societies of pre-

/ colonial Africa:

T
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Theoretical frameworks in cultural studies

"Alchough the precise actions and ideas may differ within the acceptable range
and still remain squarely in the category of African culture, there are some behav-
iors among some African ethnic groups which may have the opposite mean-
ing among others. Twinness is commonly copsidered a posirive characteristic
in African societies, yer there are some ethnic groups which accept twinness
as a negative characteristic. . . .Yet this particulacistic emphasis would not make
the ethnic group unrelated to the others. Patterned behaviors by African erh-
nic groups are cultural, not rigid or fixed, but related to history and experience.
Culture can vary over time, but in the case of African culwre, it will always
be articulated in the sume way.

There is a lot going on in this paragraph, but the crucial point for my analy-

sis 1 Abante and Asantt.:, d:stmctmn between the surface pamcuhrlnes of

various Lthnlc Lroupa ‘which may dlffcr, and dceper cultuml sensibilities or p']t— -

terns of amculanon (wh]ch they Tater illustrate with “the three tradmonal
:l-ﬂ:,_‘harmnny with nature,? humaneness, and rhythm” [p. 7]). In this Afro-
centrism, it is only at the deep level in which we find important culeural attrib-
utes held in common,.

Q‘%ppmh also makes this distinction between wrivial surface and the "fun-

damental” depths. The only d:sagreement be[ween lnm and the Asantes is
e e it
whether or not the depths reveal differences. One way around this quesnon is

in the “thick description” proposed by anthropologist Clifford (féertz 01 973).

Geertz was motivated in part by his dissatisfaction with the ways that Claude
Lévi-Strauss’s structm:allsm seemed to reduce symbolic culture to a flat, mecha-
nistic syntax. For Gu,nté cultural symbols should beinakind of d\@amlc play,
and the ethn@grapher should show their turbulent expansion through layers of

s SRR e
meaning, not their reduction toa blﬂt{l_(_} ﬁxed structure. Geertz defined these deup
tihelrecuerion pasm

ments from one lucntmn 10 the _NEXt, bc_cau:,(_ the dLep elemenrs are the T .ult

of local interpretations. Taken to the extreme, Geertz’s thick description would

o s et

simply reply thar the question Appiah and the Asantes are asking cannot be
answered.

The framework | have used in parts 1 and u of this book, which is that of

g
Lthnomathem’me in general, might be referred 1o as thin duulpuon a study
of the surface pmucu!antlu 5ud1 as_m.ucrml d(..b]bnb .md symbol:c formulas. As

e e e

the Asantes point out, a mathematical element like doubling ("twinness” in their

quotation) is just a surface feature. Wherther or not it has deeper meanings—and
thus the entire Afrocentrismfantiessentialism debate—is a question outside of

thin descripeion. For this reason, the thin description use of African icons to
— T e S
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- concerned only with deeper meanings, wouldn’t it present a problem for thin

Implications

represent SPElelc mqthemancal concepts or_structures (e g , the trickster =
bols in their deep SemlOth dyn arnics. Pelton (1980) sets up ]ust such a conﬂlct.
and perhaps r[ghtly so——-there has indeed been @ tendency for structurartsts to
claim that they had reduced culture to its true essence. Thelr error was to
insist that these bare-bones structures were the truly deep mechanisms of cul-
ture, and thar the discursive play of meaning should be disregarded as shallow
distraction. As long as we keep the thick stuff as the deep, and the pared-

down structures as the surface, there is no conflict.

While the lack of African unity in “twinness” is not a problem for those

{

description? That is, if doubling is supposed to be an important feature of African -

mathematics, then how does one explain theé African societies thar do not use "-7

if the exa.m.{}les of its use are 50 dtsparate[y scattered ACross the contment? To answer
this ¢ question, we need to consider what Wittgenstein called a fﬁmtly reserq_lz_l_gg_t;_g

When we look at the photograph of a large family we can see that everyone is
related, even if there is no single characteristic that they all share {some have
big noses and some small, some light hair and some dark, etc.). In the same way,
it is not uncommon for a group of mathematical ideas to share many common-
alities without a singular essence. In James Gleick's (1987} history of chaos
theory, for example, he shows that the emergence of nonlinear dynamics as a dis-
cipline was due to a slow gathering of many different strands of mathematics—
strange attractors, fractal geometry, cellular auromata, and so on. In order for
scientists to collaborate on this development, there was a long period in which
several researchers worked hard to point out the family resemblance of these dis-
paréte mathematical tools, and many aspects of their relationships are still
uncertain today. Similarly, African fractal geometry is not a singular body of knowl-
edge, but rather a patt'ern of resemblance that can be seen when we describe a
wide variety of African mathematical ideas and practices. And as we saw in the

case of Banneker's quincunx, it is not the only pattern possible.

Participant simulation

Whether one believes in Geertz’s thick description or in some other method for

researching the deeper meanings of a local culture, anthropo]ogists general]y agree
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Theoretical frameworks in culiural studies

what is undertaken by most anthropologists, who often spend a couple of years
in one village alone, using “participant observation” to traverse the depths of the
local culture by actively living it. There is, however, an important difference:
] | was not trying to Lmderbmnd how the Yoruba experience grief, or 1o determmL

tlu: inner muanmg s of cominunal spirit among the Baka. My mtetest was prlman]y

in the formﬁl propernes of deblgn, in methods of ‘construction, and in other

techmcal quesnons that could ofren be answered in a direct and snmf)le fashlon

Many of the Africans | spoke with were clearlyrelieved to hear that ] was a °

mathematician.? Of course | was still faced with several of the same problems
involving ethnographic accuracy and authority {see Clifford 1983). But even
these were sometimes differently posed. In particular, I began to think of my

methodology not as participant observarion, but rather as articipant simulation,

seekmg to collaborate in m’athemancal 'malySIS and vnrtual reconstruction

T L T - J———
et s Ty et e e i

thh my , African colleague:,

e AN b g RS B i e’

Participant simulation was carried out to conclusion only in the research

with Christian Sina Diatta, but [ tried to maintain the practice at some level with

everyone I had the opportumity to work with. That meant hauling diagrams of
fractal graphics with me into the equatorial rain forest and across the savannah,
and disrupting research time with math lectures, but in the end it was well
worth it.# There was the potearial problem that someone who knew what | was
after might fabricate what [ wanted to hear (as in St. Louis, Senegal, when one
of the ocal children heard wle talking about Benjamin Banneker and claimed
to know him personally). A/more pressing problem was my resistance to their
suggestions, as occurred in my initial disappointment with the lack of place value
notation in the Bamana divination code, or hearing che description of the oscil-
latory snake as “Dan at work™ (all I could think of at the time was a road con-
struction sign). Of course, there are always the aftereffects—Senegalese

sociologist Fatou Sow said “if there are not fractals in Africa now, there surely

will be by the time you leave”—bur then thar is a feature of all ethnogr_phy_,ﬁami '

’Wﬂul 1Cion_is a bour turnmg, Mto Aan. advan[age

The reason colhboranve wpprmches like participant s snnulanon were not

trmllnnnnlly used in uhnngjmphy comes from concerns over acunmcy—the
LplY Lomes T

—— — T

desire 1O GBGAIR an OBJLC[IVL account—and COﬁCt‘TI’Ib omnthonty, a suspn:lou:;

motive in the co!onlal context of most [radltion'l! wnthropology Clifford (1983)

describes the move toward Collaborative [echmques as both the anthropologists’

own self-critique of authority and as a growing recognition that since the ethno- -

grapher has as much motivation as the informant does, accuracy and objectiv-

ity can be better approached by sharing authority with indigenous voices than

183

by using them in a kind of ventriloquist act. Simply proclaiming a collaborative |

i
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approach is of coutse no guarantee that you will have one, and participant sim- the othe
ulation is perhaos even more susceptlble to mampulatlon due to, the role oFtech lar inven
nologlcal expegtise, o contrast

pratsd . ; :

On the other hand, since the creation of virtual worlds—snmulataons—»xs

matical ¢

in some ways ¢ the productlon of something fake, participant s sunuhtlon dogs have sciously’
the qdvqﬂgﬁ_gf_:_of avoiding sc_;ﬁ}eif)_l“c_l fa%hgned concepts of autl}ent!City [t was, many of
after all, tllg_geatlon of an “authentic native' {see Appadural 1995} that helped only bec
.' colonists to jail rebels among black South Africans and Native Americans; and because.
_ I: one could even hear the occasional guilt-ridden lament among the colonial rulers protecte;
i that they themselves were to blame fot having accidentally polluted the natural matical
purity of these “children of the forest” with their own troubling artifice (see the insights
ap'\r[held culture comedy, The Gods Must Be Crazy). Locating indigenous activ- the rese
ity in v1run‘lﬂ_\forlds can, if donegroperly. counter this habitual tenden—c}—to place) simbly .
art'l_ﬁf_nl an t}-{é;w&stem side and na atural on ¢ the llldié—(E_;:l;J; slde This pr.
B f)'z)ﬁ;";‘properly relies on the other root, “which comes from the old- which
fashioned;ahd 1 think, still crucial-—method of participant observation. mather
Partlmpant observation recruits a kind of responsibility that can be-sadly lack- anthror
ing in virtual ethnographies. Take, for example, the growing field of cyber- T
ethnography, in which anthropologists study the virtual communities of the Kolose
Internet. Since “lurking” (observing the electronic exchanges without partici- Ecuadc
pating) is so easy, there have been a number of studies in which the ethnog- the Inc
rapher is reduced to eavesdropper ot spy, with no attempt to work with the by -pro
community in either off-line or on-line lives. On the other hand, recruits can that w
include both draftees, who have little real interest in working collaboratively, follow:
and fanatics,who aie all too .nterested in what Gayatri Spivak {1987) calls the
! “henevolence of the western gaze.” e
. . Thus participant simulation is an ﬂttemMe best of both  approaches, ,
and to useﬁm a kind of checks- 'md balanges system. Hﬁy 1t1515_t_mg on pat-
tl(:lpm’(‘)ﬁrr\;é cg_r‘\_lleip avoid ghb IEl’CSpODSIblllty, and by u5111%51mulat19n_we can
i[ strive to avert the PO!'Cm&_‘lf_l_’ﬂm_‘_l:‘lfcq_:‘_ﬁlﬁ'ff‘__C“j‘_“t'“C“O“" of .mlhmncny
and reahsm ¥rom this point of view we do not need to emphasize tradition over
‘ invention; the mathematical creations of a single individual are still examples
K of indigenous mathematics, even if she is the only one who knows they exist. A ace
then
Intentionality and ethnomathematics growt
the w
There are clear advantages to a methodology that can credit the inventions of be or
a single individual, bur what about those creations that do not have a single inven- awar
tor? As we saw in the case of complexity in chapter 1o, it is possible to err on must
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Theoretical frameworks in cultural studies

the other side by insisting that conscious creations can only come from singu-

T —
lar inveniors. A better understanding of tlus problem ¢an be gained through the
contrast. between ethnomathemancs and mafﬁématlca! anthropology. Mathe-

maucal ﬁnthropology is generally focused on reveahng patterns that are nort gon-

sc1ously dc_tected by its SLIbJLCtS ofstudy In part this i isduetoa conviction that

many of the underpmnmgs of society are forces unnotlced by its members—not
only because such forces operated at levels beyond md:wdual awareness; “but also
because regulatory mcchamsms would have to be covert, obscured or otherwnse
plOtECEEd from manipulation and conscious reﬂectlon For these reasons, mathe-
matical anthropoiogy makes good sense, and it has indeed produced wonderful
insights. But its emphasis on unconscious process also arose from imitation of

the researcher—ob]ec:[ relation in the natural sciences: if anthropologists were

simply reporting indigenous discourse, then they would not count as scientists.
This problem of mere reporting is indeed the case for “non- Western mwthemancs,

which is mainly focused on direct transtations for Chmesc Ilmdu ‘and Muslim
mathematics and thus considered a subject for h:storl'ms Hence mathemﬁtlcal
anthropology'’s cenc]en;y to avoid intentionality can be problcmanc h

" The ¢ intentionality pro

blem in mathematical anthropology can be seen in
Koloseike’s. (r974) moclel for mud rerrace construction in'the low hills of

Ecuador. Koloamkt;: began with two hypotheses: either the Indians learned from

the Inca stone terraces in the high mountains above, or they were unintentional

by-products of cultivation on hillsides. He then made a list of nine observations

that were relevant to deciding between the two. Of parucuhr interest are the
following:

3. The same hillside soil is used in rammed-dirc houseb and fence walls, and
these stand for years.

4. Butl never saw a terrace being constructed, nor did people talk about such
a project,
5- Small caves are often dug into the terrace face for shelrer during rain-

storms. That chis potentially weakens the rerrace face does not seem to con-

cern people. (1974, 29-30)

Koloseike concludes that these terraces are the unintentional result of™

/" an accretion process from the combination of cultivation and erosion, and 4
then proceeds to develop a mathematical model for the rate of terrace ~

‘growth. My point is not in questioning the accuracy of the model, but rather

the way that indigenous intentionality is positioned as an obstacle that must
be overcome before mathemarics can be applied. Even a small degree of

awareness—Dbeing aware that a cave dug into a terrace face might weaken it—
must be eliminated.
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) In addition, it reveals a particular cultural construction of the supposed uni- . symme:
i8 r\) versal attribute of “intention.” As a Westerner, Koloseike is used to a society in ( simplyyz
-E‘: ‘.-" a hurry. Projects to be.done must get done, and always with somegone in chﬂrge ‘; work t_(,
? ‘ The idea of a long-term intentional project, perhaps extending over several ing, ca'-
generations, or the constitution of collective intentionality rather than individual ( pology-

; intent, is not brought under consideration. It may well be that the mathe- ( dedica

matical model Koloscike offercd was not only accurate, but also had an indige- | tenchi
: 5 nous counterpart. , to Zas
f' Etlmom'tthenntlcs in contrast, has emphasized the possablhtles for__!nilge- '
nous mtentmnahty 1n mathem'\tlml p'\tte;ns For example, Gerde .;(rlggt) used lation
tl';é_tusom sand drawmgs of the Chokwe people of northeastern Angola to open
demonstrate indigenous mathematical knowledge. While it would have been descri
possible to attribute this practice to an unconscious social process, such as the teg- gory ¢
ulation of authority, Gerdes chose to foc:us_on _El]glr properties as conscious indige- ticipe
nous inventions. Ascher (1967) notes the same type of Eulerian path drawings unlik
1?ﬁﬂtp-h_é-.8joutl'_1wpﬂmﬁc. and shows them to be primarily motivated by symbolic nag- the »
r;_tﬂt—;gs, in particular their use by the Malekula islanders as an abstract mapping . dema
of kmshlp relations. Again, this is in &agg_héo}\tras"t to the t t:adltton of mathe- ' i.nter!
matical anﬂnopology, where kinship algebra was considered a trivmph of West- P of Ph
ern analysis (and even a source of mathematical self-critique; Kay [z 971} harshly : tems
notes the anthropologists” tendency to invent a new “pseudo-algebra” for various do
kinship systems rather than apply one universal standard). is ne
Ascher de'scnptlon of the Native Amenmn game of Dish shows this ages
contrast T a more subtie form. in the C’lyug'\ version of the gﬁ;ne, six peach stones, buti
“blackened on une side, are tossed, and the numbers landing black side or brown
side up were recorded. The traditional Cayuga point scores for each outcome are , .
(to the nearest integer value) inversely proportional to the probability. Ascher Evolutio
does not posit an individual Cayuga genius who discovered probability theory, ﬂf_fﬂl
nor does she explain the pattern as merely an unintentional epiphenomenon of We
repeated activity. Rather, her description (p. 93) is focused on how the game is ism
embedded in .community ceremonnls spititual beilefs fmd he'\llng rmmls, cliy
‘= spectﬁcally through the concept Uf commun'il pl ymfg in whlch wmnmvgs are by
attributed to the ; group “rather than ro fht, mdwrdu.ﬂ ayes. Ju }uxmpmmg this con- No
Text with ‘detmied-attentu;;:l Efﬁuﬁlgqtf;1ct concepts of mndmnncss and prLdtctahllty tell
in association with the game—in particolas the idea of * expected values” asso- inc
jated with succésqlve tosses—has the effect Qf nttnhurmg the ;mfenuon of
p]()b\blhty assignments to cn”ccnvc intent, T is
“At the -:Lepnml extreme in etlmonmrhemwncs Donald Cruwe has refrained op
from mﬂkmg any inferences ahout mtcnuonahty and insists th#t his studies of .
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symmetry in indigenous pattern creations (see Washburn and Crowe 1988) are
simply examples of applied mathematics. But since Crowe has restricted his,”
_.“f work to only those patterns which could be attributed to conscious design (paint- J
_ ing, carving and weaving), it creates the opposité‘%‘f&:ct of mathematical anthro- ,;’ '
pology s attempt ro eliminate 1ncllgen0us intent. This is evidenced by Crowe’s T 7
7 dedication to the use of these patterns in mathematics education, particularly hls‘
t:’ teaching experience in Nigeria during the late 1960s, which greatly contributed _,'
to Zaslavsky’s (1073) seminal text, Africa Counts. '

" While non-Western mathemarics is exclusively focused on direct trans-,
lations (such as Hindu algebra or Muslim geometry); ethnomathematics can'be
open toany systematic pattern discernable to the researcher. In fact, even that
description is too restrictive: before Gerdes’s study there was no Western carte-
gory of “recursively generated Eulerian paths”™; it was only in the act of their par- /
t!Cl“[;TE]El.t“SH!—:;ulathn that Gerdes—tand the Chokwe—created that hybnd And
vnlike mathemarical anthropology, ethnomathematlcs puts an . emphasis on

the '1[[r1bunon of conscious intent to these patterns. At ¢ the same time, it

e At ek o

demands quantltatlve or geometric confirmarion thar is lacking in the purely
interpretive approach of New Apge mysticism, such as that of Fritjof Capra’s Tao
of Physics (see critiques in Restivo 1985). Claims that ancient knowledge sys-
rems reveal the structure of the atom or the equivalence of matter and energy
do more harm than good—first because they are wrong, and second because there
is no means by which such knowledge could be obrained. Such mysnﬁcanon dam-

ages credible research in indigenous knowledge systems, and removes the attri-

bLmon of mtenttonalsty and mtellectu’al labor from the putative knowers

Evplution is.a bush and not « ladder:
the cultural location of African fractuls

We are increasingly surrounded by explananons based on blOlOglCHl determin-

ist, and there is none more virulent than T'\cmm;Even in the supposed liberal

clum[e of LJL.G. academnia, my lectures on fractals in Africa are frequently followed
bya qucst:on about 1 neurosc:ence*Typlcqlly this is an innocent remark concerning

Noam bhomskys ideas on universal cognitive struceure, but even so, it is quite

telting thaca lecture on Eurobum fl’lC["\lh invokes questions about the genius of

individuals, while Afncan fmcwl:, are compulswely 1tmched to blology

The mythology of face s too complex to (acdunt here (seg: note 6) but it

is useful 10 Lllsl:m;:,ul:.h between two_categories

operates by makmg a group of people 100 cOncrete, ’md l:l)us closer 10 natme —

not rmlly a Lulture at all “but ra[her l)emgs of uncontroll(_d emotion and direct

. e .. .

it e s
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bodlly sensation, rooted in an edenic ecology Onentnhst r'1c1<'.m oper'ltee by mak- ;

[N i e e

ing a gloup of peop'le toc_v,abstmct, and thus * ambesque —not really a° natural J
Qstract,

human, but one.who is devoid of emotlon,.canng only for money oran inscrutable

spmtml Eranscendence "‘

———

The a ltcm tive to blogenetlc exp! mt1on is qocmcultuml, and here the

—_—m— —

c1tegor1es of prumtwe and oriental can be much mote complex Historically,

l
many researchers who strongly opposed both racism and ethnocentracism | have
heen located in institutions with titles like “Museurn of Primitive Arts”
“Department of Orientalist Studies,” and it would be unwise to simply sneer at
their work, particularly considering the antiracist contributions by black anthro- }\
pologists such as Zora Neale Hurston or Jomo Kenyetta. There is value to be found- ! J
!

in even the weakest of these opposmon"ll theor:es, and problems in even the

" strongest.

dlfference Sameness can usmliy avotd orientalism and prmutwlsm “since it
[ W W

e — i

argues that what is important about a non- ~Western culture are . those things held

in common with the Euro-Americans, and what is different 1s {in this context)

~trivial. Claude Lévi-Strauss, for example, argued that the “savage mind” is based

‘on systems of symbolic structures, just like the European mind, so that am

African working with a system of mythological symbols is performing the same
cognitive operations as a European working with a system of computer code sym-
bols. QOne drawback of sameness is that we become players ina game created by

sameone else: “] am wnrthwhllc only insofar as l am the same as you " Difference

P [ s e

[N IS

enta[xsm For e*«:amp[e “Aimé \.,es’hre 5 neolbglsm negrltude 'negdu as i wity of -

speaking about the difference of African culture in open-ended, dynamic, cre-
ative terms, but lafgr {(in the hands of others) the comparison'was frozen into a
set of binary opposi;:ions (infuitive vs. analytic, concrete vs. abstract, ete.).? In
other words, both sameness and difference have moments of failure as well as

moments of success.

~

The recent focus on '111cient\Egypt‘!in certain circles ofAfric:'m studies has

{see critiques in Oritz de Monte!lnno 1993, Martel 1994} Leﬁcowuz 1996). It is

worth noting, however, that some of the critiques have been equally lacking in
their restraint. In his review of the Portland Baseline Essays, for example, Rowe
{1995)—while righﬂy pointing to a number of unsupported assertions—implied
that claims for an ancient Egyprian glider shonld be dismissed because the

author was merely an aerodynamics technician rather than a Ph.D. Rowe was
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Theoretical frameworks in cultural studies

quite right in objecting to the wild leap from empirical tests of a small wooden
carving to the authoricative claims for ancient Egyptians flying from pyramids,
but to imply that simple experiments are automatically suspect because they were
made by a technician is nnrhml_, but chbsm plL;ud]u. On the other hand, the
fact that this researcher was a technician mthu than a PhD speaks to the under-
lying cause for these problems: the lack of institutional resources and precarious
economics among many black educational communities.

Appeals to ancient Egypt can also encounter problems as a strategy of same-
ness. On the one hand, ancient Egypt’s status as a state empire directly opposes
primitivist assumptions that Africa consists of nothing but tribal villages. On
the other hand, it reinforces the view that the knowledge systems of nonstate
indigenous societies are not comparable to those of state societies. This view comes

from the old 1def\ of cultural evolutionas a ladder a unilineal progression from

——————. s A s g e a1 a0

pnmltwe to advanced Int the ladder me

(“band ) societies would be on the bottom rung, the more hlerard\lcal ( t_g;l)nl )
societies would be on the next rung, and the most hierarchical (“state”) societies
would be on the top rung. Of course, simply positing that the societies with corn-
plex social organization (e.g., labor specialization and politicalkhierarchy) have
greater technological complexity is not inherently demeaning; but it is not
rentirely accurate. Anthropological research has persistently shown that neither
social seructures nor their knowledge systems can be consistently ranked in a
unilineal sequence; for example, monotheistic religions tend to occur in band
and state societies morte than in tribal. Just as biological evolution has been

revised from L _Qveioy’s great chain of bemg to Gould's coplogi[y,b_r_a__nclung
ay

bush,

,_.‘...J-

50 OO cultum] Lvolunon is now typnc lly portrayed as a branchmg diver-

b et e b

eties in the pursuit of antiprimitivist portraits.

The difficulties of theorencal frameworks in the c:platemology of nonstate

aucu_tles have beu’\ mu

i ‘ec! Appiah (1092} provldes an extensive C]IS—
cussion of this intersection, starting with ethnOphllomphy His analysis weaves
[ between the positions oanredq {10979}, who critiques the focus on comparison
to Western science mther\lnn religion (noting that ir leaves the superstitions
| and folk philosophies of the West unexamined), and H\oumm 1983), who
argues against any mimetic comparison, suggesting that ethitsphilosophy and its
tallies are dressing European motivations in autochthonous garb. Both critiques
)could certainly be appiied to African fractals. But like Mudimbe's (1988) Fou-
caultian analysis of African epistemology, and Gilroy’s (1993) fracral history {which
we will examiné in the followmg chapter), Appiah’s dialectical contour maps

African eplbtemology as an hiscorical process rather than an object of strictly

PR

sity of forms. There is nd reason to focus on state societies over nonstate soci-
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pre- or post-Western presence. The cautions of Wiredu, Hountondji, and oth-
ers are serious reminders that African fractals can only succeed as participant sim-
vlation, not as Indiana Jones discovering-another lost temple e

/Gwen those precautions, it makes sense to see Afncan fractals as just
another moment in a historical s&iﬁence One could for e\cample pl'\ce
them in Mudimbe's hlstory of ethnophtlosophy, or Zaslavsky's {1973 ) history
of tesearch on African math. But there are other researchers who have pointed
out some of the fractal characteristics of African designs and practices, and
it is useful to examine them as a group, even if they lack the clear historical
trajectory of other categories. We have already mentioned the observation of

nonlmear scalmg by Bntlsh art lusto&g_f\_ William F agg ch'\pter 6), and the

CBIUGIOOHlan tthlogla,n; Engelbelt Mveng (ch ptEl 9) Leopoid Senghor,

At

the distinguished man of letters who becaine Senegal’s first president, also had’

an eye for African fractals. His term was “dynamic symmetry,” which he took
from art historians. But Senghor’s motivation was primarily ideology; defin-
ing a “negritude” that would encompass the kind of cultural politics he saw
as necessary to independence. Most recently, Henry Louis @ (1988)
explored the doublmg practices of vodun dlvm'\non in terms of a literary ver-

T e et o

S T Ko N e st

sion of Jeterministic chaos; here the recursion penerates a cultural uncertainty

e smipae Lt

that frees pender identity from static boundaries: “The Fon and Yoruba escape

the Western version of discursive sexism through the action of doubling the

double; the number 4 and tts multiples are sacred in Yoruba metaphysics. Esu's”

two sides ‘disclose a hidden wholeness,” rather than closing off unity, througl{
the opposition, they signify the passage from'cnie to the other as sections of
a subsumed whole.”

While all four have hit upon mathematical aspects of Alrican fractals, none
of these authors have focused on representations of mathematical knowledge.
Mveng, the theologian, provides a theological interpretation. Fagg, the artist,

concludes with a comparison to D'Arcy Thompson's famous nature drawings.
X

Senghor, the statesman, sees his dynamic symmetry as a sign of cultural—and

thus national—identity. And Gates, as a literary critic, sees it as discursive tech-
nique. Surely my insistence on indigenous mathematics is no less an iinposition
of seeing the world though my own lenses, but since that is o different from
the other explanations, why does ethnomathematics appear to be so much
more controversial? It is because a portrait of mathematical sophistication in
nonstate societies creates a strong conflict with the old fadder model of culrural

evolution, a model that is itself overdue for extinction.

Conclusion
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Theoretical frameworks in cultural studies

Conclusion

So far we have outlined several theoretical frameworks that could raise prob-
lems for African fractals. On the one hand, there,,zgre theories in which the
designs could be dismissed as unconscious biclogical or social process. On the
other hand, great care must be taken to avoid either inflated claims or a
mathematical version of negritude. With the exception of biological deter-
minism, none of the frameworks reviewed here are necessarily good or bad.
There are cases in which mathematical anthropology is more appropriate
than the ethnomathematical approach, or when sameness is a hetter scrategy
than difference, or when attention to ancient Egypt needs to supersede atten-
tion to sub-Saharan Africa——just as there are cases in which the opposite is

true. Our goal is not to find the one true final framework—it does not exist—

. but to keep a well-stocked toolbox and know how to pick the right tool for

the right job. Now that we are well prepared for constructive tasks, it is time
to move to politics.

191
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—African

————{ractals

— Given the possible dangers in ' misinterpreting African fracrals, how can we put

them ta good use? Social theorists from many different disciplines have used two
mathematical concepts we have discussed, recursion and the analog-digital

dichotomy, in constiucting their ideclogics. Many theories of communication have

assumed that there is some kind of universal ethical or social difference between

using analog signals and using digital symbols. Other theories have maintained

that recursion has some kind of universal ethical or social value. Both are ulti-

mately failures in the sense that ethics and values do not lie within mathe-’

matical distinctions. Yet they are also on the right track in that such associations
can be locally formed—it is just that different locations will result in different social
meanings. Such locally specified social attachments to fractals can be useful for

understanding culturat politics in Africa and beyond.

The politics of the analog-digital distinction

192

Jean Jacques Rousseau is often credited as a founder of “organic romanticism,”
the theory that the Natural is inherently hetter than the Artificial. Whether or
not this is deserved, Jacques Derrida {1974} takes him to task for proposing that

a natural/artificial difference can be found between different languages. Jean Jacques
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The politics of African fractals

Rousseau proposed that the “natural crys of animals,” music, and “accentuation”
{that is, pitch intonation in the human voice) are all a similar type of com-

munication. In this I would tend to-agree, since instrumental music and human

. pitch intonation are for the most part apalog representations and since he was

probably thinking of analog examples of animal communication (although
many animals, for example vervet monkeys, use digital communication as well).
Rousseau contrasted this to “articulation” in the human voice, by which he
meant the linguistic (and hence digital) parts of speech. Bur instead of seeing
the distinction as two different rypes of representation, one analog and the other
digital, Rousseau claimed that analog signals were not a form of representation
at alt. In his view, digital versus analog was representation versus The Real. Music,
animal cries, and emorional intonation were somehow more natural and
authentic. Worse yet, he inflated this into a cultural difference, maintaining
that while European languages were largely based on {digital) articulation, the
language of the nobel savage was closer to narture.

One might hope that Derrida would correct the matter and point out that
analog signals are just as much a representation-—just as much fakes, just as easy
to lie or tell truth with, and just as artificial—as digital symbols are. But he 100
failed to produce a balanced portrait. Derrida did insist that all human linguis-
tics is fundamentally digital (quite true}, bur he did not bother to say a word about
other modes of vocal representation. This error is due to Derrida’s concern over
the authorirarian ideology that organic romanticism can produce. For example,
history is full of dictators who claimed that their ethnic group was the real or
natural one, and that others were artificial pollutants in their Eden. Rousseau
himself did not have such fascistic tendencies, but Derrida is right in pointing
out that organic remanticism-tan always be used in thar-way, no matter who it
is coming from.! One need not panic so much, however, and banish analog sig-
nals from existence; it is enough to give them the same epistemological status
as digital symbols—no more and no less.

I have found this egalitarian view of the analog/digital distinction very dif-
ficult to promore; it seems that everyone has their own faverite view. When ! spoke
to chaos theorist Ralph Abraham, for example, he explained that analog systems
were in his view the realm of spirit, the vibrations of Atman. Postmodern theory
maven James Clifford, to the contrary, insisted that only digital representation
ts capable of the flexible rearrangemenss that constiture human thought. This
same Dattle has been played out in the history of African cultural studies, Dur-
ing the 10960s, realism was in vogue, and whar could have been a wonderful explo-
ration of the analog representarion techniques in African culture was often

reduced to romantic portraits of the “real” and “natural,” while African symbol
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systems suffered from neglect. During the late 1970s, this began to reverse

itself—with the advent of postmodernism, African cultural portraits became

increasingly focused on discourse and symbol systems, even at the expense of ignor--

-

ing analog representations.

It is important, however, to see how these restrictions have been contested,
particularly in black intellectual communities. Hooks (1991, 29} summarizes her
own reaction to romantic organicism: “This discouse created the idea of ‘prim-
itive’ and promoted the notion of an ‘authentic’ experience, seeing as ‘natural’
those expressions of black life which conformed to a pre-existing pattern or stereo-
type.” Rose (1993} describes the history of rap music, also atising in the mid-1970s,
as not just a resistance to organic romanticism, but as a technocultural rebellion
that makes Derrida look like Gutenberg. Cornel West, Houston Baker, Hlortense
Spillers, and Hazel Carby have made interventions in African American intel-
lectual discoutse in similar ways, as have works of black science fiction such as
George Schyler’s Black No More, Ralph Ellison’s Invisible Man,? Toui Cade Bam-
bara’s The Salt Eaters, Samuel R. Delany's Dhalgren, and Octavia Butler's Xeno-
genesis trilogy. An egalitarian view of the natural/fartificial dichotomy can be seen
in black intellectual history running from George Washington Carver's concept
of “God's Kingdom of the Synthetic” to Mudimbe’s “lavention of Africa.”?
Indeed, Carver and Mudimbe’s concepts. are quite similar; it is not Mudimbe’s con-

tention that African unity lacks a spiritual bond, but rather a celebration of the

spirit of invention, which requires resistance to the European claim that spirit

can exist only in categories of the natural. African animism is marked by an extra-
ordinaty acceptance of the religious significance of artifice,? from gris-gris to the
mojo hand, and its techniques for passing information through the physical
dynaiuics of sound and movement show that this faich in the power of analog rep-

resentation is not misplaced.

politics of recursion

While Derrida was trashing organic romanticism, Michel Foucault was attempt-
ing to do the same for humanism. His historical studies demonstrate that human-

ist goals of recursion—to be self-governed, self-controlling individuals

are not
innocent; but rather develop historically in combination with various tech-
niques of social control. In an era where “self-management” usually means that
the corporation you work for has developed improved techniques for self-
exploitation, it is nat hard to see what Foucault is getting at. As in the case of
Derrida’s warnings against claims that analog representation will automatically

lead to more ethical living, Foucault warns against seeing recursion as a moral
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The politics of African fractals

formula.’ While African analog systems raise the problem of someone making

claims about what is more real or more natural, African recursion—especially the
recursive architecture of African settlements—rajses the problem of humanist
claims. - .

~ To see how this can be a problem, consider the following two case studies
of African architecture. Caplan (1981) studied the relation between housing and
women’s autonoemy in Tanzania. She described how the flexibility of housing
allowed women 1o creace new homes if they wanted a divorce, or to extend old
homes if they wanted to shift the {amily structure. As in many African settle-
ments, this self-organized housing created a self-similar struccure—fractals—which’
allowed greater social self-control for women. When socialism brought mod-
ernization programs, this autonomy was threatened by the “improved” housing
design, which sometimes resembled concrete army barracks.® Here one would con-
clude that fractal is betrer.

Swoller (1984) described a Songhai town in which a caste system ensured

“that the best land was voluntarily given over to the highest caste members. ht

was not a matter of forcing people against their will, but simply unquestioned com-

mon sense that one should want to be located in their proper place. This frac-

“tal, self-organized architecture was a form of self-exploitation. Eventually several

members of the community decided to break out of this oppressive structure by
building houses along the new highway. Thus liberation in this case meant
leaving the fractal geometry, and lining up in straight Euclidean formarion—exactly
the opposite of the Tanzanian village studied by Caplan. Stoller’s work riicely illus-
trates Michel Foucault’s warning againse simplistic humanist formulas: self-
dererminarion is not necessirily Fhernring: it con serve to support social control
ratherthaw resise it Meicherfractalner- Euclidean geometries have any inher-

ent ethical content; such meanings arise from the people who use them.

Colonialism and architectural fractals

René Descartes was not much of a humanist; in his view self-organized archirecture

is junk. He makes this clear in his famous Discourse on Methodology:

[Tlhere is less perfection in works made of several pieces and in works made
by the hands of several masters than in those works on which but one master
has worked. Thus one sees thar buildings undertaken and completed by a
single architect are commonly more beauriful and better ordered than those
that several architects have tried to patch up. ... Thus | imagined that people
who, having once been half savages and having been civilized only gradually,
have made their laws only to the extent that the inconvenience caused by crimes
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and quarrels forced them to'do so, would not be as well ordered as those who,
from the very beginning of their coming together, have followed the fundamental
(1673, 12}

Y,

precepts of some prudent legislator.

.

For Diescartes, “self-organized” is synonymous with savages, the imperfec-
tion of both material and social structure. Lack of complete Euclidean regular-
ity means randomness: for “streets crooked and uneven, dne will say that it is
chance more than the will of some men using their reason that has arranged them
thus” {p. 12). The lack of Cartesian coordinates in many African settlements would
thus evidence their need for the guidance of colonial reason. As Hull (1976) notes,
huge centers of urhan life in Africa were indeed disregarded by Europeans as
“unstructured bush communities” on just these principles. While Timbuktu was’
granted cityhood due to its grid pattern of streets, the Yoruba cities of equal pop-
ulation size and economic, technical, and labor specialization have been disre-
garded as merely giant villages due to their lack of Cartesian regularity.” Thus
fractal architecture was used as colonial proof of primitivism. This debate over
the urban'status of non-Euclidean settlements continues in the postcolonial era
(see Schwal 1965; Lloyd 1973). ‘ '

The occasional Cartesian linearity in African architecture threw a hitch
into this colonial justification. In 1871 the German geologist Carl Mauch “dis:

covered” the ruins of Great Zimbabwe. Stunned by the evidence of precise stone

" cutting on a massive scale, he proposed that the buildings were not of African

design, but were instead due to the Queen of Sheba's visit to Solomon. The .

Rhodesian government used this explanation as a part of its propaganda against

Black rule (Maclntosh and Maclntosh, 1989). Actually, they had much less to

fear in the truth: the stone was not cut, but it naturally broke into linear
sheets (after heating) due to its geologic properties. Moreover, most of the out-
side walls were originally covered with smooth clay, creating a nonlinear set
of scaling shapes (which Connah [1987] refers to as “random curved forms"}.
This is not to diminish the remarkable rechnological skill of the construction,
but to point put that one culture’s sign for “artificial” can be another's sign for
“natural.” Euclidean versus fractal does not necessarily mean artificial versus nat-
ural; that, too, is culturally influenced. '

During the development of colonial cities, the chaos of African architec-
ture was used as both symbol and symptom of European fears over social chaos.
Pennant {1983) provides an example of this concern about proper settlement geom-
etry in his examination of colonial development in Malawi: “The language of this
19305 policy discourse is significant. Medical experts wrate of ‘investigntions’ show-
ing ‘unquestionably’ and of ‘abundant proof.’ . . . Lay Europeans showed ‘con-

cern,’ ‘alarm,’ and ‘horror” Africans, with their *primitive habits,’ of ‘promiscuous
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The politics of African fractals

defecation’ formed a ‘floating’ or 'scactered’ populatlon in need of ‘control’ and
‘supervision’ in a ‘properly laid-out village or location.”’

In the above case where * ‘primitive” mixesayvith modern, the fractal tradi-
~ tion was a threat. But kept in what colonialists thought of as its natural role, it
could make fractal settlements appear ro benefit the colonial enterprise. The nov-
elist Karen Blixen (lsak Dinesen), in Out of Africa (1988), described her attempts
to lay out grids for African workers’ houses on her ranch, They refused 1o follow
these linear instructions and fic their houses in patterns matching the irregular
‘configuration of the land. Thar such ecological fit could be quite efficient was not,
however, lost on the colonists. “The squatters’ land was more intensely alive than
the rest of the farm, and was changing with the seasons” (p. 9). Architectural
fractals could be part of colonial romanticism as long as they ensured a supply

of self-supporting workers. '

Even in the case of social control, indigenous fractals could be utilized. British
coloniai policy, for example, at first failed in cases where there was a decentral-
ized network rather than a targe hierarchy. This was approached in the case of
the Ibo with a system of "indirect rule” based on “warrent chiefs” (Isichei 1976).
The Ibo autonomy of self-organizarion was turned against them; in a sense it was
grass-roots colonialism. The architectural equivalent of this system can be seen,
in a manual for colonial-era housing designs from the Agency for International
Development (Hincheliff 1946, 31). Here the Ibos’ fractal settlement pattern (radial
houses around a center in each village, radial villages around the settlement cen-

ter) is tidied up to suit European conceptions of symmetry while retaining the
overall indigenous fractal structure.

. Fractals and racial redistricting

In the introduction to his seminal Fractal Geometry of Nature, Benoit Mandelbrot
examines some of the disparaging comments that were made about the early
fractal forms of Georg Cantor, Helge von Koch, and others. Rejected as “bizarre”
and “rorturous,” these “dragons” were consigned to the oddities section at the
end of the few marh texts that would even consider them. Strikingly similar
language has been used to reject the outlifies of voting districts that were
altered to include larger African American populations, and these do indeed
appear to be fractals {fig. 12.1).8 Were the courrs as mistakenly hasty to disre-
gard fractals as mathemaricians were?

The Euclidean shape of voting districts is not an arbitrary sampling—this
could only be done by randomly selecting voters from everywhere in the state.

According to the 1993 Supreme Court ruling in Shaw v. Rene, it is meant to
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Georgia congressional district 1¥ in 1992°
Stmilarity of irregular redistricting pattern can be seen at multiple scales,
{Original maps courtesy of the Carl Vinson Institute, graphic highlighes by the author.)
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The politics of Africun fractals

fractals—bur the fact that we now know of societies in which fractal settlement
parterns are beautiful fusions of form and function suggests that we might

reconsider their potential role in American politics.

[

African fractals from cultural visionaries

€3
i poz

~r.muitiple seales

ights by the uwihor.)

Lo
it
~

N

*-jnform the vote. The
L )

“Vominantly mortivatpd”
L 2

his
L . . d.

inpling, separated vot-
s the voting distficts.
* i settlement patterns,
_der Euclidean districe
. pised? ] da not know if
-al than others—and

Iy

* ~onnection to African

Fractals and chaos theory have been increasingly mentioned in the humanities

as either a tool or an object of cultural analysis, but too often the approach of

these studies has left the impression of mathematical ink blots allowing writers

to see whatever they please. Lyorard (1984) saw fractal geomertry as contribut-
ing o a “postmodern condition” whose contradictory nature would disrupt
authoritarian certainty; a more cautious version of this thesis is floated in Deleuze

and Guattari (1987). At least two authors (Steenburg 1991; Argyros 1991)

have argued thart fractals and other branches of chaos theory have created a direct

challenge to postmodernism, integrating the disruptions it created. Porush
(1901} and others insist that “deterministic chaos” is attempting to substiture
a feeling of free witl for fatality.? Sobchack {1990) suggests that it implies “an
embrace of irvesponsibility in a world already beyond control.” When Sobchack

cites Peitgén and Freeman in her condemnarion of chaos theory as a denial of

“the specificity of human embodiment and historical situation,” | can’t help but’

think of Peitgen’s fractal geometry course at the University of California at Santa
Cruz, where he commented on German mathematicians who altered their
careers to oppose Nazi anti-Semitism or support peace efforts; or of Freeman’s
{1981) use of Martin Luther King in his discussion of chaos in neurophysiology.
How can we critique the work of chaos theorists as lacking hiscorical specificity
and embodiment if we ignore rheir own histories and bodies?

Hayles’s Chaos Bounel { 1990) took a more subtle approach. Like Porush and
others, Hayles's licerary method allows her to glide far too easily berween un-
retated ideas; by the time she has tossed together quantum theory, entropy, and
Gadel's theorem with deconstruction and *holism,” one can only conclude that
any complicated idea can be a metaphor for any other complicated idea. But her
detailed analysis of literary works, showing deep paratlels between self-reflexive
writing and self-referential mathematics, suggests that when grounded in specific
fucations the fusion of fractal geomenry and cultural interpretation ean be pro-
foundly rewarding.

_ Paul Gilroy makes explicit use of fractals in his portrait of the diversity and
dynamicism with which both traditional Africa and the African diaspora have
organized their cross-cultural flows. The recursive construction of his Black

Atlantic can ke seen, for example, in this quote from Jumes Brown on a visit to

T MR -
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.i%_: 4 hear Fela Kuti in Nigeria: “[Bly this time he was developing Afro-beat out of
; African music and funk. His band had a strong thythm; | think Clyde picked up
on it in his drumming, and Bootsy dug it too. Some of the ideas my'tiand was get-
ting from that band had come from me in the first place, but that was okay with
me. 1t made the music that much stronger” (1993, 190).

Gilroy cites the impact of the Virginia Jubilee Singers on tour in South
Africa in 1890, the return of slaves from Brazil to Nigeria, the Rastafari culrure:
in Zimbabwe, and other e*«:amples of “mutations produced during its contingent
loops and fractal trajectories.” Perhaps his most radical move is a claim for dias-
poric mixing with Jewish culture—-W.E.B. Du Bois passing for a Jew to main-
tain safety in Eastern Europe, the use of the Exodus theme in Martin Luther King,
jr., and Marcus Garvey, and E. W. Blyden's childhood in a Je wish commu-
nity.!¢ The fractal imagery works in many different ways for Gilroy—from the
turbulent metaphor of hybrldxty to the concrete description of ships’ paths
and travelers' routes (or “rootsfroutes” as he puts it}.1! While music is, with-
out doubt, Gilroy’s strongest example, he does slip into the prablematic labels
of representational versus “nonrepresentational” rather than digital versus
analog,}? but he makes it clear that the music reverberating across his Black

-Atlantic is neither pure nor natural.

While Gilroy is primarily focused on fractals as spatial representations of

@

blutred boundaries, he also briefly mentions their potential for “a striking
image of the scope of agency within restricted conditions” (1993, 237n28); that
" is, the ability for geometric expansion within bounded space becomes an anal-
ogy for oppositional political expansion in human bondage. The metaphor is car-
ried to a more exacting relationship in Gary Van Wyk's study of Sotho-Tswana = =~
murals under the apartheid system of South Africa. Van Wyk (1993) found that
the litema, or the house painting patterns of the Sotho-Tswana women, utilize
alternations of irregularity and regularity at several scales, sometimes resulting
in a resemblance 1o fractal patterns. Noting that the scaling is associated with
the geometric structure of flowers, and flowers with the regenerative power of
women {both spiritually and in social struggles), Van Wyk’s ethnography con-
cludes rhat the murals expressed political opposition to apattheid by providing

a visual analog in which “a woman can be secretive while at the same time hid-

ing nothing” (Deleuvze and Guattari 1987, 28g9—290}.

Although the word “fractal” is nowhere mentioned in his text, Anton
Shammas's novel Arabesques (1988) is an exemplar of nonlinear insight and recur-
sive cultural commentary. Heaver (1987) analyzes the novel through the North
African artistic form of the “arabesque,” and shows how Shammas has used this

fractal to sustain the cyclic time and multiple identities required to articulate a
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political flexibility crucial to the survival of cultural diversity. “As an ‘Israeli Arab,
Shammas is 2 member of a minority group—but as a Christian, he falls outside
the Islamic mainstream of the minority. . . . On the other hand, Fie writes in
Hebrew, the language of the dominantly Jewish culture, wh,ich is itself a minor-
ity within the predominantly Arab Middle East” (p. 49).

Such recursive nesting is emphasized throughout the temporal flow,

narrative structure, and conceptual dynamics of the novel. Heaver suggests that

the “nonmimetic geometrical abstractions of the arabesque” are a spatial model

for Shammas. He notes that in part these cyclic reentries act to negate one
another; undermining, for example, the fruitless argument of “l was here {irst.”
But negation is not the only meaning behind the arabesque, as Heaver points
out in a passage that ties Islamic social structure to analog representation,

recursion, and the scaling properties of fractals.

The arabesque does not serve only a negative, critical function; it also bears a
positive, utopian message. It acts as an analogue, in the area of visual arts, to
the pOSi{ion of [slamic "contractualism” in the social sphere. . . . In contrast
to western corporativism, with its preference for hierarchical structures in
which a limited number of conclusions are drawn from a limited number of
premises (on the model of geometry), the cyclical thythims of the arabésque could
well be said to characterize an “indefinitely expandable” structure. The
arabesque provides a framework within which it becomes possible to reduce the
apparently “chaotic variety of life's reality” to manageable proportions, yet with-
out “arbitrarily setting bounds 1o it.” (Heaver 1987, 61)

Clearly, when Heaver refers to the limiting dangers of a "model of geom-

etry” he is thinking of Euclidean structures; itis.the fracral geometry.of the

" arabesque which conveys the hopeful message of Shammas. In chapter 2 we

examined the arabesque branches of streets that appear in a map of Cairo, Egypt.
In another section of this map (fig. 12.2}, a wide diversity of religious insti-
tutions flower at the ends of these branches, attesting to the positive poten-

tial of fractals in culeural politics.
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Anthropologists have recently taken an increasing interest in the cultural analy-
sis of Buro-American societies. In pare this is a reaction to the many decades of
focus on indigenous societies, as if their behavior required explanation while that
of Europeans was self-evident. At first this “reflexive ethnography” sounded like
an ingenious way to turn tables on some very troubling aspects of anthropolog-
ical authority, but it roo has drawbacks. Occasionally one suspects a hidden sigh
ting edge by “studying their own tribe” (just as cyberethnography sometimes seems
suspiciously convenient). Nevertheless, there is an important place for anthro-
pological studies of Euro-Americans. It would be an unbalanced portralt if we were
to see African fractals in need of cultural analysis, and Western fractals as merely

self-evident mathematics.

A cultural history of European fractals

Ancient Greek philosophy is often remembered for Plato’s rational realm of
unchanging, staric forms. But in the history of mathematics, it is imporrant to
consider other intellectual currents in that society, in particular the paradoxes
of the philesopher Zeno of Elea and the discovery of irrational numbers by the

Pythagoreans.

203




e
5 e WP

204

.\
;

Implications

According to ancient historians, Py.tlﬂgoraq of Samos gathered knowledge
in Egypt and Babylon in the sixth century B.C.E. and established a secret soci-
ety in Magna Graecia (what is now southeastern Jtaly). His disciples,,includ-
ing one of the first recorded women mathematicians, Theanapswore an oath
to maintain strict dietary regulations, secrecy, and a religious faith in numbers.
The Pythagorean cosmology was a harmonious unity based on whole numbers
(1,2,3...)@ and their ratios (fractions such as 2(3, 5/2, etc. }. From the motion
of heavenly bodies to the laws of music, they found increasing evidence for their
arithmetic religion. But at some point—and much ink has been spilied in the
date debate—came the discovery of what they termed alogos, the “irrational”
numbers (a name that we have kept to this day). Unlike whole number ratios,
which either terminate (5/z = 2.50000 . . .) of repeat (13f11 = 1.1818:8 .. ),
irrational numbers, such as the square root of two (1.41421356 ...}, continue
to change forever. They cannot be expressed as the ratio of two finite integers;
as geometric magnitpdes they are “incommensurable hnes The most plausible
origin for the Pythagorean knowledge of irrationals is in an attempt to deter-
mine the diagonal of a pentagon. If you wish to determine the ratio of diago-
nal to sides for a regular hexagon, it is quite easy, because all diagonals intersect
in the center. But the dingenals of a pentagon just form a smaller pentagon. Since
the same operation can be repeated again and again, an irrational number is
exposed.! This “irrationality” in the heart of their spiritual practice was too much,
and members of the group agreed not to reveal this secret on pain of death.

Zeno of Elea (fl. ca. 450 p.c.E.), a disciple of Parmenides, provided a
series of paradoxes that also conflicted with the numerical faith of the day. His
most famous example is a race berween Achilles, the fleetest of runners, and a
tortoise. Allowing the tortoise a sporting chance, Achilles gives it a consider-
able lead (let’s say 1oo feet). But by the time he caught up to the place where
the tortoise began, it had already advanced 10 feet. By the titme he gained that
distance, the tortoise has crept forward one foot. Zeno concluded that although
experience proves otherwise, logically the tortoise should win the race. Back in
450 B.C.E., these paradoxes of infinity (and infinity’s flip side, the infinitesimal)
were unnerving, even shocking to philosophers who depended onvrationality as
the gateway to religious perfection. '

In Plato's philosophic cosmology, spititual perfection was seen as the higher
level of transcendent stasis, and illusion and ignorance were the result of life in
our lower realm of changing dynamics (“flux,” which in ancient Greek also
means “diarthea”). Several of Plato’s students attempted to improve the match
between the characteristics of mathematics and the requirements of the staric

reaim. Eudoxus proposed to eliminate irrationals by redefining “ratio,” and
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The Platonic refortm was quite successful, and as a result mathematicians
in the following centuries paid littie attention to the kinds of recursion that led
to Zeno's troubling infinite regress. One early exception was that of Leonardo
Fibonacci in the twelfth century. He introduced the first recursive series shown
16 be of use in modeling the natural world. In chapter 7 we saw that the Fibonacci
series appears to have been utilized in the temple architecture and weight bal-
ances of ancient Egypt. There may actually be a connection between the two.
While tittle biographical marerial is available, Gies 'and Gies (1069) and other
sources have put rogether a good account of whar life was probably like for
young Leonarde of Pisa. Following schooling in Pisa, in which arithmetic was
largely based on the Latin writings of Boethius (circa 500 c.g.), Leonardo’s
father sent for him from the North African city of Bugia (Bougie). There he learned
the Indian place-value notation (probably through Arabic sources). He was
inspired by this innovation and traveled along the Mediterranean to Constan-
rinople, Egypt, Syria, Sicily, and Provence, coltécting mathematical knowledge
from both scholars and ordinary merchants. : ,

" The resulting text, Liber Abaci (Book of the Abacus}, has a strong lslamic
influence. Levey (1966), for example, shows that many of abu Kamil’s sixty-nine
problems can be found in Leonardo’s text. But the Fibonacci series, introduced
unobtrusively as the solution to a problem in rabbit population growth, does not
have o known Islamic counterpart. Pechaps it is simply an independent inven-
tion, but if the weight balance system was i Use at “tiiar rime, Leonardo could
have casily picked itup from a merchant during his travels in Egypt. And it is
possible that through its religious use in ancient Egypt the series had retained

some significance as an item of sacred or mystical knowledge and was thus trans-

mitced through scholarly contact.

“4ed on rationality as Gies and Gies (1060, 61) note that Leonardo's practice of reducing all frac-

L)

\shs seen as the higher

tions to 1 in the numerator “went back to ancient Egypt, and perhaps derived
frarn the fact that fractions were regarded less as numbers in their own right than
"k the result of life in as signs of division.” Boyer (1968, 281} suggests that the Liber Abaci problem with
o Jancient Greek also recursive nesting of sevens {“Seven old women went to Rome, each woman had
; ‘}in‘;prove the match seven mules; each mule carried seven sacks .. .") originated in its-ancient Egypt-
V)éments of the static ian counterpart (Rhind Mathematical Papyrus problem #79). And Fibonacci does

“lefining “ratio,” and

provide a narrative statement of the recursive construction,” highlighting the
iy _ .
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same self-penerating aspect of the series that would be emphasized by the ancient
Egyptian belief system.

If this influence (whether merely contextual or direct) does in fact exist,
it should not detract from the genius of Leonardo’s wortk. His"genéraf solution
for finding “congruent numbers” for squares has been hailed as “the finest piece
of reasoning in number theory of which we have any record before the time of
Fermat.” But when it comes to the use of the Fibonacci series in the contem-
porary history of mathematics {cf. Brooke 1964), there is actually no evidence
of a direct contribution from Fibonacci himself. By all accounts, German
astronomer Johannes Kepler rediscovered the series independently in 1611, and
it was only in the mid-18o0s, with the formal publication of Liber Abaci, that
French mathematician Edouard Lucas found the Pisan historical predecessor and
named it accordingly. This fact has received little attention, and most texts pres-
ent Fibonacci's discovery as if it were in a direct intellectual line of descent
rather than an honorary title given to a well-deserving but disconnected ante-
cedent. Fibonacci himself seemed unhesitant about the multicultural contri-

butions to his work; the first sentence of Liber Abaci states, “The nine Indian

figures are .. .." No doubt he would have been quite content attributing the

series to originators of any heritage.

Fibonacci's series was simply unbounded growth; there was no introduc:
tion of the infinite except in ways that Aristotle would have approved. The sev-
enteénth century broﬂgilt attention to the concept of the “infinitesimal”
(revived from its Greek banishment in Kepler's Stereometria {1615]}), and con-
vergence to a limit ds infinity is approached (e.g.. the algorithms for generat-
ing i }; but infinity would atill exist only as a never-reached orientation rather
than a legitimate object of study. The Aristotelian voice could still be heard in
1831, when mathematician Carl Friedrich Gauss (1777-1855) cautioned his friend
Schumacher against infinity: “I must protest most vehemently against your
use of the infinite as something consummated, as this is never permitted in mathe-
matics. The infinite is but a fagon de parler, meaning a limit to which cerrain
ratios may approach as closely as desited when others are permitted to increase
indefinitely.” But Gauss's distinction was short-lived. As we saw-in chapter 1,
the work of Georg Cantor, which had produced the first fractal, the Cantor set,
ended the Aristotelian view on infinity. Like Fibonacei, Cantor too may have
had spme non-European influence in his work. _

The Cantor set (fiz. 13.1a) was his visualization of transfinite number
theory. 1t shows the interval of zeto 1o one on the real number line, and indi-
cates that the aumber of points is not denumerable—that is, greater than infin-

ity. But at the tiine, pure mathematics was only one of Cantor’s concesns. His
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real fascination was in the theological implications; rhe increasing classes of infin-
ity he discovered seemed to point toward a religious transcendental. Cantor’s biog-
raphers differ greatly on the cultural significance of this pbint. E. T. Bell fele that
Cantor’s Jewish ethnic origin ruled his life, and Fe made several remarks about

the inherisance of personality traits—particularly disturbing in light of his
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FIGURE 13.1

The Cantor set
{a) The frst fractal, created by Georg Cantor in 1877. {b) This design is found on the wop of

columns in the remples of ancient Egypt. Georg Cantar’s Rosicrucian beliefs and his cousin Mortie

Cantor, an expert on the geometry of Egyptian art, may have put him in contact with this Egyptian

Jusign.
{by from Fourier 1821.)
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remarks on Cantor's arch rival, the Jewish mathematician Leopold Kronecker:
“There is no more vicious academic hatred than that of one Jew for another when
they disagrée on purely scientific matters. When two intellectual Jews fall Gt they
disagree all over, throw reserve to the dogs, and do everything in their power to
cut one another's throat or stab one another in the back” (Bell 1939, 562—563).

Another Cantor biogrépher, }. W. Dauben, says that since Cantor’s mother
was Roman-Catholic “she was by definition non-Jewish, thus it follows that Georg
Cantor was not Jewish, contrary to the view which has prevailed in print for many
years” (Dauben 1979). Nazi scholars solved their worries by spreading a story
that Cantor was found abandoned on a ship bound for St. Petersberg (Grattan-
Guiness 1971, 352). _

Actually Cantor’s Jewish identity was quite complex. His family had indeed
converted to Christianity, but he was well aware of his heritage. He referred to
his grandmother as “the Israelite” and wrote a religious tract that attempted to
show that there was no virgin birth, and that the real father of Jesus Christ was
Joseph of Arimathea. Cantor eventually joined the Rosicrucians, whose mysti-
calfscientific approach to a supposed Egyptian origin for all religions probably
appealed not only to his intellectual interests, but also to his syncretic ethnic-
ity. Cantor chose a Hebrew letter as his new symbol: che aleph, beginning of the
alphabet, was used to tepresent the beginning of the nondenumerable sets.
While his biographers argued Jew or not-Jew, off or on, zero or one, Cantor him-
self proved that the continuum from zero to one cannot be delimited by any sub-
division procéss. no m'atter how long its arguments.

Given Cantor’s Rosicrucian theology and the proximity of his cousin
p b

Moritz Cantor—at that time a leading expert in the geometry of Egyptian art’

{Cantor 1880}—it may be that Georg Cantor saw the ancient Egyptian repre-

sentation of the lotus creation myth (fig. 13.1b}, and derived inspiration from

this African fractal for the Cantor set. We may never know for certain, but the

geometric resemblance is quite strong.

As noted in chapter 1, Cantor’s mathematics was considered utterly imprac-
tical; it was not until Benoit Mandelbrot that fractal geometry became useful to
science. Mandelbrot reports that his inspiration came from a study &f long-term
river fluctuations by British civil servant H. E. Hurst. Hurst examined the flood
variations over several centuries and concluded that it could be characterized in
terms of a scaling exponent. Later, Mandelbrot realized that this was the same
scaling mathematics that the “remarkable curves” of Cantor and others described.
But where did Hurst find a reliable source for several centuries of flood data? Hurst
lived in Egypt for 62 years and was able to demonstrate long-term scaling in Nife

flood records because of the accurate "nilometer” readings going hack fifteen cen-
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turies. Attempts to find patterns in the floods are quite ancient in the Nile val-

ley; in some ways, Hurst and Mandelbrot were simply the latest—and most suc-

cessful—participants in that search.

.

Recursion and sex: a cross-cultural comparison

Throughout the exploration of African fractals, we failed to find any one cultural

feature that was persistently associated with these forms. They ranged from

. practical construction techniques to abstract theological icons, from wind-

screens to kinship structures, from esthetic patterns to divination techniques. There
is no singular “reason” why Africans use fractals, any more than a singular rea-
son why Americans like rock music. Such enormous cultural practices just cover
too much social terrain. At best we can make a lower-dimensional projection of
such high-dimensional dynamics, the silhouette that appears given one partic-
ular axis of illumination. This section will focus on the relation berween recur-
sion in mathematics and sexuality in culrure. Sex is convenient in that other
researchers have developed African-European comparisons, and that sexual
reproduction is often connected ko recursive concepts.

Taylor (1990) deseribes sexuatity in Rwanda as based on the cohcept of a
“fractal person” in which society is perceived “not in terms of monadic individ-
uals but in rerms of . . . structures of meaning whose patrerns repeat themselves
in slightly varying forms like the contours of a fractal topography” (p. 1025). His
analysis on expressions of this sociality in terms of the circulation of fluids is used
to examine the failure of programs ro encourage condom use. Carolyn Mar-tin Shaw
(1989, 1995) analyzes Kikuyu sexuality in related ways and provides an illumi-
nating contrast to European sexuality. Using Foucault's critique of humanism, Shaw.
challenges the usual portrait of European sexual repression and African sexual
license. She demonstrates that in both cases, the social system controls sexual
behavior, bur while the European locus of control is in the privatization of plea-
sure, the Kikuyus's sexual regulation occurs through Ipublic expressions of plea-
sure and “sociality of individual conscience.” For example, she highlights the
practice of ngweko, in which teenagers wrap themselves with a few leather strips,
oil their bodies, and engage in a public display of sexual behavior. From a Euro-
pean point of view this sounds like an unregutated orgy, but Shaw found that the
practice was a method of preventing teenage pregnancies and channeling the teens’
sexual desire into socially approved forms.#

When we look at many African fracrals we can see an emphasis on sexu-
ality in terms of reproduction. The self-similarity of the Bamana chi wara ante-

lope headdress and merunkun fertility pupper, the self-generating Dogon
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cosmology, the cyclic kinship iconography of the Mitsogho, Fang, and Baluba,
the iterations of birthing in the Nankani architecture, and many other cases of
recursion are closely tied to sexual reproduction. Thus one contribLuting factor
to the African mathematical emphasis on recursion could be this African con-

struction of sexuality through positive public domain expressions.

The European counterpart of Shaw's theory would predict the opposite, and -

indeed we find thar the banishing of infinite regress in the Platonic reform was
closely tied to a kind of sexual prohibition. In Plato’s Sympusmm Sacrates
explains that there is a hierarchy of rcp:oduntmn Love between a man and a
woman will only result in a flesh child, a creature of Aux who will eventually die,
at best producing more flux. Love between a man and a boy (lover and beloved)
is higher, because it can result in raising the boy to a higher plane—-that of a
philosopher. And a philosopher can have a “brain child,” a perfect idea that never
changes or dies. The Platonic ideal of static, eternal perfection conflicts with the
ever-changing dynamic of sexual reproduction. The Greek preference for the sta-
tic shape of the Archimedean spiral suggests this Platonic ideal, just as the

growing shape of the logarithmic spiral suggests the African emphasis on fertii-

“ity and reproduction. Of course, this is a gross generalization; there are, for
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and specified that one would be engraved on his tombstone. But the stone cut-
rer did not go against the grain of his culture; Bernoulli's grave is scilt marked with
an Archmedean spiral (fig. 13.2).

It would be dangerous to suggest that there is an ethical difference at
stake here, as 50 many organic romanticists have maintained. Again, there is no

historical evidence for a consistent rel’ltlonshlp between mathematical distinc-
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tions and the ethics of their users. Some strictly linear, logical thinkers like Bertrand
Russell and Noam Chomsky have been famous for their progressive ethical
standpoints, just as some holistic organicists have been prone to fascism. And
of course vice versa. What does count for ethics is how people are able 1o use mathe-

- matics in the particular events and ided that surrounded their life. With that

in mind, let’s look at three of the innovators who brought recursion into Furo-
pean computational mathematics.

The story of Ada Lovelace is well known in computing science history. Her
fame stems from her writings in 1843 on the mathematical possibilities of
Charles Babbage’s proposed “analytical engine”—a plan for a mechanical digi-
ral computer. Lovelace is often promoted as a recovered feminist ancestor, a posi-
tion that tends to overestimate her achievements and obscure her own thinking.
Against these reductive portraits, Stein (1985) has written a detailed, critical exam-
ination of Lovelace that reveals a much more interesting and complex story than
the popularizations have allowed.

Lovelace’s mother was always worried that she rnight have inherited the
notorious sexual proclivities of her father, Lord Byron. Her childhood revolved
around strictly prescribed educational activities, and at times she was forced to
lie perfectly still, with bags over her hands to ward off any “wildness.” This repressed
upbringing eventually inspired rebellion in the form of an attempted elope-
ment, but the failed affair left her humiliated and repentant. She wrote to a fam-
ily friend, William King, requesting mathematical instruction as a cure for her
sinful impulses. King agreed, sending her both mathematical and religious rexts.
But despire her declarations to apply her mathemarical imagination “to the
greater glory of God,” she turned away from the moralizing of King to the more
glamorous social company of Babbage and his famous “thinking machines.”

Babbage's motivations were far removed from King’s religious intellectu-
alism. He was primarily concerned with economic and scientific progress. This
switch from King to Babbage was an acrt of independence, and Lovelace began
to turn her imagination loose. While pursuing a much more intense area of mathe.
matical study, her religious thinking also ook an expanded turn. She bepan to
describe herself and her waork in terms of magical imagery: the mechanisms of sym-
bol manipulation were “mathemarical sprites,” and she advised Babbage to allow
himself to be “unresistingly bewitched” by"‘the High Priestess of Baggage’s
Engine.”

Stein also notes that it was actually Babbage who first drew up the "table
of steps” constituting the first computer programs. Babbage was having diffi-

culty obtaining funding for his work, however, and realized that Lovelace's social

* position and notoriety—both as the daughter of Byron as well as a “Lady of
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Mathematics"—could be put to his advantage. The reputation of Lovelace as
the originator of programming stems from this public relations ploy of Babbage.
There was, however, one table for which Ada was wholly responsible: the
recursive generation of a sequence known as the Bernoullpnumbers. Moore
{1977) states that this table used recursive programming. Huskey and Huskey
(1984), apparently referring to this claim, suggest that this is a confusion with

Lovelace's description of mathematical “recurrence groups” and note that the

term “recursive programming” generally refers to a procedure that calls itself -

(i.e., self-reference)—impossible for Lovelace since her code had no procedures.

‘But they also note that Lovelace introduced a new code notation to describe

what she referred to as “a cycle of a cycle,” which would be equivalent to the
recursive structure of nested iteration in use roday.

Significantly, this iterative recursion was the one program for which Bab-
bage claimed credit: “We discussed various illustrations that might be introduced:

- T'suggested several, but the selection was entirely her own. So also was the alge-

braic working out of the different problems, except, indeed, that relating to the
numbers of Bernouilli {sic], which I had offered to do to save Lady Lovelace the
trouble” (quoted in Stein 19835, 89).

The appropriation may have been anticipated by Lovelace: Stein notes that

"in the letters concerning this program, Lovelace is atypically vague—she had

always been overdependent on Babbage for mathematical specifics—and spec-
ulates that the vagueness was a deliberate move to protect her iterative inno-
vation. Many feminists have written about male envy of women’s reproductive
capacity,® and there might well be a parallel in Babbage's appropriation of
Lovelace's recursive achievement. But the organicist versions of such analyses
portray the conflict in terms of women being more natural or embodied, and men
being more artificial or abstract. In this story of male womb envy and the pro-
tective mother, it is the digital abstraction of recursion, not concrete embadi-
ment, over which the struggle is fought. The birthing metaphor was mentioned
by Lovelace herself; the finished programming study was “her first child.” Con-
trary to Plato, sexual reproduction is not in opposition to the abstract realin of
machematics; Lovelace used her mathematics to rebel against attempts to limit
her to a repressive femininity and used this artificial sexuality—a bewitching
high priestess, jealously guarding her programming progeny—to develop the first
computational recursion.

In the discussion of the mathematical theory of computability in chap-
ter 10, we noted that the set of “primitive recursive functions,” developed by
Rozsa Peter, had the greatest computing power short of a Turing machine.

Unlike Lovelace, Peter’s capability as a mathematician is uncantested; in fact,
F

c

she is w,
Harkler
gender §

cial insi
a mathe;
concrete
ual repr
Fol
fimit of 1
not only
to artific
ery and !
mast del
behavior
develope
is widely
tests are'
Tz
behind &
interroge
try to dec
with an ,
tinguish 4
Turing's \
inspired
in a how
tnachines
who live
Andtose
hidimg ple
pame on
pender re.
feature w,
strate {cf.
ern maste:
identity i
Mat
shield, a c

CONSCious



‘ )Lovelace as
) of Babbage.
‘j.-;_.))nsible: the
“bers. Moore
{""and Huskey

e D
«~nfuston with
Lad

,ote that the

ﬁ)lt calls itself

F- procedures.
@\ to describe
("ralent to the
which Bab-

e introduced:
1 was the alge-
' Zlating to the

3,
. ‘Lovelace the

(_»in notes that
(r"}rue—she had
Q’ss*and spec-
l'__rerative inno-
; reproductive
“Fropriation of
é-:i:."j’.uch analyses
{ "_')Ticd, and men
¢ 1.and the pro-
‘:’"}.“;Erete embodi-
“-‘ﬁvas mentioned
._\'\'[ chiid.” Con-
o
“feuract realm of
L—?;mpts to limit
(Ja bewitching
Jvelop the fust
v
.. vility in chap-
‘ developed by

A

e T

L .
ring machine.
i .

“Atested; in facr,

- :J
L7

B
-/

Fractals in the European history of mathematics

she is widely regarded as “the mother of recursive function theory” {Morris and
Harkleroad 1990). But she, too, implied that parallels existed between her
gender identity and mathemarics; maintaining that women could provide a spe-
cial insight that men could not (Andréka 1974, 173) Since we know that, as
a mathematician, she would not be thinking of this special insight as being more
concrete or less logical, it may be that Peter also made connections between sex-
ual reproduction and recursion.

Following Péter’s class of primitive recursive functions, one reaches the upper
limit of recursive power in the Turing machine. Alan Turing's contributions were
not only in the mathematical abstractions of computing, but in its application
w artificial intelligence as well. In his classic paper ritled “Computing Machin-
ery and Intelligence,” he proposed what is now called the Turing test. At first,
most definitions of machine intelligence were based on a particular task or
behavior (e.g., chess playing). But as the fié!d of artificial intelligence (Al) has
developed, these have shown to be increasingly inadequate, and the Turing test
is widely regarded as the most reliable definition for Al (in fact yearly Turing
tests are now held, with no machine winners thus far). ‘

Turing begins by describing a game in which a man and a woman are
behind a door and answer questions from an interrogator by written replies. The
interrogator must determine who is the man and who is the woman; both must
try to deceive him in their answers. Turing then suggested replacing one person
with an Al machine; the Turing test holds that if the interrogaror cannot dis-
tinguish person from machine, then one has created true machine intelligence.
Turing’s biographer, Andrew Hodges, suggests thar this “imitation game” was
inspired by Turing's own tife: scruggling to define his identity as a homosexual
in & homophobic society. Both the Turing machine's ability to imitate other
machines and this game of cognitive imitation echo the social experience of gays
wholive in a community where they must pretend to be someone they are not.
And to some extent, the endless self-reference of metamathematics was Turing’s
hiding place from the antigay world surrounding him. Bur the sexual guessing
game on which the Turing test was based worked against such normarive
gender restrictions: it suggested gender as something more fluid, less fixed—a
feature which the virtual communities on the Internet have started to demon-
strate {cf. Stone 1995; Turkle 19y5). Douglas Hofstadrer (1985, 136~167), a mod-
ern master of recursion, has also written about the potential for a more fluid gender
identity in digital dynamics.

Mathematics had a double meaning for Turing. It was bath an emotional

shield, a closed world of endless interior self-reference, as well as an opening into

consciousness anc community. In the end, this desire for opening killed Turing:
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during a robbery investigation he admitted his homosexuality to police detec-
tives and was arrested and forced to submit to hormone treatments. This even-
tually drove him to suicide. It was a tragic fairy-tale ending: he killed hrimself by

eating an apple dipped in poison. Hodges writes about this dedth in terms of the

double meaning that machematics had in his life. “Lonely consciousness of self- -

consciousness was at the center of his ideas. But that self-consciousness went

beyond Gadelian self-reference, abstract mind turning upon its abstract self. There

“was in his life a mathemetical serpent, hiting its own tail forever, hut there-was

another one that had bid him eat from the tree of knowledge.”

In Africa these two serpents are one; sexual reproduction exists in the same
public realm as social intercourse. That is one possible reason why we see recur-
sion——the snake that bites its own tail-—so prominently emphasized in African
fractals, and a possible explanation for why these pioneers of recursion in Europe
happened to be people who took issue with sexual repression. That's not to say
there is a deterministic link between the two. In analog feedback theory, for
example, we see both anti-authoritarian feminists, like Norbert Wiener (Heims
1084}, as well as authoritarian prudes like Howard Odum (Taylor 1988). Mathg—
matics is not a mere reflection of personal interests, nor is it an abstraction that
is entirely divorced from our lives. We make meaning for ourselves out of what-
ever metaphors—technical or otherwise—we find usefull; conversely, personal
meanings can often inspire new technical ideas.

While recursion ts prominent in African fractals, it has been less so in Euro-
pean fractal geometry.® In the historical appendix to The Fractal Geometry of

Nature, Mandelbrot provides an erudite history of mathematical developments

that led to his work; recursion is never mentioned. Even when recursion.does... _. .

come up in the fractal geometry literature, the treatment is typically informal
or cursory. For example, Saupe (1988, 72} merely notes that “in some cases the
procedure can be formulated as a recursion.”? Similarly, the fractal time series
produced by deterministic chaos is rarely regarded as the product of feedback
loops, and in one of the few studies that is focused on this relationship, Mees
(1984, 101) merely states that “chaos is certainly possible in feedback systems.”
On the contrary, it is not that chaos is possible with feedback, but that chaos
is impossible without it.

It would be inaccurate to say that European mathematics has disregarded
recursion in general, and perhaps the observation I am making is simply due to
disciplinary specialization; there is no reason why someone studying applications
of graphics to analysis and mensural theory should necessarily be thinking about
Turing machines or recutsive functions. But it is preciscly this lack of necessity

in mathematics that is so easily fargotten in a discipline where certainty goes

beyond
tion and
and time
mathemy
the builc
construc
blocks a
This is w
maost-hu
purely st
mathem
struct ¢y
mathem

divide; t



1O police detec-
" “lents. This even-
killed himself by
’}h in rerms bf the
A -:;ciousne:_ss of self- i
;-hinsciousﬁess Weng

> tself. There,’
{ )bstrac 3

ver, but there was

“~-exists in the same
“why we see recur-

F??‘laSiZ&d in African
4

(‘) That’s not to say
N v:d'back theary, for

hert Wiener {(Heims
T

}cursnon in Europe

aylor 1088). Mathe-
“}m abstraction that
L Jselves out of what-
5_;):nversely, personal
&

¢ peen less so in Euro-

ractal Geometry of

tical developments

-
‘;';él\en recursion Jdoes
LA typically informal
) "in some cases the
.22 fractal time series
i yroduct of feedback
) refationship, Mees
- feedback systems.”

i)
back, but that chaos
)

C diics has disregirded
©lng is sim;ﬂy due to
o nudying applications
.\;}_'ly be thinking about
- his lack of necessity

-.where certainty goes
A

c 2

Fractals in the European history of mathematics

beyond that of any empirical science imaginable. Mathemarics is both an inven-
tion and a discovery. We discover the constraints inherent in the fabric of space
and time, constraints that are the stuff of which our universe is composed. Bur
mathemarics does not stop there. The cog_straints‘;}e not just negations, but rather
the bl'lilLlil'lg blocks with which further mathemarics is constructed. And like any
construction, there are choices to be made, decisions about how these building
blocks are to be connected, interrogated, and deployed in furcther discovery.
This is where the human side of mathematics enters the picture, especially that
most human of endeavors, culture. Conversely, culture is not mere whim, a
purely subjective matter of choosing favored social pracrices. This is where the
mathematical side of humanity enters the picture, for we are only free to con-
struct culture within the constraines of the universe in which we live. Neither
mathematics nor culture should be viewed as firmlby fixed on the universalflocal
divide; there are divisions within divisions never ending.
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Futures-

——African

fOl

fractals

—— Most anthropologists have long abandoned the tendency to create a frozen

“ancient tradition” in defining indigenous society; change and synthesis are
now integral parts of the cultural portrait. So, too, with African fractals; they are

necessarily as much of the future as they are of the past.

Fractals in African contemporary arts

210

There are many works of madern African professional art which incorporate
aspects of fractals, spanning a wide range of cultural viewpoints. At the National
Museum in Yaoundé, Ca_meroon, one can see organic romanticism in Nyame's
paintings of logarithmic spirals merphing inte people. The double-sided post-
modern metal sculptures of Legba in Benin, by artists such as Kouass, show a
cyborg! trickster whose traditional bifurcating abilities are ready for the
binary codes of new technologies. In East Africa, painter Gebre Kristos Desta
produces nonlinear scaling circles he describes as pure abstractionism (Mount
1973, 118). African fractals continue to evolve. Besides being present in pro-
fessional studio art, fractals have also appeared in large-scale public art works,
such as on the facade of the University of Dakar library (g, 14.1). This scaling

design, in which the alternation of painted rectangles at the small scale
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FIGURE 14.1 .
The library of the University of Dakar

This design makes use of both self-similarity {the vertical alternation of painted rectangles locks
like the alternation of buildings) and nonlinear scaling (the rectangte width decreases rapidly as

you go toward the center).

natches the alternation of the building walls at the large scale, is reminiscent -
of certain African fabrics. .

One of the most active areas of today's African art comes not from pro-
fessional studios, but racher from the undistinguished sellers of tourist arc.
Tourist art was formally disregarded in the professional art world, but cultural
studies have increasingly shown chat this is a dubious position. First, neither
the “tradicional artist” creating royal works for a king, nor art students trying
to please their instruceors, nor even professional studio artists who must also
be concerned with sales are completely free to create whatever they wish, so
there is no reasun o single out the ereators of tourist ars for being constiained.
Second, opportunities for professional studio artists are few, and the rourist
market creaces a large number of economic opportunities; it seeh)s._;,&;pic':ib'us
to disregard this vibrant activity in favor of a tiny elite. And finally, as Cullers
(1981) notes, tourism is not the opposite of authentic culture, rather tourism
creates authenticity.

Cullers’s observation was repeated to me by Max (he did not want his last
name to be used), a Senegalese artist in Dakar who sells to the tourist trade. Max
complained that his most creative work—the designs which came to him in
dreams—was difficult to sell because of the rourist conception of tradition and
‘authenticity. Like many creators of tourist art in Dakar, he produces imitations
of the kora, the Senegalese seringed instrument that features a single fret run-
ning down the center and a hand grip on both sides. Figure 14.2 shows the usual
kora model, along with Max’s innovation, the recursive kora. The recursive

Kkora makes use of each hand grip as the fret of two smaller koras. | asked Max
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FIGURE 14.2
- The recursive kora
At right, a typical kora; at left, the inngvative
recursive kora created by Senggalese artist Max.

ug, ;
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if he had ever considered continuing to smallér scales, and he said that he had
once done so, but that it was impossible to sell such innovative waork; tourists

did not want anything that smacked of originality.

Fractals in African contemporary architecture

Many indigenous African designs have been incorporated into modern archi-

-.tectural projects in Africa, and some ¢f these have been fractals. For example,

the Sierpinski-like iterative triangles from Mauritania were used in an institu-
tional building in Senegal, and the circles of circles in the architecture of West
African villages became the basis of a design for a building complex in down-
town Bamako, the capital of Mali (fig. 14.3).

One of the mast potent visions of an African fractal furure has come from

~the architectural studies of Dr. David Hughes at Kenr State University in

Ohio. Working as a Fulbright scholar in several African countries, Hirghes (1994)
put together a portrait of what he termed “Afrocentric architecture,” which
embodies several aspects of the fractal model. First, Hughes combined a char-
acterization of the self-organizing properties of African building design (an
“organic architecture” which “grows from its site™) with its self-similar prop-
erties (what he termed “the outside/inside relationship,” a mutual shaping of
units, clusters of units, and communal spaces formed by the surrounding clus-

ters). Second, he explicitly rejected primitivist or naturalizing portraits. While

noting i
architec
an unco
includes

theme o

ia} Here a tradi
Senegal. (b) Tl
porary construc
buildings hased




‘f} .2
_‘Je kora
\he innovative
,. \:galese artist Max.

“said that he had

ve work; tourists

€2

7

2

~ato modern archi-
rals. For example,

'grsc_d in an institu-

Y

v onitecture of West
L iomplex in down-
¢ re has come from
e

o te University in
‘\4) y m
}'.es, Hughes (1994)

“hitecrure,” which

-
Y .
¢ combined a chur-

E,-r&).nlding design {an

t..4 self-similar prop-
¢ ) autual shaping of

i

"‘_surrounding clus-

5 g portraits. While

Funwes for Afvican fraceals 219

noting its environmental harmony, Hughes also emphasized that African .
architecture is always an intentional act of design and semiotics, not merely
an unconscious adaptation to the ecosystem. In his framework, “tradition” -

includes the tradition of innovation, or as Gacés-(1988) puts it, the African

-

theme of “repetition with revision.”

FIGURE 14.3
Indzgenous fractals in modern architecture
(a} Here a traditional Mauritanian fractal design is used in a modern building in'the Casamance,
Senegal. (b The DPC building in Burkina Faso, using traditional scaling ¢ylinders with conterm-
porary construction technigues. Architects such as Issiaka Isaac Drabo have made many large-scale
buildings based on chis syncretic approach.
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Given this combination of self-orgénized structure and intentional design,
it is not surprising that Hughes's work led him to a beautifut example of the poten-
tial fractal future. Figure 14.4 shows a design by Alex Nyangula, one of Hughes'’s
students at the Copperbelt University in Zambia (Hughes 1994,‘3165;166). This
architecture provides a powerful syncretic fusion of indigenous and modern

forms. The figure traced by the walkway shown in the ground plan is a classic

First iter:

FIGURE 14.4
Design for Kitwe
Community Clinic
(a2} Kitwe Community Clinic

in Zoambia; design by David
Hughes and Alex Nyangula,
{b) Kitwe Community Clinic
ground plan.

(Photos courtesy David Hughes.}
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FIGURE 4.5 '
Fractal iterations of Nyangula’s community clinic desxgn
Fractal based on Nyangula's architectural design. The “active lines” of the generation process have
been removed, as have any self-intersecting hexagons. ‘
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example of the fractal branching pattern referred to as a Cayley tree (see
Schroeder 1991, 87--88; Peitgen et al. 19971, 19-20), and can be extended from
the two iterations given by Nyangula to infinity. Adding the hexagonsTa syn-
cretism between the cylinder of Zambian indigenous architecture and rhe rec-
tilinear forns of modern materials) violates the Cayley requirement that the graph
is self-avoiding (that is, that the branches do not intersect). Since I was inter-
ested in exploring the fractal structure by taking Nyangula’s design to higher iter-
ations, | made two adjustments for this problem. One is suggested by the approach
elevation sketch (Hughes 1994, 167}, where it is clear that the central unit is
slightly larger than the others. This means that self-intersection will be forestalled
to higher iterations.2 The other is simply the elimination of units whenever they
overlap. With these two qualifications, Nyangula's design makes for an infinitely
expandable (yet bounded) architecture, as shown in figure 14.5. Such flexibil-
ity could contribute to the efforts to encourage a more participatory approach
to African architectural design (Fathy 1973; Ozkan 1997).

If we take an aerial view of the modern European settlement of Paris,
France, we would see linear concentric circles surrounding its center of social
power. The difference between this linear, radially symmetric series of circles
and Africa’s nonlinear, decentralized architecture is pethaps subtle, but impot-
tant. The term "Afrocentric” is misleading in that “centric” is much more the
geometry of Paris than of Logone-Birni, Mokoulek, Labbezanga, and the other
African architectures we have explored. Hughes's call for a “multidimensional
Afrocentrism” is both an affirmation of “Afro” and a challenge to “centrism”;

it is a call for cultural portraits that do not reduce to a single one-dimensional

- center but rather combine the boundaries of tradition with the infinite expan-

sion of innovation.

African fractals in math education

Several researchers have independently explored fractal aspects of African
mathematics. Chonat Getz of the University of the Witwatersrand has created
Iterated Function System stmulations of Zulu basket weaving. John Sims, mathe-
matician and artist at the Ringling School of Design in Flarida, has developed
fractal patterns based on Bakuba rafia cloth (and inspired by his African heritage).
In chapter 5 we encountered the lusona analysis of Paulus Gerds, a professor at
Universidade Pedagogica of Maputo, Mozambique, whose prolific writings have
recently ranged from the ethnomathematics of women’s art in southern Africa
(Gerdes 1998a) to the use of Mazambhique basket weaving geometry in model-
ing futlerene molecules (Gerdes 1998h).
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Futures for African fractals

While there are clearly benefits ro urilizing indigenaus knowledge for
development and education in Africa, African fractals might also be of use in the
United States. Despite the low mathematics participation of African American
students as an ethnic group, it has been demonstrﬁ?é’d that changes in the learn-
ing environment can improve their mathematics proficiency to levels equal to
the majority population. Evidence suggests that although direct institutional bar-
riers in economically disadvantaged schools, such as the emphasis of vocational
over academic subjects (Davis 1986) and lack of computer access {Anderson,
Welch, and Harris, 1084) can account for some of this difference, more subtle
curricular changes can play a key role in retention and achievement. For example,
Baratz et al. (1985) found that African American students are more likely 10
use computers for routine drill; hence, the problem is not simply the availabil-
ity of computers, bur also their style of utilization. The National Assessment of
Educational Progress (1983) study of math performance in seventeen-year-old
African Americans reported the greatest deficiencies at the applications level,
and several researchers (Usiskin 1985; Davis 1989; Malcom 1983) have recom-
mended revision of courses 10 emphasize more interdisciplinary and “real-
world” mathematics instruction as well as “action-oriented” pedagogy.
Computer-based learning has demonstrated the capability for both interactive
and interdisciplinary mathemarics instruction (Keitel and Ruthven 1993}, and
Stiff et al. (1993) specifically point to computer-based learning as a promising
forum for bringing these changes to African American students. These needs
could be directly addressed by applying African fractals to the classroom.

In addition to changes in structural aspects of mathemarics teaching,
several researchers and instructors have initiared cutturally enriched curricula.
The rationale for this approach comes from a variety of perspecrives (e.g.,
Vygotskian learning theory). Powell {1990) notes that pervasive mainstream
stereotypes of scientists and mathematicians conflict wich African American
culrural orientation. Similar conflicts between African American identiry and
machematics education in terms of self-perception, course selection, and
career guidance have been noted (cf. Hall and Postman-Kammer 1987; Boyer
1983). But we should not assume that this constitutes a problem of “self-esteem.”
The relation between cultural identity and fearning is quite complex; it would
be naive to suggest that today's African American students have the same rela-
tion to ideas about their ancestry as did students in previous decades, and in
no case has there ever been a simple “mimicry” of African culture. Rarther,
ethnographic research (Hebdige 1987; Mercer 1988; Rose 1994) shows that
African American youth actively construct identity using a wide variery of cul-

tural signifiers.

223
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For this reason, applications of African fractals will have to stress design tools

_and guided discovery, and avoid passive presentation. While “interactive” has

become a catchword in multimedia, many of these systems merely use the computer
like a slide projector, with students plessmg different buttons to see various images.
Multimedia in this form has a distinctly “canned” feel to it. The design approach,
in contrast, offers students tools for constructing patterns of their own creation.
Thanks to many participants—in parcticular, programmers T(Q Berg and Jaron
Sampson, and minority math.education specialist Gloria Gilmer—we have started
development of an African fractals software math lab. The lab begins with simu-
lations of traditional African patterns and shows students how the mathematical
structure behind these designs offers them tools to create their own.

Again, it is important to stress that Aftican American students are not
expected to be interested in the material out of a simple identity reflection,
anymore than they would necessarily be interested in wearing Dashiki shirts and
Afros. Rather, it is the opportunity to create new configurations and syntheses
that combine tradition and innovation that are significant. At the June 1996 meet-
ing of the Columbus Urban Youth Conference, we explored rhese connections
with a class of eighteen 12-year-old African American students. The first class
meeting introducing traditional architecture was a near disaster; despite multi-
media and manipulatives, it appeared that the primitivist associations with
“nud huts” were a strong deterrent. The following session, using the Ghanatan
log spiral—cellular automata—owari relations, was quite successful, probably
because the combination of traditional religious knowledge and mathematical
graphics sent a thore clear antiprimitivist message.3 But in a design exercise

where the students began with computer graphics simulations of the Ghanaian

Ioganthm!c spiral patterns, they showed little interest in producing further

imitations of the African designs. Rather, the students quickly caught on to
visual correlates of the equation parameters and began a free-for-all competition
to see who could make the most bizarre patterns. Their interest appeared to be
sparked by the African connections, but quickly went beyond them.

Perhaps more important than mitigating a direct conflict between ethnic

identity and mathematics, using African fractals in the classroom might help guard

against an overemphasis on biological determinism, which has been found

adversely to affect mathematics learning. Geary (1994) reviews cross-cultural stud-
ies that indicate that while children, teachers and parents in China and Japan
tend to view difficulty with mathematics as a problem of time and effort, their
American counterpaits attribute differences in mathematics performance to
innate ability (which can then become a self-fulfilling prophecy). For African

Americans, biological determinism has been closely associnted with mythic
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Futures for African fractals

stereotypes about “primitive people” {e.g., the fable that Africans count “one,
two, three, many”). By showing the presence of complex mathematical concepts
in African culture, we can mend some of thart dam'age. Since reductive myths of
biological determinism are detrimentall’ro mathématics learning for students of
all ethnic backgrounds, all students could potentially benefit from this material.

Finally, we should note that the increasing use of multicultural curr.i.culum
materials in the arts and humanities have not been matched in the sciences. This

could send a message to minority students that rheir heritage is only pertinent

to the arts and huwmanities, and that the sciences are really for people from

other ethnic groups. In addition, some texts such as Multicultural Mathematics (Nel-
son 1903) have emphasized only Chinese, Hindu, and Muslim examples, so
that even in cases where multiculturalism is used, African math may be left out
(see Katz 1992 for a similar critique). And of the few texts that do use African
math, almost all examples are restricted to primary school level. Again, this restric-
tion might unintenticnally imply primitivism (i.e., that marthematical concepts
from African culture are only childlike). For this reason, our lab’s inclusion of
advanced topics such as fractal geometry, cellular automata, and cqmplexity
are worth the extra effort 1o tie into a secondary school curriculum {without over-
tooking the use of standard topics such as logarithmic scaling, geometric con-
struction, and trigonometry),

While the multimedia lab's most significant potential for improving education
is in mathematics, we should not ignore African Studies. African art, for example,
is increasingly used in secondary schools across the nation, and use of cur lab could
greatly enhance such courses. First, as noted above, it provides an alternative to

detrimental misrepresentations of Africans as “primitive” people. In art history

lessons, for instance, students often learn about the geometric basis for Greek

archirecture or Renaissance painting, while commentary on African works is
often restricted to discussion of “naturalness” or “emotional expression.” Second,
the lab aids in integrative curricula development (see Roth 1994 on difficulties
in this area). It would allow math teachers who would like to include ethno-
mathematics components in their teaching to refer to examples in which students
are already engaged, and would provide art teachers with new tools for design and

analysis. Similar advantages could be obtained in other African Studies areas.

Information technologies and sustainable development

The use of indigenous knowledge systems in development goes back to colo-
nial appropriations, but in the postcolonial context these systems have taken

on new meaning as a sign of either epistemological independence, or art least
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a more egalitarian view of knowledge systems. In chapter 10, for example, we
saw the scaling spirals of Jola settlement architecture that arose from their
circular buildings; the French research organization ENDA has™built an
impluvium created by the combination of modern materials and this cradi-
tional Jola design. Another of ENDA's rural development projects that incor-
porate both traditional fractal architecture and modern techniques is shown
in figure 14.6. ‘

' In chapter 6 we saw how the scaling patterns of kente cloth were created
to match the scaling of saccadic eye movements as they sean from the face ta the
body. The Ghanaian Broadcasting Corporation, Ghana's national television
channel, has continued this practice in the context of modern information tech-
nologies, utilizing the scaling pattern of kente cloth in their test pattern (fig. 14.7).
Whereas the traditional scaling was applied to the human visual scan, this tech-
nologized version makes use of the same pattern for testing the video scan. A simple
application, but it shows that African fractals are not just restricted to low-tech

adaptations; they can also provide some useful bridges between traditional and

high-tech worlds. _ thatat
. In chapter 10 we saw that there were ties between the traditional knowl- knowle
edge systems supported by African fractals and the productive maintenance of Adonpti
these societies in what Per Bak would call a state of self-organized criticality. This for puti
suggests that most of the indigenous African societies were neither utterly anar- Ir
chic, nor frozen in static order; rather, they utilized an adaptive flexibility that strated
could be applied to modern development. But decades of research have shown 1970; }
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FIGURE 14.7
Kente cloth in the

of the large circle.

that a top-down approach to development, even that making use of indigénous
knowledge, is often less effective than a bottom-up, “grass roots” approach.
Adopting information technology to rural areas could provide the opportunity
for putting African fracrals to work in sustainable development.

In addition to the need for bottom-up authority, researchers have demon-
strated rhe critical role of women in African development (e.g., Boserup
1970; Nelson 1981, Adepoju and Oppong 1904); particularly in terms of the
gendered division of labor in rural societies (Beneria 1982). While much of

this analysis has focused on the valnerabilivy of women in bearing the brunt

_of economic change, it has also started’a new appreciation for the extensive

knowledpe systems that existed in precolonial women’s activities. Since many
of these practices continue today (albeit in modified form), women’s indige-
nous knowledge systems have become an important resource in new approaches
to development.

Some obvious challenges include environmental damage (increasing salin-

ization, deforestation, and desertification), external economic pressures {the move

to cash-cropping, tourism, and migration to cities; abuse of power by private

corporations), increased disease {AlDS and other viruses}, political unrest
{ethnic conflict, uncontrolled military force, abuse of authority), and damage
to the socioculeural system (disruptions of women's rraditional authority, loss
of traditional knowledge systerns). While all of these are far too large to be
addressed by any one approach, none of them can be viewed in isolation from

the others. In Nigeria, for example, the Shell Petroleum Development Company

Ghanaian Broadcasting

Corporation test pattern
Kente cloth pattern is used in
the upper right-hand quadrant
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began operations in Ogoniland that eventually led to widespread environ-
mental damage; attempis to protest through the press and other communica-
tion eventually led to the execution of Qgoni writer Ken Saro- Wiwa (Soynika
1994). Freedom of the press is not a separate issue from, protectlon of the
environment.

Itis right to decry abuse of authority, but replacing one authority with another

is not necessarily going to provide a long-term solution. African fractals supgest

two alternative approaches. First, whart is needed is not E. E Schumaker’s call

for “small is beautiful,” but rather a self-organized approach to changes in the
relations between scale and the socloenvironmental systems—not just appro-
priate technology, but appropriate scaling. Second, more critical attention
needs to be paid to the artificial/natural dichotomy, which tends to be trapped
in either the organicists' desire for untouched nature (e.g., Hughes 1996), or the
techno-optimist's desire for resource extraction.

An alternative to these damaging extremes can he found in Calestous

Juma’s 1989 classic, The Gene Hunters. Rather than a preservationist perspective,

in which indigenous society would be portrayed as natural elements of an

unchanging ecosystem, or a technocratic profiteering perspective, in which agri-
cultural development is merely a question of maximizing yields with imported
strains, Juma provides evidence for indigenous agricultural activity as sustainable
biotechnology. His studies show a long-standing African tradition of new seed
variety development that combined ecological sustainablilty with innovation
and experimentation. These practices have been threatened by corparate mono-
cropping, which can cause soil depletion, over-dependance on insecticides, loss
of genetlc variation, and other social and ecclogmﬂ crises, as well as the appro-
priation of these genetic resources by a biotechnology industry with licele inter-
est in indigenous legal rights. Jumna notes that the challenge now facing African
agriculturalists is not just preservation of biodiversity, but also access to the tegal,
technical, and financial apparatus that would allow them to reap the profit that

could sustain such ecologically sound effores.

From the viewpoint of complexity theary, Juma’s critique sugpests that we '

are trapped between the periodic stasis of the preservationists’ limit cycle, and
the white noise of the profiteering positive fcedback loap. As we saw in these
mathematical models, both are lacking in flexible interactions with mermaory;
the limit cycle being too tied to it, and the white noise being too free from it.
Information technologies have the potential to provide this memory, documenting
indigenous knowledge from seed varieties and soil types to gene sequences to
ecotopes. By providing informed rural access to information rechnologies,

African agriculturalists can take a step toward pratecting their genetic resources
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Futures for Afvican fractals

from appropriation and move toward Juma's approach, which we might call
“biotech-diversity” (cf. Haraway 1997; Shiva 1997). ‘
To view indigenous knowledge as a self-organizing system is one thing, but

creating the same bottom-up approach for a syfithesis of ecological sustain-

“ablility and technological development is a much greater challenge. For example,

Russel Barsh notes: “There is an implicit assumption in the research methodo!-
opy used to elicit traditional pharmacological knowledge that this information
is recorded and rransmitted digitally (numbers andfor words) . . . [rather than]
internalizing an analog model” (1997, 33-34).

Narive Seeds, a boranical orpanization dedicated to the continuation of
indigenous plant stock, has been creating a “cultural memory bank™ thar wil} record
both analog and digital information on Native American agriculture. The con-
cept, eriginating from Philippine ethnoboranist Virginia Nazarea-Sandoval
(1996), documents the combination of cultural and biological information about
the crops, seeds, farming, and utilization methods. The information, including
video interviews, is stored on CD-ROM, with access controlted entirely by the
indigenous farmers. In the ULS. context, which is overloaded with electronic tech-
nology and ethnocide, this approach makes sense, but the African contexe,
with its enormous indigenous population and sparse electronic technology, will
cull for technigues that can have a wider impact, one that includes development
of a technological infrastructure as well.

If there is to be social ransformation through grass-roots technological inno-
varion, it will require much more participation than agriculiural systems alone.
Other kinds of information technology development could include flexible eco-

nomic nerworks, which allow smallscale businesse -« - collaborate in the manu-

facture of products and services .oy could not produce independently. These

etworks have créated strony revitalization in certain rural areas of Europe

{Sabel and Piore 1990), and have shown promise in pilot studies in the rural United
Stares as well {e.g., ACEnet in southern Ohio). The use of computers to orga-
nize production and vending and provide dynamic searches for the appropriate
marker niche—one which would be environmentally and sociatly sustainable as
well as proftable—could spread the benefits of new information rechnologies to
the microbusiness level without having ro puta laprap in every pasheart, and micro-
financing programs have already proved successful in many Third World countries
(Serageldin 1997).

African traditions of decentralized decision making could also be com-
bined with new information technologies, creating new forms thar combine
democratic rule with collective information sharing. The idea of “electronic

democracy” has slowly been developing over the Interner; but the efforts have

220
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fmplications

been hampered by the tendeney to assume that virtual voting must be the same
as ordinary voting. Perhaps the neural net style of African decision making could
be utilized in the West as well, with voters indicating propottionalstrengths
for various options. Conversely, perhaps there are ways t& apply computer
media to enhance African decision making. One approach would be the develop-
ment of community netwarks through public-access terminals {Schuler 1995).
And the enormous development in electronic security measures, creating sys-
rerns that stymic even the most sophisticated hackers (encryption codes, inger-
print scanners, etc.), might find uses in preventing voter fraud that is so
common in unstable political regimes.

Nigerian American computer engineer Egondu Onyejekwe has started
efforts to apply information technology networking in African developmental
projects using complexity theory asa guiding principle. One area she cites is the
problem of land ownership (for example, see Charnley 1990). She notes that the
continual division of land promoted by the colonial legacy often results in
unproductive econormies of scale, but that government ownership tends to make
conditions worse by adding more hierarchy. “Resolving the land problem requires

a non-hierarchical method of organization, a system in which cooperative behav-

" ior is rewarded at the same time that individual innovation can flourish; a com-

bination of cooperation and competition like we see in cellular automara and other
computational modets of self-orpanizing systems. What better way to encourage
this than through computing and information networks?™

Neither the African fractals framework not dissernination of information
technologies offers panaceas. My point is, rather, that the shift in perspective often
called for in development néed not be either conservative resurn.to the past, nor
the epistemological equivalent of an alien invasion. African {ractals offer a
framework that is both rooted in indigenous cultures and cross-pollinates with

new hybtids.
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"1i;way to encouruge === There are several different ways to estimate the fracral dimension of a spatial
v '
: pattern. In the case of Mokoulek (fig. 2.4 of chaprer 2) we have a black-and-
%

{4in of information white architectural diagram, which allows us ro do a two-dimensional version

€. perspective ofien

m to the past, nor

Jyn fracrals offer o

ass-potlinates with
i

of the ruler size versus length plots we saw in chapter 1. By placing the archi-
tectural diagram of Mokoulek under grids of increasing resolution, and count-
ing the number of grid cells char contain some part of the diagram, we can plot
the increase of area with decreasing cell size (just as we obtained a plot of the
incrensing length with decreasing ruler size). Figure a.1 shows the results, indi-
cating a fractal dimension of 1.67—not oo far from the 1.53 fractal dimension
that is obtained analyrically from the computer simulation.

For the aerial photo of Labbazanga {fig. 2.5 of chapter 2) we have an
image in shades of gray, and the simple grid-counting method cannot be applied.
It is possible 1o reduce the gray scale 1o black and white, but an alternative
method allows us to make a more direct measure of the scaling properties. Fig-
ure A.2a shows the method for finding the scaling slope of 1/F noise in a one-
dimensional time series by applying a Fourier transform. In figure a.2b we see
how this can be applied to a two-dimensional spatial distribution by sweep-
ing the same spectral density measure around in polar coordinates. Rarher than

the line of one-dimensional 1/F noise, a two-dimensional distribution is
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232 Appendii

characterized by a cone. It is difficult to show the entire cone, but we can take

horizontal slices (fig. a.2b), which show similar characteristics for both Lab-

bazanga and its fracral simulation (fig. a.3). e, #
L]
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Measuring the fractal dimension of Mokoulek b
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high frequencics at low power low frequencies at high power

FIGURE A.3
Results of a 2-D Fourier transform applied to aerial photo of Labbazanga
(s} Spectra for nerial phota of Labbazanga (fig. 2.50 from chapter 2), (b) Spectra for (ractal image
{fig. 2.5b from chapter 2). Note thar the axes of symmetry in the fractal can he seen in this spectral
density distribution, while none exist for that of Labhazanga,
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~Notes

cuapTER 1 Introduction to fractal geometry

1, For a hexagon example, see Washburmn and Crowe {1988, 237). Numerical examples’
can be found in Crump (1990, 39—40, 50-54, 105-100, 128-133).

2. The number 10 was not only a basis for counting, but it also appeared in Chinese nat-
ural philosophy. In acupuncrure, for example, the number 5o is created by the combi-
nation of the “five elements” (wu-yim) and the binary yinfyang.

3. Michacl Polanyi (1966) referred o this as “tacit knowledge.”

enapTER 2 Practats in-Afvican setfement avchitecture

1. On triangolar churches, see Norberg-Schulz (1965, 172); for the Pantheon, see
ibid., 124.

2. Another passage, “path of the serpent,” is used only by royalty, Ir alternates lefr and
right as it approaches the center of the palace, and thus creates a scaling zigzag pactern.
The implication seems to be that even royalty must negotiate the fractal ranking, but
they can traverse it in a more direct route.

3. American readers are probably most famnilinr with nuclear families, but in Africa the
family structure typically extends to much lurger nevworks. The English term “cousing,”
for example, emphasizes the nuclear family by lumping all these relatives together, while
many African kinship systems have distiner terms for paternal parallel cousins, marter-

!\) sies at high power

‘_ )__ I —

\ .
“hoto of Labbazanga
. }Spectra for fractal mage

na} parallel cousins, paternal cross cousins, etc.
4. The status difference between front and back is also expressed in the Ba-ila rerm for
Slave: “one who grows up at the doorway” (Smith and Dale 1968 f1g20] vol. 1, 304},
5. This is another meaning for the tesm “participant simulation.” In the first meaning, briefly
mentioned in the introduction, [ defined it as an effort in cooperative modeling and
analysis, a technologized version of recent attempts in collaborative ethnography by
some anthropologists and their informants. In that sense it supports the humanist goals

- zan be seen in this spectnal
A

235




236 Notes

of self-governing autonomy. But in the Mokoulek case 1 am also using it in the post- 4 The
modersnist sense, a participant in a virtunl world. The contrasting meanings and their by A?
consequences are discussed in detail in chapter 10, where the two are brought together. tial €
6. The results were published in Eglash and Broadwell {198¢g), and are regireduced in fract:
the appendix. "- ‘ 264—(
cHAPTER 3 Fractals in cross-cultural comparison 5. One’
1. In general, anthropologists divide nonstate societies between “band” organization, ?t\::
which is entirely decentralized and based mainly on consensus, and “tribal” organiza- neig!
tion, in which there is an official leader but otherwise litle political hierarchy. The term This
“vribe” s controversial, however, since colonialists often used it to deny the existence whit

of indigenous state societies, so it is important to separate the technical designation

from its colloguial use.

. This is a complex designation in cultural studies, since the label of “eraditional™—or 1. The
worse yet, “authentic”—was used by colonial authorities to exercise control over ' s
jndigenous populations, and still aceurs in the neocolonial context to valotize the “van- user
ishing native” while appropriating their culiural resources. See Minh-ha (1086), and
Anzaldia {1987), Clifford {1988), and Bhabba {1990) for discussion of some of these of 1.
issues. stan
3. Crowe and Nagy (19p2), for example, have Jone extensive analysis of Fiji decoration, ing
and found 12 of the 17 mathematicaily possible two-color strip symmetries, but none 2. Sag
of the designs they show are fracral. the
4. Of course, nothing is absotutely certain when it comes to ancient history. Several line
researchers have suggested that the Coptic designs from Egypr were an important 3. Ac
. influence on the Celtic interlace patterns, and some Itatian floor tiles were created by inf
North African artisans { Argiro 1968, 22). But one could just as easily argue the influ- ot
ence in reverse. Given the history of trade routes and travel, we should not attempt 4. Pe
to reduce designs to a singular origin; the goal is to see how any one society has buite i
up its particular repertoire of designs—from whatever sources—as part of a dynamic lir
vet culturally sp. ific pracrice. -
GHAPTER 4 Intention and invention il design wl
- 1. This spatial metaphor of “undertying”—truth beneath the surface —can be a delusion 5. 2
if we assume that there is never mare than one true “egsence” 10 be found. On the other is!
hand, claiming that oo madel is more accurate a generalization than any other is equally i T
misguided. ‘ ) C
2. The postwar era matked a significant change in the tole of nature as a potential madel o
for scientific discovery, as seen in the emerging disciplines of cybernetics and bionics A
(Gray 1995). 6. 1
. CHAPTER 7 Numeric systems r
1. It is unfortunate that an ctherwise excellent paper comparing African and Australian ];
ethrnomathematics (Watson-Verran and Turnbull 19g4) fails te make this distinction L
between the iterative generation of lineat and nonlinear number series. I

a3

5. Readers who recall the definition of nonlinear functions as involving, at minimnum, some-
thing like x? may be puzzled by the ideaof a nonlinear additive series. That is because . C
most of us were first exposed to the definition of “nonlinear” in the context of continuous § ]
functions (e.g., differentinl equations). But discrete iteration {(what is often called a “dif-
ference equation”) can preduce nonlinear steps with simple addition.

3. After giving a lecture on Ramana divination in the United States,  was apgronched
by a mathematics faculey member who was quite taken by this phrase. “That's just like
us,” he exclaimed. "We get the power of mathematics only at the cost af our socinl defor-

8.

mity as nerds.”
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Nuotes

The series was first incroduced as an example of a recursively computable aperiodic string
by Axel Thue {1863—1022), using the replacement rules 0 =2 01, 1 = 10, with un ini-
tial 0. Morse discovered its application o dererminiseic ehios, i which i models the
fractal time series produced by certain nonllnur Lguations. See Schroeder (1yys,
264-268) on these aspects of the sequence. _

One-dimensional versions can show ali the dynamics of two dimensions, and can
even be used as a kind of parallel computer. Consider, for example, a rule that in each
iteration the number of counters in a cup is replaced by the sum of itself and its left
neighbor. Starting with one: 0100000 — 0110000 — 0121000 — 0133100 — 0146410.
This fourth iteration gives us the binomial ¢oefficients for expansion of {a + k)4,
which equals a* + 4¢3b + 6aZb? + 4ab3 + b3,

cHaPTER 8 Recursion

»

—~

1. The standard terminclogy is somewhat aimbiguous, since “recursion” is sometimes

used to refer specifically to what we will call “self-reference,” and at other times it is’
used in the more general sense applied here. "lteration” is used in its normal definition,
and for the least powerful we will use the rern "cascade.” Technically, these three rypes
of recursion roughly correspond to Turing machines, push-down automara, and finite-
stare automata, but these models are a little too abstract to be directly useful in help-
ing readers develop a sense of the distinctions that are of interest here.

Sagay {1983 ) explicitly mentions starting with the small shape in the center, whereas

the lpako Elede rows look like they might be better described as a preestablished
linear sequence (although Sagay does not give details here).

. Actually, it is not wax that is used in much of Africa, but rather a latex created by boil-

ing the sap of the Euphorbia plant. Williams notes that it can produce long, delicate
threads that are impossible for wax.

. Pelton {1980, 230) contrasts the singular random events of the Native American

trickster myths with “the less episadic, mare narrative myths of Legba and Ogo-Yuruga
[in Africal.” The reason for the difference is partly mathemarical. The Native Ameri-
can concept of unpredicrability is based more on chance (see Ascher 1991, 87-094),

while the African concept tends to be closer to deterministic chaos, s we saw in Bamana
sand divination.

. Curtin (1971) shows that the slave rrade from what is now northern Senegal dimin-

ished after 1700, and that the Nigerian area did not begin major activity until after. 1730.
This still leaves the possibilivy cthar Fuller came from the area of present-day Benin and

“Gisieni; which veaild BETO6 far sotith to have Uirectly shared influences with ehe Bis-

sari, but Holloway (1g9y0, 10) notes that Virginians showed some preference for
Africans from the Senegambian region.

. 1 qualified this as “standard” because there has been a growing concern that anthra-

pologists may have overemphasized the importance of age-grade and kinship by pro-
jecting their own desires as well as ¢he interests of their informants. Shaw (1995}, for
example, shows how Louis Leaky's descriprion of the extreme obedience of the Kikuyu
to their age-grade system was colored bath by Leaky's desire for the order of a “small
English village” that he never experienced (having grown up with missionary parents}
and the Kikuyu elders’ own interests in receiving the initintion payments that were over-
due o them.

. I addition to the association of the vertical with the spiritual, Fernandez suggests that

the spatial distinction derives from the Fang's periodic clan fission/relocation. The frag-
mentation of a social proup comes wirh horizontal movement and is seen as the result
of stagnation or strife, while the establishment of the group in a new location is seen
as positive regeneration, building from the ground up. '

. Maurer and Roberts {1085, 25) describe the Tabwa belt, a teather strip with bands of

beads or wire as representations of a single descent line. Since the Tabwa use the mpande
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disk to represent the expansion of all kinship groups from a singular origin, it is not
unreasonable o think of the mukaba belt as a lower-dimensional projection of the

mpande disk. If one is willing to speculate so wildly thateven I would hesitate to do

50, the aardvark’s winding tunnel could be viewed as a three-dimensional spiral pro-
jected onto the two-dimensional mpande disk, just as the belt is 2 ‘Bne-dimensional
projection of the mpande spiral. A similar practice, the “Poincaré slice,” is used in non-
linear dynamics {see Abraham and Shaw 1982). ‘

- Itis important to understand that the problem is not one of “authenticity.” I agree with

the critiques of modernist anthropology’s tendency to make one individual represen-
tative of an entire society and to focus on a false homogeneous past. In ethnomathe-
matics we are interested in the invention of mathemarical coneepts; so it doesn't
matter whether the source is an-entire society or a single creative individual. What does
matter is the precision and accuracy of the math, and it is here that the inteepretive
flexibility offered by narratives presents problems.

Note that | wrote “has trouble with” rather than “cannot do"—in fact, a programmer
could write a kind of “metaloap” of iteration that would figure out how many nestings
are needed. But in doing so, the program has to be able to refer to a part of itself (its
loops), so this is already a partial or limited self-reference. Of course we could then play
the same trick, demanding that we can’t tell ahead of time how many metaloops wili
be needed, and our smarty-pants programmer could again make a meta-metaloop, and
soon. ftis only when we generalize the trick itself that full self-reference will be required.
And even then, it too will meet up with undoable tasks—because that very property
of not bounding the process ahead of time leaves it vulnerable to other prohlems. As
Alan Turing proved for computing, and as Kurt Gadel showed for all mathematics in
general, any system that is sufficiently powerful to fully utilize self-reference will have
to be incomplete in its ability to resolve all the theorems it can ask {see Hofstadter 1980).
The most specific connection made by Taylor is the possibility that the material aterib-
uted to Hermes-Thoth was derived from some of the Egyptian priesthood writings men-
tioned by Clement of Alexandria.

Stéphanides (1922, 192) suggests a more direct sub-Saharan origin of alchemy, enter-
ing Egypt around 718 B.c.E., following the invasions of Ethiopia.

That’s not to say that the Legba drum beats were random: but the drumming did
indeed lhave an unexpected change of pace.

CHAPTER 10 Complexity

1.

The analog/digital dichotomy in computing is often confused with other dualisms. The
same terms are used by engineers to describe the continvous/discrere dichatomy, and
by cognitive scientists to discuss “reasoning by analogy” versus inductive analysis, but
these distinctions are irrelevant to the sense in which it is used here. Musical notes,
for example, are excellent examples of analog communication, but they are entirely dis-
crete. See Eglash (1993) for details. '

. Blum et al. show that an analog Turing machine would be susceptible 1o the halting

problem. See Eglash (1992, 1008¢} for more details on this recent history of gybernetics.
We can think of the wave/particle duality in physics as another indication that the
analog/digital distinction is fundamentally egalitarian.

. We can also look ac this in terms of psychopatholagy. A neurotic will often repeat

the same phrase aver and over, while a psychotic tends to be talking “word salad,”
a jumble of nonsense. In both cases, their mental relation to memory is pathologi-
cally simplified: the neurotic slavishly follows memory, whilethe psychotic-complerely
ignores it. Complex inforination processing requires A dynamic interaction with
memory, o noatrivial recursive loop.

- For example, say there are choices A, B, and C. A wins, but R and C vaters say, “If emly
I'had known A was going to win, I would have been willing to vote the other way."™
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Notes

Tank and Hopfield {1987, 106} contrast this one-shot majority rule voting with the
collective-decision-making process in neural nets: “In a collective-decision commit-
ree the members vote together and can express a range of opinions; the members
know all about the other votes and can change their opinions. The committee gener-
ares . .. whar might be called a sense of the meering.™-

5. Recail that we scaled down P to a number between O and 1. That means that (1 ~ Py)
will always be a fruction, which reduces Py—in face, the larger Py, the smaller the
fraction.

6. The reason it never lands back on exactly the same spot is not because of external noise;
it is rather for the same reason that the number P never repeats. Gottiried Mayer-Kress
suggested that a good way to underscand this is to note that the drunken driver never
stops missteering, even while the sober one is overpowering him. I suspect that this com-
bination of negative feedback and positive feedback is at the heart of every case of deter-
ministic chaos, although | have yet ro prove it. In Eglash (1992} [ reported that the
Lorenz attractor consisted of only positive feedback, bur this turns out to be incorrect.
In terms of dynamical systems theory (Abraham and Shaw 1y82; Devaney 1986),
positive feedback is the counterpart to spreading in phase space, and negative feedback
corresponds to folding in phase space. The phase-space combination of local spread-
ing and global folding is a common definition for chaos; the conjecture simply trans-
Jates the phase-space definition into a control theory formulatjon.

7. I've oversimplified the relutions here. For example, a finer distinction can be made abour
“Jisorder” if we consider white-noise versus brown-noise distribution en a surface
(Gardner 1978; Voss 1900). In Brownian motion, a particle moves in a ranglom, con-
tinuous trajectory; given an infinite amount of time, such “brown noise” will approach
a two-dimensional curve. In white noise, single points on the surface are selected at
random, so an infinite amount of time will still only teave us with-disconnected points,
which is a zero-dimensional curve. Between zero and one dimension, we have objects
like the Cantor set, and berween one and two dimensions we have objects like the Koch
curve. This is slightly different when we think about noise as a single time-vaiying sig-
nal (as in acoustic noise} because the single points of the white distribution will also
be connected into a continuous (but nondifferentiable) curve, now of dimension one,
while brown noise as a time series will still be at dimension two.

8. Achebe himself prevents such a reading by highlighting a precolonial catastrophe that
befalls his main character, Okonkwo. At the same time, the cantrast between Okonkwo's
misery due to indigenous accident and his suicide as a resule of the colonial encounter
makes it chear that these ave entirely different orders of ehaos. - o

g. There is also a good Hlustration of collective fractal generation in the arts: the Mbuti
bark-cloth design shown in chaprer 3 is wceually the product of madtiple artists,

cHaprek 11 Theoretical frameworks in cultural studies of knowledge

1. Popper might object to the characrerization of “fractal geometry minus dimensional mea-
sures,” since it sounds like an ad hoc adjustment, but the important thing is that the
four acrributes {scaling, recursion, infinity, and dimension) were tested in a more or less
falsifable manner. Whether or not one can still call it fracral geometry if one of the
four is missing is an important question; but we need to address the possibility of a weak
characterization of recursion in European fri actals before making tlmr judgment.

2. This should not necessarily be assumed to mean “closer to natare,” since it could also
refer o an indigenous knowledge system cthat promotes good ecological practices; but
the ambiguity is problematic. .

. In fact P'm not-—my maseer’s degree is in systems engineering, and although 1 taok a
few gracduare seminars in mathematics for my intendisciplinary Ph.D. (thanks o the flex-
ibility of the History of Consciousness board at the University of California at Santa
Cruz), 1 wouldn't dare eall myself a mathematician in professional company. | have always
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tried to introduce myself as an ethnomathematician during field work, but sometimes

6. In fac
trauislation problems took time to get that across. photo,
4. Worth it not just in ethical and methodological terms; it often came to my aid in dire sus B
circumstances. On a hot road near the Lake Chad region, [ was stopped by military police she w
: who were clearly looking for a bribe. I was released only when | began to launch into 7. Recur
a tengthy explanation of fractal geometry. Knowing the Baka counting system saved home’
my skin when a group of teenagers in a village in southern Cameroon took me for a “ 8. Ther
disrespectful tourist; untike the gendarmes, they were delighted ro ind mathematics like,”
in their midst. conte
" 5. On the role of neologisms in the work of Cesaire, see Clifford {1988). On the construction aclius
of negritude as a set of binary oppositions, see Mudimbe (1988). 9. The i
6. For example, the octopus arose millions of years before vertebrates but has a nervous impli
system more sophisticated than that of some repriles (see Eglash 1984, 161). This is a that i
dangerous analogy, of course, because people often confuse biological and cultwral evo- the o
lution. Here are two crucial differences. First, cultural evolution is Lamarckian—we varia’
can pass our acquired knowledge to the next generation—while biological evolution ingu
is Darwinian, with the rare lucky mutant having an advantage that is then passed on. socia,
Second, the timescales are of different orders of magnitude. Significant hiological deper
evolution requires on the order of a million years, while dramatic cultural evolution in'th
requires no more than a few thousand years. This is why human beings have such a tiny Sohc
amount of genetic variation: the first modern humans, from their singular origin in Africa, 10. Justs
quickly spread across the earth over a few thousand years. Qur nearly identical genetic ing f
composition is a result of speedy Lamarckian cultuml evolution ’tdﬂprmg us into these . Gilr
new environments. and ¢
- . ity, ¢
cHAPTER 12 The politics of Afvican fractals Bha'
1. Derrida’s prometion of arbitrary signifiers and artificiality was not the sole voice for this 12. Digy
position. Black activists like James Boggs (1968) have also been champions of artifice. usew
Wittig's (1973) Lesbian Body takes a topic that was often treated as the unassailahle ground repr
of feminist meaning, the authentic physical self, and dismantles this construction wav
through textual erotics. Like Derrida, she shows that a system of arbitrary symhols is the"
just as capable of carrying the kind of human essence often attributed to the Real or trier
Natural. be a
2. Angela Davis has pointed out Ellison's denaturalizing tropes in lectures at UCST; her Egl
recent wark continues to tease out these threads of self-assembly in black cultural iden-
tity and community. 1 CHATTER S
3. My favorite illustration of analog arnﬁce in black intellectual works occurs in chap- 1. Ac
ter 11 of Audre Lourd's Zami. Like Witcig { 1973), she describes the self-assembly of a A aftt
leshian body, but her techniques for this artificial reconstruction come through the ana- suri
log media of scent, vibration, and form. See Eglash {1995) for other examples. in!
4. Consider, for example, the mojo handfdataglove comparision in Dery (1994, 210}, or - opro
the following passage from Williams (1974, 40): * ‘Simply anything can become a God,’ sis’
a Yorulba informant once remarked. * This button (pointing to the dashboard of the car nal
in which we were), ‘it only needs to he built up by prayer’ {by invocation}.” 2. Plz
5. Similar views can be found in several other intellectunl works of the time; e.g., spe
Joreen's {rg72} critique of the women's movement, “Tyranny of Structurelessness.” There . : he
are, of course, many centralist critiques of decentralization, but Joreen's text took a - int
more complex angle of analysis. See Ehrlich (1979} for a eritical view. Invocations . it
of African royalty in black cultucal representations are typically viewed as commen- . ' ne
tary on self-estecm. While that may be true, in most cases there are hints that it also . m
serves to question the humanist control enacted in a palitical democracy that can sup- , . 3. W
port such deep economic subservience {see Queen Latifa's "Queen of Royal Badness” th
in Smith 1990). it




(N

e
13
g""to my aid in dire

by military police
-nf" 4 to launch into
P ‘\ng system saved
7 o took me for a
7 oad mathematics

but sometimes

¢, the construction

ut has a nervous

,161). Thisis a

{ =nd cultural evo-
'.ﬁ ﬁamfxrcklan—wc
Togical evolution
s then passed on.
’ﬂcam biological
" lwural evelution
2oy have such a tiny
i origin in Africa,
identical genetic
inting us into these

~_sole vaice for this

wpions of artifice.
~inassailable ground
(_'}';his construction
~hitrary symbols is
(,, ded to the Real or

3
‘ires ar UCSC, her

o hek culturs] iden-

ks oceurs in chap-

L_sel-assembly of a
« through the ana-

\K'r examples.

\i>y {1994, 210}, or

#man become a God,’

“.shboard of the car

“Tof the rime; e,
fosdirelessness.” There
. een's kext took a
"W view. Invocations
i _ewed as commen-
. hints that it also
“wgracy that can sup-
of Royal Badness”

6.

11,

12,

Notes

In face, chis was how | got started on African fractals. It occurred to me that aerial
photos might show the difference between these architectural designs as fracral ver-
sus Euclidean. Par Caplan generously provided me with aerial photos of the area in which
she worked, and the indigenous housing did indeed appear to be less Euclidean.

. Recursive architectural structure is lmgu:sncqlly “indicated by the Yoruba rerm for

homestead: ot ka ot, or *house within the house.”

The 1903 Supreme Court ruling in Shaw v. Reno used the rerms *bizarre” and “snake-
tike,” the latter echoing historian John Fiske's 1812 characterization of a "dragonlike”
contour, a phrase changed to “salamander” and finally to “gerrymander” (afrer Mass-
achuseres governor Elbridge Gerry) by policical cartoonist Gilberr Stuart.

. Fhe insistence that stochastic variation implies free will and deterministic variation

implies domination is macle by several authors besides Porush (e.g., Hakim Bey). | think
that individuals or groups can indeed create such associations, just as they can create
the opposite {e.g., that a simple bounded system can still have the liberty of infinice
variation, as we will see argued by Gilroy, Van Wyk, and Heaver). The error is in assurn-
ing universal meaning to what has to be local semiotics. A closer examination of the
social meanings for statistics (Porter 1086) reveals that its political associations are often
dependent on modernist concepts of humanist individualism, which is strongly critiqued
in the Foucaultian and other postmodernist analyses championed by Porush, Hayles,
Sobchack, and others.

Just as imporrant is the reverse influence, e.g., Jewish jazz musician Mezz Mezevow pass-
ing for black while in prison so that he could play in the band.

Gilroy’s work in this area should be seen as part of a larger community of researchers
and cultural workets (e.g., artists) who have developed a postmodern emphasis on hybrid-.
iry, creolization, and other impure identities (cf. Minh-ha 1986; Anzaldia 1987;
Bhabba 1990; Sandoval 1995; Haraway 1906).

Digital and analog are also confusing terms because digital technology is now commonly
used 1o generate the analog waveforms of music. But it is necessary to see how these
representations are layered. The electronic “on-off™ code pulses are actually noisy
waveforms that must be processed with analog control circuits ar che lowest level of
the silicon chip; eventually they are decoded in binary form, then convertéd to an elec-
trical waveform rhat will modulate the speaker. The resulting acoustic waveform can
be analog, digital, or—especially in the case of rap music—somewhere in berween. See
Eglash {19y3) for derils.

cHaPTER 13 Fractals in the Evwopean history of mathematics

According to ancient accounts, the discovery of irrationals was in the middle of the
hfeh century B.c.E. Modern scholars generally agree that the proof for the incommen-
surability of the square of a diagonal with respect ro it side, first mentioned explicitly
in Plazo’s dinlog Theaenss, is too abstract to have been used at this time. Von Fritz (1944)
provides a resolution for this conflict in his speculative reconstruction of Hippasus’ analy-
sis of the pentagon. See Knorr {1975) and Fowler (1987) for discussion of the origi-
nial texts relevant to this area.

. Plato was not the only influence at the time, nor were irrationals only granted one per-

spective. Fowler (1087}, for example, maintaiiis that the significance of irrationals has
been misunderstood and sugpests that even Plato presented their proof as *a source of
interesting and fruitful problems” rather than as a disturbing paradox. Nevertheless,
it was the homogeneous representations of Platonic thoupght deployed centuries later,
not its contemporary diversity, which would marter for the intuition and practice of
modern mathematicians.

. "We add to the first number the second one, i.e., 1 and 2, the second to the third; the’

third 1o the fourth; the fourth to the Afth . . . and it is possible to do this order for an
infinite number of months” {trans. Maxey Brooke).
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Notes

Similar analysis was provided hy Henry Louis Gares (19g0) and others in the censor-
ship trial of rap group 2 Live Crew, maintaining that the explicit sexual lyries were not
acultural profanity but rather modern variations of a long-standing black tradition of
public sexual commentary. - - .

- Tuana (198g), for example, notes that the male homunculus theory;which locates the

active principle of birth in sperm only, dominated European medical thinking from Aris-
totle 1o van Leeuwenhoek (and in some senses even to the present; see Flartouni
1997). Again, the African version is in strong contrast; recall from chapter 8 that the
Fang believe that the homunculus or active principle is contained in the female bload
{the division is more egalitarian than the European madel, however, since the male Fang
are said to provide a'complementary protective, skeletal principle).

- That is, prior to complexity theory, at which point advances in the application of frac-

tal geometry were made precisely because of the growing recognition of a relationship
between computational recussion and self-organizing phenomena. Complexity theory
is a marker distinguishing the transitional postmadernism of the 19708 from the stable
postmodernism of the 1980s (Eglash 1998c).

. The qualification is not inaccurate; the prob[em is that sometimes the ":uthors of this

text {The Science of Fractal Images) use the term “recursion” to mean iteration, and some-
times (as in this case) it means self-referential programming. This level of ambiguity
would not be tolerated for any other mathematical terminology used in the text.

CHAPTER 14 Futures for African fractals

+

. For more on cyborgs, see Haraway (1996) and Gray (1g95).
. In fact, if I had used a large encugh size difference, self-intersection could have heen

avoided altogether, but 1 think that would not do justice to the ‘African tradition of
putting similar-sized houses togethe ralitarian
socioeconomic structure, and one to which Nyangula was no doubt sensitive.

- But there was more to it than that. Perhaps in part because it implied a Platanic view,

it made sense to the students that religious symbolism would be mathematical, while
something as concrete as a mud wall was too hard to reimage. There was also the visual
effect of seeing computer sisnulations of the Afeican log spirals; for a generation
brought up on video games and MTV, this placed it in a contemporacy framewark. Finally,
there was something about the religious subject matter itself—the very concept of a

“life force” expressed as a self-organizing system—-that may have created a resonance
Y y

for these students.
Onyejekwe's African Women Global Network is available from htip://www.osu.edu/
orgfawognet.
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