## II Kunst und Kybernetik in der Konsumgesellschaft

Die Künstler sind Götter, die den Menschen neu machen wollen and dabei nidt mit dem Skelett, sondern mit dem Hut beginnen. Decrowx

I Von der Ordnung zur Unordnung: die Welt der Kunst ist eingeteilt
Uberall hat man den Tod der Kunst verkündet. Dieses aufsehenerregende Schlagwort begeisterte ein Publikum, das desorientiert war durch die moderne Kunst, mystifiziert durch den Salon der Leere und das Geräuschkonzert, und das ohne Führer und Kompal im Ozean der Ismen 4 trieb, vom Realismus zum Surrealismus, vom Konstruktivismus zum Tachismus, vom Primitivismus zum Konfusionismus, vom Geometrismus zum Mobilismus, vom Lettrismus zum Ultra-Lettrismus. Der Gedanke, die Kunst sei tot, begeisterte auch etliche masochistische Künstler, denen er das Gefühl gab, eine Götterdämmerung zu erleben.
In Wirklichkeit erlebt man allerorten eine nie dagewesene Fülle von Doktrinen und Versuchen. Die gesamte Kunst steht in ihrer Beziehung zur Gesellschaft an einer Wende. Die neue Form des sozialen Milieus hat ihre Position erschüttert. Der Künstler drückt die Welt aus, in der er lebt, und wenn das Publikum im Rüdsstand ist, muß das Publikum gefördert werden. Wir stehen am Ende einer langen Periode der Infragestellungen, der Experimente und Versuche, die im äußersten Fall zu einer totalen Zerstörung der künstlerischen FORM geführt hat. Auf diesen Trümmern werden wir neu aufbauen.
In allen Bereichen der traditionellen Bild- oder Tonkünste ist der gesamte, von der Informationstheorie aufgezeigte Spielraum durchlaufen, der sich zwischen der totalen Ordnung des Wahrnehmungsfeldes - wie sie etwa im Mäander realisiert ist - und der vollkommenen Amorphie einer Unordnung auf allen Stufen erstreckt, einer Amorphie, die sich im Hintergrundsrauschen oder in den ihm im visuellen Bereich entsprechenden Großaufnahmen von Verpackungsmaterial darstellt.

Das Freiheitsfeld der Kunst, jedenfalls soweit diese visuelle und Klangformen herstellt, ist also völlig abgesteckt, wenn nidt sogar erforscht. Wir kennen jetzt die Wirkung, die die immer größere Komplexität eines ästhetischen Stimulus auf das Publikum ausübt: der Kunstkonsument ist die neue Form des Menschen guten Willens.
Gewiß bleibt uns immer noch die Möglichkeit, innerhalb dieses Feldes zu spielen; die schönen Künste, wie wir sie kennen,


Das Kunstwerk ist eine Nachricht, die durch ihren Komplexitats- oder Informationsgrad gekemnzeichnet ist; dieser hängt von der globalen Bildung der Gesellschaft ab. Der Wert eines Werks varilent entsprechend selnem Komplextätsgrad gemab einer modalen Kurve mit einem Maximum. Aber dieses Maximum verschiebt sich leicht mit der geschichthichen Zeit und dem kumulativen Anwachsen der Blldung in der modernen Gesellschaft. Zugleich wird es infolge einer basseren Vertellung der kulturellen Items in der Gesellschaft weniger ausgepragt. Kurz, die globale Evolution der Kunst tendiert zu immer komplexeren, subtileren und schwierigeren Elementenverbindungen: $z u$ dem, was man von jeher das Unbegreifliche: genannt hat. in der Musikentwicklung tinden sich viele Beisplele fur diesen Mechanismus.


Viele Werke der zeltgenössischen Musik tendieren zu einer steigenden Komplexität, die sich in einer zur Gleichwahrscheinlichkeit neigenden Zeichenvertellung manfestiert. Man vergleiche diese Statistik der Tone bei Webern Trio für Violine opus 20, mit der fur R. Strauss, Seite 19. gegebenen.
haben noch gewisse Aussichten; unter den Sonntagsmalern finden sich noch Genies. Doch die Grenze der vollkommenen Unordnung ist bereits erreicht, die Auflösung des Kunstwerkes ist perfekt. Dank einiger Waghälse, denen es gelang, die Verhöhnung auf die Spitze zu treiben, hat das Konzert aus vom Publikum erzeugten Geräuschen bereits stattgefunden (New York 1960), hat der Salon der Leere seine Pforten geöffnet - und geschlossen. Wir haben die Kunst auf den Nullpunkt reduziert.

2 Das universelle Recht auf Schönheit. Entfremdung zwischen dem Kunstweyk und dem Konsumenten
Im übrigen zersetzt sich das Kunstwerk in einer Massengesellschaft, in der der Konsumcharakter den transzendentalen Charakter in den Hintergrund drängt. Es entfernt sich von dem höheren Prinzip, dessen Manifestation es war, und verfängt sich in all den Erfahrangen, die es ermöglicht. Es ist zu leicht zugänglich geworden, und darum überwältigt es nicht mehr. Die Errichtung des imaginären Museums mit Hilfe der zahllosen Kopien; die Annullierung des Wertes des Originals mit Hilfe der Entfremdung durch den Tourismus sind die wichtigsten Mechanismen dieses Prozesses. Die Bewußtwerdung dieses Mechanismus führt dazu, daß man neue Wertskalen aufstellt: das ist einer der Gegenstände der entstehenden Sozio-Ästbetik, und diese Bewußtmachung ist die erste der neuen Funktionen des Åsthetikers.
Der Mechanismus des imaginären Museums bestätigt die Authentizität der Kopie (Photographien, Farbreproduktionen, Schallplatten, Serienobjekte) auf Kosten des Originals. Die Einfügung des Werkes in die Dialektik Original/Reproduktion verleiht ihm neue Wertformen, unter denen die Fidelität als essentiell erscheint. Die Fidelität (der Kopie zum Original) ist ein Begriff, der die Kopie wesentlich charakterisiert und dessen Definition lauten kann: der Empfänger nimmt keine Infidelität im Verhältnis zu einem Prototyp wahr. Dieser Prototyp spielt inzwischen etwa die Rolle des Urmeters aus Platin im Institut du

Système métrique in Paris, von dem mehr oder weniger vollkommene Kopien in aller Welt verbreitet sind; bis zum Zentimetermaß der Schneiderin hinab verfält ihre Qualität mehr und mehr. Effektiv variiert die Fidelität mit dem Grad an künstlerischer Bildung des Empfängers; sie ist ein relativer, kein absoluter Begriff: eine Postkarte mag für dieses Individuum getreu sein, für jenes nicht; das Problem ist letztlich statistischer Natur.

Im Grenzfall ist das Original nur noch eine - für Spezialisten und Kreatoren bestimmte - Matrize seiner eigenen Kopien, die zudem noch von Millionen Touristen betrachtet wird. Die Kopie bietet uns eine neue Sicht des Werkes und zunächst ein asymptotisches Ideal der Funktion des Kunstwerkes in der Gesellschaft; am Endpunkt dieser Entwicklung wird man das Axiom akzeptieren müssen: an jedem Ort, zu jeder Zeit kann jede räumliche oder zeitliche Form allen zur Verfügung gestellt werden. Wir bewegen uns in einem allgegenwärtigen ästhetischen Universum, das all unsere Handlungen durchdringt; Maßstab dafür ist einzig, wieweit wir bereit sind, eine beliebige Form von Schönheit zu empfinden. Es gibt keine Spaltung mehr zwischen »denen, die haben« (Recht auf Schönheit) - den Reichen, den Fürsten, den Müßiggängern - und »denen, die nicht haben* (Recht auf Schönheit) - to bave and to have not (Hemingway) - und die sie sich allenfalls erschmuggeln können - den Bauern, den Arbeitern, den Sklaven. Das Problem liegt ganz einfach in einem Willensakt: Wer das wahrnehmen will, was schön ist, braucht nur zum Kaufmann an der Ecke zu gehen und dort das ästhetische Objekt zu erwerben, das seinen Möglichkeiten entspricht.

Dieser Begriff der Disponibilität begründet eine neue Spaltung: an die Stelle der Spaltung zwischen denen, die haben, und denen, die nicht haben, tritt die z wischen denen, die wollen, und denen, die nicht wollen - nämlich sich der Mühe der ästhetischen Wahrnehmung unterziehen; so erhält die ästhetische Fähigkeit, also eine spezielle Sensibilität, ein neues Gewicht. Eine neue Definition der Authentizität ergibt sich: sie ist nicht mehr an das (Kunst-)Objekt geknüpft, sondern an die Relation, die sich zwischen dem Empfängerindividuum und dem Objekt herstellt: es ist cine Situationsauthentizität. Es gibt authentische Kunstsitua-


Im Imaginaren Museum kann man als ,Qualitätspyramider die zahlenmäBige Verteilung von Kunstwerken (horizontal) in Abhângigkelt von den verschledenen Quelitätsklassen bezeichnen, dle nach wachsender Qualltät (vertikal) in einer Skala geordnet sind. Letztere wäre noch zu definieren, man kann sie slch aber leicht vorstellen. Die Werke varieren nach dem Grad der Fidelität, von der vollkommenen Fidelitat des Originals im Verhaltnis zu sich selbst bis hin zu den gröbsten Wiedergaben. Jede Reproduktion erlaubt eine mehr oder weniger hohe Auflage, und die durchschnitliche Vertellung bildet eine Att demographischer Pyramide des Imaginären Museurns. Beide Figuren lassen sich vergleichen: wenn die Histogramme sich decken, ist die Ophelimitatshypothese bestätigt.

Das fundamentale sozio-kulturelle Problem ist hier das der Angleichung, das heißt die mehr oder weniger große Ahnlichkeit zwischen den Formen der beiden Pyramiden. Wenn diese vorhanden ist, kann man annehmen, daß das Ideal erreicht ist: es liegt eine vollkommene Angleichung der Kunst an die Ziele der Gesellschaft vor, die sozio-kulturelle Pyramide korreliert in ausreichendem Maße mit der Betätigung des ästhetischen Bedürfnisses - eine eingestandenermaßen recht grobe Hypothese. Obwohl die Entwicklung des imaginären Museums eben eine Funktion des mehr oder weniger bewußten Ideals der Ophelimität ist, ist dieses Ideal offenbar bei weitem nicht erreicht.

Die sozio-kulturelle Pyramide und die Qualitäts- oder (in streng soziologischem Sinne) Wert-Pyramide der auf dem Markt befindlichen Werke differieren effektiy sehr stank; es ist interessant festzustellen, dab diese Differenz (die sich, in entsprechenden Einheiten gemessen, in der Flachendifferenz zwischen den Umrissen dieser beiden auf den gleichen Mafstab gebrachten und in cine Grafik eingezeidneten Pyramiden ausdrückt) ein Maß für cinen
tionen und nichtauthentische Situationen: die Postkarte mag authentisch sein für den Liebhaber, der sie hingerissen betrachter, das Original ist eventuell nicht authentisch für das Opfer der rtouristischen Entfremdung, das dieses Bild ansieht, weil es auf dem Programm einer Stadtbesidhtigung steht. Die Normen verschwinden; die Situationsauthentizität, die die Authentizität des Objektes ersetzt, ist nun die spezielle Haltung eines Individuums gegenüber einer Sache, die gekennzeichnet ist durch das Fehlen ,kultureller Entfremdung.

3 Das Bedürfnis nach Schönheit. Verwendung oder Antrieb der Kreation?

Einen weiteren wesentlichen Begriff entlehnt die Sozio-A sthetik der Okonomie. Denn mit dem imaginären Museum gibt es jetzt eine politische Okonomie des Kunstwerks, deren Gesetze wir auffinden müssen. Dies ist der Gedanke der Ophelimität (Pareto), das heißt der Angleichung des multiplen Werkes an die Struktur der sozio-kulturellen Pyramide.

Genauer: Sobald das Kunstwerk seinem Wesen nach vielfältig ist, entsteht im Universum der Kopien eine Reihe von Qualitätsschichten, die sich allmählich von der Perfektion des Originals entfernen und in immer zahlreicheren Exemplaren hergestellt werden. In einer Soziologie des Werkes, die von der Soziologie der Kunstliebhaber mehr oder weniger unabhängig ist, gelangt man zunächst zur Herstellung einer Demographie des ästbetischen Objektes und einer Qualitätspyramide, die ausdrückt, wie viele Exemplare - abhängig von ihrem Qualitätsgrad - im unendlichen imaginären Museum existieren. Das führt zu einem umgekehrten Histogramm, das wir Qualitätspyramide (Abb. A) nennen wollen. Obrigens ist die Soziologie in der Lage, wenigstens theoretisch eine weitere Pyramide, die soziokulturelle Pyramide (Abb. B) zu definieren, die in Funktion eines sindividuelle Kultur genannten Faktors, für den sie universale Tests zu liefern versucht, die Zahl von Individuen der Gesellschaft wiedergibt, die dieses kulturelle Niveau besitzen.

Faktor bilden kam, der vage und zugleich wichtig fur die moderne Gesellschall ist, die mangelnde Befriedigang des Schönheitsbedüffnises, ein Phänomen, das vermutlich statistisch uber die Gesamtheit der Wohlfahresbüger (Welfare State) verteilt ist. Es labt sich denken, daB dieses globale Unbefriedigtsein, das sich bier quantitativ ausdrüde, als eine der fundamentalen Motivationen der Gesellschaft zu betrachten ist, um die Begriffe der Nationalökonomie zu ubernehmen, Mit anderen Worten - in der Sprache der Kybernetiker gesagt - ist die Quantitàt des Unbefriedigtseins ein Maß für die Reaktion der Wirkungen auf die Ursachen, sie gibt ein Bild von der Diskrepanz, die später cine Aktion auf diesem Gebiet auslosen wird. Ebenso wie die Unzufriedenheit mit dem Lebensstandard beim Individuum oder in der sozialen Gruppe in gewissen Grenzen eine Anstrengung der Erfindungsgabe oder eine kreative Aktion provoziert, kann die künstlerische Kreation bis zu einem gewissen Grade mit cinem Unbefriedigtsein des Schönheitsbedurfnisses verbunden sein, das mehr oder weniger latent in der Bevölkerung vorhanden ist. All dies zeigt die Bedeutung der ästhetischen Funkion in der neuen Gesellschaft.

## 4 Die Asthetik: eine Wissenschaft von der Entdeckung

Im Namen der Universalität der ästhetischen Funktion in der modernen Welt muB ein weiterer, ganz anderer Aspekt hervorgehoben werden, der nicht mehr mit dem Bild der Gesamtgesellschaf zusammenhängt, sondern mit ihrem individuellen Fortschritt: das ist die beuristische Aufgabe der Asthetik. Sie ist nicht mehr in erster Linie die Philosophie des Schönen; sie wird zu einer experimentellen Wissenschaft, die auf der Psychologie, der Soziologie und der Kreativitätstheorie fußt. Eine ihrer ersten Bemähungen ist nun, aufgrund der Untersuchung des Werkes und der Arbeit des Künstlers die Mechanismen der Kreation festzustellen.

Kunstkritiker und Asthetiker haben sich nämlich bisher mit dem fertigen Werk befabt, das sie als ein Faktum ansahen, und haben nachträglich dessen Wirkung auf den Empfänger der Nachricht untersucht. Zu selten interessierten sie sid für das noch virtuelle, rzu machende، Werk und noch seltener fur die Kreation im allgemeinen. Gewiß hat die Faktur die besten Kunstwissenschaftler beschäftigt: die Theorie der Zwänge, die sich vor allem aus dem


Das Auftauchen eines originalen Werks in der Gesellschaft labt sich anhand des abgebildeten Organogramms beobachten. Der Kreator als konstruktiver Organisator in einem Ideenspiel, das durch seine Imagination gefordert und seine Arbeit in Gang gesetzt wird, entwift eine Form, die zunächst der Kritik seiner elgenen sozio-kulturellen Werte unterworfen wird; wenn die Form dann ober diases Stadium hinausgelangt und auf oprofessionelle. Werte trifft (Stl), Unterordnung unter anerkannte Regeln), verbreitet sie sich unter der Enwirkung langfistiger kollektiver Werte ins Publikum. Die Reaktionen des Publikums auf das Ideenspiel bestimmen statistisch das Verhalten des Kreators (Erfolg).
Material, der Farbe, der Zeit ergeben, führte zu vielen widtigen Arbeiten über das Freiheitsfeld, das sich dem Werke bot, etwa in der Architektur, dem Fresko oder dem Film. Aber es muß gesagt werden, daß diese Arbeiten sich auf Stilprobleme beschränken und das fundamentale Problem der Kreation ausgespart haben; die Asthetiker haben sich nicht wirklich damit befaßt. Die Psychologen haben es sich gleichfalls lange Zeit geschenkt, zur intellektuellen, künstlerischen oder wissenschaftlichen Kreation Stellung zu nehmen, in der Meinung, diese habe mit vagen, abstrakten Begriffen wie Genie, Inspiration oder Zufall zu tun,
Nun laufen die vereinzelten Bemerkungen der Kreatoren (Schriftsteller, bildende Künstler, Musiker, Forscher, Ingenieure von Planungsbüros) alle auf eine gewisse Zahl präziser Fakten hinaus: die Rolle der Imagination in ihrem Verhältnis zu den aleatorischen Prozessen, die Rolle der im Gedächtnis gespeicherten Kenntnisse, schließlich die Rolle der Situierang des Geistes in einem speziellen Feld von Phänomenen, sei es symbolisch (Zei-
chen), natürlich (Beobaditung) oder künstlich geschaffen (von einem Forscher durchgeführtes Experiment).

Seit einigen Jahren hat die dringende Notwendigkeit, die Investitionen zu bemessen, die soziale Gruppen in Individuen machen können, zu Arbeiten über die Kreativität geführt. Den Psychologen und Wissenschaftsphilosophen, die sich damit beschäftigt haben, ist es gelungen, eine Anzahl von Lehrsätzen über die objektivierbaren Mecbanismen der intellektuellen Kreation aufzustellen. Sie sind grundsätzlich identisch, welcher Art auch das spezifische Objekt sei, das sie betreffen. Wir haben jetzt nicht mehr ,wissenschafliche Kreations und ,künstlerische Kreations zu unterscheiden, sondern einen wissenschaftichen Rahmen, einen rationalen Gegenstand und einen künstlerischen Rahmen, einen Empfindungsgegenstand, mit denen der schöpferische Akt neue Formen schaff. Das ist ein fundamentaler Faktor; er verleiht der ästhetischen Wissenschaft eine unendlich reichere Resonanz, da er sie zu der Wissenschaft von der Entdeckung in Beziehung setzt. Indem man die Einheitlichkeit des Problems in der Vielfalt seiner Bezugsbereiche erkennt, gibt man ihm mehr Gewicht. Die Asthetik berührt ein Kernproblem der modernen Gesellschatt: Wie kann man die Kreation aktivieren? Und deshalb: Wie kann man sie kennenlernen?

Im ersten Kapitel über die Informationstheorie haben wir gesehen, daß sich jede geistige Kreation als Nachricht eines Individuums - oder einer kreativen Gruppe - an die Umwelt darstellt. Diese Nachricht weist im allgemeinen einen bestimmten Grad an Originalität auf, eine gewisse Unvorhersehbarkeit im Verhältnis zu all den Nachrichten, die in der bisherigen Kultur den gleichen Semantemgehalt besaßen. Die vagen Faktoren, die die weitherzige Philosophie mit der Kreation in Verbindung brachte, hängen also mit dem relativen Originalitätsgrad dieser Nachricht zusammen.

Um jedoch eine intelligible Form zu bilden, muß die Nachridh einer Anzahl von Ordnungsregeln gehorchen: hier liegt der Gleichgewichtspunkt zwischen original، und für den Geist faßbarc, der ein gültiges statistisches Maß für die Erfindung bedeutet. Man kann nun denjenigen als kreatives Individuum betrachten,
der fähig ist, durch Beobachtung oder Komposition eine neue Ordnung aus dem Chaos des umgebenden Universums herauszulösen, ob es sich um ein Universum von Formen, von symbolischen Zeichen oder von Semantemen handelt, mit denen die Bildung das Gehirn ausgestattet hat.
Das Gleichgewicht, das bisher zwischen dem Originalen und dem Intelligiblen bestand, wird also durch den Kreator verschoben. Eben dieses Gleichgewicht ist maßgebend für den Mechanismus der Wahrnehmung, das Entstehen einer Form in Geist des Betrachters. Eine genauere Untersuchung des Mechanismus der Wahrnehmung und der Filterung (bestimmt durch eine Anzahl von Kriterien) von Elementen aus einer Quelle, die sie willkürlich ausstößt, bietet ein sanalogesィ Bild für die Kreation, das noch durch die Praxis gerechtfertigt werden muß. Ubrigens ist

Die Welt durch die Macht des Gedankens (und des Computers) neu aufbauen


Hier zwel Bilder, die mit Recht phllosophisches Staunen hervorrufen könten. Sie zeigen offenbar zwei Photos nach Gegenständen aus Gips oder Kunststoff, die seitlich beleuchtet sind. Wenn man ein Photo machen will, nimmt man gewohnlich einen Gegenstand, eine Lichtquelle und eine Kamera, stelit sie auf einen Tisch und photographiert. Unsere beiden Photos Indessen stellen Objekte dar, die gar micht existheren. Man hat zunächst das Photo gemacht, das nur eln Scheinbild des Objekts darstelt, und man kann, wenn man will, auch das Objekt von seinem Scheinblld her konstruieren. Schatten, Licht und Halbtone ouf den Flächen wurden vom Computer berechnet, und zwar in Abhängigkeit von einer möglichen geometrischen Struktur des dargestellten Objekts und von einer angenommenen Position der Lichtquelle. Ein derartiges Bild ist die geeignetste lllustration zu der Meinung Nietzsches, dab wir vollstandig nur ein Universum begreifen konnen, das wir selbst gebildet haben.
mit Hilfe neuer, streng experimenteller Methoden eine neue einheitliche Behandlung des Kreationsproblems möglich geworden. Sie beruhen wesentlich auf der Verwendung von Computern, mit denen die Möglichkeit gegeben ist, eine große Zahl von Wissenselementen in einer bestimmten Ordnung zur Herstellung von Nachrichten zu verarbeiten.

Diese Evolution der Heuristik unter dem Einfluß des letztgenannten Faktors kann man in Begriffen der sozialen Psychologie als das Auftauchen eines neuen Mythos bezeichnen; wir haben ihn einen dynamischen Mythos genannt, das heißt eines jener Bilder, die die irrationalen Bemühungen des menschlichen Geistes, das Rationale zu schaffen, einbegreifen und eine Art Ideal darstellen, das per definitionem unerreichbar ist. Das sind $\rightarrow$ Mythens; sie sind allgegenwärtig im Bewußtsein der Forscher oder der gebildeten Menschen; sie sind nicht realisierbar, aber man kann versuchen, ihnen nahezukommen. Die Kreationsmaschine ist der neue dynamische Mythos.

## s Die Computerrevolution

Am Ende hängen wir loch ab von Kreaturen, die wiy maden.

Goethe
In seinem Werk Human Uses of Human Beings hat Wiener das fundamentale soziale Problem der Kybernetik formuliert: die Symbiose mit den Maschinen, die unbemerkt in unsere Welt, das heißt in unsere Gedankenwelt eindringen. Gewiß geht die Diskretion der Kraftmaschinen, deren lästigstes Beispiel das Auto ist, nichr sehr weit. Wir nehmen ihre Gegenwart überreichlich wahr, wir beziehen sie in unsere Projekte ein, wir halten Vorträge über die industrielle Revolution und die Macht des Menschen.
Doch die Informationsmaschinen sind es, die von nun an mehr und mehr unser Handeln bestimmen, und dies so schleichend und hinterrücks, daß man mit Recht von einer beimlichen Revolution sprechen kann, die sich ohne Wissen der Beteiligten vollzogen hat. Wie wird sich das menschliche Wesen, das die Philosophen feier-
lich zum alleinigen Besitzer der Denkfähigkeit erkliairt haben, mit Nachrichten zurechtfinden, die aus künstlidhen Organismen stammen? Wenn die ganze Würde des Menschen in seinem Denken besteht, mit welchen Gefühlen sieht er dann einen möglichen Konkurrenten, dessen Evidenz er bis jetzt auf meta physischer Ebene hat leugnen können, der sich aber funktionell immer sichtbarer manifestiert?

Eine Frage beherrscht momentan alle übrigen: die Frage der Informationsmaschinen unter ihrem zweifachen Aspekt von Denkmaschinen und $>$ Maschinen, die denken machens, Die Interpretation als Maschinen, die denken machens ist für den Philosophen brauchbar. Sie führt zu dem Begriff >philosophische Maschinens, an den Lullus und Leibniz gedacht zu haben scheinen, nicht aber unsere modernen Philosophieprofessoren; sie nämlich wehren sich gegen den Gedanken, ihrem Lehrstuhl ein Laboratorium angliedern zu müssen.
Die banale Interpretation als Denkmaschinen, die der beunruhigte Enthusiasmus des großen Publikums erzwang, wurde noch vor wenigen Jahren von den meisten Wissenschaftlern verworfen, denn ihre verschämte Gewissenhaftigkeit mochte sich nicht mit derartigen Geschichten kompromittieren. Heute akzeptieren viele von ihnen eine solche Interpretation, zumindest im Sinne eines bequemen Mißbrauchs der Sprache, der der Maschine gewisse Operationskategorien des Denkens zugesteht, wie sie im entsprechenden Artikel des Petit Larousse aufgeführt sind. Dadurch gelangen wir zu einer neuen Einstellung gegenüber dem Wort >Denkenc und zu einer Inventarisierung der Fähigkeiten des Intellekts. Kurz gesagt: Will man diese Frage beantworten, braucht man die Maschinen nur psychotechnischen Fähigkeitstests zu unterziehen; die Abbildung auf Seite 50 zeigt ein psychologisches Profil des mechanischen Denkens.
Der kritischste Punkt sind ihre am wenigsten entwickelten Fähigkeiten (die Computer als ,geniale Dummköpfer). Hier erscheint das Problem der Kreation an erster Stelle und gibt der Weisheit gewisser Leute eine Reihe philosophischer Fragen auf; denn die automatische Reproduktion der Maschinen wird erst in fernerer Zeit diskutabel.

## 6 Künstliche Kreation und Kybernetik. Von der Analogie zur Simulation

Der Fortschritt der Computer hat zur Realisierung bestimmter Entwürfe artifizieller Kreation geführt. Einige Prozesse gehören bereits in den Bereich der Maschine; es ist interessant, die Rolle festzustellen, die sie im widhtigsten Phänomen spielen: systematische Variationen um ein Modell, Beifügung ergänzender Elemente von begrenzter Varietät (Dekoration), systematische Erforschung eines Möglichkeitenfeldes (permutationelle Kunst), Kombinatorik usw.

Eine Maschine ist durchaus in der Lage, Folgen von Zahlen oder Wörtern eines nad dem andern hervorzubringen, das Stammeln des malenden Schimpansen oder des automatischen Schreibens zu produzieren, sie kann audk unbegrenzt die Reden des Papageien nadahmen. Aber mit Siderheit ist sie nidht in der Lage, eine Tragödie von Racine (oder gar von R.A.C.I.N.A.C. . . Rythm autogenerator, contelator, integrator, notionalyser and computer) zu rekonstruieren.

Diese Maschinen zur Manipulation der Komplexität verarbeiten die Information nach bestimmten Simulationsmodellen, die so etwas wie materialisierte, Gedank enexperimenter darstellen. Die Programmierung von Computern hat viele Ahnlichkeiten mit dem kybernetischen Denkschema: dieses basiert auf der Entdekkung einer Analogie; es erlegt ihr eine Anzahl restriktiver Bedingungen auf, ehe sie als Modell für eine effektive Simulation akzeptiert wird.

Die kybernetische Analogiemethode führt uns dazu, so vollkommen wie möglich in einer Art gedanklicher Iteration alle Prozesse, die wir beherrschen, zu reproduzieren, alles zu simulieren, was sich simulieren $1 a ̈ ß \mathrm{st}$. Zugleich bewirkt sie eine Kritik der Unzulänglichkeiten des Modells in der Reihenfolge, in der sie auftreten; der Zweck ist die Verbesserung des Modells durch ,trial and error, Die Methode ermöglicht, zum Schluß der Analyse klar den doktrinalen Restbestand zu umschreiben, an dem wir uns stoßen; erst dann ziehen wir andere Methoden heran. Das ist also die rationellste aller möglichen Annäherungen, selbst wenn das Unternehmen in logischer Hinsicht aussichtslos er-
scheint. Schon Wilhelm von Oranien hat gesagt: »Man braucht keine Hoffnung, um zu beginnen, noch braucht man Erfolg, um zu beharren.《


Testprofll der Fähigkeiten des modernen perfektionierten Computers oder der künstichen Intelligenz.

Diese etwas willkirliche Abbildung geht von den psychologischen Profifen aus, die man für Eignungsprufungen herstellt, und bezieht sich auf eine ideale Maschine mit den wirksamsten und besten Vorrichtungen, die die Computertechnik heute zumindest als Prototypen zustandebringt. Sle repräsentiert also die Kapazitatt, dle z. B. beim heutigen Stand der Dinge ein Computerlaboratorium besäBe, das milt einer I.B.M. 370 mit möglichst unterschiedichen Ein- und Ausgabegeraten ausgerüstet wäre. Sle bezieht sich auf eine wilkuurliche Einheit, die Kapazität des durchschnittichen menschlichen Gelstes, der auf den verschiedenen Gebieten als Bezugspunkt dient: Kurzzeitgedächtnis, Langzeitgedächtnis, Kalkul, geistige Beweglichkeit, Bewuftsein, verbale Fahigkeiten, visuelle und auditive Auffassung, Unweltwahrnehmung, Imagination, Kreativität, Kombinationsfähigkeit, logische Fähigkeiten und Kritikfähigkeit.

Auf dem Gebiet der automatisben tbersetzung schien es uns vor ein paar Jahren, als werde die Simulierung des mentchlichen Denkens durch Maschinen unendich viel sdnellere Fortschritte machen, und die unzulänglichen Fahtgkeiten dieser Maschinen könnten rasch verbessert werden. Das psycurologische Profl, das wir weiter oben aufgezeidnet haben, labr uns auf einen Ermessensirtum stoßen. Das Denken materialisiert sid in Zeichen, die fur den Computer sinnlos sind, weil er nidt an dem geistigen Bild teilhaben kann, das sie evozieren. Die Obersetzung ist nidt die bloke Obertragung eines Zeidensystems in ein anderes, sondern will eine Ideenfolge wiederherstellen, will so getreu wie möglich dem Empfänger einer Sprade Y die geistige Vozstellung eines Senders einer Sprache X mitteilen. Die Worte bilden ein willkürlides System und reflektieren je nads Sprache einen Begriffaussdnitt, der sich von der Realität unterscheidet. Ein Text läßt sidh nur dann mathematisch transkribieren, wem die Begriffe klar definiert sind und die kontextuelle In formation explizit gemacht ist. Der Computer aber kümmert sid nidt um Bedeutung.

Die Erfassung von Begriffen durch die Maschinen und damit die Kreation im weiteren Sinne ist noch im Entwicklungsstadium; wir haben Grund zu glauben, daß wir hier auf ganz fundamentaleSchwierigkeiten stoßen, die uns vielleicht noch viel Zeit kosten werden (Theorem von Gödel). Die Kreation von brauchbaren, das heißt sinnvollen künstlichen Texten ist das Kernproblem: es ist das Problem der Fähigkeit der Maschinen, eine rallgemeine Semiotiks oder Zeichenwissenschaft zu beherrschen.

An diesem Punkt wird die ,künstlerischer Konstruktion per Maschine interessant. Die Maschine stellt nämlich den Anspruch, auf jede nur mögliche Weise dem Kunstwerk nahezukommen und jedesmal Scheinbilder davon anzubieten, deren jedes eine andere Konzeption des Werkes kennzeichnet. Der Ahnlichkeitsgrad spielt hier die Rolle des früheren Wertes, Wirklichkeitstreue. Man übertreibt wohl nicht, wenn man diese Methode als Neo-Cartesianismus bezeichnet, einen Neo-Cartesianismus der Maschine, der auf Rationalität gegründet ist.

Nun hat die künstliche Produktion in der Asthetik ganz andere Gültigkeitsbedingungen für ihr Produkt, als sie für das vollendete wissenschafliche Produkt anwendbar wären, Bedingungen, die eindeutig leichter zu erfüllen scheinen. Es zeigt sich, daß unter den vielfältigen Versionen, die die $/$ Kreationsmaschine anbieten kann, die Versionen mit ästhetischer Orientierung am leichtesten unmittelbar zu realisieren wären und folglich nach der gewohn-
ten Regel des wissenschaflichen Verfahrens, das mit dem Leichtesten beginnt, die beste Verwendung notwendigerweise begrenzter Mittel darstellen würden. Mit anderen Worten: Die Mechanismen der künstlerischen Kreation erscheinen als ein erfolgversprechender Entwurf für die Mechanismen der wissenschaftichen Kreation, bei der sich die gleichen Grundprobleme stellen, deren Aufnahmeforderungen aber materiell schwerer zu realisieren sind.

7 Der Abstand zwischen einzelnem Atom und Totalität: Nabordnung und Fernordnung
Die zahlreichen linguistischen Arbeiten über die Struktur der Sprache und die Möglichkeit, sie in Modellen< darzustellen, erlauben und eine gewisse Präzisierung dieser Behauptung. Die strukturalistische Hypothese, die darin besteht, die Welt in Wahrnehmungselemente zu zerlegen, um sie dann nach bestimmten Regeln neu zu ordnen, deren Gesamtheit die strukturens bildet, stammt nämlich aus der Linguistik.
Doch sie ist heute über die Informationstheorie, die eine Syntbese zwischen der atomistisch-strukturalistischen und der dialektisch-ganzheitlichen Position bewirkt, in alle Humanwissenschaften eingedrungen. Die dialektische Theorie hat die Grundlagen einer Klassifizierung der Gesetzmäßigkeiten dargelegt, die die Verbindung der Elemente bei der Bildung einer ,Form lenken, das heißt einer Ganzheit, die der Geist wahrzunehmen vermag; die Formen existieren nicht an sich, sie sind nur als , Wahrgenommene vorhanden: sie sind auf die Nachricht angewandte Produkte des Empfängers.

Man gelangt also dahin, die Gesetzmäßigkeiten in einer neuen Sicht zu ordnen, nämlich in der des Empfängers. Diese Zwänge markieren den fundamentalen Gegensatz zwischen Nabordnung und Fernordnung.

Auf mathematischer Ebene labt sid dieser Gegensatz durch den Begriff des Autokorvelationsabstands charakterisieren. Dieser Begriff bedeutet, auf seine Essenz reduziert, ein statistisches Maß für den duechschnitulichen Abstand, in
dem ein beliebiges Element einer Nadridht oder eines Objektes durch das Vorhandensein eines weiteren Elementes dieser Nachridt in eben diesem Abstand beeinfluft wird.

Das Erkennen yon Ordnung in einer Zusammenstellung ist der entscheidende Faktor bei der Herstellung einer intelligiblen Form, da lezztlid Form das ist, was dem Betrachter nicht als Zufallsprodukt erscheint: Form ist Bewußtsein von Vorhersebbarkeit in der Anordnung der Elemente. Die mathematische Größe Autokorrelation ermöglicht, Rechenschat über die Ordnung zu geben, die auf verschiedenen Entfernungsstufen besteht. Sie bemißt, in welchem Grade ein Punkt in einem linearen Ablauf (Buchstabe oder Wort auf einer Linie) oder in einer Fläche (Netz aus schwarzen und weißen Punkten) das Wissen über die Natur (etwa schwarz oder weiß) eines weiteren Punktes beeinfluit, determiniert, der sich in einem bestimmten Autokorrelationsabstand befinder. Die Autokorrelation milit also die Stärke der statistischen Verbindung zwischen einem Phänomen und ihm selbst zu einem späteren Zeitpunkt oder an einer Stelle, die vom Bezugspunkt mehr oder weniger entfernt ist. Sie variiert von o bis I, wobei 1 die vollkommene Vorhersehbarkeit, o die vollkommene Unvorhersehbarkeit zwischen dem Phänomen an einem gegebenen Punkt und dem bedeutet, was etwas später oder etwas entfernt aus ihm wird. Wenn man den Autokorrelationsabstand auf einer Abszisse einträgt, das heißt den Abstand oder den Zeitraum, die cinen Punkt von einem anderen trennen, kann man Autokorrelations-Spektrum die Variation des Verbindungsgrades nennen, die ausgehend vom ersten Ort voraussagen läßt; was am zweiten Ott stattinder. Es ist zum Beispiel evident, daß ein Punkt sid selbst definiert, daß heißt, daß beim Abstand Null per defnitionem die Autokorrelation I ist. Wenn ein System vollkommen geordnet wäre, könnte man, ausgehend von seiner Struktur an einem beliebigen Punkt, seine Struktur an einem weiteren beliebigen Punkt voraussehen, $Z$ wischen diesen beiden entstehen die Maxima des Autokorrelationsspekrrums an spezifischen Stellea, die eine besondere Ordnungsstruktur kennzeichnen.
Je mehr sich der Beobachter in der Nabordnung den Elementen des beobachteten Systems nähert, desto deutlicher erscheinen ihm die Verbindungen zwischen den Elementen; die lokalen Aspekte interessieren ihn, nur sie sind klar und evident: die mikroskopische Untersuchung bestätigt das. Doch die mehr oder weniger große Unordnung der Elemente kann die allgemeine Struktur verdecken.
Je weiter sich der Beobachter jedoch in der Fernordnung vom beobachteten Objekt postiert, desto besser erfaßt er die allgemeine Struktur, die globale Ordnung. Die Formen im Ganzen erscheinen wie ein Leitplan, der die Wahrnehmungsatome beherrscht und sie in eine Hierarchie integriert. Der Beobachter
vergilft oder übersieht die lokalen Schwankungen, selbst wenn diese so stark sind, daß sie, aus kurzer Entfernung gesehen, die globale Funktion untergehen lassen.


Hier ein Beispiel fir sehr starke Fernordnung ( 3 Kanten eines Warfels), die in einer sehr schwachen Nahordnung (Punktfolge eines Photo-Rasters) untergeht. Solche Bilder zeigen deutlich die. Unabhängigkeit dieser beiden Ordnungstypen voneinander (Golomb). Die optische Diffusion bewirkt eine Deformation, die aus den runden Punkten bei schwacher Dichte ein Schachbrettmuster macht, sobald die Dichte stärker wird.

Nahordnung und Fernordnung werden jeweils nach einem Ordnungsgrad gemessen, der mehr oder weniger hoch sein kann und an dessen Festlegung sich die Mathematiker versuchen. Natürlich kommt es vor, daß die Ordnung zugleich nah und fern ist: dann sprechen wir von totaler Ordnung. In dem dialektischen


## Eine Form erscheint durch Synthese

Formenkonstruktion beruht auf Superzeichenarchitektur. Grundelement ist hier nicht der runde Punkt, sondern links die Anordnung von drei Punkten mit zwei möglichen Größen und rechts von vier Punkten mit zwei unterschiedlichen Gröben, was funf Kombinationen eriaubt. Die möglichen Anordnungen bestimmen das Blld eines Wurfels (Fernordnung) (Golomb).

Spiel zwischen original und banal, das das künstlerische oder wissenschaftliche Werk charakterisiert, sind die Ordnungsquantitäten zwischen den Extremen von einer Wahrnehmungsebene zur anderen sehr verschieden, und der Geist sucht spontan die Ebene, deren Ordnung ihm am leidhtesten erfaßbar erscheint (Wahrnehmungsstrategie).

Ein Erfinderpatent ist ein Text, der im wesentlichen einer Ordnungsstruktur auf große Distanz gehorcht; wir nennen sie gedanklicien Zusammenhang. Dieser beherrscht streng die Anordnung der Paragraphen, die Wortwahl, die Wahl der Formeln, der Ausdrücke und deren Ancinanderreihung (nach einem


Als Gegensatz dazu ein von K. O. Götz mit dem Computer zwecks Untersuchung der Wahrnehmungsmechanismen der Nahordnung hergesteltes Bild. Der Programmierer hat die Fläche in Zonen von je 10 Punkten Brelte aufgeteilt. In jeder dieser Zonen oder Superzeichen bestimmen die schwarzen oder weiben Quadrate einander nach polygrammatischen Assoziationsgesetzen: wenn dieses Quadrat schwarz ist, dann ist jenes, das $n$ Punkte entfemt liegt, mit $x \%$ Wahrscheinichkeit weib oder ungekehrt. Unter diesen Bedingungen argeben sich Zonengruppierungen, die in großem Maße aleatorisch erscheinen. Doch folgt zwecks Herstellung einer Form die mittlere Dichte der Zonen einem Gesetz der Absohwächung von links nach rechts. Diese Experimente, die die Handhabung einer großen Datenmenge implizieren, brauchen zu ihrer Realisierung den Computer und stellen Wahrnehmungsgesetze auf, die für die vom Computer gemachten Werke bestimmend sein werden.
quasi deduktiven Gesetz, das sich aus der Logik herleitet; diese Struktur gibt der Verfasser des Textes durch eine rechr banale Syntax wieder; er gibt seinen Gewohnheiten nach, verwendet Flickwörter und faßt den Text mit ungefahrer Genauigkeit ab.
Was dagegen in einem Text moderner Dichtung vor allem zählt - das haben die subtilen Analysen von Paul Valéry sehr deutlich gezeigt, das haben nach den surrealistishen Versuchen mit dem rautomatischen Schreiben. Dichter wie Isou, Queneau, Dufrêne, Lambert erprobt -, ist die Nahordnungsstruktur, die Assoziation der Wörter, die Anwendung der Gesetze für die Kontaktassoziation, über die uns William James bereits Wesentliches gesagt hat.
Die Femordrung gibt es in der Dichtung ebenfalls: Nehmen wir einen $\#$ figurativen, Dichter, etwa Victor Hugo, der die ruihrende Geschichte von dem auf dem Sdhadtfeld verwundeten Soldaten erzählt; hier konvergiert das ganze Gedidt im letzten Satz. Unser Interesse an dieser Fernstruktur ist relativ unabhängig vom vorher erwähnten: der fehlerlose Ablauf der Syntax ist sozusagen fakultativ; die experimentierenden Dichter haben sie grundlid auf den Kopf gestellt, zum Teil mit beahtlichen Ergebnissen.

Hier erscheint deutlich wieder der Gegensatz zwischen Nahordnung und Fernordnung, die im wissenschaflichen und künstlerischen Werk sehr verschieden behandelt werden. Es zeigt sich nun, daß in der Entwicklung der Arbeiten über die $»$ Maschinen zum Ordnen der einem Repertoire entnommenen Elementfolgen* dies könnte ein ausführlicher und strenggefaßter Name für die etwas journalistische Bezeichnung ,Kreationsmaschine sein unsere Fortschritte auf dem Gebiet der Nahordnung wesentlich größer sind als auf dem der Fernordnung.

Die Nabordnung ist in der Informationstheorie unter dem Namen di-, tri- oder polygrammatische Prozesse oder auch Markoff-Proze $\beta$ vertreten; sie unterliegt Obergangsmatrizen zu 2,3 oder $n$ Dimensionen.

Dieser Gedanke läßt sich leicht auf den Bereich der visuellen und auditiven Elemente ausdehnen: um die Wahmehmung des Kunstwerks deutich zu madhen, versuchen die Asthetiker, die Bahn des Auges zu verfolgen, das ein Kunstwerk betradtet. In einem von Buswell untersuchten Holzshnitt von Hokusai zeigen die Zahlen die Fixationspunkte des Auges. Man stellt zum Beispiel fest, daß das Boot unter der riesigen Welle links sehr viel später entdeckt wird (Position 61) als der Fuji-yama (Position 16). Molnar hat in einer neueren Arbeit gezeigt, daß es möglich ist, eine regelredte Assoziationsmatrix der Augenpositionen herzustellen, die einen widtigen, per Computer rekonstruierbaren Aspekt des Bildes sidhtbar madht. Das Bild wird wie ein

Text in einer Folge von Fixationspunkten gelesen; der Text wird durd Hierarchisierung der Wahrnehmungselemente geordnet; das ist die widtige Tatsache, die sich aus diesem Experiment ergibt.

Aber die Konstruktion von Texten durch immer ausgedehntere Markoffsche Schätzungen hat die Grenzen dieses Verfahrens gezeigt. Je mehr Dimensionen die Matrizen besitzen, desto umfangreicher sind sie (Größe n), desto weniger brauchbar; und unsere heutigen Maschinen zeigen eine entschiedene Abneigung, allzu umfangreiche Daten zu verarbeiten; denn die Kosten stehen in einem bestimmten Verhältnis zum Volumen der Speicherung.
Die Fernordnung ist gekennzeichnet durch die Einwirkung von bestimmten Gesetzestypen wie grammatische Korrektheit, Unterordnung eines Satzes unter einen andern, logische Kontinuitär oder Kontinuität der Betrachtung, all das, was die Linguisten heute unter dem Begriff ssyntaktische Strukturen< zusammenfassen. Nun sind die syntaktischen Strukturen des Kunstwerks in


Beispiel eines Baums von Chomsky, der die Abhangigkeiten der somamatika. Iischen. Funktionen der Wörter in einem Satz darstellt. Um den operationellen Wert dieser in der Beherrschung der Sprache intultiv erfaBten Struktur zu zeigen, wurde unten de Zahl der Fehler angegeben, de bei einem Test der Wiederherstellung der Verknupfungen gemacht wurden und die sich nach der relativen Wichtigkeit der Zweige der Anordnung richteten.
wissenschaflicher Hinsicht noch kaum bekannt: der Kunstwissenschaftler, der anläßlich eines italienischen Bildes sagt, daß das Licht der Heiligen Jungfrau alle Personen um sie herum beherrscht, spricht effektiv von Formen, die sich aus den syntaktischen Strukturen des Werkes ergeben, aber er beschreibt sie
eigentlich nur und formuliert keine wissenschafliche, das heißt mathematisierbare Regel dafü. Wir wissen auf diesem Gebiet tatsächlich sehr wenig, und es fält uns ungeheuer schwer, das Wenige, das wir wissen, in analoge Modelle zu fassen.

Am nächsten kommen dem einerseits Chomsky in seinen Untersuchungen zur Sprache und andererseits die Arbeiten $\ddot{\text { bier die Begriffe, Superzeichent und }}$ Superzeichenhierarchies, deren Prinzip wir im ersten Kapitel beschrieben haben; im vierten Kapitel wollen wir ihre Anwendungsmöglichkeiten zeigen.

Kurz, wir sind nicht in der Lage, die Fernordnung mit ausreichender Präzision zu handhaben. Das ist einer der Gründe dafür, daß wir keine Maschinen zur Herstellung wissenschaftlicher Texte machen können. Die Situation der künstlerischen Kreation erscheint dagegen weitaus günstiger. Man kann bereits jetzt musikalische, pikturale oder poetische Werke zustandebringen, in


Analyse eines Bildes im Hinblick auf seine Eingabe in den Computer. Die Maschinen zur informationsverarbeitung sind im allgemeinen, digital, d. h., sie verwenden erkennbare Zeichen, wle Ziffern oder Buchstaben. Um ein Bild in die Maschine zu geben, muß man es also in eine Reihe von Zahlen auf einer Tabelle ubertragen. Das ist die oben angedeutete Operation. Man nimmt eine Photographie, proliziert sie auf eln Netz ( $x, y$ ), etwa von der Art des Rasters des Fernsehempfängers. Hier wird jeder Punkt in eine Kreleflächa verwandelt, deren Große seinem Helligkeitswert proportional ist; dann wird er in ener Skala von sieben Graden rquantifizierts. Diese Grade werden (rechts) in ein Ziffernnetz ubertragen, die Ziffern threrseits lassen sich gegebenenfalls wiederum auf etne Lochkarte oder in einen binären Kode transkribieren.
denen die respektiven Anteile von Nahordnung und Fernordnung ausreichend sind, jedenfalls dem sozialen Plebiszit genügen, demzufolge das Kunstwerk konsumierbar sein soll. Es erscheint also in einer Gesellschaft, die nicht über unbegrenzte Mittel verfügt, politisch richtig, ihre fundamentalen Probleme - die $\mathrm{Be}-$ fruchtung und Emeuerung der Ideen - in der Reihenfolge der raschesten Rentabilität zu behandeln, das heißt, mit der künstlerischen Kreation zu beginnen. Die Erfahrung, die wir auf diesem Gebiete gewinnen, läßr sich dann leicht auf das Gebiet der wissenschaflichen Kreation übertragen.

## 8 Der Computer: Verarbeitung von Daten und Synthese der Komplexität

Jeder kennt heute die Struktur eines Computers: er ist ein System, das Informationselemente verarbeitet, indem es sie in einer gegebenen Anordnung durch Zeichen (Ziffern, alphabetische Zeichen, Symbole) materialisiert; in dieser Hinsidht stünden ein Schachspiel oder eine Kinder-Rechenmaschine auf der Nullstufe in der Hierarchie der Computer. Die Elemente oder ,Datenc werden in Register eingegeben, Speicher, welche durch eine Adresse numeriert sind, deren jede eine Position im Raum besitzt. Die Arbeit des Computers besteht darin, die Elemente von einem Register ins andere gelangen zu lassen, nachdem er sie gewissen Operationen unterzogen hat: arithmetischen Operationen, Addition, Subtraktion, Multiplikation; logischen Operationen, Vergleich, Auszug usw. All diese Operationen werden automatisch durch ein Programm gesteuert, eine lange Liste von Befehlen, die die Zentraleinbeit, der Arbeitsspeicher, gibt. Das Programm ist in Maschinensprache abgefaßt und zerlegt die Operationen in eine Reihe von elementaren Befehlen.
Die Operationen werden in Millionstel Sekunden ausgeführt. Diese Geschwindigkeit erlaubt, verschwenderisch mit ihnen umzugehen. Aber es sind soviele, daß das Programm selbst vom Programmierer, der es zunächst explizieren und in die Zentraleinheit eingeben muß, nicht zu verarbeiten wäre.

Daher sondert man mit Hilfe eines Sprachtricks lange Operationssequenzen, die Routinen aus, die sozusagen eine Art internes, vom Konstrukteur ein für allemal festgelegtes Programm der Maschine sind. Jede Operationssequenz wird durch ein Wort bezeichnet; wenn die Maschine dieses Wort liest, dekodiert sie unter Heranziehung eines Compilers, der die vorzunehmende Operationssequenz angibt. Diese ist für das entsprechende Wort immer die gleiche, sie ist eine Routine; dabei ist gleichgültig, welches die Ausgangsregister oder die definierten und eingesetzten Daten sind (elementare Operation und Zeichen). Diese Wörter bilden eine konzise Symbolspracbe, die nichts mit der eigentlichen Maschinensprache zu tun hat. Es genügt, daß der Benutzer diese Symbolsprache kennt, um die Kombinationen von Operationen oder Superoperationenc zu beschreiben. Cobol, Fortran und Algol sind die bekanntesten derartigen Sprachen. Wir geben hier anhand der klaren Darstellung von Barbaud bei der Bull General Electric einen Kommentar zu Algol.

## Die Programmierungssprache Algol

Algol ist eine universale wissenschafliche Sprache, die für den ,Dialog Mensch-Marchine bestimmt ist.
Bekanntich besirzt jede Marchine einen rinternen Kodes, der einzig auf ihrer $\rightarrow$ Geographie beruht, das heiBt auf den Positionen flhrer vershiedenen Organe im Raum sowie deren Bezifferung; das bedeutet, dals der einzige Typ von Instruktion, den man diesen Apparaten geben kann, sich so zusammenfassen läßt: D Die Zahl, die sich an der Stelle $W$ befndet, und die Zahl, die sich an der Stelle X befindet, abrufen, beide durch die Operation $Y$ miteinander verbinden und das Resultat an die Stelle $Z$ schicken, dann übergehen zur Operation Nr. N.*
Ein Rechenprogramm in internem Kode abfassen heißt also, die relativ komplexen geistigen Operationen, die das menschliche Gehim als elementar zu betrachten gewohnt ist, in clementare Operationen zerlegen; wir können einem Menshen sagen: "Wemn bgrößer ist als a, $b$ von a abziehen, sonst a und $b$ addierens; aber ciner Maschine muß man unter Berücksichtigung der Konstruktionsbesonderheiten, die von einer zur anderen differieren, grosso modo sagen:
I. a im Speicher M holen.
2. Kopie davon im Speidher N bewahren.
3. a in den Arbeitsspeicher schicken.
4. b im Speicher P holen.
5. Kopie davon im Speider Q bewahren.
6. b in den Arbeitsspeicher schicken.
7. Die Operation b-a durdfuhren.
8. $b-a=o$ bedeutet Ausfüren der Instruktionen if und 12.
9. $b-a>0$ bedeuter Ausfuhren der Instruktionen in und 12 .
10. $b-a<0$ bedeuter Obergehen zu Iastruktion 13 .
1.. Das Resultat von $b-a$ in den Speicher $R$ schicken.
i2. Obergehen au Instruktion 19 .
13. a im Speider $N$ holen.
14. a in den Arbeitsspeicher schicken.
15. $b \mathrm{im}$ Speicher $Q$ holen.
16. $b$ in den Arbeitsspeider schicken,
17. Die Operation $a+b$ durchfuhren.
18. Das Resultat in den Speider R schicken.
19. (Neue Instruktion).

In Algol braucht man nur zu schreiben:
if $\mathrm{P}-\mathrm{M}>0$, then $\mathrm{R}:=\mathrm{P}-\mathrm{M}$ else $\mathrm{P}+\mathrm{M}$;
um zum gleichen Resultat zu kommen, gleidgültig, welde Maschine man verwendet, in welhem Land man sid befindet. Wenn die Maschine if liest (in Form von elektrischen Impulsen, ausgelost durd Perforationen in einer Karte, die diesem Wort entspridt), zieht sie automatisch den Compiler heran, eine Art Wörterbuch, das ihr die Operationssequenz thres inneren Kodes angibt, die jedesmal dam durchgefuhrt werden muß, wenn sie dieses Wort liest, gleidgatitig, welche Werte im Kontext eine Rolle spielen. Das gleiche gilt fur die Worter else, then und etwa dreiBig weitere. Der Compiler ist ein Programm in internem Kode, ein fur allemal vom Konstrukteur der Maschine abgefabt und geeignet, die in einem extemen Kode, dem Algol, abgefaften Instruktionen in diesen Kode zu übersetzen. Für den Benutzer genügt es also, diesen externen Kode, dessen Genavigkeit wohl deutich geworden ist, zu kennen, ohne daß er sich um den andern kümmern mübte. Geht er zu einer anderen Maschine uber, wird ihm Algol ebenso nützlich sein, da diese Maschine gleidfalls ihren Compiler besitzt. Im s. Kapitel bringen wir cin Beispiel für ein Programm algorithmischer Musik, das so hergestellt wurde.

Darüber hinaus muß der Computer die Daten und die Befehle, die er empfängt, übertragen; das ist die Funktion der allgemein bekannten Lochkarte. Die Daten werden durch registrierbare Löcher notiert; eine Kartenserie ist dann eine Serie von Zahlen oder Daten. Doch die Lochkarte ist zugleich das bequeme Mittel, dem Computer sein Programm zu liefern, das, wie Neumann gesagt
hat, letzten Endes eine Folge von speziellen Daten zu der Art und Weise ist, wie die übrigen Daten verarbeitet werden sollen. Das - direkte oder transponierte - Programm ist eine Reihe von kodierten Befehlen, die auf die Zentraleinheit einwirken; diese bestimmt ihrerseits die Oberführung von $X$ oder $Y$ von $A$ nach $B$ oder gibt, besser gesagt, den transponierten Befehl: » Alle Operationen der gleichen Art für A, B, C, D, E usw. ausführen bis zum Haltebefehl火, der durch Auszählen der Registernummern bis zu einer neuen Nummer gegeben wird.


Die Lochkarte, die thre Rolle fast ausgespielt hat, bleibt noch ein wesentiches Element im Verhaltnis Mensch-Maschine. Mit Hilfe von Perforationen ubersetzt sie Zahlen, Buchstaben oder Instruktionen von einer Computerstelle zu einer anderen (Programm). Fü den Kunstler bleibt sie wichtig, insoweit sie gespeichert, manipullert und insoweit sie mit sehr verbreiteten mekanographischen Vorrichtungen Auswahloperationen unterzopen werden kann; sie vermitielt ihm einen ersten Kontakt mit der Welt des mechamschen Denkens. Da sie aber zu schwerfallig und lastig ist, wird man sie durch andere Ein-Ausgabesysteme ersetzen (Lochstreifen), vor allem aber durch Signalkonverter und Konsolen for graphische Darstellung, die unmittelbar ein Bild ergeben.

Schließlich muß der Computer seine Resultate liefern. Sie erscheinen entweder als eine weitere Serie von Resultatkarten oder zum Beispiel als Zahlentabelle; das kann eine lange Zahlenkolonne sein, die eine Größe $Y$ in Funktion einer Größe $X$ ausdrückt. $\mathrm{X}: \mathrm{Y}=\mathrm{f}(\mathrm{X})$.

Nehmen wir zum Beispiel die Musik. Wir wissen, daß ein Klangphänomen durds ein Mikrophon in ein elektrisches Signal umgesetzt und daE umgekehrt dieses elekrisde Signal durch einen Lautsprecher wieder in einen Ton zurubcverwandelt werden kann. Die physikalische Analyse besteht darin, das sogenannte , Oszillogramm< des Tons zu zeidmen, das heibt cine Kurve, die sich
gegebenenfalls in einer Zahlentabelle ausdrucken laikt, welche - cin Triumph der strukturalistischen Analyse - die Werte der elektrischen Amplitude U oder der Klang-Amplitude $P$ in jedem Augenblick $T$ angibt. So kann jede stetige Kurve $\mathrm{U}=\mathrm{f}(\mathrm{T})$ einen Klang repräsentieren und im Computer gespeichert werden. Umgekehrt kann der Computer, der aufgrund von Klangdaten (soundsoviel Volt in einem Tausendstel Sekunde, dann soundsoviel im folgenden Tausendstel) cine Zahlentabelle liefert, aud aufgrand einer Zahlentabefle Klangformen herstellen.
 $988888888888888888888888688888889888898888888888888888888898888888888989889 B 889$
 888877777777777777777777777777777777777777777777777777777777777777778888 88877777777777777777\%777777777777777777777777777777777777777777777777777888 888777777777777777777777777777777777777777777777777777777777777777777777าอ88 ع8877777777777777777777777777777777777777777777777777777777777777777777777888 88877777777777777777777777777777777777777777777777777777777777777777777777888 вев777777777777777777777777777777777988888777777777777777777777777777777777888 868777777777777777777777777777777788888888887777777777777777777777777777777838 6887777777777777777777777777777778888889888877777777777777777777777777777888 88877777777777777777777777777777788111111118877777777777777777777777777777888 8887777777777777777777777777888122222221888777777777777777777777777777888 8887777777777777777777777777777788212222222188877777777777777777777777777777888 8887777777777777777777777777ต8812222222188877777777777777777777777777888 8887777777777777777777777777788122222221827777777777777777777777777778888 88877777777777777777777777777777781122222118877777777777777777777777777777888 889777777777777777777777777777778อ11111111887777777777777777777777777777888 в887777777777777777777777777777778888888888877777777777777777777777777777888 88877777777777777777777777777777778888888日87777777777777777777777777777777888 888777777777777777777ข77777777777777777777777777777777777777777777777777888 6887177777777777777777777777777777777777777777777777777777777777777777777868 88877777777777777777777777777777777777777777177777777777777777777777777888 8887777777777777777777777777777777777777777777777777777777777777777777777688 888777777777777777777777777777777777771777777777777777777777777777777777888 В888777า7777777777777777777777777777777777777777777777777777777777777778888
 $988888888898686 E 88 \varepsilon 8 \varepsilon 8888998888888888888888888388685888888888888888888888888689$ $99988888888888888882888898888888888888888086 B 8888889888888888888888888888681999$

Dieses von F. Molnar hergestelte Bild zeigt die einfachste Technik zur Anfertigung eines Computerbildes mit Hilfe der gângigen Ausgabevorichtungen des Druckers. Die optische Dichte der Zeichen - hier von Ziffern - ist sehr variabel, ihre Zusemmenstellung auf groBen Flachen hefert alse ein grobes Aquivalent fur die verschiedenen Helligkeitszonen des photographischen Rasters. Die vollige Auflosung einer Form in Zonen von konstanter Dichte erlaubt nun, den Drucker mit Rucksicht auf seine Rahmenform zu programmieren. Hier wurde das gleiche Verfahren wie bei dem mit Computer zergliederten Bild von S .36 angewendet.

Das war bis 195s eine theoretische Feststellung; zu diesem Zeitpunkt wurden die Computer so schnell, daß sie in der Lage waren, die Amplitudenvariationen in Abhängigkeit von der Zeit im gleichen Zeitraum in eine Tabelle umzusetzen, der für das Auftreten der Variation nötig war: das ist die Analyse in der realen Zeit. Man erfand nun Apparate, die wir Converter oder Wandler
nennen, und koppelte sie mit der Ein- und Ausgabe des Computers.
Analogdigital-Wandler: wenn man der Eingabe des Apparates ein Signal liefert, das in Funktion der Zeit variiert, splittert dieser es auf, das heißt zerlegt es in Teile yon einen Zehntausendstel Sekunde, mißt den Wert des Signals, überträgt es in binäre Zeichen, die direkt den Rechner in Bewegung setzen und in die Register eingehen. Der Computer kann über ein Mikrophon einen Klang hhörens und direkt in seinem Gedächtnis speichern.

Digitalanalog-Wandler: das Gegenstück des vorigen. Er ist mit der Ausgabe des Computers gekoppelt und uibersetzt die Zeichen zurück, die dieser ihm alle Millionstel Sekunde in variabler elektrischer Spannung liefert, die ausreicht, um einen Lautsprecher zu betätigen.
Man erkennt nun, daß die Koppelung dieser ganzen Apparatur (Mikrophon, Analogdigital-Wandler, Rechner, DigitalanalogWandler, Lautsprecher) sich verhält wie ein riesiges Magnetophon und das Ausgangssignal an der Ausgabe wiederherstellen kann; das Signal wird zunächst in so kleine Zeitpartikel aufgelöst, daß ihre Aufeinanderfolge nicht wahrnehmbar ist, und dann wie eine einfache Kopie wiederaufgebaut.

Die Bedeutung einer so einfachen Operation mittels eines so komplizierten Apparates ist gleich Null. Aber mit ihrer Hilfe kann man ein Signal analysieren und untersuchen, um es - und das dürfte uns interessieren - dann ganz und gar, das heißt ausschließlich auf der Grundlage der Beziehungen, die die kleinsten Elemente der Kurve miteinander verknïpfen, zu synthetisieren; ein harmonischer Klang zum Beispiel ist eine Kurve, die der Physiker a priori kennt. Ebenso kann man aufgrund eines beliebigen Programms zur Erzeugung einer mehr oder weniger periodischen Kurve hören, wie sich ihre auditive Form (Klangfarbe) ausnimmt.

In dieser Fähigkeit zur Synthese, in dieser Beherrschung der Komplexität vollendet sich die Computerrevolution, indem sie in die künstlerische Arbeit eine neue Denkweise bringt, das Computerdenken. Es will nicht so sehr bereits formulierte Probleme


Ein Bild mit Hilfe des Computers durch seine Verwandlung in numerische Daten zu zergliedern, um es dann zu resynthetisieren und das ursprüngliche Bild wiederherzustellen, das erscheint dem Laien wie die Anfertigung der Kopie einer Photographie mittels eines Computers für 1 Milliarde Mark. Aber die Operation vermittelt dem Operator nebenher die Beherrschung der Elemente dieses Bildes und der die Operation bestimmenden Gesetze. Dle oben dargestellte, unter anderen von Bell und Carnegie entwickelte Apparatur geht von einer Photographle aus und gliedert sie mit einer Lichtpunkt-Abtastvorrichtung auf. die ihre Helligkeitswerte reflektiert und ein Signal gibt, das dem der Fernsehkamera analog ist; dann transformiert sie dieses Signal mittels Converter in Maschinensprache: und speichert es. Der Computer kann nun mehr oder weniger komplizierte Operationen an den Elementenpunkten vornehmen und ein abgewandeltes Bild wieder herstellen. Zum Belspiel kann er aus einer verschwommenen Photographie klarere Konturen oder bessere Kontraste gewinnen, als sie das Original hat, oder eine Feinheit der Details, die für das Auge unsichtbar, aber doch in der Originalphotographie enthalten sind. Er erlaubt auch, die Deformationen des Bildes durch ein Elektronenmikroskop zu korrigieren (Julesz).
lösen, als vielmehr die Zusammenstellung und Aktivierung all der Probleme vornehmen, die auf dem Wege der Verarbeitung von komplexen Daten gelöst werden können. Am Endpunkt dieser methodischen Erfassung des Möglichkeitenfeldes sind die
bereits formulierten und als zu schwierig beiseitegeschobenen Probleme so klar allseitig abgegrenzt, daß sie beinahe lösbar werden oder jegliches Interesse verloren haben.

## 9 Computer und visueller Ausdruck

Seit ein paar Jahren ist die Kluft zwischen dem Künstler, der Gestalten visualisiert, und den Datenverarbeitungssystemen uberwunden, und zwar durch den graphic terminal. Dieser ist ein Ein- und Ausgabegerät für den Computer, das sowohl die unmittelbare Darstellung von Daten in Kurvenform wie auch umgekehrt die Eingabe von Daten durch Wiedergabe oder Zeichnung auf einem Leuchtschirm (Lichtgriffel) ermöglicht.
Eine wesentliche Erschwerung für die Entwicklung des Computers war die Tatsache, daß er in der ersten und zweiten Generation (bis etwa 1960) hauptsächlich mit numerischen oder Buchstabendaten funktionierte (alpha-numerischer Kode) und seine Resultate sich vornehmlich in Gestalt von Zahlentabellen oder Lochkartenpaketen darstellten. Die Computerausgabe war ein Drucker (bis zu 1000 Zeilen pro Minute), dessen Resultate erst interpretiert werden mußten. Das ist ein lästiges und undankbares Geschäft, gegen das sich der menschliche Geist spontan auflehnt, er sei denn zum Buchhalter berufen und ausgebildet. Eben dadurch entstand eine Kluft zwischen vielen potentiellen Benutzern - Künstlern, Architekten, sogar Physikern, Biologen und Sozialwissenschaftlern - und der Festung der Informatik. Der menschliche Geist erfaßt beispielsweise leichter intuitiv und unmittelbar die Form einer Kurve, die eine Funktion darstellt, als die Zusammenstellung ihrer numerischen Werte $Y$ (tx) in einer Zahlentabelle. Das ist eine seiner wesentlichen Fähigkeiten. Begreifen heißt sichtbar machen, heißt schematisieren, heißt sich eine innere oder graphische Form bilden.
Die automatische Zeichenmaschine. Von solchen Uberlegungen her kamen ab 1960 die ersten Apparate für die graphische Darstellung, zunächist als automatische Zeichentische.

Sie bestehen aus einer horizontalen, quadratischen Flache mit einem Blatt Papier darauf; auf dem Papier zirkuliert mit Hilfe eincs Systems von Schienen ein Wagen, der jeden beliebigen, durch seine Koordinaten ( $x$, y) bestimmten Punkt der Flade erreichen kann. Der Wagen wird mittels eines sehr präzisen Fernsteuerungssystems von zwei Servomotoren bewegt; diese verschieben ihn nach einer zweifachen Instruktion, die durch die elektrischen Ströme $V_{x}$ und $V_{y}$ repräsentiert wird. Entweder sind dies stetige Variationen oder es sind - das ist aus Gründen der Präzision zumeist der Fall - sinkremente, Variationen in sehr kleinen Sprüngen. Die beiden Spannungen $V_{y}$ und $V_{\mathrm{x}}$ kommen als spezielle Ergebnisse aus dem Computer; die Gleitschiene verschiebt sid beispielsweise und tastet nacheinander alle Punkte der Absqisse X ab, während der Computer für jeden dieser Punkte in seinem Ausgabespeider einen Y-Wert als Produkt all jener Operationen sudit, die er vorher möglicherweise durchzuführen hatte. Er befehte dem Wagen, sich auf der Gleitschiene bis zum Punkt $Y$ za bewegen. Dort angekommen, senkt der Wagen eine Fallfeder auf das Papier, die einen Punkt markiert. In anderen Systemen bleibt die Feder ständig auf dem Papier, wenn die Verschiebung stetig ist. Das Ergebnis dieser Operation besteht darin, daß der automatische Kurvenzeichner eine stetige Kurve auf das Papier bringt und so die Resultate der Zahlentabelle sichtbar macht, die das Ergebnis der Computerrechnung ist.

Diese Apparatur ist sehr elegant und genau. Heute findet man solche Zeichentische in vielen Industriebetrieben; sie liefern sehr saubere Dokumente. Man läßt sie etwa Diagramme oder musikalische Partituren zeichnen. Als sie sich verbreiteten, haben einige Künstler versucht, sie zu verwenden, so Nake an der Technischen Hochschule in Stuttgart unter Leitung von Max Bense oder die Forscher der Flugzeugfirma Boeing in den Vereinigten Staaten. Tatsädulich lassen sich durch Kombination der verschiedenen Funktionen von X und Y , die den Registern des Computers angeboten werden, Unterprogramme speichern, wie das Zeichnen einer Geraden, die parallel zur X- oder Y-Achse verläuft, eines Quadrats, einer Diagonale, einer Reihe von Diagonalen usw. Diese automatischen Zeichentische sind praktisch kleine unabhängige Computer und enthalten selbst eine Anzahl solcher Subroutinen in einer speziellen transponierten Sprache, die sich unabhängig von der Rechenoperation abrufen lassen.

Die Leistungsfähigkeit dieser mechanischen Vorrichtungen ist begrenzt. Um eine Kurve zu zeichnen, braucht man beispielsweise einige Minuten, und die Oberlagerung einer großen Zahl von Kurven oder Strahlenbündeln verlangt beachtliche Zeit. In
solchen Fällen werden die vom Computer errechneten Resultate in einem $Z$ wischenspeicher, dem sogenannten buffere, aufbewahrt, während der Computer andere Arbeiten weiterführt.

Der Leuchtschirm. Um darüber hinauszukommen, haben die Forscher - speziell die vom M.I.T. (Massachusett's Institute of Technology) und den Bell Laboratories - nach jahrelanger Arbeit sehr viel schnellere Systeme entwickelt; dabei verwendeten sie unmittelbar die Eigenschaften des Oszillographen, in dem ein Elektronenstrahl zwischen zwei Ablenkplatten gesteuert wird, um auf einem Leuchtschirm einen Leuchtpunkt zu geben. Sie entwickelten zunächst sehr viel genauere und großflächigere Kathodenschirme (C.R.T.), als sie heute gewöhnlich auf Fernsehröhren anzutreffen sind, Schirme mit eventuell mehreren Kathodenstrahlen, die zwei verschiedene, übereinandergelagerte Bilder liefern können.

Markieren eines Punktes. Der Kathodenschirm ist wie ein Millimeterpapier in ein virtuelles, unsichtbares Netz yon beispielsweise $1024 \times 1024$ Punkten unterteilt. Das macht etwa I Million Punkte auf einer Fläche von vielleicht $30 \times 30 \mathrm{~cm}$. Die Punkte sind also $0,3 \mathrm{~mm}$ voneinander entfernt (was ungefähr der Stärke eines Lichtpunktes entspricht). Ein Punkt empfängt vom Computer erzeugte Spannungen $U_{y}$ und $U_{x}$ in Abständen von beispielsweise $1 / 20 \mathrm{sec}$., Spannungen, die jederzeit variieren können, die aber systematisch aufgrund einer Subroutine in jeder Zwanzigstelsekunde - falls keine Modifikation eintritt, reproduziert werden, ungefähr wie beim Fernsehbild. Diese Spannungen erzeugen also einen bestimmten, festen Lichtpunkt.

Zeichnen von Kurven. Anstatt nun das gleiche Bild des gleichen Punktes alle zwanzigstel Sekunden zu wiederholen, kann man die Spannung $U_{y} / U_{x}$ innerhalb eines gewissen Spielraums variieren lassen, so daß sie ein Kurvenfragment beschreiben, das unbegrenzt wiederholbar ist. Der Beobachter sieht dann als Resultat die graphische Form der Funktion, die die Computerausgabe geliefert hat.

Auch hier wieder verwendet man einen Zwischenspeicher, der in der Praxis in die Apparatur eingefugt ist und es erlaubt, ein und dasselbe Bild unbegrenzt zu erhalten, falls nicht von außen ein Gegenbefehl kommt. Die Anlage ist insgesamt passiv, sie ist ein Datenendgerät; sie liefert auf einem Leuchtschirm in graphischer Form Operationsresultate, die sich in einer Funktion mit den beiden Variablen Y und X ausdrücken. Man verbindet


Seit einigen Jahren hat sich eine neue Ein- und Ausgabemethode für graphische Daten durchgesetzi, Graphic-Display oder Kathodenschirm genannt. Auf diesem Schirm werden die graphischen Daten durch Lichtstriche dargestelit, und der Operator wirkt auf sie mit Hilfe eines Lichtgriffelsc ein, der in Wirklichkeit eine Vorrichtung zur Steuerung der Bewegungen dieses Anzeigers (unten rechts) und der dargestellen Elemente ist. Die numerischen Daten zur Lage und Art der Zeichen sowie alle Modifizierungen, denen sie der Operator unterzieht, werden unmittelbar in die Speicher des Computers eingetragen und können Operationen unterzogen werden, deren Resultate für den Programmierer sichtbar werden.
diese Anlage automatisch mit einer Mikrofilmkamera, die auf bloßen Knopfdruck hin den Bildschirm immer dann photographiert, wenn der Beobachter es für richtig hält.
Man kann noch weiter gehen und dieses Ausgabegerät unter Verwendung ungefähr der gleichen elektromechanischen Maschinerie in ein Computer-Eingabegerät (input) verwandeln, das mit Daten in graphischer Form beliefert wird. Erwünscht ist folgendes: nadhdem der Operator die Koordinaten X und Y auf den Schirm gebracht und die Kurve in diesem Rahmen mit einer beliebigen Werteinheit gezeichnet hat, ist die Kurve gespeichert, während sie zugleich zur Kontrolle auf dem Leuchtschirm erhalten bleibt. Es ist klar, daß auf diesem Wege die korrespondierenden Daten $X$ und $Y$ in die Eingabeeinheit des Computers gebracht werden können, um dann gegebenenfalls nach mehr oder weniger komplizierten Programmen verarbeitet zu werden. Natürlich muß man das Resultat dieser Verarbeitung in Form einer neuen Kurve auf dem Bildschirm sehen können.

Speicherung graphisch eingegebener Daten. Da der Kathodenschirm ein passives Gerät ist, hätte man vielleicht daran denken können, ein Ikonoskop, die Elektronenröhre einer Fernsehkamera, heranzuziehen, einen Apparat, der ebenso präzise und kompliziert wie der eben beschriebene hätte sein müssen. Die Forscher der Bell Laboratories und des M.I.T. hatten eine andere Konzeption, die des Lichtgriffels (so genannt, weil er kein Griffel ist und weil er nicht leuchtet). Der Beobachter vor dem Leudtschirm nimmt eine kleine Röhre mit einer photoelektrischen punktuellen Zelle in die Hand; die Röhre ist nach entsprechender Verstärkung mit einer sehr sinnreichen Hilfsvorrichtung verbunden, die Christensen und Coon erarbeitet haben und die ein spezielles Subprogramm in Gang setzt. Das nennt man Inkremental-Technik.
Unsere Abbildung zeigt einen Lichtpunkt und acht weitere Punkte, die um ihn herum in einem Quadrat von insgesamt neun Punkten angeordnet sind. Nehmen wir an, die Photozelle empfängt dieses Bild, und die Hand des Operators verschiebt sich nach rechts oben. Der Lichtzufluß, den die Zelle empfängt, wird

INCREMENTAL PLOTTING TECHNIQUE

schwächer, und man kann sich eine steuernde Rückkopplungsvorrichtung denken, die in diesem Augenblick derart einwirkt, daß sie die von der Zelle empfangene Lidhtintensität maximiert. Daraufhin muß sich die Neun-Punkte-Gruppe nach rechts oben verschieben, das heibt in der vom Operator angegebenen Richtung, und zwar so lange, bis sie in der Achse des Fensters zentriert ist, das die kleine Zelle darstellt (in Wirklichkeit verwendet man perfektioniertere Anlagen).

Zeichnen einer Linie und Eingabe der korrespondierenden Daten in den Speicher. Unter diesen Umständen verschiebt sich der Elektronenstrahl, indem er der Hand des Beobachters folgt, und das läßt sich unbegrenzt wiederholen. Mit Hilfe eines solchen Fortsetzungsprogramms kann man den Lichtpunkt dem virtuellen Stift in der Hand des Beobachters unterordnen, man verfügt tatsächlich über einen Lichtgriffel, der einen Punkt auf dem Schirm verschieben kann. Man kann ein Unterprogramm herstellen, das dem Hilfsspeicher den Befehl gibt, die Spur aller früheren Positionen von einem gegebenen Ausgangspunkt an festzuhalten und sie nacheinander alle Zwanzigstel Sekunden
wieder herzustellen. Mit anderen Worten: der Lichtpunkt wird durch eine Linie ersetzt, die seine Bahn vom Anfangspunkt an wiedergibt. Der Griffel hinterläßt eine Spur, man kann eine Kurve auf dem Schirm zeichnen. Auf besonderen Befehl können alle Zahlenpaare $\mathrm{Y}(\mathrm{X})$, die die Bahn darstellt, zur Eingabe des Hauptcomputers überführt werden, der eine sehr viel höhere Speicherkapazität hat und sehr umfangreiche Operationen durchführen kann. Diese Voraussetzungen führen uns zu dem Ergebnis: der Apparat ermöglicht, durch Zeichnen von Kurven einem Computer Daten einzugeben.

Verschiedene Hilfsvorrichtungen gestatten beispielsweise, ständig und unabhängig die Koordinatenachsen $\mathrm{O}_{\mathrm{x}}$ und $\mathrm{O}_{\mathrm{y}}$ an den Rändern des Schirms wiederzugeben, gegebenenfalls sogar ein Netz von Markierungspunkten, wie man es auf Millimeterpapier anlegen würde.

Glätten oder Transformieren einer schlecht gezeichneten Kurve. Wir können noch weiter gehen. Man kann zum Beispiel ein spezielles Unterprogramm haben, das, nachdem es durch den Computer eine Serie von Transformationen über die Funktion Y(X) hat ausführen lassen, ihn veranlaßt, eine neue Funktion $\mathrm{Y}_{1}(\mathrm{X})$ an den gleichen graphic terminal mit Leuchtschirm zurückzugeben und folglich die erste mit der transformierten Funktion zu vergleichen. Dieser Apparat dient also der Transformation einer Kurve aufgrund einer Transformationsregel. Zum Beispiel gibt es ziemlich einfache mathematische Transformationen, die als Funktion des kleinsten Quadrats oder der Glättung bekannt sind; hier handelt es sich um das Zeichnen einer Kurve $Y(X)$, die in jedem Punkt den Mittelwert der Entfernungen zwischen einer Reihe benachbarter Punkte annimmt, Punkte, die aufgrund bestimmter einfacher mathematischer Regeln geliefert worden sind (Minimum des Quadrats der Entfernungen).

Nehmen wir also an, die gesamten Punkte der ersten Kurve seien der ungeschickte Zickzackstrich, den der Operateur gezeichnet hat - wie das vielen Menschen geschieht - und die Endfunktion sei diese neue Kurve, die aufgrund der früheren durch Regulieren und mittleren Ausgleich von deren verschiedenen lokalen

Abweichungen entstanden ist: der Computer zeichnet dann eine geglättete, ganz stetige und, wie wir sagen würden, schönere Kurve als die Ausgangskurve. Wenn etwa die gezeichnete Kurve ein mühsames Buchstabengekritzel war, kann der Computer es vereinfachen und auf möglichst stetige Elemente im Sinne der Kalligraphie zurückführen.

Eine Figur durch die Hand des Operators auf dem Schirm verschieben lassen. Noch weiter kann man gehen, indem man etwa den Computer mit maßgeblichen, in einer speziellen transponierten Sprache zusammengefaßten Unterprogrammen ausstattet, so zum Beispiel: »Eine waagerechte Gerade von einem Anfangspunkt A zu einem Endpunkt B zeichnen«, »einen Kreisbogen mit bestimmtem Radius und gegebenem Anfangs- und Endpunkt zeichnen«. Noch besser ist es, dieses Unterprogramm mit der Wahl eines bestimmten Punktes zu koppeln und sämtliche Positionen neu berechnen zu lassen, wenn man den Punkt nach oben, unten, rechts oder links verschiebt. So bleibt die vorher gezeichnete Figur unlösbar mit dem gewählten Steuerungspunkt verbunden, sie verschiebt sich mit ihm unter der Hand des Operators auf jeden beliebigen Ort des Bildschirms (Translationsprogramm). Es wird deutlich, daß man durch sukzessive Kombinationen von Unterprogramm-Elementen, die voneinander unabhängig und in einem im Computer bereits registrierten ,Unter-programm-Wörterbuchs vorbereitet und verzeichnet sind, die Möglichkeit erhält, nach Durchführung der elementaren Zeichenoperationen - Markieren eines Punktes, Zeichnen einer Geraden, eines Kreises, Verschieben einer Figur (Pause), Glätten einer Kurve - zu erreichen, daß die Verbindung Computer + graphischer Input alle Operationen, die der Operator selbst vollziehen kann, mit größerer Genauigkeit und Geschwindigkeit als dieser realisiert.

Eine gedachte dreidimensionale Figur sibtbar machen. Stellen wir uns vor, wir hätten nach der eben beschriebenen Methode auf den Bildschirm ein sauber geglättetes Quadrat gezeichnet, das die Vorderfläche eines im Raum befindlichen Würfels dar-
stellen soll. Die Gesetze der Perspektive lehren uns die Form, die der Würfel haben müßte, wenn man ihn, aus einer bestimmten Entfernung gesehen, auf einem Blatt Papier abbilden wollte. Es ist genau das, was man dem Schüler in einem Kurs für geometrisches Zeichnen beibringt, und diese Gesetze sind vollständig berechenbar und eindeutig, wenn man sich im klaren darüber ist, daß ein Kubus dargestellt werden soll, und wenn der $>$ Augenpunkt oder besser die Fluchtinie gegeben ist, gegen die alle Kanten des Würfels bei perspektivischer Darstellung konvergieren müssen. (Zur Vereinfachung nehmen wir an, der Würfel sei aus Draht und man könne durch ihn hindurchschauen.) Nun ist es möglich, ein Programm zu konzipieren, das die Folge aller mathematischen Operationen zur Berechnung sämtlicher einzelner Punkte auf den Kanten des Würfels enthält, nachdem wir alle für diese Operationen notwendigen Elemente geliefert haben und alles übrige sid $z$ wangsläufig aus der Fixierung des Fluchtpunktes ergibt. Der Operator kann also mit seinem Lichtgriffel diese Daten in die Maschine eingeben. Die Maschine führt das perspektivische Programm durch, errechnet die Lage der verschiedenen Würfelkanten auf einer bestimmten Anzahl von Bildpunkten, deren es eine Million gibt, und sie gibt den Befehl, die Punkte der Würfelkanten mit Hilfe des Elektronenstrahls zu materialisieren, der sie zeichnet, sie alle zwanzigstel Sekunden wiederholt und so bis zu einer neuen Instruktion auf dem Schirm festhält. Der zeichnende Computer kann also das vollständige Bild eines Wüfels herstellen, wenn folgende Grundlagen gegeben sind: a) die Würfelkante, b) die Idee des Würfels und c) die Vorstellung des Fluchtpunktes. Wir wissen, das er hier bereits der Zeichenkunst der meisten Menschen überlegen ist.

Aus einer Skizze einen Bauplan machen. Tun wir noch einen Schritt weiter. Vom einfachen Würfel kann man ohne Schwierigkeiten zum Parallelepiped oder zu einem rechtwinkligen Kasten übergehen, indem man Höhe, Länge und Breite, $A, B$ und $C$ spezifiziert und die entsprechenden Programme verwendet. Natürlich verbraucht man noch etwas mehr Platz im Speicher, der alle diese Instruktionen aufnehmen muß, aber wir setzen hier voraus,
daß die Anlage des Graphic Terminal ihrerseits mit einem weiteren Computer gekoppelt ist, der eine beträchtliche Speicherkapazität besitzt (Zwischen- und Arbeitsspeicher).
Wir sehen nun die Möglichkeit, eine Reihe solcher Kästen übereinander oder nebeneinander zu setzen, indem wir für jeden von ihnen Höhe, Breite und Tiefe, für alle aber den gleichen Fluchtpunkt festlegen. Für den Computer ist das Risiko der Verwirrung gleich Null, und das Programm, das für einen einfachen Kasten gilt, gilt gleichermaßen für 2, 5 oder to nebeneinandergeordnete Kästen. Für den menschlichen Geist indessen wächst das Risiko von Irrtümern ständig, je größer die Zahl der Elemente wird, die er kombinieren muß.

Nun wäre eine Zusammenstellung von Kästen, deren Basis in der gleichen Ebene liegt, unter Umständen als Architekturgebilde anzusehen; und tatsächlich ist die Architekturzeichnung eines Hauses eine der Anwendungsmöglichkeiten, für die man diesen Apparat vorgesehen hat. Wenn man von der perspektivischen Gesamtansicht ausgeht, sind die Ausgangsdaten die Längen der zusammengestellen Grundlinien, die die Zimmer oder die architektonischen Massen darstellen. Die Rolle des Computers ist einfach, diese Grunddaten zu materialisieren. Nun sind diese Daten eben die, die wir auf dem Bauplan wiederfinden, der keine Ansicht mehr, sondern die Projektion der Grundläche aller Kästen auf die Bodenfläche oder die Fußbodenfläche ist. Wir haben aber schon gesehen, daß es möglich ist, mit dem Graphic Terminal ein Gefuge von Quadraten oder Rechtecken, mit anderen Worten einen Bauplan zu zeichnen. Wenn wir all diese Operationen zusammenfassen, können wir aufgrund einer vom Architekten-Operator angefertigten Skizze, die von der Maschine entsprechend geglättet, gerichtet und eventuell zuvor photographiert worden ist, vom Computer einen Auszug der numerischen Daten dieser perspektivisch gezeichneten Skizze und die Zeichnung des entsprechenden Grundrisses dieser imaginären Architektur, das heißt die Überführung einer geistigen Vorstellung in einen vollständigen, für einen Bauunternehmer brauchbaren Plan verlangen. Gewiß übergehen wir hier viele zusätzliche Aspekte wie die Ausführung der Maßbezeichnungen in Zif-
fern auf dem Bildschirm, das Verschwinden der durch die Vorderansicht der Wände und Flächen verdeckten Partien im Bilde, die Berücksichtigung von Normen und Bestimmungen, die zu den schwersten Aufgaben des Architekten gehört, usw., aber wir sehen die Möglichkeit, das Verfahren noch zu verbessern, - of um den Preis einer erheblichen Komplizierung der Programme.

## Einen Gegenstand im Raum drehen.

Schließlich kann man in dieser Ubersicht der Zeichnerfähigkeiten des Computers und bei der Oberschreitung all dieser Fähigkeiten einen weiteren realisierbaren Programmtyp erwähnen, der in der Simulation der Denkfähigkeiten noch weiter geht, in dem MaBe , in dem diese auf präzisen mathematischen Gesetzen basieren. Stellen wir uns ein Raumgebilde mit mehr oder weniger kompliziertem Kantenverlauf im dreidimensionalen Raum vor, dessen Koordinaten in perspektivischer Darstellung vertikal, horizontal und in die Bildtiefe verlaufen sollen. Stellen wir uns weiter vor, daßs sich der Operator durch die geschilderten Verfahren eine spezielle Ansicht dieses Raumbildes gemacht hat, die besonders auch die Ansichten der verdeckten Kanten in punktierten Linien (einfaches Unterprogramm) enthält. Wenn die Form eines Objektes in einer ganz bestimmten Position im Koordinatenraum gegeben ist, dann sind auch sämtliche Ansichten, die das Ob jekt von einem beliebigen Standpunktaus in perspektivischer Sicht darbieten könnte, in jedem Fall eindeutig bestimmt. In der Mathematik lernt man, Koordinatensysteme durch einfache und leicht programmierbare Formeln darzustellen, in einem spezifischen System, das auf jedes beliebige Objekt solange anwendbar ist, wie die Summe der Daten die Kapazität des Arbeitsspeichers des Computers nicht überschreitet. Machen wir also von diesem Programm Gebrauch, lassen wir die Achsen um das Objekt herumwandern oder, was auf dasselbe hinausläuft, den Augenpunkt des Betrachters im Verhältnis zum Objekt. Mit anderen Worten: stellen wir uns vor, daß der Beobachter um das im Raum gelegene Objekt herumgeht. Der Computer übernimmt es dann, sämtliche Ansichten des Objektes zu liefern, so wie sie sich dem darum herumgehenden Individuum bieten. Mehr noch: er kam
sie Bild für Bild auf einem 35 mm -Mikrofilm festhalten, und wenn er die Bilder in genügend kurzer Folge aufnimmt, mit dieser Bilderfolge einen ganzen Film herstellen, das Schauspiel des Spaziergangs eines Beobachters im Raum um ein Objekt, zum Beispiel eine Skulptur herum.


Hier eines der ersten praktischen Ergebnisse des, Graphic Display, die fur die Zeichentechnik bedeutsam sind; das Graphic Display erlaubt es, ein Bild durch einen Computer berechnen zu lassen und es unmutelbar auf einen Kathodenschirm zu ubertragen. Diese perspektivische Zeichnung eines Autos wurde vom Computer aufgrund von Daten (betr. AusmaBe, Profie und Volumen) berechnet, die gespeichert und nach logischen Gesetzen kombiniert wurden. Die Zeichnung lies Korrekturen zu, die von sehr allgemeinen Regein ausgingen. Ein im Prinzip einfaches, aber sehr umfangreiches Programm erlaubt eine Drehung des Objekts, so als ob der Betrachter darum herumginge. Man vergleiche dieses Bild, dessen zittriger Strich durch den Elektronenstrahl des Oszillographen entsteht, mit dem auf S . If; es wurde bei Boeing auf einem automatischen Zeichentisch hergestell. dessen Feder der Computer fühte.

Solche Programme sind vor allem für architektonische und urbanistische Bereiche interessant, aber auch für die Untersuchung komplizierter Maschinenanlagen oder die Bestimmung komplexer mathematischer Funktionen. Sie ermöglichen die Herstellung von Filmen, die etwa auf der Grundlage der geographischen Karte eines bestimmten Gebietes, über das man eine Autobahn legen will, nicht allein die optimale Trasse dieser Straße unter Berücksichtigung der besonderen Bedingungen verschiedener Landschaftspunkte (Flüsse, Häuser, besondere Gegenden, Sperrgebiete usw.) liefern, sondern die sogar das wechselnde Panorama der schematisierten Landschaft wiedergeben, wie es später der Autofahrer
am Steuer seines Wiagens auf der Fahrt uber die projektierte Straße sehen wird.

Zweifellos kann man noch weiter gehen und hat es in verschiedenen Laboratorien schon getan: man kann die Computer perspektivische, dreidimensionale Ansichten eines Objektes darstellen lassen, das seinerseits vier Dimensionen hat und in einen dreidimensionalen Raum projiziert wird, der durch die Perspektive auf eine Fläche reduziert ist. So gehorchen die Kanten eines vierdimensionalen Würfels einer Anzahl von Verbindungsgesetzen. Wenn man sie in drei und dann in zwei Dimensionen projzziert, ergeben sie eine bestimmte Fläche, und wenn etwa ein virtueller Beobachter im vierdimensionalen Raum um diesen Würfel herumginge, würde er sehen, wie sich die perspektivischen Ansichten dieses Würfels verwandelten und im dreidimensionalen Raum verschiedene Typen von Raumgebilden ergäben, die man sich durch in Projektionsformeln ausgedrücke Uberlegung vollständig vorstellen kann. Asthetik
Unsere Formulierung der Schöpferfunktion in der Oberflußgesellschaft gibt dem Ästhetiker eine andere, neue Rolle; er ist nicht mehr der ätherische Philosoph, der über das Schöne redet, sondern der praktische Fachmann für Empfindungen, der gründlidh in der Psychologie der Werte geschult ist und die Arbeit der ,Ubersetzungsmaschine vorbereitet.
Die Erfahrungen in diesem Bereich haben einige Grundpositionen sichtbar werden lassen, die man klassifizieren kann. Jede einzelne ist eine ästhetische Position; sie Jäßt sich durch einen Organogrammtyp symbolisieren, wobei jeder Typ das Programm einer Kreationsmaschine repräsentiert. Durch diese Quantifizierung der Positionen, die sie fordert, liefert die kybernetische Analyse bereits eine originale Auskunft über das Wesen der Kreation.

## Erste Position:

Die Asthetik als Kritikerin der Natur: Die Maschine als künstlicher Betrachter oder Hörer erforscht die Schönheiten der natürlichen Welt und unternimmt eine statistische Charakterisierung. Die Welt ist voller Reichtümer, und diese müssen verwendet werden. Das bedeutet, in Abhängigkeit von Originalitätskriterien jedes System zur Erforschung der Welt in ein Bewegungssystem umzuformen. Die Maschine müßte an ihrer Eingabe eine Vorrichtung zur Obersetzung von Empfindungen in Maschinensprache haben (Beispiele: Fernsehkamera, künstliches Ohr, Ana-logdigital-Wandler). Sie verdaut die so entstandenen Nachrichten, indem sie sie durch ein Filterprogramm laufen $1 \ddot{B} \mathrm{~B}$, eine smechanische Werttabelle, die zum Beispiel das Redundanzquan-


Ein künsticher Hörer oder Betrachter wâhlt nach Kriterien, die die Wahrnehmungstheorie aufgestellt hat, unter den von der Umwelt angebotenen Sohauspielen

Mit diesem Organogramm wurde versucht, die asthetsche Haltung darzustellen, die darin besteht, In der Umwelt eine Anzahl bemerkenswerter Phänomene oder Bilder mit Hilfe der Wahrnehmungsgesetze auszuwählen. Letztere entsprechen einer ganzen kunstlerischen Schule: imitative Harmonien, figurative Malerei, künstlerische Photographie und gewisse moderne Bilder, die der Umwelt Elemente entnehmen, um sie herauszuheben und für uns interessant zu machen.
tum, die Zahl der Wiederholungen, die Zahl der Symmetrieelemente (Birkhoff) bemißt. Sie analysiert aus informationeller Sicht die Architektur der Bilder oder der umgebenden Klangwelt sowie die Hierarchie ihrer Gliederung. Sie bestimmt einen Gesamtwert, der sich aus den Teilwerten auf den verschiedenen Ebenen zusammensetzt, und zwar nach Regeln, die der Asthetiker, welcher das Programm gemacht hat, in Funktion seiner Kenntnis der Empfindungspsychologie diktiert. Die Maschine wählt nun die Bilder aus, die uber einem bestimmten Wertquantum liegen, qualifiziert sie als, Kunstwerkes und speichert sie. Sie kann sie auf Befehl wieder ausspucken, indem sie sie an der Ausgabe in sensorielle Phänomene zurückübersetzt, diesmal mittels Digitalanalog-Wandler, Fernsehempfänger oder Synthesizer.

Die Maschine unterstützt den Asthetiker bei seiner Aufgabe als mechanischer Kritiker. Ist die Welt voll von schönen Dingen, wird der Kritiker zum Künstler in dem Augenblick, in dem er einen Rahmen um irgendein Stück Straßenpflaster legt, das sein unfehlbarer Blick als ästhetisch erkannt hat. In dieser Angelegenheit gibt es keinen, Verantwortlichens. Das Programm liefert der consensus omnium der Menschheit, und die Quelle ist die weite Welt.

## Zweite Position:

Kritische Asthetik: Die Maschine als künstlicher Betrachter oder Hörer erforscht die Welt, um Ordnungsrelationen und Formen sichtbar zu machen, die im menschlichen Raum und in menschlicher Zeit nicht wahrnehmbar sind.
Diese Analyse bewirkt eine Integration der Schauspiele und Erscheinungen der äußeren Welt auf einer Ebene, die über jener liegt, zu der das menschliche Wesen fähig ist. Wir wissen, daß der menschliche Beobachter meistens nicht in der Lage ist, den auf ihn einstürmenden Originalitätszufluß zu meistern, eine Fernordnung hineinzubringen, und daß seine einfachste Reaktion darin besteht, aufzugeben. Es gibt aber in den Phänomenen häufig Regelmäßigkeiten in großem Maßstab, die er nicht bemerkt.

Eines der Ziele, die sich die mechanische Ästhetik setzen kann, ist das Erfassen und Aufzeigen von Ordnungsrelationen, die so-
zusagen oberschwellige Formen ergeben, oberschwellig insofern, als sie von uns nicht explizit wahrgenommen werden, aber in der Fernordnung dessen, was wir sehen oder hören, eine Rolle spielen. Das einfachste Beispiel ist das der visuellen Formen, die, werden sie beschleunigt oder verkürzt, andere zeitliche spatterns< ergeben als die uns bekannten, patterns, die zu flüchtig sind, als daß unser Geist sie erfassen könnte, und die, im zeitlichen Maßstab verschoben, uns bewult werden und sich als ästhetische Werte darstellen könnten. Zeitraffer oder Zeitlupe im Film, visuelle oder Klangmikroskopie haben in der vergangenen Zeit viele Beispiele dafür geliefert. Aber es gibt auch Relationsformen, die sich nicht aus einer einfachen Anamorphose, sondern aus mehr oder weniger komplexen mathematischen Funktionen ergeben (Autokorrelation, Transformationsfunktion von Korrespondenzen usw.) und die der Betrachter nicht bemerkt, da weder der Künstler noch der Âsthetiker sie zu handhaben verstehen. Hier kann die Maschine sich einschalten und unseren Geist in der Produktion neuer analytischer Formen ablösen.
Angenommen, einem Beobachter wird eine Serie visueller Nachrichten geboten, die in ziemlich rascher Folge ( $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \mathrm{t}_{\mathrm{n}}$ ) ablaufen, und die SSehmaschines (in der Praxis ein AnalogdigitalWandler) verwandelt die visuellen Formen in Kartenpakete. Sie unternimmt dann Rechenoperationen und analysiert systematisch die Autokorrelation der Nachrichten, wobei sie gegebenenfalls Fernordnungsstrukturen zwischen disparaten Bildelementen aufdeckr. Sie bewirkt eine Art Phosphoreszenz objektivierbarer Eindrücke, die Superzeichen oder Formen sichtbar werden lassen kann.

Im Raum zum Beispiel ist die uns vertraute Moiréwirkwng ein Superzeichen: es ist die Interferenz zwischen sich überlagernden Serien regelmäßiger Elemente. Was die Zeit betrift, wissen wir, daß die Stroboskopie oder der beschleunigte Film zuweilen visuelle Formen konstruicren, die bei sequentieller Berrachtung nicht einmal zu ahnen wären.

Nun hindern eben die Grenzen seines Bewußtseinsfeldes den menschlichen Beobachter, bestimmte patterns zusammenzuziehen, wenn sie zu weit voneinander entfernt oder zu langsam


Der Moireeffekt als Superstruktur elnes regelmäßigen Systems
Es handelt sich um das optische Phänomen von Interferenzen zwischen zwei regelmäBigen Netzen mit 2, 3 oder $n$ Dimensionen, bei denen der Abstand - - das heibt die Periode - etwa zwischen den Staben und den Zwischenraumen eines Gitters etwas verschieden ist. Unter diesen Voraussetzungen effabt das Auge bald die Uberlagerung der Stabelemente des ersten Netzes mit denen des zweiten sowie die hellen Raxume dazwischen, bald aber sieht es die Stäbe des zweiten Netzes sich als Hindernisse in die freien Raume des ersten Netzes legen und alles Licht verdecken, und es registriert im ganzen ein sich ausdehnendes Alternieren von Licht und Schatten, das eine vom ursprünglichen Netz unabhängige Form ergibt.
sind, und mithin, die verborgenen Korrelationen wahrzunehmen, die definite Formen bilden können. Das erweiterte Bewußtseinsfeld der Ferritkernspeicher des Computers kann hier Abhilfe schaffen. Es registriert diese Formen, Phantomformen, zuweilen neue Formen. Es gibt sie auf Verlangen wieder von sich - als Inspirationsquelle oder sichtbares Objekt , das heißt als neues Bild. Unser Kapitel uber das belebte Bild soll Beispiele für diesen Prozeß bringen.


Soledad Sevilla hat an der Universität Madrid ein Bild durch Integration vertikaler und horizontaler Stromlinien entwickelt. Die Abweichungen der Horizontalen und Vertikalen sind durch die photographische Dichte der vom Computer abgetasteten Vorlage bedingt. Die Oberlagerung beider Systame erhöht die Prägnanz der Form. Solche Versuche zeigen das riesige Feld der Möglichkeiten, graphische Abstraktionen zu entwickeln und abzuwandeln.

## Dritte Position:

Angewandte Asthetik: Nach der Methode der kybernetischen Reduktion analysiert die Maschine als künstlicher Beobachter
oder Hörer die kulturelle Welt und entwickelt analoge Modelle, die sie in einer Simulation der Kreationsprozesse einsetzt.


Simulation eines Kompositionsprozesses: aufgrund einer Analyse bestehender Werke. Ausgangsüberlegung ist hier, dal es eine Kunst gibt, die in Museen und Konservatorien eingeschlossen ist, was besagt, daß sie bestimmten Arten des Denkens entspricht, von denen wir a posterioni wissen, daß sie unsere kunstlerische Sensibilität befriedigen, well sie Erfolg gehabt haben. Die mechanische Untersuchung dieser Werke geschieht in einer Serie von Analysen, de unter statistischem Aspekt die einfachen Kompositionselemente: die Regeln fur ihre Verbindung, die Sperren und Grenzen sichtbar machen. Dieser analytische Teil llefert schlieblich auf der einen Seite eine Anzahi von Regeln, auf der anderen Seite eine Klassifizierung der vorhandenen Werke nach den angewendeten Regein. Durch Auswahl einer bestimmten Zahl solcher Regeln definiert man also einen Sth. Diesem analytischens Teil entsprechen die Arbeiten von Fucks uber die statistischen Eigenschaften der Musik. Zwelter Akt: Synthese. Der Asthetiker wird zum Kunstler: er programmiert eine Maschine, die von einer imaginären Quelle - dem Zufall - her Zeichen auswählt, die den zuvor gebildeten Repertoires entnommen sind. Er setzt sie in eine Sequenz nebeneinander und stellt durch Iteration fest, ob jedes neue Zeichen zu den vorangegangenen pabt, ob es sich im Rahmen der gewähtten Regeln halt oder nicht, und konstruiert die Sequenz durch teration bis zum Schlub.

Das Organogramm des Prozesses gliedert sich in zwei Teile, die zwei Maschinen oder zwei aufeinanderfolgenden Verwendungen derselben, unterschiedlich programmierten Maschinen entsprechen.
Die Analyse zielt auf das spätere Experiment. Sie versucht, das Tasten oder die Irrtümer des Komponisten nachzuahmen, um daraus eventuell eine Kritik herzuleiten und zu erfassen, inwieweit sein Werk über das hinausgeht, was ein mechanisches Modell vollbringen kann.

Das ist der Neo-Cartesianismuse der Maschine, wie ihn Philippot klar formuliert und wie ihn Hiller in seiner bekannten Arbeit praktiziert hat, aus der sich die Illiac-Suite ergab (vgl. 5 . Kapiel, Paragraph 7).

Im analytischen Teil stoßen wir wieder auf einen Ubersetzer der sensoriellen Erscheinungen der äußeren Welt, hier jedoch auf die kulturelle Welt angewandt, das heißt auf den Ursprung der Kunstwerke, die auf dem speziellen Gebiet, für das man sich interessiert - Klang, Bild, Form, Farbe usw. - durch den universalen Konsens als solche anerkannt sind. Der Converter übersetzt die objektiven Züge der Kunstwerke der Vergangenheit durch eine statistische Charakterisierung. So bestimmt er wie in Paragraph 1 die Symbole, die die sensoriellen Elemente repräsentieren, und bildet ein geordnetes Repertoire. Zu diesem Zweck nimmt er eine Integration vor: er sucht die Gesetze der Korrelation zwischen den Elementen; mit anderen Worten: er generalisiert.

Nach Abschluß dieser Integration registriert man in zwei getrennten Speidern - falls die Analyse richtig durchgeführt worden ist - die Werke nad ibren eigenen Regeln sowie die Regeln in ihren vielfäligen Anwendungen. Der erste Speicher materialisiert die speziellen Regelkombinationen, die jedes einzelne Werk ausdrücken. Der zweite registriert die vielfaltigen Anwendungen entsprechend ihren gemeinsamen Regeln und bildet eine Art strukturaler Kartei der Werke.

Ausgerichtet auf die Welt der Kunst und angepaft dem, was die Menschheit als ,das Schönste klassifiziert hat, wird die Maschine verwendet, um dessen objektive Eigenschaften zu kondensieren und sie manipulierbar, semantisch explizit zu speichern.

Im synthetischen Teil wird der künstliche Betrachter oder Hörer zum künstlichen Kreator, wendet die Geheimnisse des Schönen an, die er ermessen hat, und versucht, die Kreationsprozesse zu reproduzieren, die er beherrscht. Imagination oder Zufall bestimmen die Entnahme eines ersten Zeichens aus dem zuvor entsprechend definierten Repertoire. Dann wird jedes neue Zeichen einer sequentiellen Analyse unterzogen, die bestimmt, ob es der Regelgruppe entspricht, die im analytischen Teil herausgefunden wurde (erster Speicher) und die in diesem Stadium der Maschine wiedereingeführt wird, um das simulierte Bild eines Stils herzustellen; das kann der ,Cantus Firmus< nach Fucks sein, die Symphonie im Sinne Beethovens oder die geometrische Abstraktion Vasarelys.

Entweder gehorcht das betreffende spezielle Zeichen den Regeln, die fur den Versuch festgelegt sind; in diesern Fall wird es nad den übrigen uberragen und registriert. Oder es entspricht ihnen nicht; damn wird es verworfen, und die aleatorische Quelle erhalt den Befoh, ein neues Zeichen anzubieten, das seinerseits nad denselben Kriterien untersucht, angenommen oder verworfen wird. Dieser Iterationsprozef wird wiederholt, bis man ein brauchbares Zeichen gefunden hat.
So entsteht nach und nach eine Sequenz, die genau dem schöpferischen Tasten und Vorgehen entspricht, den Korrekturen und Neuanfängen, bis im Rahmen eines gegebenen Stils ästhetische Befriedigung erreicht ist. Bis zu diesem Stadium kann man das Organogramm mit dem eines Konservatoriumsschulers vergleichen, der eine Kontrapunkraufgabe erledigt und dabei die Noten auf seinem Papier ausradiert, bis ein Resultat erreicht ist, das allen Spielregeln genügt.

Das zweite Stadium dieser Synthese ist eine Formalisierung des Ganzen; man vergleicht nun die Resultate mit dem Repertoire von Werken, die der zweite Speicher des künstlichen Betrachters registriert hat. Das Vergleichskriterium ist nicht mehr die Übereinstimmung mit einem Stil, sondern die Originalität; es bestimmt, ob das Werk brauchbar, das heißt neu ist.

Wenn es noch nidt dagewesen ist, wird es eventuell dekodiert, aufgezeichnet, das heiBe mit Hilfe eines Digitalanalog-Wanders aus den Resultaten in $>\mathrm{Ma}$ -
schinensprache in die sensorielle Sprache zurückübertragen, Dann wird es dem Konsum überlassen.

Wir stellen fest, daß in diesem Prozeß der Asthetiker die Rolle eines Künstlers $̈$ übernimmt; nachdem er die Regeln des Schönen in der gesamten Kunst definiert hat, schaff er weitere Werke nadh den gleichen Regeln, doch er lehnt es ab, die Verantwortung dafür zu tragen. Verantwortlich ist die Maschine. Nachdem die


## Hat Mondrian den ganzen Mondrian gemalt, den er hätte malen können?

Noll beauftragte einen Computer, sich an einem Bild von Mondrian zu inspirieren, und lieferte ihm dazu als Daten: Art der Elemente (Quadrate oder mehr oder weniger langliche Stabe), Einordnung in eine Gesamtfigur (Kreis) und mittere Dichte an Jedem Punkt des Bildes. Er erhielt das rechte Bild und zeigte es zusammen mit dem Original von Mondrian (links) einer Anzahl Testpersonen, die er ohne jede Andeutung fragte, welches sie bevorzugten. Die Testpersonen zogen das Computer-Remake vor, und zwar in einem aufschluBreichen Verhaltnis; $55 \mathrm{zu} 45 \%$. Dieses paradoxe Resultat erkiart sich aus der kuturellen Soziodynamik, und zwar aus der Tatache, dab die Mondrian-Konzeption, die seit etwa 20 lahren im Handel mit Vervieffätigungen existiert, banal und dem Auge des Betrachters gewohnt geworden ist; so findet dieser in der hier angebotenen Version etwas zusatzlich Neues.

Regeln eines Stils ausgewählt sind, wird ein aleatorischer Prozeß in Gang gesetzt, dessen Resultat den Asthetiker angeht.

In diesem Prozeß konkretisiert sidh eine widtige Frage: Hat Brabus all den Brabmss geccbrieben, den er scbeiben konnte? Und wenn wir Brahms nicht mögen, nehmen wir Tschaikowsky, er ist ein noch besseres Beispicl. Bei der Whedereinsetzung aller Regeln, die den Stil bei Brahms oder Tschaikowsky defnieren, und bei der Erforschung all der virtuellen Werke, die den gleichen Kriterien unterliegen, bietet die Maschine dem Kunstphilosophen zwei Antworten an, die gleichermaken verwirrend sind.
Wenn alle möglichen Variationen über das Erste Klavierkonzert sich als blasser Abglanz des Originals, ein wertloser Abklatsh, ein schlechtes Plagiat erweisen, so deshalb, weil es ein unerreidbares Ideal war. Es gibt andere, verborgenere Regeln; die Analyse war unzureichend und muß neu begonnen werden. Diese Antwort ist fü den Kunstwissenshafter von groBer Wichtigkeit.

Aber wenn die Remakes etwa genauso gut (oder sogar besser) wären als das Original, so hieße das, daf Tsdalkowsky oder Brahms bei der Efforschung ihres Möglichkeitenfeldes auf dem vielverzweigen Pfad nidht die beste Richtung gewähit hätten. Als Möglichkeit existierte ein besseres, Erstes Klavierkonzert als das, welches Tschaikowsky tatsächlich niedergeschrieben hat: wir würden cinen großen Fehler machen, ubersähen wir diese reide Quelle künstlenisher Möglidkeiten. Hier öfnet sid ein unabsehbares Feld für den Versud an Modellen und die angewandie Asthetik.

## Vierte Position:

Die abstrakte Kreation: die Maschine als Komplexitätsverstärker entwickelt eine Kompositionsidee.
Nachdem ein verantwortlicher Künstler eine Idee gefunden hat, fühlt er sich nicht in der Lage, sie zur Vollendung zu führen, denn die Arbeit, die ihre Weiterentwicklung erfordert, übersteigt die menschlichen Kräfte. Unser Geist ist zu schwach für die Ideen, die er imaginiert, er braucht einen technischen Beistand, und den kann ihm der Computer liefern (Barbaud).

Das ist etwa der Fall bei K. O. Goetz, wemn er die Kombinationen der schwarzen und weiBen Zeiden erforscht, um Superzeichen herzustellen: er nimme ein Team zu Hilfe, in dem jeder - nach streng vom Kreator vorgesdriebenen Regeln - ein kleines Stuck des Gesamtbildes ausführt.

Die geforderte Arbeit übersteigt sehr bald die Grenzen der menschlichen Aktivität, selbst wenn sie als Teamwork organisiert


Als Intelligenzverstärker entwickelt eine Maschine die vom Kunstler fur ein Werk geschaffene Idee.

Dieses Organogramm zeigt nur, wie gewisse Kunstler (Xenakis, Coetz) tatsächlich die Maschine zu Hife nehmen, weil sie begreifen, daß ein Kunstwerk auch aus einer Idee resultieren kann, die ein uber Geduld und Denkvermägen des Menschen hinausgehendes MaB an Kalkul und Kombinationen verlangt. Künstler der Renaissance sind daruber gestorben, daß sie sich einer Aufgabe verschrieben, die sie durch die Beständigkelt des Oberiegens, die sie verlangte, überforderte. Heute kann der Computer den Kunstler bei diesen Operationen ablösen; er offnet damit der küntlerischen Kreation ein neves Feld. Wir wollen hier feststellen, dab es immer der Künstier ist, der im Ursprungspunkt der idee und ihrer Realisation bleibt. Er ist der, der signiert, er ist der einzig Verantwortiche. Der Computer ist her nichts als ein reines, positives Element. Nehmen wir ein Beispiel: Peano, ain Mathematiker des 19 . Jahrhunderts, hat gezeigt, dab eine Kurve eine ganze Fläche. etwa die enes Quadrats, ausfullen kann. Dazu geht er von den beiden Diagonallinien aus, verdoppelt diese Diagonalen dam durch eine Reihe weiterer Diagonalen innerhalb der entstandenen Sektoren, teilt diese Sektoren wiederum und so weiter, ohne je de Feder abzusetzen. Setzte man das unendlich fort. wäde man die ganze Fläche fülen, d. h., man würde in jedem Punkt eine Kurve antreffen. Diese Geduldsarbeit wäre eine Aufgabe, die der Computer lösen könte. Um das Bild deutlicher zu machen, mußte man die Strichstärken in den verschiedenen, immer feiner werdenden Etappen regulieren. Eine soiche polygonale Kurve würde ein ausgezeichnetes Motiv fur einen modemen Perserteppich abgeben, - man könte es an einen Designer verkaufen.
ist. Wir werden der Maschine den Auftrag geben, als Komplexitätsverstärker zu dienen, unsere Wünsche zu Ende zu denken und sie zu realisieren. Der Mensch gibt der Maschine eine Idee und ein Zeichenrepertoire ein und befiehlt ihr, die Realisierung
dieser Idee mit den von ihm zur Verfügung gestellten Zeichen zu entwickeln.

Xenakis sieht ein Interesse darin, Klangelemente nach einer Anzahl einfacher Regeln zu verteilen, und fragt sich, wie diese Regeln vom Hörer walirgenommen werden. A priori weib er nidts daruber; er sammelt zunächst von Hand Klangelemente, und went die Berechnungen für seine Möghchkeizen zu umfangreid werden, beauftragt er die IBM 704 , sie für ihn auszufühen. Danach kann er analysieren und aus den Resultaten, die die Gesetze des logischen Denkens respektieren, diejenigen auswählen, die im eigentlichen Sinne ästhe-


Beispiel fur ein Blld, das unmitrelbar von einef computergesteuerten Zeichenmaschine hergestellt worden ist. Die Interferenzen, Kreuzungen und Linienüberlagerungen sind durch ein einfaches Programm bestimmt, das Camarero im Rechenzentrum der Universitat Madrid aufgestell hat. Dies ist eines der bekanntesten Computerbitder. Bei genaverem Hinsehen stellt man fest, daß das Bild, obwohl es auf den ersten Blick uberzeugt, weil es oberflächlich die perspektivischen Gesetze respektiert, tatsächlich unmoglich ist, da sich verschiedene Strukturtelle in logischem Widerspruch zueinander befinden. Heute lassen sich zahlreiche topologische Strukturen herstelien, die der Computer mit Leichtigkeit berechnet.

Es scheint sicher, daß sich ein Teil unserer künfligen Kunst in dieser Weise entwickeln kann. Aber wir brauchen eine beharrliche Strenge (Leonardo da Vinci), um dieses Projekt zu Ende zu führen, denn es geht darum, immer dieselbe Regel sehr viele Male anzuwenden. Hier wird der menschliche Wille sehr bald müde;
das ist dann der Augenblick, det Maschine zu weichen und sie die Arbeit vollenden zu lassen. Doch bisher hat der Mensch noch nie ein solches Intelligenz- and Arbeits-Relais zur Verfügung gehabt, und die Versuche auf diesem Gebiet sind nichr sehr weit gegangen. Es gibt also etwas Neues; ein Weg für die Kunst hat sich aufgetan.

## Fünfe Position:

Die permutationelle Kunst. Die Maschine erforscht systematisch ein Möglicbkeitenfeld, das durch einen Algorithmus definiert ist.


Ausiorschen eines Feldes durch einen permutationellen Algorithmus.
Hier haben wir es mit einer geschossenen Schlelfe zu tun. Der Kunstier setzt sich eine als algorithmus bezeichnete Summe von Regein und definiert damit ein Feld von Möglichkeiten. Anstatt, wie er es froher tat, eine Losung unter vielen zu wählen - d. h. nur eine Bahn durch das Feld, das or im ubrigen brach llegen labt-, nimmt er sich vor, methodisch, gewissenhaft und unermudich alle in diesem Feld möglichen Bahnen zu erforschen: ein Verfahren, das die serielle Musik versucht und das beispielsweise Barbaud mit den Bull-Maschinen verwirkhicht hat. Es ist die Methode der permutationellen Kunst.

Die Maschine verwendet jetzt nicht mehr das Feld der natürlichen Möglichkeiten (Position 1), die Elemente und Stilregeln der vorhandenen Werke (Position 3). Sie folgt nicht mehr allen Implikationen einer abstrakten Idee (Position 4), sondern sie realisiert alle möglichen Werke, für die der Kreator das Programm - Repertoire und Idee-geliefert hat, sie komponiert mit ihm. Sie besitzt einen Zeichenkode von Klang- oder visuellen Elementen, die ein Repertoire bilden. Man bestimmt nun ein Feld
möglicher Kombinationen, indem man eine Folge von Regeln für die Verarbeitung und Anordnung dieser Elemente" formuliert: das ist die Definition eines kombinatorischen Algorithmus. Dieses Möglichkeitenfeld ist immens; das menschliche Wesen könnte darin einen speziellen Weg verfolgen und ahnungslos an den reizvollsten Realisationen vorübergehen. Einzig die Maschine ist fähig, das kombinatorische Spiel systematisch auf alle Elemente des Algorithmus anzuwenden, die Totalität dieses


## Op-Ark und Computer

Konstruktion eines Op-Art-Bildes durch mechamische Kombination von Elementen mittels Computer (Barbadillo, Rechenzentrum der Universităt Madrid)

Eine Bilderfolge, die Barbadillo durch kombinatorische Variationen van Elementengruppierungen hergestell hat. Die Grundelemente (links) sind mit a, b, c und d bezeichnet, ihre Negativformen mit $a^{\prime}, b^{\prime}, c^{\prime}$ und $d^{\prime}$, ihre Spiegelungen mit sa, sb, sc und sd. Die zusätzlichen Zahlen von 1 bis 4 geben die jeweilige Richtung des Elements an. Ganz rechts ein Konstruktionsprogramm. Darunter ein Anwendungsbelsplel mit zugehörigem Programm.

Möglichkeitenfeldes zu erforschen und auszuschöpfen. Sie kann eine sehr große - endliche, aber immense - Zahl potentieller Werke schaffen, die sich speichern lassen. Aber es ist besser, darauf die Millionen realisierter Werke nach bestimmten, zuvor festgelegten Werten (Intelligibilität, Sensualität usw.) zu sieben und die besten festzuhalten: was im Sieb zurückbleibr, wird gespeichert und später verkauft; das entspricht einer soziologischen Untersuchung über das Vergnügen am Schönen. Det Asthetiker wird zum Künstler, weil er seinen Algorithmus schaff, für thn verantwortlich ist. Er legt auch das, Filterprogramm $/$ fest (Pos. 1).

Dies ist der Versuch mit algorithmischer Musik, wie ihn Barbaud unternommen hat; es ist die Methode $S+7$, wie sie Lescure im Ouvroir de Littérature Potentielle zeigt; es ist die Variationsmethode Kuhimanns, Picards usw.



Die strukturalistische Theorie cuf die kunstlerische Synthese anwenden heibt, de Forderung nach einer möglichen Auflösung der Wahrnehmungsphänomene in eine Folge erkennbarer, formulierbater und registrierbarer Elemente stellen, die kodiert, in den Computer gegeben und zu neven Sequenzen geordnet werden können. Hier ein Beispiel far einen verainfachten Katalog von Gestemens or stammt aus einer Abbziehbildersammlung (Letraset). Die Möglichkeit ist evident, die dargestellten Hände diesem oder jenem Kontext (weiblicher Körpen) anzupassen, wie es die Modezeichner haufig tun. Doch deutet sich hier die weitere Möglichkeit an, Kombinations- (oder Exklusions-)Regein aufustelien. die, in einem Programm konkretisiert, zur maschinelien Herstellung von Reklamebildern dienen kömnen.

Die permutationelle Kunst, ein herrliches Spiel für die Privilegierten, die es üben, hat beträcttliche Bedeutung in einer Konsumgesellschaft, der sie die persönliche Diversität in der Uniformität ein und desselben Algorithmus schenkt. Jeder KaufhausKunde kann seine Resopal-Tischplatte bekommen, mit einem einmaligen, unverwechselbaren Motiv in persönlich gestalteter Einlegearbeit, für ihn speziell von einer Künstler-Maschine geliefert, die in der Lage ist, eine Million weiterer Muster nach ein und demselben Programm zu produzieren. Das ist die Idee des Multiplen. Wir werden diese wichtige Position der kombinatorischen Kunst im folgenden Kapitel genauer darlegen.

## 11. Neue dynamische Ideen

All diese kybernetisch bestimmten Organogramme, deren jedes eine Haltung des Asthetikers gegenüber der äußeren Welt spiegelt, beruhen auf einer Anzahl gemeinsamer Ideen, die vielleicht das unmittelbarste Ergebnis der kybernetischen Methode sind.
I. Die Voraussetzung des Vorhandenseins von Strukturatomen oder Morphemen, Semantemen, Graphemen, Mythemen usw. (nach der Terminologie von Levi-Strauss); das bedeutet die Bestätigung des strukturalistischen Prinzips, aufgefaßt als eine atomistische Theorie der Humanwissenschaften und speziell auf die Kunst angewandt. Die Informationstheorie erweist sich hier als Schnittpunkt der strukturalistischen mit der dialektischen Theorie. Von der strukturalistischen Theorie nimmt sie die Idee des Atoms, des Modells und der Struktur als Summe der Zwänge, unter denen der Gegenstand ihrer Analyse steht. Der dialektischen Theorie entnimmt sie den Gegensatz Bild/Hintergrund, der für die Idee der Form oder Gestalt wesentlich ist, und den Iterationsproze $\beta$, der darin besteht, daß man, nachdem man ein Modell hergestellt hat, dieses, weil es nicht zureicht, in einem immer neuen Kampf angreift, bis das Bild nach und nach aus der Komplexität des Hintergrunds hervortritt.
2. Die Organogramm-Methode bringt den Begriff der operationellen Strenge als neue philosophische Kategorie, die unter anderem den der Genauigkeit ersetzt. Die Idee des Programms erscheint wie ein Algorithmus des Geistes selbst. Er ist eine Formalisierung der Denketappen, und die geniale Dummheit der Maschinen zwingt ihren Benutzer, nichts als evident anzunehmen, was nicht in Abhängigkeit von der Existenz zuvor voll disponibler technischer Elemente durch den Computer richrig rekonstruiert werden kann. Das ist der exakte Ausdruck für den NeoCartesianismus der Maschine.
3. Die Organogramme der Kreationsmaschinen stellen die Idee der Ordnungshierarchie oder der Ebene der Analyse in den Vordergrund. Die Maschinen, die Dichtung schreiben, stehen bald auf der Ebene der Wörter, wo sie einfachen Lettrismus herstellen; bald auf der Ebene der Phoneme, und sie machen ultralettristische Dichtung; bald auf der Ebene der Semanteme oder der Sätze, und sie machen permutationelle Literatur; dann wieder gehen sie nock weiter und spielen in permutationellen Romanen mit der Arithmetik der Situationen.
4. Die Kreationsmaschinen konfrontieren uns notwendig mit dem Problem des Konflikts zwischen Markoffscher Nahstruktur und syntaktischer Fernstruktur. Entsprechend den Markoff-Strukturen bedingen mehr oder weniger strenge Regeln für die Elementengruppierung lokalisierte 'patterns<; die syntaktischen Strukturen dagegen drücken die Tatsache aus, daß das Ganze (die Gestalt, die Form) die nebeneinandergesetzten Teile in ihren großen Linien unabhängig von ihren Elementen bestimmt.
5. Die Definition des Schönen ergibt sich aus einer Statistik über das Schöne. Das ist eine Art von Antwort, die die Asthetiker bisher kaum in Betracht gezogen haben; die Idee des Maßes verträgt sich nicht mit der Idee der Transzendenz, die die Philosophen vertreten. Das Schöne ist mit der Gesellschaft verknüpft als Schnittpunkt vieler individueller Gedanken.


## Computer und Design

Chomsky hat als syntaktische Struktur ein baumformig sich verzweigendes Netz von Unterteilungen bezeichnet, das einfache Elemente in Unterfamilien, Familen, Genera und Spezies gruppiert. Er hat eine Methode fur ihre Untersuchung geliefert, die als Mittel zum Verständnis der Satze einer Sprache dient. Tatsächlich folgen viele andere Erscheinungen den gleichen Denikmodus. - Das Beisplel hier bezieht sich auf die Analyse der Funktionen eines Gebaudes; es geht von grolen, globalen Funktionen der Architektur aus. In Unterfunktionen und in immer elementarere Funktionen geteilt, bilden sie einen logischen Baum. Die Aufgabe des Analytikers besteht darin, thre Zahl und ihre Hierarchisierung sichtbar zu machen; und ein solches System bereitet die Programmierung eines Computers für das Design vor.


Hier das Beispiel eines, Baumsx fur das Design der Elemente eines Hauses, das später aut dem Bildschirm eines Computers gezeichnet werden soll. Jeder Zweig des Baums enthalt aine oder mehrere elementare Funktionen, die in Hierarchten gruppiert sind. Das Untersystem A ist vergroßBert dargestellt. Es betrifft die Garage und den Hauseingang. - Die sich argebenden Notwendigkeiten wurden dann in die Maschine gegeben und durch Anpassung der Dimensionen an die Bedingungen endgultig festgelegt.


Die abere Abbildung gibt die grobe Architekturzeichnung wieder, die der Computer als Ergebnis bestimmter perspektivischer Bedingungen auf den Bildschirm gebracht hat. Unten findet sich die klare Zeichnung, die durch Ausmerzen der Hilfslimien verbessert wurde. Ein einfaches Programm gestattet es, das perspektivische Bud auf dem Schirm zu drehen, so daß man das virtuelle Objekt auf jede nur mögliche Art betrachten kann (Massachusetts Institute of Technology).
6. Der Ästhetiker, ein gesellschaflich einigermaßen benachteiligtes Wesen und lange Zeit mir schrecklichen Minderwertigkeitskomplexen behaftet, weil er über das redete, was die anderen machten, ist auf eine Ebene mit den Künstlern gerückt, von denen er früher gesprochen hat. Er liefert die Elemente der Programme für das Repertoire der Maschinen, er bestimmt die Hierarchie der jeweiligen Ebenen. Die angeführten Organogramme machen deutlich, daß jede Andyse-Maschine als Synthese-Maschine dienen kann, das heißt als Quelle von Kunstwerken, für die der Asthetiker in jedem Falle, wenn nicht der Autor im eigentlichen Sinne - denn der Autor verschwindet aus dem Werk -, so doch zumindest der Manager und der Verantwortliche ist.


Muster aus dem Farbfilm Pixilation von Lillian Schwartz und Ken Knowlton. Dieses Beispiel zelgt die Möglichkeit, mit dem Computer Motive fur moderne Teppiche und Textlien zu entwerfen.
7. Ein letzter Begriff ergibt sich notwendig aus einer mechanologischen Uberlegung; sie zwingt uns, eine bisher sträflich vernachlässigte Dimension der äußeren Welt einzubeziehen, die der ,Maschinen-Kapazitäts, die mit der Wiederordnung des Universums - oder eines Teils desselben - verknüpt ist, und zwar durch eine Reihe beschreibbarer Prozesse von gewisser Komplexität. Schöpferische Methoden kann man alle Verfahren nennen, die dazu beitragen, diesen Prozeß der Neuordnung der Welt zu beschleunigen.

