Difference between revisions of "Test"
Line 1: | Line 1: | ||
{{#widget:Twitter | {{#widget:Twitter | ||
|user=monoskop | |user=monoskop | ||
− | |width= | + | |width=300 |
|count=5 | |count=5 | ||
|tweets.color=#000000 | |tweets.color=#000000 | ||
|tweets.background=#f2f2f2 | |tweets.background=#f2f2f2 | ||
|tweets.links=#107bb5 | |tweets.links=#107bb5 | ||
− | |shell.color= | + | |shell.color=#000 |
− | |shell.background= | + | |shell.background=#fff |
}} | }} | ||
Revision as of 13:43, 11 March 2012
<wikitex refresh dpi="144"> \section*{Education} \begin{itemize} \item M.A. Media Design and Communication: Networked Media, Piet Zwart Institute, Willem de Kooning Academy, Rotterdam University, Netherlands, 2010--2012. \item M.A. Information Technologies, Faculty of Economic Informatics, Economic University of Bratislava, Slovakia, 1997--2002. \begin{itemize} \item \textit{Dissertation:} Electronic Business (Online Market in the Mirror of Chaos Theory). \end{itemize} \item Mass Media Communication, Faculty of Mass Media Communication, University of Cyril and Method in Trnava, Slovakia, 1999--2001. \end{itemize} </wikitex>
<wikitex> Let $Q$ be any finite set, and $\mathcal B=2^Q$ be the collection of the subsets of $Q$. Let $f:\mathcal B\rightarrow \mathbb R$ be a function assigning real numbers to the subsets of $Q$ and suppose $f$ satisfies the following conditions:
- (i) $f(A)\ge 0$ for all $A\subseteq Q$, $f(\emptyset)=0$,
- (ii) $f$ is monotone, i.e. if $A\subseteq B\subseteq Q$ then $f(A)\le f(B)$,
- (iii) $f$ is submodular, i.e. if $A$ and $B$ are different subsets of $Q$ then
$$f(A)+f(B)\ge f(A\cap B) + f(A\cup B).\eqno{(2)}$$
</wikitex>
Property test: Dummypage
<wikitex> <math>\frac{1}{\displaystyle1+\frac{1}{\displaystyle 1+\sqrt{5}}}</math> </wikitex>