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Preface

Recent years have witnessed considerable research activity in
communication theory by a number of workers both here and
abroad. In view of the widespread interest in this field, Dean
L. N. Ridenour suggested the present volume consisting of two
papers on this subject.

The first paper has not previously been printed in its present
form, although a condensation appeared in Scientific American,
July, 1949. In part, it consists of an expository introduction to
the general theory and may well be read first by those desiring a
panoramic view of the field before entering into the more mathe
matical aspects. In addition, some ideas are suggested for
broader application of the fundamental principles of communi
cation theory.

The second paper is reprinted from the Bell System Technical
Journal, July and October, 1948, with no changes except the cor
rection of minor errata and the inclusion of some additional
references, It is intcnded that subscquent developments in the
field will be treated in a projected work dealing with more general
aspects of information theory.

It gives us pleasure to express our thanks to Dean Ridenour for
making this book possible, and to the University of Illinois Press
for their splendid cooperation.

C.E.SHANNON

September, 1949
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1.1. Communication

The word communication will be used here in a very broad sense
to include all of the procedures by which one mind may affect
another. This, of course, involves not only written and oral
speech, but also music, the pictorial arts, the theatre, the ballet,
and in fact all human behavior. In some connections it may be
desirable to use a still broader definition of communication,
namely, one which would include the procedures by means of
which one mechanism (say automatic equipment to track an
airplane and to compute its probable future positions) affects
another mechanism (say a guided missile chasing this airplane).

The language of this memorandum will often appear to refer to
the special, but still very broad and important, field of the com
munication of speech; but practically everything said applies

1 This paper is written in three main sections. In the first and third, W. W.
is responsible both for the ideas and the form. The middle section, namely
"2), Communication Problems of Level A" is an interpretation of mathe
matical papers by Dr. Claude E. Shannon of the Bell Telephone Labora
tories. Dr. Shannon's work roots back, as von Neumann has pointed out,
to Boltzmann's observation, in some of his work on statistical physics
(1894), that entropy is related to "missing information," inasmuch as it is
related to the number of alternatives which remain possible to a physical
system after all the macroscopically observable information concerning it
has been recorded. L. Szilard (Zsch. f. Phys. Vol. 53, 1925) extended this
idea to a general discussion of information in physics, and von Neumann
(Math Foundation of Qll,antum M echanics, Berlin, 1932, Chap. V) treated
information in quantum mechanics and particle physics. Dr. Shannon's
work connects more directly with certain ideas developed some twenty
years ago by H. Nyquist and R. V. L. Hartley, both of the Bell Labora-
tones; and Dr. Shannon has himself emphasIzed that communication theory
owes a great debt to Professor Norbert Wiener for much of its basic
philosophy. Professor "vViener, on the other hand, points out that Shannon's
eaIly work on switching and mathematical logic antedated his own interest
in this field; and generously adds that Shannon certainly deserves credit
for independent development of sueh fundamental aspects of the theory as
the introduction of entropic ideas. Shannon has naturally been specially
concerned to push the applications to engineering communication, while
Wiener has been more concerned with biological application (central
nervous system phenomena, etc.).
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equally well to music of any sort, and to still or moving pictures,
as in television.

1.2. Three Levels of Communications Problems

Relative to the broad subject of communication, there seem to be
problems at three levels. Thus it seems reasonable to ask, serially:

LEVEL A. How accurately can the symbols of communication be
transmitted? (The technical problem.)

LEVEL B. How precisely do the transmitted symbols convey the
desired meaning? (The semantic problem.)

LEVEL C. How effectively does the received meaning affect con
duct in the desired way? (The effectiveness problem.)

The technical problems are concerned with the accuracy of
transference from sender to receiver of sets of symbols (written
speech), or of a continuously varying signal (telephonic or radio
transmission of voice or music) , or of a continuously varying two
dimensional pattern (television), etc. Mathematically, the first
involves transmission of a finite set of discrete symbols, the
second the transmission of one continuous function of time, and
the third the transmission of many continuous functions of time
or of one continuous function of time and of two space coordi
nates.

The semantic problems are concerned with the identity, or sat
isfactorily eIose approximation, in the interpretation of meaning
by the receiver, as compared with the intended meaning of the
sender. This is a very deep and involved situation, even when one
deals only with the relatively simpler problems of communicating
through speech.

One essential complication is illustrated by the remark that if
Mr. X is suspected not to understand what Mr. Y says, then it is
theoretically not possible, by having Mr. Y do nothing but talk
further with Mr. X, completely to clarify this situa.tion in a.ny
finite time. If Mr. Y says "Do you nm·v understand me?" and
Mr. X says "Certainly, I do;" this is not necessarily a eertiftea-
tion that understanding has been achIeved. It may just be that
Mr. X did not understand the question. If this sounds silly, try
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it again a8 "Czy pan mnie rozumie?" "Nith the ans\ver "Hai
wakkate imasu." I think that this basic difficulty2 is, at least in
the restricted field of speech communication, reduced to a toler
able size (but never completely eliminated) by "explanations"
which (a) are presumably never more than approximations to the
ideas being explained, but which (b) are understandable since
they are phrased in language which has previously been made
reasonably clear by operational means. For example, it does not
take long to make the symbol for "yes" in any language opera
tionally understandable.

The semantic problem has wide ramifications if one thinks of
communication in general. Consider, for example, the meaning to
a Russian of a U.S. newsreel picture.

The effectiveness problems are concerned with the success with
which the meaning conveyed to the receiver leads to the desired
conduct on his part. It may seem at first glance undesirably
narrow to imply that the purpose of all communication is to influ
ence the conduct of the receiver. But with any reasonably broad
definition of conduct, it is clear that communication either affects
conduct or is without any discernible and probable effect at all.

The problem of effectiveness involves aesthetic considerations
in the case of the fine arts. In the case of speech, written or oral,
it involves considerations which range all the way from the mere
mechanics of style, through all the psychological and emotional
aspects of propaganda theory, to those value judgments which are
necessary to give useful meaning to the words "success" and
"desired" in the opening sentence of this section on effectiveness.

The effectiveness problem is closely interrelated with the se-
mantIc problem, and overlaps It In a rather vague way; and

2 "When Pfungst (1911) demonstrated that the horses of Elberfeld, who
were showmg marvelous hngUIstiC and mathematIcal abIhty, were merely
reactmg to movements of the trainer's head, Mr. Krall (1911), their owner,
met the criticism in the most direct manner. He asked the horses whether
they could see such small movements and in answer they spelled out an
emphatic 'No.' Unfortunately we cannot all be so sure that our questions
are understood 01' obtain such clear answers." See Lashley, K. S., "Per-
sistent Problems in the Evolution of Mind" in Quat terly Review of Biology,
v. 24, March, 1949, p. 28.
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there is in fact overlap betvv"een all of the suggested categories of
problems.

1.3. Comments

So stated, one would be inclined to think that Level A is a rela
tively superficial one, involving only the engineering details of
good design of a communication system; while Band C seem to
contain most if not all of the philosophical content of the general
problem of communication.

The mathematical theory of the engineering aspects of com
munication, as developed chiefly by Claude Shannon at the Bell
Telephone Laboratories, admittedly applies in the first instance
only to problem A, namely, the technical problem of accuracy of
transference of various types of signals from sender to receiver.
But the theory has, I think, a deep significance which proves that
the preceding paragraph is seriously inaccurate. Part of the sig
nificance of the new theory comes from the fact that levels Band
C, above, can make use only of those signal accuracies which turn
out to be possible when analyzed at Level A. Thus any limita
tions discovered in the theory at Level A necessarily apply to
levels Band C. But a larger part of the significance comes from
the fact that the analysis at Level A discloses that this level over
laps the other levels more than one could possible naively suspect.
Thus the theory of Level A is, at least to a significant degree, also
a theory of levels Band C. I hope that the succeeding parts of
this memorandum will illuminate and justify these last remarks.

-2-------
--------1etJmmunication-Problems at---l-eYel-A--------

2.1. A Communication System and Its Problems

The communication system considered may be symbolically rep-
resented as follows:
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INFORMATION
SOURCE TRANSMITTER

7

RECEIVER DESTINATION

~
r"1 f-.-

SIGNAL L oJ RECEIVED
SIGNAL

MESSAGE MESSAGE

NOISE
SOURCE

The information source. selects a desired message out of a set of
possible messages (this is a particularly important remark, which
requires considerable explanation later). The selected message
may consist of written or spoken words, or of pictures, music, etc.

The transmitter changes this message into the signal which is
actually sent over the communication channel from the transmit
ter to the receiver. In the case of telephony, the channel is a wire,
the signal a varying electrical current on this wire; the trans
mitter is the set of devices (telephone transmitter, etc.) which
change the sound pressure of the voice into the varying electrical
current. In telegraphy, the transmitter codes written words into
sequences of interrupted currents of varying lengths (dots, dashes,
spaces). In oral speech, the information source is the brain, the
transmitter is the voice mechanism producing the varying sound
pressure (the signal) which is transmitted through the air (the
channel). In radio, the channel is simply space (or the aether, if
anyone still prefers that antiquated and misleading word), and
the signal is the electromagnetic wave which is transmitted.

The receiver is a sort of inverse transmitter, changing the trans
mitted signal back into a message, and banding this message on
to the destination. When I talk to you, my brain is the informa-
tion source, yours the destination; my vocal system is the trans-
mitter, and your ear and the associated eighth nerve is the
receiver.

In the process of being transmitted, it is unfortunately charac-
teristic that certain thmgs are added to the signal which were not
intended by the information source. These unwanted additions
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may be distortions of sound (in telephony, for example) or static
(in radio), or distortions in shape or shading of picture (tele-
vision), or errors in transmission (telegraphy or facsimile), etc.
All of these changes in the transmitted signal are called noise.

The kind of questions which one seeks to ask concerning such
a communication system are:

a. How does one measure amount of information?
b. How does one measure the capacity of a communication

channel?
c. The action of the transmitter in changing the message into

the signal often involves a coding process. What are the charac
teristics of an efficient coding process? And when the coding is
as efficient as possible, at what rate can the channel convey
information?

d. What are the general characteristics of noise? How does
noise affect the accuracy of the message finally received at the
destination? How can one minimize the undesirable effects of
noise, and to what extent can they be eliminated?

e. If the signal being transmitted is continuous (as in oral
speech or music) rather than being formed of discrete symbols
(as in written speech, telegraphy, etc.), how does this fact affect
the problem?

We will now state, without any proofs and with a minimum
of mathematical terminology, the main results which Shannon has
obtained.

2.2. Information

The word information, in this theory, is used in a special sense
that must not be confused with its ordinary usage. In particular,
information must not be confused with meaning.

In face, two messages, one of which is heavily loaded with
meaning and the other of which is pure nonsense, can be exactly
equivalent, from the present viewpoint, as regards information.
It is this, undoubt.edly, that Shannon means when he says that
"the semantic aspects of communication are irrelevant to the en
gineering aspects." But this does not mean that the engineering
aspects are necessarl1y Irrelevant to the semantic aspects.

To be sure, this word information in communication theory
relates not so much to what you d(1 sa.y, as to what you CQuld say.
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That is, information is a measure of one's freedom of choice when
one selects a message. If one is confronted with a very elementary
situation where he has to choose one of two alternatIve messages,
then it is arbitrarily said that the information, associated with
this situation, is unity. Note that it is misleading (although often
convenient) to say that one or the other message, conveys unit
information. The concept of information applies not to the indi
vidual messages (as the concept of meaning would), but rather
to the situation as a whole, the unit information indicating that
in this situation one has an amount of freedom of choice, in
selecting a message, which it is convenient-to regard as a standard
or unit amount.

The two messages between which one must choose, in such a
selection, can be anything one likes. One might be the text of the
King James Version of the Bible, and the other might be "Yes."
The transmitter might code these two messages so that "zero" is
the signal for the first, and "one" the signal for the second; or so
that a closed circuit (current flowing) is the signal for the first,
and an open circuit (no current flowing) the signal for the sec
ond. Thus the two positions, closed and open, of a simple relay,
might correspond to the two messages.

To be somewhat more definite, the amount of information is
defined, in the simplest cases, to be measured by the logarithm of
the number of available choices. It being convenient to use log
arithms" to the base 2, rather than common or Briggs' logarithm
to the base 10, the information, when there are only two choices,
is proportional to the logarithm of 2 to the base 2. But this is
unity; so that a two-choice situation is characterized by informa-
tion of unity, as has already been stated above. This unit of
information is called a "bit," this "Nord, first suggested by John

bers are expressed in the binary system there are only two digits,
namely 0 and 1; just as ten digits, 0 to 9 inclusive, are used in
the decimal number system which employs 10 as a base. Zero
and one may be taken symbolically to represent any tvlO choices,
as noted above; so that "binary digit" or "bit" is natural to asso-
ciate with the two-choice situation which has unit information.

If one has available say 16 alternative messages among which

• When m" = y, then z is said to be the logarithm of y to the base m.
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he is equally free to choose, then since 16 24 80 that log2 16 4,
one says that this situation is characterized by 4 bits of infor-
mation.

It doubtless seems queer, when one first meets it, that informa
tion is defined as the logarithm of the number of choices. But in
the unfolding of the theory, it becomes more and more obvious
that logarithmic measures are in fact the natural ones. At the
moment, only one indication of this will be given. It was men
tioned above that one simple on-or-off relay, with its two posi
tions labeled, say, 0 and 1 respectively, can handle a unit infor
mation situation, in which there are but two message choices. If
one relay can handle unit information, how much can be handled
by say three relays? It seems very reasonable to want to say
that three relays could handle three times as much information
as one. And this indeed is the way it works out if one uses the
logarithmic definition of information. For three relays are capa
ble of responding to 23 or 8 choices, which symbolically might be
written as 000, 001, 011, 010, 100, 110, 101, 111, in the first of
which all three relays are open, and in the last of which all three
relays are closed. And the logarithm to the base 2 of 23 is 3, so
that the logarithmic measure assigns three units of information
to this situation, just as one would wish. Similarly, doubling the
available time squares the number of possible messages, and
doubles the logarithm; and hence doubles the information if it is
measured logarithmically.

The remarks thus far relate to artificially simple situations
where the information source is free to choose only between sev
eral definite messages -like a man picking out one of a set of
standard birthday greeting telegrams A more natura.l and more
important situation is that in which the information source makes
a sequence of choices from some set of elementary symbols, the
selected sequence then forming the message. Thus a man may
pick out one word after another, these individually selected words
then adding up to fonn the message.

At this point an important consideration which has been in the
background, so far, comes to the front for major attention.
Namely, the role whIch probabIhty plays III the generatIOn of the
message. For as the successive symbols are chosen, these choices
are, at least from the point of view of the communication system,
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governed by probabilities; and in fact by probabilities which are
not independent, but which, at any stage of the process, depend
upon the precedmg chOIces. Thus, If we are concerned wIth
English speech, and if the last symbol chosen is "the," then the
probability that the next word be an article, or a verb form other
than a verbal, is very small. This probabilistic influence stretches
over more than two words, in fact. After the three words "in the
event" the probability for "that" as the next word is fairly high,
and for "elephant" as the next word is very low.

That there are probabilities which exert a certain degree of con
trol over the English language also becomes obvious if one thinks,
for example, of the fact that in our language the dictionary con
tains no words whatsoever in which the initial letter j is followed
by b, c, d, I, g, j, k, I, q, r, t, v, w, x, or z ; so that the probability
is actually zero that an initial j be followed by any of these
letters. Similarly, anyone would agree that the probability is low
for such a sequence of words as "Constantinople fishing nasty
pink." Incidentally, it is low, but not zero; for it is perfectly
possible to think of a passage in which one sentence closes with
"Constantinople fishing," and the next begins with "Nasty pink."
And we might observe in passing that the unlikely four-word
sequence under discussion has occurred in a single good English
sentence, namely the one above.

A system which produces a sequence of symbols (which may,
of course, be letters or musical notes, say, rather than words)
according to certain probabilities is called a stochastic process,
and the special case of a stochastic process in which the proba
bilities depend on the previous events, is called a 11;Jarkoff process
or a Markoff chain. Of the Markoff processes which might con-
ceivably generate messages, t.here is a. special class which is of
primary importance for communication theory, these being what
are called ergodic processes. The analytical details here are COllI-

phcated and the reasonmg so deep and involved that it has taken
some of the best efforts of the best mathematicians to create the
associated theory; but the rough nature of an ergodic process is
easy to understand. It is one 'Nhich produces a sequence of sym
boIs which would be a poll-taker's dream, because any reasonably
large sample tends to be representative of the sequence as a
whole. Suppose that two persons choose samples in different
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ways, and study what trends their statistical properties would
show as the samples become larger. If the situation is ergodic,
then those two persons, however they may have chosen their
samples, agree in their estimates of the properties of the whole.
Ergodic systems, in other words, exhibit a particularly safe and
comforting sort of statistical regularity.

Now let us return to the idea of information. When we have
an information source which is producing a message by succes
sively selecting discrete symbols (letters, words, musical notes,
spots of a certain size, etc.), the probability of choice of the
various symbols at one stage of the process being dependent on
the previous choices (i.e., a Markoff process), what about the
information associated with this procedure?

The quantity which uniquely meets the natural requirements
that one sets up for "information" turns out to be exactly that
which is known in thermodynamics as entropy. It is expressed in
terms of the various probabilities involved - those of getting to
certain stages in the process of forming messages, and the proba
bilities that, when in those stages, certain symbols be chosen
next. The fortnula, moreover, involves the logarithm of probabil
ities, so that it is a natural generalization of the logarithmic
measure spoken of above in connection with simple cases.

To those who have studied the physical sciences, it is most
significant that an entropy-like expression appears in the theory
as a measure of information. Introduced by Clausius nearly one
hundred years ago, closely associated with the name of Boltz
mann, and given deep meaning by Gibbs in his classic work on
statistical mechanics, entropy has become so basic and pervasive
a concept that Eddington remarks "The law that entropy always
increases the second law of thermodynamics holds, I think,
the supreme position among the laws of Nature. "

In the physical sciences, the entropy associated with a situa-
tion is a measure of the degree of randomness, or of "shufHed-
ness" if you will, in the situation; and the tendency of physical
systems to become less and less organized, to become more and
more perfectly shuffled, is so basic that Eddington argues that
it is prImarIly thIS tendency which grves tIme ItS arrow - which
would reveal to US, for example, whether a movie of the physical
world is being run forward or backward.
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Thus when one meets the concept of entropy in communication
theory, he has a right to be rather excited a right to suspect
that one has hold of something that may turn out to be basic and
important. That information be measured by entropy is, after all,
natural when we remember that information, in communication
theory, is associated with the amount of freedom of choice we
have in constructing messages. Thus for a communication source
one can say, just as he would also say it of a thermodynamic
ensemble, "This situation is highly organized, it is not character
ized by a large degree of randomness or of choice - that is to say,
the information (or the entropy) is low." We will return to this
point later, for unless I am quite mistaken, it is an important
aspect of the more general significance of this theory.

Having calculated the entropy (or the information, or the
freedom of choice) of a certain information source, one can com
pare this to the maximum value this entropy could have, subject
only to the condition that the source continue to employ the same
symbols. The ratio of the actual to the maximum entropy is
called the relative entropy of the source. If the relative entropy
of a certain source is, say .8, this roughly means that this source
is, in its choice of symbols to form a message, about 80 per cent
as free as it could possibly be with these same symbols. One
minus the relative entropy is called the redundancy. This is the
fraction of the structure of the message which is determined not
by the free choice of the sender, but rather by the accepted
statistical rules governing the use of the symbols in question. It
is sensibly called redundancy, for this fraction of the message is
in fact redundant in something close to the ordinary sense; that
is to say, this fraction of the message is unnecessary (and hence
repetitive or redundant) in the sense that if it were missing the
message would still be essentially complete, or at least could be
completed.

It is most interesting to note that the redundancy of English
is just about 50 per cent,. so that about half of the letters or
words we choose in writing or speaking are under our free choice,
and about half (although we are not ordinarily aware of it) are
really controlled by the statistical structure of the language.

t The 50 per cent estimate accounts only for statistical structure out to
about eight letters, so that the ultimate value is presumably a little higher.
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Apart from more seriom3 implications, which again we Yv'ill post-
pone to our final discussion, it is interesting to note that a
language must have at least 50 per cent of real freedom (or
relative entropy) in the choice of letters if one is to be able to
construct satisfactory crossword puzzles. If it has complete free
dom, then every array of letters is a crossword puzzle. If it has
only 20 per cent of freedom, then it would be impossible to con
struct crossword puzzles in such complexity and number as would
make the game popular. Shannon has estimated that if the
English language had only about 30 per cent redundancy, then
it would be possible to construct three-dimensional crossword
puzzles.

Before closing this section on information, it should be noted
that the real reason that Level A analysis deals with a concept of
information which characterizes the whole statistical nature of
the information source, and is not concerned with the individual
messages (and not at all directly concerned with the meaning of
the individual messages) is that from the point of view of engi
neering, a communication system must face the problem of
handling any message that the source can produce. If it is not
possible or practicable to design a system which can handle
everything perfectly, then the system should be designed to
handle well the jobs it is most likely to be asked to do, and
should resign itself to be less efficient for the rare task. This sort
of consideration leads at once to the necessity of characterizing
the statistical nature of the whole ensemble of messages which
a given kind of source can and will produce. And information,
as used in communication theory, does just this.

Although it is not at all the purpose of this paper to be con-
cerned ',vith mathematical details, it nevertheless seems essential
to have as good an understanding as possible of the entropy-like
expression which measures information. If one is concerned, as
in a simple case, with a set of n independent symbols, or a set of n
independent complete messages for that matter, whose probabili-
ties of choice are PI, P2' . • Pn, then the actual expression for
the information is

_____------""H~_-----C[Pi log Pi + P2 log P2 + . . .+ Pn log Pn ]f-1-'-----

or
H ~ Pi log Pi.
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\Vhere5 the symbol It indicates, as is usual in mathematics, that
one is to sum all terms like the typical one, Pi log Pi, written as
a defining sample.

This looks a little complicated; but let us see how this expres
sion behaves in some simple cases.

Suppose first that we are choosing only between two possible
messages, whose probabilities are then PI for the first and P2 = 1
- PI for the other. If one reckons, for this case, the numerical
value of H, it turns out that H has its largest value, namely
one, when the two messages are equally probable; that is to say
when PI = P2 = !; that is to say, when one is completely free to
choose between the two messages. Just as soon as one message
becomes more probable than the other (PI greater than P2, say),
the value of H decreases. And when one message is very probable
(PI almost one and P2 almost zero, say), the value of H is very
small (almost zero).

In the limiting case where one probability is unity (certainty)
and all the others zero (impossibility), then H is zero (no uncer
tainty at all- no freedom of choice - no information).

Thus H is largest when the two probabilities are equal (i.e.,
when one is completely free and unbiased in the choice), and
reduces to zero when one's freedom of choice is gone.

The situation just described is in fact typical. If there are
many, rather than two, choices, then H is largest when the prob
abilities of the various choices are as nearly equal as circum
stances permit - when one has as much freedom as possible in
making a choice, being as little as possible driven toward some
certain choices which have more than their share of probability.
Suppose, on the other hand, that one choice has a probability
near one so that all the other choices have probabilities near
zero. This is clearly a situation in which one is heavily influenced
toward one particular choice, and hence has little freedom of
choice. And H in such a case does calculate to have a very small
value - the informa.tion (the freedom of choice, the uncertainty)
is low.

'V'Vhen the number of cases is fixed, we have just seen that then

5 Do not WOrty about the minus sign. Any probability is a number less
than or equal to one, and the logarithms of numbers less than onc arc
themselves negative. Thus the minus sign is necessary in order that H be
in fact positive.
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the information is the greater, the more nearly equal are the
probabilities of the various cases. There is another important way
of increasing H, namely by increasing the number of cases. More
accurately, if all choices are equally likely, the more choices there
are, the larger H will bel. There is more "information" if you
select freely out of a set of fifty standard messages, than if you
select freely out of a set of twenty-five.

2.3. Capacity of a Communication Channel

After the discussion of the preceding section, one is not surprised
that the capacity of a channel is to be described not in terms of
the number of symbols it can transmit, but rather in terms of the
information it transmits. Or better, since this last phrase lends
itself particularly well to a misinterpretation of the word infor
mation, the capacity of a channel is to be described in terms of
its ability to transmit what is produced out of source of a given
information.

If the source is of a simple sort in which all symbols are of the
same time duration (which is the case, for example, with tele
type), if the source is such that each symbol chosen represents
s bits of information (being freely chosen from among 28 sym
bbls) , and if the channel can transmit, say ri symbols per second,
then the capacity of C of the channel is defined to be ns bits per
second.

In a more generai case, one has to take account of the varying
lengths of the various symbols. Thus the general expression for
capacity of a channel involves the logarithm of the numbers of
symbols of certain time duration (which introduces, of course,
the idea of information and corresponds to the factor s in the
simple case of the precedIng paragraph); and also mvolves
the number of such symbols handled (which corresponds to the
fact.or n of the preceding paragraph). Thus in the general case,
capacity measures not the number of symbols transmitted per
second, but rather the amount of information transmitted per
second, using bits per second as its unit.

2.4. Coding

At the outset. it was pointed out that the transmitter accepts the
message and turns it into something called the signal, the latter
being what actually passes over the channel to the receiver.
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The transmitter, in such a case as telephony, merely changes
the audible voice signal over into something (the varying elec-
trical current on the telephone wire) which is at once clearly
different but clearly equivalent. But the transmitter may carry
out a much more complex operation on the message to produce
the signal. It could, for example, take a written message and use
some code to encipher this message into, say a sequence of
numbers; these numbers then being sent over the channel as the
signal.

Thus one says, in general, that the function of the transmitter
is to encode, and that of the receiver to decode, the message. The
theory provides for very sophisticated transmitters and receivers
- such, for example, as possess "memories," so that the way
they encode a certain symbol of the message depends not only
upon this one symbol, but also upon previous symbols of the
message and the way they have been encoded.

Weare now in a position to state the fundamental theorem,
produced in this theory, for a noiseless channel transmitting
discrete symbols. This theorem relates to a communication chan
nel which has a capacity of C bits per second, accepting signals
from a source of entropy (or information) of H bits per second.
The theorem states that by devising proper coding procedures
for the transmitter it is possible to transmit symbols over the
channel at an average rate" which is nearly C/H, but which, no
matter how clever the coding, can never be made to exceed C/H.

The significance of this theorem is to be discussed more use
fully a little later, when we have the more general case when
noise is present. For the moment, though, it is important to notice
the critical role which coding plays.

Remember that the entropy (or information) associated with
the process which generates messages or signals is determined by
the statistical character of the process - by the various prob-
abilities for arriving at message situations and for choosing, when
in those situations the next symbols. The statistical nature of
messages is entirely determined by the character of the source.

8 We remember that the capacity C involves the idea of information trans-
mitted per second, and is thus measured in bits per second. The entropy H
here measures information per symbol, so that the ratio of C to H measures
symbols per second.
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But the statistical character of the signal as actually transmitted
by a channel, and hence the entropy in the channel, is deter-
mined both by what one attempts to feed into the channel and
by the capabilities of the channel to handle different signal
situations. For example, in telegraphy, there have to be spaces
between dots and dots, between dots and dashes, and between
dashes and dashes, or the dots and dashes would not be recog
nizable.

Now it turns out that when a channel does have certain con
straints of this sort, which limit complete signal freedom, there
are certain statistical signal characteristics which lead to a signal
entropy which is larger than it would be for any other statistical
signal structure, and in this important case, the signal entropy
is exactly equal to the channel capacity.

In terms of these ideas, it is now possible precisely to char
acterize the most efficient kind of coding, The best transmitter,
in fact, is that which codes the message in such a way that the
signal has just those optimum statistical characteristics which
are best suited to the channel to be used - which in fact maxi
mize the signal (or one may say, the channel) entropy and make
it equal to the capacity C of the channel.

This kind of coding leads, by the fundamental theorem above,
to the maximum rate C/ H for the transmission of symbols. But
for this gain in transmission rate, one pays a price. For rather
perversely it happens that as one makes the coding more and
more nearly ideal, one is forced to longer and longer delays in
the process of coding. Part of this dilemma is met by the fact that
in electronic equipment "long" may mean an exceedingly small
fraction of a second, and part by the fact that one makes a
compromise, balancing the gain in transmission rate against loss
of coding time.

2.5. Noise

How does noise affect information? Information is, we must
steadily remember, a measure of one's freedom of choice in select
iug a message. The greater this freedom of choice, and hence the
greater the InformatIOn, the greater IS the uncertainty that the
message actually selected is some particular one. Thus greater
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freedom of choice, greater uncertainty, greater information go
hand in hand.

If noise is mtroduced, then the receIved message contains
certain distortions, certain errors, certain extraneous material,
that would certainly lead one to say that the received message
exhibits, because of the effects of the noise, an increased uncer
tainty. But if the uncertainty is increased, the information is
increased, and this sounds as though the noise were beneficial!

It is generally true that when there is noise, the received signal
exhibits greater information - or better, the received signal is
selected out of a more varied set than is the transmitted signal.
This is a situation which beautifully illustrates the semantic trap
into which one can fall if he does not remember that "informa
tion" is used here with a special meaning that measures freedom
of choice and hence uncertainty as to what choice has been made.
It is therefore possible for the word information to have either
good or bad connotations. Uncertainty which arises by virtue of
freedom of choice on the part of the sender is desirable uncer
tainty. Uncertainty which arises because of errors or because of
the influence of noise is undesirable uncertainty.

It is thus clear where the joker is in saying that the received
signal has more information. Some of this information is spurious
and undesirable and has been introduced via the noise. To get
the useful information in the received signal we must subtract
out this spurious portion.

Before we can clear up this point we have to stop for a little
detour. Suppose one has two sets of symbols, such as the message
symbols generated by the information source, and the signal
symbols which are actually received. The probabilities of these
two sets of symbols are interrelated, for clearly the probability
of receiving a certain symbol depends upon vlhat symbol was
sent. With no errors from noise 01' from other causes, the received
sIgnals would correspond preCIsely to the message symbols sent;
and in the presence of possible error, the probabilities for received
symbols would obviously be loaded heavily on those which cor-
respond, or closely correspond, to the message symbols sent.

Now in such a situation one can calculate what is called the
entropy of one set of symbols relative to the other. Let us, for
example, consider the entropy of the message relative to the
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signal. It is unfortunate that we cannot understand the issues
involved here without going into some detail. Suppose for the
moment that one knows that a certain signal symbol has actually
been received. Then each message symbol takes on a certain
probability - relatively large for the symbol identical with or the
symbols similar to the one received, and relatively small for all
others. Using this set of probabilities, one calculates a tentative
entropy value. This is the message entropy on the assumption
of a definite known received or signal symbol. Under any good
conditions its value is low, since the probabilities involved are
not spread around rather evenly on the various cases, but are
heavily loaded on one or a few cases. Its value would be zero
(see page 13) in any case where noise was completely absent,
for then, the signal symbol being known, all message probabilities
would be zero except for one symbol (namely the one received),
which would have a probability of unity.

For each assumption as to the signal symbol received, one can
calculate one of these tentative message entropies. Calculate all
of them, and then average them, weighting each one in accordance
with the probability of the signal symbol assumed in calculating
it. Entropies calculated in this way, when there are two sets of
symbols to consider, are called relative entropies. The particular
one just described is the entropy of the message relative to the
signal, and Shannon has named this also the equivocation.

From the way this equivocation is calculated, we can see what
its significance is. It measures the average uncertainty in the
message when the signal is known. If there were no noise, then
there would be no uncertainty concerning the message if the
signal is known. If the information source has any residual
uncertainty after the signal is known, then this must be unde-
sirable uncertainty due to noise.

The discussion of the last few paragraphs centers around the
quantity "the average uncertain~y in the message source when the
received signal is known." It can equally well be phrased in terms
of the similar quantity "the average uncertainty concerning the
received signal when the message sent is known." This latter
uncertainty would, of course, also be zero if there were no noise

As to the interrelationship of these quantities, it is easy to
prove that

H(x) Hy(x) - H(y)



Some Recent Contributions: Weaver 21

where H (x) is the entropy or information of the source of mes-
sages; H (y) the entropy or information of received signals;
Hy(x) the equivocation, or the uncertainty in the message source
if the signal be known; Hit (y) the uncertainty in the received
signals if the messages sent be known, or the spurious part of the
received signal information which is due to noise. The right side
of this equation is the useful information which is transmitted in
spite of the bad effect of the noise.

It is now possible to explain what one means by the capacity
C of a noisy channel. It is, in fact, defined to be equal to the
maximum rate (in bits per second) at which useful information
(i.e., total uncertainty minus noise uncertainty) can be trans
mitted over the channel.

Why does one speak, here, of a "maximum" rate? What can
one do, that is, to make this rate larger or smaller? The answer
is that one can affect this rate by choosing a source whose
statistical characteristics are suitably related to the restraints
imposed by the nature of the channel. That is, one can maximize
the rate of transmitting useful information by using proper coding
(see pages 16-17).

And now, finally, let us consider the fundamental theorem for
a noisy channel. Suppose that this noisy channel has, in the sense
just described, a capacity C, suppose it is accepting from an
information source characterized by an entropy of H (x) bits
per second, the entropy of the received signals being H (y) bits
per second. If the channel capacity C is equal to or larger than
H (x), then by devising appropriate coding systems, the output
of the source can be transmitted over the channel with as little
error as one pleases. However small a frequency of error you
specify, there is a code which meets the demand. But if the
channel capacity C is less than H (x), the entropy of the source
from which It accepts messages, then It is impossible to devise
codes which reduce the error frequency as low as one may please.

However clever one is with the coding process, it will always
be true that after the signal is received there remains some un
desirable (noise) uncertainty about what the message was; and
thIS undeSIrable uncertainty - this equivocation - WIll always
be equal to or greater than H (x) - C. Furthermore, there is
always at least one code which is capable of reducing this
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undesirable uncertainty, concerning the message, down to a value
which exceeds H (x) C by an arbitrarily small amount.

The most Important aspect, of course, is that the minimum
undesirable or spurious uncertainties cannot be reduced further,
no matter how complicated or appropriate the coding process.
This powerful theorem gives a precise and almost startlingly
simple description of the utmost dependability one can ever
obtain from a communication channel which operates in the
presence of noise.

One practical consequence, pointed out by Shannon, should be
noted. Since English is about 50 per cent redundant, it would
be possible to save about one-half the time of ordinary telegraphy
by a proper encoding process, provided one were going to transmit
over a noiseless channel. When there is noise on a channel, how
ever, there is some real advantage in not using a coding process
that eliminates all of the redundancy. For the remaining redun
dancy helps combat the noise. This is very easy to see, for just
because of the fact that the redundancy of English is high, one
has, for example, little or no hesitation about correcting errors in
spelling that have arisen during transmission.

2.6. Continuous Messages

Up to this point we have been concerned with messages formed
out of discrete symbols, as words are formed of letters, sentences
of words, a melody of notes, or a halftone picture of a finite
number of discrete spots. What happens to the theory if one
considers continuous messages, such as the speaking voice with its
continuous variation of pitch and energy?

Very roughly one may say that the extended theory is some-
what more difficult. and complicated mathematically, but not
essentially different. Many of the above statements for the
discrete case require no modification, and others require only
mmor change.

One circumstance which helps a good deal is the following. As
a practical matter, one is always interested in a continuous
signal TNhich is built up of simple harmonic constituents of not all
frequencies, but rather of frequencies which lie wholly within
a band from zero frequency to, say, a frequency of W cycles per
second. Thus although the human voice does contain higher fre-



Some Recent Contributions: Weaver 23

quencies, very satisfactory communication can be achieved over
a telephone channel that handles frequencies only up to, say four
thousand. WIth frequencies up to ten or twelve thousand, high
fidelity radio transmission of symphonic music is possible, etc.

There is a very convenient mathematical theorem which states
that a continuous signal, T seconds in duration and band-limited
in frequency to the range from 0 to W, can be completely speci
fied by stating 2TW numbers. This is really a remarkable
theorem. Ordinarily a continuous curve can be only approxi
mately characterized by stating any finite number of points
through which it passes, and an infinite number would in general
be required for complete information about the curve. But if the
curve is built up out of simple harmonic constituents of a limited
number of frequencies, as a complex sound is built up out of a
limited number of pure tones, then a finite number of parameters
is all that is necessary. This has the powerful advantage of
reducing the character of the communication problem for con
tinuous signals from a complicated situation where one would
have to deal with an infinite number of variables to a consider
ably simpler situation where one deals with a finite (though
large) number of variables.

In the theory for the continuous case there are developed
formulas which describe the maximum capacity C of a channel of
frequency bandwidth W, when the average power used in trans
mitting is P, the channel being subject to a noise of power N,
this noise being "white thermal noise" of a special kind which
Shannon defines. This white thermal noise is itself band limited
in frequency, and the amplitudes of the various frequency con-
stituents are subject to a norma] (Gaussian) probability distri-
bution. Under these circumstances, Shannon obtains the theorem,
again really quite remarkable in its simplicity and its scope,
that It is possible, by the best coding, to transmit binary digits at
the rate of

P+ H

bits per second and have an arbitrarily 10'11 frequency of error.
But this rate cannot possibly be exceeded, no matter how clever
the codmg, WIthout giving rise to a definIte frequency of errors.
For the case of arbitrary noise, rather than the special "white
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thennal" noise assumed above, Shannon does not succeed in
deriving one explicit formula for channel capacity, but does ob-
tain useful upper and lower limits for channel capacity. And he
also derives limits for channel capacity when one specifies not
the average power of the transmitter, but rather the peak
instantaneous power.

Finally it should be stated that Shannon obtains results which
are necessarily somewhat less specific, but which are of obviously
deep and sweeping significance, which, for a general sort of con
tinuous message or sigpal, characterize the fidelity of the received
message, and the concepts of rate at which a source generates
information, rate of transmission, and channel capacity, all of
these being relative to certain fidelity requirements.

3
The Interrelationship of the Three Levels
of Communication Problems

3.1. Introductory

In the first section of this paper it was suggested that there are
three levels at which one may consider the general communication
problem. Namely, one may ask:

LEVEL A. How accurately can the symbols of communication be
transmined?

LEVEL B. How precisely do the transmitted symbols convey the
desired meaning?

LEVEl, C How effectively does the received meaning affect con-
duct in the desired ~.vay?

It was suggested that the mathematical theory of communica-
tion, as developed by Shannon, Wiener, and others, and particu,
larly the more definitely engineering theory treated by Shannon,
although ostensibly applicable only to Level A problems, actu-
ally is helpful and suggestive for the level Band C problems.
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'He then took a look, in section 2, at what this mathematical
theory is, what concepts it develops, what results it has obtained.
It is the purpose of this concludmg section to review the situa
tion, and see to what extent and in what terms the original
section was justified in indicating that the progress made at Level
A is capable of contributing to levels Band C, was justified in
indicating that the interrelation of the three levels is so con
siderable that one's final conclusion may be that the separation
into the three levels is really artificial and undesirable.

3.2. Generality of the Theoty at Level A

The obvious first remark, and indeed the remark that carries the
major burden of the argument, is that the mathematical theory
is exceedingly general in its scope, fundamental in the problems
it treats, and of classic simplicity and power in the results it
reaches.

This is a theory so general that one does not need to say what
kinds of symbols are being considered - whether written letters
or words, or musical notes, or spoken words, or symphonic music,
or pictures. The theory is deep enough so that the relationships it
reveals indiscriminately apply to all these and to other forms of
communication. This means, of course, that the theory is suffi
ciently imaginatively motivated so that it is dealing with the
real inner core of the communication problem - with those basic
relationships which hold in general, no matter what special form
the actual case may take.

It is an evidence of this generality that the theory contributes
importantly to, and in fact is really the basic theory of cryptog-
raphy which is, of course, a form of coding. In a similar way,
the theory contributes to the problem of translation from one
language to another, although the complete story here clearly
requires consideration of meaning, as well as of InformatIOn.
Similarly, the ideas developed in this work connect so closely
with the problem of the logical design of great computers that
it is no surprise that Shannon has just v:ritten a paper on the
design of a computer which would be capable of playing a
skIllful game of chess. And It IS of further dIrect pertmence to
the present contention that this paper closes with the remark
that either one must say that such a computer "thinks," or one
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must substantially modify the conventional implication of the
verb "to think. "

As a second point, it seems clear that an important contribu
tion has been made to any possible general theory of communica
tion by the formalization on which the present theory is based.
It seems at first obvious to diagram a communication system as
it is done at the outset of this theory; but this breakdown of the
situation must be very deeply sensible and appropriate, as one
becomes convinced when he sees how smoothly and generally this
viewpoint leads to central issues. It is almost certainly true that
a consideration of communication on levels Band C will require
additions to the schematic diagram on page 7, but it seems
equally likely that what is required are minor additions, and no
real revision.

Thus when one moves to levels Band C, it may prove to be
essential to take account of the statistical characteristics of the
destination. One can imagine, as an addition to the diagram,
another box labeled "Semantic Receiver" interposed between the
engineering receiver (which changes signals to messages) and the
destination. This semantic receiver subjects the message to a
second decoding, the demand on this one being that it must
match the statistical semantic characteristics of the message to
the statistical semantic capacities of the totality of receivers, or
of that subset of receivers which constitute the audience one
wishes to affect.

Similarly one can imagine another box in the diagram which,
inserted between the information source and the transmitter,
would be labeled "semantic noise," the box previously labeled as
simply "noise" now being labeled "engineering noise" From this
source is imposed into the signal the perturbations or distortions
of meaning which are not intended by the source but which
inescapably affect the destinatIOn. And the problem of semantic
decoding must take this semantic noise into account. It is also
possible to think of an adjustment of original message so that the
sum of message meaning plus semantic noise is equal to the
desired total message mcaning at the dcstination.

ThIrdly, It seems hIghly suggestIve for the problem at all levels
that error and confusion arise and fidelity decreases, when, no
matter how good the coding, one tries to crowd too much over a
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channel (i.e., H > C). Here again a general theory at all levels
will surely have to take into account not only the capacity of the
channel but also (even the words are rIght!) the capacity of the
audience. If one tries to overcrowd the capacity of the audience,
it is probably true, by direct analogy, that you do not, so to
speak, fill the audience up and then waste only the remainder by
spilling. More likely, and again by direct analogy, if you over
crowd the capacity of the audience you force a general and
inescapable error and confusion.

Fourthly, it is hard to believe that levels Band C do not have
much to learn from, and do not have the approach to their
problems usefully oriented by, the development in this theory
of the entropic ideas in relation to the concept of information.

The concept of information developed in this theory at first
seems disappointing and bizarre - disappointing because it has
nothing to do with meaning, and bizarre because it deals not
with a single message but rather with the statistical character of
a whole ensemble of messages, bizarre also because in these sta
tistical terms the two words information and uncertainty find
themselves to be partners.

I think, however, that these should be only temporary reac
tions; and that one should say, at the end, that this analysis has
so penetratingly cleared the air that one is now, perhaps for the
first time, ready for a real theory of meaning. An engineering
communication theory is just like a very proper and discreet girl
accepting your telegram. She pays no attention to the meaning,
whether it be sad, or joyous, or embarrassing. But she must be
prepared to deal with all that come to her desk. This idea that a
communication system ought to try to deal with all possible
messages, and that the intelligent way to try is to base design on
the statistical character of the source, is surely not without
significance for communication in general. Language must be
designed (or developed) with a view to the totality of things that
man may wish to say; but not being able to accomplish every-
thing, it too should do as well as possible as often as possible.
That is to say, it too should deal with its task statistically.

The concept of the InformatIOn to be associated with a source
leads directly, as we have seen, to a study of the statistical struc-
ture of language; and this study reveals about the English Ian-
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guage, as an example, information which seems surely significant
to students of every phase of language and communication. The
idea of utilizing the powerful body of theory concerning Markoff
processes seems particularly promising for semantic studies, since
this theory is specifically adapted to handle one of the most sig
nificant but difficult aspects of meaning, namely the influence of
context. One has the vague feeling that information and meaning
may prove to be something like a pair of canonically conjugate
variables in quantum theory, they being subject to some joint
restriction that condemns a person to the sacrifice of the one as
he insists on having much of the other.

Or perhaps meaning may be shown to be analogous to one of
the quantities on which the entropy of a thermodynamic ensemble
depends. The appearance of entropy in the theory, as was re
marked earlier, is surely most interesting and significant. Edding
ton has already been quoted in this connection, but there is
another passage in "The Nature of the Physical World" which
seems particularly apt and suggestive:

Suppose that we were asked to arrange the following in two cate
gories - distance, mass, electric force, entropy, beauty, melody.

I think there are the strongest grounds for placing entropy along
side beauty and melody, and not with the first three. Entropy is only
found when the parts are viewed in association, and it is by viewing
or hearing the parts in association that beauty and melody are dis
cerned. All three are features of arrangement. It is a pregnant
thought that one of these three associates should be able to figure as
a commonplace quantity of science. The reason why this stranger
can pass itself off among the aborigines of the physical world is that
it is able to speak their language, viz., the language of arithmetic.

I feel snre that Eddington would have been willing to include
the word meaning along with beauty and melody; and I suspect
he would have been thrilled to see, in this theory, that entropy
not only speaks the language of arIthmetIC; It also speaks the
language of language.
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Introduction

The recent development of various methods of modulation such
as PCJ\t! and PPM which exchange bandwidth for signal-to-noise
ratio has intensified the interest in a general theory of communi
cation. A basis for such a theory is contained in the important
papers of Nyquist.' and Hartley" on this subject. In the present
paper we will extend the theory to include a number of new
factors, in particular the effect of noise in the channel, and the
savings possible due to the statistical structure of the original
message and due to the nature of the final destination of the
information.

The fundamental problem of communication is that of repro
ducing at one point either exactly or approximately a message
selected at another point. Frequently the messages have meaning;
that is they refer to or are correlated according to some system
with certain physical or conceptual entities. These semantic
aspects of communication are irrelevant to the engineering prob-
lem. The significant aspect is that the actual message is one
selected from a set of possible messages. The system must be
designed to operate for each possible selection, not just the one
which will actually be chosen since this is unknown at the time
of design.

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," Bell System
Technical Journal, AprIl 1924, p. 324; "Certain Topics in Telegraph Trans-
mission Theory," A l l<; E Trans, v 47, April 1928, p 617
2 Hartley, R. V. L., "Transmission of Information," Bell System Technical
Journal, July 1928, p. 535.
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If the number of messages in the set is finite then this number
or any monotonic function of this number can be regarded as a
measure of the information produced when one message is chosen
from the set, all choices being equally likely. As was pointed out
by Hartley the most natural choice is the logarithmic function.
Although this definition must be generalized considerably when
we consider the influence of the statistics of the message and
when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various
reasons:

1. It is practically more useful. Parameters of engineering
importance such as time, bandwidth, number of relays, etc., tend
to vary linearly with the logarithm of the number of possibilities.
For example, adding one relay to a group doubles the number of
possible states of the relays. It adds 1 to the base 2 logarithm
of this number. Doubling the time roughly squares the number of
possible messages, or doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure.
This is closely related to (l) since we intuitively measure
entities by linear comparison with common standards. One feels,
for example, that two punched cards should have twice the
capacity of one for information storage, and two identical chan
nels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting
operations are simple in terms of the logarithm but would require
clumsy restatement in terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of
a unit for measuring information. If the base 2 is used the
resulting units may be called binary digits, or more briefly bits, a
word suggested by J. W. Tukey. A deVIce with two stable posi-
tions, such as a relay or a flip-flop circuit, can store one bit of
information N such devices can store N bits, since the total
number of possible states is 2N and log2 2N

- N, If the base 10 is
used the units may be called -decirrral digi ts: Since

- 3.32 loglo M,
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a decimal digit is about 3~ bits. A digit wheel on a desk com
puting machine has ten stable positions and therefore has a
storage capacity of one decimal digit. In analytical work where
integration and differentiation are involved the base e is some
times useful. The resulting units of information will be called
natural units. Change from the base a to base b merely requires
multiplication by log, a.

By a communication system we will mean a system of the
type indicated schematically in Fig. 1. It consists of essentially
five parts:

1. An information source which produces a message or sequence
of messages to be communicated to the receiving terminal. The
message may be of various types: (a) A sequence of letters as
in a telegraph or teletype system; (b) A single function of time
f (t) as in radio or telephony; (c) A function of time and other
variables as in black and white television - here the message
may be thought of as a function f (x, Y, t) of two space coordi
nates and time, the light intensity at point (x, y) and time t on a
pickup tube plate; (d) Two or more functions of time, say
f(t), g(t), h(t) - this is the case in "three-dimensional" sound
transmission or if the system is intended to service several indi
vidual channels in multiplex; (e) Several functions of several
variables - in color television the message consists of three
functions f(x, Y, t), g(x, Y, t), h(x, Y, t) defined in a three
dimensional continuum - we may also think of these three func
tions as components of a vector field defined in the region
similarly, several black and white television sources would pro-
duce "messages" consisting of a number of functions of three
variables; (f) Various combinations also occur, for example in
television with an associated audio channel.

2. A transmitter which operates on the message in some way to
produce a signal suitable for transmiss1ion over the channel. In
telephony this operation consists merely of changing sound pres
sure into a proportional electrical current. In telegraphy we have
an encoding operation which produces a sequence of dots, dashes
and spaces on the channel corresponding to the message. In a
multiplex PCM system the different speech functions must be
sampled, compressed, quantized and encoded, and finally inter
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Fig. 1. - Schematic diagram of a general communication system.

leaved properly to construct the signal. Vocoder systems, tele
vision and frequency modulation are other examples of complex
operations applied to the message to obtain the signal.

3. The channel is merely the medium used to transmit the
signal from transmitter to receiver. It may be a pair of wires, a
coaxial cable, a band of radio frequencies, a beam of light, etc.
During transmission, or at one of the terminals, the signal may
be perturbed by noise. This is indicated schematically in Fig. 1
by the noise source acting on the transmitted signal to produce
the received signal.

4. The receiver ordinarily performs the inverse operation of
that done by the transmitter, reconstructing the message from
the signal.

5. The destination is the person (or thing) for whom the mes-
sage is intended.

"'TT • I .d . I bl . I'vv e wIS I to consl er certam genera pro ems lIIVO vmg com-
munlcatlOn systems. To do tIns It IS first necessary to represent
the various elements involved as mathematical entities, suitably
idealized from their physical counterparts We may roughly
classify communication systems into three main categories:
discrete, continuous and mixed. By a discrete system we will
mean one In which both the message and the SIgnal are a sequence
of discrete symbols. A typical case is telegraphy where the mes-
sage is a sequence of letters and the signal a sequence of dots,
dashes and spaces. A continuous system is one in which the
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message and signal are both treated as continuous functions,
e.g., radio or television. A mixed system is one in which both
discrete and contmuous variables appear, e.g., PCM transmission
of speech.

We first consider the discrete case. This case has applications
not only in communication theory, but also in the theory of
computing machines, the design of telephone exchanges and other
fields. In addition the discrete case forms a foundation for the
continuous and mixed cases which will be treated in the second
half of the paper.



-Ir---------

1. The Discrete Noiseless Channel

Teletype and telegraphy are two simple examples of a discrete
channel for transmitting information. Generally, a discrete chan
nel will mean a system whereby a sequence of choices from a
finite set of elementary symbols S1 . . . Sn can be transmitted
from one point to another. Each of the symbols S, is assumed to
have a certain duration in time i, seconds (not necessarily the
same for different Si, for example the dots and dashes in teleg
raphy). It is not required that all possible sequences of the S, be
capable of transmission on the system; certain sequences only
may be allowed. These will be possible signals for the channel.
Thus in telegraphy suppose the symbols are: (1) A dot, consist
ing of line closure for a unit of time and then line open for a unit
of time; (2) A dash, consisting of three time units of closure
and one unit open; (3) A letter space consisting of, say, three
units of line open; (4) A word space of six units of line open. We
might place the restriction on allowable sequences that no spaces
follow each other (for if two letter spaces are adjacent, they are
identical with a word space). The question we now consider ilil
how one can measure the capacity of such a channel to transmit
information.

In the teletype case where all symbols are of the same duration,
and any sequence of the 32 symbols is allowed, the answer is easy.
Each symbol represents five bits of information. If the system
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transmits n symbols per second it is natural to say that the
channel has a capacity of 5n bits per second. This does not mean
that the teletype channel will always be transmitting information
at this rate - this is the maximum possible rate and whether or
not the actual rate reaches this maximum depends on the source
of information which feeds the channel, as will appear later.

In the more general case with different lengths of symbols and
constraints on the allowed sequences, we make the following
definition: The capacity C of a discrete channel is given by

C = tim log N(T)
T~r:D T

where N (T) is the number of allowed signals of duration T.
It is easily seen that in the teletype case this reduces to the

previous result. It can be shown that the limit in question will
exist as a finite number in most cases of interest. Suppose all
sequences of the symbols Sl' . . . , S; are allowed and these
symbols have durations t l , • • • , t-: What is the channel
capacity? If N (t) represents the number of sequences of duration
t we have

N(t) = N(t - t l ) + N(t - t2 ) + ... + N(t - tn).

The total number is equal to the sum of the numbers of sequences
ending in Sl, S2, • . • , S; and these are N (t - t l ), N (t - t 2),
... ,N(t - tn ) , respectively. According to a well-known result
in finite differences, N (t) is the asymptotic for large t to AXJ
where A is constant and X o is the largest real solution of the
characteristic equation:

and therefore

log Xl}.
Tlog AXoLimc

In case there are restrictions on allowed sequences we may still
often obtain a difference equation of this type and find e from
the characteristic equation. In the telegraphy case mentioned
above

2) + IV(t 4) + ;.V(t 5) + ;.V(t

+ N(t - 8) + N(t - 10)

7)
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as Yv'e see by counting sequences of symbols according to the
last or next to the last symbol occurring. Hence C is log P.o

where ).to is the positive root of 1 = p.2 + p.4 + p.5 + p.7 + p.8 +
p.lO. Solving this we find C = 0.539.

A very general type of restriction which may be placed on
allowed sequences is the following: We imagine a number of
possible. states aI, a2, . . . , am. For each state only certain
symbols from the set 8 1 , • • • , S; can be transmitted (different
subsets for the different states). When one of these has been
transmitted the state changes to a new state depending both on
the old state and the particular symbol transmitted. The tele
graph case is a simple example of this. There are two states
depending on whether or not a space was the last symbol trans
mitted. If so, then only a dot or a dash can be sent next and the
state always changes. If not, any symbol can be transmitted and
the state changes if a space is sent, otherwise it remains the same.
The conditions can be indicated in a linear graph as shown in
Fig. 2. The junction points correspond to the states and the lines
indicate the symbols possible in a state and the resulting state.
In Appendix 1 it is shown that if the conditions on allowed
sequences can be described in this form C will exist and can be
calculated in accordance with the following result:

Theorem 1: Let b~j) be the duration of the sth symbol which is
allowable in state i and leads to stage j. Then the channel ca
pacity C is equal to log W where W is the largest real root of the
determinantal equation:

------------1b W-b~;) ~tl 1--=--.0+-------------
8

where ~ij 1 if i j and is zero otherwise.

DASH

WORD SPACE

Fig. 2. - Graphical representation of 1he constraints on telegraph symbols.
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For example, in the telegraph case (Fig. 2) the determinant is:

(W-2 + W-') I
(W- 3 + W-6)

I - 1

On expansion this leads to the equation given above for this set
of constraints.

2. The Discrete Source of Information

We have seen that under very general conditions the logarithm
of the number of possible signals in a discrete channel increases
linearly with time. The capacity to transmit information can be
specified by giving this rate of increase, the number of bits per
second required to specify the particular signal used.

We now consider the information source. How is an information
source to be described mathematically, and how much informa
tion in bits per second is produced in a given source? The main
point at issue is the effect of statistical knowledge about the
source in reducing the required capacity of the channel, by the
use of proper encoding of the information. In telegraphy, for
example, the messages to be transmitted consist of sequences of
letters. These sequences, however, are not completely random.
In general, they form sentences and have the statistical structure
of, say, English. The letter E occurs more frequently than Q,
the sequence TH more frequently than XP, etc. The existence of
this structure allows one to make a saving in time (or channel
capacity) by properly encoding the message sequences into signal
sequences. This is already done to a limited extent in telegraphy
by using the shortest channel symbol, a dot, for the most common
English letter E; while the infrequent letters, Q, X, Z are repre-
sented by longer sequences of dots and dashes. This idea is
carried still further in certain commercial codes where common
words and phrases are represented by four- or five-letter code
groups with a considerable saving in average time. The stand-
ardized greeting and anniversary telegrams now in use extend
this to the point of encoding a sentence or two into a relatively
short sequence of numbers.

We can think of a discrete source as generating the message,
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symbol by symbol. It will choose successive symbols according to
certain probabilities depending, in general, on preceding choices
as well as the particular symbols in question. A physical system,
or a mathematical model of a system which produces such a
sequence of symbols governed by a set of probabilities, is known
as a stochastic process." We may consider a discrete source, there
fore, to be represented by a stochastic process. Conversely, any
stochastic process which produces a discrete sequence of symbols
chosen from a finite set may be considered a discrete source.
This will include such cases as:

1. Natural written languages such as English, German, Chinese.

2. Continuous information sources that have been rendered dis
crete by some quantizing process. For example, the quantized
speech from a PCM transmitter, or a quantized television
signal.

3. Mathematical cases where we merely define abstractly a
stochastic process which generates a sequence of symbols. The
following are examples of this last type of source.

(A) Suppose we have five letters A, B, C, D, E which are chosen
each with probability .2, successive choices being independ
ent. This would lead to a sequence of which the following
is a typical example.

BDCBCECCCADCBDDAAECEEAABBD
A E E C ACE E B A E E C B C E A D.
This was constructed with the use of a table of random
numbers.'

(B) Using the same five letters let the probabilities be 4, 1, 2,
.2, .1, respectively, with successive choices independent. J.A~

typical message from this source is then:
AAACDCBDCEAADADACEDAEADCA
BED ADD C E C A A A A A D.

(C) A more complIcated structure is obtamed If successive
symbols are not chosen independently but their probabilities

8 See, for example, S. Chandrasekhar, "Stochastic Problems in Physics and
Astronomy," Reviews of Modern Physics, v. 15, No.1, January 1943, p. 1.
• Kendall and SmIth, Tables oj Random Samplmg Numbers, CambrIdge,
1939.
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depend on preceding letters. In the simplest case of this type
a choice depends only on the preceding letter and not on
ones before that. The statistical structure can then be de
scribed by a set of transition probabilities Pi (j), the prob
ability that letter i is followed by letter j. The indices i and
j range over all the possible symbols. A second equivalent
way of specifying the structure is to give the "digram"
probabilities P(i,j) , i.e., the relative frequency of the di
gram i j. The letter frequencies p(i), (the probability of
letter i), the transition probabilities Pi (j) and the digram
probabilities p (i,i) are related by the following formulas:

p(i) = ~p(i,j) = ~p(i, i) = ~p(i)Pi(i)
1 1 1

p(i, j) = P(i)pi(j)

~Pi(i) = ~p(i) = ~p(i,j) = 1.
1 a '.1

As a specific example suppose there are three letters A, B,
C with the probability tabies:

Pi(i) J 1- p(i) 'P(i, j) J
A B C A B C

A 0 4 1 A 9 A 0 4 1
- - -
5 5 27 15 15

B 1 1 0 B 16 B 8 8 01- 2 2 27 1- 27 27

C 1 2 1 C 2 C 1 4 1
- --

2 5 10 27 27 135 135

A typical message from this source is the following:

ABBABABABABABABBBABBBBBABA
BABABABBBACACABBABBBBABBAB
AC B B B ABA.

The next increase in complexity would involve trigram
frequencies but no more. The choice of a letter would de-
pend on the preceding two letters but not on the message
before that point. A set of trigram frequencies p (i, j, k) or
equivalently a set of transition probabilities p" (k) would
be required. Continuing in this way one obtains successively
more complicated stochastic processes. In the general n-gram
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case a set of n-gram probabilities p (i l , i2 , • • • , in) or of
transition probabilities Pi

l
, i

2
, • • • , i n -

l
(in) is required to

specIfy the statistical structure.

(D) Stochastic processes can also be defined which produce a
text consisting of a sequence of "words." Suppose there are
five letters A, B, C, D, E and 16 "words" in the language
with associated probabilities:

.10 A .16 BEBE .11 CABED .04 DEB

.04 ADEB .04 BED .05 CEED .15 DEED

.05 ADEE .02 BEED .08 DAB .01 EAB,

.01 BADD .05 CA .04 DAD .05 EE

Suppose successive "words" are chosen independently and
are separated by a space. A typical message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB
BEBE BEBE BEBE ADEE BED DEED DEED CEED
ADEE A DEED DEED BEBE CABED BEBE BED DAB
DEEDADEB.

If all the words are of finite length this process is equivalent
to one of the preceding type, but the description may be
simpler in terms of the word structure and probabilities. We
may also generalize here and introduce transition probabil
ities between words, etc.

These artificial languages are useful in constructing simple
problems and examples to illustrate various possibilities. We can
also approximate to a natural language by means of a series of
simple artificial languages. The zero-order approximation is ob
tained by choosing all letters with the same probability and in-
dependently. The first-order approximation is obtained by choos-
ing successive letters independently but each letter having the
same probability that it has in the natural language." Thus, in
the first-order approximation to English, E is chosen with prob-
ability .12 (its frequency in normal English) and W with proba-
bility .02, but there is no influence between adjacent letters and
no tendency to form the preferred digrams such as TH, ED, etc.

5 Letter, digram and trigram frequencies are given in Secret and Urgent by
Fletcher Pratt, Blue RIbbon Books, 1939. ~yVOId frequencies arc tabulated
in Relative Frequency oj English Speech Sounds, G. Dewey, Harvard Un i-
versity Press, 1923.
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In the second-order approximation, digram structure is intro-
duced. After a letter is chosen, the next one is chosen in accord-
ance with the frequencies with which the various letters follow
the first one. This requires a table of digram frequencies Pi (j) .
In the third-order approximation, trigram structure is introduced.
Each letter is chosen with probabilities which depend on the pre
ceding two letters.

3. The Series of Approximations to English

To give a visual idea of how this series of processes approaches a
language, typical sequences in the approximations to English
have been constructed and are given below. In all cases we have
assumed a 27-symbol "alphabet," the 26 letters and a space.

1. Zero-order approximation (symbols independent and equi
probable) .

XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYV
KCQSGHYD QPAAMKBZAACIBZLHJQD.

2. First-order approximation (symbols independent but with
frequencies of English text).

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA
TH EEl ALHENHTTPA OOBTTVA NAH BRL.

3. Second-order approximation (digram structure as in Eng-
lish) .

ON IE ANTSOUTINYS ARE T INCTORE ST BE S
DEAMY ACHIN D ILONASIVE TUCOOWE AT TEA
SONARE FUSO TIZIN ANDY TOBE SE.A.CE CTISBE.

4. Third-order approximation (trigram structure as in English).
IN NO 1ST LAT WHEY CRATICT FROURE BIBS
GROCID PONDENOME OF DEIVIONSTURES OF
THE REPTAOIN IS REOOACTIONA OF ORE.

5. First-order word approximation. Rather than continue with
tetragram, ... , n-gram structure it is easier and better to
jump at this point to word units. IIere words are chosen
independently but with their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT
OR COME CAN DIFFERENT NATURAL HERE HE
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THE A IN CAME THE TO OF TO EXPERT GRAY
COME TO FURNISHES THE LINE MESSAGE HAD
BE THESE.

6. Second-order word approximation. The word transition prob-
abilities are correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN
ENGLISH WRITER THAT THE CHARACTER OF
THIS POINT IS THEREFORE ANOTHER METHOD
FOR THE LETTERS THAT THE TIME OF WHO
EVER TOLfr THE PROBLEM FOR AN UNEX
PECTED.

The resemblance to ordinary English text increases quite no
ticeably at each of the above steps. Note that these samples have
reasonably good structure out to about twice the range that is
taken into account in their construction. Thus in (3) the statis
tical process insures reasonable text for two-letter sequences, but
four-letter sequences from the sample can usually be fitted into
good sentences. In (6) sequences of four or more words can easily
be placed in sentences without unusual or strained constructions.
The particular sequence of ten words "attack on an English writer
that the character of this" is not at all unreasonable. It appears
then that a sufficiently complex stochastic process will give a
satisfactory representation of a discrete source.

The first two samples were constructed by the use of a book of
random numbers in conjunction with (for example 2) a table of
letter frequencies. This method might have been continued for
(3), (4) and (5), smce dIgram, trigram and word frequency
tables are available, but a simpler equivalent method was used.
To construct (3) for example, one opens a book at random and
selects a letter at random on the page. This letter is recorded.
The book is then opened to another page and one reads until this
letter IS encountered. The succeedmg letter IS then recorded.
Turning to another page this second letter is searched for and the
succeeding letter recorded, etc. A similar process was use for (4) ,
(5) and (6). It would be interesting if further approximations
could be constructed, but the labor involved becomes enormous
at the next stage.
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4. Graphical Representation of a Markoff Process

Stochastic processes of the type described above are known math-
ematically as discrete Markoff processes and have been exten
sively studied in the literature." The general case can be described
as follows: There exist a finite number of possible "states" of a
system; 8 11 S2, . . . , Sn. In addition there is a set of transition
probabilities, Pi (j), the probability that if the system is in state
S, it will next go to state Sj. To make this Markoff process into an
information source we need only assume that a letter is produced
for each transition from one state to another. The states will cor
respond to the "residue of influence" from preceding letters.

The situation can be represented graphically as shown in Figs.
3, 4 and 5. The "states" are the junction points in the graph and
the probabilities and letters produced for a transition are given
beside the corresponding line. Figure 3 is for the example B in
Section 2, while Fig. 4 corresponds to the example C. In Fig. 3
there is only one state since successive letters are independent. In
Fig, 4 there are as many states as letters. If a trigram example
were constructed there would be at most n2 states corresponding
to the possible pairs of letters preceding the one being chosen.
Figure 5 is a graph for the case of word structure in example D.
Here S corresponds to the "space" symbol.

s. Ergodic and Mixed Sources

As we have indicated above a discrete source for our purposes can
be considered to be represented by a Markoff process. Among the
possible discrete Markoff processes there is a group with special
properties of significance in communication theory. This special
class consists of the "ergodic" processes and we shall call the
corresponding sources ergodic sources. Although a rigorous defi-
nition of an ergodic process is somewhat involved, the general
idea is simple. In an ergodic process every sequence produced by
the process is the sallIe in statistical properties. Thus the letter
frequencies, digram frequencies, etc" obtained from particular
sequences, will, as the lengths of the sequences increase, approach

6 For a detaIled treatment see M. Frechet, Methods des fonctwns arbltra~res.

Theorie des enenements en chaine dans le cas d'un nombre fini d'etats pos
~ibles, Paris, Gauthiel Villars, 1938.
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definite limits independent of the particular sequence. Actually
this is not true of every sequence but the set for which it is false
has probability zero. Roughly the ergodic property means sta
tistical homogeneity.

E

.1

.2
C

Fig. 3. - A graph corresponding to the source in example B.

B

.5

Fig. 4. - A graph corresponding to the source in example C.

Fig. 5. - A graph corresponding to the source in example D.
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All the examples of artificial languages given above are ergodic.
This property is related to the structure of the corresponding
graph. If the graph has the following two properbes7 the corre
sponding process will be ergodic:

1. The graph does not consist of two isolated parts A and B
such that it is impossible to go from junction points in part
A to junction points in part B along lines of the graph in the
direction of arrows and also impossible to go from junctions
in part B to junctions in part A.

2. A closed series of lines in the graph with all arrows on the
lines pointing in the same orientation will be called a "cir
cuit." The "length" of a circuit is the number of lines in it.
Thus in Fig. 5 series BEBES is a circuit of length 5. The
second property required is that the greatest common divisor
of the lengths of all circuits in the graph be one.

If the first condition is satisfied but the second one violated by
having the greatest common divisor equal to d > 1, the sequences
have a certain type of periodic structure. The various sequences
fall into d different classes which are statistically the same apart
from a shift of the origin (i.e., which letter in the sequence is
called letter 1). By a shift of from 0 up to d - 1 any sequence
can be made statistically equivalent to any other. A simple ex
ample with d = 2 is the following: There are three possible letters
a, b, c. Letter a is followed with either b or c with probabilities
! and i respectively. Either b or c is always followed by letter a.
Thus a typical sequence is

a b a cae a cab a cab a b a cae.

ThIS type of situation IS not of much Importance for our work.
If the first condition is violated the graph may be separated

into a set of subgraphs each of which satisfies the first condition.
Vie will assume that the second condition is also satisfied for
each subgraph. We have in this case what may be called a
"mixed" source made up of a number of pure components. The
components correspond to the various subgraphs. If L 1 , L 2 , L 3 ,

. . . are the component sources we may write

1 These are restatements in terms of the graph of conditions gIven III

Frechet.



48 The Mathematical Theory of Communication

where Pi is the probability of the component source L •.
Physically the situation represented is this: There are several

different sources L 1 , L 2 , L 3 , • • • which are each of homogeneous
statistical structure (i.e., they are ergodic). We do not know
a priori which is to be used, but once the sequence starts in a
given pure component Li, it continues indefinitely according to
the statistical structure of that component.

As an example one may take two of the processes defined above
and assume P1 = .2 and P2 = .8. A sequence from the mixed
source

L = .2L1 + .8L2

would be obtained by choosing first L 1 or L 2 with probabilities .2
and .8 and after this choice generating a sequence from which
ever was chosen.

Except when the contrary is stated we shall assume a source to
be ergodic. This assumption enables one to identify averages
along a sequence with averages over the ensemble of possible se
quences (the probability of a discrepancy being zero). For ex
ample the relative frequency of the letter A in a particular infi
nite sequence will be, with probability one, equal to its relative
frequency in the ensemble of sequences.

If Pi is the probability of state i and Pi (j) the transition prob
ability to state j, then for the process to be stationary it is clear
that the Pi must satisfy equilibrium conditions:

Pi = ~PiPi(j).
i

In the ergodic case it can be shown that with any starting condi-
tions the probabilities r, (N) of being in state j after N symbols,
approach the equiUbrium values as N ~ 00.

6. Choice, Uncertainty and Entropy

We have represented a discrete information source as a Markoff
process. Can we define a quantity which will measure, in some
sense, how much information is "produced" by such a process, or
better, at what rate information is produced?
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Suppose we have a set of possible events whose probabilities of
occurrence are PI' P2, ..• ,pn. These probabilities are known but
that is all we know concernmg which event wIll occur. Can we
find a measure of how much "choice" is involved in the selection
of the event or of how uncertain we are of the outcome?

If there is such a measure, say H (PI, P2, •.• ,Pn), it is reason
able to require of it the following properties:

1. H should be continuous in the Pi.

2. If all the Pi are equal, Pi = ~ ' then H should be a mono
tonic increasing function of n. With equally likely events
there is more choice, or uncertainty, when there are more
possible events.

3. If a choice be broken down into two successive choices, the
original H should be the weighted sum of the individual
values of H. The meaning of this is illustrated in Fig. 6. At
the left we have three possibilities PI =!, P2 = i, P3 = 1.
On the right we first choose between two possibilities each
with probability j , and if the second occurs make another
choice with probabilities j, i. The final results have the
same probabilities as before. We require, in this special case,
that

H(!, i, 1) = H(!, !) + ! H(j, i)·

The coefficient! is the weighting factor introduced because this
second choice only occurs half the time.

Fig. 6. - Decomposition of a choice from three possibilities.

In Appendix 2, the following result is established:

Theorem 2: The only H satisfY2:ng the three above aSS21mption.~

is of the form:
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n

where K is a positive constant.

This theorem, and the assumptions required for its proof, are in
no way necessary for the present theory. It is given chiefly to
lend a certain plausibility to some of our later definitions. The
real justification of these definitions, however, will reside in their
implications.

Quantities: of the form H = - ~ Pi log Pi (the constant K
merely amounts to a choice of a unit of measure) play a central
role in information theory as measures of information, choice and
uncertainty. The form of H will be recognized as that of entropy
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Fig. 7. Entropy in the case of two possibilities with probabilities p and (1 pl.

as defined in certain formulations of statistical mechanics" where
Pi is the probability of a system being in cell i of its phase space.

8 See, for example, R. C Tolman, Prindples oj Statistical Mechanics, Ox-
ford, Clarendon, 1938.
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H is then, for example, the H in Boltzmann's famous H theorem.
We shall call H - ~ Pi log Pi the entropy of the set of proba-
bilities PI, ... ,Pn. If x is a chance varIable we wIll wflte H (x)
for its entropy; thus x is not an argument of a function but a
label for a number, to differentiate it from H(y) say, the entropy
of the chance variable y.

The entropy in the case of two possibilities with probabilities P
and q = 1 - P, namely

H = - (p log P + q log q)

is plotted in Fig. 7 as a function of p.
The quantity H has a number of interesting properties which

further substantiate it as a reasonable measure of choice or
information.

1. H = 0 if and only if all the Pi but one are zero, this one
having the value unity. Thus only when we are certain of the out
come does H vanish. Otherwise H is positive.

2. For a given n, H is a maximum and equal to log n when all

the Pi are equal, i.e., ~. This is also intuitively the most uncertain
situation.

3. Suppose there are two events, x and y, in question, with m
possibilities for the first and n for the second. Let P (i, j) be the
probability of the joint occurrence of i for the first and j for the
second. The entropy of the joint event is

H (x, y) - - ~ p(i, j) log p(i, j)
~. 1

while

HEx) ~p(i, j) log~p(i, j)

Hey) Ep(i,j) logEp(i,j).

It is easily shown that

H(x, y) < H(x) + H(y)

with equality only if the events are independent (i.e., p(i, j) =
p (£) p (j) ) The uncertainty of a joint event is less than or equal
to the sum of the individual uncertainties.

4. Any change toward equalization of the probabilities PI' P2'
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... ,Pn increases H. Thus if Pl < P2 and we increase PI' deereas-
ing P2 an equal amount so that Pl and P2 are more nearly equal,
then H increases. More generally, if we perform any "averaging"
operation on the Pi of the form

P~ = ~aii Pi
1

where~ aii ='~ aii = 1, and all aii >0, then H increases (except
\ 1

in the special case where this transformation amounts to no
more than a permutation of the Pi with H of course remaining
the same). .'

5. Suppose there are two chance events x and y as in 3, not
necessarily independent, For any particular value i that x can
assume there is a conditional probability Pi (j) that y has the
value j. This is given by

(
.) _ p(i, j)

Pi J -
~p(i,j)

1

We define the conditional entropy of y, H:t(Y) as the average of
the entropy of y for each value of x, weighted according to the
probability of getting that particular x. That is

11:r:(Y) = - ~p(i,j) log Pi(j).
\.1

This quantity measures how uncertain we are of y on the average
when we know x. Substituting the value of Pi (j) we obtain

H:r:(Y) ~ p(i, j) log p(i,j) +~ p(i, j) log~ p(i, j)

= H(x, y) - H(x)
or

H(x, y) H(x) + H:t(Y).

The uncertainty (or entropy) of the joint event x, y is the uncer
tainty of x plus the uncertainty of Y when x is known.

6 From 3 and 5 we ha.ve

H(x) + H(y) > H(x,y) - H(x) + H:t(Y).
Hence

H(y) > HI/J(Y) ,
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The uncertainty of y is never increased by knowledge of x. It will
be decreased unless x and yare independent events, in which case
it is not changed.

7. The Entropy of an Information Source

Consider a discrete source of the finite state type considered
above. For each possible state i there will be a set of probabilities
Pi (j) of producing the various possible symbols j. Thus there is
an entropy Hi for each state. The entropy of the source will be
defined as the average of these Hi weighted in accordance with
the probability of occurrence of the states in question:

H = LPiHi
i

= - ~PiPi(j) log Pi(j).
'.'

This is the entropy of the source per symbol of text. If the
Markoff process is proceeding at a definite time rate there is also
an entropy per second.

were Ii is the average frequency (occurrences per second) of
state i. Clearly

H'=mH

where m is the average number of symbols produced per second.
H or H' measures the amount of information generated by the
source per symbol or per second. If the logarithmic base is 2,
they will represent bits per symbol or per second.

If successive symbols are independent then H is simply
~ Pi log Pi where Pi is the probability of symbol i. Suppose in

this case we consider a long message of N symbols. It will contain
with high probability about P1N occurrences of the first symbol,
P2N occurrences of the second, etc. Hence the probability of this
particular message will be roughly

or

log P ~ N~Pi log Pi
•
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log p .

H
log lip

N

H is thus approximately the logarithm of the reciprocal prob
ability of a typical long sequence divided by the number of
symbols in the sequence. The same result holds for any source.
Stated more precisely we have (see Appendix 3) :

Theorem 3: Given any £ > 0 and B> 0, we can find an No
such that the sequences of any length N > No fall into two
classes:

1. A set whose total probability is less than e.

2. The remainder, all of whose members have probabilities satis
fying the inequality

log p-l
N - H <0.

log p-l
In other words we are almost certain to have N very close to

H when N is large.
A closely related result deals with the number of sequences of

various probabilities. Consider again the sequences of length N
and let them be arranged in order of decreasing probability. We
define n(q) to be the number we must take from this set starting
with the most probable one in order to accumulate a total prob
ability q for those taken.

Theorem 4:
L· log n(q) H

when q does not equal 0 or 1.

We IIlay interpret log n(q) as the nUIIlber of bits rcquircd lo
specify the sequence when we conSIder only the most probable

of bits per symbol for the specification. The theorem says that for
large IV this will be independent of q and equal to H. The rale of
growth of the logarIthm of the number of reasonably probable
sequences is given by H, regardless of our interpretation of
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"reasonably probable." Due to these results, which are proved in
Appendix 3, it is possible for most purposes to treat the long
sequences as though there were Just 2R N of them, each wIth a
probability 2-H N •

The next two theorems show that Hand H' can be determined
by limiting operations directly from the statistics of the message
sequences, without reference to the states and transition prob
abilities between states.

Theorem 5: Let p(Bd be the probability of a sequence B, of
symbols from the source. Let

GN = - ~ ~ p(Bi ) log p(Bi )

where the sum is over all sequences B, containing N symbols.
Then G N is a monotonic decreasing function of Nand

Lim GN = H.
N-+oo

Theorem 6: Let p(B i , Sj) be the probability of sequence s,
followed by symbol S, and PB;(Sj) = p(Bi , Sj)/p(Bd be the
conditional probability of S, after B i. Lei-

F N = - ~p(Bi, Sj) log PBi (Sj)
t,1

where the sum is over all blocks B i of N - 1 symbols and over all
symbols Sj. Then FN is a monotonic decreasing function of N,

FN = NG N - (N - 1) GN - I ,

1 N

G.r.l = N ~FN,

and Lim F N = H.
l'l tee

These results are derived in AppendIx 3. They show that a
series of approximations to H can be obtained by considering
only the statistical structure of the sequences extending over 1, 2,
. . . , J.V symbols. FN is the better approximation. In fact FN is
the entropy of the Nth order approximation to the source of the
type dIscussed above. If there are no statIstIcal influences extend-
ing over more than N symbols, that is if the conditional prob-
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ability of the next 8ymbol knowing the preceding (J.V 1) i8
not changed by a knowledge of any before that, then PN - H.
FN of course is the conditional entropy of the next symbol when
the (N - 1) preceding ones are known, while GN is the entropy
per symbol of blocks of N symbols.

The ratio of the entropy of a source to the maximum value it
could have while still restricted to the same symbols will be
called its relative entropy. This, as will appear later, is the maxi
mum compression possible when we encode into the same alpha
bet. One minus the relative entropy is the redundancy. The
redundancy of ordinary English, not considering statistical struc
ture over greater distances than about eight letters, is roughly
50%. This means that when we write English half of what we
write is determined by the structure of the language and half is
chosen freely. The figure 50% was found by several independent
methods which all gave results in this neighborhood. One is by
calculation of the entropy of the approximations to English. A
second method is to delete a certain fraction of the letters from a
sample of English text and then let someone attempt to restore
them. If they can be restored when 50% are deleted the redun
dancy must be greater than 50%. A third method depends on
certain known results in cryptography.

Two extremes of redundancy in English prose are represented
by Basic English and by James Joyce's book Finnegans Wake.
The Basic English vocabulary is limited to 850 words and the
redundancy is very high. This is reflected in the expansion that
occurs when a passage is translated into Basic English. Joyce
on the other hand enlarges the vocabulary and IS alleged to
achieve a compression of semantic content.

The redundancy of a language is related to the existence of
cro8sword puzzles. If the redundancy is zero any sequence of
letters is a reasonable text in the language and any two-dimen-
slOnal array of letters forms a crossword puzzle. If the redun-
dancy is too high the language imposes too many constraints for
large crossword puzzles to be possible A more detailed analysis
ShOW8 that if we assume the constraints imposed by the language
are of a rather chaotic and random nature, large crossword puzzles
are just possible when the redundancy is 50%. If the redundancy
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is 33%, three-dimensional crossword puzzles should be possible,
etc.

8. Representation of the Encoding and Decoding Operations

We have yet to represent mathematically the operations per
formed by the transmitter and receiver in encoding and decoding
the information. Either of these will be called a discrete trans
ducer. The input to the transducer is a sequence of input sym
boIs and its output a sequence of output symbols. The transducer
may have an internal memory so that its output depends not
only on the present input symbol but also on the past history.
We assume that the internal memory is finite, i.e., there exist a
finite number m of possible states of the transducer and that its
output is a function of the present state and the present input
symbol. The next state will be a second function of these two
quantities. Thus a transducer can be described by two functions:

u; = f(xn, an)

an+1 = g (Xn, an)

where:

X n is the nth input symbol.

an is the state of the transducer when the nth input symbol is
introduced,

u; is the output symbol (or sequence of output symbols) pro
duced when Xn is introduced if the state is an.

If the output symbols of one transducer can be identified with
the input symbols of a second, they can be connected in tandem
and the result is also a transducer. If there exists a second
transducer which operates on the output of the first and recovers
the original input, the first transducer will be called non-singular
and the second will be called its inverse.

Theorem 7: The output of a finite state transducer driven by a
finite state statistical source is a finite .state .statistical source,
with entropy (per unit time) less than or equal to that of the
input. If the transducer is non-singular they at e equal.

Let a represent the state of the source, which produces 3. se-
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quence of symbols Xl; and let f3 be the state of the transducer,
which produces, in its output, blocks of symbols Yj. The combined
system can be represented by the "product state space" of pairs
(a, f3). Two points in the space (a1, {31) and (a2, f32), are con
nected by a line if a1 can produce an x which changes f31 to f32'
and this line is given the probability of that x in this case. The
line is Iabeled with the block of Y1 symbols produced by the
transducer. The entropy of the output can be calculated as the
weighted sum over the states. If we sum first on f3 each resulting
term is less than or equal to the corresponding term for a, hence
the entropy is not increased. If the transducer is non-singular
let its output be connected to the inverse transducer. If Hi, H~

and H~ are the output entropies of the source, the first and
second transducers respectively, then Hi > H~ > H~ = Hi and
therefore Hi = H~.

Suppose we have a system of constraints on possible sequences
of the type which can be represented by a linear graph as in
Fig. 2. If probabilities p~s~ were assigned to the various lines
connecting state i to state j this would become a source. There is
one particular assignment which maximizes the resulting entropy
(see Appendix 4) .

Theorem 8: Let the system of constraints considered as a chan
nel have a capacity C = log W. If we assign

(s) B; W-l(')
Pi; =IJ: .,

where lW is the duration of the sth symbol leading from state i to
state j and the B i satisfy

then H is maximized and equal to C.

By proper assignment of the transition probabilities the
entropy of symbols on a channel can be maxImIzed at the
channel capacity.

9. The Fundamental Theorem for a Noiseless Channel

We will now justify our interpretation of H as the rate of gen-
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erating information by proving that H determines the channel
capacity required with most efficient coding.

Theorem 9: Let a source have entropy H (bits per symbol)
and a channel have a capacity C (bits per second). Then it is
possible to encode the output of the source in such a way as to

C
transmit at the average rate H - £ symbols per second over the

channel where £ is arbitrarily small. It is not possible to transmit

h
e

at an average rate greater t an Ii'

The converse part of the tlieorem, that Zcannot be exceeded,

may be proved by noting that the entropy of the channel input
per second is equal to that of the source, since the transmitter
must be non-singular, and also this entropy cannot exceed the
channel capacity. Hence H' < C and the number of symbols per
second = H'jH < CjH.

The first part of the theorem will be proved in two different
ways. The first method is to consider the set of all sequences of
N symbols produced by the source. For N large we can divide
these into two groups, one containing less than 2 U 1+1/ ) N members
and the second containing less than 2R N members (where R is the
logarithm of the number of different symbols) and having a total
probability less than fL. As N increases 1] and J.L approach zero.
The number of signals of duration T in the channel is greater
than 2(C-O)T with 0 small when T is large. If we choose

then there will be a sufficient number of seqllcnp,es of channel
symbols for the high probability group when ...-"'1 and Tare suffi
cicntly large (however small A) and also some additional ones.
The high probabIlIty group IS coded In an arbItrary one-to-one
way into this set. The remaining sequences are represented by
larger seqllenccs, starting and ending with one of the sequcnces
not used for the high probability group. This special sequence
acts as a slart and stop signal for a different code. In between a
suffiCIent tnne IS allowed to give enough dIfferent sequences for
all the low probability messages. This will require



60 The Mathematical Theory of Communication

where ep is small. The mean rate of transmission in message sym
bols per second will then be greater than

[<1-0) ~ +0 ~J-l= [(1-0)( ~ +A)+O( ~ -or
As N iribreases 0, Aand ~ approach zero and the rate approaches
C
H'

Another method of performing this coding and thereby prov
ing the theorem can be described as follows: Arrange the mes
sages of length N in order of decreasing probability and suppose

s-1

their probabili ties are PI > P2 > pa' . . > pn. Let P a = 2:Pi;
I

that is P, is the cumulative probability up to, but not including,
pa. We first encode into a binary system. The binary code for
message s is obtained by expanding P, as a binary number. The
expansion is carried out to m, places, where m, is the integer
sa tisfying :

1 1
log2 - < m, < 1 + log, -.

pa ps

Thus the messages of high probability are represented by short
codes and those of low probability by long codes. From these
inequalities we have

1 1
2m, < ps < 2m , - I '

The code for Fa will differ from all succeeding ones in one or

more of its m, places, since all the remaining Pi are at least 2~n,

larger and theIr bInary expansions therefore dIffer In the first
m, places. Consequently all the codes are different and it is
possible to recover the message from its code. If the channel
sequences are not already sequences of binary digits, they can
be ascribed binary numbers in an arbitrary fashion and the
bInary code thus translated Into signals sUItable for the channel.

The average number HI of binary digits used per symbol of
origins,] message is easily estima.ted. We ha.ve
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1
HI =~ ~m,p,.

But,

1 ( 1) 1 1 ( 1)N ~ log2 -:p: p, < N ~m8P, < N ~ 1 + log2 ---:;;: p,

and therefore,
1

GN < HI < GN + N'

As N increases GN approaches H, the entropy of the source and
HI approaches H.

We see from this that the inefficiency in coding, when only
a finite delay of N symbols is used, need not be greater than

~ plus the difference between the true entropy H and the

entropy GN calculated for sequences of length N. The per cent
excess time needed over the ideal is therefore less than

GN + 1 _ 1.
H HN

This method of encoding is substantially the same as one
found independently by R. M. Fano." His method is to arrange
the messages of length N in order of decreasing probability.
Divide this series into two groups of as nearly equal probability
as possible. If the message is in the first group its first binary
digit will be 0, otherwise 1. The groups are similarly divided
into subsets of nearly equal probability and the particular sub
set determines the second binary digit. This process is continued
until each subset contains only one message. It is easily seen
that apart from minor differences (generally in the last digit)
thIs amounts to the same thing as the arIthmetic process described
above.

] O. Discussion and Examples

In order to obtain the maximum power transfer from a generator
to a load, a transformer must in general be introduced 80 that

9 Technical Report No. 65, The Research Laboratory of Electronics, M.l.T.,
March 17, 1949
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the generator as seen from the load has the load resistance. The
situation here is roughly analogous. The transducer which does
the encoding should match the source to the channel in a statis
tical sense. The source as seen from the channel through the
transducer should have the same statistical structure as the
source which maximizes the entropy in the channel. The content
of Theorem 9 is that, although an exact match is not in general
possible, we can approximate it as closely as desired. The ratio
of the actual rate of transmission to the capacity C may be called
the efficiency of the coding system. This is of course equal to the
ratio of the actual entropy of the channel symbols to the maxi
mum possible entropy.

In general, ideal or nearly ideal encoding requires a long delay
in the transmitter and receiver. In the noiseless case which we
have been considering, the main function of this delay is to allow
reasonably good matching of probabilities to corresponding
lengths of sequences. With a good code the logarithm of the
reciprocal probability of a long message must be proportional to
the duration of the corresponding signal, in fact

log p-l I
T - C

must be small for all but a small fraction of the long messages.
If a source can produce only one particular message its entropy

is zero, and no channel is required. For example, a computing
machine set up to calculate the successive digits of 7r produces
a definite sequence with no chance clement. No channel is required
to "transmit" this to another point. One could construct a second
machine to compute the same sequence at the point. However,
this may be imprnctica.l In such a case we c:m choose to ignore
some or all of the statistical knowledge 'I.e have of the source.

that we construct a system capable of sendmg any sequence of
digits. In a similar way we may choose to use some of our
statistical knowledge of English in constructing a code, but not
all of it. In such a ease vie consider the source ',.'lith the maximum
entropy subj ect to the statistical conditions we wish to retain.
The entropy of tIllS source determmes the channel capacity
which is necessary and sufficient. In the tr example the only infor-
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Illation retained is that all the digits are chosen from the set
0, 1, . . . , 9. In the case of English one might wish to use the
statistIcal savmg possIble due to letter frequencIes, but nothIng
else. The maximum entropy source is then the first approximation
to English and its entropy determines the required channel
capacity.

As a simple example of some of these results consider a source
which produces a sequence of letters chosen from among A, B, C,
D with probabilities !, !, 1, 1, successive symbols being chosen
independently. We have

H = - (! log ! + ! log ! + ~ log 1)
= t bits per symbol.

Thus we can approximate a coding system to encode messages
from this source into binary digits with an average of i binary
digit per symbol. In this case we can actually achieve the limiting
value by the following code (obtained by the method of the
second proof of Theorem 9) :

A
B
C
D

o
10

110
111

The average number of binary digits used in encoding a sequence
of N symbols will be

N (! X 1 + ! X 2 + i X 3) = i N.

It is easily seen that the binary digits 0, 1 have probabilities
~, ! so the H for the coded sequences is one bit per symbol.
Since, on the average, we have i bInary symbols per orIginal
letter, the entropies on a time basis are the same. The maxi-
mum possible entropy for the original set is log 4 - 2, occurring
when A, B, 0, D have probabilities L ~, L ~. Hence the relative
entropy is ~. 'Vve can translate the binary sequences into the
orIgmal set of symbols on a two-to-one basIs by the following
table:

00
01
10
11

A'
B'
0'
D'



64 The Mathematical Theory of Communication

This double process then encodes the original message into the
same symbols but with an average compression ratio :.

As a second example consider a source which produces a se
quence of A's and B's with probability p for A and q for B.
If p < < q we have

H = - log pP(l - p)1-P

= - p log p(1 - p) (l-p)/p

..:. p log ~.

In such a case one can construct a fairly good coding of the
message on a 0, 1 channel by sending a special sequence, say
0000, for the infrequent symbol A and then a sequence indicating
the number of B's following it. This could be indicated by the
binary representation with all numbers containing the special
sequence deleted. All numbers up to 16 are represented as usual;
16 is represented by the next binary number after 16 which does
not contain four zeros, namely 17 = 10001, etc.

I t can be shown that as p~ 0 the coding approaches ideal
provided the length of the special sequence is properly adjusted.
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11. Representation of a Noisy Discrete Channel

We now consider the case where the signal is perturbed by noise
during transmission or at one or the other of the terminals. This
means that the received signal is not necessarily the same as that
sent out by the transmitter. Two cases may be distinguished. If
a particular transmitted signal always produces the same re
ceived signal, i.e., the received signal is a definite function of
the transmitted signal, then the effect may be called distortion.
If this function has an inverse - no two transmitted signals
producing the same received signal - distortion may be cor
rected, at least in principle, by merely performing the inverse
functional operation on the received signal.

The case of interest here is that in which the signal does not
always undergo the same change in transmission. In this case we
may assume the received signal E to be a function of the trans-
mItted sIgnal S and a second varIable, the noise N.

,.L ,E - f(S V)

The noise is considered to be a chance variable just as the mes-
sage \-vas above. In general it may be represented by a suitable
stochastic process. The most general type of noisy discrete chan-
nel we shall consider is a generalIzation of the finIte state noise-
free channel described previously. We assume a finite number of
states and a set of probabilities
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Pa,i ({1,j).

This is the probability, if the channel is in state a and symbol i
is transmitted, that symbol j will be received and the channel
left in state {3. Thus a and {3 range over the possible states, i over
the possible transmitted signals and j over the possible received
signals. In the case where successive symbols are independently
perturbed by the noise there is only one state, and the channel is
described by the set of transition probabilities Pi (j), the prob
ability of transmitted symbol i being received as j.

If a noisy channel is fed by a source there are two statistical
processes at work: the source and the noise. Thus there are a
number of entropies that can be calculated. First there is the
entropy H (x) of the source or of the input to the channel (these
will be equal if the transmitter is non-singular). The entropy of
the output of the channel, i.e., the received signal, will be denoted
by H (y). In the noiseless case H (y) = H (x). The joint entropy
of input and output will be H (x,y). Finally there are two condi
tional entropies Hx(Y) and Hy(x), the entropy of the output
when the input is known and conversely. Among these quantities
we have the relations

H(x,y) = H(x) + Hx(Y) = H(y) + Hy(x).

All of these entropies can be measured on a per-second or a per
symbol basis.

1-2. Equivocation and Channel Capacity

If the channel is noisy it is not in general possible to reconstruct
the original message or the transmitted signal }'!lith certainty by
any operation on the receivcd signal E. Therc arc, however, ways
of transmitting the information which are optimal in combating
noise. This is the problem which we now consider.

Suppose there are two possible symbols 0 and 1, and we are
transmitting at a rate of 1000 symbols per second with probabili
ties po PI ~. Thus our source is producing infOIIllation at the
rate of 1000 bits per second. During transmission the noise intro-
duces errors so that, on the average, 1 in 100 is received incor-
rectly (a 0 as 1, or 1 as 0). What is the rate of transmission of
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information? Certainly less than 1000 bits per second since about
1% of the received symbols are incorrect. Our first impulse might
be to say the rate is 990 bits per second, merely subtracting the
expected number of errors. This is not satisfactory since it fails
to take into account the recipient's lack of knowledge of where
the errors occur. We may carry it to an extreme case and suppose
the noise so great that the received symbols are entirely inde
pendent of the transmitted symbols. The probability of receiving
1 is ! whatever was transmitted and similarly for O. Then about
half of the received symbols are correct due to chance alone, and
we would be giving the system credit for transmitting 500 bits
per second while actually no information is being transmitted at
all. Equally "good" transmission would be obtained by dispensing
with the channel entirely and flipping a coin at the receiving
point.

Evidently the proper correction to apply to the amount of in
formation transmitted is the amount of this information which is
missing in the received signal, or alternatively the uncertainty
when we have received a signal of what was actually sent. From
our previous discussion of entropy as a measure of uncertainty it
seems reasonable to use the conditional entropy of the message,
knowing the received signal, as a measure of this missing infor
mation. This is indeed the proper definition, as we shall see later.
Following this idea the rate of actual transmission, R, would be
obtained by subtracting from the rate of production (i.e., the
entropy of the source) the average rate of conditional entropy.

R = H(x) - Hy(x)

The conditional entropy Hy(x) will, for convenience, be called
the equivocation It measures the average ambiguity of the re-
eeived signal.

In the example considered above, if a 0 is rcccived the a poste-
non probability that a 0 was transmitted IS .99, and that a 1 was
transmitted is .01. These figures are reversed if a 1 is received.
Hence

---------1H"'"y..-t-(~x)+-=-~~[.99log .99 + 0.01 log 0.01]1--------

= .081 bits/symbol

or 81 bits per second. We may say that the system IS transmitting
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at a rate 1000 81 919 bits per second. In the extreme case
where a 0 is equally likely to be received as a 0 or 1 and similarly
for 1, the a postertori probabilities are !, ! and

H1I(x) = - alog! + ! log !]

= 1 bit per symbol

or 1000 bits per second. The rate of transmission is then 0 as it
should be.

The following theorem gives a direct intuitive interpretation of
the equivocation and also serves to justify it as the unique appro
priate measure. We consider a communication system and an
observer (or auxiliary device) who can see both what is sent and
what is recovered (with errors due to noise). This observer notes
the errors in the recovered message and transmits data to the
receiving point over a "correction channel" to enable the receiver
to correct the errors. The situation is indicated schematically in
Fig. 8.

CORRECTION DATA

I

OBSERVER

~
M M'

SOURCE TRANSMITTER RECEIVER CORRECTING
DEVICE

Fig. 8. Schematic diagram of a correction system.

Theorem 10: If the correction channel has a capacity equal to
Hy(x) it is possible to so encode the correction data as to 8end it
over this channel and correct all but an arbitrarily small fraction
e of the errors. This is not possible if the channel capacity is less
than Hy(x).

Roughly then, IIy (x) is the amount of additional information
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that must be supplied per second at the receiving point to correct
the received message.

To prove the first part, consider long sequences of received
message M' and corresponding original message M. There will be
logarithmically THy (x) of the M's which could reasonably have
produced each M'. Thus we have THy (x) binary digits to send
each T seconds. This can be done with f frequency of errors on a
channel of capacity Hy(x).

The second part can be proved by noting, first, that for any
discrete chance variables x, y, Z,

Hy(x,z) > Hy(x).

The left-hand side can be expanded to give

Hy(z) + Hyz(x) > Hy(x)

Hyz (x) > HfAx ) - Hy(z ) >H1/ (x) - H (z ) .

If we identify x as the output of the source, y as the received
signal and z as the signal sent over the correction channel, then
the right-hand side is the equivocation less the rate of transmis
sion over the correction channel. If the capacity of this channel
is less than the equivocation the right-hand side will be greater
than zero and H1/z(x) > o. But this is the uncertainty of what
was sent, 'knowing both the received signal and the correction
signal. If this is greater than zero the frequency of errors cannot
be arbitrarily small.

Example:

Suppose the errors occur at random in a sequence of binary digits:
probability p that a digit is wrong and q = 1 - P that it is right.
These errors can be corrected if their position is known. Thus the
correction channel need only send information as to these positions.
This amounts to transmitting from a source which produces binary
digits with probability p for 1 (incorrect) and q for 0 (correct). This
requires a channel of capacity

[p log p + q log q]

which is the equivocation of the original system.

The rate of transmission R can be written in two other forms
due to the Identities noted above. We have
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R H(x) Hy(x)

= H (y) - Hx(Y)

=H(x) +H(y) -H(x,y).

The first defining expression has already been interpreted as the
amount of information sent less the uncertainty of what was sent.
The second measures the amount received less the part of this
which is due to noise. The third is the sum of the two amounts
less the joint entropy and therefore in a sense is the number of
bits per second common to the two. Thus all three expressions
have a certain intuitive significance.

The capacity C of a noisy channel should be the maximum pos
sible rate of transmission, i.e., the rate when the source is properly
matched to the channel. We therefore define the channel ca
pacity by

C = Max (H (x) - Hy(x))

where the maximum is with respect to all possible information
sources used as input to the channel. If the channel is noiseless,
Hy(x) = O. The definition is then equivalent to that already
given for a noiseless channel since the maximum entropy for the
channel is its capacity by Theorem 8.

13. The Fundamental Theorem for a Discrete Channel
with Noise

It may seem surprising that we should define a definite ca
pacity C for a noisy channel since we can never send certain
information in such a case. It is clear, however, that by sending
the information in a redundant form the probability of errors can
be reduced. For example, by repeating the message many times
and by a statistical study of the different received versions of the
message the probability of errors could be made very small. One
would expect, however, that to make this probability of errors
approach zero, the redundancy of the encoding must increase
indefinitely, and the rate of transmission therefore approach zero.
This is by no means true. I f it were, there would not be a very
well defined capacity, but only a capacity for a given frequency
of errors, or a given equivocation; the capacity going down as the
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error requirements are made more stringent. Actually the ca-
pacity C defined above has a very definite significance. It is pos-
sible to send information at the rate C through the channel with
as small a frequency of errors or equivocation as desired by
proper encoding. This statement is not true for any rate greater
than C. If an attempt is made to transmit at a higher rate than C,
say C + R l , then there will necessarily be an equivocation equal
to or greater than the excess R , Nature takes payment by re
quiring just that much uncertainty, so that we are not actually
getting any more than C through correctly.

The situation is indicated in Fig. 9. The rate of information into
the channel is plotted horizontally and the equivocation verti
cally. Any point above the heavy line in the shaded region can
be attained and those below cannot. The poin ts on the line cannot
in general be attained, but there will usually be two points on the
line that can.

These results are the main justification for the definition of C
and will now be proved.

Theorem 11: Let a discrete channel have the capacity C and
a discrete source the entropy per second H. If H < C there exists
a coding system such that the output of the source can be trans
mitted over the channel with an arbitrarily small frequency of
errors (or an arbitrarily small equivocation). If H > C it is pos
sible to encode the source so that the equivocation is less than
H - C + f. where f. is arbitrarily small. There is no method of
encoding which gives an equivocation less than H - C.

The method of proving the first part of this theorem is not by
exhibiting a coding method having the desired propertIes, but by
showing that such a code must exist in a certain group of codes.

Fig. 9. - The equivocation possible for a given input entropy to a channel.



72 The Mathematical Theory of Communication

In fact we will average the frequency of errors over this group
and show that this average can be made less than e. If the average
of a set of numbers is less than £ there must exist at least one in
the set which is less than e. This will establish the desired result.

The capacity C of a noisy channel has been defined as

C = Max (H(x) - Hy(x))

where x is the input and y the output. The maximization is over
all sources which might be used as input to the channel.

Let So be a source which achieves the maximum capacity C.
If this maximum is not actually achieved by any source (but
only approached as a limit) let So be a source which approximates
to giving the maximum rate. Suppose So is used as input to the
channel. We consider the possible transmitted and received se
quences of a long duration T. The following will be true:

1. The transmitted sequences fall into two classes, a high prob
ability group with about 2T H (Z ) members and the remaining se
quences of small total probability.

2. Similarly the received sequences have a high probability set
of about 2T H (y ) members and a low probability set of remaining
sequences.

3. Each high probability output could be produced by about
2T H . ( Z ) inputs. The total probability of all other cases is small.

4. Each high probability input could result in about 2T H
. (Z )

outputs. The total probability of all other results is small.

All the e's and 8's implied by the words "small" and "about" in
these statements approach zero as we allow T to increase and So
to approach the maximizing source.

The SItuation IS summaflzed In FIg. 10 where the input se-
quences are points on the left and output sequences points on the
right The upper fan of cross lines represents the range of possible
causes for a typical output. The lovler fan represents the range of
possible results from a typical input. In boLh cases the "small
probabilIty" sets are ignored.

Now suppose we have another source S, producing information
at rate R with R < C In the period T this source will have 2TR

high probability messages. Vle wish to associate these with a
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Fig. 10. - Schematic representation of the relations 'between inputs and outputs
in a channel.

selection of the possible channel inputs in such a way as to get a
small frequency of errors. We will set up this association in all
possible ways (using, however, only the high probability group of
inputs as determined by the source So) and average the frequency
of errors for this large class of possible coding systems. This is the
saIIle as calculating the frequency of errors for a random associa-
tlOn of the messages and channel Inputs of duration '1'. Suppose a
particular output Yl is observed. What is the probability of more
than one message from S, in the set of possible canses of Yl?
There are 2TR messages distributed at random in 2T H (Z ) points.
The probability of a particular point being a message is thus

2T(R-H (z» •

The probability that none of the points in the fan is a message
(apart from the actual originating message) is

------------.A.P-------~[l - 2T(R-H(z»]f-27'_H=-1I(_"')~. _
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NovV' R < H (x) H1I(x) 80 R H (x)
positive. Consequently

approaches (as T ~ 00)

1J with 1J

1 - 2-T'7.

Hence the probability of an error approaches zero and the first
part of the theorem is proved.

The second part of the theorem is easily shown by noting that
we could merely send C bits per second from the source, com
pletely neglecting the remainder of the information generated. At
the receiver the neglected part gives an equivocation H (x) - C
and the part transmitted need only add e. This limit can also be
attained in many other ways, as will be shown when we consider
the continuous case.

The last statement of the theorem is a simple consequence of
our definition of C. Suppose we can encode a source with H (x) =
C + a in such a way as to obtain an equivocation Hy(x) = a - £

with £ positive. Then

H(x) - Hy(x) = C + e

with e positive. This contradicts the definition of C as the maxi
mum of H (x) - Hy(x).

Actually more has been proved than was stated in the theorem.
If the average of a set of positive numbers is within e of zero, a

fraction of at most y'--; can have values greater than V;. Since
£ is arbitrarily small we can say that almost all the systems are
arbitrarily close to the ideal.

14. Discussion

The demonstration of Theorem 11, while not a pure existence
proof, has some of the deficIencIes of such proofs. An attempt to
obtain a good approximation to ideal coding by following the
method of the proof is generally impractical In fact, apart from
some rather trivial eases and certain limiting situations, no ex
plicit description of a series of approximation to the ideal has
been found. Probably thIS IS no aCCIdent but IS related to the
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difficulty of giving an explicit construction for a good approxima
tion to a random sequence.

An approximation to the ideal would have the property that if
the signal is altered in a reasonable way by the noise, the original
can still be recovered. In other words the alteration will not in
general bring it closer to another reasonable signal than the orig
inal. This is accomplished at the cost of a certain amount of
redundancy in the coding. The redundancy must be introduced
in the proper way to combat the particular noise structure in
volved. However, any redundancy in the source will usually help
if it is utilized at the receiving point. In particular, if the source
already has a certain redundancy and no attempt is made to
eliminate it in matching to the channel, this redundancy will help
combat noise. For example, in a noiseless telegraph channel one
could save about 50% in time by proper encoding of the mes
sages. This is not done and most of the redundancy of English
remains in the channel symbols. This has the advantage, how
ever, of allowing considerable noise in the channel. A sizable
fraction of the letters can be received incorrectly and still recon
structed by the context. In fact this is probably not a bad approx
imation to the ideal in many cases, since the statistical structure
of English is rather involved and the reasonable English se
quences are not too far (in the sense required for theorem) from
a random selection.

As in the noiseless case a delay is generally required to ap
proach the ideal encoding. It now has the additional function of
allowing a large sample of noise to affect the signal before any
judgment is made at the receiving point as to the original mes-
sage. Increasmg the sample SIze always sharpens the possible
statistical assertions.

The content of Theorem 11 and its proof can be formulated in
a somewhat different 'vVay which exhibits the connection with the
noiseless case more clearly. Consider the possible signals of dura-
tion T and suppose a subset of them is selected to be used. Let
those in the subset all be used with equal probability, and suppose
the receiver is constructed to select, as the original signal, the
most probable cause from the subset, when a perturbed signal is
received. We define Iv(T, q) to be the maximum number of sig-
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nah:; we can choose for the subset such that the probability of an
incorrect interpretation is less than or equal to q.

Theorem 12: Lim log NiT, q) = C, where C is the channel ca-
T--+oo

pacity, provided that q does not equal 0 or 1.

In other words, no matter how we set our limits of reliability,
we can distinguish reliably in time T enough messages to corre
spond to about CT bits, when T is sufficiently large. Theorem 12
can be compared with the definition of the capacity of a noiseless
channel given in section 1.

1S. Example of a Discrete Channel and Its Capacity

A simple example of a discrete channel is indicated in Fig. 11.
There are three possible symbols. The first is never affected by
noise. The second and third each have probability p of coming
through undisturbed, and q of being changed into the other of the

•

TRANSMITTED
SYMBOLS

p

Fig. 11. - Example of a discrete channel.

•

RECEIVED
SYMBOLS

pair. Let ex = - [p log p + q log q] and let P, Q and Q be the
probabilities of using the first, second and third symbols respec
tively (the last two being equal from consideration of symmetry).
We have:

H(x) - -P log P - 2Q log Q

Hy(x) - 2Qa.

We wish to choose P and Q in such a way as to maximize
H (x) Hy(x), subject to the constraint P + 2Q - 1. Hence we
consider
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u P log P 2Q log Q 2Qa t A(P + 2Q)

log P + X - 01
au
ap
au7iQ = - 2 - 2 log Q - 2a + 2X = o.

Eliminating X
log P = log Q + a

P = Qe" = Q~

~
P = ~ +2

1
Q = ~ + 2·

The channel capacity is then

~+2
C = log ~ .

Note how this checks the obvious values in the cases p = 1 and
p = !. In the first, f3 = 1 and C = log 3, which is correct since
the channel is then noiseless with three possible symbols. If p =
!, f3 = 2 and C = log 2. Here the second and third symbols can
not be distinguished at all and act together like one symbol. The
first symbol is used with probability P = ! and the second and
third together with probability j . This may be distributed be
tween them in any desired way and still achieve the maximum
capacity.

For intermediate values of p the channel capacity will lie be
tween log 2 and log 3. The distinction between the second and
third symbols conveys some information but not as much as in
the noiseless case. The first symbol is used somewhat more fre-
quently than the other two because of its freedom from noise.

16. The Channel Capacity in Certain Special Cases

If the noise affects successive channel symbols independently it
can be described by a set of transition probabilities pij. This is
the probabihty, if symbol t is sent, that j Will be received. The
channel capacity is then given by the maximum of
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where we vary the P l subject to zP l

method of Lagrange to the equations,

~ psi log psi = }J.

1 LPiPii
i

1. This leads by the

s = 1 2 ", ,

Multiplying 'by P, and summing on s shows that. u « -C. Let

the inverse of psi (if it exists) be hst so that LhstPsi = Oti. Then:
s

~ hstpsi log psi - log~ PiPit = - C L i.:
S.l l s

Hence:

or,

This is the system of equations for determining the maximizing
values of Pi, with C to be determined so that ~Pi = 1. When this
is done C will be the channel capacity, and the Pi the proper
probabilities for the channel symbols to achieve this capacity.

If each input symbol has the same set of probabilities on the
lines emerging from it, and the same is true of each output sym-

a b c

Fig. 12. - Examples of discrete channels with the same transition probabilities
for each input and for each output.

bol, the capacity can be easily calculated, Examples are shown in
Fig. 12. In such a case Hx(Y) is independent of the distribution of
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probabilities on the input symbols, and is given by ~ Pl log P~

where the Pi are the values of the transition probabilities from
any input symbol. The channel capacity is

Max [H (y) - Hx(Y)]

= Max H(y) + ~ Pi log Pi.

The maximum of H (y) is clearly log m where m is the number of
output symbols, since it is possible to make them all equally
probable by making the input symbols equally probable. The
channel capacity is therefore

C = log m + ~ Pi log Pi.

In Fig. 12a it would be

C = log 4 - log 2 = log 2.

This could be achieved by using only the 1st and 3d symbols. In
Fig. 12b

C = log 4 - flog 3 - ~ log 6

= log 4 - log 3 - ~ log 2

I 1 2 5
= og 3 3'

In Fig. 12c we have

C = log 3 - ~ log 2 - ~ log 3 - i log 6

3
= log 2! 31 6t .

Suppose the symbols fall into several groups such t.hat t.he noise
never causes a symbol in one group to be mistaken for a symbol
in another group. Let the capacity for the nth group be en (in
bits per second) when we use only the symbols In thIS group.
Then it is easily shown that, for best use of the entire set, the
total probability P n of all symbols in the nth group should be

\Vithin a group the probability is distributed just as it would be
if these were the only symbols being used. The channel capacity is
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17. An Example of Efficient Coding

The following example, although somewhat artificial, is a case in
which exact matching to a noisy channel is possible. There are
two channel symbols, 0 and 1, and the noise affects them in blocks
of seven symbols. A block of seven is either transmitted without
error, or exactly one symbol of the seven is incorrect. These eight
possibilities are equally likely. We have

C = Max [H(y) - H;z;(Y)]

= f [7 + ~ log ~]

= f bits/symbol.

An efficient code, allowing complete correction of errors and
transmitting at the rate 0, is the following (found by a method
due to R. Hamming) :

Let a block of seven symbols be Xl' X 2 , ••• ,X7 • Of these
X g , X 5 , X 6 and X 7 are message symbols and chosen arbitrarily
by the source. The other three are redundant and calculated as
follows:

X 4 is chosen to make ex = X4 + X 5 + X 6 + X 7 even

X 2 " " " " f3 = X 2 + Xa + X 6 + X 7 "

Xl " " " " Y = Xl + X g + X 5 + X 7 "

When a block of seven is received ex, f3 and yare calculated and
if even called zero, if odd called one. The binary number ex f3 y

then gives the subscript of the Xi that is incorrect (if 0 there
was no error) .10

10 For some further examples of self-correcting codes see M. J. E. Golay,
"Notes on DIgItal Codmg," Proceedm(Js of the lnst'ttute of Radw En(Jmeers,
v. 37, No. 6, June, 1949, p. 637.
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We now consider the case where the signals or the messages or
both are continuously variable, in contrast with the discrete
nature assumed heretofore. To a considerable extent the con
tinuous case can be obtained through a limiting process from the
discrete case by dividing the continuum of messages and signals
into a large but finite number of small regions and calculating
the various parameters involved on a discrete basis. As the size
of the regions is decreased these parameters in general approach
as limits the proper values for the continuous case. There are,
however, a few new effects that appear and also a general change
of emphasis in the direction of specialization of the general results
to particular cases.

We will not attempt, in the continuous case, to obtain our
results with the greatest generality, or with the extreme rigor of
pure mathematics, since this \vould involve a great deal of ab-
stract measure theory and would obscure the main thread of the
analysis. A preliminary study, however, indicates that the theory
can be formulated in a completely axiomatic and rigorous manner
which includes both the continuous and discrete cases and many
others The occasional liberties taken with limiting processes in
the present analysis can be justified in all eases of practical
interest.

18. Sets and Ensembles of Functions

We shall have to deal in the continuous case with sets of func-
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tiofis and ensembles of functions. A set of functions, as the name
implies, is merely a class or collection of functions, generally of
one variable, time. It can be specified by giving an explicit rep
resentation of the various functions in the set, or implicitly by
giving a property which functions in the set possess and others
do not. Some examples are:

1. The set of functions:

fe(t) = sin (t + 8).

Each particular value of 8 determines a particular function in
the set.

2. The set of all functions of time containing no frequencies over
W cycles per second.

3. The set of all functions limited in band to Wand in amplitude
to A.

4. The set of all English speech signals as functions of time.

An ensemble of functions is a set of functions together with a
probability measure whereby we may determine the probability
of a function in the set having certain properties.' For example
with the set,

fe (t) = sin (t + 8),

we may give a probability distribution for 8, say P(8). The set
then becomes an ensemble.

Some further examples of ensembles of functions are:

1. A finite set of functions !k(t) (k = 1, 2, ... , n) with the
probability of fk being Pk.

2. A finite dimensional family of functions

.
with a probability distribution for the parameters l¥i:

For example we could consider the ensemble defined by
n

n=l

1 In mathematical terminology the functions belong to a measure space
whose total measure is unity.
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with the amplitudes a~ distributed normally and independ
ently, and the phases (}i distributed uniformly (from 0 to 271'")
and independently.

3. The ensemble
+00
"" sin 7r(2Wt - n)f(ai, t) = LJ an -----"-------'--

n=-oo 7r(2Wt - n)

with the ai normal and independent all with the same standard

deviation y'N. This is a representation of "white" noise, band
limited to the band from 0 to lV cycles per second and with
average power N.2

4. Let points be distributed on the t axis according to a Poisson
distribution. At each selected point the function I (t) is placed
and the different functions added, giving the ensemble

where the tk are the points of the Poisson distribution. This
ensemble can be considered as a type of impulse or shot noise
where all the impulses are identical.

5. The set of English speech functions with the probability meas
ure given by the frequency of occurrence in ordinary use.

An ensemble of functions la(t) is stationary if the same en
semble results when all functions are shifted any fixed amount
in time. The ensemble

fe(t) = sin (t + 8)

is stationary if 8 is distributed uniformly from 0 to 271". If we
shift each function by tx we obtain

le(t + ttl = sin (t + t, + 8)
- sin (t + If)

2 This repre~entationcan be used as a definition of band limited white noise.
It has certain advantages in that it involves fewer limiting operations than
do definitions that have been used in the past. The name "white noise,"
already firmly intrenched in the literature, is perhaps somewhat unfortu-
nate. In optics white light means either any continuous spectrum as con-
trasted WIth a pomt spectrum, or a spectrum whiCh IS fiat WIth wavelength
(whiCh IS not the same as a spectrum flat WIth frequency).
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with If distributed uniformly from 0 to 271". Each function has
changed but the ensemble as a whole is invariant under the trans-
lation. The other examples given above are also stationary.

An ensemble is ergodic if it is stationary, and there is no
subset of the functions in the set with a probability different
from 0 and 1 which is stationary. The ensemble

sin (t + 0)

is ergodic. No subset of these functions of probability =1= 0, 1 is
transformed into itself under all time translations. On the other
hand the ensemble

a sin (t + 0)

with a distributed normally and 0 uniform is stationary but not
ergodic. The subset of these functions with a between 0 and 1, for
example, is stationary, and has a probability not equal to 0 or 1.

Of the examples given, 3 and 4 are ergodic, and 5 may perhaps
be considered so. If an ensemble is ergodic we may say roughly
that each function in the set is typical of the ensemble. More
precisely it is known that with an ergodic ensemble an average
of any statistic over the ensemble is equal (with probability 1)
to an average over all the time translations of a particular func
tion in the set." Roughly speaking, each function can be expected,
as time progresses, to go through, with the proper frequency, all
the convolutions of any of the functions in the set.

Just as we may perform various operations on numbers or
functions to obtain new numbers or functions, we can perform
operations on ensembles to obtain new ensembles. Suppose, for
example, we have an ensemble of functions faU) and an operator
T which gives for each function fa( t) a resulting function ga (t) :

3 This is the famous ergodic theorem or rather one aspect of this theorem
whICh was proved In somewhat different formulatIOns by Blrkhoff, von
Neumann, and Koopman, and subsequently generalized by Wiener, Hopf,
IImewicz and others: The literature on elgodlC theOlY is quite extensive
and the reader is referred to the papers of these WrIters for precise and
general formulations; e.g., E. Hopf "Er~odentheorie,"Ergebnisse der Math-
ematic und ihrer Grenzgebiete, v 5; "On Causalit.y Statistics and Proha-
bility," Journal of Mathematics and Physics. v. XIII, No. I, 1934; N.
Wiener "The Ergodic Theorem," Duke Mathematical Journal, v. 5, 1939.
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Probability measure is defined for the set ga (t) by means of that
for the set ta{t). The probability of a certain subset of the ga(t)
functions is equal to that of the subset of the fa(t) functions
which produce members of the given subset of g functions under
the operation T. Physically this corresponds to passing the
ensemble through some device, for example, a filter, a rectifier
or a modulator. The output functions of the device form the
ensemble ga(t).

A device or operator T will be called invariant if shifting the
input merely shifts the output, i.e., if

ga(t) = Tfa(t).
implies

ga(t + tl ) = Tfa(t + td

for all fa(t) and all t i • It is easily shown (see Appendix 5) that
if T is invariant and the input ensemble is stationary then the
output ensemble is stationary. Likewise if the input is ergodic the
output will also be ergodic.

A filter or a rectifier is invariant under all time translations.
The operation of modulation is not, since the carrier phase gives
a certain time structure. However, modulation is invariant under
all translations which are multiples of the period of the carrier.

Wiener has pointed out the intimate relation between the in
variance of physical devices under time translations and Fourier
theory." He has shown, in fact, that. if a device is linear as well
as invariant Fourier analysis is then the appropriate mathe
matical tool for dealing with the problem.

An ensemble of functions is the appropriate mathematical
representation of the messages produced by a continuous source
(for example, speech), of the signals produced by a transmitter,
and of the perturbing noise. Communication theory is properly

4 Communication theory is heavily indebted to Wiener for much of its
baSIC phIlosophy and theory. HIS claSSIC NDRC report, The Interpolatwn,
Extrapolation, and Smoothing of Stationary Time Series (Wiley, 1949),
contains the first clear-cut fOlllIulation of communication theory as a statis-
tical problem, the study of operations on time series. This work, although
chiefly concerned with the linear prediction and filtering problem, is an
important. collateral reference in connection with the present paper. We
may also refer here to Wiener's Cybernetics (Wiley, 1948), dealing with the
general problems of communication and control.
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concerned, as has been emphasized by Vlicner, not with opera-
tions on particular functions, but with operations on ensembles
of functIOns. A communication system is designed not for a par
ticular speech function and still less for a sine wave, but for the
ensemble of speech functions.

19. Band Limited Ensembles of Functions

If a function of time f(t) is limited to the band from 0 to W
cycles per second it is completely determined by giving its ordi-

nates at a series of discrete points spaced 2~ seconds apart in the

manner indicated by the following result."

Theorem 13: Let f(t) contain no frequencies over W.
Then

~ sin 7l'"(2Wt - n)
j(t) = LJXn ( )

-00 7l'" 2Wt - n
where

In this expansion f (t) is represented as a sum of orthogonal
functions. The coefficients X n of the various terms can be con
sidered as coordinates in an infinite dimensional "function space."
In this space each function corresponds to precisely one point
and each point to one function.

A function can be considered to be substantially limited to a
time T if all the ordinates X; outside this interval of time are
zero. In this case all but 2TJV of the coordinates will be zero.
Thus functions limited to a band Wand duration T correspond
to points in a space of 2TlV dimensions.

A subset of the functions of band Wand duration T corre-
sponds to a region in this space. For example, the functions
whose total energy is less than or equal to E correspond to
points in a 2TH' dimensional sphere \-)lith radius r vi 2lVE.

An ensemble of furrotitrrrs of limited duration and band will be

5 Fm a proof of this themem and fUl ther discussion see the author's paper
"Communication in the Presence of Noise" publi:::Jh£'d in the Proceedings oj
the Institute of Radio Engineers, v, 37, No. 1, Jan., 1949, pp. 10 21.
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represented by a probability distribution P (Xl' ", xn ) in the
corresponding n dimensional space. If the ensemble is not limited
in time we can consider the 2TW coordinates in a given interval
T to represent substantially the part of the function in the
interval T and the probability distribution P(Xl' • • • , X n ) to
give the statistical structure of the ensemble for intervals of that
duration.

20. Entropy of a Continuous Distribution

The entropy of a discrete set of probabilities PI' . . . , P» has
been defined as:

H = - L Pi log Pi.

In an analogous manner we define the entropy of a continuous
distribution with the density distribution function P(x ~ by:

H = - L: p(x) log p(x) dx.

With an n dimensional distribution P (Xl, '.' • , xn ) we have

H = - J. 0 ojP(XI 0 0 0 xn ) log P(Xl, 0 0 0 , x n ) dx, 0 0 0 dx.;

If we have two arguments X and y (which may themselves be
multidimensional) the joint and conditional entropies of P (x, y)
are given by

H(x, y) = - JJp(x, y) log p(x, y) dx dy

and

where

TT E ~.u. x y

H,I (x)

if p (x, y~ log

Ifp (x, y) log

r

J

p(x, y)
p(x)

p(x, y)
p(y)

dx dy

dx dy

The entropies of continuous distributions have most (but not
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all) of the properties of the discrete ca8e. In particular we have
the following:

1. If x is limited to a certain volume v in its space, then H (x) is

a maximum and equal to log v when p(x) is constant (~)
in the volume.

2. With any two variables x, y we have

H(x, y) < H(x) + H(y)

with equality if (and only if) x and yare independent, i.e.,
p(x,y) = p(x) p(y'Y (apart possibly from a set of points of
probability zero).

3. Consider a generalized averaging operation of the following
~

type:
p' (y) = Ja(x, y) p(x) dx

with

fa(x, y) dx = fa(x, y) dy = 1, a(x, y) > o.

Then the entropy of the averaged distribution p'(y) is equal
to or greater than that of the original distribution p(x).

4. We have
H(x, y) = H(x) + H:c(y) = H(y) + H 1I(x)

and
H:c(y) < H (y).

5. Let p(x) be a one-dimensional distribution. The form of p(x)
giving a maximum entropy subject to the condition that the
standard deviation of x be fixed at u is Gaussian. To show this
we must maximize

H(x) fp(x) log p(x) dx

f p(x) dx1and
(1p(x)x2 dx

with

as constraints. ThIS requires, by the calculus of varIations,
maXimizing

______p- p(x) log p(x) + Ap(X)X2 + I-Lp(x)] dx.
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The condition for this is

-1 - log p(x) + AX2 + M = 0

89

and consequently (adjusting the constants to satisfy the con
straints)

122p(X) = ---- e-(x/2f1).
y!2; a

Similarly in n dimensions, suppose the second order moments
of P(Xl' • • • ,Xn ) are fixed at A i j :

A ii =J...JXiXiP(Xi, ... , X n ) dx, ... dx.;

Then the maximum entropy occurs (by a similar calculation)
when P(Xl, • • • , xn ) is the n dimensional Gaussian distribu
tion with the second order moments Aij.

6. The entropy of a one-dimensional Gaussian distribution whose
standard deviation is (T is given by

H(x) =logy!2;eO'.

This is calculated as follows:

( ) 1 e-(X2/2f12)

P X = y21r U

- x2

- log p(x) = log y21r U + 2u2

H(x) = - Jp(x) log p(x) dx

fp(x) log v'27f (1 dx +fp(x)

- log v'21r U + 2(12

= log vZ; U + log ve
- log V21fi U •

Similarly the n dimensional Gaussian distribution with asso-
ciated quadratic form ai, is given by

~Ii (
(2 ) '2 exp
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and the entropy can be calculated as

H = log (21re)n/2 ~_-_i _

where Iaij I is the determinant whose elements are aij.

7. If x is limited to a half line (p(x) = 0 for x < 0) and the first
moment of x is fixed at a:

a =100

p(x)x dx,

then the maximum entropy occurs when

p(x)
1= - e-(z/a)

a
and is equal to log ea.

8. There is one important difference between the continuous and
discrete entropies. In the discrete case the entropy measures in
an absolute way the randomness of the chance variable. In the
continuous case the measurement is relative to the coordinate
system. If we change coordinates the entropy will in general
change. In fact if we change to coordinates YI ... Yn the new
entropy is given by

H(y) = J...JP(Xl ... xn ) J(1-)
log P(Xl ... xn ) J( ~ ) dYl ... dYn

where J (:) is the Jacobian of the coordinate transformation.

On expanding the logarithm and changing variables to Xl •••

Xn , we obtain:

H(y) - H(x) - f· . ·fp(Xl' ... , xn) log J( ~ ) dXl ... dx n.

Thus the new entropy is the old entropy less the expected log-
arithm of the Jacobian In the continuous case the entropy can
be considered a measure of randomness relative to an assumed
standard, namely the coordinate system chosen with each
small volume element dXI • • • dXn given equal weight. When
we change the coordinate system the entropy in the new sys-
tern mea,sures the randomness when equal volume elements
dYI ... dYn in the ne')."': system are given equal weight.

In spite of this dependence on the coordinate system the
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entropy concept is as important in the continuous case as the
discrete case. This is due to the fact that the derived concepts
of information rate and channel capacity depend on the differ
ence of two entropies and this difference does not depend on
the coordinate frame, each of the two terms being changed by
the same amount.

The entropy of a continuous distribution can be negative.
The scale of measurements sets an arbitrary zero correspond
ing to a uniform distribution over a unit volume. A distribu
tion which is more confined than this has less entropy and will
be negative. The rates and capacities will, however, always be
non-negative.

9. A particular case of changing coordinates is the linear trans
formation

In this case the Jacobian is simply the determinant Iai, 1-1 and

H(y) = H(x) + log 1 aij I .
.

In the case of a rotation of coordinates {or any measure pre-
serving transformation) J = 1 and H (y) = H (x).

21. Entropy of an Ensemble of Functions

Consider an ergodic ensemble of functions limited to a certain
band of width W cycles per second. Let

P (Xl' . • . ,Xn )

be the density distribution function for amplitudes Xl ••• X n at
n successive sample points. We define the entropy of the ensemble
per degree of freedom by

H' 1 ( (

log P(Xl, ... , xn ) dXI ... dx n •

We may also define an entropy H per second by dividing, not by
n, but by the time T in seconds for n samples. Since n 2TW,
H - 2WH'.
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Vlith white thermal noise p is Gaussian and we have

H' = log ,; 27reN,

H = W log 2rreN.

For a given average power N, white noise has the maximum
possible entropy. This follows from the maximizing properties of
the Gaussian distribution noted above.

The entropy for a continuous stochastic process has many
properties analogous to that for discrete processes. In the discrete
case the entropy was related to the logarithm of the probability
of long sequences, and to the number of reasonably probable se
quences of long length. In the continuous case it is related in a
similar fashion to the logarithm of the probability density for a
long series of samples, and the volume of reasonably high proba
bility in the function space.

More precisely, if we assume p (Xl' ••. ,xn ) continuous in all
the Xi for all n, then for sufficiently large n

1

10
: p - H' I < E

for all choices of (Xl, • . . , xn ) apart from a set whose total
probability is less than 8, with 8 and £ arbitrarily small. This fol
lows from the ergodic property if we divide the space into a large
number of small cells.

The relation of H to volume can be stated as follows: Under
the same assumptions consider the n dimensional space corre
sponding to P(Xl' ••• ,xn) . Let Vn(q) be the smallest volume in
this space which includes in its interior a total probability q.
Then

Lim log Vn(q) H'
n-+ oo n

provided q does not equal 0 or 1.
These results show that for large n there is a rather well-defined

volume (at least in the logarithmic sense) of high probability,
and that within this volume the probability density is relatively
unifonn (again in the logarithmic sense).

In the 'Nhite noise case the distribution function is given by

1
(27rN)n/2 exp
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Since this depends only on ~X1 the surfaces of equal probability
density are spheres and the entire distribution has spherical sym-
metry. The region of high probability is a sphere of radIUS

vr;N. As n~ 00 the probability of being outside a sphere of

radius V n (N + f) approaches zero however small e and! times
n
~--

the logarithm of the volume of the sphere approaches log V 27reN.
In the continuous case it is convenient to work not with the

entropy H of an ensemble but with a derived quantity which we
will call the entropy power. This is defined as the power in a
white noise limited to the same band as the original ensemble
and having the same entropy. In other words if H' is the entropy
of an ensemble its entropy power is

N 1 = _1_ exp 2H'.
21re

In the geometrical picture this amounts to measuring the high
probability volume by the squared radius of a sphere having the
same volume. Since white noise has the maximum entropy for a
given power, the entropy power of any noise is less than or equal
to its actual power.

22. Entropy Loss in Linear Filters

Theorem 14: If an ensemble having an entropy HI per degree
of freedom in band W is passed through a filter with character..
istic Y (f) the output ensemble has an entropy

H
2

= HI + --=!;- [ log I Y"----'(..I--Jf\~1----'2d"'ol--f. _WJw ~l.

The operation of the filter is essentially a linear transformation of
coordinates. If we think of the different frequency components as
the onginal coordmate system, the new frequency components
are merely the old ones multiplied by factors. The coordinate
transformation matrix is thus essentially diagona.lized in terms of
these coordinates. The Jacobian of the transformation is (for n
sine and n cosine components)
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where the f, are equally spaced through the band W. This be-
comes in the limit

Since J is constant its average value is the same quantity and
applying the theorem on the change of entropy with a change of

TABLE I

ENTROPY ENTROPY
GAIN POWER POWER GAIN IMPULSE RESPONSE

FACTOR IN DECIBELS

1

~
1

-8.68
SIN 2 /T t

l-fA/ ----- e2 (ITt)2

0 fA/ I

I

~l-G12 ___~ (:t -5.32 2 [ SIN t _ COS t ]
t 3 t 2

0 fA/ I

I-M.---~·I\ 0.384 -4.15 6 [ COS t - I _ COS t + SIN t J
t 4 2t2 t 3

\- fA/ I

1--......
<,

il- fA/2---. \ (-!f -2.66 ~
...., '''I

\
..

n
\

w 1

1 ,
:\
:\ 1 _A ..A" I I r-nc: (,-n\t- r-nc;. t I
~,..~ e:lCf at" l J

: "0 ,. •-
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coordinate8, the re8ult follews. Vie may also phrase it in terms
of the entropy power. Thus if the entropy power of the first
ensemble is N 1 that of the second is

N 1 exp ~ fw log I Y(f) 1
2 df.

The final entropy power is the initial entropy power multiplied
by the geometric mean gain of the filter. If the gain is measured
in db, then the output entropy power will be increased by the
arithmetic mean db gain over W.

In Table I the entropy power loss has been calculated (and
also expressed in db) for a number of ideal gain characteristics.
The impulsive responses of these filters are also given for
W = 271", with phase assumed to be o.

The entropy loss for many other cases can be obtained from
1these results. For example the entropy power factor 2" for the
e

first case also applies to any gain characteristic obtained from
1 - w by a measure preserving transformation of the w axis. In
particular a linearly increasing gain G (w) = w, or a "saw tooth"
characteristic between 0 and 1 have the same entropy loss. The

reciprocal gain has the reciprocal factor. Thus l has the factor e2
•

w

Raising the gain to any power raises the factor to this power.

23. Entropy of the Sum of Two Ensembles

If we have two ensembles of functions fa (t) and gfJ (t) we can
form a new ensemble by "addItIOn." Suppose the first ensemble
has the probability density function p (X t , • • • , Xn) and the
second q (Xl' . . • ,xn ) . Then the density function for the sum is
given by the convolution:

Physically this corresponds to adding the noises or signals repre-
sented by the original ensembles of functions.

The following result is derived in Appendix 6.

Theorem 15: Let the average power of two ensembles be N 1
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and .J.V2 and let their entropy powers be .J.V I and ll2' Then the
entropy power of the sum, n; is bounded by

N I + N 2 < s, < N I + N 2 •

White Gaussian noise has the peculiar property that it can
absorb any other noise or signal ensemble which may be added to
it with a resultant entropy power approximately equal to the sum
of the white noise power and the signal power (measured from
the average signal value, which is normally zero), provided the
signal power is small, in a certain sense, compared to the noise.

Consider the function space associated with these ensembles
having n dimensions. The white noise corresponds to the spherical
Gaussian distribution in this space. The signal ensemble corre
sponds to another probability distribution, not necessarily Gaus
sian or spherical. Let the second moments of this distribution
about its center of gravity be au, That is, if p (Xl' • • • , xn ) is
the density distribution function

aii = J.. -JP(Xi - ai) (Xi - ai) dx, ... dx;

where the (Xi are the coordinates of the center of gravity. Now u.,
is a positive definite quadratic form, and we can rotate our
coordinate system to align it with the principal directions of this
form. aij is then reduced to diagonal form bii . We require that
each bii be small compared to N, the squared radius of the
spherical distribution.

In this case the convolution of the noise and signal produce
approximately a Gaussian distribution whose corresponding
quadratic form is

The entropy power of this distribution is
___________[II(N + bid le-1/_n _

or approximately

The last term IS the signal power, while the first IS the nmse
power.
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24. The Capacity of a Continuous Channel

In a continuous channel the input or transmitted signals will be
continuous functions of time f (t) belonging to a certain set, and
the output or received signals will be perturbed versions of these.
We will consider only the case where both transmitted and re
ceived signals are limited to a certain band W. They can then be
specified, for a time T, by 2TW numbers, and their statistical
structure by finite dimensional distribution functions. Thus the
statistics of the transmitted signal will be determined by

P(Xl' •.. ,xn ) = P(x)

and those of the noise by the conditional probability distribution

P XlI ••• , x,,(Yl, ... , Yn) = Px(Y)·

The rate of tra,nsmission of information for a continuous chan-
nei is defined in a way analogous to that for a discrete channel,
namely

R - H(x) - Hy(x)

where H (x) is the entropy of the input and H; (x) the equivoca-
tion. The channel capacity C is defined as the maximum of R
when we vary the input over all possible ensembles. This means
that in a finite dimensional approximation we must vary P (x) -
P (Xl, . . . , xn ) and maximize
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This can be written

rr P(x,y)
] } P(x, y) log P(x)P(y) dx dy

using the fact thatJJP(x, y) log P(x) dx dy =JP(x) log P(x) dx.

The channel capacity is thus expressed as follows:

C = ¥~~ ¥(~?' ~JJP(x, y) log P~;~P~~) dx dy.

I t is obvious in this form that Rand C are independent of the
coordinate system since the numerator and denominator in log

P~;~P~~) will be multiplied by the same factors when x and y

are transformed in any one-to-one way. This integral expression
for C is more general than H(x) - Hy(x). Properly interpreted
(see Appendix 7) it will always exist while H (x) - Hy(x) may
assume an indeterminate form 00 - 00 in some cases. This occurs,
for example, if x is limited to a surface of fewer dimensions than
n in its n dimensional approximation.

If the logarithmic base used in computing H (x) and Hy(x) is
two thenC is the maximum number of binary digits that can be
sent per second over the channel with arbitrarily small equivoca
tion, just as in the discrete case. This can be seen physically by
dividing the space of signals into a large number of small cells,
sufficiently small so that the probability density P; (y) of signal
x being perturbed to point y is substantially constant over a cell
(either of x or y). If the cells are considered as distinct points
the situation is essentially the same as a discrete channel and the
proofs used there will apply. But it is clear physically that this
quantizmg of the volume Into indIvidual points cannot in any
practical situation alter the final answer significantly, provided
the regions are sufficiently small. Thus the capacity will be the
limit of the capacities for the discrete subdivisions and this is
just the continuous capacity defined above.

On the mathematical side it can be shown first (see Appendix 7)
that if u is the message, x is the signal, y is the received signal
(perturbed by noise) and v the recovered message then

H(x) -Hy(x) >H(u) -Hv(u)
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regardless of what operations are performed on u to obtain x or
on y to obtain v. Thus no matter how we encode the binary digits
to obtain the signal, or how we decode the received signal to
recover the message, the discrete rate for the binary digits does
not exceed the channel capacity we have defined. On the other
hand, it is possible under very general conditions to find a coding
system for transmitting binary digits at the rate C with as small
an equivocation or frequency of errors as desired. This is true,
for example, if, when we take a finite dimensional approximating
space for the signal functions, P (x, y) is continuous in both x and
y except at a set of points of probability zero.

An important special case occurs when the noise is added to
the signal and is independent of it (in the probability sense).
Then Px(y) is a function only of the (vector) difference n =
(y - x),

Px(y) = Q(y - x)

and we can assign a definite entropy to the noise (independent
of the statistics of the signal), namely the entropy of the dis
tribution Q(n). This entropy will be denoted by H (n).

Theorem 16: If the signal and noise are independent and the
received signal is the sum of the transmitted signal and the noise
then the rate of transmission is

R=H(y) -H(n),
i.e., the entropy of the received signal less the entropy of the
noise. The channel capacity is

C = Max H(y) - H(n).
P(x)

x+ n:

H(x, y) - H(x, n)

Expanding the left side and using the fact that x and n are
independent

H(y) + Hy(x) - H(x) + H(n).
Hence

R - H(x) Hy(x) - H(y) H(n).

Since II (n) is independent of P (x), maximizing R requires
maximizing H(y), the entropy of the received signal. If there are
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certain constraints on the em5emble of transmitted signals, the
entropy of the received signal must be maximized subject to these
constraints.

25. Channel Capacity with an Average Power Limitation

A simple application of Theorem 16 occurs when the noise is a
white thermal noise and the transmitted signals are limited to a
certain average power P. Then the received signals have an aver
age power P + N where N is the average noise power. The max
imum entropy for the received signals occurs when they also form
a white noise ensemble since this is the greatest possible entropy
for a power P + N and can be obtained by a suitable choice of
the ensemble of transmitted signals, namely if they form a white
noise ensemble of power P. The entropy (per second) of the
received ensemble is then

H(y) = W log 27re(P + N),

and the noise entropy is

H(n) = W log 27reN.

The channel capacity is

C = H(y) - H(n) = W log P t N

Summarizing we have the following:

Theorem 17: The capacity of a channel of band W perturbed
by white thermal noise of power N when the average transmitter
power is limited to P is given by

C WI P+N

This means that by sufficiently involved encoding systems

we can transmit binary digits at the rate W log2 P t N bits

per second, with arbitrarily small frequency of errors. It is not
possible to transmit at a higher rate by any encoding system
without a definite positive frequency of errors.

To approximate this limiting rate of transmission the trans-
mitted signals must approximate, in statistical properties, a white
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noise." A !5ystem which approaches the ideal rate may be de-
scribed as follows: Let lvI - 28 samples of white noise be con-
structed each of duration T. These are assigned binary numbers
from 0 to (M - 1). At the transmitter the message sequences are
broken up into groups of s and for each group the corresponding
noise sample is transmitted as the signal. At the receiver the M
samples are known and the actual received signal (perturbed by
noise) is compared with each of them. The sample which has the
least R.M.S. discrepancy from the received signal is chosen as
the transmitted signal and the corresponding binary number re
constructed. This process amounts to choosing the most probable
(a posteriori) signal. The number M of noise samples used will
depend on the tolerable frequency e of errors, but for almost all
selections of samples we have

L · L' log M(E, T) - WI P + N
im im T - og N '

f-+O T ...... a>

so that no matter how small E is chosen, we can, by taking T
P+N

sufficiently large, transmit as near as we wish to TW log N

binary digits in the time T.

Formulas similar to C = W log P t N for the white noise

case have been developed independently by several other
writers, although with somewhat different interpretations. We
may mention the work of N. Wiener," W. G. Tuller," and H.
Sullivan in this connection.

In the case of an arbitrary perturbing noise (not necessarily
white thermal noise) it does not appear that the maximizing
problem involved in determining the channel capacity C can be
solved explicitly. However, upper and lower bounds can be set
for C in terms of the average noise power 1',[ and the noise entropy
power N\. These bounds are sufficiently close together in most

• This and other properties of the white noise case are discussed from the
geometrical point of view in "Communication in the Presence of Noise,"
loe. cit.
7 Cybernetics, loco cit.
8 "Theoretical Limitations on the R.ate of Transmission of Information,"
Proceedings of the Institute of Radio Engineers, v. 37, No. 5, May, 1949,
pp.468-78.
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practical cases to furni8h a satisfactory solution to the problem.

Theorem 18: The capacity of a channel of band W perturbed
by an arbitrary noise is bounded by the inequalities

W I P + Nt < C < W log P + Nog N
l

N
1

where

P = average transmitter power
N = average noise power
N 1 = entropy power of the noise.

Here again the average power of the perturbed signals will be
P + N. The maximum entropy for this power would occur if the
received signal were white noise and would be W log 27re (P + N).
It may not be possible to achieve this; i.e., there may not be any
ensemble of transmitted signals which, added to the perturbing
noise, produce a white thermal noise at the receiver, but at least
this sets an upper bound to H (y). We have, therefore

C = Max H(y) - H(n)

< W log 27re (P + N) - W log 27reN l •

This is the upper limit given in the theorem. The lower limit can
be obtained by considering the rate if we make the transmitted
signal a white noise, of power P. In this case the entropy power
of the received signal must be at least as great as that of a white
noise of power P + N 1 since we have shown in Theorem 15 that
the entropy power of the sum of two ensembles is greater than or
equal to the sum of the individual entropy powers. Hence

and

P- I M

IV1

As P increases, the upper and lower bounds in Theorem 18 ap-
proach each other, so we have as an asymptotic rate

WI P+N

If the noise is itself white, N = N 1 and the result reduces to the
formula proved previously:
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C = W log (1 + -;-)"------. _
If the noise is Gaussian but with a spectrum which is not nec

essarily flat, N 1 is the geometric mean of the noise power over the
various frequencies in the band W. Thus

N I = exp ~ fw log N(f) df

where N (f) is the noise power at frequency f.
Theorem 19: If we set the capacity for a qiven transmitter

power P equal to

C = W log P + N - 11
N1

then 1] is monotonic decreasing as P increases and approaches 0
as a limit.

Suppose that for a given power P 1 the channel capacity is

W I PI + N - 111
og N

1
•

This means that the best signal distribution, say p (x), when
added to the noise distribution q (x), gives a received distribution
r(y) whose entropy power is (P 1 + N - 1]1). Let us increase the
power to P 1 + ~P by adding a white noise of power ~P to the
signal. The entropy of the received signal is now at least

H (y) = W log 271'e (P 1 + N - 1]1 + ~P)

by application of the theorem on the minimum entropy power of
a sum. Hence, since we can attain the H indicated, the entropy of
the maximizing distribution must be at least as great and 1] must
be monotonic decreasing. To show that 'YJ ~ 0 as P ~ 00 consider
a signal which is a JNhite noise with a large P. Whatever the per
turbing noise, the received signal will be approximately a white
noise, if P is sufficiently large, in the sense of having an entropy
power approaching P + N.

26. The Channel Capacity with a Peak Power Limitation

In some applications the transmitter is limited not by the average
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~S+N
1rC

N

power output but by the peak instantaneous power. The problem
of calculating the channel capacity is then that of maximizing
(by variation of the ensemble of transmitted symbols)

H(y) - H(n)

subject to the constraint that all the functions f(t) in the en
semble be less than or equal to VB, say, for all t. A constraint
of this type does not work out as well mathematically as the
average power limitation. The most we have obtained for this

case is a lower bound valid for all t, an "asymptotic" upper

bound (valid for large t) and an asymptotic value of C for

S
N small.

Theorem 20: The channel capacity C for a band W perturbed
by white thermal noise of power N is bounded by

2 S
C > W log 1re3 N'

where S is the peak allowed transmitter power. For sufficiently
S

large N

where E is arbitrarily small. As ~ ~ 0 (and provided the band W

starts at 0)

------------+-'-C/rIJwV-t}f\10gf}"-( 1 + ~ )~~...-+1-.---------

We wish to maximize the entropy of the received signal. If

~ is large this will occur very nearly when we maximize the

entropy of the transmitted ensemble.

The asymptotic upper bound is obtained by relaxing the condi-
tions on the ensemble. Let us suppose that the power is limited
to S not at every instant of time, but only at the sample points.
The maximum entropy of the transmitted ensemble under these
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weakened condition5 i5 certainly greater than or equal to that
under the original conditions. This altered problem can be solved
easily. The maximum entropy occurs if the different samples are
independent and have a distribution function which is constant

from - -vs to + -vs. The entropy can be calculated as

W log 48.

The received signal will then have an entropy less than

lV log (48 + 27reN) (1 + £)

with e~ 0 as ~ ~ ex> and the channel capacity is obtained by

subtracting the entropy of the white noise, W log 27reN:

W log (48 + 27reN) (1 + e) - W log (27reN)

~8+N
7re

= W log N (1 + e).

This is the desired upper bound to the channel capacity.
To obtain a lower bound consider the same ensemble of func

tions. Let these functions be passed through an ideal filter with a
triangular transfer characteristic. The gain is to be unity at fre
quency 0 and decline linearly down to gain 0 at frequency W.
We first show that the output functions of the filter have a peak
power limitation 8 at all times (not just the sample points). First

we note that a pulse Si~:;~t going into the filter produces

1 sin" 7rWt

In the output. This function is never negative. The input function
(in the general case) can be thought of as the sum of a series of
shifted functions

sin 27rWt
a

where u, the amplitude of the sample, is not greater than yg.
Hence the output is the sum of shIfted functIOns of the non-
negative form above with the same coefficients. These functions
being non-negative, the greatest positive value for any t is ob-
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tained when all the coefficients a have their maximum positive
values, i.e., VB. In thIS case the mput functIOn was a constant
of amplitude VB and since the filter has unit gain for D.C., the
output is the same. Hence the output ensemble has a peak
power 8.

The entropy of the output ensemble can be calculated from that
of the input ensemble by using the theorem dealing with such a
situation. The output entropy is equal to the input entropy plus
the geometrical mean gain of the filter:

W W (W f)2i log G2 df = i log ; df = - 2W.

Hence the output entropy is

W log 48 - 2W
48

- W log -2
e

and the channel capacity is greater than

2 S
W log --3 N'

7re

We now wish to show that, for small ~ (peak signal power

over average white noise power), the channel capacity is ap
proximately

lV

Therefore, if we can find an ensemble of functions such that

they correspond to a rate nearly W log (1 + -i-) and are

limited to band Wand peak S the result will be proved. Consider
the ensemble of functIOns of the follOWIng type. A series of t
samples have the same value, either +VS or -VS ! then
the next t sa.mples ha.ve the same value, etc The value for a
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series is chosen at random, probability ~ for I vS and ~ for
y'S . If this ensemble be passed through a filter with triangu-

Iar gain characterIstIc (UnIt gam at D.C.), the output IS peak
limited to + S. Furthermore the average power is nearly Sand
can be made to approach this by taking t sufficiently large.
The entropy of the sum of this and the thermal noise can be
found by applying the theorem on the sum of a noise and a small
signal. This theorem will apply if

~ rt: S
V t N

is sufficiently small. This can be insured by taking ~ small

enough (after t is chosen). The entropy power will be S+N to
as close an approximation as desired, and hence the rate of
transmission as near as we wish to

( S + N )Wlog -N- .
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27. Fidelity Evaluation Functions

In the case of a discrete source of information we were able to
determine a definite rate of generating information, namely the
entropy of the underlying stochastic process. With a continuous
source the situation is considerably more involved. In the first
place a continuously variable quantity can assume an infinite
number of values and requires, therefore, an infinite number of
binary digits for exact specification. This means that to transmit
the output of a continuous source with exact recovery at the re
ceiving point requires, in general, a channel of infinite capacity
(in bits per second). Since, ordinarily, channels have a certain
amount of noise, and therefore a finite capacity, exact transmis
sion is impossible.

This, however, evades the real issue. Practically, we are not
Interested III exact transmission when we have a continuous
source, but only in transmission to within a certain tolerance. The
question is, can we assign a definite rate to a continuous source
when we require only a certain fidelity of recovery, measured in
a suitable way. Of course, as the fidelity requirements are in-
creased the rate will increase. It will be shown that we can, in
very general cases, define such a rate, having the property that
it is possible, by properly encoding the information, to transmit it
over a channel whose capacity is equal to the rate in question,
and satisfy the fidelity requirements. A channel of smaller ca-
pacity is insufficient.
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It is first necessary to give a general mathematical formulation
of the Idea of fidelity of transmission. Consider the set of mes-
sages of a long duration, say T seconds. The source is described
by giving the probability density, P(x), in the associated space,
that the source will select the message in question. A given com
munication system is described (from the external point of view)
by giving the conditional probability P:c(y) that if message x is
produced by the source the recovered message at the receiving
point will be y. The system as a whole (including source and
transmission system) is described by the probability function
P(x, y) of having message x and final output y. If this function
is known, the complete characteristics of the system from the
point of view of fidelity are known. Any evaluation of fidelity
must correspond mathematically to an operation applied to
P(x, y). This operation must at least have the properties of a
simple ordering of systems; i.e., it must be possible to say of two
systems represented by P 1 (x , y) and P 2 (x , y) that, according to
our fidelity criterion, either (1) the first has higher fidelity,
(2) the second has higher fidelity, or (3) they have equal fidelity.
This means that a criterion of fidelity can be represented by a
numerically valued evaluation function:

v(P(x,y))

whose argument ranges over possible probability functions
P(x, y). The function v (P(x, y)) orders communication systems
according to fidelity, and for convenience we take lower values of
v to correspond to "higher fidelity."

We vlill now show that under very general and reasonable as-
sumptions the function v (P (x, y)) can be written in a seemingly
much more specialIzed form, namely as an average of a function
p (x, y) over the set of possible values of x and y:

jJ
v(P(x, y)) = { {P(x, y) p(x, y) dx dy.

To obtain this we need only assume (1) that the source and sys-
tern are ergodic so that a very long sample will be, with proba-
bility nearly 1, typical of the ensemble, and (2) that the evalua-
tion is "reasonable" in the sense that it is possible, by observing
a typical input and output Xl and yl, to form a tentative evalua-
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tion on the basis of these samples; and if these samples are in-
creased in duration the tentative evaluation will, with probability
1, approach the exact evaluation based on a full knowledge of
P(x, y). Let the tentative evaluation be p(x, y). Then the func
tion p(x, y) approaches (as T ~ 00) a constant for almost all
(z, y) which are in the high probability region corresponding to
the system:

p(x, y) ~ v(P(x, y))

and we may also write

p(x, y) -4ffP(x, y) p(x, y) dx dy

SInce

ffP (x, y) dx dy = 1.

This establishes the desired result.
The function p(x, y) has the general nature of a "distance"

between x and y.9 It measures how undesirable it is (according to
our fidelity criterion) to receive y when x is transmitted. The
general result given above can be restated as follows: Any reas
onable evaluation can be represented as an average of a distance
function over the set of messages and recovered messages x and y
weighted according to the probability P(x, y) of getting the pair
in question, provided the duration T of the messages be taken
sufficiently large.

The following are simple examples of evaluation functions:

1. R.M.S. criterion.
v= (x(t) _y(t))2

In this very commonly used measure of fidelity the distance
function p(x, y) is (apart from a constant factor) the square
of the ordinary euclidean distance between the points x and y
in the associated function space

1 rT
p(x, Y) - T 1

0
[~x(eb-Jt)~'lAy(++t)]2 dt

2. Frequency weighted R.M.S. criterion. More generally one can
apply different weights to the different frequency components

9 It IS not a "metriC" in the strict sense, however, since in general it does
not satIsfy eIther p(x, y) - p(y, x) or p(x, y) + p(y, z) > p(x, z).
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before using an R.M.S. measure of fidelity. This is equivalent
to passing the difference x (t) Y (t) through a shaping filter
and then determining the average power in the output. Thus let

e(t) = x(t) - y(t)
and

J(t) = L: e(r)k(t - r) dr

then

1 rT
p(x, Y) = T 1

0
J(t)2 dt.

3. Absolute error criterion.

1 T
p(x, Y) = Til x(t) - yet) I dt

4. The structure of the ear and brain determine implicitly a num
ber of evaluations, appropriate in the case of speech or music
transmission. There is, for example, an "intelligibility" crite
rion in which p (x, y) is equal to the relative frequency of in
correctly interpreted words when message x (t) is received as
y (t). Although we cannot give an explicit representation of
p(x, y) in these cases it could, in principle, be determined by
sufficient experimentation. Some of its properties follow from
well-known experimental results in hearing, e.g., the ear is
relatively insensitive to phase and the sensitivity to amplitude
and frequency is roughly logarithmic.

5. The discrete case can be considered as a specialization in which
we have tacitly assumed an evaluation based on the frequency
of errors. The function p (x, y) is then defined as the number
of symbols in the sequence y differing from the corresponding
symbols in x divided by the total number of symbols in x.

28. The Rate for a Source Relative to a Fidelity Evaluation

We are now in a position to define a rate of generating informa-
tion for a continuous source. Vie are given P(x) for the source
and an evaluation v determined by a distance function p (x, y)
which will be assumed continuous in both x and y. With a par-
ticular system P (x, y) the quality is measured by
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v !fp(x, y) P(x, y) dx dy.

Furthermore the rate of flow of binary digits corresponding to
P(x, y) is

If P(x, y)
R = P(x, y) log P(x)P(y) dx dy.

We define the rate R 1 of generating information for a given qual
ity VI of reproduction to be the minimum of R when we keep V

fixed at VI and vary Px(y). That is:

If P(x, y)
R1 = ~(~~ P(x, y) log P(x)P(y) dx dy

subject to the constraint:

Vi = ffP(x, y)p(x, y) dx dy.

This means that we consider, in effect, all the communication
systems that might be used and that transmit with the required
fidelity. The rate of transmission in bits per second is calculated
for each one and we choose that having the least rate. This latter
rate is the rate we assign the source for the fidelity in question.

The justification of this definition lies in the following result:

Theorem 21: If a source has a rate R l for a valuation VI it is
possible to encode the output of the source and transmit it over a
channel of capacity C with fidelity as near VI as desired provided
R 1 < C. This is not possible if R 1 > C.

The last statement in the theorem follows immediately from
the definition of R 1 and previous results. If it were not true we
could transmit more than C bits per second over a channel of
capacity C. The first part of the theorem is proved by a method
analogous to that used for Theorem 11. We may, in the first place,
divide the (x, y) space into a large number of small cells and
represent the situation as a disClete case. This will not change the
evaluation function by more than an arbitrarily small amount
(when the cells are very small) because of the continuity assumed
for p (x, y) Suppose that PI (x, y) is the particular system which
minimizes the rate and gives RIo We choose from the high proba
bilitJy y's a set at random containing



The Rate for a Continuous Source 113

member8 where E~ 0 a8 T ~ 00. "lith large T each chosen point
will be connected by high probability lines (as in Fig. 10) to a set
of x's. A calculation similar to that used in proving Theorem 11
shows that with large T almost all x's are covered by the fans
from the chosen y points for almost all choices of the y's. The
communication system to be used operates as follows: The se
lected points are assigned binary numbers. When a message x is
originated it will (with probability approaching 1 as T ~ 00) lie
within at least one of the fans. The corresponding binary number
is transmitted (or one of them chosen arbitrarily if there are sev
eral) over the channel by suitable coding means to give a small
probability of error. Since R, < C this is possible. At the receiv
ing point the corresponding y is reconstructed and used as the
recovered message.

The evaluation v~ for this system can be made arbitrarily close
to V l by taking T sufficiently large. This is due to the Iact that for
each long sample of message x (t) and recovered message y (t) the
evaluation approaches VI (with probability 1).

It is interesting to note that, in this system, the noise in the
recovered message is actually produced by a kind of general
quantizing at the transmitter and is not produced by the noise in
the channel. It is more or less analogous to the quantizing noise
in PCM.

29. The Calculation of Rates

The definition of the rate is similar in many respects to the defi
nition of channel capacity. In the former

--------HR'---=--ftfI~h-T~Ir-t-Ifp(x,y) log P~~~P{~) dx dy
,. ,.

J J

c

with Px(y) fixed and possibly one or more other constraInts (e.g.,
an average power limitation) of the form K = .ff P (z, y) A(z, y)
dx dy

1'..... partial solution of the general maximizing problem for de



114 The Mathematical Theory of Communication

tennining the rate of a source can be gIven. Using Lagrange's
method we consider

fJ[ P(x, y)
P(x, y) log P(x)P(y) + J.I. P(x, y)p(x, y)

+ v(x)P(x, y) ] dx dy.

The variational equation (when we take the first variation on
P(x, y)) leads to

Py(x) = B(x) e-Xp(x,y)

where A is determined to give the required fidelity and B (x) IS

chosen to satisfy

JB(x) e-Xp(x.y) dx = 1.

This shows that, with best encoding, the conditional probability
of a certain cause for various received y, Py(x) will decline ex
ponentially with the distance function p(x, y) between the x and
y in question.

In the special case where the distance function p(z, y) depends
only on the (vector) difference between x and y,

p(x, y) = p(x - y)

we have

JB(x) e-Xp(x-y) dx = 1.

Hence B (x) is constant, say «, and

Unfortunately these formal solutions are difficult to evaluate in
particular cases and seem to be of little value. In fact, the actual
calculation of rates has been carried out in only a few very simple
cases.

If the distance function p (x, y) is the mean square discrepancy
between x and y and the message ensemble is white noise, the
rate can be determined. In tha.t case we have

R - Min [H (x) - Hy(x)] - H (x) - Max Hy(x)

with N = (x - y)2. But the Max Hy(x) occurs when y - x is a
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white noise, and is equal to H'l log 27fel'l where H'l is the band-
width of the message ensemble. Therefore

R = WI log 21reQ - WI log 21reN
Q

= WI log N

where Q is the average message power. This proves the following:

Theorem 22: The rate for a white noise source of power Q and
band W 1 relative to an R.M.S. measure of fidelity is

Q
R = WI log N

where N is the allowed mean square error between original and
recovered messages.

More generally with any message source we can obtain inequal
ities bounding the rate relative to a mean square error criterion.

Theorem 23: The rate for any source of band W 1 is bounded by

WI log ~ < R < WI log ~

where Q is the average power of the source, Ql its entropy power
and N the allowed mean square error.

The lower bound follows from the fact that the Max HII(x) for
a given (x - y) 2 = N occurs in the white noise case. The upper
bound results if we place the points (used in the proof of Theorem
21) not in the best way but at random in a sphere of radius

vQ-N.
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Appendix 1. The Growth of a Number of Blocks of Symbols
with a Finite State Condition

Let N i (L) be the number of blocks of symbols of length L end
ing in state i. Then we have

Ni(L) = ~Ni(L - bW)
\8

where b~j, bt, ... , bij are the length of the symbols which may
be chosen in state i and lead to state j. These are linear differ
ence equations and the behavior as L -:, 00 must be of the type

N, = AjWL.

Substituting in the difference equation

AiWL = LAiWL-b!;>
i, S

or
A· = LAiW-b~;>

1 is

For this to be possible the determinant

D(W) = I a« I = IL W-b~;> - Oii I
S

must vanish and this determines W, which is, of course, the
largest real root 0 f D = o.

The quantity C is then given by

C L· log ~AiWL I W= 1m = og
L ...... a> L

and we also note that the same growth properties result if we
require that all blocks start in the same (arbitrarily chosen) state.

Appendix S. Derivation of H ~ PI log PI

__------CL=-e-'---'t'----H'---'----(-tt, -tt, ... ,*) = A (n). From condition (3) we can

decompose a choice from 8m equally likely possibilities into a
series of m choices each from 8 equally likely possibilities and
obta.in
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Similarly
A(t") -nA(t).

We can choose n arbitrarily large and find an m to satisfy

sm < t n < s(m+l).

Thus, taking logarithms and dividing by n log s,

.!!!:- < log t <~ + _1_ or .!!!:- _ log t < E

n - log s - n n n log s

117

where f is arbitrarily small. Now from the monotonic property of
A (n),

A(sm) < A(tn ) < A (sm+l)

m A (s) < nA (t) < (m + 1) A (s) .

Hence, dividing by nA (s),

~ < A (t) <~ + _1_ or
n A(s) - n n

m--
n

A(t)
A(s)

<E

A(t)
A(s)

log t
log s

A (t) = - K log t

where K must be positive to satisfy (2).
Now suppose we have a choice from n possibilities with com-

measurable probabilities Pi = "<;!n
i where the ni are integers. We

~ni

can break down a choice from ~ni possibilities into a choice from
n possibilities with probabilities Pl' ... ,Pn and then, if the ith
was chosen, a choice from ni with equal probabilities. Using con-
clItion 3 again, we equate the total chOIce from ~ni as computed
by two methods

Hence

If the Pi are incommeasurable, they may be approximated by
rationals and the same expression must hold by our continuity
assumption. Thus the expression holds in general. The choice of
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coefficient If: i15 a matter of convenience and amount15 to the choice
of a unit of measure.

Appendix 3. Theorems on Ergodic Sources

We assume the source to be ergodic so that the strong law of large
numbers can be applied. Thus the number of times a given path
Pij in the network is traversed in a long sequence of length N is
about proportional to the probability of being at i, say Pi, and
then choosing this path, PiPijN. If N is large enough the proba
bility of percentage error -t- 0 in this is less than e so that for all
but a set of small probability the actual numbers lie within the
limits

(PiPij -t- o)N.

Hence nearly all sequences have a probability P given by

_ n (PiPij ± fJ)N
P - Pii

log P
and N is limited by

log P
N = !-(PiPii + 0) log Pii

or

log P
N - !-PiPii log Pii < 'YJ.

This proves Theorem 3.
Theorem 4 follows immediately from this on calculating upper

and lovler bounds for n(q) based on the possible range of values
of p in Theorem 3.

In the mIxed ~ not ergodIC) case If

and the entropies of the components are Hi > H2 > ... > HR

we have the

{ ~. d . 1·({) q 1,8 uecreustny step J unction,
N~oo

. log n (q)
Theorem: Lun N

8-1 8

1 1
'(J(q) = H 8 in the internal L ai < q < L ai-
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To prove theorems 5 and 6 first note that F N is monotonic de
creasing because increasing N adds a subscript to a conditional
entropy. A simple substitution for PBi (8;) in the definItion of F'N
shows that

FN = N GN - (N - 1) GN - 1

and summmg this for all N gives GN = ~ ~ FN • Hence GN

> F N and GN monotonic decreasing. Also they must approach
the same limit. By using Theorem 3 we see that Lim GN = H.

N-+a:>

Appendix 4. Maximizing the Rate for a System of Constraints

Suppose we have a set of constraints on sequences of symbols
that is of the finite state type and can be represented therefore
by a linear graph, as in Fig. 2. Let l~;> be the lengths of the vari
ous symbols that can occur in passing from state i to state j.
What distribution of probabilities Pi for the different states and
pi;> for choosing symbol s in state i and going to state j maxi
mizes the rate of generating information under these constraints?
The constraints define a discrete channel and the maximum rate
must be less than or equal to the capacity C of this channel,
since if all blocks of large length were equally likely, this rate
would result, and if possible this would be best. We will show
that this rate can be achieved by proper choice of the Pi and p W.
The rate in question is

"P (8) I (8)
- ~ iPii og Pii

l,], 8

i. i, 8

Let

LP (8) Z(8)
iPif if

(8) B, W l(~)
Pii - B. 'J

t

where the B i satisfy the equations

This homogeneous system has a non-vanishing solution since W
is such that the determinant of the coefficients is zero:



120 The Mathematical Theory of Communication

-----------1 ~ WI!;' - Oii 1__0_. _

The p~) defined thus are satisfactory transition probabilities for
in the first place,

"'" (3) _ "'" B i W-l(~)LJp" -LJ- ./. ~1 . B
1.3 1.3 i

so that the sum of the probabilities from any particular junction
point is unity. Furthermore they are non-negative as can be seen
from a consideration of the quantities Ai given in Appendix 1.
The Ai are necessarily non-negative and the B; satisfy a similar
system of equations but with i and j interchanged. This amounts
to reversing the orientation on the lines of the graph.

Substituting the assumed values of pi;) in the general equation
for the rate we obtain

P (3) I B i W 1(')
~ iPii og & - 'i

vP·p~~)l··.. , ~1 ~1

log W~PiPWlW - ~PiPW log B j + ~PiPW log Bi

~P·p··l~~)
~ ~1 ~1

= log W = C.

Hence the rate with this set of transition probabilities is C and
since this rate could never be exceeded this is the maximum.

Appendix 6

Let 8 1 be any measurable subset of the 9 ensemble, and 8 2 the
subset of the f ensemble which gives 8 1 under the operation T.
Then

Let H>. be the operator which ghiftg all functiong in a get by the
time A. Then
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8ince T i8 invariant and therefore commutes with H>". Hence if
m LS1 is the probability measure of the set S

m[H>"SI] = m[TH>"S2] = m[H>"S2]

= m[S2] = m[Sd

where the second equality is by definition of measure in the g
space, the third since the f ensemble is stationary, and the last
by definition of g measure again. This shows that the g ensemble
is stationary.

To prove that the ergodic property is preserved under invariant
operations, let 8 1 be a subset of the g ensemble which is invariant
under H>.., and let 8 2 be the set of all functions f which transform
into 8 1• Then

H>"SI = H>..TS2 = TH>"S2 = SI

so that H>"82 is included in 8 2 for all A. Now, since

m[H>"S2] = m[S2] = m[SI]

this implies
H>"82 = S2

for all A with m[82 ] =1= 0,1. This contradiction shows that 8 1 does
not exist.

Appendix 6

The upper bound, N 3 < N 1 + N 2 , is due to the fact that the
maximum possible entropy for a power N 1 + N 2 occurs when we
have a white noise of this power. In this case the entropy power is

To obtain the lower bound, suppose we have two distributions
in n dimensions p (xd and q (Xi) with entropy powers N 1 and N 2.

What form should p and q have to minimize the entropy power
1"'13 of their convolution r(xd :

The entropy H 3 of r is given by

H; -
(
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Vie wish to minimize this subj ect to the constraints

We consider then

u = - f [r(x) log r(x) + Ap(X) log p(x) + J.l.q(x) log q(x)] dx

oU = - f[[1 + log r(x)] or(x) + A[1 + log p(x)] op(x)
+ J.I.[1 + log q(x) oq(x)]] dx.

If p(x) is varied at a particular argument Xi = Si, the variation
in r (x) is

8r(x) = qi», - s.)
and

and similarly when q is varied. Hence the conditions for a mini
mum are

fq(Xi - s.) log r(xi) = - A log P(Si)

fP(Xi - s.) log r(xi) = - J.I. log q(Si).

If we multiply the first by p(sd and the second by q(sd and
integrate with respect to S we obtain

H 3=-AH1

H 3=-p.H2

or solving for A and p. and replacing in the equations

J

Now suppose p(xd and q(xd are normal
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Then r(x l ) will also be normal with quadratic form Cl J • If the
inverses of these forms are au, bij, Cij then

We wish to show that these functions satisfy the minimizing con
ditions if and only if aij = Kbi, and thus give the minimum H 3

under the constraints. First we have

log r(xi) = ~ log 2
17r

I c; I - ! '};CiiXiXi

Jq(Xi - Si) log r(xi) = ~ log 2
17r I c; I-! '};Ci i8i8i-! '};Ciib i i·

This should equal

u, [n 1 I Iffi 2 log 27r A if

which requires A i i = Z: c.;
HI

In this case A i i = H
2

Bu and both equations reduce to

identities.

Appendix 7

The following will indicate a more general and more rigorous
approach to the central definitions of communication theory.
Consider a probability measure space whose elements are ordered
pairs (x, y). The variables x, yare to be identified as the possible
transmitted and received signals of some long duration T. Let us
call the set of all points whose x belongs to a subset 8 1 of x points
the strip over 8 1, and sImilarly the set whose y belong to 8 2 the
strip over S.). We divide x and y into a collection of non-over-
lapping measurable subsets Xi and Y i approximate to the rate
of transmission R by

where

p (Xd is the probability measure of the strip over Xi
P( Yd is the probability measure of the strip over Y i
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P(X~, Y l ) is the probability measure of the intersection of the
strips.

A further subdivision can never decrease R l. For let Xl be
divided into Xl = X~ + Xr and let

P(Y1) = a P(X1) = b + c

P(X~) = b P(X~, Y1) = d

P(X~) = c P(X~, Y 1) = e

P(X1, Y1) = d + e.

Then in the sum we have replaced (for the Xl, Y l intersection)

d + e d e
(d + e) log a(b + c) by d log ab + e log ac '

It is easily shown that with the limitation we have on b, c, d, e,

[
d + e Jd+e dd·ee<---
b + c - b"ce

and consequently the sum is increased. Thus the various possible
subdivisions form a directed set, with R monotonic increasing
with refinement of the subdivision. We may define R unambig
uously as the least upper bound for the R l and write it

1 Jf P(x, y)
R = T P(x, y) log P(x)P( y) dx dy.

This integral, understood in the above sense, includes both the
continuous and discrete cases and of course many others which
cannot be represented in either-form. It is trivial in this formu-
lation that if x and u are in one-to-one correspondence, the rate
from u to y is equal to that from x to y. If v is any function of y
(not necessarily with an inverse) then the rate from x to y is
greater than or equal to that from x to v since, in the calculation
of the approximations, the subdivisions of yare essentially a
finer subdIviSIOn of those for v. More generally If y and v are
related not functionally but statistically, i.e., we have a prob-
ability measure space (Y,v), then R(x,v) < R (x,y). This means
that any operation applied to the received signal, even though it
involves statistical elements, does not increase R.

Another notion which should be defined precisely in an ab-
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stract formulation of the theory is that of "dimension rate,"
that is the average number of dimensions required per second
to specIfy a member of an ensemble. In the band limited case
2W numbers per second are sufficient. A general definition can
be framed as follows. Let faCt) be an ensemble of functions and
let PT[fa(t), ftJ(t)] be a metric measuring the "distance" from fa
to ffJ over the time T (for example the R.M.S. discrepancy over
this interval). Let N(E, 0, T) be the least number of elements f
which can be chosen such that all elements of the ensemble
apart from a set of measure 0 are within the distance E of at
least one of those chosen. Thus we are covering the space to
within E apart from a set of small measure o. We define the
dimension rate A for the ensemble by the triple limit

" L· L· L· log N(E, 0, T)
A= 1m 1m 1m .

~-+O e-+O T-+oo T log E

This is a generalization of the measure type definitions of dimen
sion in topology, and agrees with the intuitive dimension rate for
simple ensembles where the desired result is obvious.
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