Vittorio Gregotti is an architect and theorist who serves as editor in chief of the Italian journals Casabella and Rassegna. Through these activities, he has been responsible for introducing and framing many of the themes that have been important to the Italian critique of the Modern Movement and beyond. Gregotti, Aldo Rossi, and Manfredo Tafuri, all represented in this chapter, are associated with the "School of Venice," officially the Architectural Institute of the University of Venice, or IAU. The Institute's members include neorationalists and neo-Marxists, who have in common a concern for "the fundamentally social role of architecture" and intend their work as a critique of modernism and modernization.¹

Gregotti's editorials from the 1980s, such as "The Necessity of Theory" and "The Exercise of Detailing," (ch. 12) along with his untranslated 1966 book, Il territorio dell'architettura, are characteristic expressions of the neorationalist movement. Known collectively as La Tendenza, the Italian neorationalists attempt to "restate theoretical foundations of architectural design" and develop a logical design method.² Kenneth Frampton often cites Gregotti's book as one of the fundamental texts of the postmodern movement in architecture. This essay, reprinted from the British journal Architectural Design, brings to an English-speaking audience a few of the significant ideas from his book, along with a brief description of his award-winning 1974 design for the University of Calabria campus.

As the title suggests, Gregotti adds two important ideas (place and genius loci) to the neorationalist agenda of the city and form-making typologies. (ch. 5) His theory of place and genius loci derives from Heideggerian phenomenology. (ch. 9, 10) Following philosopher Martin Heidegger, the author asserts an origin for architecture in placing the first stone on the ground to recognize a place. This is consistent with Gregotti's general definition of the architect's task: to create "an architecture of context" by revealing nature through modification, measurement, and utilization of the landscape.
Gregotti’s emphasis on measure is similar to Heidegger, who says, “The taking of measure is what is poetic in dwelling.” Formal interventions reveal the poetic truth of the site (“the essence of the environmental context”), which is necessitated by the fact that landscape and nature are broadly seen as “the sum total of all things” geographical and historical. Examples of this modification include ordering nature geometrically, idealizing it, and invoking it as a mirror of truth. Gregotti’s site strategy is suggestive of the “constructed site,” or what might be seen as a tectonic approach to making a landscape. This is consistent with his approach to building; in the design project shown, it is evident that Gregotti, like Rossi, is interested in morphology.

While his writings reference phenomenologists Heidegger and Edmund Husserl, they also cite Claude Lévi-Strauss. Gregotti’s position is not simple; one detects the influence of structural linguistics in his emphasis on the constitution of architecture by the measurement of intervals, rather than by isolated objects. In a definition of space that parallels semiotician Ferdinand de Saussure’s discussion of language, Gregotti says, “space is composed of differences, discontinuities considered as value and as experience.” In sum, Gregotti’s theory is synthetic. He recognizes the whole web of relations in which one makes an architectural intervention.

While presenting my project for the University of Calabria, I thought again of some of the theoretical reflections I had made in *The Territory of Architecture* ten years earlier, in 1966, for they seemed relevant to many aspects of the overall layout of the Calabria project.

The theory of the materials of architecture and the pre-eminence of the figure as their organisational structure was central to *The Territory of Architecture*, but it did not resolve the specific organisational problems at Calabria. It concerned itself primarily with questions of theory and history, whether as hypotheses of the organisation of personal and group memory, or as a specific history of the discipline—the vacillations of its margins and the shifts in its centre of interests, its territory, and its privileged relations with other disciplines. However, the physical spirit of history is the built environment which surrounds us, the manner of its transformation into visible things, its gathering of depths and meanings which differ not only because of what the environment appears to be, but also because of what it is structurally. The environment is composed of the traces of its own history. If geography is therefore the way in which the signs of history solidify and are superimposed in a form, the architectural project has the task of drawing attention to the essence of the environmental context through the transformation of form.

From 1963–64 onwards I began to put these problems at the centre of my reflections on architecture: my first opportunity to experiment with their consequences in planning was at the XIIIth Triennale in Milan in 1964. Since then, I have always tried to keep the relationship between my theory and my work open, if not consistent. I have attempted, for instance, to understand what one could conclude from reflecting on the area of landscape and nature as the sum total of all things and of their past configurations. Nature, in this sense, is not seen as an indifferent, inscrutable force or a divine cycle of creation.

but rather as a collection of material things whose reasons and relations architecture has the task of revealing. We must therefore modify, redouble, measure, situate, and utilise the landscape in order to know and meet the environment as a geographical totality of concrete things which are inseparable from their historical organisation.

This can only be done if we abandon the sociological or ecological or administrative notion of the environment as an imprisoned element and think of it instead as material for architecture. It should be made clear that this idea of the environment is not a system in which architecture is dissolved, but is on the contrary a load-bearing material...
for the architectural project, enabling new planning principles and methods to accommodate the spirit of the specific terrain.

The spirit behind these new methods is modification. Modification reveals an awareness of being part of a pre-existing whole, of changing one part of a system to transform the whole. Through its etymological root, modus, modification is linked to the concept of measure and the geometrical world of regulated things. It is modification which transforms place into architecture and establishes the original symbolic act of making contact with the earth, with the physical environment, with the idea of nature as a totality. Such a concept of the project sees architecture as a system of relations and distances, as the measurement of intervals rather than as isolated objects. Thus the specificity of the solution is closely related to differences in situation, context, or environment. We do not, therefore, conceive of space as a uniform and infinite extension where no place is privileged: space is not of identical value in all directions, but rather is composed of differences, discontinuities considered as value and as experience. The organisation of space, therefore, starts from the idea of place. The project transforms place into settlement.

The origin of architecture does not lie in the hut, the cave or in the mythical "Adam's house in paradise." Before a support was transformed into a column, a roof into a pediment, and stone heaped upon stone, man put stone on the ground in order to recognise place in the midst of the unknown universe and thereby measure and modify it. Like every aspect of measuring, this required a radical simplicity. From this point of view, there are essentially two ways to place oneself in relation to the context. The instruments of the first way are mimetic imitation, organic assimilation, and visible complexity. The second way uses measurement: distance, definition, rotation within complexity.

In the first case the problem is mirroring reality, in the second it is establishing the double. The latter mode is based on restless division: putting up a wall, building an enclosure, defining regions, producing a densely articulated interior which will correspond to the fragmentation and differences of behaviour. A simple exterior will thus appear as a measure of the larger environment's complexity. For this reason a material is not actually a thing of nature: it is more earthly and more abstract, alluding to the form of the place, to things as they are combined, but also to what is beneath, to the stable geological support, to a nature which is historically transformed, to a nature which is the product of thought, and which as a result of being frequented or settled has become a shared memory.

The project, then, must be established upon the regulating tradition of style and métier. But what gives architectural truth and concreteness to this tradition is its meeting with the site, for only by perceiving the site as a specific environment can those exceptions which generate architecture emerge.

My current work explores the implications of developing an architecture of context. This has led me to confront the problem of implementing large-scale works and to examine which principles and methods would stand up to the realities of production. I have been especially concerned with work environments in industry and universities, and was involved with the important competition for the University of Calabria. The project's main proposal was to base the design of the new university on a principle of settlement. This principle is evinced by an irregular alignment and by the connection between it and the sinuous terrain of the countryside. It functions as a way of gauging the landscape and
regulating and characterising a large-scale design. Alignment and discontinuity are, moreover, ancient and characteristic methods of regulating settlements in Calabria.

The project also attempts to bring about an interaction between morphological and functional systems. The first system consists of a linear succession of university departments running across the hill system to the plain of the River Crati. The blocks housing the departmental activities accommodate the varying levels of the land and are laid out on a square plan on the axis of a bridge. The second system considers the morphology of the hills, the succession of their slopes and peaks (which carry the local road system), and their relationship to the fabric of the low-tiered houses along the northern slope intended as university residences. Since the southern slopes are cultivated with olive trees, an alternating succession of residential units and natural spaces results. The university services, which are open towards the exterior, are situated at the junctures between the bridge system and the hilltop roads.

The 7m-wide upper lane of the bridge caters for public transport and goods traffic; the lower lane is for pedestrians and internal student traffic. Between the two lanes, the various installations run along a conduit with a triangular section. The tall blocks of the university departments are linked to the bridge by a narrow body of services placed perpendicular or parallel to the bridge depending on the type of cube.

The whole layout of the university is regulated by a grid of 25.20 x 25.20m extended over two modules to the two sides of the axis, forming a settlement strip 110m wide. The tall blocks vary between two and five storeys to maintain a constant height of 33.40m above sea-level and project onto the line of transverse section of the valley below. They are enclosed by load-bearing reinforced concrete walls measuring 21.60 x 25.20m at distances of 3.50m on centre. The horizontal structures are supported by metal beams with a span of 19.60m for internal linkage. These control the positioning of the structures of the floors, spaces between floors, and intermediate floors. In the second type, the internal structures are also reinforced concrete, and pillars divide the interior into two different articulated spaces: on the one hand, small spaces for studies and offices; on the other, large collective spaces for laboratories, lecture halls, libraries, etc.

The natural lighting for the interiors is obtained through large openings in the perimeter wall and the transparent, partially sun-screened roofing. This strategically regulates the view of the natural landscape and external architecture.

The outer modules of the grid are occupied by the extension of the tall blocks on the ground floor to form a support base and house the more cumbersome technical equipment. The 250-seat lecture halls are suspended between the volumes of two lateral blocks in order to leave the continuity of the slope unbroken and form a passageway below the tiered arches. The blocks which house the various departments and a whole range of teaching and research activities form the basic element in the grouping and set up a morphological referent for the university's future growth and change of layout. The final phase of the project, providing accommodation for 12,000 students, suggested the doubling of the departmental spaces. In this projection, a rapid link-up service would replace the bridge and would continue both to the new station with parking facilities at the mouth of the Paola tunnel and to additional parking at the Cozenza tunnel. The level part of the northern area would house the buildings and supply areas of the main regional sports centre and the laboratories of the national research centre.
At this stage in its development, the university organism would be making full use of two access systems deriving from the settlement system: the two ends of alignment would be linked by a fast, efficient urban transport system while the hill roads would continue to function as they had in the first phase. The squares would be the meeting point of the two systems.

The plan for the University of Calabria was the result of a competition won in 1974 by a group consisting of E. Battisti, V. Gregotti, H. Matsui, P. Nicolin, F. Purini, C. Racconi Clerici. Urban Planning was by Laris.

Collaborators on the project:
P. Cerri, V. Gregotti, H. Matsui (Gregotti Associati); G. Grandori, G. Ballio, A. Castiglioni, G. Colombo (Structural Engineers); Tenke VRC (Engineers).