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| —Introduction

to

! fractal

; ——geometry

Fractal geometry has emerged as one of the most exciting frontiers in the
fusion berween mathematics and information technology. Fractals can be seen
in many of the swirling patterns produced by computer graphics, and cthey have

become an important new tool for modeling in biology, geology, and other nat-

ural sciences, While fractal geometry can indeed rake us inte the far reachee

. of high-tech science, irs patterns are surprisingly common in traditional African

designs, and some of its basic concepts are fundamental to African knowledge
systems. This book will provide an easy introduction to fractal geometry for

people without any mathematics background, and it will show how these same

categories of geometric pattern, calculation, and theory are expressed in
African cultures.

Mathematics and culture

' For many years anthropologists have observed that the patterns produced in dif-
vy P P P
ferent cultures can be characterized by specific design themes. In Europe and Amer-
Y 5P g p
p ica, for example, we often see cities laid out in a grid patcern of straight streecs
and right-angle corners. Another grid, the Cartesian coordinate system, has

leng been a foundation for the mathematics used in these societies. In many works




Introduction

of Chinese art we find hexagons used with extraordinary geometric precision—

a choice that might seem arbitrary were it not for the importance of the num-

ber six in the hexagrams of their fortunetelling system (the I Ching), in the anatomy

charts for a(:upunctui:e (Ii:lfcﬁ or “six spitits”), and even in Chirese architecture.!
Shape and number are not only the universal rules of measurement and logic;
they are also culrural rools that can be used for expressing particular social ideas
and linking different areas of life. They are, as Claude Lévi-Strauss would put i,
“good to think with.”

Design themes are like threads running through the social fabric; they are
less a commanding force than something we command, weaving these strands
into many different patterns of meaning. The ancient Chinese empires, for
example, used a base-10 counting system, and they even began the first univer-
sal metric system.? So the frequent use of the number 6o in Chinese knowledge
systems can he linked tothe combination of this official base 1o notation with
their sacred number six. In some American cities we find that the streets are num-
bered like Cartesian coordinates, but in others they are named after historical
figures, and still others combine the two. These city differences typically corre-
spond to different social meanings—an emphasis on hisfory versys efficiency, for
example.

Suppose that visitors from another world were to view the grid of an
American city. For a city with numbered streets, the visitors (assuming t'hey could
read our numbers) could safely conclude that Americans made use of a coordi-

.- nate structure, But do these Americans actually understand coordinate mathe-
matics? Can they use a coordinate grid to graph equations? Just how sophisticated
is their mathematical understanding? In the following chapter, we will ind our-

- selves in a similar pesition, for African settlement architecture is filled with remark-
able examples of fractal structure. Did precolonial Africans actually understand
and apply fractal geometry!

As 1 will explain in this chapter, fractals are characterized by the repeti-
tion of similar patterns at ever-diminishing scales. Traditional African settle-
ments typically show this “self-similar” characteristic: circles of circles of
circular dwellings, rectangular walls enclosing ever-smaller rectangles, and
streets in which broad avenues branch down to tiny footpaths with striking geo-
metric repetition. The fractal structure will be easily identified when we com-
pare aerial views of these African villages and cities with corresponding fractal
graphics simulations. - o .

What are we to make of this comparison? Let's put ourselves back in the
shoes of the visitors from another planet. Having beamed down to an American

settlement named “Corvallis, Oregan,” they discover that the streets are not num-

i
2
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Fractal geometry

bered, but rather titled with what appear to be arbitrary names: Washington, Jef-
ferson, Adams, and so on. At first they might conclude that there is nothing mathe-
matical about it. By understanding a bit more ahour the cultural meaning,
however, a mathematical pattern does emerge: these are names in historical suc-
cession. It might be only ordering in terms of position in a series (an “ordinal”
number), but there is some kind of coordinate system at work after all. African
designs have to be approached in the same way. We cannot just assume that African
fractals show an understanding of fractal geometry, nor can we dismiss that pos-
sibility. We need to listen to whart the designers and users of these structures have
to say about it. What appears to be an unconscious or accidental pattern might
actually have an intentional mathemarical component.

Overall, the presence of mathemartics in culture can be thought of in
terms of a spectrum from unintentional to self-conscious. At one extreme is the
emergence of complecely unconscious structures. Termite mounds, for example,
are excellent fractals {they have chambers within chambers within chambers)
but no one would claim that termites understand mathematics. In the same way,
patterns appear in the group dynamics of large human populations, but these larg
generally not patterns of which any individual is aware. Uncoriscious structures
do not count as mathematical knowledge, even though we can tse mathematics
to describe them.

Moving along this specerum toward the more intentional, we next find
examples of decorative designs which, although consciously created, have no
explicit knowledge attached to them. It is possible, for example, that an artist
who does not know what the word "hexagon” means could still draw one with
great precision. This would be a conscious design, but the knowledge is strictly
implicit.? In the next step along our spectrum, penple make rhese comnonents
explicit—they have names for the patterns they observe in shapes and numbers.
Taking the intention spectrum one more step, we have rules for how these pat-
rerns can be combined. Here we can find “applied mathematics.” Of course
there is a world of difference between the applied math of a modern engineer and
the applied math of 2 shopkeeper—whether or not something is intentional tells
us nothing about its complexity.

Finally we move to “pure mathematics,” as found in the abstract theories
of modern academic marhematicians. Pure math can also be very simple—for
example, the distinction between ordinal numbers {first, second, third) and car-
dinal numbers (one, two, three) is an example of pure math. But it would not
be enough for people in a society simply to use examples of both types; they
would have to have words for these two categories and explicitly reflect on a

comparison of their properties before we would say that they have a theory of
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the distinction between ordinal and cardinal numbers. While applied mathe-

matics makes use of rules, pure math tells us why they wotk—and how to find

Jew ones.

o

"— This book begins by moving along the spectrum just described. We will start by

showing that African fractals are not simply due to unconscious activity. We will
then look at examples where they are conscious but implicit designs, followed
by examples in which Africans have devised explicit rules for generating these
patterns, and finally to examples of abstract theory in these indigenous knowl-
edge systems. The reason for taking such a cautious route can be expressed in tenﬁ_s
-of what philosopher Karl Popper called “falsifiability.” Popper pointed out that
everyone has the urge to confirm their favorite theories; and so we have to take
precautions not to limit our attention to success—a theory is only good if you
try to test it for failure. If we only use examples where African knowledge sys-
tems successfully matched fractal geometry, we would not know its limitations.
There are indeed gaps where the family of theories and practices centered around
fractal geometry in hlgh tech mathematics has no counterpart in traditional Africa.
Although such gaps ate significant, they do not invalidate the comparison, but
rather provide the necessary cualifications to accurately characterize the mdlge-
nous fractal geometry of Africa.

Querview of the text

Following the introduction to fractal geometry in the next section, in chapter
2 we will explore fractals in African settlements. It will become clear:that the
explanation of unconscious group activity does not fit this case. When we talk

~ to the indigenous archltects they are quite explncu about those same fractal
features we observe,_,an

se several of the basic concepts of fractal geometry in
discussing their mat‘erlal desngns and associated knowledge systems. Termites
may make fractal arch1tectur&s, but they do not paint abstract models of the
. structure on nts'walls or create symbols for its geometric properties. While these
mtroductory examples won't settle all the questions, we will at least have estab-
lished that these architectural designs should be explained by something more
than unintentional social dynamlcs.

In chapter 3 we will examine another explanation: perhaps fractal settlement
patterns are not unique to Africa, and we have simply observed a common charac-
teristic of all non-Western architectures. Here the co"ncept of design themes
become important. Anthropologists have found thar the design themes found

in each culture are fairly distinct-—that is, despite the artistic diversity within
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each society, most of the culture’s patterns can be characterized by specific geo-

metric practices. We will see that although fractal designs do occur cutside of

Africa (Celtic knots, Ukrainian eggs, and Maori, rafters have some excellent

examples), they are not everywhere. Their strong prevalence in Africa (and in
African-influenced southern India) is quite specific.

Chapter 4 returns to this exploration with fractals in African esthetic
design. These examples are important for two reasons, First, they remind us that
we cannot assume explicit, formal knowledge simply on the basis of a pattern.
In contrast o the fractal putterns of African settlement architecture, these aes-
thetic fractals, according to the artisans, were made “just because it looks pretty
that way.” They are neither formal systerns (no rules to the game) nor do the arti-
sans’ report explicit thinking ("] don't know how ar why, it just came to me”).
Second, they provide one possible route by which a particular ser of mathematical
concepts came o be spread over an enormous continent. Trade networks could
have diffused the fractal aesthetic across Africa, reinforcing a design theme that
may have been scattered about in other areas of life. Of course, such origin stories
are never certain, and ali too easy to invent.

Part 11 of this book, stasting with chapter 5, presents the explicit design meth-
ods and symbolic systems that demonstrate fracral geometry as an African know!-
edge system. As in the introduction 1o fractals in the first chapter,‘ 1 will .a;‘sgmé
the reader has no mathematics background and provide an introduction to any
new concepts along with the African versions. We will see that not only in archi-
tecture, but in traditional hairstyling, textiles, and sculpture, in painting, carv-
ing, and meralwork, in religion, games, and practical craft, in quantitative
techniques and Symbo!nc systerns, Africans have used the patterns and abstract
concepss of fractal gromatry.

Chapter 10, the last in part 11, is the result of my collaboration with an
African physicist, Professor Christian Sina Diatta. A sponsor for the Fulbright
fellowship that enabled my fieldwork in west and ceniral Africa..Dr. Diatta took
the idea of indigenous fractals and ran with it, moving us in direcrions that 1
would never have considered on my own, and still have yet 1o explore fully.

In the third and final part of this book we will examine the consequences
of African fractal geometry: given thar it does exist, what are its social implica-
tions? Chaprer 11 will briefly review previous studies of African knowledge sys-
terns. We will see that although several researchers have proposed ideas related
to the fractal concepr—Henry Louis Gates’s “repetition with revision,” Léopold

a.

Senghor’s “dynamic symmetry,” and William Fagg’s “exponential morphology™ are
all good examples—there have been specific obstacles that prevented anthropologists

and others from taking up these concepts in terms of African mathemarics.
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Chapter 12 covers the political consequences of African fractals. On the
one hand, we will ind there is no evidence that geometric form has any inher-
ent social meaning. In settlement design, for example, people report both oppres-
sive and liberatory social experiences with fractal architectures. Fractabversus
nonfractal {“Euclidean”) geometry does not imply good versus bad. On the
other hand, people do invest abstract forms with particular local meanings. To
take a controversial example, recent U.S. supretne court decisions declared that
voting districts cannot have "bizarre” or “highly irregular” shapes, and several of
these fractal contours have been teplaced by the straight lines of Euclidean
form. If fractal settlement patterns are traditional for people of African descent,
and BEuclidean settlement patterns for Europeans, is it ethiiocentric to insist on

“only Euclidean voting district lines!

Chagpter 13 will examine the cultural history of fractal geometry and its
mathematical precursors in Europe. We will see that the gaps are not one-sided:
just as Africans were missing certain mathematical ideas in their version of
fractal geometry, Europeans were equally affected by their own cultural views
and have been slow to adopt some of the mathematical concepts that were long
championed by Africans. Indeed, there is striking evidence that some of the
sources of mathematical inspiration for European fractals were of African
origin. The final chapter will move forward in time, highlighting the con-
temporary versions of fractal design that have been proposed by African
architects in Senegal, Mali, and Zambia, and other illustrations of possible frac-
tal futures. '

But to understand all this, we must first visit the fractal past.

A historical introduction to fractal geometry

The work of Georg Cantor (1845~1918), which produced the first fractal, the
Cantor set (fig. 1.1), proved to be the beginning of a new outlock on infinity. Infin-
ity had long been considered suspect by mathematicians. How can we claim to
be using only exact, explicit rules if we have a symbol that vaguely means “the
number you would get if you counted forever”"! So many mathematicians, start-
ing with Aristetle, had just banned it outright. Cantor showed that it was pos-
sible to keep track of the number of elements in an infinite set, and did so in a
deceptively simple fashion. Starting with a single straight line, Cantor erased the
middle third, leaving two lines. He then carried out the same operation on
those two lines, erasing thieir middles and leaving four lines. In other words, he
used a sort of feedback loop, with the end resuit of-gne stape brought back as the

starting point for the next. This technique is called “recursion.” Cantor showed
Ep G
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thar if this recursive construction was continued forever, it would create an
infinite numnber of lines, and yet would have zero length.

Nort only did Cantor reintroduce infinity-as a proper object of mathe-’
matical study, but his recursive construction could be used as a model for other
“pathological curves,” such as that created by Helge von Koch in 1904 (figs. 1.2,
1.3). The mathematical properties of these figures were equally perplexing.
Small portions looked just like the whole, and these reflections were repeated down

to infinitesimal scales. How could we measure the length of the Koch curve? If

output at each
stage of process

Take a line : Erase the middle

Bring each of the resulting
lines back in and do it again

—— ]

— — A— R —— — ’ —_—

n’— o — E L [ L Bt -
FIGURE I.I

The Cantor set
In 187+ Georg Cantor came up with the idea of repeatedly subdividing a line to illustrate
the concepr of an infinite set. This looping technique is called recursion. By specifying that the
recursion continues forever, Cantor was able ro define an infinite set.
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hirst line veplaced all lines replaced

reduced version

Brting each of the resulting
lines back in and do it again

output at
each stape

/\

starting shape

FIGURE 1.2
_ The Koch cuwe
Helge von Koch used the sama kind: of recuisive loop as Canmr. but he added lines instead of
erasing them. He began with a triangular shape made of four lines, the * seed He then replaced
each of the lines with a reduced version of the original seed shape. '
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FIGURE 1.3
Koch curve variations
There is nothing special about the particular shape Koch first used. For example, we can make
similar slnpe:, that are more flat or mote spiked dsing variations on the sted shape (a). Nor is there
anyching special about trigngles—any shape can’undergo this rectirsivé replacement process.

Mushematician Giuseppe Peano, for example, experimented with rectangular seed shapes soch as
those in (b).
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we hold up a six-inch ruler to the curve {fig. 1.4} we get six inches, but of
course thar misses all the nooks and crannies. If we use a smaller ruler, we get
greater length, and with a smaller one even greater length, and so on, to infin-

ity. Obviously this is not a very useful way to characterize one of these curves.

A new way of thinking abour measurement was needed. The answer was to plot

these different measures of ruler size versus length, and see how fast we pain length
as we shrink the ruler {fig. 1.5). This rate (the slope) tells us just how c&ipk_led
or tortuous the curve is. For extremely crinkled curves, the plot will show that
we rapidly gain length as we shrink the ruler, so it will have a steep slope. For
relatively smooth curves, you don't éain much length as you shrink the ruler size,
so the plot has a shallow slope.

To mathematicians this slope was more than just a practical way to char-
acterize crinkles. Recall that when we first tried to measure the length of the Koch
cutve, we found that its length was potentially infinite. Yet this infinite length
fits into a bounded space. Mathematician Felix Hausdorff (1868—1¢42) found that
this paradox could be resolved if we thought of the pathological curves as some-
how taking up more than one dimension, as all normal lines do, bur less than two
dimensjons, as flat shapes iike squares and circles do. In Hausdorff's view, the Koch
curve has a fractional dimension, approximately 1.3, which is the slope of cur
ruler-versus-lerigth plot. Being pure mathematicians, they were fascinated with
this idea of a fragtional dimension and never thought about putting it to prac-
tical use. '

The conceptual leap to practical application was created by Benoit Mandel-
brot (b. 1924), who happened upon a study of long-term river fluctuations by British
civil servant H. E. Hurst. Hurst had found that the yearly floods of rivers did not
have any one average, but rather varied over many different scales—there were
flood years, flood decades, even flood centuries. He concluded that the only way
to characterize this temporal wiggliness was (o plot the ameount of fluctuation at
each scale and use the slope of this line. Mandelbrot redlized that this was
equivalent to thg kind of scaling measure that had b-eg_n,“used for Cantor’s pathao-
logical curves. As he began ro apply computer graphics (figs. 1.6, 1.7), he found
that these shapes were not pathological at all, but rather very common through-
out the natural world. Mountain. ranges had peaks within peaks, trees had
btanches made of branches, clouds were puffs wnthm puffs—even his own body
was full of recursive scaling structures. ’

The fractal simulations for natural objects in figure 1.7 were cre'lted just

like the Cantor set, Koch cuive, and other examples we have already seen, with

a seed shape that undergoes recursive replacement. The only difference is that

some of these simulations require that certain lines in the seed shape do not get

S, —— SV e e
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measured is:
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FIGURE 1.4
Measuring the length of fractal curves
The new curves of Cantor, Koch, and others representéd a problem in measurement theory.
The length of the curve depénds on the size of the ruler. As we shrink the ruler down, the length
approaches mﬁmty
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FIGURE 1.5

A better way to measure fractal curves
Cur experiment in shrinking rulers wasn't a total waste. In fact, it turns out that if you keep track
of how the measured length changes with ruler size, you get a very good way of characterizing the
curve. A relatively smooth fractal won't increase length very quickly with shrinking ruler size, but
very crinkled fractals will. {a} This smooth Koch curve doesn’t add much length with shrinking
ruler size, so the plot shows only a small rise. {b) Since a small ruler can ger into all the nooks and
crannies, this more crinkled Koch curve shows a steeper rise in measured length with a shrinking
ruler, (¢} An extremely tortuous Koch curve has a very steep slape for irs plot.
Note for math sticklers: These fipures are plotted on a logavithmic graph.
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replaced. This is illustrated for the lung model at the bottom of figure 1.7. The
lines that get replaced in each iteration are called “active lines.” Those that do
not get replaced are called “passive lines.” We will bg using the distinction between
active and passive lines in simulations for African designs as well.
Mande!brot coined the term “fractal” for this new peometry, and it is now
used in every scientific discipline from astrophysics to zoology. It is one of the
most powerful rools for the crearion of new technologies as well as 2 revolutionary

approach to the analysis of the natural world. In medicine, for example, fractal

South Alfrica Smooth Koch curve
Fractal dimension = 1.00 Fractal dimension = 1.1

Grear Britain Rough Koch curve
Fractal dimension = 1.25 Fractal dimension = 1.3

Norway Torwous Koch curve
Fractal dimension = 1.52 Fractal dimension = 1.5

15

FIGURE 1.6

Measuring nature with fractal geometry
Although the curves of Cantor and others were introduced as abstractions without physical
meaning, Benoit Mandelbrot realized that their scaling measure, which he called “fractal
dimension,” could be put to practical use in characterizing irregular shapes in nature. The classic
cxample is the measurement of coastlines. Even though it is a very crude model, we can see how
the variations of the roughness in the Koch curve are similar to the variations in these coasts.
Note that the fractal dimension is our plot slope from figure 1.5; the coastlines were measured in
the same way. ‘



acacia tree

b

This vertical
line is passive.

These two
horizontal lines
(gray) are the
active lines that
will be replaced

shell

fern

After the first iteration

we see that only the active
lines were replaced;

the passive line remains
the samne. Now there

by a reduced are three passive lines By the cighth iteration we can sce
version of this {center) and four active the similarity to the scaling structure
seed shape. lines {the ends). of the human lungs.

FIGURE 1.7

Simulating nature with fractal geometry

In his experiments with computer graphics, Mandelbrot found that fractal shapes abound in
nature, where continual processes such as biological growth, geological change, and atmospheric
turbulence result in a wide variety of recursive scaling structures {a). The recursive construction of
these natural shapes is basically the same as that of the other fractal shapes we have seen so far. In
some examples, like the lung model (b)), certain lines of the original seed shape do not participate
in the replacement step; they are called “passive lines.” The ones which do go through
replacement are called “active lines.” Each step is referred to as an “iteration.”
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dimension can be used as a diagnostic tool. A healthy lung has a high fractal dimen-
sion, but when black lung disease begins it loses some of the fine branching—a
condirion that can be detected by measuring che fractal dimension of the X ray.
For this reason, Benoit Mandelbrot was récently named an honorary member of
the French Coal Miners Union.

Of course, no revolution is without its counterrevolutionaries. It was not
long before some scientists started objecting thar Mandelbrot was ignoring the
presence of the natural objects that could be described by Euclidean geometry,
such as crystals or epgs. 1t's true that not all of nature is fractal—and this will be

an important point for us to keep in mind. Some writers have mistakenly

attempted to portray Africans as “more natural”—a dangerous and misleading
claim, even when made by well-meaning romantics. Since fractals are associated
with nature, a book about “African fractals” could be misinterpreted as support
for such romantic organicists. Pointing out that some Euclidean shapes exist in
the realm of natute makes it easier to understand that African fractals are from
the artificial realm of culture. Before moving on to these African designs, let's

review the basic characreristics of fractal geometry.

Five essential components of fractal geometry

RECURSION

We have seen that fractals are generated by a circular process, a loop in which
the output at one stage becomes the input for the next. Results are repeatedly
rerurned, so that the same operation can be carried out again. This is often referred
o as ‘recursion,” a very powerful concept. Later we will distinguish between three
diffeieni types of recursion, but for now'just think of it in terms of this iterative
feedback loop. We've already seen how iteration works to create the Cantor set
and the Koch curve. Although we can create a mathermatical abstraction in which
the recursion continues forever, there are also cases where the recursion will “bot-

tom out.” In our generation of the Koch curve, for example, we quit once the lines

get too small to print. In fact, any physically existing object will only be fractal:

within a particular range of scales,

SCALING

If you look at the coastline of a continent—take the Pacific side of North Amer-
ica for instance—you will see a jagged shape, and if you look at a small piece of
that coastline~—siy, California—we continue 1o see similar japgedness. In fact,
a similar jagged curve can be seen standing on a cliff overlooking a rocky Cali-

fornia shore, or even standing on that shore looking at ene rock. Of course, that’s

17



18

Introduction

only roughly similar, and it’s only good for a certain range of scales, but it is aston-
ishing to realize how well this works for many natural features. It is this “scal-
ing” property of nature that allows fractal geometry to be so effective for
modeling. To have a “scaling shape” ineans that there are similar patterns at dif-
ferent scales within the range under consideration. Enlarging a tiny section will
produce a pattern that looks similar to the whole picture, and shrmkmg down
the whole will give us something that looks like a tiny part.

SELF-SIMILARITY

Just how similar do these patterns have to be to qualify as a fractal? Mathe-
maticians distinguish between stacistical self-similarity, as in the case of the coast-
line, and exact self-similarity, as in the case of the Koch curve. In exact
self-similarity we need to be able to show a precise replica of the whole in at
least some of its parts. In the Koch curve a precise replica of the whole could
be found within any section of the fractal (“strictly self-similar”), but this isn't
true for all fractals. The branching fractals used to model the lungs and acacia
tree {fig. 1.7), for example, have parts (e.g., the stem) that do not contain a tiny
image of the whole. Unlike the Koch'curve, they were not generated by replac-
ing every line in the seed shape with a miniarure version of the seed; instead,
we used some passive lines that were just carried though the iterations without
change, in addition to active lines that created a growing tip by the usual

recursive replacement.

INFINITY

Since fractals can be limited to a finite range of scqles it may seewm like infinity

is just a historical arufact at best a Holy Grail whose queet “allowed mathematicians

serendipitously to stumble across fractals. It is this kind of omission that has made
many pure mathematicians rather nonplussed about the whole fractal affair,
and in some cases downtight hostile {cf. Krantz 1989). There is no way to con-
nect fractals to the idea of dimension without using infinity, and for many math-

ematicians that is their crucial role.

FRACTIONAL DIMENSION

How can it be that the Koch curve, or any member of its fractal family, has infi-
nite length in a finite boundary? We are used ro thinking of dimension as only

whole numbers—the one-dimensional line, the two-dimensional plane—but

the theory of measurement that governs fractals allows dimensions to be fractions.

Consider, for example, the increasing dimension of the Koch curves in figure 1.6.

Abave the rop, we could po as close as we like ro 0 onc-dimensional Tine, Below
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the bottom, we could make the curve so jagged that it starts to fill in two-

dimensional areas of the plane. In between, we need an in-between dimension.

Looking for fractals in African culture -

As we examine African designs and knowledge systems, these five essential
components will be a useful way to keep track of what does or does not match
fracral geometry. Since scaling and self-similarity are descriptive characreristics,
our first step will be to look for these properties in African designs. Once we estab-
lish that theme, we can ask whether or not these concepts have been intentionally
applied, and start 1o look for the other three essential components. We will now
turn to African architecture, where we find some of the clearest illustrations of

indigenous self-similar designs.
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Architecture often provides excellent examples of cultural design themes,
because anything that is going to be so much a part of our lives—a structure
that makes up our built environment, one in which we will live, work or play—
is {ikely to have its design informed by our social concepts. Take religious archi-
recture for example. Several churclies have been Luilt using a triangular floor
plan to symbolize the Christian trinity; others have used a cross shape. The
Roman Pantheon was divided into three vertical levels: the bottom with
seven niches representing the heavenly bodies, the middle with the 12 zodiac
signs, and on top a hemispher.e- symbolizing the order of the cosmos as a
whote.! But we don't need to look to grandiose monuments; even the most mun-
dane shack will involve geometric decisions—should it be square or oblong?
pitched roof or flat? face north or west?—and so culture will play a role here
as well.

At first glance Aftican architecture might seem so varied that one would
conclude its structures have nothing in common. Although there is great diver-
sity among the many cultures of Africa, examples of fractal architecture can be

found in every corner of the African continent. Not all architecture in Africa

" is fractal—{ractal geometry is not the only mathematics used in Africa—but its

repeated presence among such a wide variety of shapes is quite striking.



Fractals in African settlement architecture

In each case presented here we will compare the aerial photo or architec-
tural diagram of a settlement to a computer-generated fractal model. The frac-
ral simulation will make the self-similar aspects of the physical structure more
_ evident, and in some cases it will even help us understand the local cultural mean-
ing of the architecture. Since the African designers used techniques like ttera-
tion in building these structures, our virtual construction through fractal graphics

will give us a chance to see how the parterns emerge through this process.

Rectangular fractals in settlement architecture

If you fly over the northern part of Cameroon, heading toward Lake Chad a]on'g
the Logone River, you will see something like fipure 2.1a. This aerial photo shows
the city of Logone-Birni in Cameroon. The Kotoko people, who founded this city

‘centuries ago, use the local clay to create huge rectangular building complexes.
The largest of these buildings, in the upper center of the photo, is the palace of
the chief, or “Miarre” {fig. 2.1b). Each complex is created by a process often called
“architecture by accretion,” in this case adding rectangular enclosures to preexisting
rectangles. Since new enclosures often incorporate the walls of two or more of
the old ones, enclosures tend to et larger and larger as you go outward from the
center. The end result is the complex of recrangles within rectangles within rec-
rangles that we see in the photo.

Since this architecture can be described in terms of self-similar scaling—it
makes use of the same pattern at several different scales—it is easy to simulate using
a computer-generated fractal, as we see in figures 2. 1c—e. The seed shape of the model
is a recrangle, but each side is made up of both active lines {(gray} and passive lines
{black), Afterthe ﬁrsr iteration we see how a small version bf.the or‘iginal rectang!e
is reproduced by each of the active lines. One more iterarion gives a range of scales
that is about the same as that of the palace; this is enlarged in figure 2.1e.

During my visit to Logone-Birni in the summer of 1993, the Miarre kindly
allowed me to climb onto the palace roof and take the photo shown in figure 2.1f.
[ asked several of the Kotoko men about the variarion in scale of their architecture.
They explained it in terms of a combinarion of patrilocal household expansion,
and the historic need for defense. "A man would like his sons to live next to
him,” they said, “and so we build by adding walls to the father’s house.” In the
past, invastons by northern marauders were commen, and so a larger defensive
wall was alsc needed. Sometimes the assembly of families would outgrow this

" defensive enclosure, and so they would turn that wall into housing, and busld an
even larger enclosure around it. These scaling additions created the tradirion of

self-similar shapes we still see today, although rhe population is far befow the
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a. An aerial view of the city of Logone-Birni in Cameroon.  b. A closer view of the palace.
The largest building complex, in the center, is the palace The smallest rectangles, in the
of the chief. center, are the royal chambers.

Photo tourtesy Musée de I' Homme, Paris.

c. Seed shape for the fractal
- simulatiowr of the palace.
The active lites, in gray, -
will be replaced by a scaled-
down replica of the entire
seed.

e. Enlargment of the third
d. First three iterations of the fractal simulation. iteration.

FIGURE 2.1
Logoue-Bit’ni {fgire continues)



g. The guti, the
royal insignia,
painted on the
palace walls.

By permission

of Lebeuf 1960.

o e e n et et
y

————

Le chemin de la lumigre

h. The spiral path taken by visizors to the t‘hro‘ne.
By permission of Lebeuf 1969,

FIGURE 2.1 (continued)
Inside Logone-Birni
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original 180,000 estimated for Logone-Birni’s peak in the nineteenth century. At
that time there was a gigantic wall, about 10 feet thick, thar enclosed the
perimeter of the entire settlement. o

The women | spoke with were much less interested in ¢ither patrilineage
or military history; their responses concerning architectural scaling were primarily
about the contrast between the raw exterior walls and the stunning waterproof
finish they created for courtyards and interior rooms. This began by smoothing
wet walls flat with special stones, applying a resin created from a plant extracr,
and then adding beautifully austere decorative lines.

The most important of these decorative drawings is the guti, a rayal insignia
(fig. 2.1g). The central motif of the guti shows a rectangle inside a rectangle inside
a rectangle; it is a kind of abstract model that the Kotoko themselves have cre-
ated. The teason for choosing scaling rectangles as a symbol of royalty becomes
clear when we look at the passage that one must take to visit the Miarre {hig. 2.1h).
The passalge as a whole is a rectangular spiral. Each time you enter a smaller scale,
you are required to behave more politely. By the time you arrive at the throne
you are shoeless and speak with a very cultured formality.” Thus the fractal
scaling of the architecture is not simply the result of unconscious social dynam-
ics; it is a subject of abstract representation, and even a practical technique applied
to social ranking.

To the west near the Nigerian border the landscape of Camercon becomes
much greener; this is the fertile high grasslands region of the Bamileke. They too
have a fractal settlement architecture based on rectangles (Ag. 2.22), but it has
no cultural relation to that of the Kotokeo. Rather than the thick clay of Logone-
Birni, these houses and the attached enclosures are built from bamboo, which.,
is very strong and widely available. And there was no mention of kinship,
defense, ot politics when I asked about the architecture; here [ was told it is pat-
terns of agricultural production that underlie the scaling. The grassland soil and
climate are excellent for farming, and the gardens near the Bamileke houses typ-
ically grow a dozen different plants all in a single space, with each-taking its char-
acteristic vertical place. But this is labor intensive, and so more dispersed
plantings-—rows of corn and ground-nut—are used in the wider spaces farther
from the house. Since the same bamboo mesh construction is used for houses,
house enclosures, and enclosures of enclosures, the result is a self-similar archi-
tecture. Unlike the defensive labyrinth of Kotoko architecture, where there
were only a [ew well-protected entryways, the farming activities require a lot of
movement between enclosures, so at all scales we see good-sized openings. The
fractal simulation in figures 2.2b,c shows how this scaling structure can be mod-

cled using an open square as the sced shape.



wife’s room,

L

FIGURE 2.2
Bamileke settlement
(a) Plan of Bamileke settiement from about 1g60. {b} Fractal simulation of Bamileke architecture.
In the first iteration (“seed shape"), the two active lines are shown in gray. (c) Enlarged view of

fourth iteration.
(a, Beguin 1g52; reprinted with permission from orsToM).
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Circular fractals in settlement architecture

Much of southern Africa is made up of arid plains where herds of cattie.and other
livestack are raised. Ring-shaped livestock p;:ns, one for each extended family,?
can be seen in the aerial photoe in figure 2.3a, a Ba-ila settlement in southern Zam-
bia. A diagram of another Ba-ila settlement (fig. 2.3d) makes these livestock enclo-
sures (“kraals”) more clear. Toward the back of each pen we find the family living
quarters, and roward the front is the gated entrance for letting livestock in and
out. For this reason the front entrance is associated with low status (unclean, ani-
mals), and the back end with high status {clean, people).* This gradient of sta-
tus is reflected by the size gradient in the architecture: the front is only fencing,
as we go toward the back smaller buildings (for storage) appear, and toward the
very back end are the targer houses. The two geometric elements of this strue-
ture-—a ring shape overall, and a status gradient increasing with size from front
to back—echoes throughout every scale of the Ba-ila settlement.”

The settlement as a whole has the same shape: it is a ring of rings. The set-
tlement, like the livestock pen, has a front/back social distinction: the entrance
is low status, and the back end is high status. At the settlement entrance there
are no family enclosures at all for the first 20 yards or 50, but the farther hack we
go, the larger the family enclosures become.

At the hack end of the interior of the settlement, we see a smaller detached
ring of houses, like a settlement within the settlement. This is the chief’s
extended family. At the back of the interior of the chiel’s extended family ring,
the chief has his own house. And if we were to view a single house from above,

we would see that it is a ring with a special place at the hack of the interior: the

_hpusehold altar.

Since we have a similar structure at all scales, this architecture is easy to
model with fractals. Figure 2.3b shows the first three iterations. We begin with

" a seed shape that could be.the ovethead view of a single house. This is created

by active lines that make up the ring-shaped walls, as well as an acrive line of
the position of the altar at the back of the interior. The only passive lines are
those adjacent to the entrance. In the next iteration, we have a shape that coukld
be the overhead view of a family enclosure. At the entrance to the family enclo-
sure we have only fencing, but as we go toward the back we have buildings of
increasing size. Since the seed shape used only passive lines near the entrance
and increasingly larger lines toward the back, this iteration of our simulation has
the same size gradient that the real family enclosure shows. Finally, the third iter-
ation provides a structure that could be the overhead view of the whole setrle-

ment. At the entrance to the settlement we have only fencing, but as we go toward



FIGURE 2.3 .
: Ba-ila _
(a) Aerial photo of Ba-ila sertlement before 1944. {b) Fractal generation of Ba-ila simulation.
Note that the seed shape has only active lines (gray) except for those near the opening (black).

{a, American Geographic Institute.)
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the back we have enclosures of increasing size. Again, by having the seed shape
use only passive lines near the entrance and increasingly larger lines toward the
back, this iteration of our simulation has the same size gradient‘that the'Teal settle-
ment shows. "

f never visited the Ba-ila myself; most of my information comes from the
classic ethnography by Edwin Smith and Andrew Dale, published in 1920.
While their colonial and missionary motivations do not inspire much trust,
they-often showed a strong commitment toward understanding the Ba-ila point

of view for social structure. Theit analysis of Ba-ila settlement architecture

points out fractal attributes. They too noted the scaling of house size, from

those less than 12 feet wide near the entrance, to houses more than 4o feet wide
at the back, and explained it as 2 social status gradient; “there being a world of
difference between the small hovel of a careless nobody and the spacious dwelling
of a chief” (Smith and Dale 1968, 1 13,). '

It is in Smith's discussion of religious beliefs, however, that the most strik-
ing feature of the Ba-ila’s fractal architecture is illuminated. Unlike most mis-
siorraries of his time, Smith was a strong proponent of respect for local religions.
He was rio relativist—understanding and respect yve[e: strategies for conver-
ston—but his delighf in the indigenous spiritual strength comes across clearly in
his writings and provided him with insight into the subtle relation of the sacial,

sacred, and physical structure of the Ba-ila architectural plan.

In this village there are about 350 huts, built mostly on the edge of a circle four
hundred yards in diameter. Inside this circle there is a subsidiary one occupied
by the chief, his family, and cattle. It is a village in itself, and the form of it in
the plan is the form of the greater number of Ba-ila villages, which do not attain
to the dimensions of Shaloba's capital. The open space in the center of the vil-
fage is also broken by a second subsidiary village, in which reside impartant mem-
bers of the chief’s family, and alse by three or four miniature huts surrounded
by a fence: these are the manda a mizhimo (“the manes” huts™) where offerings
are made to the ancestral spirits. Thus early do we see traces of the all-pervading
religious consciousness of the Ba-tla, {Smith and Dale 1968, 113)

In the first iteration of the computer-generated model there is a detached
active line inside the ring, at the end opposite the entrance. This was motivated
by the ring comprising the chief’s family, but it also describes the Jocation of the
sacred altar within each house. As a logician would put i, the chief's family ring
is to the whole settlement as the altar is to the house. [t is not a status gradient,
as we saw with the front-back axis, but rather a recurring functional role between
different scales: “The word applied to the chief’s relation to his people is kulela:

in the extracts given above we translate it ‘to rule,’ hut it has this only as a sec-
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ondary meaning. Kulela is primarily to nurse, to cherish; it is the word applied
to a woman caring for her child. The chief is the father of the community; they
are his children, and what he does is lela them” (Smith and Dale 1968, 307).

This relationship is echoed throughout*family and spiritual ties at all

* scales; and is structurally mapped through the self-similar architecture. The

nesting of circular shapes—ancestral miniatures to chief’s house ring to chief’s
extended family ring to the pgreat ourer ring-—was not a status gradient, as we saw
for the enclosure variation from front to back, but successive iterations of lela.

A very different circular fracral archirecture can be seen in the famous stone

buildings in the Mandara Mountains of Cameroon. The various ethnic groups

of this area have their own separate names, but collecrively are often referred to
as Kirdi, the Fulani word for “pagan,” because of their strong resistance against
conversion to Islam. Their buildings are created from the stone rubble that
commonly covers the Mandara mountain terrain. Much of the stone has natural
fracture lines that tend to split into thick flat sheets, so these ready-made
bricks—along with defensive needs—helped to inspire the construction of their
huge casclelike complexes. But rather than being the Euclidean shapes of Euro-
pean castles, this African architecture is fractal.

Figure 2.4a shows the building complex of the chief of Mokoulek, one of

the Mofou settlements. An architectural diagram of Mokoulek, drawn by French.

researchers from the orsTOM science institute, shows its overall structure (fig. 2.4b).
It is primarily composed of three stone enclosures (the large circles}, each of which
surrounds rightly spiraled granaries (small circles). The seed shape for the sim-
ulation requires a circle, made of passive lines, and two different sers of active
lines (Ag. 2.4¢). Inside the circle is a scaling sequence of small active lines; these
will become the granaries. Outside the-circle there is a large active line; this will
replicate the enclosure fied with granarics. By the fourth iteration we have cre-
ated three enclosures filled with spiral clusters of granaries, plus one unfilled. The
real diagram of Mokoulek shaws several unfilled circles—evidence that not
everything in the architectural structure can be accounted for by fractals. Nev-
ertheless, an important feature is suggested by the simulation.

In the first iteration we see that the large external active line is to the left
of the circle. But since it is at an angle, the nextiteration finds this active line
above and to the right. If we follow the iterations, we can sge thar the dynamic
construction of the complex has a spiral pattern; the replications whorl about a
central location. This spiral dynamic can be missed with just a static view—I cer-
tainly didn’t see it before [ tried the simulation—but our participatidn.in the vir-
wwal construction makes the spiral quite evident.? The simitarity between the small

spirals of granaries inside the enclosures and this large-scale spiral shape of the
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FIGURE 2.4
Molcoulek

(a} Mokoulek, Cameroon. The small buildings inside the stone wall are granaries. The rectangular
building (top right) holds the sacred alear. (b} Architectural diagram of Mokoulek. (c) Fiest three
iterations of the Mokoulek simulation. The seed shape is composed of a circle drawn with passive
lines (black} and with gray active lines both inside and outside the circle. {d} Fourth iteration of
the Mokoulek simulation.

{a and b, by permission from Seignobos 1982.)
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complex as a whole indicates that the fractal appearance of the architecture is
not merely due to a random accumulation of various-sized circular forms. The
idea of circles of increasing size, spiraling from a central point, has been applied
at two different scales, and this structural cohérence is confirmed by the archi-
tects’ own concepts. "

In our simulation the active line became located toward the center of the
spiral. The Mofou also think of their architecrure as spiraling from this central
tocation, which holds their sacred altar. The altar is a kind of conceptual “active
line” in their schema; it is responsible for the iterations of life. Seignobos {1982)
notes that this area of the complex is the site of both religious and political author-

ity; it is the location for rituals that generate cycles of agricultural fertility and

ancestral succession. This geometric mapping between the scaling circles of the |

architecture and the spiritual cycles of life is represented in their divination

(“forrunetelling”) ritual, in which the priest creates concentric circles of stones

and places himself at the center. As in the guti painring in Logone-Birni, in which
the Kotoko had modeled their scaling rectangles, the Mofou have also created
their own scaling simulation. '

By the time | arrived at Mokoulek in 1994 the chief had died, and the own-
ership of this complex had been passed on to his widows. The new chief told me
that the design of this architecture, including that of his new complex, began with
a precise knowledge of the agricultural yield. This volume measure was then con-
verted to a number of granaries, and these were arranged in spirals. The design
is thus not simply a matter of adding on granaries as they are needed; in fact, it
has a much more quantitative basis than my computer model, which I simply did
by eyeball.

Nort all circular architectures.in Africa have the kind of cen[ralized

location that we saw in Mokoulek. The Songhai village of Lahbezanga in Mali .

{fig. 2.52), for example, shows circular swirls of circular houses without any
single focus. But comparing this to the fractal image of figure 2.5b, we see that
a lack of central focus does not mean a lack of self-similaricy. It is imporrant to
remember that while “symmerry” in Euclidean geometry means similarity within
one scale (e.g., similarity between opposite sides in bilateral symmetry), fractal
geometry is based on symmecry between different scales. Even these decentral-
ized swirls of circular buildings show a scaling symmetry.

Paul Stoller, an accomplished ethnographer of the Songhai, tells me that
the rectangular buildings that can be seen in fipure 2.5a are chue vo Islamic influ-
ence, and that the original structure would have been completely circular.
Thanks to Peter Broadwell, a computer programmer from Silicon Graphics Inc.,

~"we were able to run a quantitative test of the photo that confirmed what our eyes
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FIGURE 2.5
Labbezanga ‘
{a) Aerial view of the village of Labbezanga in Mali. (b} Fractal graphic.
{a, photo by Genorg Gerster; b, by permission of Benoit Mandelbrot.)

were telling us: the Songhai architecture can be characterized by a fizcial dinen-
sion similat to that of the computer-generated fractal of figure 2.5b.%

This kind of dense circular arrangement of circles, while occurring in all
sorts of variations, is common throughout inland west Africa. Bourdier and
Trinh (:985), for example, describe a similar cireular architecture in Burkina Faso.
The scaling of individual buildings is beautifully diagrammed in their cover
illusteation (fig. 2.6a), a portion of one of the large building complexes created
by the Nankani society. As for the Songhai, foreign cultural influences have now
inttoduced rectangular buildings as well. In the Mankani complex the outermost
enclosure (the perimeter of the complex) is socially coded as male. As we move
in, the successive enclosures become mare female associated, down to the cir-
cular woman's dégo (fig. 2.6b), the circular fireplace, and finally the scaling
stacks of pots (fig. 2.6¢).

Using a technique quite close to that of the Katoke women, the women

of Nankani also waterproof and decorate these walls. The recutrent image of a



Fractals in African seclement architecture 33

triangle in these decorations (see walls of dégo) represents the zalanga, a nested
stack of calabashes (circular bowls carved from gourds} that each woman keeps
in her kitchen (fig. 2.6d). Since these calabashes are stacked from large to small,
_they (and the rope that holds them) form a"Triangle—thus the triangular
decorations also represent scaling cnch_s just in a more abstract way. The small-
est container in a woman’s zalanga is the kumpio, which is a shrine for her soul.

When she dies, the zalanga, along with her pots, is smashed, and her soul is released

to eternity. The eternity concept, associated with well-being, is symbolically

FICURE 2.6

Nankani home
{a) Drawing of a Nankani home. (b) The woman’s main room (dégo)
inside the Nankani home. (¢) A scaling stack of pots in the Areplace.
(d) The zalanga.
(a, Bourdier and Trinh 198s; courtesy of the anthors; b—d, photos from
Bowrdier and Trinh 1085, by permission of the authors.) d
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represented by the coils of a serpent of infinite length, sculpted into the walls
of these homes.

From the 2o0-meter diameter of the buildirig complex to the o.2 feter
kumpio—and not simply at one or two levels in between, but with dozens of self-
similar scalings—the Nankani fractal spans three orders of magnitude, which is
comparable to the resolution of most computer screens. Moreover, these scaling
circles are far from unconscious accident: as in several other architectures we have
examined, they have made conscious use of the scaling in their social symbol-
ism. In this case, the most prominent symbolism is that of birthing. When a child

is born, for example, it must remain in the innermost enclosure of the women'’s

- dégo until it can crawl out by itself. Each successive entrance 1s—spat1ally as well

as socially—a rite of passage, starting with the biological entrance of the child
from the womb. It leaves each of these nested chambers as the next iteration in
life's stages is born. The zalanga models the entire structure in miniature, and its
destruction in the event of death maps the journey in reverse: from the circles
of the largest calabash to the tiny kumpio holding the.soul—from mature adult

to the eternal realm of ancestors who dwell in “the earth’s womb.” There is a

. conscious scheme to the scaling circles of the Nankani: it is a recursion which

bottoms-out at infinity.

Branching fractals

While African circular buildings are typically arranged in circular clusters, the
paths that lead through these settlements are typically not circular. Like the
bronchial passages that oxygenate the round alveoli of the lungs, the routes that
nourish circular settlements often take a branching form (e.g., figure 2.7}. But
despite my unavoidably organicist metaphor, these cannot be simply reduced to
unconscious traces of minimum effort. For one thing, conscious design criteria
are evident in communities in which there is an architectural transition from cir-
cular to rectangular buildings, since they can choose to either maintain or erase
the branching forms. .

Discussion concerning such decisions are apparent in the settlement of Banyo,
Cameroon, where the transition has a long history (Hurault 1975). 1 found that
few circular buildings were left, but those that were still intact served as an
embodiment of cultural memory. This role was honored in the case of the chief’s
complex and exploited in the case of a blacksmith’s shop, which was the site of
occasional tourist visits. After passing approval by the government officials
and the sultan, 1 was greeted by the official city surveyor, who—considering

the fact that his raison d'&tee was Euclideanizing the streets—showed surprising
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FIGURE 2.7

Branching paths in a Senegalese settlement
{a) Aerial photo of a traditional settlement in northeast Senegal. The space between enclosure
walls, serving as roads and footpaths, creates a branching pattern. (b) A branching fractal can be
created by the background of a scaling set of circular shapes. '
(a, courtesy Institut Geographigue du Senegal.)

appreciation for my project and helped me locate the most fractal area of the
city (fig. 2.8a). At the upper left of the photo we see a portion of the Euclidean
grid that covers the rest of the city, but most of this area is still fractal. The loca-
tion of this carefully maintained branching—fanning out from a large plaza
that is bordered by the palace of the sultan and the grand mosque—is no
coincidence. By marking my position on the aerial photo as | traveled through
{fg. 2.8b), I was later able to create a map by digitally altering the photo image
{fig. 2.8¢). This provides a stark outline—looking much like the veins in a
leaf—of the fractal structure of this transportation network. | may have plunged
through a wall or two in creating this map, but it certainly underestimates the
fine branching of the footpaths, as I did not attempt to include their extensions
into private housing enclosures.

How does the creation of these scaling branches interact with the kinds of
iterative construction and social meaning we have seen associated with other

examples of fractal architecture? A good illustration can be found in the
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Position 2—road

Position 1—outside palace

FIGURE 2.8

Branching paths in Banyo
(a) Aerial photo of the city of Banyo,
Camergon. {b) Successive views of the
branching paths, as marked on the photo above.
The clay walls require their own roof, which
comes in both thatched and metal versions
along the walkway in the last photo. {c) Aerial
photo of Banyo with only public paths showing.
(a, cotrtesy National Instituee of Careography,
Camerpon.)




FIGURE 2.9

Strects of Cairo
{a) Map of streets of Cairo, 1808. (b) Fractal simulation for Cairo streets. () Enlarged view
of fourth iteration.
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branching streets of North African cities. Figure 2.9a shows a map of Cairo, Egypt,

in 1898. The map was created by an insurance company, and | have colored the

streets black to make the scaling branches more apparent. Figure 2.9b shows its’
computer simulation. Detaval (1974} has described the morphogenesis of Saha-

ran cities in terms of successive additions similar to the line replacement in the

fractal algorithms we have used here. The first “seed shape” consists of a mosque

connected by a wide avenue to the marketplace, and successive iterations of con-

struction add successive contractions of this form. _

Since these fractal Saharan settlement architectures predate Islam (see
Devisse 1983}, it would be misleading to see them as an entirely Muslim inven-
tion; but given the previous observations about the introduction of Islamic
architecture as an interruption of circular fractals in sub-Saharan Africa, it is impor-
tant to note that Islamic cultural influences have made strong contributions to
African fractals as well. Heaver (1987) describes the “arabesque” artistic form in
North African architecture and design in terms that recall several fractal con-
cepts {e.g., “cyclical rhythms” producing an “indefinitely expandéble" struc-
ture). He discussed these patterns as visual analogues to certain Islamic social

concepts, and we will examine his ideas in greater detail in chapter 12 of this book.

Conclusion

e

Throughout this chapter, we have seen that a wide variety of African settlement
architectures can be characterized as fractals. Their physical construction makes
use of scaling and iteration, and their self-similarity is clearly evident from com-
parison to fractalgraphic simulations. Chapter 3 will show that fractal architecture
is not simply a typical characteristic of non-Western settlements. This alone does
not allow us to conclude an indigenous African knowledge of fractal geometry;
in fact, I will argue in chapter 4 that certain fractal patterns in African decora-
tive arts are merely the result of an intuitive esthetic: But as we have already seen,
the fractals in African architecture are much more than that. Their design is linked
to conscious knowledge systems that suggest some of the basic concepts of frac-
tal geometry; and in later chapters we will find more explicit expressions of this’

indigenous mathematics in astonishing variety and form.



CHAPTER

Fractals

1n-

——cross-cultural

———comparison

stan grids of Euro-American settlements. Why the difference? One explanation
could be-the difference in social structure. Euro-American cultures are organized
by what anthropologists would call a “state sociewy.” This includes not just the

modern nation-state, but refers more generally to any society with a large

many state societies, as well as an enormous number of smaller, decentralized
social groups, with lirtle political hierarchy—that is, societies that are organized
“bottom-up” rather than “top-down.”! But if fractal architeccure is simply the
automatic result of a nonstate social organization, then we should see fractal sertle-
ment patterns in the indigenous societies of many parts of the world. In this chap-
ter.we will examine the sertlement patterns found in the indigenous societies
of the Americas and the South Pacific, but our search will turn up very few frac-

tals. Rather than dividing the world between a Euclidean West and fractal

themes in organizing its built environment. African architecture tends to be frac-
tal because thar is a prominent design theme in African culture. In fact, this cul-

tural specificity of design themes is true not only for architecture, but for many

—— The fractal sertlement patrerns of Africa stand in sharp contrast to the Carte-.

~ political hierarchy, labor specialization, and cohesive, formal controls—wharis -

. sometimes called “top-down” organization. Precolonial African cdltures included .

non-West, we will find that each society makes use of its particular design -

39



40 Introduction

other types of material design and cultural practices as well. We will begin our
survey with a brief look at the design themes in Native American societies, which
included both hierarchical state empires as well as smaller, decentralized tribal

b

cultures.

Native American design

The Ancestral Pueblo society dwelled in what is now the southwestern United
States atound 1100 ¢.k. Aerial photos of these sites (fig. 3. 1) are some of the most
famous examples of Mative American settlements. But as we can see from this
vantage point, the architecture is primarily characterized by an enormaus circular
form created from smaller rectangular components—-certainly not the same shape:
at two different scales. This juxtaposition of the circle and the quadrilateral (rec-
tangle or cross-shaped) form is not a coincidence; the two forms are the most impor-
tant design themes in the material culture of many Native American societies,
including both North and South continents.

As far as architecture is concerned, there are no examples of the nonlinear
scaling we saw in Africa. The only Native American architectures that come

close are a few instances of linear concentric figures (fig. 3.2a). Shapes approx-

imating concentric circles can be seen in the Poverty Point complex in nosth-

FIGURE 3.1

Euclidean geometry in Native American architecture
{a) Aerial photo of Bandelier, one of the Ancestral Puebla settlements (starting around 1100 ©.E.)
in nothtwestern New Mexica. {h) Aerial photo of Pueblo Bonito, anather Ancestral Pueblo

settlement (starting around g50 ¢.6.}. Note that they are mostly rectangular ar the smallest scale
and circular ar the largest scale.

{2, phowo by Tom Baker; b, photo by Georg Gerster.)
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ern Louisiana, for example, and there were concentric circles of tepees in the
Cheyenne camps. The step-pyramids of Mesoamerica fook like concentric
squares when viewed from above. But linear concentric figures are not fracrals.
First, these are linear layers: the distantl:,g between lines is always the same, and

thus the number of concentric circles within the largest circle is finite. The non-

linear scaling of fractals requires an ever-changing distance between lines,

FIGURE 3.2

Linear concentric forms in Native Amevican architecture
(a) Native American architecture is rypically based on quadrilateral grids or a combination of
circular and grid forms. The only examples of scaling shapes are these linear concentric forms., In
the Poverty Point complex, for example, concentric circles were used, and concentric squares can be
seen if we ook at the Mexican step pyramids from above. These forms are better characierized as
Euclidean than fractal for two reasons: (b) First, they are linear. Here is an example of a nonlinear
concentric circle. While the linear version must have a finite number of circles, this iigure could
have an‘jnfinite number and still fit in the same boundary. {c) Second, they only scale with respect
1o one point (the center). Here is an example of circles with more global scaling symmetry.




42

Intraduction

which means there can be an infinite number in a finite space (fig. 3.2b). Sec-
ond, even nonlinear concentric circles are only setf-similar with respect to a
single locus {the center point}, rather than having the global self-similarity of
fractals (fig. 3.2c). . ‘

The importance of the circle is detailed in a famous passage by Black Btk
{1961), in which he explains that “everything an Indian does is in 2 citcle, and
that is because the Powet of the World always works in circles, and everything
tries to be round.” But he goes on to note that his people thought of their world
as “the circle of the four quarters.” A similar cornbination of the circle and quadri-
lateral form can be seen many Native American myths and artifacts; it is not their
only design theme, but it can be found in a surprising number of different soci-
eties. Burland (1965), for example, shows a ceremonial rattle consisting of a wooden
hoop with a cross inside from southern Alaska, a Navajo sand painting showing
four equidistant statks of corn growing from a circular lake, and a Pawnee buffalo-
hide drum with {our arrows emanating from its circular center. Nabokov and
Easton (1980) describe the cultural symbolism of the tepee in terms of its com-
bination of circulaz hide exterior and the four main struts of the interior wood
supports. Waters (1063) provides an extensive illustration of the cultural sig-
nificance of combining the circular and cross form in his commentary on the Hapi
creation myth. |

The foutfold symmetry of the quadrilateral form has lead to some sophis-
ticated conceptual structures in Native American knowledge systems. In Navajo
sand painting, {or example, the cruciform shape represents the “four directions”
concept, similar to the Cartesian coordinate system. While orderly and consis-
tent, it is by no means simple (see Witherspoon and Peterson 1g95). The four
iNavaj§ directions are also associated with corresponding sun positions (dawn,
day, evening, night), yearly seasons {spring, summer, fall, winter), principal
colors {white, blue, yellow, black), and other quadrilateral divisions (botanical
categories, partitions of the life cycle, erc.). These are further broken into inter-
secting bipolarities (e.g., the eastfwest sun path is broken by the northfsouth direc-
tions). Combined with circular curves (usually representing organic shapes and
processes}, the resuliing schema are rich cultural resources for indigenous mathe-
matics (see Moore 1994). But, except for minor repetitions (like the small circular
kivas in the Chaco canyon site of fig. 3.1) there is nothing particularly fractal
about these quadrilateral designs.

Many Mesoamerican cities, such as the Mayans’ Teorihuacan, the Aztec’s
Tenochtitldn, and the Toltec’s Tula, embedded a wealth of astronomical knowl-
edge in their rectangular layouts, aligning their streets and buildings with heav-

enly objects and events (Aveni 1980}. J. Thompson (1g970) and Klein {1982)
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describe the quadrilateral figure as an underlying theme in Mesocamerican geo-
metric thinking, from small-scale material construction techniques such as
weaving, to the heavenly cosmology of the four serpents. Rogelio Diaz, of the
Mathemarics Museum at the University-ef Querétaro, points out that the skin
patterns of the diamondback rattlesnake were used by the Mayans to symbolize
this concept (Aig. 3.32).

Comparing the Mayan snake pattern with an African weaving based on the
cobra skin pattern {fig. 3.3b}, we can see how geometric modeling of similar nat-
ural phenomena in these two cultures results in very different representations.
The Native American example emphasizes the Euclidean symmetry within one
size frame (“size frame” because the term “scale” is confusing in the context of
snake skin). This Mayan pattern is composed of four shapes of the same size, a
fourfold symmetry. But the African exarmple emphasizes fractal symmetry, which
is not abour similarity berween right/left or up/down, but rather similarity
between different size frames. The African snake pattern shows diamonds within
diamonds within diamonds. Neither design is necessarily more accurate: cobra
skin does indeed exhibir a fractal pattern—the snake's "hood,” its twin white
patches, and the individual scales themselves are all diamond shaped—and yet
snake skin patterns {thanks to the arrangement of the scales) are also charac-
teristically in diagonal rows, so they are accurately modeled as Euclidean struc-
tures as well. Each culture chooses to emphasize the characteristics thar best fic
its design theme. o . .

There are a few cases in which Native Americans have used scaling geo-
metries in artistic designs. Several of these were not, however, part of the tra-
ditional repertoire.? Navajo blankets, for example, were originally quite linear;
-it was-only oo examining Persian-rugathat Navajo weavers began to use more
scaling styles of design {and even then the designs were much more Euclidean
than the Persian originals; see Kent 1085). The Pueblo “storyteller” figures have
some scaling properties, but they are of recent (1960s) origin. Pottery and cala-
bash (carved gourd) artisans in Africa often create scaling by allowing the
design adaptively to change proportion according to the three-dimensional form
on which it is inscribed (see “adaptive scaling” in chapter 6), but this was quite

rare in Narive American pottery until the rg6os.

Finally, there are three Native American designs that are both indigenous -

and fractal. The best case is the abstract figurative art of the Haida, Kwakiudl,
Tlingut, and others in the Pacific Northwest (Halm 1965). The figures, primarily
carvings, have the kind of global, nonlinear self-similarity necessary to qualify
as fractals and clearly exhibit recursive scaling of up to three or four iterations,

They also make use of adaptive scaling, as iliustrated by the shrinking series of

y
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FIGURE 3.3
Snakeskin models in Native American and African cultures
{(a) Rogelio Diaz of the Mathematics Museum at the University of Querétaro shows how the skin
parterns of the diamondback rattlesnake were used by the Mayans 1o symbalize a cosmology based
on quadrifateral structure. {b) The Mandiack weavers of Guinea-Bissau have also created an
abstract design based on a snakeskin pattern, but chose to emphasize the fractal characreristics.
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figures on the diminishing handles of soup ladles. Researchers since Adams
(1936) have pointed to the similarity with early Chinese art, which also has some
beautiful examples of scaling form, and its style of curvature and bilateral sym-

metry could indeed be culturally tiedsto these New World designs through an

ancient common origin. However, | doubt that is the case for the scaling char- .

acteristics. The Pacific Northwest art appears to have developed its scaling
structure as the result of competition between artisans for increasingly elaborate
carvings (Faris 1083). Although some researchers have attributed the competi-
tion pressure to European trading influences, the development of the scaling designs
was clearly an internal invention.

The other two traditional Native American designs do not qualify as frac-

tals quite as well. One involves the saw-tooth pattern found in several basket

and weaving designs. When two saw-tooth rows intersect at an angle, they cre- -

ate a triangle made from triangular edges. But these typically have only two iter-
ations of scale, and there is no indication in the ethnographic literature that
they are semantically tied o ideas of recursion or scaling {see Thomas and Slock-
ish 1082, 18). The other is an arrangement of spiral arms often found on
coiled baskets. Again, this is self-similar only with respect to the center poirit,
but there are some nonlinear scaling versions (that is, designs that rapidly get
smaller as you move from basker edge to center). However, these designs
generatly appear to be a fusion berween the circular form of the basker and the
cruciform shape of the arms: again more a combination of two Euclidean
shapes than a fracral.

One of the most common examples of this fusion berween the circle and

the cross is the “bifold rotation” pattern in which the arms curve in opposite

directions, as shown in figure 3.4a. Fipure 3.4k shows the figure of 2 bat from

Mimbres pottery with a more complex version of the bifold rotation. Euclidean

symmetry has been emphasized in this figure; for example, the ears and mouth
of the bat have been made to look similar to increase the bilateral symmeftry, and
the belly is drawn as a rectangle. Figure 3.‘4c shows the figure of a bat from an
African design; it is a zigzag shape that expands in widch from top to botrom, rep-
resenting the wing of the bat. Here we see neglect of the bilateral symmetry of
the bat, and an emphasis on the scaling folds of a single wing. Again, the Native
American repr.esentation makes use of its quadrilateral/circular design theme, just
as the African representation of the bat emphasizes scaling desipn.

There is plenty of complexity and sophistication in the indigenous geom-
ctry and numeric systems of the Americas (see Ascher 1991, 87-94; Closs 1986;
Eglash 1998b}, but with the impressive exception of the Pacific Northwest cary-

ings, fractals are almost entirely absent in Native American designs.
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Pima basket Southwestern pottery matif

(@} The circular and quadrilateral forms were often combined in Native American designs as a
fourfold or bifold rotation.

{b) This image of a bat, from a Mimbres pottery in Southwestarn
Native American tradition, shows an emphasis on circular and
quadrilateral form. The ear and the mouth, for example, ate made
to look similar to emphasize bilateral symmetry, and the belly is
drawn as a rectangle. It also shows the wing bones as a bifold
totation pattern.

(c) This African sculpture of a bat, from the Lega society of Zaire, pays
little attention to the bilateral symmetry of the bat’s body but gives an
etnphasis on the scaling symmetry of the wing folds, shown as an
expanding zigzag pattern.

FIGURE 3.4
The bifold rotation in Native American design
(a: Left, from Miles 1663, Center, from Southwest Indian Craft Arts by Clara Lee Tanner. Copyright
1968 by the Arizona Board of Regents. Reprinted by permission of the University of Arizana Press.
Right, courtesy Don Crowe. b, from Zaslow 1977, courtesy of the author. ¢, courtesy of Danicl Biebuyck.)
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Designs of Asia and the South Pacific

Several of the South Pacific cultures share a tradition of decorative curved and
spiral forms, which in certain Maori versions—particularly their rafter and tat-
too patterns—would certainly count as"fractal {see Hamilton 1977). These are
strongly suggestive of the curvature of waves and swirling water. Classic Japan-
ese paintings of water waves were also presented as fractal patterns in Mandel-
brot's (1982} serainal text (plate Cr6). These may have some historic relation
to scaling patterns in Chinese art (see Washburn and Crowe 1988, fig. 6.9), which

are based on swirling forms of water and clouds, abstracted as spiral scaling ™

structures. While both the Japanese and Chinese patterns are explicitly associ-
ated with an effort to imitate nature, these Maori designs are reported o be more
about culture—in particular, they emphasize mirror-image symmetries, which are
associated with their cultural themes of complimentarity in social relations
{Hansor 1583). -

In almost all other indigenous examples, however, the Pacific Islander pat-
terns are quite Euclidean. Settlement layout, for instance, is typically in one
or two rows of rectangular buildings near the coasts, with circular arrangements
of rectangles also occurring inland (see Fraser 1968). The building construc-
tion is generally based on a combination of recrangular grids with twriangular
or curved arch roofs. Occasionally these triangular faces are decorated with tri-

angles, but otherwise nonscaling designs dominate both structural and deco-

rative patterns.3 _ '
Again, it is important to note that this lack of fractals does not imply a lack
of sophistication in their mathemarical thinking. For example, Ascher {1991}

has analyzed some of the algorithmic properties of Warlpiri (Pacific Islander) sand

drawings. Similar structures are also found i Africa; where they are called-

husona. But while che lusona tend to use similar patterns at different scales (as

we will see in chapter 5), the Warlpiri drawings tend to use different patterns at
different scales. Ascher concludes that the Warlpiri method of combining dif-
ferent graph movements is analogous to a]gébraic combinations, but the African
{usona are best described as fractals.

Complicating my characterization of the South Pacific as dominated by
Euclidean parterns is the extensive influence of India. It is perhaps no coinci-
dence that the triangle of triangles mentioned above is most common in Indone-
sia. In architecture, a famous exception to the generally Euclidean form is that
of Borobudur, a temple of Indian religious origin in Java. Although northemn India
rends toward Euclidean architecture, explicit recursive design is seen in several

tereples in southern India—the Kandarya Mahadeo in Khajuraho is one of the
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clearest examples—and is related to recursive concepté in religious cosmology.
These same areas in southern India also have a version of the lusona drawings,
and many other examples of fractal design. Interestingly, these examples from south-
ern India are the products of Dravidian culture, which is suspected to have sig-
nificant historical roots in Africa.

European designs

Most traditional European fractal designs, like those of Japan and China, are due

to imitation of nature—a topic we will take up in the following chapter. There
are at feast two stellar exceptions, however, that are worth noting. One is the
scaling iterations of triangles in the floor tiles of the Church of Santa Maria in
Costedin Rome (see plate 5.7 in Washburn and Crowe 1¢88). | have not been
able to determine anything about their cultural origins, but they are clearly
attistic invention rather than imitation of some natural form. The other can be
found in certain varieties of Celtic interlace designs. Nordenfalk (1977) suggests
that these are historically related to the spiral designs of pre-Christian Celtic reli-
gion, whete illey trace the flow of a vital life force. They are geometrically -
classified as an Eulerian path, which is closely associated with mathematical knot

theory (cf. Jones 1950, 99).

Conclusion

Fractal structure is by no means universal in the material patterns of indigenous
societies. In Native American designs, only the Pacific Northwest patterns show
a strong fractal characretistic; Euclidean shapes otherwise dominate the art and
architecture. Except for the Maort spiral designs, fractal geometry does not
appear to be an important aspect of indigenous South Pacific patterns either. That
is not to say that fractal designs appear nowhere but Africa—southern India is
full of fractals, and Chinese fluid swirl designs and Celtic knot patterns are
almost certainly of independent origin.? The important point here is that the frac-
tal designs of Africa should not be mistaken for a universal or pancultural phe-
nomenon; they are culturally specific. The next chapter will examine the
question of their mathematical specificity.
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Before we can discuss the fractal shapes in African settlement architectures as
geometric knowledge, we need to think carefully abour the relation between mare-

rial designs and mathematical understanding. Designs are best seen as positioned

on a range or spectrum of intention. At the bottom of the range are uninten-

tional pacrerns, created acci:‘J‘c—z‘r—;tﬁaﬁly as the by-product of some other acrivity.
In the middle of the range are designs that are intentional but purely intuitive,
with no rules or guidelines to explain its creation. At the upper end of the range,
we have the intentional application of explicit rules that we are accustomed to
associating with mathematics. The following sections will examine the fractal

designs that occur in various positions along this intentionality spectrum.

Fractals from unconscious activity

An excellent example of unintentional fractals can be found in the work of Michael

S

Batty and Paul Longley (1980), who examined the shape of large-scale urban sprawl
surrounding European and American cities {fig. 4.1). While the blocks of these

cities are typically laid out in rectangular grids, ac very farge scales—around 100

square miles—we can see that the process of population growth has created an

irregular pattern. This type of fractal, a “diffusion limited aggregation,” also

49



Introduction

FIGURE 4.1
Urban sprawl in London

Large-scale urban sprawl
generally has a fractal

structure. The urban sprawl
fractals only exist at very

large scales—about 100 sq.
miles—and result from che
unconscious accumulation

of urlinn popularion dynamics.
At levels of conscious intent
{e.g., the grid of city blocks),
European cities are typically
Euclidean. Areais 10X 10
kilometers.

{Reprinted with permission from
Batty et al. 1680.}

occurs in chemical systems when particles in a solution are attracted to an elec-
trode. Fracral urban spraw! is clearly the result of uncons¢ious sozial dynamics,
not conscious design. At the smaller scales in which there is conscious planning,

European and American settlement architectures are typically Euclidean.

3

_Fractals from nature: mimesis versus modeling l}ﬁ

Tt might be tempting to think that the contrast between the Euclidean-designs
of Europe and the fractal designs of Africa can be explai

ed by the important role

of the natural envirorunent in African societies. But this assumption turns out

to be wrong; if anything, there is a tendency for indigenous societies to favor Euclid-
ea

hapes. Physicist Kh. S. Mamedov observed such a contrast in his reflections
on his youth in a nomadic culture:

My parents and countrymen . . . up to the second world war had been
nomads. . . . Qutside our nomad tents we were living in a wonderful kingdom
of various curved lines and forms. So why were the aesthetic signs not formed
from them, having instead preserved geometric patterns . . . I [1jn the cities
where the straight-line geometry was predominant the aesthetic sipns were formed

. with nature playing the dominating role. . . . [Tlhe nomad did not need the
“portrait” of an oak to be carried with him elsewhere because he could view all
sorts of oaks every day and every hour . . . while for the townsfolk their inclina-
tien to nature was more a resubt of nostalgia. {(Mamedov 1986, 512-5173)
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Contrary to romantic pertraits of the “noble savage” living as one wirth
nature, most indigenous societies seem quite interested in differentiating them-
selves from their surroundmgs It is the 1nhab1tants of large state sogieties, such
as those of modern Europe who yearn 1o mimic the natural. When European

based on m:mlcry oF natural fOrm are relatwely rare; thetr lnSElratlon tends o

come from the realm of culture

" How should we place such nature-based designs in our intentionality spec-
trum! That (.E?Eds on the difference between mimesis.and modelmw@
is an attempt to mirror the image of a particular object, a goal explicitly stated
by Plato and Aristotle as the essence of.art, one that was subsequently followed
in Furope for many centuries (see Auerbach 1953). A photograph is a good example
of mimesis. A photo might capture the fractal image of a tree, but it would be
foolish ro conclude that the photographer knows fractal geometry. If artisans are
simply trying to copy a particular natural objecr, then the scaling is an unintended
by-product.

The most imporrant attributes that separate mimesis from{ modeling

abstraction and generalization. &bstracnon is an attempt to leave out many of
abstractio reralizatiol )

the concrete details of the sub]ect by creating a simpler figure whose strucrure -

is still roughly analogous to the ongmal——of:en called a styllzed" representation.

in the arcs(Gene(ahzathneans selecting an analogous stmccure thac is com-

mon to all examples of the sub]ect what is often referred to as an underlymg

form or law ! For example, Mandelbrot (1981) points to the European Beaux Arts:
s-ry}e 4s an atrempt not mere!y to imitate nature, bur to “guess its laws.” He notes
that the interior of the Paris opera house makes use of scaling arches-within-arches;,

_aparcern that generalizes some of the scaling characteristics of nature, but is nov
a copy of any one particular natural object. X '

Since the ultimate generalization is.a mathematical model, why didn't
design practices such as the Beaux Arts style result in an early development of
fractal geomertry? For Europeans, such lush ornamentation was presented—and
generally accepted—as embodying the opposite of mathematics; it was aneffort
to create designs that could only be understood in irrational, emotional, or intu-
itive terms. Even some movements against this attempt, such as the use of dis-
tinctly Euclidean forms in the high modern arts style, simply reinforced the
association because it only offered a reversal, sugpesting that “mathematical”
shapes (cubes, spheres, etc.) could be esthetically appreciated. With rare
exceptions {e.g., Thompson 1917}, mimesis of nature in pre-WW Il European
art traditions merely furthered the assumption that Euclidean geometry was the

PR
only true geometry.?
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The difference between mimesis and modeling provides two different posi-
——— A L el

tions along the intentio ality spectrum. The least intentional would be merely

holdmg a mirror to nature—for example, if someone was just shooting a cam-

era or painting a realistic picture outdoors and happened to include a fractal object

(cloud, tree, etc.). This mimesis does not count as mathematical thinking. More

intentional is a stylized representation of nature. If the artist has reduced the nat-

~ural image to a structurally analogous collection of more simple elements, she has

created an abstract model. Whether or not such abstractions move roward more

mathematical models is a matter of local preference.

The two examples of African representations.of natiue we ohserved in
the previous chapter certainly show. that the artisans have gone beyond
mere mimesis. The Mandiack cobra pattern we saw in figure 3.2. shows a strictly

et s et e

systematic scaling pattern. This textile design conveys the scaling property
of the natural cobra skin pattern—diamonds at many scales—in a stylized or
abstract way. We can take this idea a step further by. examining another
Bwami bat sculpture (fig. 4.2}. This spiral pattern is also a stylized repre-
sentation of the natural scaling of the bat’s wing, but it.is a different geometric

design than the expanding zigzag pattern we saw in figure 3.4¢. It is more styl-

FIGURE 4.2

Stylized sculpture of a bat
Another Lega bat sculpture, but unlike the zigzag design
we saw in figure 3.4¢, here the scaling of the wing folds is
represented by a spiral.

(By permission of the Museum of African Are, N.Y.}



Intention and invention in design

ized in the sense of being further abstracted from the original natural bat’s

wing. This provides further evidence that the sculptors were focused on the

scaling properties—the generalized underlying feature—and nor particular con-
crete details. o

e

( The greatest danger of this book is that readers might misinterpret its

meamng in terms of primitivism. The fact that African fractals are rarely the result
e~ ot i

lwmg close to nature.’ But even for those rare cases in which African fracrals
are representarions of nature, it is clearly a self-conscious absteacrion, not a mimetic
reflection. The geometric thinking that goes into these examples may be simple,
but it is quﬁ; intentional.

—_—— R N

The fractal esthetic

Just as we saw how designs based on nature range from unconscious to inten-
tional, artificial designs also vary along a range of intention, with some simply
the result of an intuitive inspiration, and others a more self-conscious applica-

tion of rules or principles. The examples of African fractals in figure 4.3 did not

appear ta be related 1o anything other than the artisan’s esthetic intition or

sense of beauty. As far as I could decermine from descriptions in the literature
and my own fieldwork, there were no explicit rules abeut how to construct these
designs, and no meaning was attached to the particular geometric structure of
the figures other chan looking good. In particular, 1 spent several weeks in
Dakar wandering the streets asking about certain fractal fabric patterns and jew-
etry designs, and the insistence that these patterns were “just for looks” was so
adamant that if someone finally had offered an explanation, 1 would have
viewed it with suspicion.

Since some professional marhemaricians report that their ideas were pure
intuition—a sudden flash of insight, or “Ahal™ as Martin Gardner puts it—we
shouldn’t discount the geometric thinking of an artisan who reports “! can’t rell

you how [ created that, it just came to me.” Esthetic pattemns clearly _qualify as
. e pRTeR e

intentional designs. On the ()ther hand, chere isn’t much we can say about l:he
mathemat1caui@~s behind these patterns; they will have > Lo remain a mystery y unless
@L‘I}E.E‘llzl.g_m.ezrsz..!.ﬁjﬁ\zé?!9@.1 about their me_?.l.n,?_f_‘g_..@z_{..!.b.g,.a.r‘ttsqn s construction tech-
niques. Jt is worth noting, however, that they do contribute to the fractal design
theme in Africa. g‘f_tl‘_,e“c patterns help inspire practlcal designs, and vicg versa.
Since ancient trade networks were well established, the diffusion of esthetic pat-
rerns is probably one part of the explanation for how fractals came 1o be so wide-

spread across the African continent.
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FIGURE 4.3

Esthetic fractals
{a) Meurant (quoted in Reif 1906} reports
that the Mbuti women who created this
fractal design, a bark-cloth painting, told
him the design was not “telling stories,”
nor was it representing any particular
object.” {b) Scaling patterns can he
found in many African decorative designs
that are reported to be “just for beauty.”
Upper left, Shoowa Raffia cloth; lower left,
Senegalese tie dye; right, Senegalese
pendant,
{a, courteyy Georges Meruant.h: Upper left,
British Muscum; lower left, from Musée Rayal
de I'Afrique Central, Belgium; right, photo
courtesy IFAN, Dakar.)
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FIGURE 4.4
The quincunx fractal
A customer in Touba, Senegal, selects a fractal quincunx pattern for his leather neck bag. The

quincunx is historically important because of its use by early African American “man of sciehce”

Benjamin Banneker.

Of course, there are plenty of African designs that are strictly Euclidean,
but even these can occur in “fractalized” versions. One particularly interesting
example is the quincunx (fig. 4.4). The basic quincunx is a pattern of five squares,
with one at the center and one at each corner, The desion is common in Sene-
gal, where it is said to  represent the “light of Allah.” The quincunx is histori-

cally important- because the i image was recorded as bemg of religious significance

to the early African American "ma ofsc1ence Ben;amm Banneker. Since evi-
(1;r;£e shows that Banneker's grandfather (Bannaka) came from Senegal, the
quincunx is a fascinating possibility for geometry in the African diaspora {see
Eglash 1gg7c for details). Because of the fractal estheric, this religious symbol
is often arranged in a recursive pattern-—five squares of five spuares—as shown
in figure 4.4 in the design for a leather neck bag.

Finally, there are also examples of the fracral esthetic in common house-

hold furnisl_m_iﬂgs;. Euro-American furniture is differentiated by form and func-
—tTt;lTw;‘tmonols are structured differently from chairs, which are structured
differently from couches. But in African homes one often sees different sizes
of the same shape (fig. 4.5). A similar difference has been noted in cross-cultural
comparisons of housing. Whereas Euro-Americans would never think to have
a governer’s mansion shaped like a peasant’s shack (or vice versa), precolonial
African architecture typically used the same form at different sizes {(as we saw
for the status distinctions in the Ba-ila sertlement in chapeer 2). e is unfortunate
‘lf[ha[ this African structural characteristic is typically described in terms of a
lack-—as the absence of shape distinctions rather than as the presence of a scal-

'\ing design theme.
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FIGURE 4.5
The fractal esthetic in household objects
African stoals, chairs, and benches are often created in a scaling series.
{Photo courtesy of Africa Place, Inc.}

Conclusion

We now have some guidelines to help determine which fractal desxgns should count
as mathematics, which should not, and which are in‘between. Figure 4.6 sum-

marizes this spectrum. Fractals produced by unconscmus activity, or as the unin-

| e, R o

e
tentional by-product from some other Ppurpose, mnnot be attnbuted to mdlgenous
e e

’oncepts But some artistic activities, such as the creation af s[yhzed repreqel*v

-
Unintentional Intentional Intentional
but implicit and explicit
f 1 1
Unconscious activity Canscigus wse of nanral scaling Construction techniques
* uchan sprawl «stylistic abstraction of natural scaling
Accidental fractals Esthetic design Knowledge systems
*“mirror” portrait of nature sintuitive fractal design theme
{mimesis; e.g., photography)
U

FIGURE 4.6
From uncomczoui cu:c:dcnt to cxpltcxt des‘tgn
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tations of nature or purely esthetic designs, do show intentional-activiry focused
on fractals. Such examples may be restricted in terms of geometric thinking—

the-artisans may only report that the design suddenly came to them in a flash of
Vs . .

intuition--but these are clearly distinguished from those which are unconscious
of accidental, The following chapters will consider examples that are not anly
intentional, bur also include enough explicit information abour design techniques

and knowledge systems to be easily idenrifiable as mathematical practice and ideas.
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CHAPTER

——{(eometric

—algorithms

——The ward (algorithm) derives from the name of an Arab mathematician,
Al-Khwarizmi (c. 78‘6—850 c.k.), whose book Hisab al-jabr w’al-mugabala {Cal-
culation by Restoration and Reduction) also gave us the word “algebra.”
Although Al-Khwarizmi focused on numeric procedures for solving equations,

e modern term \Q‘i;orllhj apphes 1o any formally specified procedure. A peg-

e ar st

metric "dgort[hm glveb exphcu: mstlucttons for generating a particular set of spa-
tial patterns We have already seen how iterations of such pattern-generating

procedures can produce fractals on a computer screen; in this chaprer we will

examine two indigenous algorithms that also use ireration to produce scalmg

designs: the 45-degree:angle constructions of che Mangberu and tbe Jusornza draw-
h'——ov“"—'_ﬂ' .....
ings ngs of the Chokwe

e

Geomeiry in Mangbetu design

The Mangbe[u occupy the Uele River area in the northeastemn par[ of the

- e e e o e b s

iron smeltlng in the aren since 2300 B.C.E,, but the Mangbetu, coming from drier

fands around present- day Ug'mch dld not arrive until about 1000 c.e. Through

both conflict and cooperation, they exchanged cultural traditions with other
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societies of the area: Bantu-speaking peoples such as the Buda, Bua and Lese, and
( Ubangian-speaking peoples such as the Azande, Bangba, and Barambo. Md
18coa number of small chiefdoms were consolidated into the first Mangbetu kmg-
dom Although it lasted only two generations, a"tmd:tlon of courtly prestige con-
tmuccl even in small villages and spread to many of the Mangberu’s trading partners.
This combination of cultural diversity, exchange, and prestige resulted in a
thriving artistic tradition. ‘
A detailed account of Mangbetu history and traditions can be found in?
African Reflections: Art from Northeastern Zaire. Schildkrout and Keim {199a} begin
their analysis by showing rhat the most famous aspect of Mangbety art, the
“gg,m_tg_l,iﬂigwlook,“ was actually quite rare in the traditional Mangbetu society
of the nineteenth century. During a research expedition to the Congo in 1914
(the origin of the photos used he-re), mammalogist
Herbert Lang became fascinated with lifelike carvings
of human figures, and as word spread that he was pay-
ing high prices for them, more of these carvings were
produced. Other collectors came o buy these pieces, and

eventuafly the economic rewards for producmg natu-

ralistic Mangbetu art became so strong that it replaced

other styles.
Schildkrout and Keim show that originally the
most important esthetic was not naturalism, but abstract

geometric design. The indigen

fascination with arti-

fice and abstraction was ignc

d by gclcr:ze:‘s a2nd

cheir preconceptions of Afrlcans as nature- lovmg
“childrén of the E'orest became a self fulﬁlhng expec-

cation. But the artifacts and photographrc records from
th_e#1914 expedition provide us with excellent examples
of traditional Mangbetu patterns, as well as an oppot-
tunity to infer some of their techniques.

Figure 5.1 shows the decorative end of an ivory
hatpin. Like the architecture and esthetic patterns we

have seen, this is clear[y a scaling design, but the pre-

e

cision of the pqttem suggests tfnt thcre may be a more

FIGURE 5.1
Mangebetu ivory sculptire

(Transparency no. 3935, photograph by Lynton Gardiner, courtesy
American Museum of Natural History.)
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formal geometric process at work. Similar design can be seen at work in the Mang-
betu’s geometric style of personal adornment. Figure 5.2a showsa Mangbetm
style” [Slbpular during the time that this carving was.created (about 1914), which
featured a disk angled to the vertical at 4% degrees. Men often wore a hat with
the top flattened, forming the same angle, as seen in figure 5.2b. Just as a plane
cuts diagonally through the top of the heads in the ivory sculpture of figure 5.1,
real Mangberu headdresses also terminated in a 45-degree angle.

This was only one part of an elaborate geometric esthetic based on mul-
tiples of the 45-degree angle. Figure 5. 2b shows an ivory harpin, endmg ina dlsk
EgggﬁdLCtilar to it, inserced perpendicular ro the hat. To its right, a small ivory
arrow pinned to the hat points horizontally, thus forming an angle of 135 degrees

with the hatpin. Each part of the ensemble was ahgned by a multiple of the

35-d degree angle This adornment style included artificial eiongatlon of the head
which is clearly visible in the photograph in figure 5.2b. Elongation was accom-
plished by wrapping 2 cloth band around the head of infants; the woman in
figure 5.2a is weaving one of these bands. Head elongation resulted in an angle

of 135 degrees between the b%k of the head and rhe neck

FIGURE 5.2 '
Geometric design in Mangbetu personal adornment

{1} Mangberu woman weaving headband. (b) Mangbetu chief.

(a, negative no. 111919, photograph by H. Lang, courtesy American Museum of Natural History;

b, negative no, 224105, photograph by H. Lang, courtesy American Museum of Nawral History. )
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While the Mangbetu geometric conception of the body may have inspired
the 45-degree-angle design theme, those designs were certainly not limited to simple

B
mimicry of anatomy. We can clearly see this ir their musical mstrumehts, The

i A gt

drum in figure 5.3a, for example, has its upper surface cut at a 45—degree angle
to the vertical. The stringed instrument shown in figure 5.3b has a resonator that
meets the vertical runing stem at a 135-degree angle. Even in the case of anchro-

pomorphic designs, the artisans elaborated on the human farm in ways that show

b

FIGURE 5.3
(Geometric design in Mangbetu musical instruments
{2) Drum. (b) Harp. .

{a, negative no. 111806, phatagraph by H. Lang, courtesy Americen Muserum of Naneral History;
b, cowrtesy Rictherg Musewm Zurich, phatograph by Wettstein and Kauf)




Jowlat

Geometric algorithms

For example, there is an anthropomorphic decorative motif at the end of the
tuning sterm shown in figure 5.3b, but these human heads are not simply mim-
icking human form. In figure 5.2b we sdv that the Mangbetu had a 135-degree
angle between the back of the head and the neck. The carved heads in fipure
5-3b have a go-degree angle between the back of che head and the neck. Such
dtsromons mdrcate active geomelric thinking rather rhan passive reﬂecnon of

natural anatom lC'Il anglus (which, recalling the artificial head elongation, were
not 5o natural to begin with}.
There are also purely abstract designs that make use of multiples of 45 degrees,
,as we see in figure 5.4. Modern Mangbetu report that the creation of a design
reflected the artisan’s desire to “make it beautiful and show the intelligence of
‘.the creator” (Schildkrour and Keim 1990, ‘

100). This suggests another reason for arti-

SV S

sans Lo ﬂdhere to angl

55 deprees: if there were no rules to follow,

then it would h’we been d:fficult Io compare

dLSlgﬂb and demonstrate one's ingenuity. By

—

restricting the p(,[‘!l"llSSlbl(_ 1ngles o a small
set, they were better able to display their
geometric accomplishments.

Combining this 45-degree-angle con-
struction technique with the scaling prop-
erties of the ivory carving in figure 5.1 can
reveal its underlying steacrure. The carving
h;;a'“}—r:t:ﬂi’n_l:‘trcﬂing gevmenic featuies: -
First, each head is farger than the one abov
it and faces in the opposive direcrion. Sec-
ond, each head is framed by two lines, one
formed by the jaw and one formed by the
hair; these lines intersect at approximately
go degrees. Third, there is an asymmerry:
the left side shows a disrinct angle abourt

2o degrees from the vertical.

FIGURE 5.4

Mangebetu fvory sculpture
(Transparency no. 3929, photograph by Lynton Gardiner,
courtesy American Museaon of Namral History.)

\



FIGURE 5.5
Geometric analysis of an wory sculpture
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“FIGURE 5.0

Geometric relations in the Mangbetu iterative squares structure
Since 8, and B; are the alternate interior angles of a transversal interseceing two parallel lines,
g =4,
l 2
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All of these features can be accounted for by the structure shown in fig-

‘ure 5.5. This sequence of shrinking squares can be constructed by an iterative

process, bxsectmg one square to create the. 1engch of the Ssde (or met
sauare as indicated in the diagram We will never know for certain if this iter-
aztd;;:s—quares construction was the concept underlying the sculpture's design, but,
it does match the features identified above. In the ivory sculpture, the left side
is about 20 degrees from the vertical. In the iterative-squares structute, the left

side is about 18 degrees from the vertical, as shown in fipure 5.6. Here we see

/that the construction algorithm can be continued indefinitely, and the result-

"ing structure can be applied to a wide variety of math teaching applications, from

simple procedural construction to trigonometry (Eglash 1998a}.

Lusona

The Chokwe people of Angof\/}lad a tradition of creating patterns by drawing

x Wl 3

sand Gerdes (1991} notes that the lusona sand

- pritnris,

lines called “lusona” i
drawmgs show the constraints necessary to define what mathematicians call an
“Fulerian path™: the stylus never leaves the surface and no line is retraced. The
lusona_also tend to use the same pattern at dlfﬁetent scales, that is, successive iter-

ations of a single geornetric algor:thm Flgure 5.7 shows the furst three iterations
of one of the dozens of lusona that were recorded by missionaries during the nine-
teenth century, when the lusona tradition was still intacr.

As in the case of the Mangbetu 45-degree constructions, the restriction to
an Eulerian path provides the Chokwe with a means to compare designs within
a single framework ., and 10 show how i increasing complexity can be achieved within
these constraints of space and logic. But unlike the tompetitive basis for com-
parison that the Mangbetu describe, the Chokwe made use of these figures to cre-

ate group xdentlty The reports mdlcate that the lusona were used in an age-grade

initiation system; rltuals that allowed each member 1o achleve the status of

reachmg the next, more senior level of ldennty By using more complex lusona,

_the iterations of social knowledge passed on in the initiation become visualized

by the geometric iterations. li chapter 8 we will see other examples of iterative
scaling patterns in initiation ricuals. This tradition of group identity through knowl-
edge of the lusona was also deployed by the Chokwe as a way to deflate the ego
of overconfident European visitors, who found themselves unable to replicate the
lusona of many children.

Conclusion

These two examples, the Mangbetu ivory carving and the lusona drawings, help

us see that African fractals are not just the result of spontaneous intuition; in some
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cases they are created under rule-bound techniques equivalent to Western

mathermatics. And their cultural significance makes it clear that all mathe-®

matical activity—no matter in which sociery it ig found—is produced through |
‘an interaction between the freedom of loeal human invention and the univer-

sal constraints we discover in space and fogic.
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FIGURE 5.7

Lusona
{a} These fpures, “lusona,” were traditionally drawn in sand by the Chokwe people of Angola.
Successive iterations of the same algorithm were sometimes used to produce similar parterns of
increasing size. {(b) The first and third iterations of another lusona algorithm carved into a
wooden box lid.
{a, based on drawings in Gerdes 1995.)



70.

African fractal mathemarics

Recall that in both examples the I'OLE. of “constraint” was crucial to the devel-
opment of their scaling geometry. For the Mangbetu's design it was the constraints
of straight-edge construction with angles at multiples of 45 degreés- For the
Chokwe's lusona it was the constraints of an Eulerian path. But in each case the
choice of patticular objective constraints—deciding which of the infinite laws
ofsp'lce and logic we are concerned with—was estabhshed by and for the soctal
relations of the community. In the case of the Mangbetu it was artistic compe-
;lthD: and in the case of the Chokwe it was age-grade tdentity: In other words;
the invention and discovery components of mathematics are inextricably linked
through social expression.

Philosophic perspectives on the relation of culture and mathematics will
be further discussed in part 11, but to do so we need a fuller portrait of African
fractal peometry. The next chapter will examine African conceptions of the most

fundamental charactenstlc of fractals: nonlinear scaling.



CHATPTER

—Scaling

——We have already seen many examples of scaling in African designs. In the settle-
ment architecture of chapter z, for example, the computer simulations clearly show
that we can think abourt these patterns in terms of fractal geometry. How do the
African artisans think about scaling? Is it just intuition, or do they use explicit

mathematical practices in thinking about similarity at different sizes? By exam-

with the artisans’ discussions of the patrerns, we can gain some insight into scal-

ing as a machematical concept in African cultures,

Power law scaling in windscreens from the Sahel
Th /Sahel 5a broqd band of andll’lnd between the Sahara Desert 'md the rest

of sub- Saharan Afnca Since there are few trees and a great deal of millet cul-
tivation, it is not surprising chat artisans use millet stalks to weave fences, walls,

and other constructions. But the consistent use of a nonlinear scaling pattern in

these straw screens {fig. 6. l’a) 15 a b L : dd Rather than ;Jnlform lengths, the rows

of millet straw get shorter and S]lcrt(.r as they go up. In the United States we are
ased to the image of “the whire picket fence” as a symbol of unchanging, linear

repetiticn, ver here the fences are distinctly nonlinear. While I was in Mali on

ining varieties of designs with different scaling propertics, and comparing these -
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b Windscreen under construction

in Mali.

Step 2:Weave
the new bundles
in back of the
first-layer
bundles.

Step 1: Lay a new
bundle across eight
of the first-Tayer
bundles.

FIGURE 6.1
An Afvican windscreen

{a) The diagonal lengths of these raws from bottam to tope L =16 12 8 6 5.5 3 3 2 2
This pattern is quantitatively determined by the African artisans. Here we see how the hundles of
straw are first laid in long diagonal rows, then a row ar the opposire angle is interlaced in back of
it. The length of each diagonal tow—haw high up you go before doing the interlace step-—is
determined by counting a certain number of diagonals to be crossed. In the fiest layer {¢) we go
over eight, then six, then four, then three.

Each bundle is about 2 inches across the diagonal, which is why the lengths go a3 double the
number of crossings. The odd numbered lengths are created by splitting the bundles in two.

Why do the lengths repeat in pairs as we go roward the top? There is a discrete approximation to
the continuous nonlinear scale that the Afiican artisans follow. '
{a, photo by permission of Geardi 1973.) (figure continues}
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the outskirts of che capital city of Bamako, I had the opportunity o interview
some of the artisans who create these screens and was provided with a striking

example of indigenous application of the scaling concept

of the south the screens are not made wn:h sml:ng TOWS but r'lther w1th TOWS of
lbng, umform length. This is because the long rows use less straw and take less
time to make. But here in the Sahel, they sdid, we have strong winds and dust.

The shortest rows are the ones that keep out dust the best, because they are the
rightest weave. But they also take more materials and effort. “We know that the
wind blows stronger as you go up from the ground, so we make the windscreen
to match—rthar way we only use the straw needed at each level.”

The reasoning the artisans reported is equivalent to what an engineer

would call a “cost-benefit” analysis; developing the maximum in function (keep-

ing out dust) for a minimum of cost {effort and mdterlals). My primary interest

here is in showing that the scaling concept in Africa can be much more sophis-

ticared than just an observation, “the same thing in different sizes.” The creation

Assuming decrease in wind
h penetration is reciprocal of length:
A o
Gradiant wind {wind engineers: a = 1/3)
»- Vg = V constant
_Vg—i-— . @
o -0.4 L
_______ <06 J
Boundary-layer wing bl .
— V V=V S .08 1 .
< .
— > ¢
- -1.0 4
~ *
o
Power law: ViR = V
" =V, () Log ()
d ¢

FIGURE 6.1 (continued)

(4} The relation between wind speed and vertical height as shown in the Wind Engincering
Heandbook. (&) The African windscreen makers say that they have scaled the rows of straw to
match the change of wind speed with height. If we assume, just for simplicity, that the decrease in
wind penetration is the reciprocal of the length, then we can get the African estimate for a by
measuring the slope of row length versus height on a Ing-log graph. This gives a = 1, whereas the
engineers use o = Y5 —not bad for a ballpark estimate.

Note that the graph is in a very straight line, except where the discrete nature of the screen
{the screen malkers must count in whole-number units due to the straw bundies) forces an approxi-
mation by repeating the same length twice.
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of the windscreen as an optimal design required matching the scaling variation
of wind speed versus height to a scaling variation in lengths of straw. By trans-
ferring this concept between two completely different domains, the.artisans

have demonstrated that they understand scaling in the abstract; indeed, the design :

-"Lssennally plots the relation of wind speed to hEIght on a straw graph.

"Although 1 was concerned only with the overall relation of scalmg and
reasoning, I measured the rows just to see how close they came to what a West-
ern engineer would develop for an optimal match with wind speed. If the straw
screen had linear sealing, then each row would decrease in length by the same
amount (e.g., 12 inches, 10 inches, 8 inches, etc.). But the rows decrease less and
less with height; it turns out that the screen design shows a close fit to what is’
called a "power law”"—that is, it scales according to an exponent {fig. 6.1¢).
Figure 6.1b, reprinted from the Wind Engineering Handbook, shows the equation
of wind speed with height most commonly used by engineers—also a power law.
So the Sahel windscreen is not only a practical application of the abstract scal-
ing concept, it is also a fairly accurate one. Of course, one might object that the
indigenous engineers did not actually set up the algebra and perform the opti-
mizing calculation. But 1 asked three American mathematicians how they would
set up these equations to determine the optimal design, and all three said the same
thing: “l wouldn't solve it analytically, I'd just graph the eqﬁations on the com-
puter and see where the functions peaked.” Whether we make our graphs on a

computer screen or a straw screen doesn’t matter, as long as we get the right answer.

Stretchmg space in kente cloth

T

If someone in America were asked to think of an A_fw__t_cxn[e kente clothmlld
be the most likely image. Its combination of strong colors. hold designs, and asso-
cvlz:;gﬁ?ﬁl:;:;;c—lent it kingdoms of West. Africahas made it a favorite for imports.
But most of the imported kente cloth is created by automated machine, and while
1 would fiercely defend it as “authentic,” the need for pattern repetition in
automation has eliminated a wonderful sealing transformation that can be seen
in the older patterns created on hand looms (fig. 6.2a). The scaling-change is not
just small and large versions of the same thing; rather, it is as if the design was
drawn on a rubber sheet, which was half stretched and half contracted. In
Ghana I traveled to the village of Bonwire, where hand-loom weaving is still prac-
ticed, and asked the artisans there why this scaling transformation was created.
The weavers replied that they think of the compressed version as the orig-
inal pattern, and said they call it “spreading” when they create the stretched ver-

sion. The reason they gave for the Qprtadmg pattern can 1’1(_5[ be understoocl Wlth
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FIGURE 6.2

Kente cloth
{a} In this traditional kente cloth design, stretched and compressed versions of the same pattern
appear. The weavers call this “spreading” the pattern. (b) Why are weavers spreading the patrern!?
They say that our eyes give "heavy looks” to the face, and only “light looks” to the rest of the bady.
This is what neurobiologists call “saccadic” eye movements. Unlike “tracking” eye movements,
which are continuous, saccadic movements are discrete and tend to leap about. Since kente cloth
was traditionally worn as a toga over the shoulder, the parr near the face was given a compressed
pattern, and the part along the body a stretched pattern, to match the scaling of the saccadic eye
movements. {¢} The compression of space is used in mathematics to model scaling patterns, like
thar of the saccadic eye movements. Mathematicians call this a “contractive affine transformacion.”
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the following experiment. Hold your finger in front of your face, and withaout mov-
ing your head, track the finger with your eyes as you move it slowly across the
visual field. Now try the same thing again, smoothly tracking the visial field, but
without the finger to guide your eyes. You'll ind that it can't be done! Your eye
moves involuntarily in little jumps, called “saccadic” movements. When a per-
son comes into your visual field, those same saccadic movements densely cover
the face, and then make a few glances at the body (fig. 6.2b). The weavers in Bon-
wire reported the same idea: “When you see a person you give heavy looks to the
face, and light looks to the body.” They explained that the purpose of the scal-
ing change is to match this visual scaling: the compressed part of the pattern is
the cloth worn over the shoulder, and the stretched part is worn down the
length of the body. -

The mathematical term for this operation is “contractive affine transfor-

mation” (fig. 6.2¢), which can be used for creating fracrals through a method called

“iterated function systems” {see Wahl 1995, 156-157). In kente cloth there is

no iteration—the operation is done only once-——but it does show acti

mg about a scaling transformation. As in the case of the wmdscreen the weavers
are taking a rather abstract observation about 2 time-varying quantity and map-

ping this model into a material design.

Logarithmic spirals

In chapter 3 (fig. 3.2) we examined the contrast between nonlinear concentric

circles and linear concentric circles. In the same way, nonlinear spirals are easy

t0 anderstand if we conitast thera wiili finear spirals (Ag. 6.3a). The linear spi-

ral, also called an Archemedean spiral in honor of the Greek mathematician who

favored it, is in the shape of a coiled rope or watch spring. Each revolutlon brings

you aut by the same distance (just as each layer in the linear concentric circle

was the same thickness). For that reason, a linear splr"ll of a ﬁmte d1ameter can

B e ———

have only a finite number of turns. A nonllnear splml of ﬁmte dnmeter can h'\ve

an mﬁmte number of turns, because even thoug,h there s less 'md less space remain-

mg as one goes toward the center - the dlstance between each revolutlon can get

smal[er and smaller.
A good example of this nonlinear scaling can be seen in the logarithmic

spiral (hg. 6.3b). Loganthmtc spirals are typlcal structures in two different cat-

egories of natural phenomena On the one ha h'lnd they are found in 'IStOhI.Shlng

vane_tle_g_(}f__Q_FE?DLCAgrowt;h Theodore Cook’s The Curve of Life {1914), for

example, shows dozens of logarithmic spirals from every branch of the evolutionary

tree: snail and nautilus shells; the horns of rams and antelope; algae, pinecones,

\
|

/

!
!
J
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FIGURE 6.3
Spirals

(a) In the linear spiral of Archimedes, there is a
constant distance between each revolution.
Ginly a finite number of turns can fe in this
fintte space. (b) In the logarithmic spiral, there
is an increasing distance between each
revolution. An infinite number of turns can fir
in this finite space.

=118

/ and sunflowers; and even anatomical parts of the human ear and heart. Many
! . . . . .
|/ researchers have speculared on why this is so; their answer js typically that liv-

ing systems need o keep the same proportions as they prow, and so a scaling curve |

allows the same form to be maintained. [ prefer to think of it as recursion: if we

', look at the chamben.d n']lltllub for example, we can think of cach new cham—
“ber as the ant ltertlon thmugh the same scaling algorithm.
' On the Other h'md log,qnthmlc spirals are also found in fluid turbulence.
We become aware of this when we watch a husricane from space, or simply admire
the swirls of water along a riverbank. Exphnat'ons for these fluid curves are much
fess speculative, since we can write equations, for turbulence and show them pro-
ducmg lOgdl’l[hmlC spirals in computer, simulations (as we will see in chapter 7).
But the Euro-American tradition is not the only one interested in simulacra, The
artists of what is now Ghana—particularly those of the Akan society—long ago
,./" abstracted the logarithmic spiral for precisely these two carepories. Their syms
| bols for the life force {fig. 6.4a) are clearly related to the “curves of life,” and icons

5 for Tanu, the river god (fig. 6.4b), show the logarithmic swirls of turbulence.
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FIGURE 6.4
Logarithmic spirals

(a) Several Ghanaian iconic figures, such as this goldweight, link a spiritual force with the
structure of living systems through logarithmic spirals. This example is particulacly striking since
it shows how spirals can be combined with bilateral symmetry to create other seif-similar shapes
(the farge diamond shape created by the meeting of the large spiral arms is repeated on either side
by the small diamond at the meeting of the small spiral arms). (b) This fgure, again based on
logarichmic spirals, appears on the temples of Tanu, the river god, and links this spiritual force to
the geometric structure of fluid turbulence.
(a, photo courtesy Doran Ross.)

Again, we need to avoid the assumption that the Ghanaian log spirals are ™

‘sifnply rmmeLlc “reflections” of nature, and examine how thev. are used and

" designed. The Akan and other societies othana created a collection of specific

icons th']t sqev_g_ral_r__eseaxchem lnve commred 1o a written language. But rather than
composed of the vast number nfsymbols we cail ‘wards,” the Ghanaian symbolic
vocabulary is much smaller, and each symbol refers not to a single word but an
entire social, religious, or philasophical concept. Mareover, in many cases the

structure of the symbol is not arbitrary (as Gregory Bateson said, “There is noth-

ing sevemsh “about the numer'll 7"), but rather is shaped so that each icon’s geo-
metnc structure recalls the concept it represents. In other words, they are not
only abstractions in the sense of being stylized, but also generalizations in the sense
of the designers’ intent to ind an underlying structure chac all examples have in

common. For this reason we can accurately describe the Ghan'wm log e.ptral icons

as geometric models for. the phenomem of organic growth 'md fluid turbulence.
Some aspects of these deqlgm illustrare a conscious mﬂectton on thelr " geo-

metric properties. Figure 6.4a, for example, not only displays the log spiral’s Euclid-

1 PR
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ean symmetry—for we can see how clockwise and counterclockwise spirals com-
pare—bur also experiments with other kinds of scaling symmetry: note that the
large diamond shape created by the meeting of the large spiral arms is repeated

on both sides by the small diamond at the, meetmg of the small spiral arms. Can

this scaling be continued in further iterations! 1 will leave that gquestion as an
exercise for the readers.

" There are hints that the precolonial Ghanaian designers were headed
toward a quantrtatwe approach in thelr log splral de31gns Figure 6.5a shows
the sculpture of a water buffato in which they have inscribed uniform discrete
steps. 1 don'c think this was motivated by numeric measures, but rather the
reverse. By cutting these steps we can clearly gauge the nonlinear nature of the
spiral—the way steps of a constant increment show an increasing amount of
curve generated—and this practice could have led to quantitative measures.

Another move in that direction would generalize such discretized logarithmic

FIGURE 6.5

Logarithmic scaling

in Ghanaian designs
(a) Logarithmic scaling can be demonstrated
in a three-dimensional curve by showing
how discrete steps of the same vertical
increment lead to rapidly increasing area.
{b) Overhead view of pyramid-shaped
goldweight. (¢} Logarithmic plot of
goldweight triangle lengths,
{a, photo from the Metwropolitan Museum of Art.
b, photo courtesy George Arnthur, Marshall — *
University. )

(tog scale)

length from base to apex of triangle

1 2 3 4- 5
step of pyramid

]
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Adaptive scaling with triangles
(a) Antelope headdress created by the Krumba of Burkina Faso. (b} Mask sold in Accra, Ghana, -
based o design used in the Sakara-Bounou religious dances. {c) Representation of the water spirit
created by the Baga of Guinea. {d} Sculpeure from the Conge. (e} A Kikuyn wooden shield.
The wood has a nonlinear curve toward the center, and the triangles are scaled to marcch.
{a, conrtesy Musée de ' Flomme. ¢, Metrapolitan Mitserrm of Ave; phote by Eliot Elisofon. d, Degroit
Museum of Are. e, British Museum; from Zaslavsky 1973.)
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scaling to forms other chan spirals, and that did indeed occur, as we can see in

figure 6.5b, one of the Akan gold weights. A A plot of the Iength of these tnangles'

{fig. 6.5c} indicates that reasonable accuracy was achleved in th:s mdlgenous

Da sV

logarithmlc scalmg practice '

Adaptive scaling

L

S

So far this chapter has focused on questions of intentionality, precision, and mathe-
matical reasoning in Afncan scaling designs. Adaprive scalmg has little mathe-
matlcal sophmncatlon but it too is an' important part of the African fractal desngn

theme By adapting the scale of a pattern to fit various forms, a number of

. esthetic and pracncal effects can be achieved. These examples fall into two cat-\

egories. In conformal mapping, the pattern simply fits along the contours of a con-

crete, preexisting structure. In global mapping, the pattérn is distorted by

iz

compn,sslon or expanblon—as We saw happen along one dimension in kente

Figure 6.6 shows several examples of conformal mapping on tﬂangies. My
search of the facial markings of antelope of the western Sudan did not turn up
anything ltke the scaling pattern of figure 6.61; these triangles are decorative
additions, sized to fit into the shape of the sculprure. Other examplesA(ﬁg. 6.6b-e)
show a series of triangles conforming to the scaling contours of a mask, a sin-

" uous cuive, a carved human figure, and a shield. Figure 6.7a shows ¢onformal

mapping in the hairstyle Americans call “corn-rowing”; its simulation is shown
in figure 6.7b. The Yoruba name for this style is ipako elede, which means the

nape of the m_ck of a boar—because the boar’s bristles show a similar nonlinear

it bl Ml
scaling. Figure ‘6..7c shows a hairstyle that combines conf_prmal mapping with

“iteration. Adaptive scaling of circles can be seen in the Senegalese textile in

~figure 6.7d.

A practical applicarion of conformal mapping appears in figure 6.7¢, an

aerial photo of the Nkong mondo quarter in the city of Edéa in southern

member of the neighborhood, Mr. Sosso, the houses were constructed along a nar-
rowing ridge, and the scaling was simply conforming to the natural landscape.
However, the oldest inhabitant of this Bassa neighborhood, Mr. Bellmbock,
told me that the pattern was creared because people wanted neighbors of a sim-

ilar economic class next door, SO that che range in h()use size reflected an eco-

nomic gr'\dlent from poorest 1o W(_'lll:hlest Mr. Belimbock lived in the smallest
fomit

house, and Mr. Sosso in the largest, so I would not discount the possibitity that!
there was an economic scaling as well.

8x



seed shape using pne active line
(gray} and two passive lines.

Fractal model for middle [pako Elede braid.

FIGURE 0.7

Adaptive scaling based on various shapes
{a, 1) A Yoruba hairseyle, Ipako Elede, adapts the scaling of the braids 1o the nenlinear contours of
the head. (¢} This hairstyle begins by braiding a small horseshoe shape in the'top center, and then
tracing the contour in increasing perimeters—a combination of adaptive scaling and iteration.
{d) Fitting circles between intersecting curves creates a scaling series in this textile design from
Guinea. {e) An aetial photo of the Nkong-mondo quarter in the city of Edéa in southern
Cameroon, where we see a scaling series of houses.
{a, from Sagay 1983. <, f‘rom Sagay 1983. d, photo courtesy IFAN, Dakar)
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+ infinity

A

Y

- infinity

' FIGURE 6.8
Mapping from the plane
to a spherical surface

{a) Mapping bars of infinite
length from the plane to a sphere.
(b} A Yoruba huirstyle, Koroba
Chocker). . L
(by from Saguy 1983.)

It is possible ro misread these examples of conformal mapping as being the
product of artisans who are strongly guided by concrete forms rather than
abstract thought. Bur adaptive scaling can also be seen in more abstrace
examples: global transformations in which space‘i'tself is distorted. This is a com-
n:?o.:'gi;era[ion in Western geometry, the most frequent example being a map-
ping between the plane and a sphere (fip. 6.8a). Figure 6.8b shows a hairstyle

that appears to have a plan

now going from spherical to rectangular—and utilizing three dimensions instead
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- of two. In this Chokwe sculpture, the entire human figure is distorted as if its
spherical volume had been mapped to a cubic volume; the resulting nonlinear
scaling is dramatically illustrated by the discrete steps in the headdress. Art his-
torian William Fagg (1955) made a similar suggestion about oth€t African
designs, which he compared to the drawings of natural g;éwth by biologist
D'Arcy Thompson: “[ believe that the morphology of African sculpture may be

usefully studied . . . by reference to mathematics. . . . For example in certain masks

" FIGURE 6.9
Mapping from a spherical volume
to a rectangular volume
{2} Bastin {1992, 68) shows that this Chokwe crown,
the Cipenya-Mutwe, is made up of linear bands in real
life. The nonlinear scaling we see in this sculpture can
be explained as the inverse of the transformation we saw
in figure 6.8a. Rather than shrinking as we move from
the center to the margins, the inverse mapping causes
cxpansion from center to margins. This is not only the
inverse of the previous mapping, but also operates on
three-dimensional volume rather than surface. Similar
transformations are used in neuroscience o model the
ways that tactile receptors are mapped from body to
brain, since there is a nuch greater density of sensory
neurons at the extremes, {b) The reason for this transformation is to invoke the impression of
power and stability (Chanda 1993}, The meaning has nothing in particular to de with geometric
mapping, other than achieving the desired effect, but it is interesting to note that the transfor-
mation is uniformly applied to all external areas, even to the extent of deforming the forehead.
(a, courtesy Jacques Kerchache and Museum of Mankind, London. b, courtesy Musenm of the Philadelphia
Civic Center, } '
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for the Gelde society the natural . . . physiognomy is ‘blown up,’ so to speak, in
a way which could be plotted on a set of flaring exponential coordinates.”
(1017, 43).

Conclusion

and 1 method While it is not dlfﬁcult to invent explanattons based on unconscious
social forcesﬂ-for example, the flexibility in conforming designs ro material sur-

faces as expressions of social ﬂex1b1hty—l do not thmk that any such explana-

tlon can account for this diversity. From optimization engmeermg. to modeling

2 s st

orgamc life, to mapping between different spatial structures, African artisans have

developed a wide range of tools, techmques and de51gn practlces based on the

conscious appllcatlon of scalmg geometry. In the next chapter we will see that

African numerlc systems also share many fractal characterlstlcs
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CHAPTER

systems

So far we have focused on geometric structures rather than numeric systems. The

only exception was in the windscreen, wheare the nonlinear scaling was created

by counting a specific sequence of diagonal straw rows. But there are many

other instances in which the African approach to fractal geometry makes use of

numberss

Nonlinear additive series in Africa

86

The counting numbers {1,2,3 . . .) can be thought of as a kind of iteration, but
only in the most trivial way.! It is true that we could produce the counting num-
bers from a recursive loop, that is, a function in which the output at one stage
becomes the input for the next: Xn+| X, + 1. But this is a strictly linear series,
increasing by the same amount each time—-the numeucﬂic]l.uvalem of what we

saw in the linear concentrlc circle and linear splr'\l Addltlon &an, however

r_o—

series in Afncan cuitures The tnanguhr numbers (1,3 6,10, 15 ) are used in

a game called tarumbet"l in east Africa (Zaslavsky 1973, 131). Figure 7.1 shows

how these numbers are detived from the shape of triangles of increasing size, and

how the nureric series can be created hy a recursive loop. As in the case of cer-
L
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| | ® . e 0o
° ) e oe® o000
o0 o6 2000 00000

number ¢

of stones: 3 6 ¢ 15
nunber ‘ L

of iterations: pi 3 4 - 5

A pame called “tarumbeta” in Bast Africa makes use of che triangular numbers, starting with 3
(3,6, 10,15 ... }. In chis game; one player calls out a count as he removes stones consecutively,
left 1o right and boteom to top, while the other player, with his back turned, must signal whenever
the first stone in a row has been removed. ‘

The stones in each triangular array can be built up in an iterative fashion, that is, the next
triangle can be created by adding another layer to any side of the previous triangle. The number to
be added in each additional layer is simply the number of iterations. For each iteration i, and total
number of stones N, we have:

Ni, = N; + i (starting with Ny = 0)

1 = 0 +. 1 ({acivial array, not used in the game}

3= 12 In other words, the next number will be given
"6=3 +3 . by the last number plus the iteration count:
10=06 +4
) Npext ——»
15=10+5

Neurrent
Y

. -— : Increase count

Iof ie.ations by & |-

_FIGURE 7.1
The triangular numbers in an East African game

tain formal age-grade initiation practices (see chapters 5 and 8), the simple
versions are vsed by smaller children, and the higher iterations are picked up with
increasing age. While there is no indication of a formal relationship in this instance,
there is stlll an underlying parallel between the iterative concept of aging com-
mon to many Afncan cu!igreb—each individual passing through multiple rurns

e of the rrmngular number series.

AnOther nonhnear addmve series wag, fOunJ in arciﬂeologlcal evidence from

Narth Africa. Badawy (1965) noted what appears to be use of the Fibonacci series

in the layout of the temples of ancient Egypt. Using a slightly different approach,



The Fibonacci series

(1,1,2,3,58 13...) wis
found by Badawy {1965)
in his study of the layout
of the temples of Egypt.

His analysis was quite
complex, but it ishot

difficult to create a simple
visualization. Here we see
the series in the successive
chambers of the temple of

Karnak. |

The Fibonacei series is
produced by adding the
previcus number to the
current number to get the
next number, starting with
1 + 1 = 2. For each iteration
i, the number N in the series

is given by:

Nivy = Ni + Ny

that is,

next — Ncurrcnl + Nprevious

+

-1

N e
previous

Ncurrem

1+ 1 2
1+ 2 3
2+3 = 5
3 +5 8
5+ 8 3

S e I

Gray rectangles added
for measurement

FIGURE 7.2
The Fibonacci series in ancient Egypt
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I found a visually distingt example of this series in the successive chambers of
the temple of Karnak, as shown in figure 7.2a. Figure 7.2b shows how these num-
bers can be generated using a recursive loop. This formal scaling plan may have
‘beer derived from the nonnumeric Versions of scaling architecture we sce

throughout Africa. An ancient set of balance weights, apparently used in Egypt,

Syria, and Palestine circa 1200 B.C.£., also appear to employ a Fibonacci sequence -

{Petruso 1985). This is a particulérly interesting use, since one of the striking
mathematical properties of the series is that one can create any positive integer
through addition of selected members—a property that makes it ideal for appli-
cation to balance measurements (Hoggatt 1969, 76). There is no evidence that
ancient Greek mathematicians knew of the Fibonacei series. There was use of
the Fibonacci series in Minoan design, but Preziosi (1968) cites evidence indi-
cating that it could hayve been brought from Egypt by Minoan architectural
workers employed at Kahun.

Doubling series in Africa

Some accounts report that Africans use a puml[we ' number system in which

AT -
they count by multiples of two. It is true that many cases of African a%i

menc

are based on mulmples of two, but as we will see, base-2 systems are are_ not crude

artifacts from a forgorten past. They have surprising mathematical significance,

not Only in relation to African fractals, but to the Western history of mathematics
and computing as well,

The presence of doublmg as a cultural theme occurs in many differens African

T e e e e 1 1 e e o e B B s et e
sm:icne 'md in many d:fﬂ_rent socm! LlOlndlnS ccmnt.ctmg the sacredness of twins,
- R ——

. A
i wich mateml ob;ects such as the biacksmith’s

twin bellows and the double §rolh hoe g‘I‘\/elm in brldewealth (ﬁg 2.3). Figure 7.4a

shows the Ishango bone whlch is around 8,000 years old and appears to show a
doublmg sequence Doubimg is fundamental to many of the counting systems of
arf even number 2N mean "N plus N” (e.g., the number 8 in the Shambaa lan-
guage of Tanzania is “ne na ne,” literally “four and four”). A similar doubling takes
place for the precisely articulated system ofnumber hand  gestures (fig. 7.4b), for
example, “four” represented by two groups of two fingers, ‘and* ‘eight” by two groups
of four. Petitto (1982) found that doubling was used in multiplication and
division techniques in West Africa (fig. 7.4¢). Gillings (1972) derails the per-
sistent use of powers of two in ancient Epyptian mathemarics as well, and
. Zaslavsky {1073) shows archaeological evidence suggesting that ancient Egypt's

use of base-2 calculations derived from the use of base-2 in sub-Saharan Africa.
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Doubling practices were ‘ﬂ‘io used hy Afrl(:'m desccnd’mts in the Ameri-
—— 2 .

cas. Benjamin Banneker, for emmplc made unusual use of douhhng in his cal-
culatlons which may have dertved from the teachings of his AfricanTather and
grandfather {Eglash 1997c). Gates (1988) examined the cultural significance of
doubling in West African religions such as vodun and its transfer to “voodoo”

in the Americas. In the religion of Shango, for example, the vodun god of thun- \
der and lightning is represented by a double-bladed axe (fig. 7.5a), used by

Shango devorees in the new world as well (K. Thompson 1083). Figure 7.5h shows  /

FIGURE 7.3

Doubling in African social practices
(a) This figure s used by women in Ghana to encourage the
birth of twins. (b) A double iron hoe is sometimes used as pare
of the bride price ceremony. {c) The doulile bellaws of the
blacksmith. (d) Double vision: a common theme in several
African spiriteal practices, often implying that one can sce
both the material world and the spirit world.
(b, Mare and Evelyn Bernheim from Rapho Guillionette; cotrtesy
of Uganda National Museum. ¢, photo courtesy IFAN, Dakar.
d, fron Berjonnean and Sonnery 1087.) d
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{ 7 {a) The Ishango bone, estimated to be over é,ooo years old, shows
what appears to be use of'_doubling: 3+3=6,4+4=810=5+5.
=3 . R
g [

{b) Even numbers are
typically represented by
doubling in the precisely
articulated system of
African hand gestures.

(¢) Doubling was traditionally used by tailors in West Africa when doing large mental
multiplications; it is essentially based on what we would call facroring.

For example, 3 x 273 ("3 raken 273 times”) would be calculated by successwely
Cdoubling 3 (6, 12,24 ... ) while keeping track of the counterpart in powers of two (2,4, 8 ... ).
When the next power of two would overshoot 273, he then has to memorize the nuimber
reached so far through doublings of 3 (768}, while subtracting the power of two that was
reisched (273 - 256 = 17). Then he starts again, doubling 3, and keeping track of the powers
of two, When the next power of two would overshoot 17, he again memorizes the number
renched through doublings of 3 (48) and subtracts the power of two {17 - 16 = 1). Since one
is left over, he just needs to add an additional, 3. Tht. answer is then given by [he sum of the
wmderlined termas: 768 + 48 + 3 = 819, '

Despite the complexity of the method, the m:lors were quite fast at performing these silent
mental aperations.

FIGURE 7.4
Doubling in African arithmetic
{x und b, from From Zasluvsky rg73.)

the use of a doubling sequence in the seructure of a Shango temple and in reli-
gious ceremonties (ritual choreography aligning two priests, four children,
eight legs). A curator at the Musée Ethnographique in Porto Novo, Benin, who
specialized in Shango explained to me that these doublmg structures were used

ortrait "(Sftlxe forked structumrft—

l)u.duse the pod of lightning required a portrai
ning bole. The model is particularly interesting in ‘that the lcngths of each irer-

ation are shorrened, so that one could have infinite doublings in a finite



(a) Shango, the god of
lightning, is part of the vodun
religion of Benin and was one
of the importagt components
in thg creation of the voodco’
religion in the New World.
Here we see the double-bladed
“thunder axe,” with anather

double blade within each side.

b

(b) Shango temple and initiation. Here we see

the doubling sequence carried out further,

using the bilateral symmetry of the human body
itself in the last iterarion. This is used ta symbolize
the bifurcating pattern of the lighening bolt.

FIGURE 7.5

Doubling in the religion of Shango
(a, cotertesy IFAN, Dakar. b: hoth center phatos, courtesy IFAN, Dalar; lowver right, courtesy Dave
Crowley, wwnw stormguy.com. )
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space—a true fracral. The self-similar structure of llghtmng has been a favonte'

example for fractal _geometry texts (see ‘Mandelbrot 1977) “The doubling

Ak e A e

sequence used to quel the fractal structure of lightning in Shango would not
. give an accurate value for the empiricalfracral dimension—real lightning tends
to branch much more than doubling allows for-—but it's enough to know that the
vodun representation offers a testable quantitative madel.

The most mathemaucally 51gmﬁcant aspect of doubhng in African reli- reli-

‘*—__———\__,__H_.‘
gion occurs in the divination { fortunetelllng ) techmques of vodun and its reli-
curs H Hiviiiation i fortunete

———

gious relatives (Eglash 1997b). The famouilf'i dwmatlon_ystem (ﬁg 7 6) is based

i ST Y

on tossing pairs of flat shells or seeds split in two. Each lands open-side or closed-

side (like “heads or tails” in a coin toss). They are connected by a doubled chain

-to make four pairs. Each group of four pairs gives one of the 16 divination sym-
bols, which tell the future of the diviner’s client. The Ifa system is what a
mathematicidn would call "stochastic ” thar is, it operates by pure chance. But
a closely related divination system, Cedena, has a nonstochastic element—it is

closer to what mathematictans call * determmlsuc chaos

AP e s 8 P

My introduction to ¢ cedena, or sand dwmatlon took place in Dakar, Sene-

gal where the local Isiamlc culture credits the Bamana (also known as Bambara)

=—

with a potent pagan mysticism. Almost all diviners had some kind of physical
d?fg;[nlty— the -pm-.ﬂe:/paid for their power.”? One diviner scemed quite willing
to teach me about the system, suggesting that it “would be just like school.” The
first few sessions went smoothly, with the diviner showing me a symbolic code
in which each symbol, represented by a set of four vertical dashed lines drawn
in the sand, stood for some archetypical concept (travel, desire, health, etc.) with
which he assembled narrarives about the future. But when 1 finally asked how
e derived the symboels- in particulat, the meaning of some of the parterns
drawn prior to the symbo!l writing—they all laughed at me and shook their
heads. “That's the secret!” My offers of increasingly high payments were met
with disinterest. Finally, I tried to explain the social significance of cross-cultural
mathematics. I happened to have a copy of Linda Garcia'’s Fractal Explover with
me and began by showing a graph of the Canror set, explaining its recursive con-
struction. The head diviner, with an expression of excitement, suddenly stopped
me, snapped the book shut, and said “show-him what he wants!”
As it turns out, the recursive construction of Lhe Canrar set was just the

e e e s et

rlght thing to show, because the Bamana divination is also based on recursion

(fg. 7.7). The ‘divination begms with four Forizontal dashed lines, drawn rapidly,
so that there is some random variation in the number of dashes in each. The dashes
are then connected in pairs, such that each of the four lines is left wich either

one single dash (in the case of an odd number} or no dashes (all pairs, the case
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One open, one closed: 0+ 1 = odd

One cloged, the other closed: 1 + 1 = even

Cne open, one closed: 0+ 1 = odd

One open, the other open: 0 + D = even

b ' c

FIGURE 7.6

Binary codes in divination
{a} This Nigerian priest is telling the future by Ifa divination, in which pairs of flat shells or seeds
splitin two are wossed with each landing open-side or closed-side. They are connected by a doubled
chain to make four pairs, giving 2 total of 16 divination symbols. In this version of ifa (used in the
Abigha region of Nigeria) they use two doubled chains and consider the cast mote accurate if there
ts 2 carrelation between the two sets. (b) Here we see a chain using split seeds. Each half lands
either “closed” (meaning we see the rounded outside) or “open” (ineaning we see the inrerior).
By using open to represent O (double lines), and closed o represent 1 {single line}, we can see how
the divination symbol s obtained. (¢} The divination chain is interpreted as pairs summing to odd
(one stroke) or even (two strokes).
{a, photo by E. M. McClelland, courtesy Royal Anthvopological Institiere )

. ce e e
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95

,of an even number). The narrative 5ymbol is then constmcted as a column of fourl

; vertical varks, with double vertical lines representmg an even number of dashes

and bmgle lmes representing an odd number. At this point the system is similar

to the famou:. Ifa.divination: there are two posstble marks in four pesitions, so
16 pObbll’)lL aymbols Unlike Ifa, howwer the random symbol production is
rt.peaced four times rather than two. The difference is quite significant. Each of
the [fa symbol pairs are interpreted as one of 256 possible Odu, or verses. The

Ifa diviner must memorize the Odu; hence, four symbols would be too cumber-

some (65,536 possible verses). But the Bamana divination does not require any

verse memorization; as we will see, its use of recursion allows for verse self-assembly.
As in the additive sequences we examined, the dmmtton code is gener-

ated by an iterative loop in which the output of rhe operation IS used as the input

for the next stage In this case, the opnfz_rj\tlon is addmon modulo 2 ( *mod 2" for
even/odd distincrion used in the parity bit Operanon that checks for errors on
contemporary compurter systems. There is nothing particularly complex about
mod 2; in fact, | was quite disappointed art first because its reapplication
destroyed the potential for a binary placeholder representation in the Bamana
divination. Rather than interpret each position in the column as having some
meaning {as would our binary number rory, which means one ¥, one 2, zero 4s,
and one 8), I}E_il'vmcn’ reapplied mod 2 to efach row of the first two symbols
and to each row of the last two. The results were then assembled into two new
symbo!s, and mod 2 was applied again to generate a third symbol. Another four
symbols were created by reading the rows of the original fouras columns, and
mod 2 was again recursively applied to generate another three symbols.

The use of an iterative loop pas:;mg outputs of an operatjon back as

s N—

inputs for the next stage, wais a shock to me; | was at least as Staken aback by the

s-;;a—s;mf)oh as the diviners had been by the Cantor set. Jt would be naive to
claim that this was somehow a leap outside of our cultural barriers and power
differences—in fact, that’s just the sort of pretension thar the last two decades
of reflexive anthropology has been dedicated against—but it would also be
ethnocentric to rule out those aspects that would be attributed to mathematical

collaboration elsewhere in the world: the mutual dellght in two recurqlon

id ¢ out in

n—\ghgroups 5F5Even-— -the Rosu:rucnn s myst:c number~—added some numer-
ological i¢Tig on the cake.

The following day | found that the presentation had not been complete:
an additional two symbols were left out. These were also generaced by mod 2 recur-

o —— e

sion using the two bottom symbols to create a fifteenth, and tsing that last
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symbaol with the first symbol to create a sixteenth (bringing the total depth of
recursion to five iterations). The ﬁfteenth symbol is called th is world and the

sixteenth is “the next worlcl so there was good reason to separate them from

the others. The final part of the System——creating a narrative fram the symbols—

was still unclear, but 1 was assured that it could be learned if 1 carefully followed

——————

their instructions. ] was to give seven coins to seven lepers, place a kola nut on

a
— U T T O |
o | U T T I
I A N N N i 1
e e Y I
b
1 1 < I | (| 1 — I
| < 11 11—
| -~ i 11 1T 11 — 11
i < ] 1 I I I — 11
c
i I L I )
I 1 i i 1 1
] 1 11 1 .

1 | ] 1 1 _ (e} After this, the original four
are read sideways to create four
maore symbols, and the entire

1 l | > l process is repeated, producing
' | —_— ] I another proup of seven. In the
final step, the first and last from
I 1 — I ,
each group of seven are paired off
d I I} — i 1o genetate the final two symbols.’
FIGURE 7.7

Bamana sand divination
{a) Four sets of random dashes are drawn. (b} Each of the dashes is paired, and the oddfeven results
are recorded. (c) The process is repeated four times, resulting in four symbols. Each row of the first
two symbeols and the last two symhals are paired off to generate two new symbols. (d) The two
newly generated symbols, now placed below the original four, are again paired aff o genemte

seventh symbol.
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a pile of sand next to my bed at night, and in the morning bring a white cock,
which would have to be sacrificed to compensate for the harmful energy released r
in the telling of the secret. 1 followed all the instructions, and the next morn- |

ing bought a large whire cock at the masker. They held the chicken over the div- !

ination sand, and [ was told to eat the bitter kola nut as they marked divination

_ symbols on its feet with an ink pen. A little sand was rhrown in its mouth, and |

then 1 was told to hold it down as prayers were chanted. There was no action on j

the part of the diviner; the chicken simply died in my hands. /
While still a bit shaken by the chicken's demise {as well as experiencing

a respectable buzz from the kola nut), I was told the remaining mystery. EMm-

bol has a “house” in which it belongs—-—for examp!e the position of the sixteenth

symbol is “the next world”—but in any given dlvmatmn most symbols will not

Le Iocated in their own house “Thus the sixteent symbol generated mxgjt be

S

"desm&:, so we would have desure in the house of the next world, and so on. Obvi-

ously this still leaves room for creative narration on the part of the dwmer but
the beaury of the system is that no verses need 1o be memorized or books con-

sulted; the system creates its own complex variety.

The most elegant part of the method is that it requires only four random
four rando,

drawings; after that the entire symbohc array is quickly self- generated Self-

[ S

generated variety is lmpOrtant in 1 modern computing, where it is called “pseudo-

— - Lo I

random number generatlon (flg 7.8). These algorithms take little memory,

R

— e

but can an_generate very long lists of what appear to be @om numbers,
although the list will eventually start over again {this length is called” l:hc:

“period” of the algorithm). Although the Bamana only reqmre an additional
12 symbols to be generated in rhis fashion, a2 maximurm- length pseudorandom
-x:t:ber generator using their initial four symbels will produce 65,515 symhols
before it begins to repeat.

A similar system for self—genemted variety was deve]oped as a model for
the “chaos” of nonlinear dynamlcs by Marsmn Morse (1892-1977). Before the
15_7_:35 mathematicians had assumed that, besides a few esoreric exceptions (the
algorithms for producing irrational numbers such as V2 ), the output of an equa-
rion would eventually start repeating. That assumption was partly based on

'-N"-q
result ofpredetenmned systems (see Porter 1986) It was not until ths 19605- 7os /
that mathematicians realized that even s:mple common equations descnbing thjngs
like popu\atnon growth or. ﬂuld ﬂow could result in whdt they called “determin-
IS;TTEC chaos ~an output that never repears, giving the appearance of randorm num-
‘bers from a nonrandom (deterministic) equation. Morse developed the minimal

case for such behavior.



o8

African fractal mathematics

[RRE FIGURE 7.8 '
! 1 ! ! 8(]) : E Pseudorandom number generation
K : . 0001 from shift register.circuits
\ Y 1000 {a) If we think of the two-strokes as zero and
‘ 0100 single stroke as one, the Bamana divination
mod 2 0010 system is almost identical to the process of
1001 pseudorandom number generation used by digital
0L10 circuits called “shift registers.” Here the circuit
{100 takes mod 2 of the last rwo bits in the register
0110  and places the result in the first position. The
1011 other bits are shifted to the right, with the last
0101 discarded.
1010 This four-bit shift register will only produce
1101 15 binary words before the cycle staris over, but
1110 the period of the cycle increases with more bics

{2Z™ - 1). For the entire 16 bits (four symbols of
four hits each) that begin the Bamana
divination, 65,535 binary words can be produced
i 741,895 before repeating the cycle.
Din {b) Electrical circuvit represenration of a four-bit
shift register combined with exclusive-or to
Qa U Q Qd perform the mod 2 operation. While school-
teachers are making increasing use of African
culture, in the mathematics classroom, few have
explored the potential applications to
technology education.

L e e bk 28

ion: 000, 001, 010, 011 . . . . Jt then takcs the sum of the dlgxts in

pARLS
each’ ‘“1U1"lbcl‘— oto+ro=o,nto+1=1,eic.—and finally mod 2 of each

sum. The result is a sequence with many recutsive properties,? but of endless

variety.  Morse did the same mlsreadmg of the binary number as did the

’ Bamana-—although he did not have an anthropologist scowling at him for

ignoring place value—and he did it for the same reason: combined with the

- mod 2 operation, it maximizes variety.

In my reading of divination literature 1 eventually came across the dupli-
cate of the Bamana technique 5,000 miles to the east in Malagasy sikidy {Suss-

man and Sussman 1977) which inspired a s[udy of the history of its diffusion.

this Am[nc Eumpewn West Afncan, and East Aﬂ ican divination tcchmque The
e —

—_ e e e — SRPRE S

common’111ty was confirmed in a det'nkd fm mal 'm'lfysm by faulin {1966). But

where did it originate!?

v
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(SE-i;r.?r:.c\,r (1980) provides a well-documented history of the diffusion evidence,

from thefirst specific written record—a ninth-century Jewish commentary by Aran |
ben Joseph—to its modern use in Aleister Crawley’s Liber 777. The oldest Ara- l
bic documents (those of az-Zanti in the thirteenth century) claim the origin of |
geomancy (ilm al-raml, “the science of sand”) through the Egyptian god Idris (Her- |
mes Trismegistus); while we need not take that as anything more than a claim !
to antiquity, a Nilotic influence is not unreasonable. Budge {1961) attempts to ;
connect the use of sand in ancient Egyprian rituals to African geomancy, bur it i
is hard to see this as urique. Mathematically, however, geomancy is strikingly Out{i

of place in non-African systems.

10 to be the most sacred of all numbers; the Kabbalahs Ayin Sof emanates by
10 Sefiror, and the Christian West counts on its "Hindu-Arabic” decimal norta-
T : . L
tion. In @9} on the other hand, base-2 calculation was ublqultous even for
e

of doubllng Eha[ ‘ground Ehe divination pr’lcmce in'its 5 religious mgmﬂcance

The lmpllcanons of this rrajectory—-—from sub- S']haran Afrlca to North Afrlca

to Europe—are quite significant for the hlSEPry of mathemancs Foilowmg the
introduction of geomancy to Europe by Hugo of Sarﬁtalla in twelfth—cc_ntury Spain,
it was taken up with preat interest by the pre-science mystics of those times—
alchemists, hermeticists, and Rosicrucians (Ag. 7.9). But these European geo-
ma11c¢rs——Raymond Lull, Rebert Fludd, de Peruchio, Henry de Pisis, and
others—persistently replaced the deterministic aspects of the system with chance.
By mounting the 16 figures on a wheel and spinning it, they maintained their
society’s exclusion of uny connections berween deterninism and unpredictabil-
ity. The Africans, on the other hand, seem to have emphasized such connections.
In chapter 1o we will explore one source of this difference: the African concept

ofa tnckster " god, one who is both determlmstlc and ungredlcmble

TG video recordmg I made of the Bamana divinarion, I noticed that the
practitioners had used a shortcut method in some demonstrations (this may
have been a parting gift, as the video was shot on my last day). As they first taught
me, when they count off the pairs of random dashes, they link them by drawing

short curves. The shorreut method then tinks those curves with larger curves, and

e aaemn

those below. Wlth even l"uger curves. Th:s up51de down Cantor set shows that

[ A R

they are not snmply applying mod 3" agam and’ agam ina mmdless f;l‘sthﬂ “The
Self-similar physwal structure of the shortcut method vividly 1l|ustr'1tes arecur-
sive process, and asa nomradlnonal invention {there is no record of its use else-

b
where} it shows active mathemancal practice. Other African divination practices
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FIGURE 7.9

Geomancy

African divination was taken up under the name “geomancy” by European mystics. This chart was
drawn for King Richard 11 in 1391,
(From Skinner 1980.}

can be linked to recursion as well; for example Devisch (1991} describes the Yaka
diviners' "self-generative” initiation and uterine symbolism.

Before leaving divination, there is one more important connection te mathe-
matical history. While Raymond Lull, like other European alchemists, created
wheels with sixteen divination figures, his primary interest was in the combi-
natorial possibilities offered by base-z divisions. Lull's work was closely exam-
ined by German mathematician Gottfried Leibniz, whose Dissertatio de arte
combinatoria, published in 1666 when he was twenty, acknowledges Lull’s work
as a precursor. Further exploration led Leibniz to introduce a base-z connting

system, creating what we now call the binary code. While there were many other



Numeric syseems

influences in the lives of Lull and Leibniz, it is not far-fetched to see a histor-
ical path for base-2 calculation that begins with African divination, runs
through the geomancy of European alchem1sts, and is fmally translated into bmary

calcu ation, where it is.now applied irvevery dlgltal circuit from alarm clocks

“to Supcrcomputers

In a 19g5 interview in Wired magazine, techno-pop musician Brian Eno
claimed that the problem with computers is that “they don’t have enough African
in them.” Eno was, no doubt, trying to be complimentary, saying that there is
some intuitive quality that is a valuable attribute of African culture. But in doing
50 he obscured the cultural origins of digital computing and did an injustice

to the very concept he was trying to convey.

Discrete self-organization in Owari

Figure 7.10a shows a board game that is played throughout Africa in many dif-
ferent versions varicusly termed ayo, bao, giuthi, lela, mancala, omwese, owari, tei,
and songo {among many other names). Boards that were cut into stones, some

of extreme antiquity, have been found from Zimbabwe to Ethiopia (see Zaslavsky

1973, fig- 11-6). The game is played by scoopmg pebblc: or seed counters from

ok
one cup, and placmg one of those counters into each cup, startmg w1t11 the cup

o the nght of thq

has only one or two counters already in it, which allows the player to caprure
these counters. In the Ghanaian game of owari, players are known for utilizing
a series of moves they call a “marching group.” They note that if the number
of counters in a series of cups each decreases by ane (e.g., 4-3-2-1), the entire

pattern canbe replicated with a righesshif by scooping from the largest cup, and

that if the pactern is left uninterrupted it can propagate in this way as far as needed -

for a winning move {fig. 7.10b). As snmple as it seems, this concepr ofa seli-

rephcatmg pattern is at the heart ofsome sophrsncared mathemanca! conceprs
]ohn von Neumann who played a pivotal role in the development of

the modern digiral compurer, was also a founder of the mathematical theory

ofself»orgamzmg systems. lnmally‘ von Neumann s theory was to be based on
self-reproducing physical robots. Why work on a theory of self-reproducing
machines? | believe the answer can be found in von Neumann's social out-
look. Heims's (1984) biography emphasizes how the disorder of von Neumann’s
precarious youth as a Hungarian Jew was reflected in his adult efforts to impose
a strict mathematical order on various aspects of the world. In von Neumann’s
application of game theory to social science, for example, Heims writes that his

“Hobbesian” assumptions were “conditioned by the harsh polirical realities of

-00p. The goal 1576 hiave the last counter l‘and in a cup that

I0IX
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FIGURE 7.10C
) Owari
{a) The owari board has 12 cups, plus one cup on each side for captured counters. This board is
hinged in the center, with a beautifully carved caver (see fig. 7.14). (b) Scoop from the first cup,
and plant one counter in each succeeding cup. {c} The Marching Group is replicated with a
right-shift, Repeated application will aflow it to propagate around the board.

his Hungarian existence.” His enthusiasm for the use of nuc]eﬁr weapons against
the Sovier Union is also attributed to this experience.

During the Hixon Sympogium (von Neumann 1951) he was nsked if com-
puting machines could be built such that thc.y could repair themselves if “dam=
aged in air raids,” and he replied that “there is no doubt that one can demg,n
machines which, under suitable circumstances, will repair themselves.” His
work on nuclear radiation tolerance for the Atomic Energy Commission in
19541955 included biological effects as well as machine operation. Dutting
these facts together, | cannot escape the creepy conclusion that von Neumann's
interest in self-reproducing automata originated in fantasies about having a
more perfect mechanicaf progeny survive the nuclear purging of arganic life
on this planet.

Maodels for physical robots turned out to be too complex, and at the sug-
gestion of his colleague Stanislaw Ulam, von Neumann settled for a graphic ab-
straction: “cellular automata,” as they came to be called. In this model (Rg. 7.112),

each square in a grid is sald ta be eethcr alive or dead {that is, in one Of WO pos-
g

Pt s

) —

sible s st"lte%) The ltemtwe rules for ch.mgmg, the state of ANy one square are b']sed

________ oy




In the cellular automaron called “the game of life,” each cell in the grid is in one
--- of two states: live or dead. Here we see a live cell in the center, surrounded by dead

cells in its eight nearest neighbors. The state of each cell in the next ireration is

determined by a set of rules. In “classic” life (the rules first proposed by John Horton
-.- Conway), a dead cell becomes a live cell'iF it has three live nearest neighbors, and a

cell dies unless it has two or three live neighbors.

ENEERw
NEANEREN
This inirial condition produces a fixed pattern after four iterations. The patterns occurring before
it sercles down to stability are called the "transient.”

—

This stable pattern flips back and forch between these
—>'  two states. This is called a “period-2" parttern.
e ————— L N

A period -4 pattern. Perjods of any tength can be produced, as we saw in the previous examples
of mendormndom number generntuon. Dererministic chaos, in which thie pattern never repearts
(i.c., n period-infinity pectern, like the Morse sequence), is also possible.

freration 49

leevasion 182

A constant-growth pattern, shown in high resolution, looks similar 1o the cross-secrion of an
internal organ. The rules: o dead cell becomes a live cell if it has three live nearest neighbors, and
avell dies only if it has seven or eight live neighbors.

FIGURE 7.11
Cellular automata
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on thg_q_i_g_h_g-ngz_igggtﬂg‘i_g_h_l_jgrs (e.g., if three or more nearest-neighbors are full,
E:ell becomes full in the next iteration). At first, researchers Cal:_!._’jf!d out on .
these cellular autoﬁata experiments on checkered tablecloths with polker chips
and dozens of human hetpers (Mayer-Kress, pers. comm.)}, but by 1970 it had been
developed into a simple computer program (Conway's “game of life"), which was
described by Martin Gardner in his famous "Mathematical Games column in
/. Scientific American. The “game of life” story was an mst'l;;ETu_E and computer screens
all over the world began to pulsate with a bizacre array of patterns (fig. 7.111).
As these activities drew incréasing professional attention, a wide range of mathe-
matically oriented scientists began to realize that the spontaneous emergence
of sfelf sustaining patterns created in certain cellular automata.were excellent

A S R

models for-the kinds of self- organizing patterns thatbad been so elusive.in scud-

e T st b

ies of fluid ﬂow and blologlcal growth.

ince scalmg structures are one of the hallmarks of both fluid turbulence
and biological grawth, the occurrence of fractal patterns in cellular automata
attracted a great deal of interest. But a more simple scaling structure, the log-

anthmnc spiral (fig. 7-12), has garnered much of the attention. Even back in the

'\ 19505 mathematician Alan Turing, whose theory of computation provided von
"Neumann with.the inspiration for the first digital computer, began his research
on “biological.morphogenesis” with an analysis of logarithmic spirals in growth
patterns. *Mark s (1991} notes that the application areas for ce

models of splral waves mclude nerve axons, the retina, _the surface of fertdlzed
e.ggs the Cerebral cortex, heart tissue, ‘and aggregatmg shme molds. In the text
for caLan, the first comprehenswe ‘software for experimenting with cellular
automata, mathematician Rudy Rucker {1989, 168) refers to systems that pro-
duce paired log spirals as “Zhabotinsky CAs,” after the chemist who first observed
L
such self-organizing patterns in artificial media: * “When you look at Zhabotin-
sky CAs, you are seeing very striking three dimensional structures; things like
paired vortex sheets in the surface of a river below a dam, the scroll pair stretch-
ing all the way down to the river bottom. . . . In three dimensions, a Zhabotin-
sky reaction would be like two paired nautilus shells, facing each other with their
tips blending. The successive layers of such a growing pattem'wm;id build up very

I»

like a fetus!
Figure 7.13 shows how the owari marching-group system can be used as a

[

| one-dimensional cellular automaton to demonstrate many of the dynamic phe-
i( nomena produced on two-dimensional systems.? Earlier we noted that the
Akan and other Ghanaian societies had a remarkable precolonial use of loga-
rithmic spirals in iconic representations for living systems. The Ghanaian four-

fold spiral (fig. 6.4a) and the four-armed computer graphic in figure 7.12b are
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(a} Paired spirals emerge from a three-state cellular ayromarion. Black cells are live, white cells are dead,
and groy cells are in a refraceory or “ghost” state, The rules: Any dead nearest neighbors of a live cell
became live in the next iteration, and any live cell goes into the ghost state in the next iteration. The
refraciory layer aces as a memory, providing the directed growth (i.e., the breaking of symmetry) needed
w create a spical pattern. :

(b) This foue-armed logarithmic spiral from Markus [1991) was produced by a
six-state cellular automaron in which a sequence of ghost states corresponds
to increasingly dack shades of gray. The system makes use of a very high-
resolution grid as well as some randormn noise 1o prevent the tendency for

the patrerns to follow the grid shape (as in the square contours of the spiral
above). Compare with the Ghanaian fourfold spiral in figure 6.4a.

Mushroom cut in half. North African sheep.
(From Haeckel 1gog.) (From Cook 1914.)

+ Bivalve shell.

{c) Paired logarithimic spirals often occur in ndteral growth forms.
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FIGURE 7.12
Spirals in celhdar automata



We can view the owari hoard as a one-dimensional cellular automatan. One
dimension is not necessarily a disadvantage; in fact, maost of the professional
mathematics on cetlular automata {see Wolfram 1984, 1986) have been done on
one-dimensional vetsions, because it is easier o keep track of the results. They can
show all the dynamics of two dimensions. -

 The patterns noted by traditional owari playess offer @ great deal of insight into
self-organizing behavior. Their cbservation of a class of self-propagating patterns,
the “marching group,” provides an excellent starting point.

OO0O000 OOO00OO
HEHOOOO OHHOOO

3421553154311 9422223331442 5311 24221123322 433441124552 233111-=4311

—— 17 iterations — =

The marching group is an example of a constant pattern. Here we see counters in
the initial sequence 3421 converge on their marching formation simply by repeating
the “scoop from the left cup” rule through 13 iterations.

Just as we saw in two-dimensional cellular auramata, transients of many different
fengths can be produced. Transients of maximum length are used as an endgame tactic
by indigenous Ghanaian players, who call it “slow motion”——accumulating pieces on
your side to prevent your opponent from capturing them. In nonlinear dynamics, the,
constant pattern is called a “point attractor,” and the transients would be said to fie
in the “basin of attractien.” : - ' _

The marching group rule can also produce periodic behavior {a “limit cycle” or
“periadic attractor” in nonlinear dynamics ceems). Here is a period-3 system vsing
only four counters:

21122231211
Which leads to marching groups, and which ones lead to periodic cycles? '
—— e _ Total number Behavior
o T of counters  {afrer transients)
Marching
. S, Peri

The numbers which lead to marching groups— % _____ o T\/[E«’::(c,ﬂl:\g

1,3,6,10,15 ... —should lock familiar to readers: 4 Period 3

it's the triangular numbers we saw in tarumbeta! 5 . Period 3
The period of cycles in between each marching 6 ... {:"“Fd;'ﬁg

group is given by one plus the iteration level of the ; """" FE:::E{ 3

previous triangular number reached. 9 . Periend p
10 ... .. Marching

It .. Periad 5

{Note: Some sequences will be truncared for ;% """" ?’S::t; g

13, 14, and 15 since there are more counters 4o Period 5
than holes.) . 15 ... ... Marching

FIGURE 7.13
Owari as one-dimensional cellular automaton
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quite distant in terms of the technologies that produced them, but there may

well be some subtle connections beiween the two. Smce cellu!ar autot

model the emergence of such patterns in modezpn. scu:nnfu: studles oflwmg sys-

Lam - e

tems, and certain Gh'mann log spiralicons were also intended as generallzed

oy o ARSI e

lnodt.lb for Organlc growth it is not unreasonable to consider the possablhty that

e self- organizing dynamics observable in owari were also linked to concepts
ofblz)]og_lcal morphog,enums in tiadmonal Ghanaian knowledge systems.
w"'Rattmy classic valunte on the Asanre culture of Ghana includes a chap-
ter on owari, but'unfortunately it only covers the rules and strategies of the game.
Recently Kofi Agudoawu (1go1) of Ghana has written a booklet on owari “ded-
icated to Africans who are engaged in the formidable task of reclaiming their her-
itage,” and he does note its association with reproduction: wari in the Ghanaian

tanguage Twi means “he/she marries.” Herskovits (1930), noting thar the “awari”
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FIGURE 7.14

icon for the power of god, “Gye

Logarithmic curves and owari
The cover of the hinged owari board
we saw in figure 7.10 shows concentric
circles emanating from the Adinkra

Nyame.” A similar icon; without the
logarithmic curves, is attributed to a
closed fist as a symbol of power. The
Gye Nyame symbol thus appears to be
a pair of logarithmic curvesheld ina
fist: God holding the power of life.
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game played by the descendants of African slaves in the New World had retained
some of the precolonial cultural associations from Africa, reports that awari had |

a distinet “sacred character” to it, partlcularly |nvolv|ng the carying of the

o e

board. Owari boards with carvings of loganthmlc splrals (fg:q.14) can be com-
r:c—).;mly found in Ghana today, suggesting thar Western scientists may not be the
only ones who developed an association between discrete self-organizing patterns
and biclogical reproduction. It is a bit vindictive, but I can’t help but enjoy the
thought of von Neumann, apostle of a mechanistic New World Order that
would wipe out the irrational cacophony of living systems, spinning in his grave
every time we watch a cellular automaton—whether in pixels or owari cups—
Eering forth chaos in the games of life.

Conclusion

veld ey on

e e i e s AT ki

angular numb«::rs There is nothmg speaal about the trlangular number series—

similar nonlinear gl;ow,thﬁpmpertles can. be found in the numbers that form

b b o =

successwely larger rectangles,mpentagons, or. other shapes Nor is there anythmg

erties can be produced by applications of mod 3, med 4, ete. What is special is

the underlymg concept of recursion—the ways in which a kind of mathe watical

e

feedback 1oop can generate new structures in space and pew d mnamics in time.

et eriar, vaw-l e o 3O i et s

In the next chapter, we will see how this underlying process is found in both prac-
tical applications and ‘}bstr\act symbolics of African cultures.
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CHAPTER

—Recursion

—Recursion is the motor of fracml ggometry; it is, here that the basic.transfor-

O E
manons-——whether numeric or spatial—are spun into whole cloth, and the pat-

psr el P P ot 2 !

cerns that emerge often telf the story of thelr wlnrhng birth. We will begm by

e

clefmmg ‘three types {?,f,f-?.f“r,»r—n‘] While it is p0551b1e to categorize the examples
in this chaptu soleTy on the basis of these three types, it is more illuminating
1o combine the analysis with cultural categories. It is in examining the inter-
action berween the two that the use of fractal geometry as a knowledge system,

and not just unconscious social dynamics becomes evident. The cultural cat-

Afncan :conography.

Y

Three types of recursion .

The least powerful of

ascacie recursion, in which there is a pre-@

decermined sequence of similar processes. For example, there is a children’s
story in which a man buys a Christmas tree, but discovers it is too tall for his
ceiling and cuts off the top. His dogs find the discarded top, and put it in their

doghouse, but they too discover it is too tall, and cut off the top. Finally the
109
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mice drag this tiny top into their hole, where it fits just fine—the recursion
“bottoms out.” Note that these were all independent transformations; it is only
by coincidence, so to speak, that they happened to be the same. Figure 8.1a shows
the numeric version of cascade recursion, in which we divide a number by two

in each part of the sequence. '(hls is not a very powerful type of recursion, for

Fll’St, it requires that we know how many transforrmtnons we want

o A
aliead of t1me—and that is not always poss:bie If the mouse was in ch'\rge he

WO‘IIC{ ha'\'ze said * ‘just keep dividing until it’s small enough to fic in my hole.”

.;Second we have to know Wh"lt tmnsformqtlon to rmke '1he<\d of time, and that

e

is not alwqys posslble e:ther Remll for exqmplc the generation of the
—an

Fibonacci series we saw in ch’npter 7 (fig. 8.1b). Although the generation is just

using addition, it cannot be created by a recursive cascade, because the

. amount to be added in each transformation changes in relation to previous

“results. Generating the Fibonacci series requires a feedback loop or, as mathe-

mat;cxans call 1t, 1celat10n

@ In iteration, “there is only one trans wion progess, but each time the

pl’OCESS crewtes an Qutpul, it uses thlS TESUlt ‘IS the 1nput fOI’ th(‘,‘ next I[El”][IOE‘l

—ars

as we've seen in generating fractals. A p'utmul’lrly important variety of itera-

o e e

tion is “nesting,’ which makes use of loops within loops. Hofstadter {1980,
103-1 2mély illustrates nesting with a story in which one of the characters
starts to tell a story, and within that story a character starts to read a passage from
a book. But at that point the recursion “bottoms out”: the book passage gets
finished and we start to_ascend back up the stories. Nested Ioops are very

common in computer progr'\mmmg, and we can :llmtmte tI‘llS tha ogr'un

wing the architecture of M.Qkoulek (ﬁn 8 'IC) we exmmned in rhﬂpter
The Baila architecture we saw in chapter 2 can also be simulated this way, using

one loop for the rings-within-rings, and another for the front-back scaling
gradient that makes up each of those rings. In chapter 6 the first corn-row hair-
style (ipako elede) showed braiding as an iterative loop; the second corn-row
example added anather iterative loop of successive perimeters of braids.2 tis

common for computer programs to do such nestmg several Inyers deep, and keep-

The thlrd type of recursion is qeif reference ” We are ’I“ familiar with the

L

way that symbols or icons can refer to ‘;omethlng the stars and stripes flag refers

to America, the skull 'md -CTOSS- bones fabel refers to poison, the group of let-

ters c-a-t refers to an animal. But it’s also poesnb]e fora symbol to refer to itself.
Kellogg's cornflakes, for exqmple once came in a box that featured a picture of
a family sitting down to breakfast. In this picture you could see that the family

had a box of Kellogg's cornflakes on their hreakfase table, and you could see that
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this box showed the same picture of the family, with the same box on their table,
and so on to infinity (or at least to as small as the Kellogg company’s artisans
could draw). -

Self- reference is best known for its role in logical paradox. If for example,

e U

yOU WETE £O aCCUse someone of lymg, it would be an ordinary statement. But sup-
pose you accuse yourself of lying! This is the paradox of Epitnenides of Crete, who
declared that “all Cretans are liars.” If he's telling the truth, he must be lying,

but if he’s lying, then he’s telling the truth. The role of self-reference in logical

— et A A T e Ay,

1

\

input X 4 X 2 X output
g ———» CY o -

™
Y

Nprcvinus

NC\II’IQH(

WHILE e-count < 4 do:
= draw enclosure
WHILE g-count < 12 do;
« draw granery
« rotate toward center
« shrink granery size
"« increase g-count by 1
END of g-count’s loop
« resec g-count to O
« rootuie coward center
« shrink enclosure size .
« increase e-count by 1
END of e-count’s loop.

FIGURE 8.1

Recursive cascade versus iteration
{a) A recursive cascade, in which the same transformation (division by two) happens to be used
ineach part of a sequence. This requires knowing how many times the transformatin should
happen ahead of time. Tt also requires that the transformation is independent of previous results.
{b} The Fibonacci sequence is produced by adding the previous number to the current number to
gee the next number, starting with 1 + 1 = 2. In the Fibonacei sequence we add a different amouat
L w each iteration—we could not know how much each transformarion should add ahead of time,
soa tecursive cascade would not do the job. {c) In some cases it is necessary to put an iterative
loop inside another iterative loop ("nesting”}. Here is an example of nesting in a compurer
progeam for drawing the architecture of Mokoulek we examined in chapter 2. [t is written in whar

Best loop draws three large enclosures, and the inner loop draws 12 graneries inside each enclosure.
Variuble “e-count” tracks the number of enclosures, and g-count tracks the number of graneries.



12 African fractal mathematics

p’lradox has been :mpormnt for mathematical theory, but it has also been put to
pmcucal use in computer programeming. Most programming has little routines called
“procedures,” and often a procedure will need to call other procedures. In self-

referentxal programmmg the procedure calls itself. i

Practical fractals: recursion in construction techniques

f In his discussion of the merat-working techniques of Afriea, Denis Williams givcs\

{ a poetic description of recursive cascade in the edan brass sculptures of the |

\ Yoruba: “The image proliferates like lights in a bubble: one edan bears in its lap~
another, smaller version of itself, which bears in turn a smaller in its lap, and this
bears another in its lap, etc.—a sort of sculptural relay race” {1974, 245). While
the edan sculptures are unique to the Yoruba, recursive construction technigues
are quite common in Africa. For example, Williams goes on to note that much
Aftican tetalwork, unlike European investment casting, vses 2 “spiral technique”

* to build up structures from single strands (whether before casting, as in the lost
wax technlngg'TM) resulting in "helical coils formed from
smaller helical coils.” A wig made from mertal wires (ﬂg. 8.23) shows a similar
:te—r"e_{t:;;::gggt"ruCtlon using coils made of coils. In chapter & we saw some
examples of African hair styles in which either adaptation to contours or
abstract spatial transformation resulted in a scaling pattern. The fractal braids
shown in figure 8.2b have nothing to do with the shape of the head; they are

i rather the result of successive iterations thar combine strands of hair into
braids, braids into braids of braids, and so on. Figure 8.2¢ shows another wig,
this one for a sculpture, that features braids of many scales.

Th1s collectlon of sculpture, memlwork, :md h'urstyhng sounds like a

motley assortment, but once we seart lnokmg for recursion we see a close rela-

tion: all ex’lmplu.s used a smgle transform'ltlon——smckmg, br'ndmg, coﬂmg——

—
that was “applied’ seveml tlmes Lookmg at the {el'mon between the basic

transformation and its final outcome can help us dlstmgmsh 'unong different types

S— e R e

o of recursion. The braiding pattern of flgure 8. 2b for e\cample, is based on iter-
o ation, because the way each stage is braided depends on the braids produced in
, : previous stages; they are braids of braids. The braids in figure 8.2¢, on the

other hand, are of different scales simply because each stage uses different

o amounts of single-hair strands—a cascade of predetermined transformations.
Similarly, the coils of coils indicate iteration, because the output of one stage
becomes the input for the next.

Recursive construcnon _tgchmqueq are also used for the de__omt:ve

designs of African attisans. In our discussion of the fractal esthetic in ch'lp—

T RO ‘.

b e
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ter 4, we examined decorative patterns which did not provide evidence for a
formal geometric method. That doesn't mean no formal method could possibly
exist; it’s just that none could be readily dlscerned from the design itself, and
the artisans did not report anything beyong mtumon or esthetic taste. But there
are some designs that do indicate an explicit recursive technique from the pat-
tern itself. Figure 8.2e shows a Mauritanian textile with two such scaling pat-
terns. Intentional application of iteration as a construction technique is
indicated by the way the X fractal's seed shape is shown on either side, and
by having iteration carried out on two completely different seed shapes in the
same piece. The triangle fractal {close to what machematicians call the “Sier-
pinski gasket”) is also found in Mauritanian_stonework (fig. 8.2f). A three-
dimensional versicn from Ghana (fig. 8.2h) may have been inspired by these
designs.

Both of the above are examples of additive construction, as we saw in the

Koch curve of chapter 1, but subrracnve iterations, as we saw for the Cantor

______ e [

set, are also found in Afrlcanjfcoratlve fractals (flg 8.2i). Carvmg designs

include appl;canons of iterative construction, particularly for calabash deco-
rations (fig. 8.21). A geometric algorithm for producing nonlinear scaling
through folding was invented by the Yoruba artisans who produced the adire
cloth of figure 8.2n. It is not merely a metaphor to refer to a specified series
of folds as algorithmic; in fact, OLMELWMM,"
was discovered in 1960 when physicist John Heighway experimented with
iterative paper folding (Gardner 1967). The 2 ':dire—c_lg)’t’l'l_a_lso-shgws_thc\gpli-

—— et
cation of reﬂectlon 5 etry at every.scale from single-stitch rows, which are

reﬂected on etther SIde of the fold edges to the entire fabrlc which is created

e T

So far we have only L{ISCLIbSEd the u,chmc'nl method employed but of course
cultural meaning is often attached to.chese techniques as well. Recursive hair-
styles, for example, embed layers of social labor with each iteration, a way to

——— _--—-

IMWYDIHEDMMHI meaning (such as fnendshlp between styl- -
ist and stylee). Figure 8.3a shows a Fulani wedding blanket, in which spiritual
enerpy is embedded in the pattern through its iterative constructlon‘/Prestlge'
can also be associated with 1ncreasmg iterations, as we find for brass ¢astiiig
and bmdwork in the gi’ﬂbb]dl‘ld areas of C'xmetoon {(fig. 8.3b,c}. The scaling iter-
/ ations in one of the brass sculprures (fig. 8.3d) was reported to be symbolic as
well: it showed three generations of royalty. But kinship groups are nor just
static entities; they change across time, and in the following two sections we
| will see thar African representations of such temporal processes often involve

‘recursion.
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FIGURE 8.2

Recursive construction techniques :
{a) Coils of coils are used to create this metal wig from Senegal. (b) A scaling cascade of hrakd
a mask from the Dan societies of Liberin and Cote d'Ivoire. {c) Iterative braiding in this hai
from Yaounde, Cameroon, la tresse de fil, can be simulated by fractal graphics. (d) Three ite
of the tresse de fil simulation. ‘ ‘ ‘ -
{b, from Barbier-Muelier 1988.) ' {frmnere




FIGURE 8.2 (continued)
Iterative construction

in Mauritanian decoration

~{e) Recursive construction with triangles and
X-shapes in' Tuareg leatherwork. The Xoshape

is related to the quincunx discussed in chapeer 4.
{f} Designs using several iterations of triangles
can also be found in Mauritanian stonework.

() The use of triangles in this nomadic
architecture from Mauritania may be one

reason for the popularity of the desipn. Unlike n
rectangles, triangles can create a rigid frame
using flexible joines—an mmportant feature in

a landscape where long poles are scarce and
lashing is the most commen jomery. (h) A single
iteration of a three-dimensional version of the
recursive triangle construcrion, created by Akan
artists in Ghana.

(e, from Jeffexsom 19737 f and g, photos cowrtesy
IFAN, Dakar; b, from Phillips 1505, fig. 5.103.)

{figure continues)
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FIGURE 8.2 (continued}
Scaling pattern from subtractive iteration
{i) A Fante woman posing in front of a painted studio backdrop, Cape Coast, Ghana, 1860.
(/) The Fante pattern can be thought of as two iterations of scaling subtraction (that is, erasing).

i * Strips are erased [tom an ail-black background. Where the thick strips intersect, we get large
P seuates, and where the thin strips intersect we get small squares.
(i, photo from the National Museum of African Art, Smithsonian Institugion:)’ - - (Rgure conliny

Representing recursion as a process in time: part I, luck and age

A simple example of African rggrgwursio@s a time-varying progess

is shown in figure 8.4, where we see three designs that depict wishes for caiches

of everlarger fish. Since the experience of bad Tuck or good luck in fishing can
e 0 .. B . N .

occur on a daily basis, it is easy to see how a big fish could become an icon for
good luck. But in these designs the artisans take the concept a step further. Good

fortune is not in terms of a singular chance event, as one sees in the myths of

the Native Ameri

can trickster.? The wish is for an iteratiye process—that each

fishis to be successively larger than the fast one.
¢ While these good luck icans are often a more informal part of cultural prac-

" tice, other recursive processes are taken much more seriously. Anthropologists




Seed shape, with acrive Fourth iteration.

lines in gray.

Fourth iteratinn enlarged, with adaptive scating
{mapping from a sphere w a plane) applied w
march the adaptive scating of the calabash desipn.

FIGURE 8.2 {continued)

! Lieration in carvings

'{}{k) The Bakuba of Zaire created several earvings that feature a self-similar design. This Bakuba

; wooden borile makes use of hexapons of hexagons as well as adaptive scaling as it narrows into the
neck. (1} Chappel (1977) records a wide variety of ealabash designs, many with scaling accributes.
This is probably the best example of iterarive construction in these carvings. The design

Faimulation nut only requires reciirsion but adaprive scaling as well. (m) Seed shape and fourth
Jieration; fourth iteration enlarged, with adaptive scaling applied.

[k, courtesy Musée Royal de I Afrique Cengral, Belgium. ) {figure continues)




FIGURE 8.2 {continued)

Adire cloth: scaling from iterative folding
{n) This Yoruba adire cloth is actually two separate pieces attached along the hovizontal midline.
The dye pattern is created by sewing along folds before dye is applied and then removing the
' threads so that the white lines are left where the dye did not penetrate, {0) Théhf‘h'iding methnd is
' based on reflection symmetry across a diagonal. It is easiest to understand by making a paper madel.
The adire artisans have not only
developed an algorithm for generating
this nonlinear scaling series, but have
done so in a way that maximizes efficient
production: all folds fall along the same
rwo edges, 50 only two edges need be “
sewn. Your paper mode) can imitace this
effect by running a heavy felt marker
along the two edges, so that the ink
bleeds through all the layers (you can
cheat by inking each fold as you unfold
it}. Note that the white lines in the adire
are triple-—this, too, is created by a
reflection symmetry, sewing next to the
fold to create the two outer lines (one on
each side of the fold), and sewing right
on the edge of the fold to create the
center line.
" {n, photo from Picton and Mack 1979.)

b L . Firse, cot ont a paper reetangle with width twice the height, Second, fold the square along i
SRR and fold i in hall, making a square. dingonal, making » triangle.
i A

mark points
at Vo and Vi of
the suter sides

of the tianple.
These points can be
determined hy folding, if
one wishes to maintain the
s origami equivalent of compass and Fourth, fold from the corners an Finally, fokt in the sma
straight-edge construction, hut doing opposite sides aloag the line hetween overlapping cormer on
it hy eyehall works fust fine. the Vo and Y% marks. sicle.
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FIGURE 8.3
Making meaning

through iterative

construction
(a) This Fulani
wedding blanket from
Mali is based on
diamonds that scale
from eicher side as
we move toward the
center; a patrern that is
easily simualated using a
fractal (see didgram)
The weavers who
created it report that
spiricual energy is
woven into the pattern,
and that each successive iteration shows an increase in’
this energy. Releasing this spiritual energy is dangerous,
and if the weavers were to stop in the middle chey would
risk death. The enpaged couple must bring the weaver
food and kola nurs to keep him awake ungil it is finished.
{b) The prescige bronze of Foumban, Cameroon, sften
makes use of self-similar iterations. (¢} Prestige is also
symbolized by the labor and artistry required to produce
the many iterarions of bead patrens fur this elephant
mask. (d) According to Salefou Mbetukom, the leading
castor of Foumban, this sculpture shows the succession of
kings in the royal family.
(¢, from agence Hoa-ui.)
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have always been interested in the contrast between the elaborate political and
economic hierarchy of European s sncwtu_s and the rdatwdy ‘classless” (some-
times even rulerless) structure of many precolonial Afrlcan socnette&,lf it is not

political and economic structure that goveins their sociery, then what does?

One part of the answer is age. All human cultures differentiate between chil-

FIGURE 8.4

If wishes were fishes
(a) Scaling scales: this Bamana tattoo,
created with henna, is said to represent the
scales of fish. It is good luck, signifying ever-
larger fish catches. (b) This is an “abbia,” a
carved gambling chip from Camercon.
Given the high stakes of the game, it could
be a more apgressive symbolism than just
luck, e.g., “just as you have swallowed others,
i will swallow you.” Other chips appear to
carry the iteration out several more levels,
although they are less recognizable as fish {c).
{(d} This print with four irerations of Ash is
from northern Ghana. It was reported to be
a fertility symbol,
(d, photo courtesy of Traci Roberts and

Ann Camphell.} d
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dren, adu!ts

Iders, bur in many Afncan societies the dtwsmns are much

ate and steuctured. In theae  age- grade systems ali commumty mem-

of nrml initiations. In chap[er 5 we saw, one example in whlch these initiation
:.mgcs appe-\red 10 be accompanmd by an iterative scaling geometry, the lusona.
Figure 8.5a shows anothg:r geometric visualizarion of age-grade initiacion: a hexag-
onal mask created by the Bassari of the Senegambian and Guinea-Bissau region.

Although the mask is only a linear-concentric scaling of hexagons, and thus
not a fractal, it does suggest an iterative process,' and we might well suspect a link
berween stages in age- grade and stages in ltEl‘ﬂ[lOﬂ. The initiation process is a
c_loaely guarded sec}éi "so it is not simply a matter of asking Bassari experts, bur
during my visit with the Bassari in 1994 | found that the meaning of other
1_11athemanc'11 patterns in B'xssnrl culeure can be used tomake some educated puesses
about the meaning of the mask. Despite the extensive migrations from the vil-
tages to cities (Nolan 1986}, there is still strong participation in the age groups
and transition rituals. The “forest spirie” Annakudi, for example, seems to be
undaunted by the city of Tambacounda, where a local age group hosted him at

a well-artended dance during my stay. Indeed, 1 found the stereorype of traditional

efders and irreverent youths to be somewhat reversed (which was explamed to

e e i s b

-~

FIGURE 8.5
Scaling hexagons in a Bassari mask

Ots in groups Ofbl‘(
{a, photo from agence Hoa-QuifMiche! Renaudem: )
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“me as an effect of the strong hierarchy of secret knowledge: the youth are often

more wary abaut brewkmg taboos because they are less certain about boundaries

and consequences). This is not to say that there is any oveur presence of fear In
fact, it is the positive aspects of the secrets that are stressed, as became obvrous |

when ‘elders gleefully refused my questions while emphasizing the wonderful

-

.nature of the information they céuld not divulge.

areas of thelr hfe Tl\ey hwe a pnpuhr g'une for emmple piayed with pebbles
on a sand pattern, which makes use of two axes with six holes in each line. In
their traditional calendar there are six months per year, each of 30 (6 x 5) days,
with an initiation about every 12 {6 % 2) years (to a total of nine initiations).
Each of these rites of passage involves a 1engthy edumtlon in a new level of
traditional knowledge The most imporzant is the passage to '1dulthood which

e

Lrsts for six days In addition to these time measures, the aumber six also 'rppears
various counts, often used knot:s grouped by six. The Bassari elder who demon-
strated these tallies to me (fig. 8.5b} told me that he did not know much about
_traditional forms of calculation, but he did know that in precofonial times it was
performed by specialists who were trained in the memorization of sums. This prac-
tice may explain the origins of the famous African American calculating
prodigy, Thomas Fuller. In 1724, at the age of 14, he was captured—quite
possibly from the geographic areas that included the Bassari’—and sold into
stavery in Virginia, where he astonished both popular and professional audiences
with his extraordinary calculating feats (Fauvel and Gerdes iggo}. _
= Finally, there is the Bassari divination system. Although tbsggt_s_hgj_fﬁsﬁalre
mterpreted by images rather tban any numeric re'\dmg, they are cast six times.
Each cast provrdes the answer to a specrﬁc question {or verification of a previ-
ous question) relevant to the client’s problem; the final sixth cast shows the prob-
lem as a whole. If we compare this divination to the initiation system, the

number six can be seen asa marker for mfornnnon clusters 7 Dunr:luﬂ.f.mn
—

BRI

pomt whlch iike the tally system, allows the drstmctmns thac maintain a com-

e\cp’mdmg view of the whole Thus it seems llkely that the thng hew'\;,,(ms of
e
the initiation mask represent this six-stage iteration ofknowiledge
Nonlmeqr smlmg rter"mons can ai:o be found in Afrlc”m tmmnon masks
linear increase wrth each stage. My guess——l have not found any culeural
descriptions that can confirm this—is that it suggests “to open your eyes” as a

metaphor of knowledge, and thus maps the scaling iterations of the mask to iter-

.
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ations of knowledge gained in initiation stages. Figure 8.6b shows a Bembe mask
used in the first of a three-stage initiation for a voluntary association, the
bwami (Biebuyck 1973). Before the ceremony, the mask is hidden behind a screen,
and during the ritual the screen is graduglly Hfte&yby a high-ranking senior mem-
ber. Both [he rehnoq between the number of eyes in the mask and the, number

e,
-

e
of stages in lmtntlon as well as thls methoc{ of VIsualiy exposing the | pattern

as a seqm:nce agnm subgeat intentional use of a sc’v.lmg gcomemc desagn 1o rép-

FIGURE 8.6
Nonlinear scaling in initiation masks
&;] Bembe mask, from western Congo, used in the first of a three-stage initiation for a volunnry
cintion, the bwami. {b) Mask used in initiation by the Bakwele of Congo.
photo courtesy Gene Isaacson; b, courtesy Musée de 'Homme )
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Representing recursion as a process in time: part I, kinship and descent

For how c[assless societies-are structured kmshlp is the other 6, Ktmhrp sys-

tems are pnm'mly b’lsed on genetic ties (“blood rehtmns an\1 '__rrlage

although most societies also have-" cmtwe kin (e.g., adoption) which are just

as real—ﬂkm‘;hlp is a cultural phenomenon. Descent is also culturally based. Most

e S e ot

Western European and American sacieties think of descent as b:ologlca]. but
that is because most of them have bilateral descent, in which both parents
are used to establish kinship. Umlmeal descent, where a kin group traces their
lineage through one sex only, is actually more wore common {in about 6o percent of
the world’s culrures). A ‘gla/n\} isa umlmeal kinship group whose members report
that they are descended from a common distant ancesto then a mythological

m often h'we important rehglous and polmcql functmns, although
they are typically spreqd Qut across m'mym_yi.llages ;md usmlly prolubm marriage
bﬂ;ze—;ﬁ_aan_mgm_bg;s. ‘

We have already seen how the Bamana use recursion to generate a binary
icode in their divination; here we will look at their representation of descent as i!
%recursion. The antelope figure in Bamana iconography is associated with both ! ‘
;human and agricultural fertility. In the chi wara association, which is open to
| both men and women, the "mtelope appears in a striking headdress (fig. 8.7a),

‘Whlch represents the recursion of reproduction: mother and child. When seeing |

“one headdress individually, the scaling seems trivial, but with several examples ! i

: together the extracrdinary insistence on self-similarity becomes apparent. Thls %
ncon n acts. as the seed transformation in an iterative loop: the child becommes a f:

mother, who his a child, who becomesa :norher,"anq so - oh. Figure 8.7 shows ﬁr

the descent carried to a third iteration. . :ﬁ

In chapter 2 we saw several examples in which descent was tied to scal- }‘§

ing architecture. The Batammaliba, who live in the northern parts of Ghana, ;ﬁ

Benin, and Togo, have developed an elaborate system for this relationship

{Blier 19879). Figure 8.8 shows a diagram of their two-story house, based on the

22

circle of circles found ir much of the West African interior. In front of the house

fies the first of two scaling transformations. It is the “soul mound a circle of

cylinders representing the spirits of those currently !wmg in tl\t house and

By

physically structured like a scaled-down version of the house architecture. As

FH

the current family gives way to a new generation, the soul mound undergoes a

second transformation in which ic is divided into a single cylinder and is

ZER

moved inside. A scaling sequence of these single cylinders-—aone far each gen-

eration—can be seen wrapped around the central tower inside the house.



F

FIGURE 8.7
Recursion and reproduction in Bamana sculpture

although the Agures vary widely, each one is similar to itself. This can be attributed to the Bamana
vicw of reproduction as cyclic iterations. (b} Here the cycle is carried out to three iterations.
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FIGURE 8.8

Recursion in Batammaliba arcfutecture
(a) Diagrarn of the Batammaliba two- story house. In
front of the house lies the “soul ‘mound,” representing
the spirits of those currently living in the houvse.
(b} Inside the house, single mounds representing
ancestors ave found in the scafing arrays, with the size of
the ancestral mounds increasing from youngest to oldest.
Here only one such array is shown, but typically there
are several in the same houschold.
(a, from Blier 1987.)

Blier's diagram indicates that the size of the ancestral mounds increases from
youngest to oldest, and she notes that this reflects the Batammaliba's idea of a
spiritual power in proportion to age. So far it would appear that there are only
two scaling cascades—one to shrink houses to sou! mounds, and another to

.divide soul mounds into cylinder rows——and no iterarive loop. But if the largest

mound represents the oldest, then recent mounds would be increasingly

threatened by vanishing scale. How would the first descendant have known how

large to make the first mound? Blier notes that many of the symbolic features

of the architecture are replastered with additional layers of wet clay on ritual
, occasions, and we can surmise that this applies to the ancestral mounds as
well. Thus an iterative loop, in which each new ancestor adds power to the older
anes by increasing their mound s size, would be at work in the scaling sequence

we see qccumulatmg around the cenral tower.
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( The Mirsogho soctety of Gabon includes several religious associations that
-are housed in the same temple (ebandza). Figure 8.9a shows che central post of
an ebandza featuring scaling pairs of human figures. As in the chi wara hgure, there
is only one iteration; the significance lies i s in th this ﬁgure as the seed transformatjon
For a recursive process. ThL useb‘:)"f & Cross shﬂpe may b}g-due to Chrlsman mﬂuence
'bur the bilareral scaling is quite indigenous, as we see in the classic Bakwele sculp-
ture (fig. 8.9b) elsewhere in Gabon. Most important, the ebandza post provides
a visualization for the iterative concept of descent that is widely used in this cul-
ture area. This is beautifully described by Fernandez {198z} in a detailed ethnog-

raphy of the Mitsogho's neighbors and cultural relatives, the Fang.

Although the Fang are patrilineal, they believe that the active principie
of birth——a tiny human (what was called a “homunculus” in early European med-
ical tlﬂeory)—is contained in the female blood. The idea of the new existing within
the old, and vice versa, is a strong culrural theme. For example, in one ritual the
mother places a newborn child on the back of her oldest sibling to symbolize

continuity of the lineage. Fernandez (1982, 254) notes that the rebirth con-

cept is so strong | that “Fang fathers often called their mfant sons ata, the

f:;_l_mhar form of father In many of the Fang and Mttsogo religious practices,
ti;e—js_p]nt is explicitly described as traveling a vertical cyclic path. Ancestors
rise from the earth to become born again, and by proper living they can rise
higher with each rebirth. ‘ .

These cyclic iterations are visualized in the Nganga dance of the Bwiti

r(,lq,lon {fig. 8.gc}. Eveniin Chrtstlan ammlst syncretism, biblical characters
lical charact

E:Eome Adam and Eve who become Cain and Abel (understood as male and

female), who become Christ and the Virgin Mary. Fernandez notes that these

cycles are not mere repetition, but rather iterative transformations: “The
spiricual-fraternal relation of Zame and his sister is converted into the carnal
relation of Adam and Eve which degenerates into the materialistic and divisive
relation of Cain and Abe! which then is regenerated as the immaculate and
filial relationship of Mary and Jesus” {p. 339). According to Fernandez, these
degenLratson/regeneranon differences are visualized as homontal versus
vertlca! 7 which could explain the dltemanon in the ebandza posts. ln '\ppl\;—
ing this cyclic conception to the ebandza structure (fig. 8.9d), we can see che
descent model in its full fractal expansion.

The Tabwa, who occupy the eastern section of the Demaocratic Republic
of Congo (Zaire}, have also developed several geometric figures to serve as mod-
els for their conceptions of kinship and descent. Mauter and Roberts {1987, 25)

explain that in the Tabwa origin story, an aardvark’s winding tunnel results in

(&

)

-1



FIGURE §.9

Recursive kinship in Gabon
{a) The central post of the ebandza temple in western Gabon sugpests an iterative descent
concept. This is actually a museum reproduction. (b} Bakwele masks from eastern Gabon show
similar hilateral scaling. ' .
{a, from Perrois 1986; b: left, from Pervois 1986, right, Metrapolitan Museum of Are; from Zaslavsky
1973.) {figure continues)
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FIGURE 8.9 (continued)

_ Recursive descent in Gabon

{c) In many of the Fang-and Mitsogo religious practices, the
spirit is explicidly Jescribed as traveling a vertical cyclic path.
Ancestors rise from the earch to be born again, and by proper
living they can rise higher with each rebirth. These cyclic
iterations are visualized in the Nganga dance of the Bwiti
religion. (d) We can apply the explicit mapping of cyelic
generations given by the Nganga dance to the iterative posts of
the ebandza temple and see the descent model in its full fractal
expansion. The implication of infinite regress is discussed in
chapter g.

(¢, from Fernandez 1982}

a "bottomless spring” from which emerges the first human, Kyomba, whose
descendants spread in all directions from this central point. This spread is visu-
alized by the mpande, a disk cur from the end of a cone snail, which is worn as
a chest pendant {fig. 8.10a). The central point is drilled out, representing the emer-
gence of Kyomba from the deep spring, and the logarithmic spiral of the shell
‘end symbolizes the expansion of kin groups from this origin.®

One way 10 represent these expanding iterations through time is 1o take a
series of portraits as the structure changes: projections at different points along
the rime axis. Figure 8.10b shows the first step toward this design: a more linear

version of the mpande disk, in which an Archimedean spiral fits berween a series
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of triangles (which represent the wives of the guardian of the ancestors}. In
figure 8.10c we see that the linear spiral has become concentric squares, but
they are now portrayed in-a scaling sequence, suggesting a sl’f_:rieS of"?ortraits of

; the kinsHip spiral as it expands through time. Similar scaling square sequences,
carried cut to a great number of iterations, can be seen in the staffs of their
northern neighbots, the Baluba {(fig. 8.1cd).

FIGURE 8.10

Tabwa kinship representations 4

: {a) The mpande shell worn by Chief Manda Kaseke Joseph. {b) A more linear version of the
mpande disk, in which an Archimedean spiral fits between a series of triangles {which represent
the wives of the guardian ancestors). {¢) The linear spiral has become concentric squares, but they
are now portrayed in a scaling sequence, suggesting a series of portraits of the kinship spiral as it
expands through time. {d) Similar scaling of square sequences can be seen in the seaffs of their
northern neighbors, the Baluba.
(a—¢, from Roberts and Mavrer 1985, d, Musenm fiiv Vollerkunde, Frankfure.)
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Recursive cosmology

In all the descent representations we have examined, kinship groups trace them-
selvestoa mythological ancestor at the beginning of-the world, and thus we move
cepts are often based on a recursive nesting. The best-known exarr;ple is that of
the Dogon, as described by French ethnographer Marcel Griaule (1965). His work
began during the 1930 Dakar-Djibouti expedition, where he first made contact
with the Dogon of Sanga in whart is now Mali. In 1947 his studies rock a dra-
maric turn of events when one of the Dogon elders, Ogotemméli, agreed to intro-
duce Grizule to their elaborate knowledge system. Clifford (1983) provid‘es a
detailed review of the _strong reactions to Griaule’s resulting ethnography.
While many of the cririques were reaHy about the fmimgs of modernist anthro-
pology in genemlmthe tendency to prefer a static past over the present, or a
singular “tradition” over individual invention—there were also those who
simply did not believe that such elaborate abstractions could be indigenous.
For the Fogol the human slﬂpL is not only a biclogical form ‘but maps
meaning at ail Tevels: . “The fact that the universe is pmJected in the same

Manner on a series of different scales—the cosmos, the village, the house, the

mdwldual—provades a profoundly unifying element in Dogon fife” (Duly 1979¢).

Tl\e/ﬁogyw house is physmally structured on a model of the human form with

a large rectangle for the - body, smaller recténgles 0 h érms a door

JEN—— S,

Tor the m0uth and so on. The Dogon v1lhge however, represents the human
form with a symbollc structure rather than a geometric structure: it is not phys-
icatly arranged as a human shape, but various buildings are assigned meaning
according o their socinl function (ehe smithy stands for the head, the menstrual

ludt,u. as honds, ard-soroni): T h’e ase 'Ur two thfucnt bysrum of representatijon

b

of tlu_ Dogon 5 u.hyou:a icons. do thW human forms nmde out of lu nan formb
(ﬁg 8.11a).

A threefold scaling appears in several aspects of the Dogon religion, and

it is here that we find an indication rhar the Dogon are using more than just
a cascade. Griaule {1965, 138) summarizes Ogotemméli's creation story:
“God . . . had three times reorganized the world by means of three successive
Words, each more explicit and more widespread in its range than the one
before it.” Bur these reorganizations are not merely layering one on top of the
ovher; racher the ourput of each reorganization becomes the input for the next.
The earth gives hirth 1o the first spirits; these “Nummo” regenerate ancestral
beings into humanlike repriles; the reptile-ancestors are again reborn as the first

true humans. Within rebtrth th(_ thrccfold ireration is again cnacted ln the first

B it L T




{a) In the Dogon cosmaiogy, the structure of the human form
created from human form.

§

{h) The symbolism of the stacked pots,
représenting the breath of life, within the
feteus, within the womb. We can use an
iterative drawing procedure to better
understand how this kind of scaling can
result from a recursive loop. Suppose we
have o routine that can deaw the circle of
the pot given a diameter, and one that can

draw a lid.

While diameter = minimum do:
Draw a circle of size diameter
If size = minimum, draw a lid
Shrink diameter by %3

End of “while” loop.

This procedure first checks to see if we are
past the smallest diameter possible. If not,
it draws a pot, shrinks the diameter value
by 24s, and then goes back to the start of
the while loop. In other words, the output
of one iteration—a given diameter—-
becomes the input for the next iteration.

{c) Dogon recursive image of mother and
child.

FIGURE 8.11

Scaling in Dogon religious icons
(a, from Lande 1073; courtesy Lester Wunderman; ¢, from Carnegie Institute 1970; coneesy of

Jay C. Leff)
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regeneration, for example, Lach ancestral being enters the earth's womb, which
turns each of them into a Fetus whu:h allows the breath of life (monmo) to enter.

The co»mologlcal narrative suggests thar in the Dogon view the birthing

processes at all scqles are, in some senge, iterations through the same transfor-

P—

m‘mun, and that thes o

et -

crations are dctually nested loops.

\X/hy should the Dobon require such deep iterative nesting? | suspect that

there are two motivations; Flrsc there is an nsight into modeling the world:

ehvuonmuntal and Soual Chang,e The econd s [he cu]tural ccontext tof thls

authonty, ‘which can only be done by giving them gradual access to the source

of this” power which is knowledge. leedgt_ syste?ﬂ in which endless exe-

gesis is possible makes the initiation process a lifetime actlwty But havmg 50
much explanatory elbow room also presents a problem with translanng such
narratives into machematics.” We had to be careful with translations for more
formal practices, such as interprering the Bamana divination system as a binary
code, or adire cloth as a geometric algorithm. A narrative is not a quantitative

or geometric pattern and irs amblgmty requlres all the more:care in produc-

= ———— e Sk

“does not embelli

ndlge

_______ ”concepts
stmctuml anthropelogist like Claude Lévi-Strauss would do—and the narra-
tive as an indigenous model, such as the Dogon's system for representing their
own abstract ideas. The best way to limir our translarion to ideas that the Dogon
themselves are trying to convey is to compare these abstractions of the narra-
tive with other, more formal Dogon systems. This means missing some ideas

that do not have such formal counterparts, but it is better to err on, the safe side

-in this context

b e i

Thc marum[ designs of the Dogon are mo e restricted than the narrative

in terms of their iterative depth The best case is probably in the iconography
-of the éjr:u;ftr{r,“ where Ogotcmmeh explains a stack of three pots: the largest rep-
-resents the womby; the one on top of it, creating its lid, represents the ferus; and
the lid of that pot is the smatlest pot, containing a perfume thar represents the
breath of life (Griaule 1965, 39). The smallest pot is capped by a normal lid; at
this point the recursion “bottoms out. " This is not merely a stack of different sizes;
in the Dogon view the womb creates the preconditions that give rise to the ferus,
which is the precondition for the entry of the breath of life. The recursion is empha-
sized in the way that each new pot begins beforg_t—h_grQWDUS pot ends {hg. 8.11b},
that is, one pot’s lid is the next pot’s body (Griaule 1965, 199). In the sculprure

in hgure 8.11¢ the mother's breasts become the child’s head-—again, a new one

133
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begins before the previous one ends. As we saw in the chi wara sculpture of the
Dogon’s Bamana neighbers, reproduction is modeled as recursion.

The Dogon view of a cosmos structured as nested human-form is quirte
similar to certain ancient Egyptian representations. Figue 8.12 shows a relief
from a tomb in which the cosmos encloses the sky, which encloses the earch.
It is interesting to note that there are again three iterations of scale. A three—)
ireration numeric loop is indicated for the Egyptian god of wisdom, Thoth. He
is referred to as Hermes Trismegestus, which means “thrice great Hermes,” but
he is also referred to as “eight times great Hermes.” Why both three and eight?
It makes sense if we think in terms of those common clements'of African numcric
systems, recursion and base-two arithmetic. Thrice great because while an
or‘d‘i.ﬁ)éry human may rise as high as the master of masters, Hermes Trismegestus
is the master of masters of masters (three iterations); thus we can surmise “eight
times great” refers to 27 = 8.

s kit
P AT

b
vy

FIGURE 8.12
Recursion in the cosmology of ancient Egypt
Geb, the Earth, enclosed by Shu, space, enclosed by Nut, the seellar canopy.,
{From Fourier i821.)
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Many of the processional crosses of Ethopia also indicate a threefold iter-
ation (fg. 8.13). Although the crosses are now used in Christian church pro-
ceedings, Perczel (1981) reports that relared designs can be found on ornaments
excavated from the city of Axum in northern “Ethopia in the second half of the
first mtllennlum B.C.E., 50 we should not assume that the threefold iteration was
originaily related to the Christian trinity, although a connection may have
occurred later (ﬁg. 8.13b). Could there be a common history behind all these oceur-
rences of triple iterations in the religious icons of the Sudan and North Africa?
I think the common use of re

occurrence oF mple 1terat10n may be only due to lhe sumlanty of carcumstances

rsion itself is due to a mutual mﬂuence but the

ing with, Minute scales are difficult, so that the rendency to be iimited to three
iterations may simply be a practical consequence of the craft methods. It may also

be that if one wishes to get the concept of iteration across, two is too few, while

more than three is unnecessary {which is why modern mathematicians ofien rep-
e n

resent an infinite series by the first three elements, e.g., 1 2,3 .. ). Onthe other
hand, there are cases where many such “unnecessary” izerations are made in the
most difficult of craft materials. Figure 8.14 shows an ancient Egyptian design,
carved in stone, representing the origin myth in which the lotus flower {its petals-
within-petals illustrated by o multicude of scaling lines) begins che self-penerating
- creation of the material world. o o

. b e T e it

Sdf reference

SLlf reference is the most powcrfu[ type of recursion. The abll:ty ofa system to

reﬂLCt on uself is at the he art of bo:h the limits of mathemanml computation

ol Sl S RIS U e

as well as our subjective expenence of consciousness. But there are relatively

ftivial applications of self- reference s well (une can alwaya use a blowtorch to
light a candle). Self-reference first came to the attention of mathematicians in
simple examples of logical paradox; for example, the “liar’s paradox” we exam-

ined earlier. To see how self-reference can be more than just a logictan’s joke,

fet’s examine how it works in pmgrmnm‘mg. \ean that a sinlple cascade could

of rime. The same problem occurred for the Batammallba ances[rfll mounds; since

s

the ftrst descendant did not know how many would be needed, the system has
—_ ‘ to allow for iterative resizing. We also saw the possibility of nested iterarive loops,
tluserared by the two-loop drawing program for Makoulek architecture. Bug sup-
pose we didn’t know how many nested [oops we were going to need? In the same

way that the recursive cascade could not deal with an unknown number of iter-



Seed shape -
{all lines are" .
active lines} Second iteration Third iteration

FIGURE 8.13
Fractals in Ethiopian
processional crosses

(a} Fractal simulations for Ethiopian
processional crosses through three iterations.
(b) Ethiopia converted to Christianity in
331 C.E., and in the thirteenth century King
Lalibela directed the construction of churches
to be cut from massive rocks in one of the
mountain regions. The church of St. George'
{at right} shows a triple iteration of nested
crosses:
{a, all Ethiopian processional crosses from Pordand
Museum in Qregon; photos courtesy of Csilla
Perczel, b, photo by Georg Gerster. }
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FIGURE 8.14
The lotus icon in ancient Egyptian cosmology
In the origin story of ancient Egypt the fotus flower was often used as an image of the unfolding of
the universe, its petals-within-petals signifying the expansion of scales. This is a very stylized
representation used in the capitals of columns in temples.
{From Fourier 1821.}

ations, nested iteration has trouble with an unknown number of loops.1? Here
is where self-reference can help out. An example of self-reference in program-
ming is illustrated for the Dogon pot stack in fipure 8.15.

We know that the Dogon pot stack can be drawn with a single iterarive
'h.____,..._,——-—“"

e 7

toop—it does not Tequire self-reference. But the 1ask can be accompl:shed by

e

self- reference 'md we mu;ht sumtlarly ask {fe thele are cases of sca]mg in Afrtcan

desng;; in which self-reference playsa role regardless of whether it is required.

ln Eumpean hlbtory, seli-referonce beg,ms with the story of Ep:memdea of

Crete, the “liar's paradox.” Similar utilizarions of narrative self- refirence to cre-
ate uncertainey can be found in certain African rickster stories. For example,”
in an Ashanti story of Ananse (who became “Aunt Nancy” in African Ameri-
can folklore), a man named “Hates-to-be-contradicted” is tricked into con-
tradicting himself. Pelron {1980, 51) notes that the application of such
self-referential paradox is a theme in many Ananse stories; “Thus Ananse
rejects truch in favor of lying, bur only for the sake of speech; remperance in
favor of gluttony for the sake of eating; chastity in favor of lasciviousness for
the sike of sex.” The following tale is not nearly as sparse but carries che fla-

vor of self-referential paradox quite weli;

One of the most common of all stories in Africa describes the encounter of a
man and a human skull in the bush. Among the Nupe of Nigeria, for instance,

they tell of the hunter who trips over a skull while in pursuit of game and
exclaims in wonderment, “What is this? How did it ger here?” “Talking
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FIGURE 8.15

Drawing the Dogon pot stack by self-reference
The symbolism of the stacked pots represents the breath of life,
within the fetus, within the womb. We have aready seen how this
can be drawn using an iterative loop; now let's see how it can be
drawn using self-reference. _
Suppose we have a routine that can draw the semicircle of the
pot given a diameter. '

Procedure DRAW-POT
If size = minimum, draw a lid.
Else
Draw a circle of size dinmeter
Shrink diameter by %3
DRAW-POT
End of “else” clause
End of procedure

Motice that this procedure first checks to see if we are at the
smallest diameter possible. If noy, it draws a por, shrinks the
diameter value it by 345, and then calls itself-—an application of
sell-reference. Now the program has to execute n DRAW.POT
procedure again. The recursion will "bottom-out” when it finally
draws a lid. The program then skips to the “End of procedure” line
and can finally pop back up to the place it left off after executing
the previous DRAW-POT call,

brought me here,” the skull replies. Naturally the hunter is amazed and .

quickly runs back to his village, exclaiming about what he has found. Even-
tualty the king hears abous this wonder and demands that the hunter take him
’ to see it. They return to the place in the bush where the skull is sitting, and
— the hunter points it out to his king, who naturally wants to hear the skull’s
message. The hunter repeats.the quesrion: “How did you get here?” but the

. skull says nothing. The king, angry now, accuses the hunter of deception, and
' orders his head cut off on the spot. When the royal party departs, the skull
speaks out, asking the hunter “What is this? How did you get here?” The head
replies, "Talking brought me here!” {Abrahams 1983, 1)

Self 1eft:rence is also visu: iy pmtr'\yt.d insome African dun;_.nﬁ Figure 8.16n

o shows a nother abbia C'lrvmg from C"lmemon, seen '11%0 in the ;'nlestedmh'%h earller
: in this chapter. But this abbia carving is an icon for itself—it igan abbia of abbia.
; o According to the Camercon Cultural Review (inside cover, June 1979}, its mean-
: ing is “reproduction.” Anather example of self-reference from Camercon is
shown in figure 8.16b, a life-size bronze statue of the king of Fourmban. Here we

see the king smoking his pipe, the bow!l of which is a figure of the king smok-

ing his pipe, the bowl of which is a figure of the king smoking his pipe. Like the

Kellogg’s cornflakes hox described earlier, the visual self-reference instantly

feadls to infinite regress. But it could be more than just humeor in rhe hronze seulp-
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ture. Since the pipe is a well-known symbol of royal prestige in Foumban, it may
be that the artisans were making purposeful use of the infinite regress: “The king’s
power is never-ending.” -

Figure 8.16¢ shows a Bamana headdress, that is, a sculpture worn on the
head during ceremonies. Fagg (1967) suggests that this enacts self-reference:
a headdress of a person wearing a headdress of a person wearing a headdress.
Others (¢f. Amoldi 1977) have described this as a symbol of fertility spirits, but

the two interpretations may not be mutually exclusive. Returning to the

FIGURE B.16
Self-reference in African icons
a) The abbia carvings from Cameroon show a wide variety of images, but this abbia carving is
icon for itself—it is an abbia of abbia. (b) A life-size bronze statue of the king of Foumban.
re we see the king smoking his pipe,.the bowl of which is a figure of the king smoking his pipe.
} Bamana headdress. .
 dranving based on abbia pictired on the cover of Cameroon Cultural Review, 1970; ¢, photo couriesy
Fan University Museum of African Are.)
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Bamana’s close cultural relatives the Dogon, we see self-reference suggested by

Ogotemmélli's description of how the eighth ancestor, “who was Word itself,” was
; able to use Word (that is, the breath of life) to self-generate into the next iter-
ation of humanity. In exé\iﬁiuing the self-similar iterations-of the Dogon mother
and child in figure 8.11c, we noted a structural characteristic that can be
expressed in the phrase “a new one begins before the old one ends.” This would
also describe the structure of the pipe in the statue of the king of Foumban, which
we know to be explicitly self-referential. Perhaps the self-referential version of

the Dogon pot stack was the correct one aftet all.

Iconic representations of recursion

.M-F—Jm-‘ﬂ-oh‘-‘
The abbia of abbia, as a symbol oneproductlon._ tis more than just an appli-

w
cation of self-reference; it representsNFle cancept.itself. If recursion is really a
conscious (that is, self-conscious!) aspect of African knowledge systems, then
we should expect such representations, rather than just instances in which the

concept is applied. Figure 8.17a shows the application of recursion in the tra-

FIGURE 8.17
Reflux
(a) This sketch from the notebook of a nineteenth-century ethnographer in southern Seriegal
shows an indigenous apparatus for the distillation of liquor from palm wine using a scaling cascade.
(b) Ancient Egyptian alchemists drew this snake symbol to represent their reflux technique.
A tube comes out of a heated pot and reenters after cooling. This cyclic refinement was used in

the creation of dyes and perfumes, but it also symbolized the alchemists' goal of refinement of the
human soul.

{a, photo courtesy IFAN, Dalar; b, drowing hased on Taylor 1930.) v
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dirional distillation of palim wine into liquor in the Casamance region of
Senegal. Such distillation rechniques were developed to sophisticated levels
in ancient Egypt, where the process became an iterative loop which modern
chemists call a “reflux” apparatus. Figure 8.17b showsthe iconic representation
of the reflix system in the oldest known alchemical writings (first century c.g.),
which are artributed to Maria {who wrote under the name of Miriam, sister of
Moses), Cleopatra (not the famous queen), Comarius, and the mythic figure
of Hermes Trismegestus (Thoth). Taylor {1930} notes that although these
were written in Greek, “the religious element .. links them to Egypt rather
than to Greece,” and he suggests that the most likely ongm is from the tradi-
tions of the ancient Egyptian priesthood.!! In these writings we find the reflux
icon assoctated with the aphorism “as above, so below,” recalling the self-
similar scaling cosmology we have seen in sub-Saharan Africa, as well as its links
to the recursion of self-fertilization.}?

Of course, one can go too far in rittnbutmg lml\s between anc:ent Egypt

and sub Saharan Afrnca {see Oritz de Montellano 1993, Martel 1004, Lefkowitz

1996) Tﬂliere goo[

I

idence for the origins of the Egypt:an base 1w

system | from sub- Sal’nnn Afnca, and for the | persmtent use of recursion in knowl

edpe systems across the Affican continent. But it would be unwise to assume that
one can attribute more specific features to diffusion. In particular, it is highly
unlikely that the same figure of a serpent biting its tail, appearing as an icon
for the god Dan in the vodun religion of Benin {(fig. 8.18a) could have derived

from the Egyptlan nnage OT vice versa. As we shall see, fhe me'mmg of the

In Aup,usr 1994, thanks ) r]n aid of Martine de St)u:m (One of the African
descendunts of the famed Francisco de Soupza), | was granted an interview with
the chiel of the Dan temple in Cuidah, Benin, Both the chief and his wife were
quite responsive to my interest in the geometric features of Dan’s rtpre;entatlons
and identified the :.mu:;mddl icon in tron (hg. 8. 18b) as’ an at wcuk in [he world,”
[;o‘mtlng out that he creates order in wind and water. Tb_e_cydlc Dan was more

bb[laC[ existing in a ciomam where he was in commumcano.n‘wuh other gods

N

is6 found that Dan {Dangbe) was there “to

of vodun Maupml (1981 70
A,

assure the regularization of the forces,” and Blier (1995) summarizes his role as
“powers of movement through life, and nature’s blessings.” Regular phenomena
in nature—the periodic aspects of weather, water waves, biological cycles,

etc.—are attributed 1o the action of Dan.

circular form of D"m asamore abbtmct sttual farce ‘maps ne’l[ly on 10 the dif-

ference bgtween the 5mua0=dal waves we see in space and time
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noise {external temperature changes)

input (desired + If = O switch on furnace p Output {(new room
temperature} " {f < O switch off furnace’ temperalure)

The thermostat that regulates temperature in a house is a negative feedback loop. The word “negative”
is uised because we subtract the current room temperature fram the desired temperature set by the
thermastat control. Over time this will tend to produce cycles of heat and cold.

noise {foad bumps) -

input (desired + I > O steer right - output {new road position]
paosition on road) If < O steer left

Driving a car can also be modceled by a negative feedback loop. The driver attempts to stay in the center
of the tane, and will correct to adjust for bumps. Ag'lm given enough bumps,;we will tend to see cycles
of swerving to get back to the center.

C

FIGURE 8.18
The vodun god Dan

In the vodun religion of Benin, the snake god Dan represents the cyclic order of nature. Dan's
shape reflects this idea in two ways. As an abstrace force, he is represented as a feedback loop (a).
As a concrete manifestation, his hody is always oscillating in a periodic wave {b). This same idea
of a pericdic time series from cyclic feedback is also used in Western madels of nature (c).

{a, photo courtesy IFAN, Dalar.)
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water and cirrus clouds, daily fluctuations in heat and light, the biannual rainy
$¢asons, eLc. ——énd the abstract idea of an iterative loop that generates these wave-
forms The association can be derived from the kind of empmcal observation
one. gers in everyday occurrences. A-lopsided wheel will produce undulatory
rracks in sand; friends who periodically give gifts are in a “cycle of exchange,”

and so forth. What did take great insight and intellectual labor, however, was
the religious practitioners’ generalization of such observations into specific,
abatmcc umverst\lly applicable categaries, represented by icons wwh the appro-

thE geome:rlc structure.

The mathematical equivalents in nonlinear dynamics are Himit cycles and

[P, e

pomt.atrrdctors&—the results of what engineers call a neganve feEdback loop

We have already seen such characﬂtenzat:ons in cellular automata and owari,
where spatial parterns remain bounded within a cycle or frozen in a static pat-
tern. Figure 8.18c shows some commonplace examples of negative feedback loops,
and how they act to keep the behavior of sysrems bounded or stabilized, even

in the presence of noise. But the vodun system would not be complete if it could

ouly account for regulanty—what causes deviation in rthe first place? Hence
the cole of Lﬂgba god of chms Figure 8.19a shows another et iron icon, the forked
path of}.egba “eod t.‘.)f‘th(_ crossroads As explained to me by Kake S. Alfrecl
2 divination priest of vodun in Cotonou, Benin, Legba is represented by the
fork because “the answer could be yes or no; you don’t know which path he wilt
take.” For divination, in which a “path” {question) is often pursued for furcher
questions, the image becomes one of endless bifurcations. At the Palais Royal
in Porto Novo, Benin, I was told that the shrine to Legba was placed at the
threshold because his force was so distuptive that it would undo both good and
evil, creating a purification 2t the entrarce: ¥ake also explained that while the
music of Dan was stow and regular, the music of Legba was both fast and slow—
sng:ufymg his unplcdncmble nature—an observation I was able to confirm by
recordmg the drummmg that was used to call each god ar the temple of Dan in
Ouidah.!? As the converse to Dan, the bifurcating uncertainties of Legba are
like a positive feedbdck loop. amplifying deviation and noise {fig. 8.1gb).

Cont:asts between a neg.mve feedback loop, cr(_atlng stability, and the pos-

[R—

itive feedback of uncontrol!(.d disordér aré-also featured in the iconic carvmgs
of the Baule. Vogel (1977, 53} notes that the Baule chief is chosen by consen-
w05, &nd that in all important decisions he serves as mediator in public meetings
rather than as an autocrat. The Baule carving in figure 8.20a shows two caimans
(relatives of the alligator) biting each other's tails. It is said to represent the chief
and the people in balance——if one bires, the other will bite back. It nicely

recalls the kinds of negative feedback loop models that are often proposed in West-
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FIGURE B.19
Legha

{a) The vodun god Legha represents the forces of disorder.
Yodun divination priests explain this icon as'the path to the
future: with Legba there is no way roknow which path will be
taken. Since one crossroad leads co another, the resulting image
is one of bifurcating unknowns, the uncertainty multiplying with
-each crossroad.

noise (road bumps)

input {desired
position on road)

If » 0 steer too far right —p UipUt (new road pasition
If < G steer too far left

In contrast to negative feedback, which will help seabilize a system, positive feedback will destabilize it.
A drunken driver, for example, can overshaot the center line and create increasingly large oscillations,
eventually running off the road.

MNation A Mation B sees arms
buys more arms | increase and

f becomes worried
Mation A sees arms #
increase and ‘ Nation B
becomas worried - buys more arms

Here we see positive feedback in an arms race.



Recursion 145

FIGURE B.20
Feedback loops in Baule iconography

{a} This Baule carving shows two crocodiles biting
cach ocher’s wails. It is a symbol showing the chief and
she people in equal power, the idea of social forces in a
vycle uf balance. (b) Baule door. Holas (1952, 40-50)
deseribes this as a circudt fermé of fécondité {closed
vircuir of fecundity); Soppelasa (1974} and Qdica
{ig71) idencify these unimals as symbols of “inerense.”
{3 wnd b, photo cowvtesy of IFAN, Dokaoy ) b o

ern political theory, but this fowcharr is a pﬁrely indigenous invention. 50, too,
is the Baule positive feedhack loap of figure 8.20h, showing that “power creates
the appetite for more power"—little fish are eaten by bigger fish, who then
become even bigger fish., The fish-withinAfish abbia from Cameroon we saw

earlier may have had similar connotations.

Conclusion
—

Recursion can befound in almost every corner of African material culture and

design, from construction rechniques to esthetic design, and in cultural repre-
sentations from kinship to cosmology. Most of these are specific enough to

allow us to distinguish between the first two types of recursion—cascade versus
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Iter'ltlon—'md in some cases the third type, self- reference, is also made exphc:t

iterative loops are nested but these are rarely more than two loops deep, so it

- would not appear that the application of self-reference is motw'lteJ by the com-

plexity of the computation. The only potentnl exception is the cosmol()glcul nar-
rative of the Dogon and this narrative is too vague to serve as a l‘n‘lthem'lth'll

fmmdatiou There is, however, another route to the limits of computation. As

we < will find in chapter 10, the combination of  negative. and positive feedback

Lparteia

indicated by certain recursion icons provi tdes ;mother p‘\th to the Hetghts.of com-

i S —

e L 2
putational complexlty, one we W|ll e\cplore in det’ui But ﬁrst we need to take

ashort detour through infinity. :



—Infinity

CHAPTER

~——The first time I submitted a journal article on African fractals, one reviewer replied

that Africans could not have “true” fractal geometry because they lacked the
advanced mathematical concept of infinity. On the one hand, that reviewer was
wrong about fractals at a pragmatic level. If he or she saw a fractal on a computer
screen it would be ralen as a “true” example, and in fact no physically existing

fractal is infinite in its scales; at best it will have to bottom out into subatomic

particles. On the other hand, it raises an interesting question. Infinity has been

an important part of fractal mathematics in Europe; so how does that compare

to the use of infinity in Africa?

To the ancient Greeks, infi was associated with what they thought of

B rhe horrors of infinite regress Aristotle tamed this problem by f.eﬂdefmmg

be a Iegitimate object of mathematical inquiry in uself. Most European mathe-
maticians kept to this definirion until the Cantor set, Europe’s first fractal, cre-
ated the proper definition of an infinite set, thus allowing infinity itself to be
considered. We will discuss this in more detail in chapter 13, but for now it is
sufhcient to note that this distinction does not shape African concepts of infin-
ity. Many African know')lgi_ systems using lpﬁnlty in the sense of a progressmn

— e T
wnhout limit do not hesxtate to reprebent it with iconic symbols sugg,c,stmg

LI . . — T o o -

e s
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“the infinite” in its Cantorian sense'as a completed whole. This ts by no means
a more sophisticated or elaborated definition than that of pre-Cantorian Euro-
pean mathematics; it is rarely linked to much more than either a patrative or a

; geometric visualization. But far from being nonexistent, these culturally specific
representations show a strong engagement with the same concepts that coupled
infinity and fractals in contemporary Western mathematics.

L B'\luba‘ for ommplc use <:p1ml land snm]q (g g.1), and thel ]nl'\ fise the ‘;pml

e1_1 0f a sea snail, whlch forms a drmklng cup that can on]y be used by the chlef

they Would fit Aristotle’s deﬁnltlon a process w1th0ut end But the ‘§pll‘l[udl ele«

ment of these icons adds another requirement: the icons need to convey the sense

PR

that they are drawing on the power of infinity itself; Snall shells are used becais

o

of the scaling properties of thelr logamhm;c spirals; one can clearly see the poten-

tial for ch??{{;}’wl to continue. wuthout encf despite its containment in a finite space—
mdeed, it is only because of its containment in a finite space that there is  sense
of having gained access to or grasped at the infinice;

We have already seen another example of an infinity icon in the Nankani
architecture discussed in chapter 2. Theve the coils of a serpent of infinite

FIGURE 9.1
Baluba use of snail shells
to symbolize infinity
Davidson (1971, 120) describes this as a fertilit
figure, and notes that the snail shells represent
endless growth.
{Collectien Trisean Tzava, Pavis; photo lw Elis

Elisofon )




Infinity

length, sculpted into the house walls, made use of the same associgtion between
prosperity without end, and a geome[ric length without end. The conscious
because one cannot actually see the infinite cotls of the snake. And unlike the
naturally occurring shells, the packing of this infinite length'into a finite space
(the Nankani describe it as “coiling back on itself indefinitely”) cannor be mis-
taken for mere mimicry of nature; it is rather the artifice of fractals.\This snake
icon does not exist in isolation; we saw that-the Nankani map our a scaling pro-
gresslon that passes’through their architecture, the zalanga and the kumpzo
which provides a recutsive pathway to this concept of infinity.

In chapter 8 we discussed the Mitsogho and Fang iterative model of
descent. Fernandez (1982, 338) notes the contrast to Christian theology: “The
question as to whether God was one or many may have bothered the mission-
aries in their contacts with Fang more than the Fang themselves. Holding Chris-
tian beliefs in the ‘Uncreated Creator’ and ‘Unmoved Mover,” missionaries were
challenged by the 'infinite regress’ of the geiiealogical model employed by the
Fang—their belief that the God of this world is one of a long line of gods and
like man has his own genealogy.”

The Fang theory of infinite regress is a complete, coherent view; it does not
need further amendment, for the Christian theory of uncreated creator is no more
free of contradiction—and perhaps less s0.\Of course, as Fernandez himself
warns, one cannot simply proclaim that a particilar African narrative is just another
work of theology or philosophy—or, for that matlger, mathematics. Recent works
such as Mudimbe’s Invention of Africa (1988) have shown that such translations
to specific European disciplines are always partial, highly interpretive, and in dan-
ger of misrepresenting the md:gumus view. Yét Mudimbe is also respectful of the
work that has been done. Of par ticular relevance here are his citations of African
theologian Engelbert Mveng,

Mven% included several notes on infinity in his studies of the relation
between the African and Chiristian views. His beautiful text, L' Art d'Af'riq_ue Noire

.nnphﬁc’\twe smlmg patterns in African are fmd music that he mtupretLd as

representations of a transcendental path o mfmlty ‘Une fois de plus, nous
déconvrons que le mouvement rythmigue, dans notre art, n'est autre chose
gu'une course vers 'infini” (Once apain, we discover that the rhythmic move-
ment in our art is none other than the path toward infinity) {p. 102). Father
Mveng was a wonderful inspiration during my research in Cameroon, both for
his deep cultural knowledge as well as for his courapeous work as a cross-cultural

mediacor. During our last meeting we discussed Mudimbe’s book, and | promised
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to send him a copy. Shertly after doing so a reply came from the American
Cuitural Center in Yaoundé: Mveng had been murdered “under suspicious 7/

circumstances”’—apparently the result of opposition to his cross-cultural
activism. He has finally taken the course vers I'infini. i

n



CHAPTER

10

—Complexity

In ordinary Speech&@;@}” just means that there is a lot going on. But for

mathematicians the term is precisely defined, and it gives us a new way to

\' . . . -
approach mathematics in African material culture. In chapter 7 we saw how cer-

gem_rat(_d by a recursive hmp Such numeric systems clearly tr'mslate into the

WES[LI'_I'IJd_t_EfI_I_'IHI._Ei(_;)l'\b__pf what it means 1o "compute.” But the translation was less
clear for some of the physically recursive structures in African material culture,

Can a system of phy srcal dynamncs be sard w© compute " Marhem'\tlcal com-

plexrty [heory, which is based on fractal geometry, provrdes a way to measure

the computation ‘embedded in physrcal structures cather than just symbol sys-

tems By looking at African ma aterial culture in the framework of complex:ty

rht:ory, we can betrer understand rhe presence of fractal geomerry as an Afrrcan J ) |

+

knowledge system..

- Analog computing

By the mid-1960s it was clear to many researchers thar digital computers would
be the wave of the future. But before then, analog computers held their own, and
EhLy may yet I make a comeback. In d:g[tal systems, mform‘l[:on is represented by
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e

physscally arbitrary symbols. Asi Bateqon (1972) said, “There is nothing sevenish
aEEGE':he numeral seven.” The geometnc structure of a dlgltal symbol has little
ot not‘mng to do with its meaning, which is s-.mply assxgned to it-hy social con-
vention. In analog systems, the phy51cal structure of the'3ignal changes in pro-

sin the mforrmuon it represents. R Rather than being arbitrary, -

“the thSlcal structure isa duect reflection of its mformanon Loudness in human’

speech is a good example of analog representation. As | get mare excited, | speak
louder: the physical parameter changes in proportion to the semantic parame-
ter. This is not true for the digital parts of speech, such as the average pitch {“fomat
frequency”) of each word. In English the word “cat” has a higher pitch than the
word “dog,” but that does not infer a relation in meaning-—in fact, the difference
is reversed in Spanish, since “gato” has a lower average pitch than “perro.” This
same analog/digital distinction occurs in neural signals. In the frog retina, for
example some neurons have a firing rate in proportion to the speed of small mov-
ing images (Grusser and Grusser-Cornehls 1976). That is, the faster a fly moves
across the eve, the faster the pulses of the neuron: an an'\]og‘system A digital
example can be found in the motor neurons that ﬂmg oopen the crayfish chw Here

spectﬁc firing pattern (off-on-on-off} switches the claw to this def
(Wilson and Davis 1g65).

So far we have only examined how analog systems can represent infor-

reflex

mation; figure 10.1 shows a simple example of how analog computing works.
Although most computer scientists eventually settled on digital systems, ana-
log computers were quite popular up until the 1960s. Even when they began to
die out as practical machines, there was an increasing awareness that much of

our own brain_operates by analog computing, and this led some scientists

e

toward the development of what are now called."neural_nets"—computing

devu:es that mimic the analog operations of natural neurons {fig. 10.2). By the

|
:

raid- 10805 neural nets and related analog devices had achieved enough success .

(and digital computers had run into enough barriers) to begin to compare ! the
two. There was an odd moment of analog optimism, when a few brash claims
were made about the potential superiority of analog computing {see Dewdney
1985; Vergis et al. 1985), but these assertions were eventually proved incor-
rect {Blum, Shub, and Smale 198¢; Rubel 198g). As it turns out, analog sys-

.tems have the same theoretical fimits to computing as digital systems.?

Although the studies did not result in releasing the known limitations, they

~ did produce a new framework for thinking about computing in physical dynam-

ics: complexity theory.
Before this time, mathematicians had defined complexity in_terms of

randomness, primarily bwsed on the work of Soviet mathematician A. N.
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FIGURE I0.}

Analog computation

Dewdney (5985) shows a great variety of simple physical devices that demonstrate analog
tomputing. This device, created by J. H. Lueth of the U.S. Metals Refining Company, solves the
. following optimization problem: a refinery must be located 1o minimize its costs. I transportation
~ i dollars per mile of ore, coal, and limestone are values of O, C, and L, and distances of these
wurces are 0, ¢, and 1, then the refinery should be located at the point where 00 + ¢C + L is at
- aminimum. The holes through which the strings pass are ar the source locations, and the weights

on the ends of ihe strings are proportionate t0 O, C, and L. The brass ring atrached 1o the sirings
- aquickly moves to the optimal location on the miap.
. {Contesy A, K. Dewidney )

Kolmogorov and Americans Gregory Chaitin and Ray Solomonoff. In this def-
inition, the complexity of a signal (either analog or digiral) is measured by the
length of the shortest algorithm required 1o produce it (fig. 10.3). This means
that pengz}:c nurnbers {such as .2727272 .. .) will have a low algorithmic com-
plexity. Even if the number is infinitely ong, the algorithm can simply say,
n shorrer:

“3(15." Truly random numbers {e.g., a string of numbers produced by rolimg

“Write a decimal point followed by endless reperitions of 27, ore

('dnce) will have rhe: htghest a!gomhxmc Complemry poss:ble, since the:r only

g:,uxmr srring or fhe repeutwe swings of'\ penduium waould have the iowest algo-
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its station (what is often called “white noise™} would have the highest algo-
(W T AL I

rithmic complexity. .

One problem with defining complexity in terms of randomness is that it does
not match our intuition. While it’s true that the periodic signal of a ticking
' metronome is so simple that it becomes hypnotically boring, the same could be
said for white noise—in fact, | sometimes tune my radio between stations if |

want to fall asleep. But if [ want to stay awake I listen to music. Music some- -
how satisfies our intuirive concept of complexity: it is predictable enough to fol-
10\-» along, but surprising enough to keep us pleasantly aetentive. Mathenaticians
eventually caught up with their intuition and developed a new measure in
which the mast complex signals are neither completely ordered nor completely

disordered, but rather are halfway in between. These patterns (which include

almost every type of mstrumenml muslc) also ha ppen to be fmcmls—m fact, as

wewill'see, the new complex1ty measure exactly 0in

fractal dlmensmn

3 the measure of

. “The first step in this direction was through studies of cel cellular automata. Recall

from chapter 7 that computer sc1ent15ts in the early1 9808‘1\11(.'] started 0 thmk

i ——o
mput
output
O
input
Pt | output

FIGURE 10.2

Neural nets
(a) Suppose we balance a ball on a teeter-totter. Unless the ball is'at the precise center, the
teeter-totter will start to slope townrd one side, which will cause the ball o roll even farther
toward that side. In other words, there are two stalle states, and anything in herween (except fe
tiny neutral point) will get caughet up in the positive-feedhack loop leading rapidly to a stable st
(b) This is an electrical circuit that works much like the teeter-totier. Each triangle is an ampli
with two outputs, one normal and the other {black circle) an inverted outpur. Since the inverts
output is connected to the input of the other amplifier in each, they will balance out like the b
at the exact center of the teeter-totter, but rapidly lip to one of the two stable states in which ¢
amplifier is at its maximum (“saturated”). That means that this circuit can solve a simple task:
which of two numbers is larger? By putting an initial charge proportionate to one of the two
numbers at each inpur, the system rapidly flips ro the sarurared stable srate favored hy the large:
number. Linking thousands of these simple amplifiers togerher allows computer scientists to ma
sophisticated machines for pattern recognition and ather artificial intelligence tasks.
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about cellular automata as the :.;‘lmulauon ofcomphmted physical dynamics, such

e S

as that seen in living. organisms. Physicist ¢ Stephen Wo!fram began to wonder:
just how comphcated ts it? Clearly, living systems are more complex than ran-
dom noise, so he knew that the old complexity meafire of Kolmogorov would
not do. But Wolfram had studied a good deal of computer science, and he real-

ized that the way in which different types of recursions are used to measure com-

that we dmded recursion into three EprS. cascades 1terat10nh and self—n.ference.

pawer

amplitude

/\\//\\//\v/\

3 time b frequency

amplitude
power

time d frequency

FIGURE 10.3
Kobmogorov-Chaitin coinpieaity incasure
{a} Whether it is in digital or analog sipnals, complexity con be
Cmeasured in terms of the informarion content. The first such
measure was that of Kolmogorov and Chaitin, who thought of
complexity in terms of randomness. The sine wave is about as
nonrandom as we can get. Here it is given as a time-varying
sipnal, although the same would apply to a spatial pattern, such
a3 waves in water or sand {(in which case we could measure it as
wavelength, which is simply the reciprocal of frequency).
{b) The same signal in a spectral density plot. This tefls you
how much power is at each frequency. In the case of the sine wave, all the signal power js at one
friequency. {c) White noise 15 a completely random signal, such as that produced by the sound of
bacon frying. By the Kolmogorov-Chairin definition, white noise is the most complex signal,
Again, this would also apply to a spatial patrern, such as dust sprinkled on a tabie. (d) Spectral
density plot for white noise. Because it is completely random, there is an equal likelihood of any
. wavclength occurring at any time, s0 the signal’s power is equally distribueed across the spectrum.
o) In summary, the Kolmogorov-Chaitin complexity measure is simply a measure of randomness.
¢, cowtesy R. F. Voss. )

complexity

e . randomness
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These correspond approximately to the three formal categories of recursion

used in computer science, which we will now examine in detail.
e

Three types of recursion: the Chomsky hierarchy

In a recursive system, present behavior depends on pas r. It is the capa-

b]ln:y of this access to memory that defines the relarive, d:ff(.rcnce in recursive

power. The scaling cascade, for example, could nor produce the Fihonacci

{ sequence, because it could not recall previous members of the sequence. Simi-

\_/_

\'. lar distinctions are used in computer science w mnk c:ompul;ulinnnl power inro
three types of '1{‘.stract machmes referred to as Chomskys hierarchy.” These

abstract m'lchmes are comp’lred by their ability to recognize certain categories.

v

of character strmgs A machine that can recognize periodic character strings

such as 'lb"lh'! " accurs at the lowest level of the hierarchy: the lete State

Autom'\ton (FSA) An example of the FSA is shown in ﬁgure 10. 4
. Wh'\t would it be like to be an FSA? Since the FSA i’ns o

prarEsam—"

age, the expel ience would be somewhat an'\h)gous to neurosurgery patlents who

aware and mtelllgent but havc lost the capacity to tr"msfer knowl(_dge to long—
tetm memory. The hlppOC’lmp"ll sur-g;ery patient who finds herself at the end of
a book can deduce that she has read its contentﬁ, although she does not know

what the previous chapters were about. An{ FSA h'l'i only an implicit memory, TR

e ___,__.-

because its present state cannot reveal a nythmg about its past, other than the’
fact that it must have passed through one of the sequences of states that termi-

. . P S P P
nace i lie present state,

inputtape | a | b a |la b a |'b b T}l:‘lel..ilR.Et m;t4t
e finite state
read only antomaton

The finite state autornaton
_ (FSAY has a list of transition
Transition table rules that tell it how to change

. 1 from one state to the next,

Current symhaol depending en its current state
Current state on input tape New state i L .
. - and the symbol it is reading on
S a f the input tape. It has no mem-
s, b Sy - ory, other than that implied by
A=
S < its curent state. This FSA will
a 5 . w M

z L end vp in the “accept™ state 5

S2 b 3 if the tape ends after an even

§
number of bs.
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The set of palmdromlc strings {e.g., aabbaa) is a good example of the llm—
itation of the FSA: it lacks the ablllty (o memorize the first half OFt_}v\e string
and therefore cannot compare ir with the second The leasr powerful machme
of -this memory storage is the Push? Down Autom’lton (DA}\ iflus- (RN
trated in fgure Lo 5. The stack memory ¢ of the PDA is usually compared 0 the>

spring-loaded tray stack often used in cafeterias; once a symbol is read from mem-

capabl

ory it is gone. As a knowledge analogy, we might think of a reader who accu-
mulates stacks of books bur gets rid of each book after it is read. This is a
temporary explicit memory, smce the PDA can make two different rransitions
given the same state.and mput depending on its past. It is important to under-

stand that greater recursive capability does not necessarily.imply larger mem-

ory storage; it means an rmproved ablhty to interact wrth memory. Size only matters

o e L AVt

msofar as it restricts ‘the interaction.

et

Although the PDA can recognize all sets of strings recognized by an FSA,

as well as many others, there are still (infinitely) m ets of strings that it can-

not recognize.f For examplej, it cannot recognize the set of all strings of the fOrm
_Nbi‘} N (where we have N repetitions of a, followed by the same for b and ¢},
because it has to wipe out its memory in the process of comparing the number
of a’s and b’s, leaving no information for checking the number of ¢'s.

At the top of the hierarchy (fig. 10.6), the Turing M: hiné (TD[ Ycan T

recognize all computable funcrions. It is simply a PDA wnth unrestricted mem-

el L

ory, but because of this capability it can achieve full self- reference the abr]

I e g

ity to analyze. its own program. Again, it is not a difference in memory size,

but in memory access——unlike the PDA stack, the TM memory interactions

can occur over any past sequences of any leng[h and ic does not lose memory

inputtape | 4 1b la la | b |a |b |b FIGURE 10.§
The push-doun
read only automdaton
- ) The push-down automaton
read/write | 4 (PDA) has a list of transition
rules, but these make use of an
b I~ explicit memory storage as well
Transition table : as internal states.
b
a
*Srack” memory. This allows new symbols b
1o be pushed down on top of the stack, bat
symbols can be read only by popping them b
off the tap, and each one popped is lost.
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inputtape | a | b [ a {a |b|la|b |b FIGURE 10.6

The Turing machine
The Turing machine has an
unconstrained memory; it.can
- . lmplement any dlgonthm that can
‘ ' possibly exist.

read/write (moves in both directions)

Transition table

'pllshes tasks w1th no books, and the PDA is a person whose s:mple tasks are
limited to books that are removed after they are read, then the TM would be
able to collect and recall all books, in any order. Unfortunately this does not

solve all of our problems, because the unbounded nature of the TM means -

that it foolishly accepts some.tasks that require an mfmlte library Thls is called

)

the “halting problem,” and Turing himseif proved that it is unavoidable.

Mathematician Rézsa Péter showed that one can define a restrlcted set of pro-

grams _that are halrable (which she called the set of “primitive re: recursive

functions™), but in doing so we would always sacnflce some of the ™ s
Computlng pOWer

These three machines, FSA, PDA, and TM, illustrate the ascent up the

Cho _lllg_[g[chy They differ in havmg implicit memory,, temporary expilc;t

memory, and permanent explicit memory. By looking at memory as the basis for

the recursive loop in these systems—that is, as the element that gaverns the abil-
ity of the system to perform interactions between its present input and past behav-

£ . ior—we can see that the dlfferences in computational power for these machines

depends an the d:fferences m recurswe powet.

Measuring analog complexity with digital computation

i

Pl R

. Now let’s return to Mfram and his cellular automata. After running thousands
of trials, Wolfram found that all cellular automata generally divided into four spe-

cific classes. Classes 1 and 2 were those that either died out, or went into a peri-

odic cycle. Chss 3 wasv ust_the opposite: it was uncontrolled growth tha led to
apparenrly mndom behavior, like white noise. B}Eiiljss 4, which mcluded he
game of life” celluhr automaton, had somethlng that Wolfrqm.-(ie;crlbed as “com-
pIE‘( behwmr not as random as ‘white noise, but not as bormg as A pcnod:c cycle

Wolfram found that chis highest complexity also demanded the highest com-




[

Complexity

putability: while pure order and pure disorder could be recognized by an FSA,
the patterns | of the complex behavior required a Turing machine.
Mathematical physicist James Crutchfield (1989) found an even

20

6n in a__p_h_ysical system. Crutchfield

simpler example of recursive computati
used the population g_q.q:at.i'on made famous by biologist Robert May (1976}:
B+t = ByR(1 - P,) (where P is a population number, scaled so that it is between
0 and 1,and R is the birth rate). May found that when R is low, the popu-
lation is simply a periodic cycle, switching back and forth between the
same sequence of levels. As you increase R, the length of the cycle (that is,
the number of different population levels you pass ’.through before returning
to the first one) increases extremely fast. At R =.3.1, the population is in a
two-level cycle, at R = 3.4 in a four-level cycle, and at R = 4.0 the cycle length
is at infinity: deterministic chaos. Crutchfield was able to measure the com-
putability of these chaotic fluctuarions and found results simtlar ro those of
Wolfram: both completely periodic waves and completely disordered waves
were computationally quite simple, but those in between, with a mix of
order and disorder, had a high degree of computational complexicty. The
simple equation examined by Crutchfield required only a PDA, but ocher
researchers (Blum, Shub, and Smale 1989) demonstrated that more complex
analog feedback systems would be capable of signal complexity equivalent to
TM computability.

Figure 10.7 shows how these complex waveforms, called “1/F noise,” com-
pare to periodic and white noise waveforms. This is easiest to see in the spec»]
tral density plots. A periodic signal has all its power at one wavelengrth, while

a white-noise signal has the same power at all wavelengths. 1/F noise is a com-

. . .o . s
—rpivanise beiween ihe two—biased so that it has the greatest amounr of power;

' ) -
at the longest wavelength, and the least at the shortest. For this reason, 1/F nousei
is fractal; it has fluctuations within fluctuations within fluctuations. When we

think of the length of these waveforms in terms of memory, we can begin to

see a connection to computational power. [f a system had the same behavior ovelg
and over again, it would be too fixed on memory. If it randomly picked a new!

)
behavior every time, then it would be wo free from memory. Burt useful behav-|

ior is generally a mixture between the two. For example, think of something/
" 1t

unusual you did today—moving socks to a new side of the drawer, or eating pret;
zels instead of crackers. Whatever it was, chances are it was pretty trivial. If wjé
took the same whimsical approach to major life-events each day—"today | think
I'll move to Spain, or get pregnant, or become a podiatrist”—we would be in;

|
trouble. Our life is typlmlly arr‘mg,ed as 1/F noise: hlgh -power events should be

long term changes, and iow -POWeF events ahould be short-term changes 3In fact

159
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FIGURE 0.7
Crutchfield-Smale complexity measure
{a~b) Periodic noise: A simple signal. {(c~d) White noise:
From the viewpoint of the Crutchfield-Smale measure,

-
this is also of low complexity. An FSA, for example, ‘%
could define this noise by making all state transitions _%
equally probable. {e~f} Fractal noise: The most complex g
signals in the Crutchfield-Smale measure are “scaling o 1 I
noises” in which there are fluctuations within fluctu- peripdic fractal random
ations. These signals have the greatest amount of their g noise fnoise nawse

power in the lowest frequencies {longest wavelength).

Since power is the reciprocal of frequency, it is often referred to as 1/F noise. (g) In summary, the
Crutchfield-Smale camplexity measure is a reflection of the fractal dimension. The “most fractal”
{e.g., dimension of 1.5} will be the most complex, and the function decreases with hoth higher and
lower dimensions.

{c and e, courtesy R. F. Vioss )
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many of the analog waveforms produced by intelligent human behawor appear
to be 1/F signals {Voss 1988; Eglash 1993).

As more scientists began to think of complex:ty in terms of computation

. and llF noise, they be

what it meant to have a’ self—orgﬂmzmg " system. In the evolution of life, for

o 1ccumuhr.g ex'xmples that suggested that this was

mstance' most of the genetic information stores long-term events, such as the
physiology that underwent change in life's evolution from warer to land. More
short-term adaptations, such as skin color, take up very little of the genetic mate-
rial. Here again, we have something like 1/F noise, with long-term events tak-
ing up the buik of the system, and short-term events taking up proportionately
less. Physicists Per Bak and Chao Tang (Bak and Chen 1991) found several
examples ofsnnple physical self»orgﬁmzmg systems that proqchd I/F noise, ln
forest fires; forexample, very dry woods would spread ‘fire in an orderly circle,
while fires in wet wood would be too sporadic or random, and thus die out. But
in-between fires spread in a fractal pattern, with most of the fire in long-length
patches, less of the fire in medium parches, even less in smaller patches, and so
on. In water we have orderly crystals and disorderly liquids, but in between we
can get the fractal patterns of snowflakes.

Since we are familiar with ‘our own recursive interactions with memory,
we have a pood intuitive sense

T why lfF noise should accompany complex

behw:or and clearly it can characterize

UL

temsmperhaps all of them if we uge the proper deflnmon But how does this hap—

pen? What is the mechanism thar makes it work? Complexlty theorists have not

hesirated to sugpest implications of their work forcu .
suggest the reverse: that certain aspecrs of African E(}ltl;lﬂre can provide impor-
tant 1rn_1mpu!}“c'1t10ns for cornplexny theory. More so than.any of the previous. sechng.-
mathematics models we have seen, this part of my research was much more of
a collaboration, much closer to my sense of the “participant simulation”
method—although if truth be known I had to be dragped kicking and scream-

ing much of the way.

Christian Sina Diatta: an African physicist looks at culture

“Rhab.” “Phantom.” "Rhab!” “Phantom !!” A strange dialog flew across the com-

de Technologie Nucleaire Appliquée at Senegal’s Uni-

versiry : of Dakar. I was seated with Professor Chnstlan Sina Dnatta director of

the lab, watchlng the pulsaring forms ofcel]ular automata flow about the screen.
Dr. Dtatta was the local sponsor for research under the United Srates’ Fulbright

Fel[o‘wshlp program, and was eager to discuss his own ideas. His physics tab was
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an inspiring place to be. | had already been able to sit in on a graduate student’s

presentation; after having witnessed the same ritual in the physics department

"at the University of California at Santa Cruz, it made for a fascinating bit of cross-

cultural comparison. | tried to make myself useful by setting up a demo of an elec-
trical circuit that produced deterministic chaos (“Chua’s circuit”) and installing
various types of software for simulations of nonlinear dynamics. It was one of these
software demos, Rudy Rucker's caLaB, that caused our multilingual exchange.

As noted in chapter 7, some of Rucker's most interesting programs are those
he calls Zhabotmsky CAs,” which can produce paired log :puals I addition
to the twao states of live cell and dead cell these cellular automata require at

least one “ghost state.” Since someone had previously mentioned the indige-

e an oppartunity for creative transla-

nous term for.ghost,-rhab, it seemed i

tion. I explained (in French, the official language of Senegal) that after I'état mort

{the dead state) the cell went to l'état rhab. To my surprise, Diatta corrected

rthab back to the French: “phantom.” We went back and farth a couple of times
before [ realized that it was not just my poor pronunciation. Only later did
| discover my blunder: Diatta was not from tha Islamic Wolof majority (in whose
language rhab occurs) but from one of the animist minority groups, the Jola.
Using Wolof was no more of a cultural translation for him than it would have
been to use English.

This was only the start of my mistranslations. Although Dr. Diatta was
greatly enthusiastic about my work on fractals in African architecture, he
seetned disinterested in the fractal generation software. But he persistently

brought up African architecture during the cellular automata demos. [ found this

. entirely too frustrating: the who!e pomt of my research on African fractals was

to explore the mte:ntnon'}lﬂt;)gig of these deSIgns Cellular automata create pat-+
tr:a;mns“ﬁot by preplanned design, | but mther by the interacrions of its aggregate
cells From my point of view, having fractal architecture as the result of aggre-
gate self-organization destroyed the possibility of intentionality. By focusing on
cellular automata as an architectural model, Diatea scemed to be undoing afl
my carefully prepared research. His enchusiasin was unbeatable, however, and
I began to study aerial photos of his place of origin, the Jola settlements south
of the Casamance River. Figure 10.8 shows the settlement of Mlomp, not far from’
Diatta’s hometown; its paired log spiral structure could have come right out of
Rucker'’s Zhabotinsky CAs. ]

A trip to the Casamance was clearly called for. 1 was fortunate in finding
Nfally Badiane, a Jola graduate student who had done his master’s thesis on indige-
nous architecture of the southern Casamance, as a guide. Nially's background is

ideal for an anthropologist: raised among the Islamic majority in Dakar, he is both



FIGURE 10.8
; The Jola settlement of Mlomp, Senegal
2} Mlowmp, (b) Mlomp model generated by combination of stochastic and recursive process.
Geographiue de Senegal; b, courtesy of Egandu Onyejekwe.)

cowlesy Inssinut
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stranger to and member of the Jola society. As we traveled the delta area of the
Casamance River, using cars, trucks, canoes, and anything else that moved, his
warnings about the secrecy. of}ola religious knowledge were repmtedly confirmed.

Secular information about techmcal methods of house, construction, precolomal

(A T P2 Ak g e i)

and postco

ial Rocml ch'mges, kinship groups, and_many other aspects_of

T e 8 1 P b

Jola so;_i_ggyy{grg_\gga,d;iyfgl:ghggmilpg {Eglash et al. 1994). " We were told that the

circular building complexes were not preplanned, nor were the broad curves of

- these complexes in each neighhorhood, but that t_.'l_'le-‘f could not tell us anything

about the sequence of construction because, unlike the Wolof, “we do not have

a griot [oral historian] in Jola society.” The splm[ structure vls:b]c in the photo

it 7

was m'uniy due to the cqrefully mamtamed sagred forest surroundmg each local

ne\ghbo:h()od But the mechanisms for creating such cohetent structures over
e e,

S SRR

such an enormous range of scales rem'lmed hidden. A tantalizing glimpse of the

SR G

]ola 5 sacrg¢geometry, howevcr, fed d us t to suspect ¢ that there was a conscious ele-
ment to the CA- like sertlement structure. First, there was the symboltsm of the
chief’s drinking vessel: a spiral shell. Second <Nfally,had seen the interior of ane

of the sertlement altars, and said that it consisted of a spiral passage.

et g ae st e P iy

The best clue we found was from Diatta Limself, who described a log spi-
ral path in certain rituals that rook place in the sacred forest. But how to rec-
oncile this self-conscious modeling with what appeared to be the emergence

of the settlement structure through aggregate self-organizatian? 1 finally con-

; \t:essed ny disturbance to Diatta, and asked him how I might understand the appar-

ent contradiction. He suggested yet another siroulation: the Jola funeral ritual
(fig. 10.9a). We had been alerted to this ceremony as a result of a suspicious death
during our-visit, but were not allowed to attend. Diatta described the ritual in
detail. The hody of the deceased wus placed on a placform, and posts at cach of
the four corners are held aloft by palibearers. If critical knowledge is thought
to have been held by the deceased (e.g., as in the case of a murder), a priest asks
questions. The palibearers, reacting to the force of the deceased, move the plat-
form to the right for ves, left for b, and forward for “unknown.”

The simulation for this. rscml (fig. 10.9D) is based on an analog feedback

’_network We don’t need to make any assuwptions about whethex the paiibear-

ers are exerting force due to conscious opinions or subconscious beliefs; it is only
necessary to assumne that they exert force in proportion to this motivation.
Since they can both exert force and sense it from others, this would theoretically
allow the summation of knowledge among the participants to be expressed in the
most effective way possible. In fact, the technique is more effective than a vore,
since voting can lead to the paradox of a minority opinian win if there are more

than two options.® The information emerged {rom the bottom-up interaction of
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the parts, yet it was also intentional in the sense that this mechanism for aggre-
gate self-organization of knowledge had been consciously designed. This was not

intenrionality as [ knew it; it sounded more like the description of a neural net-

work in compurer science:

If u programmer has a neural nerwork model of vision, for example, he or she

can simulate the pattern of light and dark falling on the retina by activat-
ing certain input nodes, and then letting the activation spread through the

(a) In the Jola funeral ricual four
pallbearers hold a platform aloft and
MOVE it in Tesponse 1o questions. Since
the information (whether one believes it
to be of spiritual or muyndane origin) is
held by the pallbeacers, we can model the
force of each corner as having direction
No Unknown and magnitude {a vector) determined by
‘ the pallbearer’s conviction. Decision
making based on a continuous range
rather than on yes/no is called “fuzzy
logic” in mathematics.

Yes

K / yes

no
z b
Ezmare?s. '
\ {input) 7

z

~

. {b) We can think of the information
processing in the Jola funeral as the
equivalent of a neural net (stmilar to that
in hig. 10.2) in which the sum of the force
vectors of all four pallbearers are inpurs to
thser amplifiers, with each inverted ouiput
connected as negative feedback to the
other two, This would require pallbearers
to both exert force as well as sense it, but
such force-feedback is actually quire

S gmmon in motor tasks.

unknown

FIGURE 10.9
Neural net model for the Jola funeral ritual
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connections into the rest of the network. The effect is a bit like sending
sg-iﬂ&é‘ﬂg of goods into a few port cities along the seacoast, and then letting
a zillion trucks cart the stuff along the highways among the inland cities. But
if the connections have been pmper]y arranged, the network will soon settle
into a self-consistent pattern of activation that corresponds ta a classifica-

tion of the scene. “That's a cat!” (Waldrop 1992, 289-90)

The tricky part is “if the connections have been properly arranged.”
Clearly it could be arranged for four people, but could it for this'city of Mlomp,
with dozens of local nelg,hborhoods and hundreds of people in each! And
M]omp is not an anomaly. While we saw a more explicit formal system in the
construction of several fractal settlement architectures in chapter 2, there are also
many African settlements that have a large, diffuse fractal structure (see Denyer

1978, 144). Self- orgqmzmg mec]nnlqms that arrange such va

into coherent patterns would h’we ca he more global and less explicit.

One key mechqmsm in compiextty theory is memory; the theory prechcts
that self-

mg systems will utilize 1/F distributions in memory length. The

Luka:‘n a visual “ memory board™ developed by the Batuba of Congo (Zcure) shows
just such fractal scalmg (ﬁg 10.10}. The memory systemn of the luk"ma is partly
based on d:gml (that is, physically arbltmry) codmg, such as color but Roberts
1996) notes that much of the lukasa is a geometry of 1de'ls mappmg the beaded

mterpret(ve and codmg vanatlon, there isa tendency to have single heads rep-
resenting individua_ié, groups of beads representing royal courts, and larger bead
arrangements showing the sacred forests that have been growing over many
generations. This vistalization of a 1/F-like distribution of memory suggests at

least the posqtb\llty of mdlgenous awareness of ‘;calmg propertles in maintain-

ing seli- orga_rﬁnznedwcomplexnty

" The ;tron"ge;t candidate for a mechanism underlying self-organization is
the complementary pair of indigenous fecdback concepts. we examined in
chapter 8. In the vodun rehglon of Benln we found Dan representing the sta-
bilizing force of négﬂtwe feedback, and Legba representing the disruptive
force of positive feedback. Similar feedback pairs were found in the Baule
door carvings; the caimans biting each other's tails are a symbol of negative
feedbhack, and the fish eating ever larger fish represent positive feedback. This
combination of opposing feulb'xck loops also appears to be at the heart of tht

condmons that sustain self-organizing structures. Of course, most.self-organizing

sys(tms will have more than two loops; but in every case | have examined, at

complexity can arise.

“least one of each is present, and it is through this interaction that sustained

R ety
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FIGURE 1C.10

Lukasa
(From Roberts and Roberts 1996; photo by Dick Beaulieux.)
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~Returning to the most basic example of complex behavior, May's popula-
flon equatlon we have two components. On the one hand, there is popuhtlon A\
growth Pn+1 P R. Next year's populatlon will be this year's populatlon times ™"
the growth rate. As long as R is a positive number, this will be a positive feed-

back loop. But the other part of the equation, mult:plymg by (1 - Py), was a neg'

ative feedback loop, acting like an epidemic that kllls more people with larger “
populanon size. 3 Together they create determmlstlc chaos: the positive feedback
. keeps expandmg the population, and the | negative feedback keeps it within

bounds. This works for other chaos equations as well. Figuré 10.11 shows a

-

e

chaos equation called the "Rossler attractor” modeling a car with two drivers.
} One is drunk and overcompensates by steering too far with each correction; the
¢ other is sober and pulls it back on the road when the drunken oscillations get
i too large. Because it always steers back to a slightly different position, the oscil-
) lations never repeat—deterministic chaos.®
We can see the same combination of negati\}‘e and positive feedback cre-

= B RS

fon offers a particularly clear 1[iustrat10n of this phenomeﬁon If we glve a rule

set that makes birth too easy (e.g., the cell goes to the “live” state if there is one
of more nearest neighbors alive), then there is too much positive feedback and
we get a rapidly spreading disk. If we make death too easy (e.g., the cell goes to

the “dead” state if there is one or more nearest neighbors alive), the screen goes

FIGURE 10.11

Réssler attractor as feedback in automobile driving
The Rossler attractor is a set of three simple equations whose output is dererministic chaos, that.is,
a signal with variable oscillations which remain bounded but never repeat the exac¢t same pattern.
How can such a simple system produce infinite variation? An automobile driving model can help
us see what these equations are doing.

(a) Positive feedback. First, there is a part of the system that provides a positive feedback loop;
this acts like a drunken driver who swerves farther and farther off the road. Note that the car is not
properly aligned with the ditection of eravel; this skidding is the nonlinear relationship between
road position X and steering angle Y.

{b) Negative feedback. The other part of the system is a negative feedback loep; given a swerving
input, this cautious driver steers back toward the center of the road. * (_,aut:on is represented by
the third variable, Z.

{c) Combination of negative and positive feedback. Here we see the complete Rassler system at
work. The “caution” variable Z controls the facial expression {diameter of eyes and mouth, angle of
eyebrows}. Note that after the oscillation gets large enough, the negative feedback kicks in, and we
go back toward the center of the road. Because the car never steers back to exactly the same
position on the road, the behavior never repeats. If, for example, you looked at the number of
increasing oscillations that occur before the negative feedback dampens it back toward the center,
it would appear to be completely random, with no predicrable pattern. Yer the patrern is entirely
deterministic (that is, determined only hy this set of equations); it could be predicted if you knew
the initial conditions with infinite precision.

o
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blank in a few generations. The “classic” life rule ser.(found by john Horton Con-
way in 1970) is often referred to as “3-4" life because it takes 3 nearest neigh-
bors to give birth, but 4 results in death. Conway discovered that this combination

i of negative and positive feedback maximized the CompleXlGY of behawor Sim-
xlarly, when Per Bak found empirical data for se1f~0rg'xmzatlon in physmal sYs-
tems——forest fires, earthquakes, avalanches, etc.—he noted that it occurred only
at a “critical state” in which there was a balance between noise-suppressing mech-
anisms—which would correspond to negative feedback—and the positive feed-
back of noise-amplifying loops.

It is unfortunate that so much of the classic research on African social mech-
anisms came from functionalist anthropology, since they made an almost exclu-
sive emphasis on the role of negative feedback in achieving equilibrivm. When
it comes to conscious knowledge systems, African societies do not exclusively
focus on balance, harmany, and stasis. The complimentary reles of Dan and Legba,
of order and disorder, are much more common, as we see in this passage: “In the
mind of the Bambaras the air, wind and fire . . . are indispensable elements of
the world's onward movement. But as these principles may be active in an

uncontrolled, that is, unruly and often excessive manner, Nyalé is considered

to be a profuse and extravagant being. . . . So by her very nature Nyalé is, toa
certain extens, a factor of disorder. That is why it is said that Bemba . . . took.
away her ‘double’ to entrust it to Faro . . . whose essential attribute is equiiib-

rivm” (Zahan 1974, 3).

BT i

A similar pairing oceurs in the Dogon religion, where Amma, the high god,
creates the Nummo to enact order, and accidentally creates the disorderly
Ogo; together the two generaie life as we know it. In the repertoire of dynam- .
ical concepts occurring in several African knnwledge systems, | there is recogmtlon

et
of the useful tension between ethbnum 'md dlsequlllbnum the d"mce between

and ch'\nce th"lt results in self orgamze(l complexny And just as Stuart

Kauffman has shown a bias toward order in evolution's “edge of chaos,” the highy
/god ensures that the trickster can act only sporadically, thus crenting more puwcr)
\_toward long-term order in these African cosmologies.

Although fracals resulting from geometric algorithms. are usually seen as
static structures, they too can be viewed as the combination of feedhack loops.
A seed shape with a huge number of tiny line segments (fig. 1o.12a) will tend
to be shnpe -preserving under self- replacement iterations; here deviations due 10
replacement are damped——{the dlfference between a line segment and the seed
shape is usually not :mportant (and the resulting graph will have a low frac-
tal dimensian, i.e., tending toward 1.0). But for seed S}'l’lpt“i made up of only

a few large lines (fig. 10.12b), the difference hetween a line segment fmd its
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EEP!E}E?W?“F shape will be very important. Large deviations tend to be ampli-
fied in a quick positive feedback, sometimes explosively growing out of bounds
in only a few iterations. Figure 10.12b has’been scaled down to fit on the page,

¢ : but the actual fractal graph will quickly grow out of bounds and blacken the
screen entirely {i.e., a Fract_aﬂl%dimension close to z.0). Figure 10.12¢ shows a
fractal dimension close tf‘éfl 5, the “most fracral” measure, which results from
a balance between the neéé-five feedback of small segment shape preservation
and the positive feedback of large segment replacement deviation.

There is no quantitative measure of fractal dimension in precolonial
African knowledge systems. But the idea of a spectrum progressing from more
orderly to less arderly is vividly portrayed in certain material designs. The best

examples are in the raffia palmn textiles of the Bakuba {fig. 10.13a). These tend to

show periodic tiling along one axis, and aperiodic tiling—often moving from order

to disorder—along the other. Similar geometric visualizations of the spectrum

——— e
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FIGURE 10.13

From order to disorder in a Bakuba cloth
{a} The Bakuba often create cloth designs that stay fairly constant along the vertical axis, but
gradually change along the horizontal axis. In many cases, the horizontal transformation suggests
an order-disorder range. (b) Computer scientist Clifford Pickover created this pattern to show
how a spectrum (rom order to disorder could be visualized by allowing a random variable to have
increasing influence on the graph’s equation. Thus it, too, makes use of periodic tiling along the
vertical axis and aperindic along the harizanzal.
(a, from Meurant 1986, by permission of the author; b, from Pickover 1990, by permission of the author.)



Complexity

from order to disorder have been used in compurer science (hg. 10.13b). As far
as ] can tell, the Bakuba weavings never reach more than halfway across the spec-
crumn—they are typically moving between 1 and 15, that is, from periodic to frac-
tal, rather than strerching all the way tg pure disorder.?

' 1 know of only one African textile that takes this last step, and that is the
block print shown in figure 16.14. This pattern is reminiscent of the title of Niger-
ian author Chinua Achebe’s famous novel, Thirgs Fall Apare. Given the anti-
colonial context of Achebe's writing, it m:gﬂtb_etemptmg to read it as an

indicarion that white noise only comes with white people, but at least in terms
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FIGURE 10.14
Block print textile
This print from West Alvica suggests the full spectrum from order to disorder.
(From Sieber 1972}



174

African fractal mathematics

of the- mdlgenous knowledge system such assumptions are unfounded. 8 There
is, for example, a form of music mchgenous to Nigeria that has something like
a white noise distribution of sounds. Akpabot (1975) describes “the r‘andom music
of the Birom,” a flute ensemble designed to allow each musu:lan to express in(h-
vidual feelmgq through wh'atever ldlosyncratlc ﬁorse (or evensilence) he or she
ggg(;ses resulting in “an mdetermm'\te process |in which] the sounds produced
by the players are not chstructed by a conscious attempt to organize the thythms
and harmonies” (p. 46). Pelton (1980) refers to the Nigerian (Yoruba) trickster
Eshu as the “lord of random,” and notes that there is a coupling between the
orderly work of Olirun and this unpredictable spirit, similar to the negative
feedback/positive feedback combinations we noted earlier. The characteriza-
tion of extreme disorder might well be applied to the experience of colonial
rule, but we should not assume that the concept was unknown before then. A
summary of selected African cofnplexity concepts is shown in figure 10.15; note
that the central peak of spiritual power is analogous to the central peak of com-
putational power in the Crutchfield-Smale complexity measure.

Conclusion

This chapter s only the bare outline of what 1 hope will be future areas of
research, examining the relations between technical, cultyral, and. political
systems through the new frameworks offered by, complemt\; theory. For the

moment, we will have to Timit ourselves to the few fragments that my Senegalese

colleagues pointed out so dlhgentiyrFlrst),ﬂus does not .negate t the previous

examples of exphat algorithmic désign in African fmctals

buL it dOLS suggest
that at least in the case of settlement arch1tecture they can arise from angther
source as well The creation of fractal settlement patterns through aggregate self-
orgamzauon while unlike the planned structures we saw in chapter 2, do not seem

to be the result of unconscious social dynamics ('15 we saw_for the urban spr'\wl

action in defmmg mtentlomhty Most |mportant there are mdlmnons th'lt thts

pattem creation through group activity is supported by conscious mechanisms
specific to self-organization as defined in complexity theory. Boch the scaling

/dmmbunon of interactions with memory and the spectrum from order to dis-

i
\

order have at least some graphic counterparts in African designs. The best can-

.\ . . . . . . . .
didate for a conscious mechanism is the combination of negative and positive

feedback. We did not examine every possible case of deterministic chaos and
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African complexity concepts in religion
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aggregate self-organization, but it would appear that the combination of neg-
ative and positive feedback loops, which form the basis of several African knowl-
edge systems, also form a key mechanism of general self:;organi;?ﬁg systems,
As noted in the first chapter, it is just as important to find what is miss- ‘
ing as it i to find what is present. While four of the five basic concepts of frac-
tal geometry—scalmg, self- similarity, recursion, and mﬁmty—-are all potentq
aspects of African mathematlcs a quant:tatwe measture of dimension {the Hausdorf-
Besicovitch measure) is completely absent Thére is a weak sense of a complexity
spectrum of order—dtsbrder, which would covary with the Hausdotf-Besicoviteh
measure, but that spectrum is neither quantitative nor (to my knowledge) ever
compared to a concept of dimension in any indigenous African system. This i is

an enormous gap in the Afrlcan knowledge of fractal geometry, espemally since

is. often considered the most valuable component by
contemporary researchers in the fleld

On the other hand, we also need to appreciate all knowledge systems in.
their own right, and African fractals have a surprisingly strong utilization of
recursion. Indeed, in Mandelbrot s seminal text, The Frattal Geometry of Nature
(1977) the index lists “recursion” only twice, and the terms iteration, self-
reference, self-organization, and feedback are entlrely absent. As we will see,
this "1b5&11Cf.‘. isno accident; it reﬁécts a European historical trend. But why have
Eurbbé;ﬁs tradltlonally placed such littie importance on recursion, and why was
it so strongly emphasized in African fractals? In pare 1 of this book we will take

up such cross-cultural comparisons in detail.
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CHAPTER

11

——Theoretical
——frameworks
in

—cultural studies
—of knowledge

—}“Parts 1 and 11 of this book emphasized the geometric, symbolic, and quantira \

tive aspects of African fractals. Some cases were more speculative than others—

g a difference thatr 1 hope was clearly indicated—but even in the use of myrhic
/ nareative, I generally restrained conclusions to those that had geometric or quan-
b titative counterparts. In other words, the claims made in parts 1 and i should |
l be fulsifiable in the sense of Karl Popper; the data either supports the hypothe-

\sis or refutes it.} But the chapters in this last section will switch to topics in cul-

tural po]mcs and other humanities. These Jissues are 1oo complex and

e . -
truth about the world as any science; we on]y need to Keep in mind that it is a

different way of gomg abour it. Whlle the phl]osophy, politics, and poencs of

Poppenan pObithlbm Cannor—areas we cannot llve w1thout

Given that one can make a good case for at least four “of the five basic ele-

ments of fractal geometry in African marhemarics, what should we make of it ©

L
in terms of culture? To ask this question effectively we need to avoid two pit-

falls. The first is the posmbillty of ! overdetelmmed explanatlons {or Afrlc’nn

J— —— e e

fracrals, ew(pldmtlonb that seem o be antmg for us before we've even b(,gun

—

1758
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to examine the evidence. The second is the lef:culty of sustaining skepticism
ina r'\cnlly charged envtronmentﬁhe posmbdtty that we might shy away from
cr1t1&1ue over fears ¢ th':c expressing a negative view could be taken g3 having an
ethnocentric or racist motwatlor}. Both failings are equally damaging. Recently,
researchets have drawn attentlon to the ways that theories of knowledge
(epistemology) can sneak unexamined into cultural portraits. If we are to avoid
the trap of seeing African fractals as an indication that Africans are “closer to
nature,” or concrete rather than abstract thinkers, or unified in a single homo-
geneaus cu]ture then we need to know.a. btt about the origin of these mis-
conceprions. "The fisst step in {h'&t‘kp\occss {5 to examine tl\(. cp\ﬂtn_mniug,u_.\l

frameworks th"lt are 'lpplled to the study of culture

ISR RS e i

The unity/diversity debate and thin description

.,P

e

According to Mucllmbe/(»lgSB) the concept of a unitary, traditional “African cul-

ture” is an invention created first by co]onnhsts, who sought to rationalize their

conquest with the myth of the primitive, and subsequently by anricolonialists seek-

ing to consolidate their opposition. A similar critique is prowdecl by\\pplah {1992},

‘who suggests that the differences among various Afrlt'm societies were much oo

broad to allow any genemhz;tlgngy (p 25) Sure[y differences in religious ontol-
agy and rltu'll in the organization of politics and the family, in relations between
the sexes and in art, in styles of warfare and cuisine, in language——surely all these

are fundamental kinds of differences?

Appiah and Mudimbe promote various kinds of solidarity in contemporary

Africa (as well as internationally in the diaspora); they only caution that this

cultuml unity is of rehuvely tecent origin, and that attempts to see an African

“essenice” or a ¢ umfted Aftican culture precedmg major European intervention
(ie., prewous to the First World War) will eventually have to fall back on 1 racially
defined categories, wh:ch s certamly self defewtmg basis for antiracist
mov;mentq From Appmh s antiessentinlist point of view one cannot disciss
precolonn[ “African culrure;” only Afﬂr_u:w_:lg_c_gi;mea

On the other extreme of the unity versus diversity debate lies the Afro-
centric position. While its proponents alqn agree that there was no-single,
ho:nogeﬁg&ls Afrlc;?n—mhure, Ehey emphasue the sh:ar_gd elements. Asante
and Asante’s African Culture: Rhythms of Unity (1085), for example, begins by
stating that while black unity cannot be based on genetic grounds, broadly shared
cultural undercurrents were found throughout the diverse societies of pre-

colonial Africa:

-\____'f\‘/"\



Theoretical frameworks in cultural studies

"Although the precise actions and ideas may differ within the acceptable range
and still remain squarely in the category of African culture, there are some behav-
iors among some African ethnic groups which may have the opposite mean-
ing among others. Twinness is commonly cogsidered a positive characteristic
inn African societies, yer there are some ethnic groups which accept twinness
as a negative characteristic. . . .Yet this particularistic emphasis would not make
the echnic group unrelated to the others. Patterned behaviors by African erh'-_
nic groups are culeural, not rigid or fixed, but related to history and experience.
Culture can vary over time, but in the case of African culture, it will always
be articulated in the same way.

There is a lot going on in this paragraph, but the crucial point for my analy-

sis is Abante and Aaantt.:; distinction, between the surface parucuhrltles of

81

various Lthmc groupb “which may chffer, and dceper cultuml sensibilities or p'l[- -

terns of articulation (which’ they [ater illustrate with “the three traditional

values: harmnny with nature,2 humaneness, and rhythm” [p. 7]}. In this Afro-
centrism, it is only at the deep level in which we find important cultural attrib-

utes held in commorn.

damental” depths The only dlsagreement between hlm and the Asantes is
e e it

whether or not the depths reveal differences. One way around this quesnon is

in the “thick description” proposed by anthropologist Clifford 6(:_ertz 01973).

Geertz was motivated in part by his dissatisfaction with the ways that Claude
Lévi-Strauss’s strueftunallsm seemed to reduce symbolic culture to a flat, mecha-

nistic syntax. For Gu_lti cultural symbols should be-inakind-of LJ‘E_\EHT\IC play,

and the ethnegrapher bl’l()tlld show their turbulent expansion Ehrough layers of

Rl R
meaning, not their reduction to a bmt{l}_‘ ﬁxed structure. Geertz defined these deep
,f—- ._-l————/--_—-

TN
elements, “which tend to be more SubjLCthB and ]m,r'lry, as specific to a partic-

ular community. For hlm, it would be extremely difficult to compare deep. e]e—

ments from one locatmn 10 thL _next, because the deep elt_ments are ther

~Q_flncal interpretations. Taken to [he extreine, Geertz's thick description would
simply reply thar the question Appiah and the Asantes are asking cannot be
answered.

The framework | have used in parts 1 and 1 of this book, which is that of
Lthnqmathem"xtmb in general, rmg,ht be referred to as thin duulpuon a study

of the surface particularities, 5ud1 s m.m:rml d(..blbnb .md symhohc formuhs As

e g s e

the Asantes point out, a mathematical element like doubling ("twinness” in their
quotation) is just a surface feature. Whether or not it has deeper meanings—and
thus the entire Afrocentrism/antiessentialism debate—is a question outside of
thin description. For this reason, the thin description use of African icons to

N —— T T T e

s ey m—
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represenl: spec:flc m':thematlcal concepts or_structures (e g , the trickster =
bols in their deep sem 101:1(: dyn amics. Pelton (1980) sets up }us[ such a CO‘DﬂiCt.
and perhaps r[ghtly so—there has indeed been 2 tendency for structurartsts to
claim that they had reduced culture to its true essence. Thelr error was to
insist lthat these bare-bones structures were the truly deep mechanisms of cul-
ture, and that the discursive play of meaning should be disregarded as shallow
distraction. As long as we keep the thick stuff as the deep, and the pared-
dowii structures as the surface, there is no conflict.

While the lack of African unity in “twinness” is not a problem for those

- concerned only with deeper meanings, wouldn’t it present a problem for thin

-
~ N

description! That is, if doubling is supposed to be an important feature of African
] mathematics, then how does one explain the African societies that do not use 1‘7
it? ]ndeed how is fr'lctal | geometry Supposed to be an African knowledge system

if the examples of its use are so dlsp'lrate[y scattered ACTOSS the con[ment? To answer

this ¢ question, we need to consider what Wittgenstein called a ﬁmlly resnf.:_mlzlance
When we look at the photograph of a large family we can see t'nat everyone is
related, even if there is no single characteristic that they all share (some have
big noses and some small, some light hair and some dark, etc.}. In the same way,
it is not uncommeon for a group of mathematical ideas to shate many common-
alities withour a singular essence. In James Gleick's {1987) history of chaos
theory, for example, he shows that the emergence of nonlinear dynamics as a dis-
cipline was due to a slow gathering of many different strands of mathematics—
strange attractors, fractal geometey, cellular actomata, and so on. In order for
scientists ta collaborate on this development, there was a long period in which
several researchers worked hard to point ofit the family resemblance of these dis- -
paréte mathematical tools, and many aspects of their relationships are still
uncertain today. Similarly, African fractal geometry is not a singutar body of knowl-
edge, but rather a pacu’:rn of resemblance that can be seen when we describe a
wide variety of African mathematical ideas and practices. And as we saw in the

case of Banneker's quincuny, it is not the only pattern possible.
Y b 3

Participant simulation

“Whether one believes in Geertz’s thick description or in some other method for
researching the deeper meanings of a local culture, anthropolagists generally agree

that it requlres Iong -term local ethnographlc study My thm de‘iCi’li‘lthl"l ﬁeidwork

i

bla C'lmemon Benm, and Gh'm"n This dlspemcd mvestlgatlon is qnlre unhke
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what is undertaken by most anthropologists, who often spend a couple of years
in one village alone, using “participant observation” o raverse rhe depths of the

local culture by actively living it. There is, however, an important difference:

I was not trying to understand how the Yoruba experience grief, or to determine

tht: innEr mm_amnl, of communn} spirit among the Baka My interest was prlman]y

in the form"ul propemes of desngn, in methods of construction, and in other

techmc’ni quesuons that could often be answered in a direct and simple fashion.

Many of the Africans | spol\e with were clearly relieved 10 hear that T was a°

mathematician.? Of course | was still faced with several of the same problems
involving ethnographic accuracy and authority {see Clifford 1983). But even
these were sometimes differently posed. In particular, 1 began 1o think of my
methodology not as participant observation, but rather as participant simulation,

seekmg to collaborate in m’ithemanc'\l malysns and V|rtua1 reconstrugtion

e e s e i A b e
...... - SR PR -

thh my African colleagues.

Pér?;é’iﬁéﬁ‘?ﬁ:ﬁl.imién was carried out to conclusion only in the research
-with Christian Sina Diatta, but | tried to maintain the practice at some leve! with
everyone | had the opporimity to work with, That meant hauling diagrams of
fractal graphics with me into the equatorial rain forest and across the savannah,
and disrupting research time with marh lectures, but in the end it was well
worth it.# There was the potential problem that someone who knew what | was
afrer might fabricate what 1 wanted to hear (as in St. Louis, Senegal, when one
of the local children heard nfe talking about Benjamin Banneker and claimed
o know him personally). A/more pressing problem was my resistance to their
suggestions, as occurred in my initial disappointment with the lack of place value
notation in the Bamana divination code, or hearing che description of the oscil-
latory snake as “Dan at work™ (all | could think of ar the time was a road con-
struction sign). Of course, there are always the aftereffectsﬁ—Senégahse-

sociologist Fatou Sow said “if there are nor fractals in Africa now, there surely

will be by the time you leave’ —bm chen that isa ftamre of all etbnogr aphy; and

_ : N
tr.uhtmml!y used in ulmng 3hy comes from CONCETNS Over acutr'\cy——the

——— e i e

desire o GbEAR a0 QBJLC[[VL account—and concerns< O‘:’_E_E\"_uthonty, a suspicious

—— e

motive in the colonml context of most tmdltmnMropology Clifford (1983)

Jescribes the move toward Collaborative techmques as both the anthropologists’

own self-critique of authority and as a growing recognirion that since the ethno- -

grapher has as much motivation as the informant does, accuracy and objectiv-
ity can be better approached by sharing authority with indigenous voices than

by using them in a kind of ventriloquist act. Simply proclaiming a collaborative

183
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approach is of course no guarantee that you will have one, and parncnpqnt sim-

ulation is perhaos even more susceptlbie to manlpulatlon due to. the role oftech

nologlcal expert,lse,

- e

On the other h'md since the creation of virt: ai worlds—snmulat:ons———ls

the advant’tge of ‘woldmg some old fashioned concepts of authentlmty lt was,

PR, ~ A e e —— o ——————————— et

after all the cr_jc_a_t_lrc_)_.rj_gfﬂgm‘__,__gl_,y_t__ itic native’ (see Appadurai 1995) that helped

" colonists 1o jail rebels among black South Africans and Native Americans; and

Ia one could even hear the occasional guilt-ridden lament among the colonial rulers
l that they themselves were to blame for having accidentally polluted the natural
‘ purity of these “children of the forest” with their own troubling artifice (see the

ap'\rtheld culture comedy, The Gods Must Be szy) Locwt:ng mchgenous activ-

B S e B e e s

artlﬁcml on the Wescem side and natural on the mdlgenous srde
e SR .

Doing it proper]y relies on tl‘ne other root, which comes from the old-
fashioned—and, I think, still crucial-——method of participant observation.
Participant observation recruits a kind of responsibility that can be sadly lack-
ing in virtual ethnographies. Take, for example, the growing field of cyber-
ethnography, in which anthropologists study the virtual communities of the

Internet. Since “lurking” (observing the electronic exchanges without partici-

pating} is so easy, there have been a number of studies in which the ethnog-
rapher is reduced to eavesdropper or spy, with no attempt to work with the
community in either off-line or on-line lives. On the other hand, recruits can
include both draftees, who have little real interest in working coliaboratively,

and fanatics,who ave all too 1merested in what Gwﬁm Spivak {1987) calls the |
“beneveolence of the western gaze.,”

) ‘ Thus partlc1g}_l}t sxmulatson is an attempt to take the best of both approaches, ‘
e e ——————

t1c1p’1tlon we can help

L strive to avert the pohcmg, nf boundaries "lround cons!

'md reahsm From this point of view we do not need to emplnslze tradmon over’
mvenuon, the mathematical creations of a single individual are still examples

g of indigenous mathematics, even if she is the only one who knows they exist.

Intentionality and ethnomathematics

There are clear advantages to 2 methodology that can credit the inventions of
a single individual, but what about those creations that do not have a single inven-

tor! As we saw in the case of complexity in chapter 10, it is possible to err on



Theovetical framewerks in cultural studies 185

the other side by insisting that conscious creatlons can only come from singu-
lar inventors. A better understanding of thig prob[em &'m be gained through the
contrast bew_vt_?enEthnomathematlcs and matﬁ‘emanca! anthropology. Mathe—
mancal qnthropology is generally focused on revealmg patterns that are not con-
: smouﬁy dt.tected by its SLIbJECES of study In part this is due to a conviction that
many of the underpmnmgs of :;ocu:ty are forces unnotlced by its members—not
only because such forces operated at levels beyond mdlvndual awareness; “but also
because regulatory mcchamsms would have to be covert, obscured, or otherwisé
p\(){ected from ‘manipulation and conscious reﬂectton For these reasons, mathe-
matical anthropology makes good sense, and it has indeed produced wonderful
insights. But its empha51s on unconscious process also arose from imitation of
the researcher-object relation in the narural sciences: if anthropologists were
simply reporting indigenous discourse, then they would not count as scientists.
This problem of mere reporting is indeed the case for “non-Western m'\thematics,”
which is mainly focused on direce cranslations for Chlneswc_;‘wl"imdu and Muslim.
mathematics and thus considered a subject for historians. Hence mathcmqtlcal

anthropology’s cendency to avmd mtentlonahty can be problunanc

e e e rans T TS i i st

T_Hﬂungeﬂnnon_ahty pmblem in machemarical anthropology can be seen in
Koloseike’s (1974) model for mud terrace construction in'the low hills of
Eciggfl_qr Koloamk@ began with two hypotheses: either the Indians learned from
the Inca sroﬂ?té?mces in the high mountains above, or they were unintentional
by-products of cultivation on hillsides, He then made a list of nine observations
that were relevant 1o deciding between the two. Of pamcuhr interest are the

following:

3. The same hillside soil is used in rammed-dirt houses and fence walls, and
these stand for years. :

4. But1never saw a terrace bemg consrructed nor dld people ralk about such -
a project.

5. Small caves are often dug into the terrace face for shelrer during rain-
storms. That this potentially weakens the terrace face does not seem to con-

cern people. {1974, 29—30)

, Koloseike concludes that these terraces are the unintentional resulc of™
/" an accretion process from the combination of cultivation and erosion, and
then proceeds to develop a mathematical model for the rate of terrace ~
‘growth. My point is not in questioning the accuracy of the model, but rather
the way thar indigenous intenrtionality is positioned as an obstacle that must
be overcome before mathematics can be applied. Even a small degree of
awareness—Dbeing aware that a cave dug into a terrace face might weaken it—

must be efiminated.
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In addition, it reveals a particular cultural construction of the supposed uni-
versal ateribute of “tncention.” As a Westerner, Koloseike is used to a society in
a hurry. Projects to be done must get done, and always with someone in charge.
The idea of a long-rern intentional project, perhaps extending over several
generations, ot the constitution of collective intentionality racher than individual
intent, is not brought under consideration. It may well be that the mathe-
matical model Koloseike offered was not enly nccurate, but also had an indige-
nous counterpart.

Ethnomﬂthemqtlcs in contrast, has emphasized the possibiities for indige-

nous mtentmmhty in mathemanml p’ztcems For example, Gérd

et .

i :(Iggr)used
the Lusona sand drawmgs of the Chokwe people of northeastern Angola to
demonstrate indigenous mathematical knowledge. While it would have been
possible to attribute this practice 1o an unconscious sacial process, such as the reg-
ulation of authority, Gerdes chose to focus on L.I*Eexr properties as.conscious indige-
novs inventions. Ascher (7667 motes ‘the same type of Eulerian path drawings
o the South churc “and shows them to be primarily motivated by symbolic nar-

e

ratives, in p’artlcuhr their use by the Malelcula lslanders as an abstract mapping

of kinship relations. Again, this is in strong contrast to the tradition of mathe-

matical anti1r0p010gy. where kinship algebra was considered a trivmph of West-
ern analysis {(and even a source of mathemarical self-crivique; Kay {1971} harshly
notes the anthropologists’ tendency to invent a new “pseudo-algebra” for various
kinship systems rather than apply one universal standard).

Asrher description of the Native Amenmn game Of Dish shows this

et i em it i e e, o e e

Contrat i a mare subtle form. In the C‘lyug1 version of the game, six peach stones,

“blackened on one side, are tossed, and the numbers tanding black side or brown

side up were recorded. The traditional Cayuga point scores for each outcome are
(to the nearest integer value} inversely proportional to the probability. Ascher
does not posit an individual Cayuga genius who discovered probability theory,
nor does she explain the pattern as merely an unintentional epiphenomenon of
repeated activity. Rather, het description {p. g3) is fucused on how the game is

E:mbedded in commumty ceremonnls spultual bellefs, zmd he'\hng rltmls.

attributed 1o the. group Yather than to ﬂu, lndwldu il player. ]uxmpmmg thls con-

e with det'uleJ'\ttent:Lm to 'thrmct concepts of mndnmness and prLchctai-nllty

in association w:th the game—in particular the idea of - ex’pected values” asso-

ciated With Successive tosses—has the effect of wm\hurmg the mvemmn o(

pr ob )b:-hty assigninents to collccrsvc intent.

At the '\’r\eprlml extreme in ethnomarhtmqncs Donald (“mwe h'ts refrained

from m'lkmg any inferences ahout lniLnt!Oh’lllt\? and insists (5t Tis studies of
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symmetry in indigenous pattern creations (see Washburn and Crowe 1988) are
simply examples of applied mathematics. But since Crowe has restricted his,
_.“_f work to only those patterns which could be attributed to conscious design (paint- /
M ing, carving and weaving), it creates the opposite™ffect of mathematical anthro- /
"'pologyis attempt to eliminate indigenou's" intent. This is evidenced by Crowe’s{;“-
= dedication to the use of these patterns in mathematics education, particularly his.‘i]
t\/ reaching experience in Nigeria during the late 1g60s, which greatly contributed _,-"r
to Zaslavsky’s (1973) seminal text, Africa Counts.

While non-Western mathematics is exclusively focused on direct trans-,
lations (such as Hindu algebra or Muslim geometry); ethnomathematics can'be
open to any systematic pattern discernable to the researcher. In fact, even that
description is too restrictive:_before Gerdes’s study there was no Western cate-
gory of “recursively generated Eulerian paths™ it was only in the act of their par- /
tu:ldp-aﬁ'tusﬁlﬁ:'r—mlatmn that Gerdes—and the Chokwe—created that hybrld And
unlike mathemarical anthropology, ethnomathemaucs puts an emphasis on

the 1ttr1but10n of conscious intent to these patterns. At the same time, it

demands quantltatlve or geometric confirmation thar is lacking in the purely
interpretive approach of New Age mysticism, such as that of Fritjof Capra's Tao

of Physics (see critiques in Restivo 1985). Claims that ancient knowledge sys-

rems reveal the structure of the atom or the equivalence of magter and energy
do more harn than good—first because they are wrong, and second because there

is no means by which such knowledge could be cbtained. Such mystlﬁcatlon dam-

ages credible research in indigenous knowledge systems, and removes the attri=

bunon of m[en[lonals[y and ln[ellectu'il Iabor from the pusative | knowers

Fuolution f¢ a buch and not o ladder:

the cultural location of African fractals

We are increasingly surrounded by explananons based on blOl(}glcal determin-
ism, and there is none more virulenr than ﬂcmm;Even in the s supposed liberal
clumte of U.S. academia  my lectures on fracmis in Africa are frequently followed
bya qu(.sn(m abOLLI' neurosc:ence*Typncﬂlly this ts an innocent remark concerning
Noam t‘homs'kys ideas of universal cognitive struceure, but even so, it is quite
telting thac lecture on Europum fmct'\ia invokes questions about the genius of

individuals, while Afric.m fmctals are compulswely "ttmched to blology

The mythology fvace Ts too complex to recount here (seg: note 6}, but it

is useful to Lllstmg,mbh between [wo_categories of ractsmf Prmmwrsr racism

vperates by makmg a group of people 100 concrete, qnd tbus closer 1onature”—

ot rt,all‘,' a Lulmre at all “but rather belngs of uncon[roll(.d emotlon and dsru_t
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- bodlly sensation, rooted in an edenic ecology Orlentnllst r'1c1qm oper'lte‘; by mak- ; /

s b

ing a group of people tog,abstmct, and thus * ambesque —not really a mtural
ostract,

. human but one-who is devoid of emot:on,,carmg only for money oran inscrutable

,.,I"
pmtml transcendence "

g PP

“The a !tcm tive to blogenetlc expl'nrntlon is socmcultuml, and here the ..

PR

C’lEEgOFIES of pr!mltwe “and oriental can be much more complex Historically,

been located in institutions with titles like “Museum of Primitive Arts”

“Department of Orientalist Studies,” and it would be unwise to simply sneer at
their work, particularly considering the antiracist contributions by black anthro-
pologists such as Zora Neale Hurston or Jomo Kenyetta. There is value to be found !

in even the weakest of these OPPOSlthn“ll theones, and problems in even the

many researchers who strongly opposed both racism and ethnocentracism | have 1
1
j
!

* strongest.

In generai these theories can be grouped into two strategies: sameness 3 ncl

dlfference S ameness can usu']lly avoid orientatistm and pr:mltwlsm since it
argues that wlnt is important about a non- Western culture are - those things held

in common with the Euro-Americans, and what is different is (in this context)

~trivial. Claude Lévi-Strauss, for examplé, argued that the “savage mind” is based

‘on sysiems of symbolic structures, just like the European mind, so that am

African working with a system of mythological symbols is performing the same
cognitive operations as a European working with a system of computer code sym-
bols. One drawback of sameness is that we become players in a game created by

someone else: “] am wnrthwhl]c only insofar as l am the same as you " Difference

P ———— et

e e -

[ et i e e

entallsm For e‘mmp[e Atme Césdire's neologlsm negrltude bf:gdll aga wiy of
speaking about the difference of African culeure in open-ended, dynamic, cre-
ative terms, but laﬁgr (in the hands of others) the comparison was frozen into a
set of binary opposirti0115 {intuitive vs. analytic, concrete vs. ahstract, etc.).? In
other words, both sameness and difference have moments of failure as well as
morments of success. .

The recent focus on '1n(:i€nt\Egypf"in certain circles of African studies has

certainly seen both moments. Motivatéa by considerable schohrly work (e.g., Drake

1984), it has also become 1ttachcd to 50|1mrepumbie and quesnonnble claims
{see critiques in Oritz de Montellano 1993; Martel 1994; Lefkowitz 1996). [t is
worth noting, however, that some of the critiques have been equally lacking in
their restraint. In his review of the Portland Baseline Essays, for example, Rowe
{1995)—while righﬂy painting to a aumber of unsupparted assertions—-implied
that claims for an ancient Egyprian plider should be dismissed because the

author was merely an aerodynamics technician rather than a Ph.D. Rowe was
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quite right in objecting to the wild leap from empirical tests of a small wooden
carving to the authoritative claims for ancient Egyptians flying from pyramids;
but to imply that simple experiments are automatically suspect because they were
made by a technician is nnrhtm1 but chbmr plL;ud]u. On the other h.md the
fact that this researcher was a rechnician rathu than a PhD speaks to the under-
lying cause for these problems: the lack of institutional resources and precarious
economics among many black educational communiries.

Appeals to ancient Egyprt can also encounter problems as a strategy of same-
ness. On the one hand, ancient Egypt’s status as a state empire directly opposes
primitivist assumprions that Africa consists of nothing but tribal villages. On
the other hand, it reinforces the view that the knowledge systems of nonstate
indigenous societies are not comparable to those of state societies. This view cormes

from the old 1def\ ofcultural evolution as a ladder, a unilineal progression from

——————.

pnmmve tO qdvanced » In the ladder modei the small-scale decentralized

(* band ) societies would be on the bottom rung, the more hierarchical ("eribal™)
Renai 1

socu:t:es would be on the next rung, and the most hierarchical (* state 'Y societies

would be on the top rung. Of course, simply positing that the societies with cam-
plex social organization (e.g., labor specialization and polmcql hierarchy) have
greater technological complexity is not inherently demeaning; but it is not
rentirely accurate. Anthropological research has persistently shown that neithers *
social structures nor their knowledge systems can be consistently ranked in a |
unilineal sequence; for example, monotheistic religions tend to occur in band 1
and state societies more than in tribal. Just as biological evelution has been

rev1sed from L _qveio oy’ “great chain of bemg (o Gould's coplous[y branclung

bush,”0 s0 too cultur W evolution is now typlc lly portrayed as a branchmg diver-
J,—-a-...r - |

sity of forms. There is nd reason to focus on state socieries over nonstate soci-

AN
eties in the pursait of antiprimitivist portraits.

The difficulties of theoretlcal frameworks in the eplatemology of nonstate

b()ClLtIt‘S have beeﬁ mua. 'xed Appiah (1002) provades an excensive chs—

cussion of this intersection, starting with ethnophllosophy His analysis weaves

T‘l()

( between the pasitions othredq {1970}, who critiques the focus on comparison
to Western science rather tRan religion (noting that it leaves the superstitions
| and folk philosophies of the West unexamined), and H\Noum“m 1983), who
argues against any mimetic comparison, suggesting that echitspkilosophy and its
iallies are dressing Furopean motivations in autochthonous garb. Both critiques
)could certainly be app'rlied to African fractals. But like Mudimbe’s (1988) Fou-
caulrian analysis of African epistemology, and Gilroy’s (1993) fractal history {which
we will examine in the following chapter), Appiah’s dialectical contour maps

African epistemolopy as an historical process rather than an object of strictly
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pre- or post-Western presence. The cautions of Wiredu, Hountondji, and oth-
ers are serious reminders that African fractals can only succeed as participant sim-
ulation, not as Indiana Jones discovering-another lost temple o~

! Given those precautlons, it makes sense to see Afncan fractals as just

et

another moment in a hlstoncal sequ

nce. One could for e\cample phce

them in Mudimbe's hlstory ofethnophllosophy, or Zaslavsky's {1973) history
of research on African math. But there are other researchers who have pointed
out some of the fractal characteristics of African designs and practices, and
it is useful to examine them as a group, even if they lack the clear historical
trajectory of other categories. We have already mentioned the observation of

nonlinear scaling by British art historian William F agg (chapter 6), and the
i B it

interpretation of scaling de51gns as signifi

TS of Jmfinicy in_the. work of
Cameiogﬁnn thﬁologlapn--iiﬂr'\aé‘elbeu i\?Iveng (ch pter o). Léopold Senghot,
the distinguished man of letters who be'cv;l;e Senegal’s first president, also had
an eye for African fractals. His term was “dynamic symmetry,” which he took
from art historians. But Senghor’s motivation was primarily ideology; defin-
ing a “negritude” that would encompass the kind of cultural polmm he saw
as necessary to independence. Most recently, Henry Louis 64, (1988)

explored the doublmg practices of vodun divination in terms of a literary ver-

——, e A o
e ey, b s o 65
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sion of deterministic chaos; here the recursion generates a culcural uncertainty

that frees gendeﬁaentlty from static boundaries: “The Fon and Yoruba escape

the Western version of discursive sexism through the action of doubling the

double; the number 4 and its multiples are sacred in Yoruba metaphysics. Esu’s”
two sides ‘disclose a hidden wholeness,” rather than closing off unity, through

the opposition, they signify the passage from‘one to the other as sections of
a subsumed whole.”

While all four have hit upon mathematical aspects of African fractals, none
of these authors have focused on representations of mathematical knowledge.
Mveng, the theologian, provides a theological interpretation. Fagg, the artist,
concludes with a comparison to D'Arcy Thompson's famous nature drawings.
Senghor, the statesman, sees his dynamic symmetry as a sign of cultural—and
thus national—identity. And Gates, as a literary critic, sees it as discursive tech-
nique. Surely my insistence on indigenous mathematics is no less an inposition
of seeing the world though my own lenses, but since that is no different from
the other explanations, why does ethnomathematics appear to be so much
more controversial? It is because a portrait of mathematical sophistication in
nonstate societies creates a strong conflict with the old fadder model of cultural

evolution, a madel that is itsell overdue for extinction.
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Conclusion

So far we have outlined several theoretical frameworks that could raise prob-
lems for African fractals. On the one hand, there_are theories in which the
designs could be dismissed as unconscious biclogical or social process. On the
other hand, great care must be taken to avoid either inflated claims or a
mathematical version of negricude. With the exception of biological deter-
minism, none of the frameworks reviewed here are necessarily good or bad.
There are cases in which mathematical anthropology is more appropriate
than the ethnomatchematical approach, or when sameness is a better scrategy
than difference, or when attention to ancient Egypt needs to supersede atten-
tion to sub-Saharan Africa—just as there are cases in which the oppaosite is

true. Qur goal is not to find the one true final framework—it does not exist—

- but to keep a well-stocked toolbox and know how to pick the right tool for

the right job. Now thar we are well prepared for constructive tasks, it is time

to move to politics.
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12

—— Given the possible dangers in misinterpreting African fractals, how can we put

The

thern ta good use? Social theorists from many different disciplines have used two
mathematical concepts we have discussed, recursion and the analog-digital
dichatomy, in constiucting their ideslogics. Many theorics of communication have
assumed that there is some kind of universal ethical or social difference between -
using analog signals and using digital symbols. Other theories have maintained
that recursion has some kind of universal ethical or social value. Both are ulti-
mately failures in the sense that ethics and values do not lie within mathe-’
matical distinctions. Yet they are also on the right track in that such associations
can be locally formed—it is just that different locations will result in different social
meanings. Such locally specified social attachments to fractals can be useful for
understanding culturat politics in Africa and beyond.

politics of the analog-digital distinction

19z

Jean Jacques Rousseau is often credited as o founder of "organic romanticism,”
the theery that the Natural is inherently better than the Artificial. Whether or
not this is deserved, Jacques Derrida {1974} takes him to task for proposing that

a naturalfartificial difference can be found between different lanpuages. Jean Jacques
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Rousseau proposed that the “natural crys of animals,” music, and “accentuation”
{that is, pitch intonation in the human voice) are all a similar type of com-
munication. In this I would tend to-agree, since instrumental music and human
_ pitch intonation are for,the most part analog rép}esen[ations and since he was
probably thinking of analog examples of animal communicarion {although
many animals, for example vervet monkeys, use digital communication as well).
Rousseau contrasted this to “articulation” in the human voice, by which he
meant the linguistic {and hence digital} parts of speech. But instead of seeing
the distinction as two different types of representation, one analog and rhe other
digital, Rousseau claimed that analog signals were not a form of representation
at all. In his view, digital versus analog was representation versus The Real. Music,
animal cries, and emotional intenation were somehow more natural and
authentic. Worse yet, he inflated this into a cultural difference, maintaining
that white European languages were largely based on (digital} articulation, the
language of the nobel savage was closer to nature.

One might hope that Derrida would correct the matter and point out that
analog signals are just as much a representation—just as much fakes, just as easy
1o lie or tell wruth with, and just as artificial—as digital symbols are. But he too
failed to produce a batanced portrait. Derrida did insist that all human linguis-
tics is fundamentally digital {quite true), but he did not bother to say a word abous
other modes of vocal representation. This error is due to Derrida’s concern over
the authoritarian ideology that organic romanticism can produce. For example,
history is full of dictators who claimed that their ethnic group was the real or
natural one, and that others were artificial pollutants in their Eden. Rousseau
himself did not have such fascistic tendencies, but Derrida is right in peinting
out that organic romanticism-zan alwiys be used in thatway, no matter who it
is coming from.! One need not panic so much, however, and-banish analog sig-
nals from existence; it is enough to give them the same epistemological status
as digital symbols—no more and no less.

I have found this egalirarian view of the analog/digital distinction very dif-
ficule to promote; it seems that everyone has their own favorite view. When | spoke
to chaos theorist Ralph Abraham, for example, he explained that analog systems
were in his view the realm of spirit, the vibrations of Atman. Postmodern theory
maven James Clifford, to the contrary, insisted that only digital representation
is capable of the flexible rearrangements that constitute human thought. This
same battle has been played out in the history of African cultural studies. Dur-
ing the 1960s, realism was in vogue, and what could have been a wonderful explo-
ration of the analog representation techniques in African culture was ofren

reduced to romantic portraits of the “real” and "natural,” while African symbol

193



104 Implications

systems suffered from neglect. During the late 1970s, this began ro reverse
itself—with the advent of posttnodernism, African cultural portraits became
increasingly focused on discoutse and symbol systems, even at the expense of ignor-

~

ing analog representations.
1t is important, however, to sce how these restrictions have been contested,
particularly in black intellectual communities. Hooks (1991, 29) summarizes her
own reaction to romantic organicisin: “This discourse created the idea of ‘prim-
itive' and promoted the notion of an ‘authentic’ experience, seeing as ‘natural’
those expressions of black life which conformed to a pre-existing pattern or stereo-
type.” Rose (1993} describes the history of rap music, also arising in the mid-1970s,
as not just a resistance to organic romanticism, but as a technocultural rebellion
that makes Derrida look like Gutenberg. Cornel West, Houston Baker, Hortense
Spillers, and Hazel Carby have made interventions in African American intel-
lectual discourse in similar ways, as have works of black science fiction such as
George Schyler's Black No More, Ralph Ellison’s Invisible Man,? Toni Cade Bam-
bara'’s The Salt Eaters, Samuel R. Delany's Dhalgren, and Octavia Butler's Xene-
genesis trilogy. An egalitarian view of the naturalfartificial dichotomy can be seen
“in black intellectual history running from George Washington Carver's concept
of “God's Kingdom of the Synthetic” to Mudimbe’s “Invention of Africa.”?
Indeed, Carver and Mudimbe's concepts.are quilte similar; it is not Mudimbe’s con-
tention that African unity lacks a spiritual bond, but rather a celebration of the
spirit of invention, which requires resistance to the European claim that spirit
can exist only in categories of the natural. African animism is marked by an extra-
ordinary acceptance of the religious significance of artifice,? from gris-gris to the
mojo hand, and its techniques for passing information through the physical
dynamics of sound and movement show that this faith in the power of analog rep-

resentation is not misplaced.

The politics of recursion

While Derrida was trashing organic romanticism, Michel Foucault was attempt-

ing to do the same for humanism. His historical studies demonstrate-that human-

ist goals of recursion—to be self-governed, self-controlling individuals—are not
innocent; but rather develop historically in combination with various tech-
niques of social control. In an era where “self-management” usualiy means that
the corporation you work for has developed improved techniques for self-
exploitation, it is not hard to see what Foucault is getting at. As in the case of
Derrida’s warnings against claims rhat analog representation will automatically .

lead to more ethical living, Foucault warmns against seeing recursion as a moral
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formula.> While African analog systems raise the problem of someone making

claims about what is more real or more natural, African recursion

especially the
recursive architecture of African settlements—rajses the problem of humanist
claims. - .

To see how this can be a problem, consider the following two case studies
of African architecture. Caplan (1081) studied the relation betweenhousing and
women’s autonomy in Tanzania. She described how the flexibility of housing
allowed women 1o create new homes if they wanted a divorce, or ta extend old
homes if they wanted to shift the family structure. As in many African settle-
ments, this self-organized housing created a self-similar structure—fractals—which
allowed greater social self-control for women. When socialisim brought mod-
ernization programs, this autonomy was threatened by the “improved” housing
design, which sometimes resembled concrete army barracks.6 Here one would con-
clude that fractal is betrer. '

Stoller {1984) described a Songhai town in which a caste system ensured

-that the best land was voluntarily given over to the highest caste members. It
was not a matter of forcing people against their will, but simply unquestioned com-
mon sense that one should want to be located in their proper place. This frac-

“tal, self-organized architecture was a form of self-exploitation. Eventually several
members of the community decided to break ourt of this oppressive structure by
building houses along the new highway. Thus liberation in this case meant
leaving the fractal geometry, and lining up in straight Euclidean formation—exactly
the opposite of the Tanzanian village studied by Caplan. Stoller's work ricely illus-
trates Michel Foucault’s warning against simplistic humanist formulas: self-
dererminarion is not necessirily fiberaring; it com serve to support social control

TAINEr LA €188 it

c-fractalner Buclidean geometries have any inher-

ent ethical content; such meanings arise from the people who use them. '

Colonialism and architectural fractals

René Descartes was not much of a humanist;‘in his view self-orpanized architecrure

is junk. He makes this clear in his famous Discourse on Methodology:

[Tlhere is less perfecrion in works made of several pieces and in works made
by the hands of several masters than in those works on which bur one master
has worked. Thus one sees thar buildings undértaken and completed by a
single architect are commonly more beauriful and better ordered than those
char several architects have tried to patch up. ... Thus | imagined that people
who, having once been half savages and having been civilized only gradually,
have made their laws only to the extent that the inconvenience caused by crimes
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and quarrels forced them to'do so, would not be as well ordered as those who,
from the very beginning of their coming together, have followed the fundamental
precepts of some prudent legislator. . ™ (1673, 12)

.

For Descartes, “self-organized” is éynonymous with savages, the imperfec-
tion of both material and social structure. Lack of complete Euclidean regular-
ity means randomness: for “streets crooked and uneven, one will say that it is
chance more than the will of some men using their reason that has arranged them
thus” {p. 12). The lack of Cartesian coordinates in many African settlements would
thus evidence their need for the guidance of colonial reason. As Hull {1976) notes,
huge centers of urban life in Africa were indeed disregarded by Europeans as
“unstructured bush communities” on just these principles. While Timbuktu was’
granted cityhood due to its grid pattern of streets, the Yoruba cities of equal pop-
ulation size and economic, technical, and labor specialization have been disre-
garded as merely giant villages due to their lack of Cartesian regularity.” Thus
fractal architecture was used as colonial proof of primitivism. This debate over
the urban status of non-Euclidean settlements continues in the postcelonial era
(see Schwab 1965; Lloyd 1973).

The occasional Cartesian hnearit\.( in African architecture threw a hitch
into this colonial justification. In 1871 the German geologist Carl Mauch “dis-
covered"” the ruins of Great Zimbabwe. Stunned by the evidence of precise stone
cutting on a massive scale, he proposed that the buildings were not of African
design, but were instead due to the Queen of Sheba’s visit to Solomon. The |

Rhodesian government used this explanation as a part of its propaganda against

Black rule (M'\clntosh and Maclntosh 1989) Actmlly, they had much less to

fear in the truth: the stone was not cut, but it natura lly broke into linear
sheets {after heating) due to its geologic properries. Moreover, most of the out-
side walls were originally covered with smooth clay, creating a nonlinear set
of scaling shapes (which Connah [1987] refers to as “random curved farms™).
This is not to diminish the remarkable technological skill of the construction,
but to point out that one culture’s sign for “artificial” can be another’s sign for
“natural.” Euclidean versus fractal does not necessarily mean artificial versus nat-
ural; that, too, is culturally influenced. .

During the development of colonial cities, the chaons of African architec-
ture was used as both symbol and symptom of European fears over social chaos.
Pennant {1983) provides an example of this concern about proper settfement geom-
etry in his examination of colonial development in Malawi: “The language of this
19305 policy discourse is significant. Medical experts wrote of ‘investigntions' show-
ing ‘unquestionably’ and of ‘abundant proof.’ . . . Lay Europeans showed ‘con-

cern,’ ‘alarm,” and ‘horror” Africans, with their *primitive habits,” of ‘promiscuous
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defecation’ formed a 'floating’ or ‘scattered’ population in need of ‘control’ and
*supervision’ in a ‘properly laid-our village or location.””
In the above case where “primitive” mixeswith modern, the fractal rradi-
. tion was a threat. But kept in what coldnialists thought of as its natural role, it
could make fractal settlements appear to benefit the colonial enterprise. The nov-
elist Karen Blixen (1sak Dinesen}, in Out of Africa {1088), described her attempts
1o lay out grids for African workers’ houses on her ranch. They refused to follow
these linear instructions and fit their houses in patterns matching the irregular
‘configuration of the land. Thar such ecological fit could be quite efficient was not,
however, lost on the colonists. “The squatters’ land was more intensely alive than
the rest of the farm, and was changing with the seasons” (p. 9). Architectural
fractals could be part of colonial romanticism as long as they ensured a supply
of self-supporting workers.

Even in the case of social control, indigenous fractals could be utilized. British
colonial policy, for example, at frst failed in cases where there was a decentral-
ized network rather than a large hierarchy. This was approached in the case of
the Ibo with a system of “indirect rule” based on “warrent chiefs” (Isichei 1976).
The Ibo auronomy of self-organization was turned against them; in a sense it was
grass-roots colonialism. The architectural equivalent of this system can be seen,
in a manual {or colonial-era housing designs from the Agency for International
Development (Hincheliff 1046, 31). Here the Ibos' fractal settlement pattern (radial
houses around a center in each village, radial villages around the settlement cen-
ter) is tidied up to suit European conceptions of symmetry while retaining the

overall indigenous fractal structure.

- Fractals and racial redistricting

In the introduction to his seminal Fractal Geometry of Nature, Benoit Mandelbrot
examines some of the disparaging comments that were made about the early
fractal forms of Georg Cantor, Helge von Koch, and others. Rejected as “bizarre”
and “torturous,” these "dragons” were consigned to the oddities section at the
end of the few math texts that would even consider them. Strikingly similar
tanguage has been used to reject the outlines of voting districts that were
abtered o include targer African American populations, and these do indeed
appear to be fractals {fig. 12.1).8 Were the courts as mistakenly hasty to disre-
pard fractals as mathematicians were? '

The Euclidean shape of voting districts is not an arbitrary sampling—this
could only be done by randomly selecting voters from everywhere in'the state.

According to the 1993 Supreme Court ruling in Shaw v. Reno, it is meani to
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B FICURE 12.7.

Georgia congressional district x¥ in 1992
Similarity of irregular redistricting partern can be seen at multiple scales.
{Original maps caurtesy of cthe Carl Vinson Instivuee, graphic highlighes by the author.)

designate a geographic focale in which “shared interests” inform the vote. The /38
i objection to crearing a district in which contours are “predominantly motivated”
by race is that it creates a bias in the sampling of rhe geographic location. This
would certainly ke the case if we were to take a random sampling, separated var-
ers by ethnicity, and then designated those ethnic groups as the voting districrs.

However, if some ethnic groups are distributed in Euclidean settlement pattern
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fractals—burt the face thar we now know of societies in which fractal sertlement
parterns are beautiful fusions of form and function suggests thar we might

reconsider their potential role in American politics.

African fractals from cultural visionaries

Fractals and chaos theory have been increasingly mentioned in the humanities
as either a tool or an object of cultural analysis, but too often the approach of
these studies has left the impression of mathematical ink blats allowing writers
to see whatever they please. Lyotard (1984) saw fractal geomertry as contribut-
ing to a “postmodern condition” whose contradictory nature would disrupt
authoritarian certainty; a more cautious version of this thesis is floated in Deleuze
and Guartrari (1987). At least two authors {Steenburg 1091; Argyros 1991)
have argued that fractals and other branches of chaos theory have created a direct

challenge to postmodernism, integrating the disruptions it created. Porush

B

(1991) and others insist thar “deterministic chaos” is attempting to substiture
a feeling of free will for fatality.? Sobchack {19g0) suggests that it implies “an
embrace of irresponsibility in a world already beyond control.” When Sobchack
cites Peitgén and Freeman in her condemnation of chaos theory as a denial of
“the specificity of human embodiment and historical situation,” | can’t help but
think of Peitgen’s fractal geometry course at the University of California at Santa
Cruz, where he commented on German mathematicians who altered their
careers to oppose Nazi anti-Semitism or support peace efforts; or of Freeman'’s
{1981) use of Martin Luther King in his discussion of chaos in neurophysiology.
How can we critique the work of chaos theorists as lacking historical specificity
and embodiment if we ignore their own histories and bodies? _

Hayles's Chaos Bormd {1990) took a more subtle approach. Like Porush and
others, Hayles's licerary method allows her to glide far 100 easily between un-
related ideas; by the time she has tossed togerher quantum theory, entropy, and
Godel’s theorem with deconstruction and “holism,” one can only conclude that
any complicated idea can be a metaphor for any other complicated idea. Bur her
derailed analysis of literary works, showing deep paratlels between self-reflexive
writing and self-referential marhematics, suggests that when grounded in specific
locations the fusion of fractal geomerry and cultural interpretation ¢an be pro-
foundly rewarding.

_ Paul Gilroy makes explicit use of fractals in his portrait of the djversity and
dynamicism with which both traditional Africa and the African diaspora have
organized their cross-cultural flows. The recursive construction of his Black

Atlantic can be seen, for example, in this quote from James Brown on a visit to
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hear Fela Kuti in Nigeria: “[Bly this time he was developing Afro-beat out of
African music and funk. His band had a strong thythm; I think Clyde picked up
on it in his drumming, and Bootsy dug it too. Some of the ideas my*tand was get-
ting from that band had come from me in the first place, but that was okay with
me. It made the music that much stronger” (1993, 199)-

Gilroy cites the impact of the Virginia Jubilee Singers on tour in South
Africa in 1890, the return of slaves from Brazil to Nigeria, the Rastafari culture:
in Zimbabwe, and other examples of “mutations produced during its contingent
‘loops and fractal trajectories.” Pérhaps his most radical move is a claim for dias-
peric mixing with Jewish culture—W.E.B. Du Bois passing for a Jew to main-
tain safety in Eastern Europe, the use of the Exodus theme in Martin Luther King,
Jr., and Marcus Garvey, and E. W. Biyden’s childhood in a Jewish commu-
nity. 19 The fractal imagery works in many different ways for Gilroy—from the
turbulent metaphor of hybridity to the concrete description of ships' paths
and travelers’ routes {or “roots/routes” as he puts it).11 While music is, with-
out doubt, Gilroy's strongest example, he does slip into the problematic labels
of representational versus “nonrepresentational” rather than digital versus
analog,'2 but he makes it clear that the music reverberating across his Black

- Atlantic is neither pure nor natural.

While Gilroy is primarily focused on fractals as spatial representations of
blurred boundaries, he also briefly mentions their potential for “a striking
image of the scope of agency within restricted conditions” (1993, 237n28); that

" is, the ability for geometric expansion within bounded space becomes an anal-
ogy for oppositional political expansion in human bondage. The metaphor is car-
ried to a more exacting relationship in Gary Van Wyk's study of Sotho-Tswina -~
mutals under the apartheid system of South Africa. Van Wyk {1993) found chat
the litema, or the house painting patterns of the Sotho-Tswana wotmen, utilize
alternations of irregularity and regularity at several scales, sometimes resulting
in a resemblance to fractal patterns. Noting that the scaling is associated with
the geometric structure of flowers, and flowers with the regenerative power of
women {both spiritually and in social struggles}, Van Wyk's ethnography con-
cludes rhat the murals expressed political opposition to apaitheid by providing
a visual analog in which “a woman can be secretive while at the same time hid-
ing nothing” (Deleuze and Guarttari 1987, 28¢—290).

Although the wotd “fractal” is nowhere mentioned in his text, Anton
Shammas'’s novel Arabesques (1988) is an exetnplar of nonlinear insight and recur-
sive cultural commentary. Heaver {(1987) analyzes the novel through the North
African artistic form of the “arabesque,” and shows how Shammas has used this

fractal to sustain the cyclic time and multiple identities required to articulate a
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FIGURE 12.2 .
Religious institutions in the map of Cairo, 1808
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political flexibility crucial to the survival of cultural diversity. “As an ‘Israeli Arab,’
Shammas is 2 member of a minority group—but as a Christian, he falls outside
the Islamic mainstream of the minority. . . . On the othe'{ hand, Fe writes in
Hebrew, the language of the dominantly Jewish culture, which is itself a minor-
ity within the predominantly Arab Middle East” (p. 49).

Such recursive nesting is emphasized throughout the temporal flow,.

narrative structure, and conceptual dynamics of the novel. Heaver suggests that

the “nonmimetic geometrical abstractions of the arabesque” are a spatial model

for Shammas. He notes that in part these cyclic reentries act to negate one
another; undermining, for example, the fruitless argument of “l was here first.”
But negation is not the only meaning behind the arabesque, as Heaver points
out in a passage that ties Islamic social structure to analog representation,

recursion, and the scaling properties of fractals.

The arabesque does not serve only a negative, critical function; it also bears a
positive, utopian message. It acts as an analogue, in the area of visual arts, to
the position of Islamic “contractualism” in the social sphere. . . . In contrast
to western corporativism, with its preference for hierarchical structures in
which a limited number of conclusions are drawn from a limited aumber of
premises (on the maodel of geometry), the cyclical rthythims of the arhésque could
well be said to characterize an “indefinitely expandable” structure. The
arabesque provides a framework within which it becomes possible to reduce the
apparently “chaotic variety of life’s reality” to manageable proportions, yet with-
out “arbitrarily setting bounds to it.” (Heaver 1987, 61)

Clearly, when Heaver refers to the limiting dangers of a “model of geom-

~etry” he is thinking of Euclidean structures; itds-the fraceal geometry.of-the

" arabesque which conveys the hopeful message of Shammas. In chapter 2 we

examined the arabesque branches of streets that appear in a map of Cairo, Egypt.
In another section of this map (fig. 12.2), a wide diversity of religious insti-
tutions flower at the ends of these branches, attesting to the positive poten-

tial of fractals in culeural polidics.
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' CHIAPTER
Fractals
—in the—
European
history of
——mathematics

—— Anthropologists have recently taken an increasing ingerest in the cultural analy-

sis of Euro-American societies. In pare this is a reaction to the many decades of
focus on indigenous societies, as if their behavior required explanation while that
of Europeans was self-evident. At first this “reflexive ethnography” sounded like
an ingenious way 1o turn tables on some very troubling aspects of anthropolog-

ical authority, but it too has drawbacks. Occasionally one suspects a hidden sigh

of relief from anthropologises who decide they can place themselves on the cut-

ting edge by “studying their own tribe” {just as cyberethnography sometimes seems
suspiciously convenient). Nevertheless, there is an important place for anthro-
pological studies of Euro-Americans. It would be an unbalanced portrait if we were
to see African fractals in need of cultural analysis, and Western fractals as merely
self-evident mathematics.

A cultural history of European fractals

Ancient Greek philosophy is often remembered for Plato’s rational realm of
unchanging, static forms. But in the history of mathematics, it is important to
consider other intellectual currents in that society, in particular the paradoxes
of the philosopher Zeno of Elea and the discovery of irrational numbers by the
Pythagoreans.
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According to ancient historians, Pythagoras of Samos gathered knowledge
in Egypt and Babylon in the sixth century B.c.E. and established a secret soci-
ety tn Magna Graecia {what is now southeastecn ltaly). His disciples, includ-
ing one of the first recorded women mathemat-icians, Theanayswore an oath
to maintain strict dietary regulations, secrecy, and a religious faith in numbers.
The Pythagorean cosmology was a harmonious unity based on whole numbers
(1,2,3...)and their ratios (fractions such as 2/3, 5/2, etc.). From the motion
of heavenly bodies to the laws of music, they found increasihg evidence for their
arithmetic religion. But at some point—and much ink has been spilted in the
date debate—came the discovery of what they termed alogos, the “irrationa!”
numbers (a name that we have kept to this day). Unlike whole number ratios,
which either terminate (5/2 = 2.50000 ...} or repeat (13/11 = 1.18:818 .. .},
irrational numbers, such as the square root of two (1.41421356 . . .}, continue
to change forever. They cannot be expressed as the ratio of two finite integers;
as geometric magnitpdes they are “incommensurable lines.” The most plausible
arigin for the Pythagorean knowledge of irrationals is in an attempt to deter-
mine the diagonal of a pentagon. If you wish to determine the ratio of diago-
nal to sides for a regular hexagon, it is quite easy, because all diagonals intersect
in the center. But the diagonals of a pentagon just form a smaller pentagon. Since
the same operation can be repeated again and again, an irrational number is
exposed.! This “irrationality” in the heart of their spiritual practice was toe much,
and members of the proup agreed not to reveal this secret on pain of death.

Zeno of Elea (fl. ca. 450 B.c.E.}, a disciple of Parmenides, provided a
series of paradoxes that also conflicted with the numerical faith of the day. His
most famous example is a race between Achilles,.the fleetest of runners, and a
tortoise. Allowing the tortoise a sporting chance, Achilles gives it a consider-
able lead (let’s say roo feet). But by the time he chught up to the place where
the tortoise began, it had already advanced 10 feet. By the titne he gained that
distance, the tortoise has crept forward one foot. Zeno concluded that although
experience proves otherwise, logically the tortoise should win the race. Back in
450 B.C.E., these paradoxes of infinity (and infinity's flip side, the infinitesimal)
were unnetving, even shocking to philosophers who depended onvrationality as
the gateway to religious perfection. . ‘

In Plato’s philosophic cosmology, spiritual perfection was seen as the higher
level of transcendent stasis, and illusion and ignorance were the result of life in
our lower reatm of. changing dynamics (“flux,” which in ancient Greek also
means “diarrhea”). Several of Plato’s students attempted to improve the match
between the characteristics of mathematics and the requirements of the static

reaim. Eudoxus proposed to eliminate irrationals by redefining “ratio,” and




Fractals in the Furopean history of mathematics

Xenocrates introduced a doctrine of indivisibles to oppose Zeno's paradoxes. Aris-
totle, noting that infiniry + infinity = infinity, suggested that this “self-annihi-
lating” characteriseic could be eliminared by restricting reference to infinity as
a limit 1o be approached, rather than as a thing itself, a proper object of mathe-
matical ihquiry. : ”

The Platonic reform was quite successful, and as a result mathematicians
in the following centuries paid littie attention to the kinds of recursion that led
to Zeno's troubling infinite regress. One early exception was that of Leonardo
Fibonacci in the twelfth century. He introduced the first recursive series shown
to be of use in modeling the natural world. In chapter 7 we saw that the Fibonacci
series appears to have been utilized in the temple architecture and weight bal-
ances of ancient Egypt. There may actually be a connection between the two.
White little biographical material is available, Gies'and Gies {1969) and other
sources have put rogerher a pood account of what life was probably like for
young Leonardo of Pisa. Following schooling in Pisa, in which arithmetic was
largely based on the Latin writings of Boethius (circa 500 c.k.}, Leonardo’s
father sent for him from the North African city of Bugia {Bougie). There he learned
the Indian place-value notation (probably through Arabic sources). He was
inspired by this innovation and traveled along the Mediterranean to Constan-
tinople, Egypt, Syria, Sicily, and Provence, collécting mathematical knowledge
from both scholars and ordinary merchants. ‘

" The resulting text, Liber Abaci (Book of the Abacus), has a strong Islamic
influence. Levey (1966), for example, shows that many of abu Kamil’s sixty-nine
problems can be found in Leonardo’s text. But the Fibonacci series, introduced
unobtrusively as the solution to a problem in rabbit population growth, does not
have a known Islamic counterpare. Perhaps it is simply an independent inven-
tion, but if the weight balance systen] was (8¢ st tidar time, Teonardo could
have easily picked ivup from a merchant during his travels in Egypt. And it is
possible that through its religious vse in ancient Egypt the series had retained
some significance as an item of sacred or mystical knowledge and was thus trans-
mitted through scholarly contact.

Gies and Gies (196g, 61) note thar Leonardo’s practice of reducing all frac-
tions to 1 in the numerator “went back ro ancient Egypt, and perhaps derived
from the fact that fractions were regarded less as numbers in their own right than
as signs of division.” Boyer {1968, 281) suggests that the Liber Abaci problem with
recursive nesting of sevens (“Seven old women went to Rome, each woman had
seven mules; each mule carried seven sacks . . .”) originated in its-ancient Egypt-
ian counterpart {Rhind Mathematical Papyrus problem #79). And Fibonacci does

pravide a narrative statement of the recursive construction,? highlighting the
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same self-generating aspect of the series that would be emphasized by the ancient
Egyptian belief system.

If this influence {whether merely contextual or direct) does in fact exist,
it should not detract from the genius of Leonardo’s work. His"gene’rai solution
for finding “congruent numbers” for squares has been hailed as “the finest piece
of reasoning in nimber theory of which we have any record before the time of
Fermat.” But when it comes to the use of the Fibonacci series in the contem-
porary history of mathematics (¢f. Brooke 1964), there is actually no evidence
of a direct contribution from Fibonacci himself. By all accounts, German
astronomer Johannes Kepler rediscovered the series independently in 1611, and
it was only in the mid-18oos, with the formal publicafion of Liber Abaci, that
French mathematician Edouard Lucas found the Pisan historical predecessor and
named it accordingly. This fact has received little attention, and most texts pres-
ent Fibonacci’s discovery as if it were in a direct intellectual line of descent
rather than an honorary title given to a well-deserving but disconnected ante-
cedent. Fibonacci himself seemed unhesitant about the multicultural contri-

butions to his work; the first sentence of Liber Abaci states, “The nine Indian

figures are .. . ." No doubt he would have been quite content attributing the

series to originators of any heritage.

Fibonacci's series was simply unbounded growth; there was no introduc:
tion of the infinite except in ways that Aristotle would have approved. The sev-
ente¥nth century brotight attention to the concept of the “infinitesimal”
{(revived from its Greek banishment in Kepler's Steveometria [1615]), and con-
vergence to a limit as infinity is approached (e.g., the algorithms for generat-
ing pi); bat infinity would still exist only as a never-reached orientation rather
than a legitimate object of study. The Aristotelian voice could still he heard in
1831, when mathematician Card Friedrich Gauss (1777-1855) cautioned his friend
Schumacher against infinity: “1 must protest most vehemently against your
use of the infinite as-something consummnated, as this is never permitted in mathe-
matics. The infinite is but a fagon de parler, meaning a limit to which cerrain
ratios may approach as closely as desired when others are permitted to increase
indefinitely.” But Gauss's distinction was short-lived. As we saw in chapter 1,
the work of Georg Cantor, which had producéd the first frnctal, the Cantor set,
ended the Aristotelian view on infinity. Like Fibonacei, Cantor too may have
had seme non-European influence in his work. _

The Cantor set (fig. +3.3a) was his visualization of transfinite number
theory. It shows the interval of zero to one on the real number line, and indi-
cates that the aumber of points is not denumerable—that is, greater than infif-

ity. But at the time, pure mathematics was only one of Cantor’s cancerns. His
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real fascination was in the theological implications; rhe increasing classes of infin-
ity he discovered seemed to point toward a religious transcendental. Cantor’s biog-
raphers differ greatly on the cultural significance of this point. E. T. Bell felt that

Canror'’s Jewish ethnic origin ruled his life, and he made several remarks about

b

the inherirance of personality traits—particularly disturbing in light of his
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FIGURE I3-1
The Cantor set
{a} The brst fractal, created by Georg Cantor in 1877. {b) This design is found on the rop of
columas in the remples of ancient Egypr. Georg Cantor's Rosicrucian beliefs and his cousin Morrtiz
Cantor, an expert un the geometry of Egyptian art, may have pur him in contact with this Egyptian
design,
{by from Fourier 18241.)
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remarks on Cantor's arch rival, the Jewish mathematician Leopold Kronecker:
“There is no more vicious academic hatred than that of one Jew for another when
they disagree on purely scientific matters. When two intellectual Jews fall St they
disagree all over, throw reserve to the dogs, and do everything in their power to
cut one another's throat or stab one another in the back” (Bell 1939, 562-563).

Another Cantor biogrépher, J. W. Dauben, says that since Cantor’s mother
was Roman-Catholic “she was by definition non-Jewish, thus it follows that Georg
Cantor was not Jewish, contrary to the view which has prevailed in print for many

years” {Dauben 1979}. Nazi scholars solved their worries by spreading a story

that Cantor was found abandoned on a ship bound for St. Petersberg (Grattan-

Guiness 1971, 352).

Actually Cantor’s Jewish identity was quite complex. His family had indeed
converted to Christianity, but he was well aware of his heritage. He referred to
his grandmorher as “the Israclite” and wrote a religious tract that attempted to
show that there was no virgin birth, and that the real father of Jesus Christ was
Joseph of Arimat.h.ea. Cantor eventually joined the Rosicrucians, whose mysti-
calfscientific approach to a supposed Egyptian origin for all religions probably
appealed not only to his intellectual interests, but also to his syncretic ethnic-
ity. Cantor chose a Hebrew letter as his new symbol: the aleph, beginning of the
alphabet, was used to represent the beginning of the nondenumerable sets.
While his biographers argued Jew or not-Jew, off or on, zero or one, Cantor him-
self proved that the continuura from zero to one cannot be delimited by any sub-
division procéss, no m'a[ter how long its arguments.

Given Cantor’s Rosicrucian theology and the proximity of his cousin
Moritz Cantor—at that time a leading expert in the geometry of Egyptian art
{Cantor 1880}t may be that Georg Cantor saw the ancient Egyptian repre-

sentation of the lotus creation myth (fig. 13.1b), and derived inspiration from

this African fractal for the Cantor set. We may never know for certain, but the

geometric resemblance is quite strong.

As noted in chapter 1, Cantor’s mathematics was considered utterly imprac-
tical; it was not until Benoit Mandelbrot that fractal geometry became useful to
science. Mandelbrot reports that his inspiration came from a study 6f long-term
river fluctuations by British civil servant H. E. Hurst. Hurst examined the flood
variations over several centuries and concluded that it could be characterized in
terms of a scaling exponent. Later, Mandelbrot realized that this was the same
scaling mathematics that the “remarkable curves” of Cantor and others described.
But where did Hurst find a reliable source for several centuries of flood data? Hurst
lived in Egypt for 62 years and was able to demonstrate long-term scaling in Nile

flood records because of the accurate “nilometer” readings going back fifteen cen-




Fractals in the European history of mathematics 200

turies. Attempts to find patterns in the floods are quite ancient in the Nile val-
tey; in some ways, Hurst and Mandelbrot were simply the latest—and most suc-

cessful-—partictpants in that search.

e

Recursion and sex: a cross-cultural comparison

Throughout the exploration of African fracrals, we failed to find any one cultural
feature that was persistently associated with these forms. They ranged from

_practical construction techniques to abstract theological icons, from wind-
screens 1o kinship structures, from esthetic patterns to divination techniques. There
is no singular “reason” why Africans use fractals, any more than a singular rea-
son why Americans like rock music. Such enormous cultural practices just cover
too much social terrain. At best we can make a lower-dimensional projection of
such high-dimensional dynamics, the silhouette that appears given one partic-
ular axis of illumination. This section will focus on the refation between recur-
sion in mathematics and sexuality in culture. Sex is convenient in that other
researchers have developed African-European comparisons, and that sexual
reproduction is often connected to recursive concepts.

Taylor (1990) describes sexuality in Rwanda as based on the concept of a
“fractal person” in which society is perceived “not in terms of monadic individ-
uals but in terms of . . . structures of meaning whose parserns repeat themselves
in slightly varying forms like the contours of a fractal topography” {p. 1025). His
analysis on expressions of this sociality in terms of the circulation of fluids is used
to examine the failure of programs ro encourage condom use. Carolyn Mar-tin Shaw
{1989, 1095) analyzes Kikuyu sexuality in related ways and provides an illumi-
nating conerast to European sexuality. Using Foucault’s critique of humanism, Shaw.
challenges the usual porerait of European sexual repression and African sexual
license. She demonstrates that in both cases, the social system controls sexual
behavior, but while the European locus of control is in the privatization of plea-
sure, the Kikuyus's sexual regulation occurs through public expressions of plea-
sure and “sociality of individual conscience.” For example, she highlights the
practice of ngweko, in which reenagers wrap themselves with a few leather strips,
oil their bodies, and engage in a public display of sexual behavior. From a Euro-
pean point of view this sounds like an unregulated orgy, but Shaw found that the
practice was a methiod of preventing teenage pregnancies and channeling the teens’
sexual desire into socially approved forms.?

When we look at many African fractals we can see an emphasis on sexu-
ality in terms of reproduction. The self-similarity of the Bamana chi wara ante-

lope headdress and merunkun fertility puppet, the self-generating Dogon
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cosmology, the cyclic kinship iconography of the Mitsogho, Fang, and Baluba,
the iterations of birthing in the Nankani architecture, and many other cases of
recursion are closely tied 1o sexual reproduction. Thus one contri'oﬁting factor
to the African mathematical emphasis on recursion could be this African con-
struction of sexuality through positive public domain expressions.

The European counterpart of Shaw’s theory would predict the opposite, and .
indeed we find that the banishing of infinite regress in the Platonic reform was
closely tied to a kind of sexual prohibition. In Plate’s Symposium, Socrates
explains that there is a hierarchy ()ff(-:[?l‘L‘-LlLlcti()n. Love between a man and a
woman will only resultin a flesh child, a creature of lux who will eventually die,
at best producing more flux. Love between a man and a boy (lover and beloved)
is higher, because it can result in raising the boy to a higher plane—that of a
philosopher. And a philosopher can have a “brain child,” a perfect idea that never
‘changes or dies. The Platonic ideal of static, eternal perfection conflicts with the
ever-changing dynamic of sexual reproduction. The Greek preference for the sta-
tic shape of the Archimedean spiral suggests this Platonic ideal, just as the
growing shape of the logarithmic spirail suggests the African emphasis on fertil-
ity and reproduction. Of course, this is a gross generalization; there are, for
example, plenty of Archimedean spirals in African designs. Conversely, European
mathematician Jacobo Bernoulli was utterly dedicated to the logarithmic spiral
and specified that one would be engraved on his tombstone. But the stone cut-
ter did not go against the grain of his cutture; Bernoulli's grave is still marked with
an Archmedean spiral {fig. 13.2}.

It would be dangerous to suggest that there is an ethical difference at

stake here, as so many organic romanticists have maintained. Again, there is no

historical evidence for a consistent relationship between mathematical distine-

THEL

FIGURE 13.2
Bernoulli’s tombstone
Although Bernoulli asked for a logarithmic spiral to be
inscribed on his tombstone, the engraver was apparently
ouly famifiar with the linear spiral.
(From Maar 1987, conrtesy Birkhiuser Verlag AG, Basel,
Switzerland )
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tions and the ethics of their users. Some strictly linear, logical thinkers like Bertrand
Russel]l and Noam Chomsky have been famous for their progressive ethical
standpoints, just as some holistic organicists have been prone to fascism. And

of course vice versa. What does count for ethics is how people are able to use mathe-

“matic§ in the particular events and ided chat surrounded their life. With that

in mind, let’s look at three of the innovators whe brought recursion into Euro-
pean computational mathematics.

The story of Ada Lovelace is well known in computing science history. Her
fame stems from her writings in 1843 on the mathematical possibilities of
Charles Babbage’s proposed “analytical engine”-—a plan for @ mechanical digi-
tal computer. Lovelace is often promoted as a recovered feminist ancestor, a posi-
tion thac tends to overeseimare her achievements and obscure her own thinking.
Against these reductive portraits, Stein {1085) has written a detailed, critical exam-
ination of Lovelace that reveals a much more interesting and complex story than
the popularizations have allowed.

Lovelace’s mother was always worried that she might have inherited the
notoricus sexual proclivities of her father, Lord Byron. Her childhood revolved
around strictly prescribed educational activities, and at times she was forced to
lie perfectly still, with bags over her hands to ward off any “wildness.” This repressed
upbringing eventually inspired rebellion in the form of an attempted elope-
ment, but the failed affair left her humiliated and repentant. She wrote to a fam-
ily friend, William King, requesting mathematical instruction as a cure for her
sinful impulses. King agreed, sending her both mathematical and religious texts.
But despite her declarations to apply her mathemarical imagination “to the
greater gloty of God,” she turned away from the moralizing of King to the more
glamorous social company of Babbage and his famous “thinking machines.”

Babbage's motivations were far removed from King’é relipious intellectu-
alistn, He was primarily concerned with economic and scientific progress. This
switch from King to Babbage was an act of independence, and Lovelace began
to turn her imagination loose. While pursuing a much more intense area of mathe-
matical study, her religious thinking also took an expanded turn. She began to
describe herself and her work in terms of magical imagery: the mechanisms of syrm-
bol manipulation were “machematical sprites,” and she advised Babbage to allow
himself to be “unresistingly bewirched” byr"the High Priestess of Baggage’s
Engine.”

Stein also notes that it was actually Babbage who first drew up the “table
of steps” constituting the first computer pmgr-am's. Babbage was having diffi-
culty obtaining funding for his work, however, and rezlized thar Lovelace's social

- position and notoriety—both as the daughter of Byron as well as a “Lady of
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Mathematics"—could be put to his advantage. The reputation of Lovelace as
the originator of programming stems from this public relations ploy of Babbage.
There was, however, one table for which Ada was wholly responsible: the
recursive generation of a sequence known as the Bernoulli~numbers. Moore
{1977} states that this table used recursive programming. Huskey and Huskey
{1984}, apparently referring to this claim, suggest that this is a confusion with
Lovelace's deseription of mathematical “recurrence groups’ " and note that the
term “recursive programming' genemlly refers to a procedure that calls itself -

(i.e., self-reference)—impossible for Lovelace since her cade had no procecures.

‘But they also note that Lovelace introduced a new code notation to describe

whar she referred to as “a cycle of a cycle,” which would be equivalent to the
recursive structure of nested iteration in use roday.

Significantly, this iterative recursion was the one program for which Bab-
bage claimed credit: “We discussed various illustrations that might be introduced:
[ suggested several, but the selection was entirely her own. So also was the alge-
braic working out of the different problems, except, indeed, that relating to the
numbers of Bernouilli {sic], which I had offered to do to save Lady Lovelace the
trouble” (quoted in Stein 1985, 89).

The appropriation may have been anticipated by Lovelace: Stein notes that

*in the letters concerning this program, Lovelace is atypically vague—she had

always been overdependent on Babbage for mathematical specifics—and spec-
ulates that the vagueness was a deliberate move to protect her iterative inno-
vation. Many feminists have written about male envy of women's reproductive

capacity,” and there might well be a parallel in Babbage’s appropriation of
g E pPprop

Lovelace's recursive achisvemeant. But the organicist versions of such analyses

portray the conflict in terms of women being more natural or embedied, and men
being more artificial or abstract. In this story of male womb envy and the pro-
tective mother, it is the digital abstraction of recursion, not concrete embodi-
ment, over which the struggle is fought. The birthing metaphor was mentioned
by Lovelace herself; the finished programming study was “her first child.” Con-
traty to Plato, sexual repreduction is not in opposition to the abstract realim of
mathernatics; Lovelace used her mathematics to rebel against artenpes to limit
her to a repressive femininity and used this artificial sexuality—a bewitching
high priestess, jealously guarding her programming progeny—to develop the first
computational recursion.

In the discussion of the mathematical theory of computability in chap-
ter 10, we noted that the set of “primitive recursive functions,” developed by
Rozsa Peter, had the greatest computing power shart of a Turing machine.

Unlike Lovelace, Petet's capability as a mathematician is uncontested; in fact,
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she is widely regarded as “the mother of recursive function theory” (Morris and
Harklercad 199o). But she, too, implied that parallels existed between her
gender identity and mathematics; maintaining tbat women could provide a spe-
cial insight that men could not {(Andréka 1974, 173) Since we know that, as
a mathematician, she would not be thinking of this special insight as being more
concrete or less logical, it may be that Péter also made connections between sex-
ual reproduction and recursion.

Following Perer's class of primitive recursive functions, one reaches the upper
limit of recursive power in the Turing machine. Alan Turing's contributions were
not only in the mathematical abstractions of computing, but in its application
o artificial intelligence as well. In his classic paper titted “Computing Machin-
ery and Intelligence,” he proposed what is now called the Turing test. At first,
most definitions of machine intelligence were based on a particular task or
behavior (e.g., chess playing}. But as the field of artificial intelligence (Al) has
developed, these have shown to be increasingly inadequate, and the Turing test
is widely regarded as the most reliable definition for Al (in face, yearly Turing
tests are now held, with no machine winners thus far). .

Turing begins by describing a game in which a man and a woman are
behind a door and answer questions from an interrogator by written replies. The
interrogator must determine whe is the man and who is the woman; both must
try to deceive him in their answers. Turing then.suggested replacing one person
with an Al machine; the Turing test holds that if the interrogator cannot dis-
tinguish person from machine, then one has created true machine intelligence.
Turing's biographer, Andrew Hodges, suggests that this "imitation game” was
inspired by Turing’s own life: strugpling to define his identity as a homosexual
in a hamophobic sociery. Both the Turing machine’s ability to imitate other
wmachines and this game of cognitive imitation echo the social experience of gays
who live in a community where they must pretend to be someone they are not.
And to some extent, the endless self-reference of metamathematics was Turing’s
hiding place from the antigay world surrounding him. Bur the sexual guessing
game on which the Turing test was based worked against such normative
gender restrictions: it suggested gender as somerthing more fluid, less fixed—a
feature which the virtual communiries on the Internet have started to demon-
strate {cf. Stone 1095; Turkle 1095} Douglas Hofstadter {1985, 136~167), 2 mod-
ern master of recursion, has also written about the potential for a more fluid gender
identity in digital dynamics.

Mathematics had a double meaning for Turing. It was both an emotional
‘shield, a closed world of endless interior self-reference, as well as an opening into

consciousness and community. In the end, this desire for opening killed Turing:
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during a robbery investigation he admitted his homosexuality to police detec-
tives and was arrested and forced to submit to hormone treatments. This even-
twally drove him to suicide. It was a tragic fairy-tale ending: he killed himself by
eating an apple dipped in poison. Hodges writes about this dedth in terms of the
double meaning that machemacics had in his life. “Lonely consciousness of self- -
consciousness was at the center of his ideas. But that self-consciousness went
beyond Gadelian self-teference, abstract mind turning upon its abstrace self. There
“was in Ris lifé a mathematical serpent, biting its own tail forever, but there-was
anather one that had bid him eat from the tree of knowledge.”

In Africa these twe serpents are one; sexual reproduction exists in the same
public realm as social intercourse. That is one possible reason why we see recur-
sion-~the snake that bites its own tail—so prominently emphasized in African
fractals, and a possible explanation for why these pioneers of recursion in Europe
happened to be people who took issue with sexual repression. That's not to say
there is a deterministic link berween the two. In analog feedback theory, for
example, we see both anti-authoritarian feminists, like Norbert Wiener (Heims
1984), as well as authoritarian prudes like Howard Odum (Taylor 1988). Mathe-
matics is not a mere reflection of personal interests, nor is it an abstraction that
is entirely divorced from our lives. We make meaning for ourselves out of what-
ever metaphots—technical or otherwise—we find useful; conversely, personal
meanings can often inspire new technical ideas.

While recursion is prominent in African fractals, it has been less so in Euro-
pean fractal geometry.% In the historical appendix to The Fractal Geometry of
Nature, Mandelbrot provides an erudite history of mathematical developments
that led to his work; recursion is never mentioned. Even when recursion.does.. . ..
come up in the fractal geometry literature, the treatment is typically informal
ot cursory. For example, Saupe {1988, 72) merely notes that “in some cases the
procedure can be formulated as a recursion.”? Similarly, the fractal time series
produced by deterministic chaos is rarely regarded as the product of feedback
loops, and in one of the few studies that is focused on this relationship, Mees
(1984, 101) merely states that “chaos is certainly possible in feedback systems.”
On the contrary, it is not that chaos is possible with feedback, but that chaos
is impossible without it.

It would be inaccurate to say that European mathematics has disregarded
recursion in general, and perhaps the observation I am making is simply due to
disciplinary specialization; there is no reason why someone studying applications
of graphics to analysis and mensural theory should necessatily be thinking about
Turing machines or recursive functions. But it is precisely this lack of necessity

in mathematics that is so easily forgotten in a discipline where certainty goes
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beyond that of any empirical science imaginable. Mathemarics is both an inven-
tion and a discovery. We discover the constraints inherent in the fabyic of space
and time, constraints that are the squff of whsch our universe is composed. Bur
mathematics does not stop there. The constramts are not just negations, but rather
the building blocks with which further wathemarics is constructed. And like any
construction, there are choices to be made, decisions about how these building
blocks are to be connected, interrogated, and deployed in further discovery.
This is where the human side of mathematics enters the picture, especially thac
most human of endeavors, culture. Conversely, culture is not mere whim, a
purely subjective matter of choosing favored social pracrices. This is where the
mathematical side of humanity enters rhe picture, for we are only free to con-
struct culture within the constraines of the universe in which we live. Neither
mathematics nor culture should be viewed as firmly fixed on the universalflocal
divide; there are divisions within divisions never ending.

21
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Futures-

—— African

for

fractals

—— Most anthropologists have long ahandoned the tendency to create a frozen

“ancient tradition” in defining indigenous society; change and synthesis are
now integral parts of the cultural portrait. So, too, with African fractals; they are

necessarily as much of the future as they are of the past.

Fractals in African contemporary arts

216

There are many works of modern African professional art which incorporate
aspects of fractals, spanning a wide range of cultural viewpoints. At the National
Museum in Yaoundé, Cameroon, one can sec organic romanticism in Nyame's
paintings of logarithmic spirals morphing into people. The double-sided post-
modern metal sculptures of Legba in Benin, by artists such as Kouass, show a
cyborg! trickster whose traditional bifurcating abilities are ready for the
binary codes of new technologies. In East Africa, painter Gebre Kristos Desta
produces nonlinear scaling circles he describes as pure abstractionism {Mount
1973, 118). African fractals continue to evolve. Besides being present in pro-
fessional studio art, fractals have also appeared in large-scale public art works,
such as on the facade of the University of Dakar library (fig. 14.1). This scaling

design, in which the alternation of painted rectangles at the small scale
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FIGURE 14.1 )
The library of the University of Dakar
This design makes use of both self-similarity (the vertical alternation of painted recrangles looks
like the alternation of buildings) and nonlinear scaling {the rectangle widch decreases rapidly as
you go rowand the center). ‘

matches the alternation of the building walls at the large scale, is reminiscent
of certain African fabrics. ‘

Onie of the most active areas of today's African art comes not from pro-
fessional studios, bur rather from the u.ndistinguished sellers of tourist art.
Tourist art was formally disregarded in the professional art world, but cultural
studies have increasingly shown chat this is a dubious position. First, neither
the “rraditional artist” creating royal works for a king, nor art students trying
to please their instruceors, nor even professional studio artists who must also
be concerned with sales are completely free to create whatever they wish, so
there is no reasun tosingle out the ereators of tourist arg for being constrained.
Second, opportunities for professional studio artists are few, and the rourist
market creates a large number of economic opportunities; it seei1ﬂ§.éﬁgpicibLls
t disregard this vibrant activity in favor of a riny elire. And finally, as Cullers
(1981) notes, tourism is not the opposite of authentic culture, rather tourism
creates authenticity.

Cullers’s observarion was repeared ro mme by Max (he did not want his last
name to be used), a Senegalese artist in Dakar who sells to the rourist trade, Max
complained that his most creative work—the designs which came to him in
dreams—was difiicult to sell because of the tourist conception of tradition and
authenricity. Like many creators of tourist arr in Dakar, he produces imitations
of the kora, the Senegalese stringed instrument that fearures a single fret run-
ning down the center and a hand grip on both sides. Figure 14.2 shows the usual
kora model, along with Max’s innovation, the recursive kora. The recursive

kora makes use of each hand grip as the fret of two smaller koras. | asked Max
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FIGURE 14.2

The vecursive kora
At right, a typical kora; at left, the inngvative |
recursive kora created by Senggalese artist Max.

N
AT

if he had ever considered continuing to smallér scales, and he said that he had
once done so, but that it was impossible to sell such innovative work; tourists

did not want anything that smacked of originality.

Fructals in African contemporary architecture

Many indigenous African designs have been incorporated into moedern archi-
tectural projects in Africa, and some of these have been fractals. For example,
the Sierpinski-like iterative triangles from Mauritania were used in an institu-
tional building in Senegal, and the circles of circles in the architecture of West
African villages became the basis of a design for a building complex in down-
town Bamako, the capital of Mali (fig. 14.3).
One of the most potent visions of an African fractal future has come from
_the architectural studies of Dr. David Hughes at Kent State University in
Ohto. Working as a Fulbright scholar in several African countries, Hirghes {1994)
put together a portrait of what he termed “"Afrocentric architecture,” which
embodies several aspects of the fractal model. First, Hughes combined a chac-
acterization of the self-organizing properties of African huilding design (an
“organic architecture” which “grows from its site”) with its self-similar prop-
erties (what he termed “the outsidefinside relationship,” a mutual shaping of
units, clusters of units, and communal spaces formed by the surrounding clus-

ters). Second, he explicitly rejected primitivist or naturalizing portraits. While
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noting its environmental harmony, Hughes also emphasized that African .
architecture 1s always an intentional act of design and semiotics, not merely
an unconscious adaptation to the ecosysterm. In his framework, “tradition”

includes the tradition of innovation, or as Gacés-{1988) puts it, the African

-

theme of “repetition with revision.”

. FIGURE 14.3

Indigenous fractals in modern architecture
(a) Here a traditional Mauritanian fractal design is used in a modern building in'the Casamance,
Senegal. (b) The DIPC building in Burkina Faso, using traditional scaling cylinders with contem-
porary construction techniyues. Architects such as lssiaka Isaac Drabo have made many large-scale
buildings based on this syncretic approach. ‘

o
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Given this combination of self-organized structure and intentional design,
it is not surptising that Hughes’s work led him to a beautiful example of the poten-
tial fractal future. Figure 14.4 shows a design by Alex Nyaﬁgula, one of Hughes’s
students at the Copperbelt University in Zambia (Hughes 1994,‘31654166). This

architecture provides a powerful syncretic fusion of indigenous and modern

forms. The figure traced by the walkway shown in the ground plan is a classic

FIGURE 14.4

Design for Kitwe
Community Clinic

{(2) Kitwe Community Clinic

in Zombia; design by David

FHughes and Alex Nyangula,

(b) Kitwe Community Ciinic

ground plan.

(Photos courtesy David Hughes.}



First iteration Second iteration Third iteration

Fourth iteration

Fifth iteration

FIGURE 4.5
Fractal iterations of Nyangula’s community clinic design
Fractal based on Nyangula’s urchitectural design. The “active lines” of the generation process have
been removed, as have any self-intersecting hexagons. :

{2 |
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exataple of the fracral branching pattern referred to as a Cayley tree (sce
Schroeder 1991, 87-88; Peitgen et al. 1991, 19-20), and can be extended from
the two iterations given by Nyangula to infinity. Adding the liexagonéé?a syn-
cretism between the cylinder of Zambian indigenous architecture and the rec-
tilinear forms of modern materials} violates the Cayley requitement that the graph
is self-avoiding {that is, that the branches do not intersect). Since I was inter-
ested in exploring the fractal structure by taking Nyangula's design to higher iter-
ations, I made two adjustments for this problem. One is suggested by the approach
elevation sketch (Hughes 1994, 167), where it is clear that the central unit ts
slightly arger than the others. This means that self-intersection will be forestalled
to higher iterations.2 The ather is simply the elimination of units whenever they
overlap. With these two qualifications, Nyangula's design makes for an infinitely
expandable (yet bounded) architecture, as shown in figure 14.5. Such flexibil-
ity could contribute to the efforts to encourage a more participatory approach
to African architectural design (Fathy 1973; Ozkan 1097).

If we take an acrial view of the modern European settlement of Paris,
France, we would see linear concentric circles surrounding its center of social
power. The difference hetween this linear, radially symmetric series of circles
and Africa’s nonlinear, decentralized architecture is perhaps subtle, but impor-
tant. The term “Afrocentric” is misleading in that “centric” is much more the
peometry of Paris than of Logone-Birni, Mokoulek, Labbezanga, and the other
African atchitectures we have explored. Hughes'’s call for a “multidimensional
Afrocentrism” is both an affirmation of “Afro” and a challenge to “centrism”;

it is a call for cultural portraits that do not reduce to a single one-dimensional

- center but racher combine the boundaries of tradition with the infinite expan-

sion of innovation.

African fractals in math education

Several researchers have independently explored fractal aspects of African
mathematics. Chonat Getz of the University of the Witwatersrand has created
Iterated Function System simulations of Zulu basket weaving. John Sims, mathe-
matician and artist at the Ringling School of Design in Flarida, has developed
fractal patterns based on Bakuba rafia cloth {(and inspired by his African heritage).
In chapter 5 we encountered the lusona analysis of Paulus Gerds, a professor at
Universidade Pedagogica of Maputo, Mozambique, whose prolific writings have
recently ranged from the ethnomathematics of women's art in southern Africa
(Gerdes 1998a) to the use of Mozambique basket weaving peametry in model-

ing futlerene molecules (Gerdes 1998b).
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While there are clearly benefits to utilizing indigenous knowledge for
development and education in Africa, African fractals might also be of use in the
United States. Despite the low mathematics participation of African American
students as an ethnic group, it has been de}}nonstr:i?é'd that changes in the learn-
ing environment can improve their mathematics proficiency ro levels equal to
the majority population. Evidence suggests that although direcrt institutional bar-
riers in economically disadvantaged schools, such as the emphasis of vocational
over academic subjects (Davis 1986) and lack of computer access {(Anderson,
Welch, and Harris, 1984) can account for some of this difference, more subtle
curricular changes can play a key role in retentien and achievement. For example,
Bararz et al. {1989) found that African American students are more likely to
use cotnputers for routine drill; hence, the problem is not simply the availabil-
ity of compurers, but also rheir style of utilization. The National Assessment of
Educational Progress (1983) study of math performance in seventeen-year-old
African Americans reported the greatest deficiencies at the applications level,
and several researchers (Usiskin 1985; Davis 198¢; Malcom 1983} have recom-
mended revision of courses to emphasize more interdisciplinary and “real-
world” mathematics instruction as well as “action-oriented” pedagogy.
Computer-based learning has demonstrated the capability for both interactive
and interdisciplinary mathemarics instruction (Keitel and Rurhven 1993), and
Stiff et al. (1993) specifically point to computer-based learning as a promising
forum for bringing these changes to African American students. These needs
could be directly addressed by applying African fractals to the classroom.

In addition to changes in strucural aspects of mathematics teaching,
several researchers and instructors have initiated culturally enriched curricula.
The rationale for this approach comes from a variety of perspectives (e.g.,
Vygotskinn learning theory). Powell (1990) notes that pervasive mainstream
stereotypes of scientists and mathematicians conflict with African American
culrural orientation. Similar conflicts between African American identity and
mathematics education in terms of self-perception, course selection, and
career guidance have been noted (cf. Hall and Poseman-Kammer 1987; Boyer
1583). But we should not assuine rhat this consritutes a problem of “self-esteem.”
The relation between cultural identity and learning is quite complex; it would
be naive to suggest that today’s African American students have the same rela-
tion to ideas about their ancestry as did students in previous decades, and in
no case has there ever been a simple “mimicry” of African culture. Rather,
ethnographic research {Hebdige 1987; Mercer 1988; Rose 1904) shows thar
African American youth actively construct identity using a wide variety of cul-

tural signifiers.
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For this reason, applications of African fractals will have to stress design toals

_and guided discovery, and avoid passive presentation. While “interactive” has

become a catchword in multimedia, many of these systems merely use the computer
like a slide projector, with students pressing different buttosss to see various images.
Multimedia in this form has a distinctly “canned" feel to it. The design approach,
in contrast, offers students tools for constructing patterns of their own creation,
Thanks to many participants—in particular, programmers T(Q Berg and Jaron
Sampson, and minority math.education specialist Gloria Gilmer—we have started
development of an African fractals software math lab. The lab begins with simu-
lations of traditional African patterns and shows students how the mathematical
structure behind these designs offers them tools to create their own.

Again, it is important to stress that African American students are not
expected to he interested in the material out of a simple identity reflection,
anymore than they would necessarily be interested in wearing Dashiki shirts and
Afros. Rather, it is the opportunity to create new configurations and syntheses
that ¢combine tradition and innovation that are significant. At the june 1996 meet-
ing of the Columbus Urban Youth Conference, we explored these connections
with a class of eighteen 12-year-old African American students. The first class
meeting introducing traditional architecture was a near disaster; despite mulri-
media and manipulatives, it appeared that the primitivist associacions with

“mud huts” were a strong deterrent. The following session, using the Ghanaian

log spiral—cellular automata—owari relations, was quite successful, probably
because the combination of traditional religious knowledge and mathematical
graphics sent a mave clear antiprimitivist message.> But in a design exercise
where the students began with computer graphics simulations of the Ghanaian
logarith:ﬁic spiral patterns, they showed little interest in producing further.
imitations of the African designs. Rather, the students quickly caught on to
visual correlates of the equation parameters and began a free-for-all competition
to see who could make the most bizarre patterns. Their interest appeared to be
sparked by the African connections, but quickly went heyond them.

Perhaps more itmportant than mitigating a direct conflict between ethnic
identity and mathematics, using African fractals in the classroom might help guard
against an pveremphasis on biological determinism, which has been found -
adversely to affect mathematics learning. Geary (1994) reviews cross-cultural stud-
ies that indicate that while children, teachers and parents in China and Japan
tend to view difficulty with mathematics as a problem of time and effort, their
American counterpatts attribute differences in mathematics performance to
innate ability (which can then become a self-fulfilling prophecy). For African

Americans, biological determinism has been closely associated with mythic
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stereotypes about “primitive peaple”™ (e.g., the fable that Africans count “one,
two, three, many”). By showing the presence of complex mathematical concepts
in African culture, we can mend some of that damdge Since reductive myths of
biological determinism are detrimental o mathématics learriing for students of
all ethnic backgrounds, all students Lmﬁd potentially benefit from this material.

Finally, we should note thar the increasing use of multicultural curri.culum
materials in the arts and humanities have not been matched in the sciences. This
could send a message to minority students that their heritage is only pertinent
to the arts and humanicies, and that the sciences are really for people from
other ethnic groups. In addition, some texts such as Multicultural Mathematics (Nel-
son 1993) have emphasized only Chinese, Hindu, and Muslim examples, so
that even in cases where multiculturalism is used, African math may be left out
{see Katz 1992 for a similar eritique). And of the few rexts that do use African
math, almost all examples are restricted to primary school level. Again, this restric-
tion might unintentionally imply primitivism (i.e., that mathematical concepts
from African culture are only childlike). For this reason, our lab’s inclusion of
advanced topics such as fractal geometry, cellular automata, and cqmplexity
are worth the extra effort to tie into a secondary school curriculum {without over-
fooking the use of standard topics such as logarithmic scaling, geometric con-
struction, and trigonometry),

While the multimedia lab's most significant potenrial for improving education
is in mathemartics, we should not ignore African Studies. African art, for example,
is increasingly used in secondary schools across the narion, and use of cur lab could
greatly enhance such courses. First, as noted above, it provides an alternative to
detrimental misrepresentations of Africans as “primitive” people. In art history
lessons, for instance, students often learn about the geometric basis for Greek
architecture or Renaissance painting, while commentary on African works is
often restricted to discussion of “naturalness” or “emotional expression.” Second,
the lab aids in integrative curricula development (see Roth 1994 on difficulties
in this area). It would allow math teachers who would like to include ethno-
mathematics components in their teaching to refer to examples in which students
are already engaged, and would provide art teachers with new tools for design and
analysis. Similar advantages could be obtained in other African Studies areas.

Information technologies and sustainable development

The use of indigenous knowledge systems in development goes back to colo-
nial appropriations, but in the postcolonial context these systems have raken

on new meaning as a sign of either epistemological independence, or at least
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a more egalitarian view of knowledpe systems. In chapter 10, for example, we
saw the scaling spirals of Jola settlement architecture that arose from their
circular buildings; the French research organization ENDA has™built an
impluvium created by the combination of modern materials and this tradi-
tional Jola design. Another of ENDA’s rural development projects that incor-
porate both traditional fractal architecture and modern techniques is shown
in figure 14.6. _
- In chapter 6 we saw how the scaling patterns of kente cloth were created
to match the scaling of saccadic eye ﬁovements as they scan from the face to the
body. The Ghanaian Broadcasting Corporation, Ghana's national television
channel, has continued this practice in the context of modern information tech-
nologies, utilizing the scaling pattern of kente cloth in their test pattern (fg. 14.7).
Whereas the traditional scaling was applied to the human visual scan, this tech-
nologized version makes use of the same pattern for testing the video scan. A simple
application, but it shows that African fractals are not just restricted to low-tech
adaptations; they can also provide some useful bridges between traditional and
high-tech worlds. _ _

. In chapter 10 we saw that there were ties between the traditional knowl-
edge systems supported by African fractals and the productive maintenance of

these societies in what Per Bak would call a state of self-organized criticality. This
suggests that most of the indigenous African societies were neither utterly anar-
chic, nor frozen in static order; rather, they utilized an adaptive flexibility that

could be applied to modern development. But decades of research have shown

FIGURE 14.6
Modernized
fractal village
This ENDA project in Burkina
Faso combined the traditional
fractal structure with madern
construction techniques.
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FIGURE 4.7
Kente cloth in the
Ghanaian Broadcasting

Corporation test pattern
Kente cloth pattern is used in
the upper right-hand quadrant
of the large circle.

that a top-down approach to development, even that making use of indigenous
knowledge, is often less effective than a bottom-up, “grass roots” approach.
Adopting information technology 1o rural areas could provide the opportunity
for putting African fracrals 1o work in sustainable development.

In addition to the need for bottom-up authority, researchers have demon-
strated the critical role of women in African development (e.g., Boserup
1970; Nelson 1981; Adepoju and Oppong 1994); particularly in terms of the
gendered division of labor in rural societies (Beneria 1982). While much of
this nnalysis has focused on the vidnerability of women in bearing the brunt
_of economic change, it has also starteda new appreciation for the extensive
knowledge systems that existed in precolonial women’s activities. Since many
of these practices continue today (albeit in modified form), women’s indige-
nous knowledge systems have become an imporrant resource in new approaches
to development.

Some obvious challenges include environmental damage (increasing salin-
ization, deforestation, and desertification), external economic pressures (the move
to cash-cropping, tourism, and migration to-cities; abuse of power by private
corporations), increased disease (AlDS and other viruses), political unrest
{ethnic conflict, uncontrolled military force, abuse of authority), and damage
to the soctocultural system (disruptions of women’s traditional authority, loss
of traditional knowledge systems). While all of these are far too large to be
addressed by any one approach, none of them can be viewed in isolation from

the others. In Nigeria, for example, the Shell Petroleum Development Company
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bégan operations in Ogoniland that eventually led to widespread environ-
mental damage; attempts to protest through the press and other communica-
tion eventually led to the execution of Ogoni writer Ken Saro-Wiwa (Soynika
1994). Freedom of the press is not a separate issue from, protection of the
environment, '

It is right to decry abuse of authority, but replacing one authority with another

is not necessarily going to provide a long-term solution. African fractals suggest

two alternative approaches. First, what is needed is not E. F. Schumaker’s call

for “small is beautiful,” but rather a self-organized appreach to changes in the
relations between scale and the socioenvironmental Systems—not just appro-
priate technology, but appropriate scaling. Secand, more critical attention
needs to be paid to the artificial/natural dichotomy, which tends to be trapped
in either the organicists' desire for untouched nature (e.g., Hughes 1996}, ot the
techno-optimist’s desire for resource extraction.

An alternative to these damaging extremes can he found in Calestous
Juma’s 1089 classic, The Gene Hunters. Rather than a preservationist perspective,
in which indigenous society would be portrayed as natural elements of an
'unchanging ecosystem, or a technocratic profiteering perspective,.in which agri-
cultural development is merely a question of maximizing yields with imported
strains, Juma provides evidence for indigenous agricultural activity as sustainable
biotechnology. His studies show a long-standing African tradition of new seed
variety development that combined ecological sustainablilty with innovation
and experimentation. These practices have been threatened by corporate mono-
cropping, which can cause soil depletion, over-dependance on insecticides, loss
of genetlc variation, and other social and eco[ng:ml crises, as well as the appro-
priation of these genetic resources by a biotecbnology industry with little inter-
est in indigenous legal rights. Juma notes that the challenge now facing African
agriculturalists is not just preservation of biodiversity, but also access to the legal,
technical, and financial apparatus that would allow them to reap the profit that
could sustain such ecologically sound efforts.

From the viewpoint of complexity theary, Juma's critique suggests that we
are trapped between the periodic stasis of the preservationists’ limir cycle, and
the white noise of the profiteering positive feedback loop. As we saw in these
mathematical models, both are lacking in flexible interactions with memory;
the limit cycle being too ted to it, and the white noise being too free from it
Information technologies have the potential to provide this memaory, documenting
indigenous knowledge from seed varieties and scil types to gene sequences to
ecatopes. By providing informed rural access to information rechnologies,

African agriculturalists can take a step toward protecting their genetic resources
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from appropriation and move toward Juma’s approach, which we might call
“biotech-diversity” (cf. Haraway 1997; Shiva 1007). ‘
To view indigenous knowledge as a self-organizing system is one thing, but

creating the same bottom-up approqch for a sytithesis of ecological sustain-

“ablility and technological development is 2 much greater challenge. For example,

Russel Barsh notes: “There is an implicit assumption in the research methodo!-
opy wsed to elicit traditional pharmacological knowledge that this informarion
is recorded and transmitted digically (numbers andfor words) . . . [rather than]
internalizing an analog model” (1967, 33-34).

Native Seeds, a botanical orpanization dedicared to the continuation of
indigenaus plant stock, has been creating a “cultural memory bank” thar will record
both analog and digital information on Native American agriculture. The con-
cept, originating from Philippine ethnobotanist Virginia Nazarea-Sandoval
(1096), documents the combination of cultural and biological information about
the crops, seeds, farming, and utilization methods. The information, including
video interviews, is stored on CD-ROM, with access controlted entirely by the
indigenous farmers. In the U.S. context, which is overleaded with electronic tech-
nology and ethnocide, this approach makes sense, but the African contexz,
with its enormous indigenous population and sparse electronic technology, will
call for techniques that can have a wider impace, one that includes development
of a technological infrastructure as well.

If there is to be social transformarion through grass-roots technoiogical inno-
vation, it will require much more participation than agricultural systems alone.
Orcher kinds of information rechnology development could include flexible eco-
nomic necworks, which allow smallscale businesse .- collaborate in the manu-

fucture of products and services vy could not produce independently. These

“hetworks have dreated straony revitalization in certain rural areas of Europe

{Sabel and Piore 1990), and have shown promise in pilot studies in the rural United
Stares as well {e.g., ACEnet in southern Ohio). The use of computers to orga-
nize production and vending and provide dynamic searches for the appropriate
marker niche—one which would be environmentally and socially sustainable as
well as profitable—could spread the benefits of new information technologies to
the microbusiness level withour having e puta laprop in every pushaarg, and micro-
hnancing programs have already proved successful in many Third World countries
(Serageldin 1997).

African traditions of decentralized decision making could also be com-
bined with new informarion technologies, creating new forms chat combine
democratic rule with collective information sharing. The idea of “electronic

democracy” has slowly been developing over the Interner; but the efforts have
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been hampered by the tendency to assume that virtual voting must be the same
as ordinary voting. Perhaps the neural net style of African decision making could
be urilized in the West as well, with voters indicating proportionakstrengths
for various options. Conversely, perhaps there are ways td"apply computer
media 10 enhance African decision making. One approach would be the develop-
ment of community networks through public-access terminals (Schuler 1993).
And the enormous development in electronic security mensures, creating sys-
tems that stymic even the imost sophisticated hackers (encryption codes, hnger-
print scanners, etc.}, might find uses in preventing voter fraud that is so
common in unstable political regimes.

Nigerian American computer engineer Egondu Onyejekwe has started
efforts to apply information technology networking in African developmental
projects using complexity theory as a guiding principle. One area she cites is the
problem of land ownership (for example, see Charnley 1996}. She notes that the
continual division of land promoted by the colonial legacy often results in
unproductive economies of scale, but that government ownership tends to make
conditions worse by adding more hierarchy. “Resolving the land problem requires

a non-hierarchical method of organization, a system in which cooperative behav-

" jor is rewarded at the same rime that individual innovation can flourish; a com-

bination of cooperation and competition like we see in cellular automata and other
computational models of sel{-organizing systems. What better way to encourage
this than through computing and information networks?#

Neither the African fractals framework nor dissemination of information
technalogies offers panaceas. My point is, rather, that the shift in perspective often
called for in development néed not be eicher conservative rerurn to the past, nor_
the epistemological equivalent of an alien invasion. African fractals offer a
framework that is both rooted in indigenous cultures and cross-pollinates with
new hybrids.



APPENDIX

——Measuring
———the fractal
———dimension
———of African
—settlement
——architecture—

~——=There are several different ways to estimate the fractal dimension of a spatial
pattern. In the case of Mokoulek (fig. 2.4 of chaprer 2) we have a black-and-
white architectural diagram, which allows us to do a two-dimensional version
of che ruler size versus lengrh plots we saw in chapter 1. By placing the archi-
rectural dingram of Mokoulek under grids of increasing resolution, and count-
ing the number of grid cells that conrain some part of the diagram, we can ploe
the inerease of aren with decreasing cell size (just as we obtained a plot of the
increasing lengeh with decreasing ruler size). Figure a1 shows the results, indi-
cating a fractal dimension of 1.67—not wo far from the 1.53 fracral dimension
that is obrained analytically from the computer simulation.

For the aerial photo of Labbazanga {fig. 2.5 of chapter 2} we have an
image in shades of gray, and the simple grid-counting merhod cannor be applied.
It is possible to reduce the gray scale to biack and white, but an alternative
method allows us to make a more direct measure of the scaling properties. Fig-
ure a.2a show:icthc method for finding the scaling slope of 1/F noise in a one-
Jimensional time series by applying a Fourier transform. In figure a.2b we see
how this can be applied to a two-dimensional spatial distribution by sweep-
ing the sane spectral density measure around in polar coordinates. Rather than

the line of ene-dimensional 1/F noise, a rwo-dimensional disteibution is
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characterized by a cone. 1t is difficult to show the entitre cone, but we can take

horizontal slices (fig. a.2b), which show similar characteristics for both Lab-

bazanga and its fractal simulation (fig. a.3). o
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FIGURE A.J
Measuring the fractal dimension of Mokoulek
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: time frequency
One-dimensional time series for 1/F noise. 1/F noise spectral density

from 1-D Fourier transform.

low frequencies at high power

1-D Fowrier transform, with frequency in polar
coordinates: wider citele = higher (requency.
The fine of 1/F noise is rotated w become a cone.

b high frequencies at low power

FIGURE A.2
Using a 2-D Fourier transform to detect fractal spatial distributions
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b high frequeencies at low power

FIGURE A.3 -
Results of a 2-D Fourier transform applied to aerial photo of Labbazanga
¢a) Spectra for aerial photo of Labbazanga (fg. z.50 from chaprer 2). {b) Specrra for (ractal image
(fg. 2.5h from chapter 2). Note that the axes of symmetry in the fraceal con he seen in this spectral
density distribution, while none exist for that of Labhazanga.



————Notes

CHAPTER 1

[urroduction to fractal geometry

1.

3.

"CHAPTER 2

For a hexagon example, see Washburn and Crowe {1688, 237). Numerical examples’

can be found in Cromp {1900, 30—40, 50-54, 105-106, 128-133).

. The number 10 was not only a basis for counting, but it also appearedin Chinese nat-

ural philosophy. In acupuncrure, for exarmple, the number 10 is created by the combi-
nation of che “five elements” (wu-yim) and the binary yin/yang.
Michael Polanyi {1966) referred to this as "tacic knowledge.”

Fractals in- Afvican settlement architecrure

. On rianguelar churches, see Norberg-Schulz {1965, 172); for the Pantheen, see

ibid., 124.

. Another passape, “path of the serpent,” is used only by royaley. It alternaces left and
P g& P P ¥ Y

right as it approaches the center of the palace, and chus creates a sealing zigzag pactern.
The implication seems to be that even royalty must negotiate the fractal ranking, bur
they can traverse it in 4 more direct route.

. Awmerican readers are probably most familiar with nuclear famifies, but in Africa the

family structure typically extends to much larger networks. The English tersm “cousins,”
for example, emphasizes the nuclear family by lumping all these relatives together, while
many African kinship systems have distinct terms for paternal parallel cousing, marter-
nal parallel cousins, paternal cross cousins, etc.

The starus difference between front and back is also expressed in rhe Ba-ila term for
slave: “one who grows up at the duorway” (Smith and Dale 1968 [1g20] vol. 1, 304}

. This is another meaning for the rerm “participanc simulation.” In the first meaning, briefly

mentioned in the introduction, Flefned it as an effort in cooperative modeling and
analysis, a technologized version of recent attemprs in collaborative ethnography by
some anthropologists and their informanss. In rhat sense it supports the humanist goals
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of self-governing autonomy. But in the Mokoulek case [ am also using it in the post-
modernist sense, a participant in a virtun! world. The contrasting meanings and their
consequences are discussed in detail in chapter 1o, where the two are brought together.

6. The results were published in Eglash and Broadwell {1689), and are repreduced in
the appendix. g '

cHAPTER 3 Fractals in cross-cultural comparison

1. In general, anthropologists divide nonstate sacieties berween "band” organization,
which is entively decentralized and based mainly on consensus, and “gribal” organiza-
tion, in which there is an official leader but otherwise little pofitical hierarchy. The term
“tribe” is controversial, however, since colonialisces aften used it te deny the existence
of indigenous state societies, so ir is important to separate the technical designation
from its colloguial use. ‘

2. This is a complex designation in cultural studies, since the fabel of “rraditional—or
worse yet, "authentic’'—was used by coloniat authorities to exercise control aver
indigenous populations, and still cccurs in the neecolonial context to valorize the “van-
ishing native” while appropriating their cultural resources. See Minh-ha (1986),
Anzaldia (1987), Clifford (1988), and Bhabba (1ygo) for discussion of some of these
issues.

3. Crowe and Nagy (1992}, for example, have done extensive analysis of Fiji decoration,
and found 12 of the 17 mathematically possible two-color strip symmetries, but none
of the designs they show are fraceal.

4. Of course, nothing is absotutely cerrain when it comes to ancient history. Several
researchers have suggested that the Coptic designs from Egypt were an imparcant
influence on the Celtic interlace patterns, and some lratian floor tiles were created hy
North African artisans { Argito 1068, 22). But one could just as easily argue the influ-
ence in reverse. Given the history of trade routes and travel, we should not attempt
to reduce designs to a singular origin; the goal is to see how any one society has buift
up its particular repertoire of designs—from whatever sources—as part of a dynamic
vet cultucally sp. ifc practice.

GHAPTER 4 Intention and imvention i design

- 1. This spatial metaphor of “underlying"—truth beneath the surface—can be a dejusion
if we assume that there is never maore than ane true “essence” to be found. On the other
hand, claiming that no model is more accurate a genernlization than any other is equally
misguided. ‘

2. The postwar era marked a significant change in the role of nature as a potential madel

for scientific discovery, as seen in the emerging disciplines of cyhernetics and bionics

{Cray 1995).

CHATTER 7 ~ Numeric systems

1. 1t is unfortunate that an otherwise excelient paper comparing African and Australian
ethnomathematics {Waeson- Verran and Turnbull 1944) fails to make this distincrion
bertween the iterative generation of linear and nonlinear numher series,

2. Readers who recall the definition of nonlinear functions as involving, at minimuom, some-
thing like x2 may be puzzled by the idea of a nonlinear additive series. That is because
most of us were first exposed ta the definition of “nonlinear” in the cantext of continuans
functions {e.g., differentinl equations). But discrete iteration {what is often called a “dif-
ference equation”) can produce nonlinear steps with simple addition.

3. After giving a lecture on Bamana divination in the United States, 1 was approached
by a mathematics (aculty member who was quite taken by this phrase. "That's just like
us,” he excliimed. "We pet the power of niathematics only st the cost of o socinl defor-
arity as nerds.”

e
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The series was first introduced as an example of a recursively computable aperiodic string
by Axel Thue (1863—1g2z2), using the replacement rules 0 = 01, 1 — 10, with an ini-
tial 0. Morse discovered its application ro dererministic ehaos, in which ir models the
fraceal time series produced by certain nonlineyr equations. See Schroeder (rogr,
264-268) on these aspects of the sequence. -

One-dimensional versions can show ali the dynamics of two dimensions, and can
even be used as a kind of parallel computer. Consider, for example, a rule that in each
iteration the number of counters in a cup is replaced by the sum of itself and its left
neighbor. Starting with one: 0100000 — 0110000 — 0121000 — 0133100 — 0146410.
This fourth iteration gives us the binomial ¢oefficients for expansion of {a + b)4,
which equals at + 4a%b + 6a2b% + 4ab® + b3,

cHaPTER 8 Recursion

~

. The standard terminology is somewhat aimbiguous, since “recursion” is sometimes
|4 .

used to refer specifically to what we will call "self-reference,” and at other times it is’
used in the'more general sense applied here. "lteration” is used in its normal definition,
and for the least powerful we will use the rerm "cascade.” Technically, these three types
of recursion roughly correspond o Turing machines, push-down automara, and finite-
state automata, but these models are a little too abstract to be directly useful in help-
ing readers develop a sense of the distinctions that are of interest here.

Sagay {1983} explicitly mentions starting with the small shape in the center, whereas
the Ipako Elede rows look like they might be better described as a preestablished
linear sequence (although Sagay does nior give derails here).

. Actually, it is not wax that is used in much of Africa, but rather a latex created by boil-

ing the sap of the Euphorhia plant. Williams notes that it can produce long, delicate
threads that are impossible for wax.

. Pelten {1080, 230) contrasts rhe singular random events of the MNative American

trickster myths with “the less episodic, more narrative myths of Legba and Ogo-Yuruga
[in Africal.” The reason for che difference is partly mathemarical. The Native Ameri-
can concept of unpredicrability is based more on chance (see Ascher 1991, 87-04),
while the African concept tends to be closer to deterministic chaos, as we saw in Bamana
sand divination.

. Curtin (1971) shows that the slave trade from what is now northern Senegal dimin-

ished after 1700, and that the Nigerian area did not begin major activiry until after. 1730.
This still leaves the possibilivy that Fuller came from the area of present-day Benin and

L G which wauld BET06 Tar south to have Uireetly shared influences with the Bis-

sari, but Holloway (1990, 10) notes that Virginians showed some preference for
Africans from the Senepambian region.

. I qualified this as “standard” because there has been a growing concern that anchro-

pologists may have overemphasized the importance of age-grade and kinship by pro-
jecting their own desires as well as the interests of their informants. Shaw (1995}, for
example, shows how Louis Leaky's description of the extreme obedience of the Kikuyu
to their age-grade system was colored both by Leaky's desire for the order of a “small
English village” that he never experienced (having grown up with missionary parents}
and the Kikuyu eiders” own interests in receiving the initintion payments that were over-
due to them.

. In addition to the association of the vertical with the spiritual, Fernandez suggests that

the spatial distinction derives from the Fang's periodic clan fission/relocation. The frag-
mentation of a socia! group comes with horizontal movement and is seen as the result
of stagnation or strife, while the establishment of the group in a new location is seen
as positive regeneration, building from the ground up.

. Maurer and Roberts (1985, 25) describe the Tabwa belc, a leather strip with bands of

beads or wire as representations of a single descent line. Since the Tabwa use the mpande
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disk to represent the expansion of all kinship groups from a singulac origin, it is not
unreasonable to think of the mukaba belt as o lower-dimensional projection of the

mpande disk. [f one is willing to speculate so wildly thateven [ would hesitate to do -

s0, the aardvark'’s winding tunnel could be viewed as a three-dimensional spital pro-
jected onto the two-dimensional mpande disk, just as the belt is a‘¥ne-dimensional
projection of the mpande spiral. A similar practice, the “Poincaré slice,” is used in non-
linear dynamics {see Abraham and Shaw 1982).

. It is important to understand that the problem is not one of “authenticity.” I agree Wlth

the critiques of modernist anthropology's rendency to make one individual represen-
tative of an entire society and to focus on a false homogeneous past. In ethnomathe-
matics we are interested in the invention of mathematical concepts; so it docsn't
matter whether the source is an-entire society or a single creative individual. What does
matter is the precision and accuracy of the math, and it is here that the interpretive
flexibility offered by narratives presents problems.

Note that | wrere “has trouble with” rather than “cannot do”"—in fact, a programmer
could write a kind of “metaloap” of iteration that would figure out how many nestings
are needed. But in doing so, the program has to be able to refer to a part of itself {its
loops), so this is alceady 2 partial or limited self-reference. Of course we could shen play
the same trick, demanding that we can't tell ahead of time how many metaloops wili
be needed, and our starty-pants programmer could again make a meta-metaloop, and
so on. It is only when we generalize the trick itself that full self-reference will be required.
And even then, it too will meet up with undoable rasks—because that very property
of not bounding the process ahead of time leaves it vulnerable to other prohlems. As
Alan Turing proved for computing, and as Kurt Gadel showed for all mathematics in
general, any system that is sufficiently powerful to fully utilize self-reference will have
to be incomplete in its ability to resolve all the theorems it can ask (see Hofstadter 1980},
The most specific connection made by Taylor is the possibility that the material attrib-
uted to Hermes-Thoth was derived from some of the Egyptian priesthood writings men-
tioned by Clement of Alexandria.

Stéphanidas {1922, 192) suggests a more direct sub-Saharan origin of alchemy, enter-
ing Egypt around 718 B.c.E., following the invasions of Ethiopia.

That’s not to say that the Legba drum heats were random; but the drumming did
indeed have an unexpected change of pace.

CHAPTER 1o Complexity

1.

The analog/digital dichotomy in computing is often confused with orher dualisms. The
same terms are used by engineers to describe the continuousfdiscretre dichotomy, and
by cognitive scientists to discuss “reasoning by analogy” versus inductive analysis, but
these distinctions are irrelevant to the sense in which it is used here. Musical notes,
for example, are excellent examples of analog communication, but they are entirely dis-
crete. See Eglash (1993) for details.

. Blum et al. show that an analog Turing machine would be susceptible to the halting

problem. See Eglash (1992, rog8¢c) for mare details on this recent history of cybernetics.
We can think of the wavefparticle duality in physics as another indication that the
analogfdigital distinction is fundamentally egalitarian.

. We can also look art this in terms of psychopathology. A neurctic will often repeat

the same phrase over and over, while a psychotic tends to be talking "word salad,”
a jumble of nonsense. In both cases, their mental relation to memory is pathologi-
cally simplified: the neurotic slavishly follows memory, whilethe psychotic-comgplerely
ignores it. Complex information processing requires a dynamic interaction with
memary, a nontrivial recursive loap.

. For example, say there are choices A, B, and C. A wins, but B and C vorers say, “If anly
I had known A was going to win, | would have been willing to vote the other way."

ERRR




9. There is also a good ilustration of collective fractul generation in the ares: the Mbutl
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Tank and Hopfield (1987, 108) contrast this one-shot majority rule voting with the

collective-decision-making process in neural nets: “In a collective-decision commit-
tee the members vote together and can express a range of opinicns; the members
know all about the other votes and can change their opinions. The commirtee gener-
ates . . . whar might be called a sense of the meeting,"~-

. Recall that we scaled down P to a number between 0 and 1. That means that (1 - Pr)

wilk always be a fraction, which reduces Py—in face, the larger Py, the smaller the
fraction.

. The reason it never lands back on exactly the same spot is not because of external noise;

it is rather for the same reason that the number P never repeats. Gottfried Mayer-Kress
sugpested that o good way to undersrand this is to note that the drunken driver never
stops missteering, even while the sober one is overpowering him. Isuspect that this com-
bination of negative feedback and positive feedback is at the heart of every case of derer-
ministic chaos, afthough I have yet to prove it. In Eplash {1902} I reported that the
Lorenz attractor consisted of only positive feedback, bur this turns out to be incorrect.
In terms of dynamical systems theory (Abraham and Shaw 198z; Devaney 1986},
positive feedback is the counterpart to spreading in phase space, and negative feedback
corresponds to folding in phase space. The phase-space combination of local spread-
ing and global folding is a common definition for chaos; the conjecture simply trans-
Jates the phase-space definition into » control theory formulation.

. I've oversimplified the relations here. For example, a finer distinction can be made about

“Jisorder” if we consider white-noise versus brown-noise distribution on a susface
(Gardner 1978; Voss 1990). In Brownian motion, a particle moves in a ranglom, con-
tinuous trajectory; given an infinite amount of time, such “brown noise” will approach
a two-dimensional curve. In white noise, single points on the surface are selecred at
random, so an infinite amount of time will still only leave us with-disconnecred points,
which is » zero-dimensional curve. Between zero and one dimension, we have objects
like the Cantor set, and berween one and two dimensions we have objects like the Koch
curve. This is slightly different when we think about noise as a single time-varying sig-
nal (as in acoustic noise} because the single points of the white distribution will also
be connected into a continaous (but nondifferentiable) curve, now of dimension one,
while brown noise as a time series will sti}l be at dimension two.

. Achebe himself prevents such a reading by highlighting 2 precolonial catastrophe thar

befalls his main character, Okonkwo. At the same time, the contrast berween Qkonkwo’s
misery due to indigenous accident and his suicide as a resule of the colonial encounter
matkees it chenr that these e entirely different ordees of chaos.

burk-cloth design shown iiv chapeer 3 is sctually the produce of mudtiple artists.

v Theoretical frameworks in culural studies of knowledge

1.

Popper might object to the characeerization of “fractal geometry minus dimensional mea-
sures,” since it sounds like an ad hoc adjustment, but the important thing is that the
four artributes (scaling, recursion, infhinity, and dimension) were tested in a more or less
falsifiable manner. Whether or nut one can still call it fractal geometry if one of the
fuur is missing is an important question; but we need to address the possibility of a weak
characterization of recursion in Eusopenn fraceals before making [hat judgment.

. This should not necessarily be assumed to mean “closer to nature,” since it could also

refer to an indigenous knowledge system that promores good ecological praceices; but
the ambiguity is problematic.

. In face 'monot-—my master's degree bs in systems enpineering, and although 1 rook a

few praduare seminars in mathematics for my interdisciplinary Ph.D. (thanks ro the flex-
ibility of the History of Consciousniess board at the University of California at Santa
Cruz), | wouldn't dare eall myself a mathematician in professional company. | have always
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tried to introduce myself as an ethnomathematician during field work, but sometimes
translation problems ook time to get that across.

. Worth it not just in ethical and methodological terms; it often came to my aid in dire

circumstances. On a hot road near the Lake Chad region, [ was stopped by mi[itgi?ﬁi police
wha were clearly looking for a bribe. [ was released only when I begin to launch into
a lengthy explanation of fractal geometry. Knowing the Baka counting system saved
my skin when a group of teenagers in a village in southern Camercon took me for a
disrespeceful tourist; unlike the gendarmes, they were delighted to find mathematics
in their midst.

. On the role of neologisms in the work of Cesaire, see Clifford (1988). On the construction

of negritude as a set of binary oppositions, see Mudimbe (1988).

. For example, the octopus arose millions of years before vertebrates but has a nervous

system more sophisticated than that of some reptiles (see Eglash 1984, 161). Thisisa
dangerous analogy, of course, because people often confuse biological and cultural eve-
[ution. Here are two crucial differences. First, cultural evolution is Lamarckian-—we
can pass our acquired knowledge to the next generation—while bivlogical evolution
is Darwinian, with the rare lucky mutant having an advantage that is then passed on.
Second, the timescales are of different orders of magnitude. Significant biological
evolution requires on the order of a million years, while dramatic culrural evolution
requires no more than a few thousand years. This is why human beings have such a tiny
amount of genetic variation: the first modern humans, from their singular origin in Aftica,
Quickly spread across the earth over a few thousand years. Qur nearly identical genetic
composition is a result of speedy Lamarckian cultural evolution '\d"lptmg us into these
new environments.

cnarter 12 The politics of Afvican fractals

1

. Derrida’s promotion of arbitracy signifiers and artificiality was not the sole voice for this

pasition. Black activists like James Boggs {1968) have also been champions of artifice.
Wittig's {1973) Leshian Body takes a topic that was often treated as the unassailable pround
of feminist meaning, the authentic physical self, and dismantles this construction
through textual erotics. Like Derrida, she shows that n system of arbitrary symbols is
just as capable of carrying the kind of human essence often attributed to the Real or
Natural.

. Angela Davis has pointed our Ellison’s denaturatizing tropes in lectures at UCSC; her

recent work conrinues to tease out these threads of self-nssembly in black cultural iden-
tity and community.

. My favorite illustration of analog amﬁce in black intellectual works occurs in chap-

ter 11 of Audre Lourd's Zami. Like Wittig (1973}, she describes the scif-assembly of a
lesbian body, but her techniques for this artificial reconstruction come through the ana-
log media of scent, vibration, and form. See Eglash {1995) for other examples.

. Consider, for example, the mojo handilataglove comparision in Dery (1994, 210), or

the following passage from Williams (1974, 40): * ‘Simply anything ¢an become a God,’
a Yoruba informant once remarked. * This button (pointing to the dashboard of the car
in which we were), ‘it only needs to be built up by prayer’ {by invocation).”

. Similar views can be found in several other intellecrual works of the time; e.g.,

Joreen's (1972} critique of the women's tnovement, “Tyranny of Structurelessness.” There
are, of course, many centralist critiques of decentralization, hut Joreen's text tock a
more complex angle of analysis. See Ehrlich (1979) for a critical view. Invocations
of African royalty in black cultural representations are typically viewed as commen-
tary on self-estedm, While that may be true, in most cases there are hints chat ir also
serves to question the humanist control enacted in a politicnl democracy thar can sup-
port such deep economic subservience (see Queen Ladifa’s "Queen of Royal Padness”
in Smith 1990).
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11.
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Notes

In fact, this was how 1 got started on African fracrals. It occurred to me that aerial
photos might show the difference between these architectural designs as fractal ver-
sus Euclidean. Pat Caplan generousty provided me with aerial photos of the area in which
she worked, and the indigenous housing did indeed appear to be less Euclidean.

. Recursive architectural structure is lmgmsncqlly “ndicated by the Yoruba rerm for

hoinestead: ot ka ot, or “house within the house.”

The 1993 Supreme Court ruling in Shaw v. Reno used the terms “bizarre” and “snake-
like,” the larter echoing historian John Fiske's 1812 characterization of a "dragonlike”
contour, a phrase changed to "salamander” and finally to “gerrymander” (after Mass-
achusetts governar Elbridge Gerry) by political cartoonist Gilbert Stuart.

. The insistence that stochastic variation implies free will and deterministic variation

implies dominacion is made by several authors besides Porush (e.g., Hakiem Bey). 1 chink
that individuals or groups can indeed create such associations, just as they can create
the opposite {e.g., that a simple hounded system can still have the liberty of infinite
variation, as we will see argued by Gilroy, Van Wyk, and Heaver). The error is in assum-
ing universal meaning to what has to be local semiotics. A ¢loser examination of the
social meanings for statistics (Porter 1986) reveals thar its political associations are often
dependent on modernist concepts of humanist individualism, which is strongly critiqued
in the Foucaultian and other postmodernist analyses championed by Porush, Hayles,
Sobchack, and others.

Just as important is the reverse influence, e.g., Jewish jazz musician Mezz Mt.zzrow pass-
ing for black while in prison so chat he could play in the band.

Gilroy’s work in this area should be seen as part of a larger community of researchers
and cultural workers (e.g., artists) who have developed a postmodern emphasis on hybrid-.
ity, creolization, and other impure identities (cf. Minh-ha 1986, Anzaldia 1987;
Bhabba tggo; Sandoval 1995; Haraway 1906). _ _
Digital and analog are also confusing terms because digital technology is now commonly
used to generate the analog waveforms of music. Burt it is necessary to see how these
representations are layered. The electronic “on-off” code pulses are actually noisy
waveforms that must be processed with analog control circuits at the lowest level of
the silicon chip; eventually they are decoded in binary form, then converted to an elec-
trical waveform rhat will modulate the speaker. The resulting acoustic waveform can
be analog, digital, or—especially in the case of rap music—somewhere in between. See
Eglash (1993) for details.

ciapTER 13 Fractals in the Evropean histovy of mathematics

I.

According to ancient accounts, the discovery of irrationals was in the middle of the
fifch century B.c.e. Modern scholars generally agree that the proof for the incommen-
surability of the square of « dingonal with respect to ies side, first menrioned explicitly
in Plato’s dialog Theaenus, is too abstract to have been used at this time. Von Fritz (1944}
provides a resolution for this conflict in his speculative reconstruction of Hippasus® analy-
sis of the pentagon. See Knorr (1975) and Fowler {(1087) for discussion of the origi-
nal texts relevant to this area.

. Plato was not the only influence at the time, nor were irrationals only granted one per-

spective. Fowler {1o87), for example, maintairis that the significance of irrationals has
been misunderstood and sugpests that even Plato presented their proof as “a source of
interesting and freitful problems” rather than as a disturbing paradox, Nevertheless,
it was the homogenueous representations of Platonic thought deployed centuries later,
not its contemporary diversity, which would matter for the intuition and practice of
modern machematicians.

. "We add to the hrst number the second one, i.e., 1 and 2, the second to the third; the’

third to the fourth; the fourth ro the Afth . . . and it is possible to do this order for an
infinite number of months” (trans. Maxey Brooke).

i) b

faiadsd
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Notes

Similar analysis was provided hy Henry Louis Gates (1990) and others in the censor-
ship trial of rap group 2 Live Crew, maintaining that the explicit sexual lyrics were not
acultural profanity but rather modern variations of a long-standing black tradition of
public sexual commentary. - . e

. Tuana {1989), for example, notes that the male homunculus theory,which locates the

active principle of birth in sperm only, dominated European medical thinking from Aris-
totle to van Leeuwenhoek (and in some senses even to the present: see Flrrouni
1997). Again, the African version is in strong contrast; recall from chapter 8 that the
Fang believe that the homunculus or active principle is contained in the female blood
{the division is more egalitarian than the European madel, however, since the mle Fang
are said to provide a compleimentary protective, skeleal principle).

. That is, prior to complexity theary, ac which peint advances in the application of frac-

tal geometry were made precisely because of the growing recognirion of a relationship
between computational recussion and self-organizing phenomena. Complexity theory
is a marker distinguishing the transitional postmodernism of the 1970s from the stable
postmodernism of the 1g8os {Eglash 1998c).

. The qualification is not inaccurate; the problem is that sometimes the authors of this

text (The Science of Fractal Images) use the term “recursion” to mean iteration, and some-
times {as in this case) it means self-referential programming. This level of ambiguity
would not be tolerated for any other mathematical terminology used in the text.

CHAPTER 14 Futures for African fractals

. For more on cyborgs, see Haraway (1996) and Gray (19953).
. In fact, if | had used a large enough size difference, self-intersection could have been

avoided altogether, but I think that would not do justice to the African tradition of
putzing similar-si malitarian
socioeconomic structure, and one to which Nyangula was no doult sensitive.

. But there was more to it than that. Perhaps in part because it implied a Platonic view,

it made sense to the students that religious symbolism would be mathematical, while
something as coricrete as a mud wall was too hard to reimage. There was also the visual
effect of seeing computer simulations of the Afeican log spirals; for a generation
brought up on video games and MTV, this placed it in a contemporary framework. Finally,
there was something about the religious subject matter itelf-——the very concept of a

"life force” expressed as a self-organizing system—that may have created a resonance

for these students.

Onyejekwe's African Women Global Netwaork is available from htip:/fwww.osu.edu/
orgfawognet,


http://www.osu.edu/
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